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Motivations
▪ Manual flag selection is complex and time-consuming.

▪ Optimization levels such as -O1, -O2, and -O3 may not yield 
the optimal performance across all applications.

▪ Existing compiler autotuning methods mainly focus on 
selecting optimization flags without configurable values                             
(e.g. -fforward-propagate).

▪ The optimization of the following flags are underexplored:
▪ Optimization flags with configurable values                                                   

(e.g. -faline-functions=n, -faline-functions=n:m)

▪ Link flags (e.g. -l) and directory flags (e.g. –I, -L) for selecting 
library version
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Overview
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▪ Genotype: Binary 
string 

▪ Phenotype: Command 
to run the configuration 
script 

▪ Fitness Function: 
Returns average 
execution time across 
runs, or zero if any 
compilation or 
execution fails
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Overview (Cont.)
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▪ Benefits:
▪ Reduces search space

▪ Helps identify compilation 

and execution error

▪ Incremental refinement



Preprocessing Tasks
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▪ Optimization flag collection: 
▪ Filters non-configurable flags that cause errors.
▪ The final collection consists of filtered non-configurable flags and all 

configurable flags.

▪ Library compilation:
▪ A unique directory name is required for each library version.
▪ Each directory contains subdirectories, including lib, include, and 
bin.

▪ Libraries are compiled and linked statically.



Handling Configurable Flag
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▪ Suppose there are N distinct values, where N!=2^B and B 
is the number of bits required. How does the genotype-to-
phenotype mapping work?

▪ Solution for N=6 and B=3: Genotype Phenotype

000 0

001 1

010 2

011 3

100 4

101 5

110 0

111 1



Handling Configurable Flag (Cont.)
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▪ How should values ranging from 0 to infinity be handled? 

▪ Solution: Infinity is replaced with a finite positive number.



Handling Configurable Flag (Cont.)
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▪ How should optimization flags with varying numbers of 
configurable values be handled? 

▪ Solution:

Genotype Phenotype

-faline-functions -faline-functions=1 

-faline-functions=0:0
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One-Stage Genetic Algorithms (GAs)
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▪ GA-I: Selects optimization 
flags without configurable 
value

▪ GA-II: Selects 
optimization flags with and 
without configurable value

▪ GA-III: Selects 
optimization flags with and 
without configurable value, 
and library versions.

Hyperparamter Value

GA type Generational

Population size 30

Number of generations 3

Crossover rate 0.9

Mutation rate 0.1

Selection type Tournament

Tournament size 3

Elitism count 2

Crossover type Uniform

Mutation type Random

Number of compilations in a fitness function call 1

Number of executions in a fitness function call 3

Upper bound used to replace infinity in the value range 

(For GA-II and GA-III)
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Test Program: RegCM
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▪ Simulates long-term regional climate

▪ Mainly written in Fortran, with some components in C

▪ Dependent libraries: NetCDF-C, NetCDF-Fortran, zlib, 
HDF5, and an MPI implementation

▪ Main input parameters: X, Y, and Z dimensions

▪ Input parameter settings: jx=100 (X dimension), iy=50 
(Y dimension), kz=30 (Z dimension), and more.



Search Space
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GA Number of 

GCC 

optimization 

flags 

without 
configurable 

value

Number of 

GFortran 

optimization 

flags without 

configurable 
value

Number of 

GCC 

optimization 

flags with 

configurable 
value

Number of 

GFortran 

optimization 

flags with 

configurable 
value

Number 

of 

library 

versions

Bits 

required 

for 

genotype

GA-I 185 188 0 0 0 373 

GA-II 185 188 19 8 0 606 

GA-III 185 188 19 8 5 609



Benchmarking Process
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▪ Processors: 2x Intel Xeon Broadwell, 2.1 GHz, 18-core. 

▪ Execute each GA once. 

▪ Compare six configurations: flags generated by GA-I, GA-II, 
GA-III, and the optimization levels -O1, -O2, and -O3.

▪ For each configuration, compile RegCM with that 
configuration and repeat the execution ten times on 32 
processes.



Results – GA Runtime
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Results – RegCM Runtime

21



Outline

▪ Motivations

▪ Proposed Algorithm

▪ Case Study

▪ Challenges & Future Work

22



Challenges &  Future Work
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▪ Challenges:
▪ Handling infinite ranges efficiently.

▪ Ensuring flag reliability.

▪ Future Work:
▪ Empirical studies

▪ Alternative optimization objectives

▪ Variable-length genotypes / specialized genotype-to-phenotype 
mapping

▪ Additional factors such as command-line interface (CLI) options 
preprocessing directives, and environment variables



Thank you!

www.napier.ac.uk/CentreENU

http://www.napier.ac.uk/
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