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ABSTRACT

Symbolic regression, in general, and genetic models, in particular,
are promising approaches to mathematical modeling in astrometry
where it is not always clear which is the fittest analytic expression
depending on the problem under consideration. Several attempts
and increasing research efforts are being made in this direction
mainly from the Genetic Programming (GP) viewpoint. Our pro-
posal is, as far as we know, the first one to apply Grammatical
Evolution (GE) in this domain. GE (and further GE extensions) aim
to outperform GP limitations by incorporating formal languages
tools to guarantee the correctness (both syntactic and semantic) of
the generated expressions. The current contribution is a first proof
to check the viability of GE on astrometric real datasets. Its success
in finding adequate parameters for predefined families of functions
in star centering (Gaussian and Moffat PSFs) with simple and naive
GE experiments supports our hypothesis on taking advantage of the
expressive power of GE to tackle astrometry scenarios of interest
and hence greatly improve current astrometric software thanks to
specific genetic approaches.
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1 INTRODUCTION

Grammar Evolution [17] (GE) is one of the most popular approaches
to automatic evolutionary computation (AEC), which is a branch of
genetic programming [12] (GP), proposed to use genetic algorithms
[11] (GA) to generate programs in any programming language. Here,
we explore using GE on a problem of symbolic regression (SR) to
generate mathematical expressions that can describe the impulse
response of an optical system, also known as the point spread
function (PSF), which is usually sampled by the finite dimensions
of electronic camera pixels. We have applied this approach to point-
like sources images or stars from the Wide Field Planetary Camera
2 (WFPC2), installed at the Hubble Space Telescope (HST) until
2009 Figure 3. WFPC2 features 3 identical chips of 800 x 800 pixels
(WF), plus one additional (PC) with the same number of pixels but
of double spatial resolution. If machine learning regression is a
type of problem in which the system must learn to produce a best
value for each possible input, SR solves this problem by proposing a
symbolic expression that generates the outputs. For understanding
the principles of GE, some previous knowledge on context-free
grammars (CFG) is needed.

CFG are the grammars studied at school when defining human
language syntax. CFG are a formal model able to generate symbolic
expressions, for example, using + and X as operators, variables x and
y, and any number as operands, 3 Xx+yXx can be generated. These
syntactic restrictions are formalized by specific rules, as natural as
an expression can be any specific number, but also a variable like x or
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v, or either the addition or the multiplication of two expressions is also
an expression. These rules can be formally expressed respectively
as expr — x, expr — y, expr — number, expr — expr + expr or
expr — expr X expr.

A slightly different notation is also frequent in Computer Science
in which symbols are written inside angle brackets, and instead of
a right arrow, the symbol ::= is used. In this way, for example, the
rule expr — expr + expr is written as < expr >:=< expr > + <
expr >. This notation is known as BNF (Backus-Naur Form) and it
is the one used in the listings of Figures 1 and 2.

More complex expressions can be included by means of addi-
tional rules into the grammar to incorporate any needed term
(trigonometric, exponential, etc.).

GE generates expressions using an evolutionary paradigm that
iteratively converges to a solution to the problem, guided by mech-
anisms of individual selection and diversification. The algorithm
maintains a population of vectors that represent linear genotypes
that correspond to a potential solution to the problem; for instance,
an individual can be a vector of integers or a binary array. During
execution, genotypes experiment transformations using the genetic
operators and the population management techniques typically
used in GA. In GE, genotypes encode an expression that is a candi-
date solution to the problem. In terms of evolutionary computation
this expression is the phenotype that corresponds to that geno-
type. Translation between genotype and phenotype is performed
by a mapping module driven by a CFG. The genotype is divided
in codons, and each codon encodes the element that is placed in
one of the nodes of the tree: either a new derivation rule from the
grammar or a terminal symbol such as variable labels or numbers,
which allow no further expansion. It is an iterative process that
starts with the grammar’s axiom (root node) as initial phenotype
(expr in our example). The first element of the genotype encodes
the grammar rule that gets expanded in the first place. In the exam-
ple, the derivation rule selected by the first codon in the genotype
is: expr — expr + expr. In each iteration the next element from
the genotype is used to choose a proper derivation rule to rewrite
the leftmost possible position in the partially expanded phenotype.
This mapping stops when the genotype is exhausted or when the
current phenotype does not contain any non-terminal symbol.

Like in any GA model, a fitness function is needed to estimate
how well each possible solution solves the problem. In GE this func-
tion is applied to the phenotype by means of the direct evaluation
of the generated expression.

GE is considered an alternative approach to automatic evolution-
ary computation initiated by genetic programming (GP) aiming to
improve two specific questions: to ensure in a natural and standard
way the syntactic correctness of the phenotypes and to generate
expressions in any syntax provided by the CFG. Further extensions
have been proposed if semantic correctness is also needed (guaran-
teeing that all the expressions fulfil any needed arbitrary condition)
[7, 16]. The current state of the art of software tools for this kind
of tasks, is far from the flexibility and expressive power of GE and
its semantics extensions for SR.

There is an increasing interest and research effort devoted to
SR in astronomy by means of AEC genetic approaches, usually by
means of GP such as Operon or PySR [6, 8] in contributions like
[14, 19]. In this work we give the first step to a novel application
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of GE in astrometry, aiming to check that GE is a viable approach.
In these experiments we are not using the full power of GE: this
first naive test only evolves, in fact, the constants of single can-
didate expressions. The success of this test informally supports
the hypothesis of explainable improving this procedure in more
realistic cases. The expected improvement in current tools thanks
to these genetic approaches is twofold: this domain usually requires
a flexible generation of expressions and the use of their underlying
grammars is almost mandatory; by the other hand, this flexibility
in general implies huge search spaces in which semantic extensios
to GE have shown to be specially useful.

The problem under consideration is the prediction of intra-pixel
position of stars for a specific instrument: WFPC2 camera at HST.
This ensures a correct measurement of the star position in the
sky even when the sensor resolution is coarser than the spatial
resolution required for the star position, which is especially evident
in the case of WFPC2 due to the undersampling introduced by PC
and WF pixels.

To solve this problem, traditional methods require finding the
shape of the point spread functions (PSF) that model the dispersion
of light from point light sources when reaching the detection sensor.
The PSF shape is mainly affected by the optical configuration at
space telescopes (Fig. 3), while it is dominated by the atmospheric
turbulence in ground-based observations. Our GE approach will
automatically find the PSF shape for different points of the detection
field, given the provided training data.

The rest of the paper is organized as follows. In section 2 we re-
view current methods to estimate astrometric positions of point-like
sources. They all have been tested using simulations and archival
data from WFPC2. In section 3 we describe our particular imple-
mentation of GE as an alternative to produce estimates for star
positions within the camera pixel. Here, we also describe the data
we used to test our model. In section 4 we show the results we
have obtained. Finally, conclusions and future lines to continue this
research are outlined in section 5.

2 STAR CENTERING

The study of stars’ proper-motions allows us to go deeper into our
understanding of how the local universe is evolving. In this respect,
the long temporal baseline provided by WFPC2, from year 1993
until 2009, is of high importance ([5, 10]). For example, the Mikulski
Archive for Space Telescope includes a rich WFPC2 database of
around one hundred globular clusters in the Milky Way and other
regions near the Magellanic Clouds. However, performing precision
astrometry is essential for this task, taking into account that the
needed proper-motion precision is of the order of tens micro-arcsec
per year, and the pixel resolution of the WF chip is 0.1 arcsec/pixel
(0.045 arcsec/pixel for PC). Traditionally, the problem of estimating
stars’ proper-motions has been faced by fitting a predefined PSF
shape to every star, and using some centering algorithm to estimate
its intra-pixel position [9]. Here, we train a genetic algorithm (GA)
to estimate the star’s position within the pixel with a precision up
to the hundredth of a pixel, i.e., ~ 1 mili-arcsec.

All classic methods used to date basically differ in the PSF model
(2D Gaussians or empirical PSFs -ePSF-, which are measured from
real data) and the centering method to provide star positions at
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milli-pixel precision [3, 13]. Among those tested in [9] we can find
that the approach which makes use of a library of ePSFs within the
code hstlpass [1] yields the best results, at the cost of discarding
very brightsources able to saturate the detector. Recently, a novel
method based on supervised Deep Learning has been proposed
[2, 4]. This approach does not make any assumption of the PSF
shape, but it estimates the (x,y) coordinates of the star center by
measuring correlations in the pixel intensity values around the pixel
where the star is placed. Nevertheless, the need of the method to be
trained with known labels in a supervised manner is an important
caveat.

3 METHOD AND DATA

Our GE model is tested over images of point-like sources which
simulate typical observations with the PC and WF chips of the
WFPC2 camera. We used a simulation code under development,
which is currently being created specifically for the WFPC2 de-
tectors. This code generates simulated images that contain more
real features and observational characteristics in comparison with
other simulators such as [3]. Furthermore, these simulations were
fed with the ePSFs used by the library in the hstlpass code, hence,
they can be considered realistic. At the current stage of this project,
we are not making use of the variability of the PSF over the chip,
since we assume all stars lie in the central portion of the detector.
In other words, the optical system is considered shift-invariant, i.e.,
its output can be modelled as a discrete convolution of the input
with its impulse response or PSF, hence, all stars are assumed to
produce the same PSF shape.

The total dataset consists of ~ 4,600 simulated images of indi-
vidual stars from globular cluster NGC 104, taken in filter F814W,
at both WF and PC detectors. We have used 6 X 6-pixel cutouts
around point-like sources and all images are normalized to sum one,
independently of the noise level or if the star is saturated. All stars
are located over the same image pixel, hence, output positions are
also normalized between 0 and 1 so the model is estimating relative
shifts within the same pixel. In all cases, we have a “ground truth” of
star positions and magnitudes (i.e., star brightnesses) which allows
us to check the accuracy of our results.

In this first viability test two GE experiments are designed to
validate the behavior of this technique. The first experiment aims
to determine which cost function achieves greater precision in
guiding the evolutionary process. The options include Manhattan
distance, Euclidean distance, Cosine similarity, Kendall correlation
coeflicient, Spearman correlation, and Pearson correlation. The
second experiment serves to identify the parameter values within
the evolutionary process that yield superior results. Various values
are tested for parameters such as initialization, population size,
generations, selection parameters, crossover, and mutation.

For the first experiment, one hundred stars are randomly selected
for both PC and WF detectors, and each star is tested using six dif-
ferent fitness functions. These functions enable the determination
of the PSF similarity with the original image, thus identifying the
best individuals to create the next generation in the evolutionary
process. Additionally, the experiment includes testing two different
analytical PSF functions: 2D elliptical Gaussian and Moffat, which
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are typical analytical approximations to the PSF in astronomy stud-
ies [18], to determine which yields better results in terms of process
accuracy.

The 2D elliptical Gaussian function is described by Eq.1.

G(x,y) = S +Sle—%[A(x—Xo)2+B(y—yo)2+C(x—xo)(y—yo)J (1)

While the 2D elliptical Moffat function is described by Eq.2.

S1

M(x,y) =S
(xy) = Sot [1+A(x = x0)? + B(y — yo)? + C(x — x0) (y — yO)](ﬁ)
2

In both cases with,

() 28 o

o (2 o

C=251n¢cos¢(ai2—ai2) 6)
x @y

Being ax and ay parameters that depend on the full width at
half maximum or FWHM of the PSF, and phi the ellipticity angle.
Because we were aiming to test GE as a viable approach to fully
explain this process, we have currently restricted the grammar so
a single Gaussian or Moffat function was used as individual. The
parameters in each of the functions were encoded as genotype and
optimized by the GE. For both the Gaussian and Moffat functions,
the genotype encoded the parameters: Sp, S1, xo and yo (center),
and angle ¢. It also encode ay and ay, for both functions, meaning
standard deviations along the axes for the Gaussian. The Moffat
function requires and additional term for parameter .

From a technical perspective, PonyGE2 [15] is used for running
evolutionary processes described on next section.

Figure 1 shows the PonyGE2 listing with the CFG for evolving
the parameters of elliptical Gaussian PSFs. Lines 2 to 6 show the
returned function that is, in fact, a Python implementation of equa-
tion 1. These lines contains all the symbols further defined: sig_1,
sig_2, phi, S0, S1, x0 and y0.

The rules for S0, S1, x0 and y0 are in lines 8 to 11. For S0 and S1
only fractional digits 2nd to 4rd are evolved. For x0, xI the first one
is also evolved.

Symbols <v_param5>, <v_param5> and <v_paramé> are inter-
mediate variables to later define sig 1, sig 2 and phi, respectively
in lines 28 to 31, 33 to 36 and 38 to 39. They are different possible
assignments to these three symbols that depend on symbols <num>,
<num_0_3>, <num_0_4>, <num_5_9> and <num_6_9>. The valid
options for these symbols are defined in lines 41 to 45.

Lines 19 to 24 contain some needed corrections to get a proper
function.

It can be seen that PonyGE2 generates a Python funcion for
being used by other modules of the system. Listing in Figure 1
mixes fragments of Python code (like in lines 2 to 11, 19 to 26 and
the right hand sides of rules from lines 28 to 39) with BNF syntax
(like in lines 1 and 28 to 45).

Figure 2 shows the PonyGE2 listing with the CFG for evolving
the parameters of elliptical Moffat PSFs. It is similar to that of Figure
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1. In this case the evolved parameters are S0, S1, x0, y0, alpha, and
beta; <v_param5> is an intermediate symbol. The rules to evolve
these parameters share the same approach of Figure 1.

4 RESULTS

The first experiment included 2400 executions (100 stars x 2 chips x
6 fitness functions x 2 PSF functions). Populations of 500 individuals
and 20 generations are employed in each case. The results of this
experiment are compared with the values of the “ground truth” to
determine accuracy and residuals.

For the GE process we selected reasonable parameters based on
literature: 20 generations, population of 500, RVD initialization,
tournament selection (size 10), fixed_twopoint crossover, crossover
probability of 0.2, mutation per individual (5 events) and elite size
of 10.

It can be observed that the results obtained in the evolutionary
process using a grammar based on the Moffat function yield supe-
rior outcomes (Table 1), particularly evident in WF chip images,
where the spatial resolution is poorer. The behaviors of the fitness
functions in the images of the two chips are different; on one hand,
the Manhattan function generates better precision for WF, whereas
on the other hand, the Cosine, Euclidean, and Pearson functions
perform better for PC. Among these, Pearson exhibits the lowest
standard deviation, indicating more stable results.

Nevertheless, a bias effect appears in all results. Figure 4 plots the
distribution of x, y-residuals (right panel) and their dependence with
star brightnesses, expressed in logarithmic scales as star magnitudes
(left and middle panels). For PC, Pearson exhibits a bias in dx of =19
mpix with a standard deviation of 17 mpix , and in dy of +42 mpix
with a standard deviation of 26 mpix. For WF, Manhattan shows a
bias in dx of +89 mpix with a standard deviation of 37 mpix, and in
dy of —35 mpix with a standard deviation of 37 mpix.

The biases appear to be related to the asymmetry in the dis-
tribution of light within an image, i.e., the PSF models do not fit
completely the light distribution in the image, which exhibits more
complex shapes and structures than can be described with simple
model distributions such as Moffat or Gaussian.

For the second experiment, we performed extensive exploration
of the GE evolution parameters. This experimental case was built
upon the best-case scenario from experiment number one, i.e., the
2D elliptical Moffat PSF function was fit, while Pearson Fitness
function was used for PC, and Manhattan one for WF. Hence, 28
scenarios are formulated by combining evolutionary process param-
eters to determine their impact on accuracy and bias error. These
28 scenarios are shown in Table 2.

All parameter values from experiment one are retained, with
only the specified parameter values altered to observe how they
modify the outcome. PC and WF results are analyzed separately, and
as shown in experiment one, the evolutionary processes exhibits
distinct behaviors in the images of different chips. For PC and
WEF, parameters that yield the highest accuracy in the results are
described in Table 2.

For every execution of an evolutionary process, a symbolic repre-
sentation is generated based on the used PSF function, thus provid-
ing explainability for the results. As depicted in Figure 5, a compar-
ison is made between a real image and the PSF generated based on
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the specified model. Equation 6 shows the symbolic representation
for left image in Figure 5.

5 CONCLUSIONS AND FUTURE WORK

We can conclude that star-centering process, using grammar evo-
lution (GE), is technically feasible, allowing for the use of various
fitness functions and base functions such as point spread function
(PSF). For both PC and WF images, the elliptical 2D Moffat PSF
function yielded superior results in terms of both accuracy and
result deviation, as suggested by [18]. For PC, the cost function
based on the Pearson coefficient was more precise, while for WF,
the Manhattan distance function provided better accuracy.

An important advantage of using GE is the potential explainabil-
ity of the results, as each individual in the evolutionary process
generates a model equivalent to the symbolic representation of the
defining PSF. Therefore, the PSF model can be explained combining
different mathematical expressions to fit the best one to the image.
However, in our particular data set, using the mentioned fitness
functions, the technique exhibits a bias profile seemingly related
to the luminosity asymmetry in the image, i.e., the 2D elliptical
Moffat is not capturing the star profiles completely. While it might
be possible to attempt a correction, such a process could poten-
tially negatively impact the computational cost as more complicate
expressions should be tried.

As a future work, we plan to extend our experiments to other
instruments and contexts, not necessarily for the astrometric es-
timation of point-like sources, in which optical responses cannot
be explained with simple mathematical models, for example, shift-
variant PSFs (e.g., the TESS space telescope), or extended PSFs
(which need an image support of several thousands of pixels, e.g.,
the SDSS ground-based telescope). GE should exhibit all its power
when designing a more complex grammar aiming to generate more
complex expressions that, in addition, will suggest and explain ex-
plicitly the models involved in the process. Some of the problems
in this domain will need models that handle semantic restrictions,
like our extensions to GE.
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1 <program» ::=

2 def PSF_estimada(5@,51,x@,y@,alpha_1,alpha_2,phi,beta):

3 phi = phi*np.pi/l8@

4 A = (np.cos(phi)/alpha_1)**2. 4+ (np.sin(phi)/alpha_2)**2.

5 B = (np.sin(phi)/alpha_1)**2. + (np.cos(phi)/alpha_2)**2.

6 C = 2.8*np.sin(phi)*np.cos(phi)*(1./alpha_1**2. - 1./alpha_2%*2.)

7 return lambda x,y: 58 + S1/((1.+ A*((x-(x@-1))**2) + B*((y-(y@-1))**2)
+ C*(x-(x0-1))*(y-(y@-1)))**beta)

9 S8 = @.8<num><num><num>

18 S1 = @.9<num><num><num>

@ = 3.<num><num><num><num>

y@ = 3.<num><num><num><num>

alpha_1 = <num>.<num><num><num><num>

alpha_2 = <num>.<num><num><num><num>

<v_param7>

beta = <num><num>.<num><num><num><nums>

if (phi "<* -98):
phi += 18@
if (phi ">" 9@):
phi -= 18@
if (beta==0):

beta = @.0001

mat = PSF estimada(5@,51,x@,y8,alpha_1,alpha_2,phi,beta)
(*np.indices(data.shape))
<v_param7> ::= phi = -<num><num>.<num><num><num><num>
phi = <num><num>.<num><num><num><num:>

<num> ::=@ | 1|2 |3]|]4|5]|6|7]|8]9

Figure 2: CFG used to map genotypes into the parameters of elliptical Moffat PSFs.

Figure 3: Point-like sources simulated for WFPC2 camera used in this work. Left: PC detector. Right: WF detector.

0.9452

M(x,y) = 0.9221 +
[1+3.1692(x — 3.2164)2 + 3.2790(y — 3.8935)% + 1.3774(x — 3.2164) (y — 3.8935)]1-0146

(6)
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2D Elliptical Gaussian 2D Moffat function
PC WF PC WF
Cost function | Precision Std dev | Precision Std dev | Precision Std dev | Precision Std dev
Cosine 52 23 139 34 50 24 123 36
Euclidean 53 23 145 35 52 24 129 41
Kendall 102 88 140 81 91 84 127 75
Manhattan 60 26 165 51 65 34 101 40
Pearson 52 24 139 34 51 21 120 32
Spearman 109 100 161 87 105 94 153 78
Total 71 63 148 59 69 60 125 56

Table 1: Summary of Experiment 1 using both PSF functions.
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Figure 4: Bias profile for PC using a Pearson fitness function (top), and for WF using Manhattan (bottom). Left and middle
columns: residuals in x- and y- w.r.t. the star magnitude. Right panel: residuals distribution w.r.t. (x,y) position.
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Scenarios PC Best WF Best
Generations 10, 15 and 20 20 20
Population 100, 500, 1000 1000 500
Initialization RVD / uniform_genome | uniform_genome RVD
Selection type Tournament / Truncation Tournament Tournament
- Tournament Size 1,50r 10 5 10
- Selection Proportion 0.2,0.5,0r 0.8 No trunc. No trunc.
Crossover type (fixed or variable) x (onepoint or twopoints) | variable_onepoint | fixed_twopoint
- Crossover probability 0.2,0.5,and 0.8 0.2 0.2
Mutation type Per individual / per codon Per codon Per individual
- Mutation events fixed (1, 5, 10) or Per codon prob (0.25, 0.50, or 0.75) Per codon fixed | Per ind fixed (5)
Elite size 1, 5,10 and 20 1 10

Table 2: Experiment 2: Scenarios and best parameters found.

Generated image Real image

Figure 5: Model generated for a single evolutionary process, with generated image (left) and original image (right). Green dot is
the real center (x,.4/, Yrear) = (3.2004,3.8636), red dot is the estimated one (x¢ss, Yesr) = (3.2164,3.8935). Precision for this specific
case is 34 mpix.



