Genetic Improvement for DNN Security

Hunter Baxter, Yu Huang, Kevin Leach

kevin.leach@vanderbilt.edu

April 9, 2024
Bottom Line Up Front

This position paper conveys:

- DNN layers can be distributed over multiple machines
- Scheduling and organizing DNN layer distribution can be represented as a genome
- Genetic Improvement can be used to obfuscate DNN architecture and execution as a type of moving target defense
- A prototype for scheduling DNN distribution called *Jigsaw*
Introduction

Approach

Evaluation

Conclusion
Motivation

- DNN are often proprietary
- Current defenses cannot secure modern models sufficiently
- There is a demand for a scalable defense against model theft
- Balancing performance with security is essential for industrial purposes

<table>
<thead>
<tr>
<th>Attack Type</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Poisoning</td>
<td>10</td>
</tr>
<tr>
<td>Model Stealing</td>
<td>6</td>
</tr>
<tr>
<td>Model Inversion</td>
<td>4</td>
</tr>
<tr>
<td>Backdoored ML</td>
<td>4</td>
</tr>
<tr>
<td>Membership Inference</td>
<td>3</td>
</tr>
<tr>
<td>Adversarial Examples</td>
<td>2</td>
</tr>
</tbody>
</table>

Table: Industry Top Attack Priorities
Model Extraction

▷ An adversarial attack where a private model $f(x)$ is completely reconstructed
▷ Model Extraction accelerates malicious activity
▷ Cache Telepathy: Spectre
▷ DeepSteal: RowHammer
▷ DeepSniffer: GPU timing information
Prior Work

- **Strong Isolation**
 - Limited Scalability
 - Hardware Modification
 - Side-Channel Vulnerabilities

- **Data Obliviousness**
 - Large Performance Overhead
 - Algorithm Dependent

- Jigsaw proposes probabilistic, not strong, isolation

- Information gained at t may not work at $t + \delta$
Introduction

Approach

Evaluation

Conclusion
Jigsaw
Jigsaw

- Node 1
- Node 2
- Node 3

Diagram showing interconnected nodes with different colors representing different nodes.
Moving the Target

- Schedule modeled by binary matrix
- “Seed” schedule from a tool like Alpa
- Genetic algorithm generates solutions
- Multi-Objective Fitness Function of Difference and Latency
- Replace “seed” schedule with generated solution

```
| 1 1 1 1 0 0 0 0 0 0 0 0 |
| 0 0 0 0 1 1 1 1 0 0 0 0 |
| 0 0 0 0 0 0 0 0 1 1 1 1 |
| 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 |

| 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 1 1 |
| 0 0 0 0 0 0 0 0 0 1 0 0 |
| 1 1 1 1 1 1 1 1 1 0 0 0 |

| 1 1 1 1 1 1 1 1 1 0 0 0 |
| 0 0 0 0 0 0 0 0 1 1 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 0 0 1 |
```
Genetic Algorithm Parameters

- **Schedule**

 \[
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]

- **Schedule Representation**

 \[1 0 0 0 1 0 0 0 0 1\]

- **Random mutation**

 \[M([1 0 0 0 1 0 0 0 0 1]) = [0 0 0 1 1 0 0 0 1]\]

- **Single Point Crossover**

 \[C([1 0 0 0 0 1 0 0 0 1], [1 0 0 0 1 0 0 0 0 1]) = [1 0 0 0 1 0 0 0 1]\]

- **Tournament Selection**
Evaluation

- Linear Increase in Memory Pages
- Linear Increase in Latency
- Quick Solution Generation
Introduction

Approach

Evaluation

Conclusion
Conclusion

- DNNs are often subjected to model extraction attacks
- Security-critical DNNs may require sophisticated defenses
- DNN architecture can be split across multiple nodes
- Genetic Improvement can be used to develop how to distribute DNN layers among multiple hosts
- ‘Jigsaw’ prototype provides initial basis for improving security posture of DNNs