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Abstract—We explore the potential of using large-scale Nat-
ural Language Processing (NLP) models, such as GPT-3, for
enhancing genetic improvement in software development. These
models have previously been used to automatically find bugs,
or improve software. We propose utilizing these models as a
novel mutator, as well as for explaining the patches generated
by genetic improvement algorithms. Our initial findings indicate
promising results, but further research is needed to determine
the scalability and applicability of this approach across different
programming languages.

Index Terms—genetic improvement, artificial intelligence, nat-
ural language processing, non-functional properties

I. INTRODUCTION

We propose the integration of large-scale natural language
processing (NLP) models into the genetic improvement (GI)
process for software improvement, such as finding bugs or
improving non-functional properties. These NLP models can
be used as novel genetic operators, as well as for explaining
the patches generated via GI.

The use of NLP models has been demonstrated in code
generation [1], program repair [2] and optimization [3]. Re-
cently, large-scale models have been specifically trained for
understanding and generating source code, such as CodeT5 [4]
and Codex [5]. ChatGPT, further advances the explainability
of source code [6]. Our proposed approach aims to leverage
the capabilities of these models to enhance the efficiency and
understanding of the GI process.

The application of NLP models in software development has
been shown to be effective in repairing bugs and improving
programs on its own [4]. However, their integration with GI
techniques can provide even greater benefits. In this paper, we
propose using NLP models in the following ways:

• As genetic operators: NLP models can be used to perform
different mutation operations, providing more options for
generating new solutions.

• Simplification of patches: NLP models can be used to
simplify larger patches generated by the GI algorithm,
making them easier to understand and inject into an
existing code base.

• Explanation of patches: NLP models can be used to
explain the reasoning behind the patches generated by the
GI algorithm, providing greater insight into the solution
and increasing the transparency of the patch.

As an example we use the code provided in Listing 1, taken
from a publication by Licorish and Wagner in a previous GI
workshop [7]. This example serves to demonstrate the poten-
tial of using NLP models in conjunction with GI techniques.

Listing 1. Transformation of int array to Integer array. Originally listed as
Listing 6 in [7]. The mutation on line 5 (yellow background) of the original
code was produced with the conventional GI copy mutator.
public class C315640{

private static Integer[]
toIntegerArray(int[] array){

Integer[] finalArray = new
Integer[array.length];

for (int i=0; i<array.length; i++){
finalArray[i] = array[i];
finalArray[i] = array[i];

}
return finalArray;

}
}

II. UTILIZATION OF NLP MODELS AS GENETIC
OPERATORS IN GI

The integration of NLP models into the GI process can
provide significant benefits. These models can be used as pow-
erful genetic operators, capable of automating the rewriting
of code for specific goals, repairing bugs, and implementing
safety checks or documentation.

As an example, when using an NLP model to improve the
code in Listing 1 and add Java documentation, the results are
impressive. It simplifies the code from a for loop to a single
line, includes null checking, and documents the function. This
can be observed in Listing 2. The return statement encapsulates
the core functionality of the original code, while the remaining
code serves as an enhancement provided by the NLP model.

For example when asked to improve the code in and add
javadoc the result is rather impressive, as it not only simplifies
the code from a for loop to a single line, but also adds safety
measures for nullchecking, and correctly documents the given
function. This can be seen in Listing 2.

Another potential application of NLP in GI is as a form
of selection operator. By providing the NLP model with the
individuals in the population, it can be used to select distinct
or viable solutions.
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Listing 2. Improved code via ChatGPT
/**
* Converts an array of primitive ints to

an array of wrapper class Integers

*
* @param array the array of primitive

ints to be converted

* @return an array of wrapper class
Integers

* @throws IllegalArgumentException if
the input array is null or empty

*/
private static Integer[]

toIntegerArray(int[] array) {
if (array == null || array.length ==

0) {
throw new

IllegalArgumentException("Input
array cannot be null or
empty");

}
return Arrays.stream(array)

.boxed().toArray(Integer[]::new);
}

In cases where the GI algorithm generates larger patches,
NLP models can be used to reduce code bloat [8] by detecting
duplicates and simplifying the code through refactoring. This
approach can also be used to improve and document the
final patch generated by the GI algorithm, as demonstrated
in Listing 2.

III. EXPLAINING GENERATED PATCHES USING NATURAL
LANGUAGE PROCESSING

NLP can be used to explain the patches generated by GI or
to simplify them after the GI run has completed. For instance,
when using a model like ChatGPT to explain line 5 in Listing
1, it provides the following response:

Line 5 assigns the value of the int at the current
index of the input array (array[i]) to the corre-
sponding index of the finalArray (finalArray[i]). It
is duplicated in the code which will have no effect
on the result.

This not only explains the patch that was created, but
also informs the user that the patch will not have any effect
on the source code. Initial testing has revealed that models
such as ChatGPT can effectively explain source code, even
identifying core concepts like the use of the Newton-Raphson
approximation method in mathematical functions, without
relying on code comments or the original function names.
However, smaller models like CodeT5 and Codex may provide
nonsensical answers and struggle to explain code that deviates
from standard algorithms that they may have inferred from
recurring sample projects or Stack Overflow articles.

IV. CHALLENGES AND FUTURE DIRECTIONS IN
NLP-ASSISTED GI

The integration of NLP in GI poses two main challenges:
cost and applicability. NLP models can be quite large. Flan-
T5-xl, has 68GB of files and requires a significant amount of
RAM. Paid APIs such as GPT-3 can be used, but these can
become cost-inefficient when used for operations that require
several hundreds or thousands of API calls. The applicability
of NLP-assisted GI need to be evaluated across different
programming languages and domains. For instance, CodeT5
performs well on Python code, and ChatGPT and Codex are
effective for C and Java code. Their ability to understand and
explain code in other languages may be less robust.

GI code is often less human-readable than the code writ-
ten by a developer, which may impact NLP models. NLP
models rely on the naming of variables and functions for
understanding code, for example when renaming all names in
the inverse square root function, ChatGPT incorrectly assumed
that the code calculates 1/x, but still found the connection to
the Newton Raphson approximation method.

As a next step, we plan to design prompts for the NLP
models that can be used as genetic operators and for processing
the final results of the GI algorithm. These prompts will be
made available in a publicly hosted repository, together with
a study that shows the application of NLP in GI on program
repair and non functional optimization. Additionally, we aim
to conduct a comprehensive comparison of currently available
models in terms of the quality of the results they generate
and the monetary or processing costs associated with their
integration into the GI process. This will provide insights into
cost-effective and efficient options for NLP-assisted GI.

An exploration of complementing NLP models with GI
would also be interesting. GI can be used to optimize the
prompts of NLP models via its fitness function, or fix nearly
perfect solutions produced by NLP.
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