
Chi Ho Chan1, 2 and Spyro Nita2

1 Edinburgh Napier University, UK

2 EPCC, The University of Edinburgh, UK

GI@ICSE 2025

A Three-Stage Genetic
Algorithm for Compiler Flag
and Library Version
Selection to Minimize
Execution Time

Outline

▪ Motivations

▪ Proposed Algorithm

▪ Case Study

▪ Challenges & Future Work

2

Outline

▪ Motivations

▪ Proposed Algorithm

▪ Case Study

▪ Challenges & Future Work

3

Motivations
▪ Manual flag selection is complex and time-consuming.

▪ Optimization levels such as -O1, -O2, and -O3 may not yield
the optimal performance across all applications.

▪ Existing compiler autotuning methods mainly focus on
selecting optimization flags without configurable values
(e.g. -fforward-propagate).

▪ The optimization of the following flags are underexplored:
▪ Optimization flags with configurable values

(e.g. -faline-functions=n, -faline-functions=n:m)

▪ Link flags (e.g. -l) and directory flags (e.g. –I, -L) for selecting
library version

4

Outline

▪ Motivations

▪ Proposed Algorithm

▪ Case Study

▪ Challenges & Future Work

5

Overview

6

▪ Genotype: Binary
string

▪ Phenotype: Command
to run the configuration
script

▪ Fitness Function:
Returns average
execution time across
runs, or zero if any
compilation or
execution fails

Overview (Cont.)

7

Overview (Cont.)

8

Overview (Cont.)

9

Overview (Cont.)

10

▪ Benefits:
▪ Reduces search space

▪ Helps identify compilation

and execution error

▪ Incremental refinement

Preprocessing Tasks

11

▪ Optimization flag collection:
▪ Filters non-configurable flags that cause errors.
▪ The final collection consists of filtered non-configurable flags and all

configurable flags.

▪ Library compilation:
▪ A unique directory name is required for each library version.
▪ Each directory contains subdirectories, including lib, include, and
bin.

▪ Libraries are compiled and linked statically.

Handling Configurable Flag

12

▪ Suppose there are N distinct values, where N!=2^B and B
is the number of bits required. How does the genotype-to-
phenotype mapping work?

▪ Solution for N=6 and B=3: Genotype Phenotype

000 0

001 1

010 2

011 3

100 4

101 5

110 0

111 1

Handling Configurable Flag (Cont.)

13

▪ How should values ranging from 0 to infinity be handled?

▪ Solution: Infinity is replaced with a finite positive number.

Handling Configurable Flag (Cont.)

14

▪ How should optimization flags with varying numbers of
configurable values be handled?

▪ Solution:

Genotype Phenotype

-faline-functions -faline-functions=1

-faline-functions=0:0

Outline

▪ Motivations

▪ Proposed Algorithm

▪ Case Study

▪ Challenges & Future Work

15

One-Stage Genetic Algorithms (GAs)

16

▪ GA-I: Selects optimization
flags without configurable
value

▪ GA-II: Selects
optimization flags with and
without configurable value

▪ GA-III: Selects
optimization flags with and
without configurable value,
and library versions.

Hyperparamter Value

GA type Generational

Population size 30

Number of generations 3

Crossover rate 0.9

Mutation rate 0.1

Selection type Tournament

Tournament size 3

Elitism count 2

Crossover type Uniform

Mutation type Random

Number of compilations in a fitness function call 1

Number of executions in a fitness function call 3

Upper bound used to replace infinity in the value range

(For GA-II and GA-III)

15

Test Program: RegCM

17

▪ Simulates long-term regional climate

▪ Mainly written in Fortran, with some components in C

▪ Dependent libraries: NetCDF-C, NetCDF-Fortran, zlib,
HDF5, and an MPI implementation

▪ Main input parameters: X, Y, and Z dimensions

▪ Input parameter settings: jx=100 (X dimension), iy=50
(Y dimension), kz=30 (Z dimension), and more.

Search Space

18

GA Number of

GCC

optimization

flags

without
configurable

value

Number of

GFortran

optimization

flags without

configurable
value

Number of

GCC

optimization

flags with

configurable
value

Number of

GFortran

optimization

flags with

configurable
value

Number

of

library

versions

Bits

required

for

genotype

GA-I 185 188 0 0 0 373

GA-II 185 188 19 8 0 606

GA-III 185 188 19 8 5 609

Benchmarking Process

19

▪ Processors: 2x Intel Xeon Broadwell, 2.1 GHz, 18-core.

▪ Execute each GA once.

▪ Compare six configurations: flags generated by GA-I, GA-II,
GA-III, and the optimization levels -O1, -O2, and -O3.

▪ For each configuration, compile RegCM with that
configuration and repeat the execution ten times on 32
processes.

Results – GA Runtime

20

Results – RegCM Runtime

21

Outline

▪ Motivations

▪ Proposed Algorithm

▪ Case Study

▪ Challenges & Future Work

22

Challenges & Future Work

23

▪ Challenges:
▪ Handling infinite ranges efficiently.

▪ Ensuring flag reliability.

▪ Future Work:
▪ Empirical studies

▪ Alternative optimization objectives

▪ Variable-length genotypes / specialized genotype-to-phenotype
mapping

▪ Additional factors such as command-line interface (CLI) options
preprocessing directives, and environment variables

Thank you!

www.napier.ac.uk/CentreENU

http://www.napier.ac.uk/

	Slide 1: A Three-Stage Genetic Algorithm for Compiler Flag and Library Version Selection to Minimize Execution Time
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Motivations
	Slide 5: Outline
	Slide 6: Overview
	Slide 7: Overview (Cont.)
	Slide 8: Overview (Cont.)
	Slide 9: Overview (Cont.)
	Slide 10: Overview (Cont.)
	Slide 11: Preprocessing Tasks
	Slide 12: Handling Configurable Flag
	Slide 13: Handling Configurable Flag (Cont.)
	Slide 14: Handling Configurable Flag (Cont.)
	Slide 15: Outline
	Slide 16: One-Stage Genetic Algorithms (GAs)
	Slide 17: Test Program: RegCM
	Slide 18: Search Space
	Slide 19: Benchmarking Process
	Slide 20: Results – GA Runtime
	Slide 21: Results – RegCM Runtime
	Slide 22: Outline
	Slide 23: Challenges & Future Work
	Slide 24: Thank you!

