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ABSTRACT
Mobile applications can be very network-intensive. Mobile phone
users are often on limited data plans, while network infrastructure
has limited capacity. There’s little work on optimizing network
usage of mobile applications. The most popular approach has been
prefetching and caching assets. However, past work has shown
that developers can improve the network usage of Android applica-
tions by making changes to Java source code. We built upon this
insight and investigated the effectiveness of automated, heuristic
application of software patches, a technique known as Genetic
Improvement (GI), to improve network usage. Genetic improve-
ment has already shown effective at reducing the execution time
and memory usage of Android applications. We thus adapt our
existing GIDroid framework with a new mutation operator and
develop a new profiler to identify network-intensive methods to
target. Unfortunately, our approach is unable to find improvements.
We conjecture this is due to the fact source code changes affecting
network might be rare in the large patch search space. We thus
advocate use of more intelligent search strategies in future work.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering.
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1 INTRODUCTION
Constant increase in network usage of mobile devices is causing
major issues, both for mobile device users and network managers.
Mobile traffic on cellular networks increased by 7 fold between
2016 and 2021 [33]. This increase required massive infrastructure
investment, and greatly increased energy consumption of cellular
networks [5]. It is estimated that the consumption of these com-
munications could be responsible for up to 23% of greenhouse gas
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emissions by 2030 [5]. More data usage can result in more expensive
bills for users, and increase in unresponsive applications, waiting
to fetch online assets. Khalid et al. [21] identified excessive net-
work usage as one of the most complained about issues of Android
applications.

Work improving network usage for Android applications has
mostly used prefetching [9, 20, 27, 37]. However, the primary aims
of prefetching are to save energy and avoid having to wait for assets
to be downloaded when they are needed, improving the respon-
siveness of applications. If a prefetching scheme is too aggressive it
may fetch assets that are never actually needed and thus increase
network usage. Li et al. [23] were the first to show that network
usage can be optimized by a more light-weight approach of apply-
ing modifications to source code, although their primary goal was
reduction of energy consumption. Li et al. [23] proposed to simply
bundle together http requests into single, larger requests. Whilst
this approach was successful, it is not able to produce many of the
kinds of changes that we found that developers make to improve
network usage [13], such as adding conditions to network requests
and caching variables.

Given the different changes to source code that developers make
to improve network usage of their applications, we need an ap-
proach that could automatically navigate this search space to find
improvements. Therefore, we propose to use Genetic Improve-
ment (GI) [30] for this task. GI has proven successful at improving
a wide array of program properties. This includes program repair
(e.g., [7, 19, 36]), execution time (e.g., [22, 29, 32]), memory usage
(e.g., [8, 16, 35]) and energy usage (e.g., [10, 12, 34]). Moreover,
genetic improvement has already been applied to Android applica-
tions, providing promising results. For instance, Bhokari et al. [10]
improved energy usage of applications, while we have improved
their responsiveness [15]. Moreover, we have achieved only limited
success at improving the frame rate of Android applications [14].

More recently, we attempted to improve network usage of An-
droid applications using multi-objective GI, concurrently targeting
execution time and memory usage as improvement objectives [17].
We were able to successfully improve memory usage and execution
of Android applications, however, we found we could not reduce
network usage. We believe that this limitation was due to two rea-
sons: 1) the benchmarks did not generate enough network traffic
to offer the chance for improvement; and 2) some modifications
to code we used, although potentially beneficial for memory and
runtime improvements, could not achieve network usage reduction.

Therefore, we propose to try to overcome these limitations by:
1) developing a profiler to identify the most network-intensive
areas of code; and 2) applying genetic improvement with novel,
network-specific mutation operators to the identified code.

We extend our GIDroid framework [17] and apply our approach
to 7 applications that we have identified as being network-intensive.
Unfortunately, no improvements were found. We conjecture the
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space of changes is too sparse for our approach, and thus more
intelligent search strategies need to be considered in future work.

Overall, with this work, we provide the following contributions:

(1) A new profiler to identify network-intensive methods in
Android applications.

(2) A set of Android applications that use network extensively,
for future research in network usage optimization.

(3) A set of mutation operators that mimic modifications made
by developers that improve network usage, including a novel
operator that avoids unnecessary http requests.

(4) An empirical study showing the effectiveness of our ap-
proach at finding improvements to network usage.

Our framework and profiler, as well as all the results obtained, are
available on the following website, so others can verify and extend
our work: https://github.com/SOLAR-group/NetworkGI

The rest of the paper is structured as follows: Section 2 describes
how we refine the approach in the previous work to improve net-
work usage. Section 3 lists the research questions (RQs) we have
about our approach for improving network usage. Section 4 de-
scribes the methodology we use to answer our research questions.
Section 5 details the results of our experiments. Section 6 explains
the threats to the validity of our work and how we mitigate them.
Section 7 lists the conclusions of our work.

2 APPROACH FOR IMPROVEMENT OF
ANDROID APP NETWORK USAGE

We use the framework presented in Figure 1. GIDroid [17] is a
framework for applying genetic improvement to Android applica-
tions. GIDroid generates variants of Android applications in the
form of lists of edits to their source code. These edits include the
“traditional” GI operators, which can copy, replace, delete and swap
statements in the abstract syntax tree (AST), along with two caching
operators to avoid unnecessary method calls. These variants are
then improved with the use of search algorithms (such as genetic
programming). GIDroid randomly generates variants and validates
them with unit tests, particularly tests written in the simulation-
based library Robolectric [4]. This saves on the time needed to
transpile, package, and install the applications on actual devices or
emulators, speeding up the GI process. If all tests pass, the variant
is considered valid, if it is invalid its fitness will be set to the worst
possible value1. During test execution, the non-functional proper-
ty/ies being improved can be measured and then set as the fitness
for valid patches. The fitness is then given to the search algorithm
to generate further variants.

We modify the framework in two key ways. Firstly, rather than
using the PMD static analyzer [31] to detect target methods for
modification, we develop our own profiler, specifically for iden-
tifying methods that make large http requests. The PMD static
analyzers performance patterns only concern memory usage and
execution time, so with a more appropriate profiler, we may be able
to achieve better results. Secondly, we modify the set of mutation
operators used to more closely reflect the changes made by software
developers [13].

1Maximum value for Java’s Float.

2.1 Network Usage Profiler
In order to identify the most network-intensive areas of code, we
develop a profiler. This profiler identifies and instruments http
requests made in three popular http libraries in Android (Http
UrlConnection, OkHttp, and volley). Both volley and HttpUrl
Connection are official Android http libraries, whereas OkHttp
is a popular third-party library (appearing in almost 5% of all ap-
plications in the Google Play store [6]) which is in fact used as
the backend of HttpUrlConnection. We show example requests
made by each library in Figures 2, 3, and 4. We use the Soot [2]
static analysis tool to find invocations of http requests in each
of these libraries and then exercise the application, logging the
size of the data that is sent and received. In the case of HttpUrl
Connection, the static analysis looks for the invocation of the read
method on a BufferedReader which is reading the InputStream of a
HttpUrlConnection object and logs the size of the lines that are
read by the buffered reader. In the case of volley, all overridden
onResponse and onErrorResponse methods on Response.Listener
and Response.ErrorListener objects are modified to log the size of
the response. Finally, for OkHttp, we simply log the size of the body
of responses that are created with the Call.execute() method. Once
we have run static analysis, we can discard those applications that
do not contain any invocations of the APIs of interest.

We then use automated testing tools to find the methods that
result in the largest and most frequent usages of the network. In
particular, we use the Monkey testing tool [3] to randomly exer-
cise the application being profiled and exercise as much of the
code as possible. We run Monkey with 1000 random inputs. Whilst
other more advanced automated testing tools are available (e.g.,
Mahmood et al.’s EvoDroid [25] and Mao et al.’s Sapienz [26]), we
choose to use Monkey as it is compatible with the latest versions
of Android unlike the testing tools available at the time of experi-
mentation.

2.2 Novel Mutation Operator For Network Use
We introduced a new mutation operator, based on our mining
study [13]. In particular, we found that many developer-made
changes would add conditional branching around statements, to
only make the requests over the network when they were actually
necessary, see bold text in Figure 5. This mutation operator wraps
statements in if statements, with the goal of avoiding making un-
necessary requests. The conditions of the if statements consist of
comparisons between local variables and the values listed in the
right most column of Table 1. In the case that the local variable is a
Java primitive, direct comparison can occur. In the case where the
local variable is not a primitive, we use either one of the variable’s
fields which is a primitive, or one of its methods that returns a prim-
itive for comparison. In order to select a variable for comparison,
we use a random selection which is weighted based on the distance
between the statement being wrapped and the closest use of the
variable in the AST. The probability of a particular variable 𝑣 being
selected given statement 𝑠 is being wrapped is shown in Equation 1.

𝑃 (𝑣 |𝑠) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑣, 𝑠)/
∑︁

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑣𝑖 , 𝑠) (1)

We use this weighting to prefer comparisons with variables that
are more relevant to the statement being wrapped. Figure 6 shows
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Figure 1: Overview of the GIDroid [17] framework for optimization of non-functional properties of Android applications using
genetic improvement.

URL u r l = new URL ( " h t t p : / /www. andro id . com / " ) ;
HttpURLConnect ion u r lConnec t i on =
( HttpURLConnect ion ) u r l . openConnect ion ( ) ;
Bu f f e r edReade r br =
new Bu f f e r e dReade r ( u r lConnec t i on . g e t I npu t S t r e am ( ) ) ;
S t r i n g s t r Cu r r e n t L i n e ;
wh i l e ( ( s t r Cu r r e n t L i n e = br . r e adL ine ( ) ) != n u l l ) {

Log.d("AndroidHttpProfiler", "ThisClass.getAndroid");
Log.d("AndroidHttpProfiler", strCurrentLine.size());
doSomething ( s t r Cu r r e n t L i n e ) ;

}

Figure 2: An example of an instrumented HttpUrlConnection
request. First, a HttpURLConnection object is instantiated,
and then its input stream is read with a buffered input
stream. We instrument the code to log the method name
(ThisClass.getAndroid) and the data received over the net-
work.

how this operator is applied in practice. We select the compari-
son from those shown in Table 1. These conditions are based on
those suggested by Brownlee et al. [11] for injecting shortcuts into
code. They were extended to allow comparisons to integers from
0-5, rather than just 0, as these conditions are observed in real
commits [13].

3 RESEARCH QUESTIONS
In order to evaluate the effectiveness of our proposed framework
for improvement of network usage of Android applications, we
pose the following research questions:

RQ1: How much data do Android applications send over the net-
work through http requests?

S t r i n g u r l = " h t t p : / /www. andro id . com / " ;
S t r i n gR e qu e s t s t r i n gR e q u e s t =
new S t r i n gR e qu e s t ( Reques t . Method . GET , u r l ,

new Response . L i s t e n e r < S t r i ng > ( ) {
@Override
p u b l i c vo id onResponse ( S t r i n g r e sponse ) {

t ex tV iew . s e t T e x t ( " Response i s : "
+ r e sponse . s u b s t r i n g ( 0 , 5 0 0 ) ) ;
Log.d("AndroidHttpProfiler", "ThisClass.getAndroid");
Log.d("AndroidHttpProfiler", response.size());

}
} , new Response . E r r o r L i s t e n e r ( ) {

@Override
p u b l i c vo id onErrorResponse ( Vo l l e yE r r o r e r r o r ) {

t ex tV iew . s e t T e x t ( " That didn ' t work " ) ;
}

} ) ;

Figure 3: An example of an instrumented volley request. An
object which extends the Request class is created and we can
find the response in the overridden onResponse method.

Table 1: The potential operators and values that Java primi-
tives can be compared with and to, depending on the type of
the primitive selected for the newly created if statement.

Java type Operator Value to compare to
boolean == {true, false}
others {==, <, ≤, >, ≥} {0, 1, 2, 3, 4, 5}

Wewant to know howmuch of an impact http requests have on
network usage in Android applications and how network-intensive
the methods that our profiler identifies are.
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OkHt tpC l i en t c l i e n t = new OkHt tpC l i en t ( ) ;
S t r i n g run ( S t r i n g u r l ) throws IOExcep t i on {

Reques t r e q u e s t = new Reques t . B u i l d e r ( )
. u r l ( u r l )
. b u i l d ( ) ;
Response r e sp = c l i e n t . newCal l ( r e q u e s t ) . e x e cu t e ( )
S t r i n g r e p on s e S t r i n g = r e sp . body ( ) . s t r i n g ( ) ;
Log.d("AndroidHttpProfiler", "ThisClass.getAndroid");
Log.d("AndroidHttpProfiler", reponseString.size());
r e t u r n r e p on s e S t r i n g ;
}

}

Figure 4: An example of an instrumented OkHttp request.
The execute method is called on an OkHttpClient object and
returns a response. As before (Figures 2 and 3), we log the
method name and the data received.

(a) Code before mutation
. . .
As se t a s s e t = a s s e t s . g e t ( 0 ) ;
Reques t r e q u e s t = new Reques t . B u i l d e r ( )
. u r l ( a s s e t . u r l )
. b u i l d ( ) ;

Response r e sponse = c l i e n t . newCal l ( r e q u e s t )
. e x e cu t e ( )

. . .

(b) Code after mutation
. . .
As se t a s s e t = a s s e t s . g e t ( 0 ) ;
Reques t r e q u e s t = new Reques t . B u i l d e r ( )

. u r l ( a s s e t . u r l )

. b u i l d ( ) ;
if (asset.isNeeded() == true) {

Response r e sponse = c l i e n t . newCal l ( r e q u e s t )
. e x e cu t e ( )

}
. . .

Figure 5: An example of the ‘add condition’ operator, check-
ing if the method isNeeded of the local variable asset return
true. The introduced if statement is highlighted in bold text.
This mutation avoids unnecessary http requests.

RQ2:How effective is genetic improvement at reducing the network
usage of Android applications?

We want to know if genetic improvement can automatically
reduce the amount of data sent and received over the network in
Android applications, and what is the impact on the amount of data
sent and received.

RQ3: How expensive is it to improve the network usage of Android
applications using genetic improvement?

We want to know how long the GI process takes to find im-
provements. If the process takes an exceedingly long time for small

improvements it may not be worth it for developers to use GI in a
real-world setting.

4 METHODOLOGY
In order to evaluate our framework for the improvement of net-
work usage of Android applications, we propose the methodology
described in this section.

4.1 Framework for Network Usage Optimization
We use our GIDroid [17], however, we modify it with the addition
of our new mutation operators which specifically target network
usage. Each individual program variant is represented as a patch,
where each patch consists of a list of edits which is sequentially
applied to the source code of the problem.

Fitness Function To evaluate each program variant i.e., whether
it improves network usage without sacrificing functionality, the
corresponding patch is applied to the code, and the program is
run against test cases to evaluate its fitness. We instrument the
applications to log the sizes of http queries, allowing us to directly
measure the bytes sent and received over the APIs of interest. We
then use this measurement as a fitness in our search algorithms,
with the goal of minimizing network usage, i.e., variants with lower
fitness measurements are considered fitter.

Mutation Operators Aside from our new mutation operator
(see Section 2.2), we use our ‘caching’ operators, and ‘delete state-
ment’ operators [17], whichwe have shown improve bandwidth [13].
There are two types of caching operators: one caches a variable
value, while another a method call. The delete operator simply
deletes a randomly selected statement. The aim of each of these
operators is to avoid making unnecessary http requests by either
removing unnecessary invocations, storing their results and reusing
them, or avoiding them when some state of the application suggests
that they are unnecessary.2

Crossover Operator Since they have shown to be successful
in improving other non-functional properties, we use the same
uniform crossover operator, which appends sections of individuals
onto the end of others, as was used in many previous works in GI,
starting with GenProg [18]. Tournament selection is used to select
individuals for crossover. The first half of one is appended to the sec-
ond half of the other, and vice-versa, where each edit is added with
50% probability. Each such created individual undergoes mutation.

Search StrategyWe evaluate both the Local Search algorithm
and the Genetic Programming algorithm available in the GIDroid
framework. Genetic Programming (GP) stochastically generates a
set of patches (the population) and simulates evolution upon them
to find better patches. In GP each patch is applied and, if valid, its
fitness (in our case network usage) is measured. The next generation
is then created through tournament selection (size 2), where two
individuals are randomly selected, and the fittest is added to the new
generation. Mutation and crossover are then applied to add new
edits and combine individuals in the new generation. This process
continues for a set number of generations where a population of
improved patches is produced.

2We opt not to use the operator proposed by Li et al. [23] as none of our benchmarks
contained sequential requests.

http://www.cs.ucl.ac.uk/staff/J.Petke/


On Reducing Network Usage with Genetic Improvement GI @ ICSE 2023, 16 April 2024, Lisbon

Fi
gu

re
6:

Pr
oc

es
s
fo
r
cr
ea
ti
ng

a
ne

w
if

st
at
em

en
tw

ra
pp

er
.F

ir
st
,a

st
at
em

en
tt
o
be

w
ra
pp

ed
is

se
le
ct
ed

fr
om

th
e
ta
rg
et

m
et
ho

d.
N
ex

t,
ei
th
er

a
pr

im
it
iv
e
lo
ca
l

va
ri
ab

le
or

a
m
et
ho

d
of

a
no

n-
pr

im
it
iv
e
lo
ca
lv

ar
ia
bl
e
w
it
h
a
pr

im
it
iv
e
re
tu
rn

ty
pe

is
se
le
ct
ed

.T
hi
s
se
le
ct
io
n
is

ba
se
d
on

th
e
di
st
an

ce
of

th
e
va

ri
ab

le
fr
om

th
e

st
at
em

en
t.
T
he

n
an

op
er
at
or

is
se
le
ct
ed

ba
se
d
on

th
e
ty
pe

of
th
e
pr

im
it
iv
e
th
at

w
as

se
le
ct
ed

.T
he

n,
a
va

lu
e
to

co
m
pa

re
to

is
se
le
ct
ed

,a
ga

in
,b

as
ed

on
th
e
ty
pe

of
th
e
pr

im
it
iv
e.
Fi
na

ll
y,
an

if
st
at
em

en
ti
s
co

ns
tr
uc

te
d
fr
om

th
e
se
le
ct
ed

co
m
po

ne
nt
s
an

d
in
se
rt
ed

in
to

th
e
ta
rg
et

m
et
ho

d.



GI @ ICSE 2023, 16 April 2024, Lisbon James Callan, William B. Langdon, Justyna Petke

In Local Search (LS), we maintain a single best individual, at each
step, we add or remove and evaluate its fitness. If the new individual
is fitter than the existing best it becomes the best individual. This
repeats for a set number of steps where we have a single best
individual. We will use 400 evaluations in each run, 400 steps in
LS an 40 individuals for 10 generations in GP, as these parameters
shown successful in previous work [17, 18].

4.2 Benchmark of Network-Intensive Android
Applications

To evaluate our approach, we collect a set of Android applications
that contain network-intensive methods. As we need tests to vali-
date the patches that we produce, we begin by trying to find appli-
cations with network-intensive methods that are covered by local
tests.

To identify these applications we run our profiler on 2 sets of ap-
plications. Firstly, we profile the applications identified by Pecorelli
et al. [28] as being covered by tests in their study on the way
in which every application available on the open-source app store
FDroid [1] was tested. We eliminate those applications which do not
contain any unit tests. Secondly, as the study by Pecorelli et al. [28]
was performed in 2020, we also consider all applications that have
been released since the study was performed and made available
on FDroid. This resulted in a total of 4443 apps.

If our profiler identified any methods in an application that used
one of the libraries previously discussed, we checked whether it
also had unit tests that covered these methods. In the case where
multiple methods were identified, the one that resulted in the most
network traffic was selected for improvement. We use the data
collected in this step to answer RQ1. In some cases, the methods
identified were simply wrappers around http requests, in these
cases we instead ran GI on the methods which used the wrappers
most often.

We also added in the F-Droid Client. Previously we [17] had
failed to improve it, but now there is a possible improvement to be
made based on real developer commits. Unlike the other applica-
tions being improved, this application is not the latest version but
a previous version of the application, one commit before a network
usage improving commit was made. We know that this improve-
ment lies in the search space of our mutation set, thus forming a
baseline for our approach. Except F-Droid Client, where we used
our previous test suite [17], all benchmarks use developer-written
tests.

In total, this selection process resulted in the 7 applications,
shown in Table 2.Whilst we foundmany applications that contained
http API usages, the overwhelming majority were not covered
by any of the application’s tests. At the time of experimentation
automated tools for unit test generation for Android did not support
the later Android versions and, thus could not be used to generate
tests for the methods of interest.

4.3 Experimental Setup
For each of our benchmarks and each search algorithm, we perform
20 runs, as Genetic Improvement is stochastic, and statistical tests
are needed to evaluate its efficacy. The results of these runs will be

Table 2: Android applications and commit sha checksum of
version targeted for improvement and links to their reposi-
tories.

Application Repository

Adaway Repo https://github.com/AdAway/AdAway
sha 75bee423e8635f84266c521e94cf177c1521ff6c

FDroid Client Repo https://github.com/f-droid/fdroidclient
sha bf8aa30a576144524e83731a1bad20a1dab3f1bc

GPS Logger Repo https://github.com/mendhak/gpslogger
sha 5437cfff42d728111f9a0ca03dc7f52a11beafc9

Mi Mangu Nu Repo https://github.com/raulhaag/MiMangaNu
sha 84f8773985af04e0c96d2d5290f3f1245107c39e

Materialistic Repo https://github.com/hidroh/materialistic
sha b631d5111b7487d2328f463bd95e8507c74c3566

F-Droid Build Status Repo https://codeberg.org/pstorch/F-Droid_Build_Status/
sha 818ae54b2398d1b9ec7e2ccc8f620431f001b2b6

Ooni Probe Repo https://github.com/ooni/probe
sha 26dd6c96dd7129b635f15c4d4bf956939a9cdb44

Table 3: Network used by applications identified by our pro-
filer which had network-using methods covered by unit
tests, the number of KLoC in each application, and the most
network-intensive method name.

Application KLoC Network Most network-intensive method
usage (kB)

Adaway 21.6 110.2 GitHubHostsSource.getLastUpdate
FDroid Client 88.5 237.9 FDroidApp.onCreate
GPS Logger 23.2 2.4 GoogleDriveJob.updateFileContents
Mi Mangu Nu 33.1 512.1 NineManga.getMangasFiltered
Materialistic 31.1 17.1 UserServicesClient.submit
F-Droid Build Status 7.1 1.5 FdroidClient.getRunning
Ooni Probe 32.7 147.6 MeasurementsManager.downloadReport

used to answer RQs 2 and 3. We perform all of our experiments on
a cloud computer with 16GB RAM and 8-core Intel Xenon CPUs.

5 RESULTS
Next, we discuss and analyze the results which we attained from
our experiments.

5.1 RQ1: Network Used
For each of the applications found in which network requests were
covered by tests and thus suitable for Genetic Improvement, we
measure the amount of network used by the applications with
random inputs from the Monkey testing tool. The results attained
are shown in Table 3.

We find that our profiler is capable of identifying methods in
applications that use between 1.5 kB and 512kB of data. This data is
collected over only 10000 inputs, taking a few minutes to execute.
For real users, this could result in large amounts of data usage if
they use the applications often, demonstrating the need for network
usage reduction in Android applications.

Answer to RQ1: We find that our profiler is capable
of identifying methods in applications that use between
1.5 kB and 512kB when exercised with 10000 random
inputs. This is only over the course of a few minutes and
real usage is likely to result in large amounts of data being
transmitted.
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Figure 7: Time taken by Genetic Improvement when using Genetic Programming for each of our benchmarks

Figure 8: Time taken by Genetic Improvement when using Local Search

5.2 RQ2: Improvements to network usage
Unfortunately, we did not find any improving patches in our ex-
periments. One possible reason is that the potentially improving
mutations are too sparsely distributed in the search space. Both
Genetic Programming and Local Search rely on being able to find
small improvements and build upon them, so-called “exploitation”.
However, for this particular problem, search algorithms that can
explore the search space in a more intelligent way may be more
useful. Moreover, execution of a single variant on our benchmark
set takes minutes to run. If we wish to perform 1000s of evalua-
tions and explore large areas of the search space, we require faster
ways to test or validate that the variant is equivalent to the original
program.

To investigate this, we calculate the number of potential if state-
ments that could be added to each of our benchmarks. We find that
each benchmark has between 10 000 and 250 000 potential condi-
tions that could be inserted. We show these values in Table 4. With
the relatively long-running tests needed to evaluate each mutant,
400 evaluations are simply not enough to explore the 10s of thou-
sands of potential edits in the search space in a reasonable amount
of time, posing the need for effective heuristic search strategies.

Table 4: Number of potentials if statements which could be
inserted for each benchmark (target methods in each app).

Application Number possible if mutation locations
Adaway 11 088
FDroid Client 157 859
GPS Logger 32 457
Mi Mangu Nu 236 918
Materialistic 196 962
F-Droid Build Status 44 352
Ooni Probe 10 065

Answer to RQ2: We find that our approach is unable to
find improvements to network usage. We believe that this
is because we cannot effectively explore the very large
search spaces of this problem.

5.3 RQ3: Cost of Genetic Improvement
As shown in Figure 7, running GI with the Genetic Programming
Meta-Heuristic takes between 0.4 and 7.0 hours, with a median
time of 4.3 hours. Alternatively, as shown in Figure 8 when using
Local Search we find that Genetic Improvement takes between 0.3
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and 7.6 hours, with a median time of 4.8 hours. The difference
between the two approaches is due to Local Search producing more
compiling variants which must then be tested, taking more time.
This is not surprising as every individual in Local Search is a single
edit away from a variant that compiles and passes all tests, whereas
variants generated in Genetic Programming may be multiple edits
away. However, this may allow GP to explore the search space more
quickly than LS and be more successful in future work.

Answer to RQ3: We find that running GI with the GP
meta-heuristic takes between 0.4 and 7.0 hours. We find
that when using Local Search GI takes between 0.3 and
7.6 hours. The median time taken by GP (4.3 hours) is
less than that taken by LS (4.8 hours).

6 THREATS TO VALIDITY
Using unit tests to assess whether two programs are equivalent
can lead to false positives or variants that pass all tests but are not
equivalent to the original program. This threat can be mitigated
through a standard code review of any patches suggested by GI by
the developers of the project being improved.

Genetic Improvement is a stochastic process. This means that
in some cases it can get “lucky” and find strong improvements
that it wouldn’t find in a normal run. We mitigate this threat by
performing 20 runs for each of our benchmarks for each of our
search algorithms. This gives us confidence that we know how our
approach will perform in a standard run.

Whilst Madaan et al. [24] have shown that large language models
can be used to improve the execution time of C++ programs, they
did not consider Java Android applications. Indeed, we found we
could not reproduce all the changes made by developers when
simultaneously optimising multiple non-functional properties of
Android applications [17].

Finally, our tool and results are available so that our work can be
validated and replicated: https://github.com/SOLAR-group/NetworkGI

7 CONCLUSIONS
In conclusion, we propose an approach for the identification and
improvement of network-intensive methods in Android applica-
tions. We augment an approach that was previously successful in
improving execution time and memory consumption, but not net-
work usage, to specifically target network usage by only making
changes that could improve network usage. We identify 7 appli-
cations with network-intensive methods that are covered by the
applications’ unit tests and evaluate our approach on them. We find
that our approach cannot successfully explore the tens of thousands
of potential changes that could be made to our benchmarks to find
patches that improve network usage. We do however provide the
implementation of our tool and results so that future researchers
can improve this approach and hopefully find success for this im-
portant problem.
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