Updating Gin’s Profiler for
Current Java

Myles Watkinson, Sandy Brownlee

Presentation Structure

1. Explaining what Gin is

2. What role does a profiler play in a Gl framework
3. Selecting a profiler for Gin

4. Comparing the new profiler to the old

5. Conclusion

Gin: A Toolbox for Genetic Improvement

mCreated to stimulate genetic improvement research
mDesigned to be simple and understandable

mImplementations of common edits, build pipeline, testing,
speed and memory measurement, and profiling

How Gl (in Gin) Works

Delete </> Fails tests

Replace </ > Slower
e

- <[>

Gin is stuck in Java 8

HPROF profiler

Only compatible in Java 8 and below

Gin Gin

Java 8 Java 9 onwards

Reflection security

Only able to reflect easily in Java 8 and below

Why so much effort on the profiler?

mGl| to improve runtime of Java code while retaining functionality
* edits are targeted at “hot methods”
* these are where the CPU spends the most time

mProfiler:
* selects the hot methods
* determines the order the hot methods are ranked

mNeed to consider how the profiler plugs into Gin and is used by it

Choosing a new Profiler: Criteria

mThe profiler should plug straight into Gin as HPROF did

m [he profiler should produce a similar output to that below that
can be read and utilised by Gin

CPU TIME (ms) BEGIN (total = 206770) Fri Jul 15 @7:83:29 2611
rank self accum count trace method

.B2% BZ2.37% 575168 306456 com.lahti.game.gomoku.Line.setlineKind
.B2% B3.19% 575160 386443 com.lahti.game.gomoku.Line.getXPointsArray

1 26.23% 26.23% 575160 306454 com.lahti.game.gomoku.Lline.checkBoard
2 18.17% 44.41% 4026120 306447 com.lahti.game.gomoku.Board.safeCheckPiece
3 9.39% 53.80% 2875E 306475 com.lahti.game.gomoku?Z.EvaluationlZx.evalMove
4 5.81% 59.61% 4026120 306446 com.lahti.game.gomoku.Board.squareld
5 4.73% 64.34% 3194498 306451 com.lahti.game.gomoku.Board.getBoardArray
b6 4.56% 68.90% 3194498 306450 com.lahti.game.gomoku.Board.getSquareMaxId
7 3.87% 71.97% 337192 306470 com.lahti.game.gomoku.LinePatternTable.encodeAsInt
B 1.77% 73.74% 337192 306461 com.lahti.game.gomoku.Evaluation.getCountForLine
9 1.76% 75.58% 337136 306465 com.lahti.game.gomokuZ.EvaluotionlZx.getLinekind
16 ©.96% 76.46% 170850 306474 com.lahti.game.gomokuZ.EvaluationlZ2x.getIntersecticnScore
11 8.86% 77.32% 604106 306458 com.lahti.game.gomoku.Evaluation.getDebug
12 ©.86% 78.18% 575160 306449 com.lahti.game.gomoku.Line.setEvalPt
13 @.85% 79.83% 575160 306452 com.lahti.game.gomoku.Lline.setValueAfter
14 ©.85% 79.88% 575160 306457 com.lahti.game.gomoku.Line.setEwval
15 @.84% BB.72% 575160 306453 com.lahti.game.gomoku.Line.setOnBoard
16 ©.83% 81.55% 575160 306442 com.lahti.game.gomoku.Line.getValuesArray
5]
@

Choosing a new Profiler: Criteria

mInput and output needs to be handled automatically by Gin, no
visual interfaces.

mlow overhead is needed as running all unit tests may take time.
It is preferable that a profiler adds a little time as possible.

mGin is a research tool. External profilers used should be free
and simple to use.

m [he profiler needs to accurately count running functions from
the specific codebase.

Candidates

Visual interface:

VisualVM, Java Mission Control, NetBeans profiler

Cost Associated:
JProfiler

Large Overhead:
JConsole

Potential Profiler:
Java Flight Recorder (JFR)

Applications x‘
=8 Local

@ Remote

EE VM Coredumps
%8 JFR Snapshots
"2} Snapshots

=

Start Page X | &' VisualVM Xl
[id Overview M Monitor [=] Threads G Sampler
= VisualVM

Monitor

Uptime: 2 min 16 sec

-

CPU Memory Classes Threads

Perform GC Heap Dump

CPU X | Heap | Metaspace X

;:.E|1_
) VBW
ED"_ | ¢
% Y : a 0 MB

12:46 AM 12:47 AM
I CPU usage B GC activity

12:46 AM 12:47 AM

O Heap size B Used heap

Integrating JFR into Gin

HPROF
mOutputs to .txt file

mGives most commonly seen
methods

mSkips Java language functions

mProfiles all threads

JFR
mOutputs to .jfr file

mGives call stack

mCall stacks contain all Java
language functions

mDoesn’t profile sleeping or
waiting threads

Processing JFR call stacks

HPROF pre-processes call stacks and only outputs functions
from the program being run most commonly seen in the call stack

JFR outputs a raw call stack which often contains Java language

functions

.| Java.vector.indexOf()

Java.vector.copyOfi()

MainProgram.begin()

On top of call stack
before processing

Function added to
profiled method count

Experiments

Two experiments were run to compare HPROF and JFR
1. Profiling a set of simple functions that calculate primes

2. Profiling a more realistic program

Profiling prime number calculations

Only 1 function running at a time with an understanding
of how the calculation of primes scales with time

Calculating 5,000 through to 25,000 primes, taking raw
time and method count

Prime calculation profiling results

Primes found Time taken (ms) | Call stack samples found with HPROF | Call stack samples found with JFR
5,000 24 1.25 1.75

10,000 75 5.75 4

15,000 153 12.5 8.5

20,000 266 23 14.75

25,000 412 34 22.75

30,000 588 54.5 32.25

Reasons for different profiling results

Different Java versions?

mHPROF and JFR had to be run in Java 8 and 9 respectively,
although, there was almost no difference in the runtime

between each version

Thread in a state not profilable by JFR?

mJFR omits samples if the thread sampled is in a WAITING,
SLEEPING or BLOCKED state. Although, the program simply
adds numbers to a vector if they are primes, there is no waiting

or sleeping done in the program.

Further Investigation

When profiling this code:

long start = System.currentTimeMillis() ;
Long now = O;

while (now < 2000)

{

Now = System.currentTimeMillis() - start;

//JFR doesn’t profile the above system call

HPROF consistently returns 127 samples

Profiling a more realistic program

The program profiled was Spark, a Java web framework
https://github.com/perwendel/spark

The standard Gin interface was used, Sparks unit tests were run
and profiled to produce a hot method summary

Spark profiling results

Hot Methods Identified by HPROF and JFR
Number of Samples

1 P B S L rRem ee oo Spearman Coefficient for top
®e ® 10 JFR methods and

¢ @ corresponding HPROF
« methods: 0.29

° Spearman Coefficient for top
10 o*® 20 JFR methods and
o? corresponding HPROF
= methods: 0.8

Average Rank

100

@® JFR hot methods HPROF hot methods

Conclusion

-> Gave an overview of the importance of a profiler in a Gl
framework

-> Proposed a set of criteria for selecting a profiler
-> Ran experiments to compare two profilers

- Integrated this profiler into Gin to boost it into current Java
versions retaining its efficacy as a tool for Gl research

Any Questions?

Link to Gin repository: https://github.com/gintool/gin
Email: myleswatkinson1@gmail.com

