

Centre for Artificial Intelligence & Robotics

A Three-Stage Genetic Algorithm for Compiler Flag and Library Version Selection to Minimize Execution Time

Chi Ho Chan^{1, 2} and Spyro Nita²

¹ Edinburgh Napier University, UK
² EPCC, The University of Edinburgh, UK

GI@ICSE 2025

- Motivations
- Proposed Algorithm
- Case Study
- Challenges & Future Work

Motivations

Proposed Algorithm

Case Study

Challenges & Future Work

Motivations

- Manual flag selection is complex and time-consuming.
- Optimization levels such as -01, -02, and -03 may not yield the optimal performance across all applications.
- Existing compiler autotuning methods mainly focus on selecting optimization flags without configurable values (e.g. -fforward-propagate).
- The optimization of the following flags are underexplored:
 - Optimization flags with configurable values
 (e.g. -faline-functions=n, -faline-functions=n:m)
 - Link flags (e.g. -1) and directory flags (e.g. -I, -L) for selecting library version

Motivations

Proposed Algorithm

- Case Study
- Challenges & Future Work

Overview

- Genotype: Binary string
- Phenotype: Command to run the configuration script
- Fitness Function: Returns average execution time across runs, or zero if any compilation or execution fails

Passes the most effective optimization flags without configurable values from the first stage

7

and the most effective optimization flags with configurable values from the second stage

Returns the most effective phenotype

Benefits:

- Reduces search space
- Helps identify compilation and execution error
- Incremental refinement

Preprocessing Tasks

• Optimization flag collection:

- Filters non-configurable flags that cause errors.
- The final collection consists of filtered non-configurable flags and all configurable flags.

Library compilation:

- A unique directory name is required for each library version.
- Each directory contains subdirectories, including lib, include, and bin.
- Libraries are compiled and linked statically.

Handling Configurable Flag

- Suppose there are N distinct values, where N!=2^A and B is the number of bits required. How does the genotype-tophenotype mapping work?
- Solution for N=6 and B=3:

00000011010201131004101511001111	Genotype	Phenotype
0011010201131004101511001111	000	0
010201131004101511001111	001	1
01131004101511001111	010	2
1004101511001111	011	3
101 5 110 0 111 1	100	4
110 0 111 1	101	5
111 1	110	0
	111	1

Handling Configurable Flag (Cont.)

- How should values ranging from 0 to infinity be handled?
- Solution: Infinity is replaced with a finite positive number.

Handling Configurable Flag (Cont.)

- How should optimization flags with varying numbers of configurable values be handled?
- Solution:

Genotype	Phenotype
$\begin{array}{c} GCC \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	-faline-functions -faline-functions=1 -faline-functions=0:0

- Motivations
- Proposed Algorithm
- Case Study
- Challenges & Future Work

One-Stage Genetic Algorithms (GAs)

- GA-I: Selects optimization flags without configurable value
- GA-II: Selects optimization flags with and without configurable value
- GA-III: Selects optimization flags with and without configurable value, and library versions.

Hyperparamter	Value	
GA type	Generational	
Population size	30	
Number of generations	3	
Crossover rate	0.9	
Mutation rate	0.1	
Selection type	Tournament	
Tournament size	3	
Elitism count	2	
Crossover type	Uniform	
Mutation type	Random	
Number of compilations in a fitness function call	1	
Number of executions in a fitness function call	3	
Upper bound used to replace infinity in the value range (For GA-II and GA-III)	15	

Test Program: RegCM

- Simulates long-term regional climate
- Mainly written in Fortran, with some components in C
- Dependent libraries: NetCDF-C, NetCDF-Fortran, zlib, HDF5, and an MPI implementation
- Main input parameters: X, Y, and Z dimensions
- Input parameter settings: jx=100 (X dimension), iy=50 (Y dimension), kz=30 (Z dimension), and more.

Search Space

GA	Number of GCC optimization flags without configurable value	Number of GFortran optimization flags without configurable value	Number of GCC optimization flags with configurable value	Number of GFortran optimization flags with configurable value	Number of library versions	Bits required for genotype
GA-I	185	188	0	0	0	373
GA-II	185	188	19	8	0	606
GA-III	185	188	19	8	5	609

Benchmarking Process

- Processors: 2x Intel Xeon Broadwell, 2.1 GHz, 18-core.
- Execute each GA once.
- Compare six configurations: flags generated by GA-I, GA-II, GA-III, and the optimization levels -01, -02, and -03.
- For each configuration, compile RegCM with that configuration and repeat the execution ten times on 32 processes.

Results – GA Runtime

Results – RegCM Runtime

21

- Motivations
- Proposed Algorithm
- Case Study
- Challenges & Future Work

Challenges & Future Work

Challenges:

- Handling infinite ranges efficiently.
- Ensuring flag reliability.

Future Work:

- Empirical studies
- Alternative optimization objectives
- Variable-length genotypes / specialized genotype-to-phenotype mapping
- Additional factors such as command-line interface (CLI) options preprocessing directives, and environment variables

Thank you!

www.napier.ac.uk/CentreENU