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Deep Mutations have Little Impact
● What is the PIE (Propagation Infection Execution) view of software bugs

– How PIE leads to Failed Disruption Propagation and 
– Information Theory idea of software robustness. 

● Information Theory says impact of disruptions lost with distance when 
nested

● Deep mutations have little impact in pure functions
– Genetic programming deeply nested trees

● Traditional imperative software, C++, with side effects, including global 
variables

● Evidence that deep mutations have little impact in C++
● What is Magpie? Tutorial after lunch
● What is PARSEC, VIPS, C++ vipsthumbnail benchmark
● Implications: 

– unit testing v. system testing, flaky tests
– Software code bloat, depth important
– Software robustness: deeper harder to test, improve, optimise, repair?
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Voas’ PIE and Silent Bugs,
Information Theory, 

Robust Deeply Nested Software
● PIE framework suggested by Jeffrey M. Voas and Keith W. Miller, 1995:

– For a software bug buried in code to have impact, it must:
be Executed

it must change (Infect) the program’s state

the state change must Propagate from the bug to some externally visible point (eg a print 
statement)

● Expand to consider any type of Disruption, e.g. radiation, power glitch and 
mutations.

● Failure of Disruption to Propagate to output, means software is robust
● Information Theory helps to explain why FDP is common and software is 

often robust
● Initial experiments suggest FDP more common in deeply nested software
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Information Funnel

Computer operators are irreversible. Meaning input state 
cannot be inferred from outputs. Information is lost
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Information funnel

More information 
enters than leaves
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Information flow in five nested functions

Potential information loss at each (irreversible) function
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Disruption may fail 
to reach reach 
output.

(No side effects.)

Output
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Entropy = Information content
 Simple example, function = addition, inputs random 0-9 digits 
 1 digit mean 4.5, standard deviation σ = √8.25 entropy=log

2
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 n digit mean 4.5 n, σ = (n 8.25)½,
● large n distribution tends to Gaussian entropy=2.047+log

2
σ

● I.e, information content falls from 3.3n to 3.6+log
2
(n)/2

● Adding many digits loses almost all the information
● Impossible to infer inputs from their sum
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Number 
inputs

mean sd σ entropy Gaussian 
entropy

Information 
loss

1   4.5 2.9 3.3 3.6   0%

2   9.0 4.1 4.0 4.1 39%

3 13.5 5.0 4.4 4.4 56%

4 18.0 5.7 4.6 4.6 66%

5 22.5 6.4 4.7 4.7 72%

n 4.5n √(8.25n) 2+log
2
√(8.25n)½ < 100% =  1 – 2/(3.3n) – 

(1/3.3n)log
2
√(8.25n)½



Entropy lost when adding digits
Add n non-uniformly distributed digits (0-9, left)

quickly converges on Gaussian.

Addition not reversible(given output do not know inputs) 
addition losses information (entropy)
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Entropy falls from 2.88n in inputs to ≈2+log
2
(7.7n)/2 in output
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Evolve Deep Integer GP Trees
● Integer Koza’s Fibonacci problem [GECCO 2022 Companion pp574-577].

● Recursive program to generate Fibonacci sequence 

 X
J
 = X

J-1
 + X

J-2
      1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

● 0 1 2 3 J + - * SRF

SRF(j,default) = jth value. default applies if j is invalid
● Twenty tests J=0 … 19
● Population 50000, 1000 generations
● Ten runs

 Change at run time each point in tree on each of the 20 tests
● Two run time disruptions: +1 or replace with random int
● +1 and RANDINT very similar

 Almost all run time disruptions make no difference
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+1 Disruption, Fibonacci run 7, depth 33 
red 16-20 test cases, blue 1 test cases
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Only disruption near root node reaches output

fdp__111851.gif len 771



Exponential fall in fraction of run time disruption 
changing program output with depth
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Exponential fall in fraction of run time disruption 
changing program output with depth
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Deep floating point GP trees similar 



Using Magpie to Sample C++ Mutations

● Genetic Improvement tool Magpie
● PARSEC suite of benchmarks to test parallel super computers for NASA. 

Mostly numeric but includes some image processing, including VIPS
● VIPS C++ image processing library 90,000 lines
● Chose vipsthumbnail (parallel multi-threaded take large image create small 

image 128 pixels wide
● Use linux perf to profile vipsthumbnail select all VIPS functions perf reports
● Use GDB to select all functions called enroute to top CPU using function
● Remove unused functions (a few unused lines, eg if/switch case included)
● 90,000 => 7328 lines, in 37 files.  srcml => 37 XML files
● 1000 random Magpie mutations, measure their impact, measure depth 
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Magpie Mutating C++
 Magpie https://github.com/bloa/magpie
 VIPS image thumbnail benchmark (use 37 files 7328 LOC)
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1000 random Magpie VIPS mutants
 VIPS image thumbnail benchmark (use 37 files 7328 LOC)

● try to exclude unused code
 Magpie mutating source code as XML, (mostly) syntax 

preserving, mostly compiles, runs, gives right answer 526
 37 cases output wrong but no exception.

● Randomly choose 25 of 37, compare with 25 where mutant 
code is run, changes state but output is unchanged

 
Compiled, ran correct output 526 Correct output 438

Mutation is identical to 
original code 

  88

Failed to compile 302

Failed to run correctly or gave 
incorrect output

164 exception 127

output error   37

Magpie TypeError     8

14



25 v 25 Mutants. Deep less impact
 25 mutants change execution but no change to output
 25 mutants which change execution (without causing segfault) 

but change output
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Conclusions
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 Information theory predicts failed disruption propagation.
● In evolved pure nested functions (Genetic Programming) 

● Impact of most mutations lost. Exponential decay with depth
● In deeply nested C++ code

● Excluding segfault etc., most mutations >30 nested function 
calls did not change output

 Test oracle need to be close to error for tests to find them

 Unit testing v. system testing, flaky tests

 Software code bloat, depth important

 Software robustness: deeper code harder to test, improve, 
optimise, repair?

 Automatic bug fixing (APR): avoid deep mutations, make shallow 
changes near output? Add multiple test probes (test oracles)?

W. B. Langdon, UCL
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