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Abstract—Magpie| (Machine Automated General Performance
Improvement via Evolution of software) has been recently devel-
oped by Aymeric Blot| from PyGGI 2.0. Like PyGGI, it claims
to be able to optimise computer source code written in arbitrary
programming languages. So far it has been demonstrated on
benchmarks written in Python and C. Recently we have used
hill climbing to customise two industrial open source programs:
Google’s Open Location Code OLC and Uber’s Hexagonal
Hierarchical Spatial Index H3 [W. B. Langdon et al., “Genetic
improvement of LLVM intermediate representation”, in EuroGP
2023]. Magpie found much faster improvements (reducing in-
struction counts by up to 15% v. 2%) which generalise. Various
glitches in Magpie are also reported.

Index Terms—Genetic programming, GP, linear representa-
tion, SBSE, software resilience, automatic code customisation,
world wide location, plus codes, zip code.

I. INTRODUCTION

Genetic Improvement (GI) [1]], [2]] uses search based soft-
ware engineering [3| techniques, often genetic programming
(GP) [4]-[6]], to improve human written software. GI has been
applied to automatic porting [2], transplanting code [7]-[9],
code optimisation [[10], [11] and automatic bugfixing. GP [|12]]
and other search algorithms are increasingly used to automat-
ically repair programs (APR) [13[|-[20]. However genetic im-
provement has been criticised as lacking off-the-shelf, robust
and easy to use tools [21].

Magpie [22] aims to address these issues. It has recently
been released as an open source project by Dr. Aymeric
Blot. We download it from GitHu Including examples and
documentation, it comprises 4871 lines of code, mostly written
in Python. It includes examples in Python, C++ and Ruby. So
far it has not been used on applications.

Recently we have sped up two industrial programs written
in C (one from Google’s OLC and the other from Uber’s H3)
by applying genetic improvement [1]], [2] directly to LLVM
intermediate representation IR produced by the Clang C
compiler [23]]. (Previously Jhe-Yu Liou et al., e.g. [24], had
used grammatical evolution [25] on LLVM IR to improve
nVidia GPU kernels.) Our hill climbing code [23]] is somewhat
specialised and so we wished to test Magpie; not just in terms
of its performance, but also its extensibility and ease of use.

In Section [lIIl we describe our changes to Magpie to make
its calculation of fitness reproducible with the Linux operating
system. Section details reusing the OLC and H3 fitness

Uhttps://github.com/bloa/magpie
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test cases from our earlier work, whilst Section [V] describes
how much of the search space Magpie will sample. The
results, Section are followed in Section by a brief
description of the C source code changes made by Magpie to
give speed ups on the existing GCC -O3 compiler optimised
code, and a discussion of possible future work. We conclude in
Section [VII| that Magpie is a great research tool (the appendix
lists some issues) and here it gave speedups of up to 15%. The
patches to both OLC and H3 generalise to many thousands of
zip codes (see Figure {). But first we describe the background.

II. BACKGROUND

Computing is the dominant industry. Everything relies on
computers. Indeed many of the richest people on the planet are
rich because they founded very successful software companies.
Computing technology in general and software in particular
permeates and will continue to dominate the third millennium.
Indeed the world is already addicted to software. However,
although programming is more than 60 years old, software
continues to be hand written. The goal of automatic program-
ming has been long espoused but with little concrete progress.

At ICSE-2009 Westley Weimer, ThanhVu Nguyen, Claire
Le Goues and Stephanie Forrest [12]] showed that genetic pro-
gramming could automatically fix bugs in computer software.
For the first time artificial intelligence was being applied to a
major problem in software engineering on realistically sized
programs. Since then the field of automatic program repair
(APR) has bloomed. Inspired by [12] we [2], [10] began
applying genetic programming to improving human written
software in many ways in addition to bug fixing [/1].

Although genetic programming remains a common search
technique in genetic improvement (GI), local search is increas-
ingly popular. In addition to ever more powerful computers,
GI is able to scale because it does not start from scratch at
every run but builds on existing software. One great advantage
of this is that GI can automatically double check with the
existing painstakingly hand written code, both on its run
time performance (be it elapse time, memory requirements,
etc.) and also its functionality. The increasing success of
automatically generated software tests [26], also naturally
feeds into GI.

At present much GI research is via bespoke one-off exper-
iments. David White recognised this and proposed GIN [27]]
as a generic GI tool for Java programs. Gabin An proposed
PyGGI [28]], [[29] for Python. Both tools have been extensively
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used and updated: [30]—[33]] and [34]-[38]] and further GI tools
have been proposed [39]]. Nevertheless last year a GI user study
reported that GI lacked user friendly tools [21].

In response to this Aymeric Blot wrote Magpie. Like
PyGGI 2.0 [34] (from which it was developed) it is freely
available from GitHub and can improve any measurable quan-
tity of computer programs. Although also written in Python,
it aims to work with any computer language. It has been
mostly tested on Apple Mac and Linux Laptops but aims to be
generic enough to work under Microsoft windows. Here we
test it on a Linux desktop and have not attempted to maintain
compatibility with Microsoft.

III. UPDATES TO MAGPIE

This section describes a number of modifications to the
standard GitHub version of Magpie, whilst Section [[V] returns
to improving OLC and H3. In particular to describing the
fitness function.

A. Replacing Pytest

By default Magpie uses the Pytest tool as the the second
component of its multi-objective fitness function (the first
being did the patch compile). Pytest has the advantage of
being available for many operating systems and so can be view
as increasing the portability of Magpie. In particular Magpie
should be available under Microsoft MS Windows. However
Pytest adds another level of indirection, and so complexity, for
the non-Python novice Magpie user.

In our networked Centos Linux computer Pytest (ver-
sion 5.0.1) was enormously slow to start the first time, causing
Magpie to time out at the first attempt but often succeeding
on the second and subsequent runs.

By default, Magpie’s final fitness component is the time
taken by Pytest to run all the test cases three times.

B. Extending the Warmup from 4 to 11 Empty Patches

To counter variability in run time measurement (see Figures [I]
and [2)) by default Magpie runs Pytest three times. Also because
run time variation is often largest at the start of the run, by
default Magpie runs its whole fitness process on four null
patches in a warmup process before starting in earnest.

Due to the enormous variability in Pytest runtime we
extended the warmup process from four to eleven empty
patches. In view of the other changes made to measuring
run time performance (Sections [[II-A] and [II-C]| to [[II-F) our
warmup change might have been unnecessary. However we
feel it makes performance comparison for each patch against
the baseline more reliable. (Published speed ups are based
on precise measurements taken after customisation, not those
quoted as Magpie runs.)

On our computer we tried greatly increasing the number of
times tests were run. But even running tests several thousand
times, we did not get satisfactory results.

Pytest was replaced by Python scripts very like those
supplied for use with Pytest. Like Pytest, they run each patch
on a number (10 or 40) of test cases and check that the
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Fig. 1. Elapse times for Magpie’s triangle.py’s 21 test cases.

check_classification was run (without sleep 1 millisecond) in eleven
groups of three (total 11x3x21=693 tests). Note both large systematic and
random scatter. Despite being run continuously, the first (x=1) of each group
of 11x3=63 (red x) are three times slower than average. Whereas the same
test (x=1) is close to the average speed when run in the second and third group
of each 11 fold iteration (+). More than half the measurements are more than
7% from the average. Vertical axis normalised by dividing by observed mean:
485.5 nanoseconds. Small horizontal displacement added to spread data.

resulting answer is as expected. We continue to use the existing
checks in Magpie for successful termination, user supplied
timeout (1 second) and overly large output (up to one million
bytes).

C. Moving Performance Measurement Closer to Patch

For convenience, sandboxing (see Section and portabil-
ity, Magpie runs its fitness tests on each patch in a subprocess.
By default, the main Python code records the elapse time from
when the subprocess is started to when it returns to the main
thread. At least some of the observed variation was in the time
taken by the operating system to create and start a new process
running the tests and to pass the subprocess’ output back to
the main thread.

At the expense of generality, to exclude variation associated
with communicating with the subprocess, it was decided to
make the subprocess itself responsible for its own performance
measurement and to pass fitness data back to the main thread.
This is done (with suitable additional validity checks) via
the Unix pipe connecting them. Indeed, to avoid variation
in the Python interpreter, we took this one step further and
moved the measurement from the interpreted Python code into
the compiled C code. (The fitness measurement C code is
protected from itself being patched by Magpie.)

D. Replacing Mean with First Quartile

By default Magpie uses total elapse time as part of its multi-
objective fitness function. This is effectively the mean of n
individual measurements. The mean is notoriously suspect to
outliers and often the median (middle) is preferred. However
run time is subject to one sided outliers. That is, an excep-
tionally long run time is not only possible but in practice



occurs much more often than equally short run times. Indeed
since low outliers which deviate by more than the average
would have a negative runtime they are not possible, whereas
outliers that are more than twice the average do occur (see
e.g. Figure [2).

A similar situation occurs in laser scanned genechips (as
light intensity cannot be negative). One of the noise reduc-
tion techniques employed by Affymetrix (who manufacture
genechips) is to use the first quartile. A simplistic arguments
in their favour is: the noisier outliers tends to be in the larger
half of the measurements, so we will take the median (which
itself is known to be a robust statistic) of the lower half. The
median of the lower half, is itself the first quartile of all the
data. As with genechips, during evolution we are interested in
comparing measurements, rather than absolute values. Hence
although the first quartile may underestimate the true value,
having consistent measurements helps drive evolution forward.

E. Replacing Runtime with Unix perf Instruction Count

Initially genetic improvement used fitness based on the number
of lines of C++ executed [10]]. However this required instru-
menting the code and often direct measurement of the objec-
tive goal, e.g. reducing elapse time, is preferred. Unfortunately
elapse time is often noisy (e.g. Figures |I| and and this
causes problems for GI [40], [41]]. Sometimes taking multiple
measurement and averaging (e.g. using the first quartile, as
described in the previous section) is sufficient for the fitness
function. In some cases, e.g. some NVIDIA GPUs, execution
time is itself sufficiently stable to be used directly [11]], [42].
Because of these problems, Eric Schulte et al. [43] and
Aymeric Blot et al. [44] have advocated using the Linux Perf
tool to measure run time performance for fitness. Indeed we
followed their advice in earlier work with OLC and H3 [23].
Of course wall-clock time remains vital [45]].

With Linux the GNU perf utility allows access to many
performance measurements gathered by modern X86 com-
puters. Using a small stub of C code (protected from be-
ing evolved by Magpie) we used the perf run time library
<linux/perf_event.h> to collect the count of instruc-
tions executed by OLC and H3 for each test. The count of
instructions executed by computer programs is typically much
more stable than their execution time, cf. Figures 2] and [3]

F. Python Calling OLC and H3 Directly using ctypes

The Python ctypes function library allows the Python in-
terpreter to pass arguments to and from a C function and
to read its output. We used Python to convert the test cases
into C standard argv and argc arguments for the OLC and
H3 programs, thereby allowing Python to run them directly
as functions. In both cases small tweaks to the OLC and
H3 source code were made by hand to direct output from
stdout to a buffer supplied by Python (e.g. replace print £
by sprintf). On each test, the Python script checks the
program returned a success status code, the value in the output
buffer is correct and collects the perf performance data (see
previous section). As before, problems where the patch causes
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Fig. 2. Distribution of elapsed time for OLC (median 1332 nanoseconds).

Each of the ten OLC test cases are run a thousand times. Note large spread
(the inter quartile range, QS;;?I > 4%) and presence of enormous outliers
(up to more than 13 times the average). Compared this to the number of
instructions run, Figure where there is almost no variation and differences
between individual tests are clear.

1000 vy T IBARRRRRE IRARARRRRS IRRARRD T IRRRRRRLL
OLCtest 6 ——
OLCtest 5
800 OLCtest10 -------- -
OLC test 2
OLCtest 8 x
OLC test 1
OLCtest 3  x
600 - OLCtest 4 + T
OLCtest 7 -
OLCtest 9 --
400 -
200 R
o QL T Lo Lo Leiiiny i..vl....u....‘l‘ ......
10440 10450 10460 10470 10480 10490 10500 10510

Unix perf instructions

Fig. 3. Distribution of CPU instructions taken by OLC in nine separate runs
each running the ten OLC test cases a thousand times. Note each of the nine
runs has almost the same distribution and also each test case has almost no
spread. Test cases 3, 4 and 8 overlap other tests and so are plotted as points
+ or X, rather than histograms. The key is ordered by the speed of each test
case.

the program to fail or time out are trapped by the existing
Magpie mechanism in the main thread.

Although, in the end we only needed to run 3x10 or
3x40 tests, to allow a huge number of tests to be run, the
first quartile of the number of instructions run is calculated
in the subprocess. This allows only (small) summary data,
calculated by Python’s statistics.quantiles (), to be
passed back via the Unix pipe to the main Magpie thread.

IV. FITNESS FUNCTION

Magpie attempts to run the patched program on all the test
cases. If it produces correct answers for all of them, Magpie



runs the patch again multiple times to get a good robust
estimate of its performance.

In summary: Magpie uses multiple facets to calculate a
mutation’s fitness: 1) does the patch compile without error
(GCC compiler warnings are ignored), 2) does the mutant
program run ok on every test case, 3) are its outputs the same
as those of the unmutated code and 4) how long does it take.

In check (2), both Magpie and the mutant itself, can signal
a problem via the Unix exit status. In either case, the main
Magpie thread will discard the patch. (3) For each test case
the Python subprocess will check that output of the patch
is the same as the expected output. Outside Magpie we ran
the unpatched OLC and H3 programs on each test case,
recorded their output and then this was converted into Python
source code for use by Magpie’s subprocess. (4) Section [[II-E]
above describes how the perf C runtime library is integrated
into Python. Magpie uses the first quartile of all the patch’s
repeated measurements to give its fitness measure (see Sec-
tions to [LII-F)).

A. Test Cases for OLC and H3: GB Post Codes

We used the same test cases as we had previously used when
optimising the LLVM IR of Google’s OLC and Uber’s H3.
Rather then require the reader to consult [23]], we repeat some
of our earlier description.

Both Google’s Open Location Code (OLCP] and Uber’s
Hexagonal Hierarchical Geospatial Indexing System (H3f] are
open industry standards. We obtained their human written
sources from GitHub (total sizes OLC 14024 and H3 15015
lines of source code). They both include utilities written in
C which convert global positions as pairs of latitude and
longitude numbers into their own internal codes (see Table [I).
For OLC we used their 16 character coding and for H3 we used
their highest resolution (—r 15) which uses 15 characters.
Rather than work on abstract locations, we use as test cases
the actual locations of homes and commercial premises.

For Google’s OLC, the location of the first ten thousand GB
postcodes were obtaine(ﬂ For training ten pairs of latitude and
longitude were selected uniformly at randomly (see Figure [).
The unmutated code was run on each pair and its output saved
(16 bytes). For each test case each mutant’s output is compared
with the original output.

To summarise [23]], Uber’s H3 was treated similarly. How-
ever in the earlier work we had to used more diverse and more
widely separated training data (see right of Figure [).

B. Preventing Mutants Causing Harm

In [23] we describe the need for sandboxing, time outs and
the need to prevent rouge mutants filling the disk [46]. In [23]]
we used the timeout and 1imit Unix commands. Here we
simply use the default facilities of Magpie.

Zhttps://github.com/google/open-location-code downloaded 4 August 2022.

3https://github.com/uber/h3| downloaded 3 August 2022.

4https://www.getthedata.com/downloads/open_postcode_geo.csv.zip| dated
16 March 2022. The data are alphabetically sorted starting with AB1 0AA,
which is in Aberdeen.
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Fig. 4. Left: Ten OLC training points randomly selected in the neighbourhood
of Aberdeen (4 red). Holdout set (blue dots) GB post codes. Right: Red +
forty training points randomly selected from ten H3 runtime classes. Holdout
set (blue dots), locations of ten thousand random GB post codes (no overlap
with H3 training or OLC (left) holdout data). OLC and H3 (with and without
-03) pass all their holdout tests.

The principle sandboxing protection provided by Magpie
(like [23])) is to run the mutated code in a subprocess. The
OLC and H3 programs make little use of system calls and
files. Hence their mutants tend to be quite benign. It may be
in other programs, more care to prevent calamitous random
actions, e.g. trapping or preventing generation of random file
names, would be needed.

V. MAGPIE SEARCH

Magpie allows a very nice separation of user supplied param-
eters for each experiment from generic code.

For both the OLC and H3 programs we ran experiments
with the GNU GCC compiler without optimisation and with
-O3 optimisation. (Although Profile Guided Optimisation,
PGO, and Link Time Optimisation, LTO, are available, in their
standard releases, both OLC and H3 are compiled with -O3)
The four configurations are held in the examples/scenario di-
rectory. After the 11 warmup patches (Section [[II-B]), Magpie
generated 700 OLC patches and 19077 H3 patches.

At the start it was not clear how long we should run
Magpie. Therefore we used a coupon collector [47] argument
to calculate how many random samples would be needed to
be almost certain of visiting every line of the C source code
at least once. (The H3 source code to be optimised is much
bigger than the OLC code, see Table[l] hence the larger search
effort.) In all four cases we used Magpie’s run time reduction
option: python3 -m bin.magpie_runtime.

Magpie was run in a single thread on an otherwise mostly
idle 32 GB 3.60 GHz Intel i7-4790 desktop CPU running
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TABLE I

Left: size of C sources for Google’s OLC and Uber’s H3 code to be optimised.
Column 2 includes C .h header files. Column 3 size of human written C
code, excluding header files, to be optimised (comments and blank lines
removed). Right: averages for up to five Magpie runs. Columns 5-6 size
of patch. Columns 7-8 minified patch. Column 9 best average reduction in
perf’s instructions per test case: OLC (without -O3) results were variable,
sometimes as low as 0.1% speed-up, H3 first run run only. Column 10 gives
the average run times for 1 core on a 3.6 GHz Intel i7-4790 desktop.

C files LOC Mutant Magpie
no comments size  minified speed up duration

OLC 4 207 (134) 4-7 4-7 3.6% 82 secs
-03 4 207  (134) 8-13 6-11 2% 95 secs
H3 23 3321 (1615) | 3145 22-28 15% 1.1 hours
-03 23 3321 (1615) | 31-49 23-29 7% 1.5 hours

networked Unix Centos 7, using Python 3 version 3.10.1 and
version 10.2.1 of the GNU C compiler. It may be that the
networked disks are responsible for the excessive variation in
elapsed time (see Figures [I] and [2) which seems much worse
than reported with stand alone laptops. The variability seems
to permeate the whole computer and running Magpie on a
directly attached local disk did not solve this.

VI. RESULTS

The results are summarised in Table [l For both OLC and H3
we conducted two experiments. Firstly with default param-
eters for the GNU C compiler and secondly using the -O3
optimisation flag.

Most patches which compile, run ok and pass all the tests.
In detail: 45% of OLC patches fail to compileﬂ 4% fail one
or more fitness tests, whilst the remaining 52% pass all ten
fitness tests. The pattern for H3 is similar: 32% of patches
fail to compile and 4% fail at least one of the forty H3 tests.
Perhaps because the search is longer and H3 is more complex,
we also have 1.5% of patches being aborted when they try to
generate more than a million bytes of output and 0.1% being
timed out by Magpie. Leaving 63% which run ok and pass all
40 H3 fitness tests, see Figure [3]

Magpie has a nice inbuilt mechanism for minifying patches
which we used and then tested the minified patch on the
holdout dataset (10000 randomly selected GB post codes).
In most cases Magpie was able to reduce the number of
individual changes to the lines of C source code. In all four
cases, the minified patch generated the same results as the
original program.

The holdout set contains “missing data”, i.e. postal ad-
dresses without a latitude,longitude location. In these 85 cases
OLC produces a default output, whilst H3 aborts (with a non-
zero Unix status code) and an error message. Both minified
H3 patches similarly detected and reported the error. For H3
we report the speed up relative to the original H3 program on
the 9915 holdout locations with valid data.

The number of changes in the patches generated by Magpie
and their speed up are given Table [ With the much longer

SPreviously we used specialist mutation operators with LLVM IR which
ensured all mutants compiled successfully to machine code [23]].
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runtime for H3, Magpie found patches comprised of several
dozen changes to the lines of the H3 source code. Unfor-
tunately, even after minification, outside Magpie, it proved
impossible to automatically apply the patches. Instead the first
H3 and the first H3 with -O3 patches were both applied by
hand. Like OLC and OLC with -O3, they both past all the
hold out tests, giving speed ups of 15% and 7%.

VII. DISCUSSION
A. Types of Improvement Found

1) OLC: Several improvements found by Magpie to the
OLC program are the same as we found in the early
LLVM IR experiments [23]]. E.g. removing code which nor-
malises the inputs which is never used because the inputs
(latitude and longitude) are already normalised. E.g. deleting
the line lat_degrees -kLatMaxDegrees; Remov-
ing the linefeed \n from the end of the output (which is there
for aesthetic reason only and is not checked by the test cases).
Also removing syntax checks on the command line. These
checks are not needed in our data set because the command
line is always valid. In some cases tests between double
variables which always fail are replaced by others which also
always fail but compare integers. However others modify code
that is not executed and so it is not clear why the Magpie patch
minification did not remove them.

2) H3: There are too many H3 source code improvements
to describe them all in detail. The patches Magpie found
with compiler optimisation GCC -O3 and without it have
many changes in common. Also even though the H3 code is
totally different from the OLC code, some of the changes have
some things in common with those for the OLC code (both
when optimising LLVM IR [23] and when using Magpie).
For example: removing code for command line options (such
as “help”) which never occur in the fitness or holdout test
suites, not normalising data which is always normalised and
not checking for errors which never happen.



B. Future work, Co-evolution, perf, Profiling, Mutation and
other Search Operators

So far we have avoided in-depth analysis of the target pro-
gram’s internal behaviour. The H3 example is an order of
magnitude bigger than the OLC program. Both are open source
and free to download. This makes fuzz testing and white box
software engineering techniques which target edge cases and
branch coverage feasible. In our earlier work [23]], perhaps
due to H3’s greater size and complexity, it proved necessary
to both increase the number (40 v 10) of fitness test cases and
to use external measures, such as run time and geographic
spread and to increase the fraction of “difficult” examples in
the training test suite. Being external, they could in principle
be used where access to the source code is restricted (cf. Eric
Schulte’s work on repairing black box network devices [50]).

In cases where improvements to the training data are
needed, an adversarial co-evolutionary approach might be use-
ful. Perhaps a population of training points could be optimised,
e.g. using genetic programming, to antagonistically increase
execution time.

As expected [44], per £ offers considerable noise reduction
compared to the Unix t ime command. Perf’s runtime library
makes it straightforward to include it directly in the code
being optimised. Perf is also available via the Linux command
line. However even perf’s instruction count is noisy. Here we
were able to use the first quartile statistic to minimise fitness
noise. Surprisingly, especially when used via the command
line, instruction count is also subjected to systematic variation.
For example, it can increase when more data are held in Unix
global environment variables.

We have targeted whole functions that could possibly be
called. It is common in GI, to use profiling tools to target
only code that is indeed executed [[10]. In these examples,
profiling was not used. Thus Magpie wasted effort trying to
optimise un-executed lines of code. Although after search we
used Magpie’s minification of patches, this was not entirely
successful at automatically producing the smallest or most
beautiful change to the source code. We suggest profiling could
help Magpie. In “line mode” Magpie is totally blind to the
syntax of the program source code. For example, it treats a
line containing a single closing brace } in the same way as
any other line of the program source code. Of course Magpie
has more sophisticated syntax aware approaches but they also
might benefit from profile data.

Execution time potentially allows a multi-objective (Pareto)
tradeoff between size of the GI change and the benefit [51].

With Magpie we only used a few types of
mutation: LineDeletionﬂ LineInsertion and
LineReplacement. Many others, swaps and crossover
could be devised. Sometimes individual changes are
independent and can be applied to give an individual
improvement. However some changes interfere, giving rise
to an epistatic fitness landscape [53]], [54] for which genetic
search may be suitable.

Delete is the most common way programmers speed up code [52].

VIII. CONCLUSIONS

We have taken a new open source genetic improvement
tool written in Python (Magpie) and applied it to non-trivial
industrial C source codes. Magpie proved easy to install and
extend. Its modular design enabled the ready replacement
of elapse time by a less noisy fitness measure. Although
Magpie’s Python code also readily supported the replacement
in the fitness function of the mean by the more robust first
quartile statistic, we feel, in our networked environment, the
replacement of noisy elapsed time measurement by using the
Linux perf’s runtime library to access the count of instructions
executed by the automatically produced patches was critical
to Magpie’s success. Run time in dedicated computers and
laptops can be less variable, in which case Magpie may not
need Linux specific performance measuring tools.

The appendix documents several ‘“gotchas”, but perhaps
only our inability to automatically apply the long lists of
changes generated for our second example (H3), impedes the
widespread up take of Magpie in genetic improvement wor
Here the isolation provided by running in a separate process
provided sufficient isolation to protect the user’s computer
from mutant code. There may be other circumstances, where
a stronger sandbox is required.

On two examples from industry standard codes written in C
(Google’s OLC and Uber’s H3) Magpie can in a few minutes
or hourﬂ give speed ups of up to 3.6% (OLC) and 15% (H3).
Even giving 2% (OLC) and 7% (H3) improvement on compiler
optimised code.
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APPENDIX
PROBLEMS WITH MAGPIE

Magpie is available from GitHub https://github.com/
bloa/magpie| and is under continuous development. Some
of the problems we encountered (http://www.cs.ucl.ac.uk/staff/
W.Langdon/magpie/) in the 27 November 2022 version, may
already have been fixed.

A. Pytest

Several Magpie options use Pytest. Initial problems were
solved by ensuring the Unix PATH environment variable
included the location of Pytest and a compatible version of
Python.

"More recent versions of Magpie already fix the long patch list problem.

8Magpie with the GNU C compiler processed between 3.6 and 8.6 patches
per second depending on -O3, OLC or H3 (slower with -O3). Whereas
with Clang 14.0.0 in earlier work [23|] we processed between 0.25 and 1.5
LLVM IR patches per second, again depending on using -O3, OLC or H3


https://github.com/bloa/magpie
http://www.gnuplotting.org/plotting-the-world-revisited/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/olc_h3_icse2023.tar.gz
https://github.com/bloa/magpie
https://github.com/bloa/magpie
http://www.cs.ucl.ac.uk/staff/W.Langdon/magpie/
http://www.cs.ucl.ac.uk/staff/W.Langdon/magpie/

B. Python 3

Magpie uses Python 3. On our system this requires the use of
the python3, command rather than simply python. When
the wrong version of Python is used, it can be hard to diagnose
the problem.

C. ——mode, —config files, and Timeouts

Magpie supports many modes of operation. Incorrect use of the
—--mode command line option can cause hard to understand
error messages.

Similarly incorrectly set up scenario —-config files
can give hard to understand error messages.

As mentioned in the main text, Magpie has been set up
to work easily on laptops, and on our networked computer
simple commands (such as pytest) can take far longer to
execute the first time, causing hard to diagnose timeouts. (Most
timeouts can be configured by the user editing their problem
dependent scenario ——config file.)

D. Python Line Numbers Start at 0

There was confusion with line numbers being incorrect until
it was realised that Magpie reports line numbers in the source
files starting at zero.

E. Compiling with Unix Make

When using compiled languages, such as C, Magpie requires
the user to tell it how to compile each patch it finds using
compile_cmd = in the problem’s ——config file. With
care this can be simply the line compile_cmd = make
However make is a sophisticated utility and when things go
wrong (e.g. pulling unexpected files from RCS and cleaning
up afterwards) having the error buried under Magpie, may
complicate diagnosis.

It may be easier and more efficient to simply quote the
compiler command line directly in the ——config file. E.g.
compile_cmd gcc —-shared -o triangle.so
—fmax-errors=1 —-fPIC triangle.c

F. Strange Python Errors

Often these can be resolved by ensuring you are using a
recent version of Python 3, i.e. not Python 2. (The command
python --version can be helpful.) Again not really Mag-
pie’s fault, but the error messages are aimed at the Python
expert rather than the novice Magpie user.

G. Strange Shared Library Errors and cdll .so files
Another important Unix environment variable is
LD_LIBRARY_PATH. Like PATH, hard to diagnose

problems can occur if it is set incorrectly.

If using Python’s ctypes library to call C functions, which
can include the whole program via the main () function,
ctypes cdll will need to find the shared library containing
Magpie patches. It seems easiest to specify the directory hold-
ing the shared library and thus prevent Python looking in the
system libraries and having to set up LD_LIBRARY_PATH.
If a directory is not given, there is a complicated hierar-
chy of defaults that Python uses. However, in Unix simply

adding ./ (meaning the default directory) to the file name
(e.g. cdll.LoadLibrary ("./olc.so")) ensures that
Magpie will look in its current working directory for the shared
library containing the compiled patch.
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