
Updating Gin’s Profiler for
Current Java

Myles Watkinson, Sandy Brownlee

Presentation Structure
1. Explaining what Gin is

2. What role does a profiler play in a GI framework

3. Selecting a profiler for Gin

4. Comparing the new profiler to the old

5. Conclusion

Gin: A Toolbox for Genetic Improvement

▪Created to stimulate genetic improvement research

▪Designed to be simple and understandable

▪Implementations of common edits, build pipeline, testing,
speed and memory measurement, and profiling

How GI (in Gin) Works

Gin is stuck in Java 8

Gin
Java 8

HPROF profiler
Only compatible in Java 8 and below

Reflection security
Only able to reflect easily in Java 8 and below

Gin
Java 9 onwards

Why so much effort on the profiler?

▪GI to improve runtime of Java code while retaining functionality
• edits are targeted at “hot methods”
• these are where the CPU spends the most time

▪Profiler:
• selects the hot methods
• determines the order the hot methods are ranked

▪Need to consider how the profiler plugs into Gin and is used by it

Choosing a new Profiler: Criteria
▪The profiler should plug straight into Gin as HPROF did

▪The profiler should produce a similar output to that below that
can be read and utilised by Gin

Choosing a new Profiler: Criteria
▪Input and output needs to be handled automatically by Gin, no

visual interfaces.

▪Low overhead is needed as running all unit tests may take time.
It is preferable that a profiler adds a little time as possible.

▪Gin is a research tool. External profilers used should be free
and simple to use.

▪The profiler needs to accurately count running functions from
the specific codebase.

Candidates
Visual interface:
VisualVM, Java Mission Control, NetBeans profiler

Cost Associated:
JProfiler

Large Overhead:
JConsole

Potential Profiler:
Java Flight Recorder (JFR)

Integrating JFR into Gin

HPROF
▪Outputs to .txt file

▪Gives most commonly seen
methods

▪Skips Java language functions

▪Profiles all threads

JFR
▪Outputs to .jfr file

▪Gives call stack

▪Call stacks contain all Java
language functions

▪Doesn’t profile sleeping or
waiting threads

Processing JFR call stacks
HPROF pre-processes call stacks and only outputs functions
from the program being run most commonly seen in the call stack

JFR outputs a raw call stack which often contains Java language
functions

On top of call stack
before processing

Function added to
profiled method count

Experiments

Two experiments were run to compare HPROF and JFR

1. Profiling a set of simple functions that calculate primes

2. Profiling a more realistic program

Profiling prime number calculations

Only 1 function running at a time with an understanding
of how the calculation of primes scales with time

Calculating 5,000 through to 25,000 primes, taking raw
time and method count

Prime calculation profiling results
Primes found Time taken (ms)

5,000 24

10,000 75

15,000 153

20,000 266

25,000 412

30,000 588

Call stack samples found with HPROF Call stack samples found with JFR

1.25 1.75

5.75 4

12.5 8.5

23 14.75

34 22.75

54.5 32.25

Reasons for different profiling results

Different Java versions?

▪HPROF and JFR had to be run in Java 8 and 9 respectively,
although, there was almost no difference in the runtime
between each version

Thread in a state not profilable by JFR?

▪JFR omits samples if the thread sampled is in a WAITING,
SLEEPING or BLOCKED state. Although, the program simply
adds numbers to a vector if they are primes, there is no waiting
or sleeping done in the program.

Further Investigation
When profiling this code:

long start = System.currentTimeMillis();

Long now = 0;

while (now < 2000)

{

 Now = System.currentTimeMillis() - start;

 //JFR doesn’t profile the above system call

}

HPROF consistently returns 127 samples

JFR returns between 10 and 30

Profiling a more realistic program

The program profiled was Spark, a Java web framework

https://github.com/perwendel/spark

The standard Gin interface was used, Sparks unit tests were run
and profiled to produce a hot method summary

Spark profiling results

Spearman Coefficient for top
10 JFR methods and
corresponding HPROF
methods: 0.29

Spearman Coefficient for top
20 JFR methods and
corresponding HPROF
methods: 0.8

Conclusion
➔Gave an overview of the importance of a profiler in a GI

framework

➔Proposed a set of criteria for selecting a profiler

➔Ran experiments to compare two profilers

➔ Integrated this profiler into Gin to boost it into current Java
versions retaining its efficacy as a tool for GI research

Any Questions?

Link to Gin repository: https://github.com/gintool/gin
Email: myleswatkinson1@gmail.com

