Executing one’s way out of the Chinese room

GI@ICSE2024
Who am I?
Shin Yoo

- Associate Prof@KAIST
- Leads Computational Intelligence for Software Engineering Group (https://coinse.github.io)
- COINSE focuses on: testing & debugging, AI4SE & SE4AI, SBSE (including GI 😎)
The Chinese Room
A Thought Experiment
John Searle, “Mind, Brains, and Programs” in 1980

• Suppose we have a computer program that behaves as if it understands Chinese language.

• You are in a closed room with the AI program source code.

• Someone passes a paper with Chinese characters written on it, into the room.

• You use the source code as instruction to generate the response to the input, and sends the response out of the room.

• Do you understand Chinese language, or not?
“And we’re talking about this because...”
Owen
@O42nl

Printed the chatgpt weights and will be multiplying matrices for each question (hope each question isn't too many tokens)

Prof said we can bring whatever to the open book exam as long as it is on printer paper

(Obviously we are all a bit like this now)
Landscape
Large Language Models for Software Engineering:
Survey and Open Problems

Angela Fan
Generative AI Team
Meta Platforms Inc.
New York, NY, USA

Beliz Gokkaya
PyTorch Team
Meta Platforms Inc.
Menlo Park, CA, USA

Mark Harman
Instagram Product Foundation
Meta Platforms Inc.
London, UK

Mitya Lyubarskiy
Developer Infrastructure
Meta Platforms Inc.
London, UK

Shubho Sengupta
FAIR
Meta Platforms Inc.
Menlo Park, CA, USA

Shin Yoo
School of Computing
KAIST
Daejeon, Korea

Jie M. Zhang
Department of Informatics
King's College London
London, UK

Abstract—This paper provides a survey of the emerging area of Large Language Models (LLMs) for Software Engineering (SE). It also sets out open research challenges for the application of LLMs to technical problems faced by software engineers. LLMs' emergence properties bring novelty and creativity with applications right across the spectrum of Software Engineering activities including coding, design, requirements, repair, refactoring, performance improvement, documentation and analytics. However, these very same emergent properties also pose significant technical challenges; we need techniques that can reliably weed out incorrect solutions, such as hallucinations. Our survey reveals the critical role that hybrid techniques (conditional AK

In particular, we are already able to discern important connections to (and resonance with) existing trends and well-established approaches and subdisciplines within Software Engineering. Furthermore, although we find considerable grounds for optimism, there remain important technical challenges, which are likely to inform the research agenda for several years. Many authors have highlighted, both scientifically and anecdotally, that hallucination is a pervasive problem for LLMs [1] and also that it poses specific problems for LLM-based SE [2]. As with human intelligence, hallucination means...
Fig. 2. Trends in number of arXiv preprints. The blue line denotes the number of preprints categorised under “CS”. The orange line denotes the number of preprints in AI (cs.AI), Machine Learning (cs.LG), Neural and Evolutionary Computing (cs.NE), Software Engineering (cs.SE), and Programming Language (cs.PL) whose title or abstract contains either “Large Language Model”, “LLM”, or “GPT”. The green line denotes the number of preprints in SE and PL categories whose title or abstract contains either “Large Language Model”, “LLM”, or “GPT”

Fig. 3. Proportions of LLM papers and SE papers about LLMs. By “about LLMs”, we mean that either the title or the abstract of a preprint contains “LLM”, “Large Language Model”, or “GPT”. The blue line denotes the percentage of the number of preprints about LLMs out of the number of all preprints in the CS category. The orange line denotes the percentage of the number of preprints about LLMs in cs.SE and cs.PL categories out of all preprints about LLMs

https://arxiv.org/abs/2310.03533
“But why are LLMs so popular among SE researchers...?”
Correlation vs. Causation, or Syntax vs. Semantic

• MIP talk at ICSE 2019 captured this beautifully - “It Does What You Say, Not What You Mean: Lessons from 10 Years of Program Repair”

• Traditionally, computing the semantic has been either very difficult or infeasible; as it is well known to the GI community!

![Diagram showing candidate solutions generated via syntactic perturbations and semantic captured imperfectly in fitness functions]

Candidate solutions, (randomly) generated via syntactic perturbations

Semantic, captured (imperfectly) in fitness functions
Large Language Model
(really, a very large statistical language model)

• Mainly Transformer-based DNNs that are trained to be an auto-regressive language model, i.e., given a sequence of tokens, it repeatedly tries to predict the next token.

• The biggest hype in SE research right now with an explosive growth, because:

 • **Emergent behaviour** leading to very attractive properties such as in-context learning, Chain-of-Thoughts, or PAL

 • They **seem to** get the **semantics** of the code and **work across natural and programming language**
What is an Emergent Behavior?

- Above certain size, LLMs change their behavior in interesting ways.
- The point of change in slope is referred to as “breaks.”

Caballero et al., https://arxiv.org/abs/2210.14891
Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Underneath, LLMs are doing autocompletion, not any other type of reasoning: they appear to be capable of rational inference because the corpus they are trained with includes traces of logical reasoning.

• So, *conditioning* the model (with the context) to be more precise about the reasoning steps can result in generation of more accurate reasoning steps.

• Add “Let’s think in step by step” at the end of every prompt (https://arxiv.org/abs/2205.11916) 😊😊😊
Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Add “Let’s think in step by step” at the end of every prompt (https://arxiv.org/abs/2205.11916) and the model performance go up!

• We have even weirder, recent results.

• If you make a strong emotional plea, the performance improves (https://arxiv.org/abs/2307.11760)

• Apparently, there is anecdotal evidence that a promise of a large tip produces mode detailed responses (https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg)
“Okay, it talks like a human and can answer some questions. But why SE?”
LLMs seemingly handle semantics across NL/PL barrier

LLM-based Bug Reproduction (Kang, Yoon & Yoo, ICSE 2023)
AutoFL: LLM based FL

Figure 1: Diagram of AutoFL. Each arrow represents a prompt/response between components, with the circled numbers indicating the order of interactions. Function invocations are made at most N times, where N is a predetermined parameter of AutoFL.

Figure 5: Function call frequency by step over all five runs of AutoFL. The total length at each step decreases as AutoFL can stop calling functions at any step; e.g. about 400 AutoFL processes stopped calling functions after the first step.
We select this benchmark as it has been the subject of multiple fault localization studies. To illustrate, supposing that the most likely fault element in the evaluation of Zou et al. We also excluded, as they could not identify any true bug locations as the predicate switching technique used the widely-used real-world bug benchmark, Defects4J.

4.1 Experimental Setup

3.3 Finalizing Fault Localization Results

For clarity, we give priority to methods that are more frequently mentioned or related to inspected methods are more likely to be faulty than others. For instance, in the given example, the results but are covered by the failing test cases, we append them to only final predictions generated from IRFL and history-based fault localization are established maximum repetition count, splitting on the number of failing tests covering each method. To break ties, we give priority to methods that are more frequently mentioned.

For clarity, we aggregate final predictions generated from FL techniques that combine multiple FL results. As LLM-based FL techniques generate text as the outputs to drive a ranked list of suspicious methods. First, we assign scores to the methods to only prede

During the function interaction process of A

Finally, if there are methods that are not part of the...
“Sounds like LLMs will solve all SE problems. Can we go home now?”
Hallucination

- LLM = (Statistical) Autocompletion = completion not because it is the right choice, but because it is the most likely choice.

- This will affect the accuracy of LLM outputs, to the extent that it fabricates incorrect/non-factual solutions and responses.
Self-Consistency
Wang et al., ICLR 2023

• When sampling answers from an LLM, take multiple answers with high temperature.

• If there is an answer that has the majority among the sampled answers, it is more likely to be the correct one.
Wang et al., ICLR 2023

Greedy decode
This means she uses $3 + 4 = 7$ eggs every day. She sells the remainder for 2 per egg, so in total she sells $7 \times 2 = 14$ per day.
The answer is 14.

Chain-of-thought prompting
Prompt

Language model

The answer is 14.

Self-consistency

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: There are 3 cars in the parking lot already, 2 more arrive. Now there are $3 + 2 = 5$ cars. The answer is 5.

Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder for 2 per egg. How much does she make every day?

A:

Sample a diverse set of reasoning paths

- She has $16 - 3 = 9$ eggs left. So she makes $2 \times 9 = 18$ per day.
 - The answer is 18.

- This means she sells the remainder for $2 \times (16 - 4 - 3) = 26$ per day.
 - The answer is 26.

- She eats 3 for breakfast, so she has $16 - 3 = 13$ left. Then she bakes muffins, so she has $13 - 4 = 9$ eggs left. So she has $9 \times 2 = 18$.
 - The answer is 18.

Marginalize out reasoning paths to aggregate final answers

The answer is 18.
But... really? That simple...?

“the face of a man who is surprised that the answer was so simple.”
LLM-Based Bug Reproduction
Kang, Yoon, & Yoo, ICSE 2023

![output cluster size distribution (Defects4J)](image1)

![output cluster size distribution (GHRB)](image2)
LLM-based Fault Localization

<table>
<thead>
<tr>
<th>Family</th>
<th>Technique</th>
<th>acc@1</th>
<th>acc@3</th>
<th>acc@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicate Switching</td>
<td>42</td>
<td>99</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Stack Trace</td>
<td>57</td>
<td>108</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Slicing (frequency)</td>
<td>51</td>
<td>96</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>MBFL</td>
<td>MUSE</td>
<td>73</td>
<td>139</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Metallaxis</td>
<td>106</td>
<td>162</td>
<td>191</td>
</tr>
<tr>
<td>SBFL</td>
<td>Ochiai</td>
<td>122</td>
<td>192</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>DStar</td>
<td>125</td>
<td>195</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>SBFL-F</td>
<td>34</td>
<td>66</td>
<td>78</td>
</tr>
<tr>
<td>LLM-Based</td>
<td>LLM+Test</td>
<td>81</td>
<td>94</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>AutoFL</td>
<td>149</td>
<td>180</td>
<td>194</td>
</tr>
</tbody>
</table>

Rerun To Performance

![Rerun To Performance Graph](image-url)
So, self-consistency is everywhere
It works for code-related LLM tasks too!

• One of the easiest post-processing to improve LLM generations: no external dependencies (well, except the additional cost)

• Can we explain *why* this is the case?

• Can we *model* its behavior?

• Can we apply this to any *target*?
Why does this work?

• Wang et al.’s original intuition: “there are many reasoning paths to the correct solutions, but only one way to arrive at a specific incorrect solution”

• My first reaction: “surely there are infinite ways to arrive at a single incorrect solution!”

• My second reaction: “oh, it is probably assumed that the LLM is at least trying… that is, there are infinite total nonsense ways to arrive at a specific incorrect solution, but perhaps fewer ways to move from the question to a specific incorrect solution while trying to appear plausible”
LLM-Based Bug Reproduction

Kang et al., Under Review

- Empirical evidence for my second reaction…?
- Too high a temperature \rightarrow too random sequence sampling \rightarrow not really trying to make sense \rightarrow self-consistency seems to break down…
Déjà Vu from Self-Consistency, Part 1
N-version Programming

• For a mission-critical system, n-version programming is to make N independent teams to develop N different versions of the system, that are deployed in parallel. Any final decision is made by the majority voting among the N systems and their outputs.

• In some sense, N samples we take from an LLM is N different reasoning chains —> strongly reminiscent of N-version Programming
Déjà Vu from Self-Consistency, Part 1
N-version Programming

• Feldt, 1999 applied GP to generate 400 versions of Aircraft Braking controller systems.

• Figure shows rate of failure among 400 versions against different areas of input space (aircraft velocity and mass).

• Can self-consistency tell us where the difficult problems are?
Déjà Vu from Self-Consistency, Part 2
Fitness Landscape Analysis from Optimization Literature

- Fitness Landscape = [solution space] × [fitness dimension]

- Optimisation is essentially climbing up hills to get higher fitness

- What if we see LLM-based solution generation as an optimisation process?
 - What would be the landscape that results in self-consistency?
Déjà Vu from Self-Consistency, Part 2
Fitness Landscape Analysis from Optimisation Literature

• With problems for which the self-consistency works, I hypothesise that:
 • The tallest hill is also the largest; there are multiple starting points and pathways to the top
 • Smaller hills (=incorrect solutions) have smaller base area, resulting in fewer pathways to their top
“Interesting. Where does the executability fits in?”
Code is a unique w.r.t. LLM because it executes.

NL + LLM Pipeline

PL/NL + LLM Pipeline
Execution enabling self-consistency
LLM-based Bug Reproduction (Kang, Yoon & Yoo, ICSE 2023)

- Any test that does not fail in the buggy version are filtered out
- Failure type and error messages are considered when clustering tests.
Execution enabling Chain-of-Thoughts

Executing non-executables (?) (secondary execution via LLMs)

- How do we evaluate the quality of automatically generated documents?
- Derive executables from documents using LLMs, then exploit the executability!
 - (Yes, the derivation introduces imprecision & noise, but still…)

Sungmin Kang (PhD Candidate)
Power of secondary executability
An ongoing work

The better documents the secondary execution is based on, the higher the pass rate becomes.
What this means to GI community

• We need to re-think the semantic/syntactic boundary.

• Naively asking LLMs to do such and such will only go so far; especially if the scope is very narrow, e.g., rewriting a few lines of code.
 • Can LLMs do more structural changes? Refactoring?

• We have amassed a mountain of experience on how we can exploit executions to extract (semantic) interpretations of code and also to induce desirable (semantic) changes - use them well with LLMs!
 • Software testing, program analysis, GI applications…
A critical and essential perspective
LLMs are still autocompletion engines - does it speak Chinese? 😊

• Do not be too easily persuaded into thinking that they can think :)

• Try to imagine whether the given task can be broken down to chunks of text generation (ideally text that it has seen during training)
A Thought Experiment
John Searle, “Mind, Brains, and Programs” in 1980

- Suppose we have a computer program that behaves as if it understands Chinese language.
- You are in a closed room with the AI program source code.
- Someone passes a paper with Chinese characters written on it into the room. You use the source code as instruction to generate the response to the input, and sends the response out of the room.
- Do you understand Chinese language, or not?

Correlation vs. Causation, or Syntax vs. Semantic

- MIP talk at ICSE 2019 captured this beautifully - “It Does What You Say, Not What You Mean: Lessons from 10 Years of Program Repair”
- Traditionally, computing the semantic has been either very difficult or infeasible; as it is well known to the GI community.

Dejà Vu from Self-Consistency, Part 2
Fitness Landscape Analysis from Optimization Literature

- Fitness Landscape = [solution space] × [fitness dimension]
- Optimisation is essentially climbing up hills to get higher fitness
- What if we see LLM-based solution generation as an optimisation process?
- What would be the landscape that results in self-consistency?

Self-Consistency
Wang et al., ICLR 2023

- When sampling answers from an LLM, take multiple answers with high temperature.
- If there is an answer that has the majority among the sampled answers, it is more likely to be the correct one.

Code is a unique w.r.t. LLM because it executes.

shin.yoo@kaist.ac.kr / https://coinse.github.io