
Updating Gin’s profiler for current Java

Myles Watkinson

School of Computer Science

University of Adelaide, Australia

Email: myleswatkinson1@gmail.com

Alexander E.I Brownlee

Computing Science and Mathematics

University of Stirling, Scotland, UK

Email: alexander.brownlee@stir.ac.uk

Abstract—Genetic improvement is a young and growing field.
With much research still to be done, a number of tools to support
the research community have emerged, with Gin being one such
tool targeted at GI for Java.

One core component of Gin is the profiler, which is used to
identify ‘hot’ methods in target applications: methods where the
CPU spends most time and so may offer the most fertile sections
of code for improvements to run time. Gin’s profiler is HPROF,
which was included with JDKs up to version 8. HPROF is no
longer supported and so needs replaced if Gin is to support
later versions of Java. Furthermore, little investigation has been
made within the GI community comparing different profiling
approaches.

With this paper and its associated accepted pull request, we
replace Gin’s CPU profiler with Java Flight Recorder (JFR) to
allow Gin to be applied to current Java code, allowing researchers
working in GI with more recent JVMs to easily integrate profiling
in their pipeline. We also contribute an experimental comparison
of the HPROF and JFR profilers for the JVM.

I. INTRODUCTION

Genetic improvement (GI) is a field of software engineering

that aims to automatically improve code. Though GI first

emerged in 1995, research in the topic began rising from 2008

and had continue to grow in recent years [1]. Genetic im-

provement can target functional improvements of code, such as

bug fixes (e.g., GenProg [2]), or non-functional improvements,

such as run time (e.g., [3]).

To stimulate the growth of research in GI, the Gin tool [4],

[5] was created, with the aim to be a compact and simple

tool for Genetic Improvement research. Gin is open-source,

meaning researchers can build upon the existing code, and

as far as possible makes use of multiple existing tools such

as EvoSuite [6] for automated test creation and HPROF [7]

for estimating the runtime of methods. Gin removes the need

for reinventing the wheel. Rather than spend time writing

the foundations for genetic improvement, researchers can

immediately begin building upon the software.

GI works by applying transformations (mutations) to ex-

isting code, creating a search space of potential new code.

Typically, this search space is then explored to discover mutant

code that has the same or “close enough” functionality as the

original code and makes improvement in a target property such

as runtime or energy consumption. The search space is often

sparse and very large, making it difficult to find code that

both retains functionality and performs better than the original.

Thus one focus of research has been to determine ways to

make this space more amenable to search. This can include

new, smarter, mutation operators (e.g., [8], [9]).

In GI, the targeted applications are often profiled, as this

reduces the search space by identifying worthwhile targets.1

It is crucial for an in-built profiler to identify computationally

heavy functions: if waiting or sleeping threads are profiled, a

GI framework may target a function that waits a long time

for other tasks to be done but does not actually complete

much work itself. Furthermore, if the selection of hot methods

varies dependent on the profiler, the GI search space is likely

to change. As such, further investigation of profiling is an

important topic for the GI research community.

Interestingly, however, existing GI frameworks rarely offer

support for profiling; for example, PyGGI and PyGGI 2.0

do not provide support in their current versions. Instead,

profiling appears to be often done by the respective team

on an ad-hoc basis and with a variety of tools due to the

targeted applications and objectives. For example, [11] profiles

code by counting the lines-of-code; [12] uses nVidia’s CUDA

performance profiler; [13] employs callgrind15 and gprof16

to profile; and [14] uses Corbertura 2.1.1. Including the

profiler within Gin’s pipeline removes the need to focus on

the machinery of applying profiling, when a given piece of

research is focused on another aspect of HI. Hence, keeping

Gin’s profiler up-to-date has the potential to enable future

research more easily than other GI tools that do not provide

built-in support.

Currently, Gin is implemented in the Java language and

solely used for the mutation of Java code. Although it is

written in, and targets, Java 8, this is now dated compared

to Java’s latest version, 18 [15]. Due to changes in the Java

Development Kit (JDK) some parts of Gin no longer work in

newer versions. The two major changes impacting Gin are the

removal of HPROF, a profiling tool used to analyse methods

to identify those used often, and greatly tightened restrictions

on the use of reflection [15].

The goal of this work is to tackle the first of these changes:

upgrading Gin’s profiler to support recent Java versions up to

18. We have two research questions in this work: (RQ1) which

profiling tool is most suitable to replace HPROF in Gin? and

(RQ2) is the replacement profiler likely to find different hot

methods to those identified by HPROF?

1A rare exception is the optimisation of straight-line Assembly code in
[10].

23

2023 IEEE/ACM International Workshop on Genetic Improvement (GI)

979-8-3503-1232-4/23/$31.00 ©2023 IEEE
DOI 10.1109/GI59320.2023.00015

To answer RQ1, multiple alternative CPU profiling tools

will be compared rigorously using chosen criteria to select

a candidate. This analysis leads us to choose Java Flight

Recorder (JFR) to replace HPROF as Gin’s profiler. While

many GI approaches use profiling in some capacity there has

been little experimental testing or validation of the profiling

approaches used. Thus, to answer RQ2, we also perform an

experimental comparison of HPROF and JFR on a toy program

and an open source application to test the consistency by which

both identify hot methods.

The rest of the paper is structured as follows. Section II de-

scribes the problem to be tackled in terms of the requirements

for Gin’s profiling tool and compares the various candidate

profilers against these requirements. Section III describes our

experimental study and Section IV discusses the results. In

Section V we give our conclusions and suggestions for future

work.

II. REQUIREMENTS AND PROFILER TOOLS

There are many profiling tools available for Java. The

following paragraphs identify useful properties to compare a

number of tools and examine the adequacy of each tool in

Gin’s context.

In the current version of Gin, HPROF is used for CPU pro-

filing of the Java Virtual Machine (JVM). At chosen intervals

(default 10ms) it takes a sample of the call stack. The stack

is then descended until a method in the target application is

found (rather than a test or Java/external library API method).

Gin writes this data to a CSV file identifying “hot methods”

or those that should be focused on in mutation [5].

General profiler features that could factor into our consid-

erations include: configurable sample interval, visualisation of

data, stack usage analysis, heap use analysis, RAM analysis,

measurement of energy use, and the choice of a GUI front

end, command-line control, or an API. To replicate Gin’s

existing profiling capabilities (from HPROF), we require that

the sampling interval is configurable and that stack usage

analysis is available. Gin is a toolbox: it is simple and compact,

so the profiler (and any external programs connected to Gin)

should not require advanced knowledge to use. To allow

large-scale experimentation, any external tools called by Gin

should not require input from the user making automation

via command line or an API a necessity. Interactivity is not

needed and should be avoided to reduce overhead. Alongside

automation, integration is important. New features should plug

directly into code that already exists without changes having

to be made. Depending on the quantity of tests, initial runs

may take up to hours on large programs meaning a profiler

cannot add too much time to this process. Furthermore, only

stack use needs to be profiled, Gin does not optimise memory

or energy usage. Lastly, the profiling tool chosen needs to be

free due to Gin’s nature as a research implement.

To summarise, the features Gin’s profiler needs are: easy

automation (command-line or API), integration with current

code, configurable sampling rate, stack trace analysis, and little

overhead.

Fig. 1. VisualVM interface; VisualVM is focused towards developers who
need to visualise data while working on programs, creating graphs adds to
the overhead caused by using such an interactive tool.

Java profiling and diagnostic tools can be grouped into two

realms, third party, and those incorporated in the Java package.

Third party programs, either free or subscription based, are

JProfiler and NetBeans. Built-in diagnostic tools are JConsole,

Java flight recorder (JFR), Java Mission Control (JMC) and

VisualVM. We now briefly summarise each.

JProfiler:

A heap and CPU profiler for Java that shows method calls,

run time and memory usage. Users can choose to record or

visualise data on demand. Its focus is on low overhead, and it

has the option to display how selected JProfiler settings will

affect program performance.

NetBeans:

This third party Java profiler by Apache can be used to

analyse CPU usage and memory allocation. It is interactive,

using a GUI, and it cannot be operated from the command

line.

JConsole:

This graphical tool is used to visualise CPU and memory

usage in a Java program. When operated from the command

line, JConsole monitors a Java application and outputs this data

in a graph format. To save this data as a CSV file, user input

is needed. JConsole has significant overhead as it measures all

activity in the JVM and is recommended to be used remotely

to save resources.2

VisualVM:

Similar to NetBeans and JProfiler, VisualVM provides a

graphical interface (Figure 1) to visualise profiling informa-

tion. It is also similarly interactive and cannot be operated

from the command line.

Java Flight Recorder (JFR):

JFR records information on events that occur in the JVM.

The event Gin is most concerned with is function calls. Due

to only taking information on events, along with other design

specifications, JFR has little overhead. Contents of a flight

recording are output to a .jfr file after a recording ends.

Java Mission Control (JMC):

JMC was initially created to plug into JFR to visualise data

it collects; it now exists as a standalone tool. However, it still

acts to visualise data for developers, making it interactive in

nature and inoperable from the command line or batch file.

2For example, see the discussion at https://stackoverflow.com/questions/
6577758

24

Firstly, JProfiler can be removed from the candidates.

JProfiler can only be used with a subscription making it

unsuitable for Gin, which is designed to support research

and open science. Next, for ease of integration, other third-

party programs VisualVM and NetBeans can be removed from

consideration. Any software external to Java adds more depen-

dencies and is less preferable than a Java-internal solution.

In addition, VisualVM and NetBeans both use GUI front

ends (e.g. Figure 1), requiring user input which would be an

obstacle to any large-scale experimentation. Now that built-

in Java tools are left, comparison between the two can be

made in terms of: performance, automation and integration.

Performance of a diagnostic tool is determined by the number

of input and output (I/O) operations. Similarly to HPROF, JFR

only takes information on events that occur in the JVM. This

means it avoids heap profiling which may be costly. JFR also

has a specialised data flow to reduce disk I/O operations. JFR

collects data and keeps it in a buffer and when this buffer is

full, flushes data to the disk. This makes JFR extremely fast

even though it collects large amounts of data on all events

that run in a Java program. JConsole, VisualVM and JMC all

use a graphical interface to visualise data. The I/O operations

needed to transfer data then create graphs make these tools

slow in comparison to JFR. Though visual depictions of data

make understanding heap usage easier for developers, this

feature is outside the scope of Gin, which only requires

data on CPU usage. Keeping this data in the simplest form

possible will reduce with overhead. In terms of integration and

automation all the programs considered can be activated from

the command line and all come packaged in the newest version

of the JDK. This removes the need for any added dependencies

and keeps Gin as compact as possible. Following the above

points, JFR appears to be the best choice to replace HPROF: it

can be used from the command line, has negligible overhead

and is still supported in current Java versions.

Integrating JFR with Gin is relatively simple. To run JFR

simply requires changing the flags to the Java command that

runs the profiler. The code to use JFR is similar to the pre-

existing HPROF code in Gin’s “gin.util.Profiler” class. These

similarities mean that the profiler can use JFR or HPROF

simply by changing the run command arguments, from:

-agentlib:hprof=cpu=samples,lineno=y,depth

=1,interval=$hprofInterval,file=

to

-XX:+UnlockCommercialFeatures -XX:+

FlightRecorder -XX:StartFlightRecording=name=

Gin,dumponexit=true,settings=profile,filename=

JFR also reports the data differently to HPROF; so the

parsing step within Gin’s Profiler class needed amended to

use the built-in Java RecordingFile class.

III. EXPERIMENT AND RESULTS

Next, we compare both HPROF and JFR in experiments.

They both profile the JVM to produce statistics on what occurs

inside it, although, they operate differently.

TABLE I
BASELINE PROFILING FUNCTIONS; THE NAME OF EACH FUNCTION ALONG

WITH THE NUMBER OF PRIMES IT CALCULATES AND THE TIME IT TAKES

TO RUN. WE EXPECT THAT, DUE TO THE 10MS SAMPLING FREQUENCY OF

BOTH PROFILERS, EACH FUNCTION WILL BE PROFILED ’TIME TAKEN / 10’
TIMES.

Function name Primes found Time taken (ms)

P5() 5000 24
P10() 10 000 75
P15() 15 000 153
P20() 20 000 266
P25() 25 000 412
P30() 30 000 588

Note that the ground truth is unknown, and that our primary

goal is to replace HPROF with something that provides

qualitatively “similar” results.

Experimental Setup Our experimentation compares the

HPROF and JFR tools. HPROF is freely available with Java

Development Kit (JDK) versions 8 and below, whereas JFR is

available with versions 9 and up; consequently a key difference

is that runs were carried out using Oracle JDK 8.0.341 for

HPROF and Oracle JDK 9.0.4 for JFR. JDK 9 was used as it

is the closest to the version that Gin uses while still supporting

JFR, in an attempt to minimise the impact of the different

JDK versions on our experimental comparison. However, the

updated version of Gin is expected to support up to at least

JDK 17 (and subsequent experiments suggest that the profiler

component does work with this version). All profiling is done

inside of Gin using its profiling utility. The projects being

profiled are a synthetic baseline program, the Gin “Simple

example” that comes packaged in Gin, and Spark, a Java web

framework found on GitHub3. The latter was chosen because

it is a free Maven project with non-trivial test suite (312 unit

tests), still in active development, reasonably popular (9.5k

stars, 1.6k forks), and crucially, compatible with Java 8 to

allow comparisons with HPROF. Results were taken in the

form of CSV files that Gin outputs directly.

Baseline Method The basic outline of the experiment was to

profile a project with both JFR and HPROF to determine if

they both found the same methods as hot methods and found

these methods running the same number of times. First, a base-

line test was run. This initial test profiled a program calculating

prime numbers. Six functions were included labeled p5, p10,

p15, p20, p25 and p30. Each px function calculated the first x *

1000 primes. The use of a prime calculation function allowed

for clear view of how each tool profiled the JVM, with a

simple repeat of the processing to make more CPU-intensive

methods.

JFR and HPROF both have profiling intervals of 10ms: they

both take a snapshot of the call stack every 10ms. Therefore,

it can be predetermined what the expected number of function

calls is for each method by dividing the time taken by 10. The

3Spark: https://github.com/perwendel/spark (not to be confused with
Apache Spark)

25

TABLE II
BASELINE PROFILING FUNCTIONS; RESULTS.

Function HPROF samples JFR samples

P5() 1.25 1.75
P10() 5.75 5
P15() 12.5 8.5
P20() 23 14.75
P25() 34 22.75
P30() 54.5 32.25

functions were implanted into Gin’s “maven-simple” example

program which is used by five unit tests. These tests run by

the program multiple times meaning each function was run 10

times.

Baseline Results Table II shows the average number of pro-

files of each function. As expected, the functions calculating

more primes appear in the profiling more often. HPROF and

JFR both take the same number of total samples, although,

JFR more often finds Java functions on top of the call stack,

leading to HPROF taking more samples of the primes function.

In the longer-running functions, it can be seen that HPROF

consistently finds more samples of each function, meaning that

HPROF finds each function at the top of the call stack more

often. JFR finds ‘Java.util.Arrays.copyOf’ almost three times

more than any other function and, similarly, HPROF finds

‘Java.io.fileInputStream.readBytes’ three times more than any

other function. The Java util and Java IO functions are found

by JFR and HPROF respectively but aren’t included in the

final hot methods count as Gin filters out functions that are

not part of a program’s actual code. Although, even though

these functions aren’t included in the hot method count, they

will still impact the count of other functions as they may be

found above them on call stacks more often. HPROF finds

IO calls whereas JFR does not because JFR samples events

that occur in the JVM, whereas, HPROF samples all active

threads. Events refer to function calls, including those by a

running program and by internal Java classes. Therefore, JFR

finds a huge number of Java.util and Java.lang functions that

are almost always running when a call is made to operate

on a Java language data structure. HPROF can sample I/O

operations occurring in the JVM, along with sleeping, resting

or stopped threads, that JFR cannot see. These are not positives

or negatives, simply differences in the way both profilers

work. For Gin, only consistent identification of hot methods

is needed for both tools to be deemed candidates for a test

profiler.

Test Methodology Both profilers are adequate for identifying

hot methods in a controlled test, a larger project has been

selected for profiling. The profiling target is Spark, an open

source Java project found on GitHub. Spark comes packaged

with a number of test cases that run for 30 minutes in Java

8 and 22 minutes in Java 9. Gin’s profiling identified hot

methods in Spark, running once with HPROF and once with

JFR. This process was repeated 30 times to output 30 sets of

hot methods files for each profiler. To run the profiler 30 times

Fig. 2. Average ranks of hot methods: HPROF and JFR. Each of the 70
points represents one method, and it denotes the average ranks returned by
either profiler. The averages are the results of 30 independent runs of each
profiler.

a bash function was used. This allows for a separate JVM to

be made for each run. This avoids potential issues with the

JVM not closing properly after the profiler was run. It also

forced Gin tests to be run before every instance to assure that

the profiler would run as intended.

JFR and HPROF each output respective files that are used to

extract results. HPROF outputs result to a .csv file that can be

easily read and translated. Dissimilarly, JFR outputs to a .jfr

file with a binary format that requires specific tools to view.

Programmatically, this file is broken into RecordedEvents, a

data structure from the JFR library, by first reading the .jfr

file to a JFR RecordingFile. Gin is concerned with stack

traces, so each recordedEvent with the type ExecutionSample

is collected. Each ExecutionSample has a list of stack frames

that are iterated over to identify methods and function calls

that occurred in order. Though it does not fit the context of

Gin, Java Mission Control can easily visualise JFR files to

debug.

Test Results Over 30 tests JFR identified 107 hot methods,

these methods were used as true hot methods. HPROF found

70 of these methods in total and all of the top 10 most profiled

methods.

As seen in Figure 2, the average ranks of the hot methods

that both profilers find appear to be positively correlated,

indicating that both profilers find comparable sets of hot

methods. The Spearman correlation coefficient for the entire

set of 70 functions is just 0.57; however, this result appears to

be affected significantly by rarely sampled hot methods, as the

Spearman correlation coefficient for the top 30 JFR methods

is 0.80.

IV. DISCUSSION

The difference between each data set is partially explained

by random variations or ‘noise’ during profiling. Due to in-

consistency of runtime over several samples, the same method

may not be found the same number of times in every test.

26

Fig. 3. Example of a call stack: three methods in a call stack showing the
bottom of the stack, found by JFR and the top, found by HPROF. This is
a fundamental difference in the way JFR and HPROF are used. Some stack
frames need to be filtered out of JFR to extract useful information while
HPROF doesn’t require this filtering.

While we kept the JDKs involved close in version (8 vs 9)

nevertheless the change of the Java version between the tests

is also likely to have impacted the sampling. Presumably, as

Java versions increase, the efficiency of both the java compiler

and JVM improve allowing for code to run faster, therefore,

possibly changing profiling results.

As number of samples decreases, HPROF identified meth-

ods reduce in rank at a slower rate than JFR methods. This is

due to the difference in number of methods sampled by each

profiler. On average, JFR found 26.2 hot methods, whereas

HPROF found only 21.6. This means, the ranking of hot

methods was distributed differently depending on the profiler.

The method of analysing profiling data accounts for this

difference.

When analysing HPROF data, the top of the call stack is

analysed and recorded. Methods found at the top of the call

stack most often are shortlisted and those that belong to the

main program are returned as hot methods; see Figure 3 for a

sketch of a situation. Alternatively, JFR traverses the call stack

until it discovers a method that is part of the main program,

then, this method’s number of samples is incremented. This

means, a method that is part of the main program is found

in every JFR call stack, whereas, in HPROF samples there

may be java language or I/O operations that are found and not

returned as hot methods. This is why JFR consistently finds

more hot methods and finds them more times in samples.

The implications of the two different methods do not impact

the final profiling result. If a method is called multiple times

and this method calls many different Java language functions,

it will never be profiled by JFR. Although, this method should

still be deemed “hot” as manipulating the way it calls internal

classes may improve its runtime.

Considerations for Integration of JFR Outside of the

differences in how each profiler operates, they also interact

differently with the system that they are executed on.

When using HPROF, results for an individual profiling

run are ouput to a textfile. These textfiles may be multiple

kilobytes in size, yet are often below 30KB. In contrast, JFR

output files are in a binary format, this means, the user is

unable to view them without writing code to analyse a file

and the file sizes may be in the hundreds of KBs. This poses

an issue as Gin will store many of these files on a user’s

system. For larger programs that have minutes or hours of

tests, profiling result files could take up Gigabytes of space.

One solution is to delete all files after profiling. As these files

are processed by Gin itself, it is unlikely that a user will have

need for them after profiling. Although, to offer functionality

for any use case, a command line option is added to save files

after profiling. The default value of this option is to delete

files.

Another command line option is added to alternate between

HPROF and JFR. Gin is a research tool and therefore should be

backwards compatible with Java versions. This compatibility

allows for the use of Gin with other tools and utilities across

Java versions. The default option is now set to use JFR.

V. CONCLUSIONS

After selecting JFR and testing it against HPROF, it can be

seen that the new profiler produces similar but not identical

results to the previous tool. For the ‘hottest’ 30 methods in

our target project, there is a positive Spearman correlation of

0.80 between the rankings found by HPROF and JFR. So,

although the method for use and interacting with Gin is slightly

different, JFR provides results largely consistent with HPROF.

Moreover, JFR’s workflow can be seamlessly integrated into

Gin.

One remaining issue remains to upgrade Gin to more recent

Java versions: reliance on Java reflection as part of the JUnit

testing harnesses which has been more heavily restricted

in recent versions. However, this is only required for Gin

to work with Java 16 onwards (and then, when using the

internal testing code rather than an external JVM), so the

improvement to the profiler has brought Gin considerably

closer to modern Java. Indeed, subsequent testing suggests

that the JFR integration works with at least Java 17 (the most

recent LTS version), and work is underway to bring Gin’s

default to this version. Our accepted pull request can be found

at https://github.com/gintool/gin/pull/91.

Profiling to identify target areas for improvement is an

important part of the typical GI pipeline, and this study has

contributed an experimental comparison of two profilers for

the JVM. There remains considerable work to be done in this

area. Beyond further experiments with additional target appli-

cations to confirm our results, it would certainly be interesting

to compare more profilers and explore how consistently they

identify ‘hot’ methods and the impact on the GI search space

of any variations.

REFERENCES

[1] J. Petke, S. O. Haraldsson, M. Harman, D. R. White, Woodward, and
J. R. Woodward, “Genetic improvement of software: a comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415–432, 2017.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
Generic Method for Automatic Software Repair,” IEEE Transactions on

Software Engineering, vol. 38, pp. 54–72, 2012.

[3] W. B. Langdon and M. Harman, “Optimizing existing software with ge-
netic programming,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 1, pp. 118–135, 2015.

[4] D. R. White, “GI in no time,” in Genetic and Evolutionary Computation

Conference, Berlin, Germany, July 15-19, 2017, Companion Material

Proceedings. ACM, 2017, pp. 1549–1550.

27

[5] A. E. I. Brownlee, J. Petke, B. Alexander, E. T. Barr, M. Wagner, and
D. R. White, “Gin: genetic improvement research made easy,” in Genetic

and Evolutionary Computation Conference, GECCO 2019. ACM, 2019,
pp. 985–993.

[6] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering.
ACM, 2011, pp. 416–419.

[7] Oracle Systems, “HPROF: A Heap/CPU Profiling Tool,” https://docs.
oracle.com/javase/7/docs/technotes/samples/hprof.html, 2020, [Online;
accessed 6-February-2019].

[8] N. Harrand, S. Allier, M. Rodriguez-Cancio, M. Monperrus, and
B. Baudry, “A journey among Java neutral program variants,” Genetic

Programming and Evolvable Machines, vol. 20, no. 4, pp. 531–580,
2019.

[9] A. E. Brownlee, J. Petke, and A. F. Rasburn, “Injecting shortcuts for
faster running Java code,” in 2020 IEEE Congress on Evolutionary

Computation (CEC). IEEE Press, 2020, p. 1–8.
[10] J. Kuepper et al. (2022) CryptOpt: Verified Compilation with Random

Program Search for Cryptographic Primitives. https://arxiv.org/abs/2211.
10665. [Online; accessed 9-January-2023].

[11] S. O. Haraldsson, J. R. Woodward, A. E. I. Brownlee, A. V. Smith,
and V. Gudnason, “Genetic improvement of runtime and its fitness
landscape in a bioinformatics application,” in Genetic and Evolutionary

Computation Conference Companion, ser. GECCO ’17. ACM, 2017,
p. 1521–1528.

[12] W. B. Langdon, B. Y. H. Lam, M. Modat, J. Petke, and M. Harman,
“Genetic improvement of GPU software,” Genetic Programming and

Evolvable Machines, vol. 18, no. 1, pp. 5–44, 2017.
[13] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Specialising soft-

ware for different downstream applications using genetic improvement
and code transplantation,” IEEE Transactions on Software Engineering,
vol. 44, no. 6, pp. 574–594, 2018.

[14] M. A. Bokhari, B. Alexander, and M. Wagner, “In-vivo and offline
optimisation of energy use in the presence of small energy signals:
A case study on a popular Android library,” in 15th EAI International

Conference on Mobile and Ubiquitous Systems: Computing, Networking

and Services, ser. MobiQuitous ’18. ACM, 2018, p. 207–215.
[15] Oracle Corporation, “Oracle JDK Migration Guide,” https://docs.oracle.

com/en/java/javase/18/migrate/index.html, 2022, [Online; accessed 9-
January-2023].

28

