
Deep Mutations have Little Impact
13th International Workshop on Genetic Improvement

Tuesday 16 April 2024

19.4.2024

Information theory suggests
for most deeply nested mutations
disruption fails to propagate to the output.

W.B. Langdon and D. Clark. In GI@ICSE
2024 Lisbon, DOI:10.1145/3643692.3648259

W. B. Langdon, UCL
Humies $10000 prizes
Submit by Friday 31 May

http://www.human-competitive.org/call-for-entries

Deep Mutations have Little Impact
● What is the PIE (Propagation Infection Execution) view of software bugs

– How PIE leads to Failed Disruption Propagation and
– Information Theory idea of software robustness.

● Information Theory says impact of disruptions lost with distance when
nested

● Deep mutations have little impact in pure functions
– Genetic programming deeply nested trees

● Traditional imperative software, C++, with side effects, including global
variables

● Evidence that deep mutations have little impact in C++
● What is Magpie? Tutorial after lunch
● What is PARSEC, VIPS, C++ vipsthumbnail benchmark
● Implications:

– unit testing v. system testing, flaky tests
– Software code bloat, depth important
– Software robustness: deeper harder to test, improve, optimise, repair?

2

Voas’ PIE and Silent Bugs,
Information Theory,

Robust Deeply Nested Software
● PIE framework suggested by Jeffrey M. Voas and Keith W. Miller, 1995:

– For a software bug buried in code to have impact, it must:
be Executed

it must change (Infect) the program’s state

the state change must Propagate from the bug to some externally visible point (eg a print
statement)

● Expand to consider any type of Disruption, e.g. radiation, power glitch and
mutations.

● Failure of Disruption to Propagate to output, means software is robust
● Information Theory helps to explain why FDP is common and software is

often robust
● Initial experiments suggest FDP more common in deeply nested software

W. B. Langdon, UCL 3

Information Funnel

Computer operators are irreversible. Meaning input state
cannot be inferred from outputs. Information is lost

4

Information funnel

More information
enters than leaves

W. B. Langdon, UCL

Information flow in five nested functions

Potential information loss at each (irreversible) function

5

Disruption may fail
to reach reach
output.

(No side effects.)

Output

W. B. Langdon, UCL

Entropy = Information content
 Simple example, function = addition, inputs random 0-9 digits
 1 digit mean 4.5, standard deviation σ = √8.25 entropy=log

2
10

 n digit mean 4.5 n, σ = (n 8.25)½,
● large n distribution tends to Gaussian entropy=2.047+log

2
σ

● I.e, information content falls from 3.3n to 3.6+log
2
(n)/2

● Adding many digits loses almost all the information
● Impossible to infer inputs from their sum

6

Number
inputs

mean sd σ entropy Gaussian
entropy

Information
loss

1 4.5 2.9 3.3 3.6 0%

2 9.0 4.1 4.0 4.1 39%

3 13.5 5.0 4.4 4.4 56%

4 18.0 5.7 4.6 4.6 66%

5 22.5 6.4 4.7 4.7 72%

n 4.5n √(8.25n) 2+log
2
√(8.25n)½ < 100% = 1 – 2/(3.3n) –

(1/3.3n)log
2
√(8.25n)½

Entropy lost when adding digits
Add n non-uniformly distributed digits (0-9, left)

quickly converges on Gaussian.

Addition not reversible(given output do not know inputs)
addition losses information (entropy)

7

Entropy falls from 2.88n in inputs to ≈2+log
2
(7.7n)/2 in output

http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2024/langdon_2024_GI/add10.gif

http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2024/langdon_2024_GI/add10.gif

Evolve Deep Integer GP Trees
● Integer Koza’s Fibonacci problem [GECCO 2022 Companion pp574-577].

● Recursive program to generate Fibonacci sequence

 X
J
 = X

J-1
 + X

J-2
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

● 0 1 2 3 J + - * SRF

SRF(j,default) = jth value. default applies if j is invalid
● Twenty tests J=0 … 19
● Population 50000, 1000 generations
● Ten runs

 Change at run time each point in tree on each of the 20 tests
● Two run time disruptions: +1 or replace with random int
● +1 and RANDINT very similar

 Almost all run time disruptions make no difference

8W. B. Langdon, UCL

https://arxiv.org/abs/2204.13997

+1 Disruption, Fibonacci run 7, depth 33
red 16-20 test cases, blue 1 test cases

W. B. Langdon 9

Only disruption near root node reaches output

fdp__111851.gif len 771

Exponential fall in fraction of run time disruption
changing program output with depth

W. B. Langdon 10

fdp.gif

Exponential fall in fraction of run time disruption
changing program output with depth

W. B. Langdon 11

params.gnu

Deep floating point GP trees similar

Using Magpie to Sample C++ Mutations

● Genetic Improvement tool Magpie
● PARSEC suite of benchmarks to test parallel super computers for NASA.

Mostly numeric but includes some image processing, including VIPS
● VIPS C++ image processing library 90,000 lines
● Chose vipsthumbnail (parallel multi-threaded take large image create small

image 128 pixels wide
● Use linux perf to profile vipsthumbnail select all VIPS functions perf reports
● Use GDB to select all functions called enroute to top CPU using function
● Remove unused functions (a few unused lines, eg if/switch case included)
● 90,000 => 7328 lines, in 37 files. srcml => 37 XML files
● 1000 random Magpie mutations, measure their impact, measure depth

W. B. Langdon, UCL 12

Magpie Mutating C++
 Magpie https://github.com/bloa/magpie
 VIPS image thumbnail benchmark (use 37 files 7328 LOC)

13W. B. Langdon, UCL

3264 x 2448

128 x 96
thumbnail

1000 random Magpie VIPS mutants
 VIPS image thumbnail benchmark (use 37 files 7328 LOC)

● try to exclude unused code
 Magpie mutating source code as XML, (mostly) syntax

preserving, mostly compiles, runs, gives right answer 526
 37 cases output wrong but no exception.

● Randomly choose 25 of 37, compare with 25 where mutant
code is run, changes state but output is unchanged

Compiled, ran correct output 526 Correct output 438

Mutation is identical to
original code

 88

Failed to compile 302

Failed to run correctly or gave
incorrect output

164 exception 127

output error 37

Magpie TypeError 8

14

25 v 25 Mutants. Deep less impact
 25 mutants change execution but no change to output
 25 mutants which change execution (without causing segfault)

but change output

15

Conclusions

16

 Information theory predicts failed disruption propagation.
● In evolved pure nested functions (Genetic Programming)

● Impact of most mutations lost. Exponential decay with depth
● In deeply nested C++ code

● Excluding segfault etc., most mutations >30 nested function
calls did not change output

 Test oracle need to be close to error for tests to find them

 Unit testing v. system testing, flaky tests

 Software code bloat, depth important

 Software robustness: deeper code harder to test, improve,
optimise, repair?

 Automatic bug fixing (APR): avoid deep mutations, make shallow
changes near output? Add multiple test probes (test oracles)?

W. B. Langdon, UCL

Genetic Programming

W. B. Langdon

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.ucl.ac.uk/crest/
https://link.springer.com/book/10.1007/978-1-4615-5731-9
https://link.springer.com/book/10.1007/978-3-662-04726-2
http://www.gp-field-guide.org.uk/

W. B. Langdon

Human-Competitive results $10,000 prizes

Email your entry to goodman@msu.edu
by Friday 31 May

https://www.ucl.ac.uk/crest/
http://www.human-competitive.org/call-for-entries

1) Evolving Open Complexity, W.B. Langdon, EI 2022

2) Long-Term Evolution Experiment with Genetic Programming, W.B. Langdon and
W.Banzhaf, Artificial Life, 2022 28(2) pp173-204.

3) Dissipative Arithmetic, W.B. Langdon, Complex Systems. 2022, 31(3) 287-309

4) Deep Genetic Programming Trees are Robust, WB Langdon, ACM TELO, 2022 2(2) 6.

5) Genetic Programming Convergence, WB Langdon, GP+EM, 23(1) 71-104

6) Measuring Failed Disruption Propagation in Genetic Programming, GECCO 2022,
964-972, WB Langdon, et al.

7) Failed Disruption Propagation in Integer Genetic Programming, GECCO
comp 2022, 574-577, WB Langdon, et al.

8) Information Loss Leads to Robustness, W.B. Langdon and J.Petke and D. Clark,
IEEE Software Blog, 12 Sept. 2021.

9) Dissipative Polynomials, W.B. Langdon and J. Petke and D.Clark,in GECCO 2021
comp., pp1683-1691. DOI

10) Software Robustness: A Survey, a Theory, and Some Prospects, J.Petke, D.Clark and
W.B. Langdon, in ESEC/FSE 2021 (IVR), pp 1475-1478, DOI

11) Long-Term Evolution of Genetic Programming Populations, W.B. Langdon. In GECCO
2017 Comp., 235-236. DOI

References

http://blog.ieeesoftware.org/2021/09/information-loss-leads-to-robustness-w.html
http://dx.doi.org/doi:10.1145/3449726.3463147
http://dx.doi.org/doi:10.1145/3468264.3473133
http://dx.doi.org/doi:10.1145/3067695.3075965

The Genetic Programming Bibliography

16873 references, 16000 authors

Co-authorship community.
Downloads

A personalised list of every author’s
GP publications.

blog

Googling GP bibliography, eg:
Development and learning site:gpbib.cs.ucl.ac.uk

Make sure it has all of your papers!
E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

Downloads by day

Your papers

Text search

http://gpbib.cs.ucl.ac.uk/blog.html
http://www.cs.ucl.ac.uk/cgi-bin/staff/W.Langdon/WBT.cgi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

