
Concordia University

Put on Your Tester Hat: Improving programs for
Automated Program Generation

Shin Hwei Tan

From the Past to Current

2

Testing Program Analyzers and Verifiers:
June 9, 2025

https://door.dagstuhl.de/Controllers/respond.php?eventId=89892

The Past: My Prior Work on APR
Applications of Program Repair

• Education:
• Feedback Generation for Programming

Assignments [FSE17,ISSTA23]
• GitHub-OSS Fixit [ICSE21]

• Taught students to fix bugs in SE class
• Our lesson plan won World Teacher Day Challenge

• Others:
• First Repair System for Android Apps [ICSE18]
• Test Repair [ICSE21 Tool, Huawei Grant]
• GPU programs [ASE19]
• CrossFix: Resolution of GitHub issues via

Similar Bugs Recommendation [JSME12]

Benchmarks for APR
• Codeflaws [ICSE17 Poster]

• Programming Competition
• Diverse types of defects

• Droixbench [ICSE18]
• Reproducible crashes in Android apps

• LLMDefects [ICSE23]
• Defects in auto-generated programs by

Codex

Workshops for APR
• Co-organized Genetic Improvement Workshop

(GI @ ICSE 2019)
• Founded and co-organized 5 editions of

International Workshop on Automated
Program Repair (APR20, APR21, APR22,
APR23, APR24)

Presenter Notes
Presentation Notes
Two main problems for program repair
-overfitting
-lack of real deployment
What is repair operator?
What is Context Operators?
What is lifecycle-aware？

Automated Program Generation
4

Automated Program
Generator

Input Output

What is the
expected output
(aka. oracle)?

What kind of input
does the system

takes?

Automated Program Generation
5

Automated Program
Generator

public String
makeFancyString(String s)
{
…

}

Write a program ...
Instruction in natural language

Input Program

public String
makeFancyString(String s) {
StringBuilder sb = …
for (int i = 2; i < …

}
}

}

Fix bugs Find bugs Program
Generator

versus Testing Program Analyzers

3. Patch Evaluation:
Are all tests passing?

Tests

Candidate Patches

Repair Tools

1. Fault localization:
Where to fix?

Line 1: …
Line 2: …
Line 3: …

2. Patch Generation:
How to fix?

All Tests
Pass

Final Patch
Buggy Program

6

1. Modify Line Localization
Where to Modify?

Seed Input Program

2. Program Generation
How to Modify?

Candidate Programs

3. Program Analyzer Evaluation
Does the program trigger a bug

in the analyzer?

GI

Program Analyzer

Equiv.
Result

Analysis Report

Bug Report

Automated Test Generation for Program Analyzer
7

Statfier: Automated Testing of
Static Analyzers via Semantics-

Preserving Program
Transformations (FSE’23)

Understanding &
Detecting Annotation-

Induced Faults of Static
Analyzers (FSE’24)

Characterizing & Detecting
Program Representation Faults of

Static Analysis Frameworks
(ISSTA’24)

*Accepted and Presented in FSE’23

Statfier: Automated Testing of Static Analyzers via
Semantics-Preserving Program Transformations

Huaien Zhang, Yu Pei, Junjie Chen, Shin Hwei Tan

Program
Analyzer

9

• Widely used to detect common issues without running programs.
• Inaccurate or incomplete analysis reports due to unrevealed bugs

 Improving reliability of static analyzers is important

A General Workflow of A Static Analyzer

Background: Static Analyzer

Challenge 1:
How to check if
the analysis
results are
correct?

Challenge 2:
How to generate
high-quality input
programs?

Challenge 1: Lack of automated test oracle
Metamorphic testing

 Metamorphic relation: Original
program 𝑃𝑃 and generated program 𝑃𝑃′
from semantics-preserving
transformations should have equivalent
analysis reports

Challenge 2: Automated generation of high-
quality input programs

Reusing official test suites & documentation

 Official test suites contain test programs
with oracles

 Documentation includes example
programs to explain the rule checkers

Original
Program P

Generated
Program P’

Equivalent
Analysis Reports

Semantic-
preserving

Transformation

Static
Analyzer

Challenges of Testing Static Analyzer & Our Solution

But there are too many programs
How do Statfier select Input Programs?

Where to modify?
Analysis report guided location (AL)
 Use locations in analysis report
 Control/data dependency related to these locations

Candidate Selection
Heuristic 2: Structurally diverse variant selection (SS)
 Avoid selecting variant where the context and the

selected type of transformation is the same

Semantic-preserving
Program

Transformations

Reduced Variants

Variant
Selection

Input
Program

Automated
Testing

Static
Analyzer

Differential
Analysis

Result

Reports

12How to Modify?
Semantically-equivalent Program Transformations

5 levels

13

 5 Static Analyzers (PMD, SpotBugs, CheckStyle, SonarQube, and Infer)

RQ1: How many unique bugs can Statfier find?

 Find 79 bugs in 5 analyzers, of which 46 have been confirmed

RQ2: Are proposed heuristics effective?

 Two heuristics in Statfier selects less variants (40.2%–41.3%) but still find more unique bugs than
other baselines

RQ3: How many bugs can each transformation find?

 Each program transformation can find at least one bug in the evaluated analyzers

Experimental Results

Statfier: Automated Testing of Static Analyzers via
Semantics-Preserving Program Transformations

Huaien Zhang, Yu Pei, Junjie Chen, Shin Hwei Tan
• Proposed Statfier, an automated testing approach to detect bugs in static analyzers based on

semantic-preserving transformations and metamorphic testing

• 2 heuristics: (1) Analysis report guided location and (2) Structurally diverse variant selection

• Find 79 bugs in 5 analyzers, of which 46 have been confirmed

• Checkout our website at https://sa-research.github.io/

Automated Test Generation for Program Analyzer
15

Statfier: Automated Testing of
Static Analyzers via Semantics-

Preserving Program
Transformations (FSE’23)

Understanding &
Detecting Annotation-

Induced Faults of Static
Analyzers (FSE’24)

Characterizing & Detecting
Program Representation Faults of

Static Analysis Frameworks
(ISSTA’24)

Huaien Zhang, Yu Pei, Shuyun Liang, Shin Hwei Tan

Understanding and Detecting Annotation-
Induced Faults of Static Analyzers

*Accepted and Presented in FSE’24

17Java Annotation & Challenges of Handling
Annotation for Static Analyzers

• A form of metadata
• Attach information to program elements

• Challenges:
• Annotations introduce extra tokens

• Static analyzers may overlook or mishandle the tokens, leading to incorrect
analysis results or even crash.

• Annotations introduce changes to the structure or behavior of the programs at compile
or execution time.

Presenter Notes
Presentation Notes
Annotations can be used by the compiler to detect errors or suppress warnings.
Software tools can process annotation information to generate code, XML files, and so forth
Some annotations are available to be examined at runtime.
The compiler will issue a warning about this method. It’ll warn that we’re using a raw-typed collection. If we don’t want to fix the warning, then we can suppress it with the @SuppressWarnings annotation.
This annotation allows us to say which kinds of warnings to ignore. While warning types can vary by compiler vendor, the two most common are deprecation and unchecked.

AnnaTester: Testing annotation-induced Fault
18

Checkers Design in AnnaTester
How to Modify?
 Source level annotation injection
Evaluation: Incomplete Semantics Checker

 Program 𝑃𝑃 should be analysis equivalent to the program produced by processing the annotations in 𝑃𝑃.

Source level annotation
@Data,
@Value,...

19

Program Annotation
Processor

Preprocessed
Program

Equivalent Analysis Reports

Static Analyzer Static Analyzer

Checkers Design in AnnaTester
How to Modify?
 No semantic annotation injection
Evaluation: Annotation Syntax Checker

 Program 𝑃𝑃 and 𝑃𝑃 injected by no semantics annotation should be analysis equivalent.
No Semantics Annotation

@MockAnnotation

20

Program Preprocessed
Program

Equivalent Analysis Reports

Static Analyzer Static Analyzer

Checkers Design in AnnaTester
How to Modify?
 Equivalent Annotation Pair Injection
Evaluation: Equivalent Annotation Checker

 Given a program 𝑃𝑃 annotated with an annotation 𝑎𝑎1 and another annotation 𝑎𝑎2 that is equivalent
to 𝑎𝑎1, 𝑃𝑃 should be analysis equivalent with 𝑃𝑃𝑎𝑎1|𝑎𝑎2

Equivalent Annotation Pair

@org.junit.AfterClass

21

Program Modified Program1

@org.testing.AfterClass Modified Program2

Equivalent
Analysis Reports

Static
Analyzer

22

 6 Static Analyzers

 SonarQube, Infer, PMD, CheckStyle, SpotBugs, Soot

Effectiveness of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

22
• 43 new bugs found in static analyzers, 20 have been confirmed and

fixed.

Presenter Notes
Presentation Notes
Notably, we consider two faults duplicated if they are in (1) an identical rule checker and (2) an identical faulty location (determined by root cause diagnosis) in a static analyzer.

• Conducted the first empirical study on annotation-induced faults in static analyzers, and analyzed their
root causes, symptoms, fix strategies, and types of AIF annotations, deriving ten findings.

• Proposed an automated testing framework 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 that uses metamorphic testing to detect three
types of annotation-induced faults in static analyzers.

• Evaluated 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 on six static analyzers, which revealed 43 new bugs in these static analyzers, 20
of them have been confirmed and fixed.

Huaien Zhang, Yu Pei, Shuyun Liang, Shin Hwei Tan

Understanding and Detecting Annotation-
Induced Faults of Static Analyzers

Automated Test Generation for Program Analyzer
24

Statfier: Automated Testing of
Static Analyzers via Semantics-

Preserving Program
Transformations (FSE’23)

Understanding &
Detecting Annotation-

Induced Faults of Static
Analyzers (FSE’24)

Characterizing & Detecting
Program Representation Faults of

Static Analysis Frameworks
(ISSTA’24)

*Accepted and Presented in ISSTA’24

Characterizing and Detecting Program Representation
Faults of Static Analysis Frameworks

Huaien Zhang, Yu Pei, Shuyun Liang, Zezhong Xing, Shin Hwei Tan

Program Representation Faults
26

 Construct various program representations to encode the properties and
behaviors of the given programs for further analysis

A General Workflow of A Static Analysis Framework

Input Program

Class Hierarchy

Analysis
Report

Call Graph

Core Analysis

AST

IR Control Flow
Graph

Data Flow Graph

Dependency Graph

Pointer Assignment
Graph

Program Parser

Program Representation

27

Two program representation 𝜙𝜙1 and 𝜙𝜙2 are equivalent if
and only if (1) G1 = G2 or L1 = L2; (2) 𝜙𝜙1 and 𝜙𝜙2 are
generated by the same algorithm (e.g., call graph).

Key insight 1 of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:
Differential Testing

Compare generated
program representations

Static Analysis
Frameworks

Equivalent
Algorithms

Presenter Notes
Presentation Notes
To verify our designed oracles motivated by analyzed issues, we implemented SAScope, which is a two-dimensional testing tool.

The two-dimensional means metamorphic testing for intra static analysis frameworks and differential testing for inter static analysis frameworks. Then, let me introduce its key insights.

As we know, static analysis frameworks usually support different algorithms with different precision levels, but their target is producing the same program representation. So, our key insight of metamorphic testing is more precise program representations is a subset of more complete program representations.

Different static analysis frameworks usually have equivalent algorithms to generate the program representations at the same precision level. So, we can compare generated program representations to identify potential bugs.

28Key insight 2 of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:
Metamorphic Testing

More Precise Program
Representation

More Complete Program
Representation

Subset

Given the program representation 𝜙𝜙1 and 𝜙𝜙2 generated
by 𝛿𝛿1 and 𝛿𝛿2 under the same input program, they should
possess the property 𝜙𝜙1 ⊇ 𝜙𝜙2 if 𝛿𝛿1 ≼ 𝛿𝛿2 (𝛿𝛿1 less precise
than 𝛿𝛿2).

Presenter Notes
Presentation Notes
To verify our designed oracles motivated by analyzed issues, we implemented SAScope, which is a two-dimensional testing tool.

The two-dimensional means metamorphic testing for intra static analysis frameworks and differential testing for inter static analysis frameworks. Then, let me introduce its key insights.

As we know, static analysis frameworks usually support different algorithms with different precision levels, but their target is producing the same program representation. So, our key insight of metamorphic testing is more precise program representations is a subset of more complete program representations.

Different static analysis frameworks usually have equivalent algorithms to generate the program representations at the same precision level. So, we can compare generated program representations to identify potential bugs.

29

Workflow of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

29

Static
Analysis

Frameworks

Invocation
Template

SAF: SootUp
Program
Representation:
Call graph
Analysis Precision:
CHA

SAF: Wala
Program
Representation:
Call graph
Analysis Precision
(CHA)

Differential
Analysis

Metamorphic
Relation

Oracl
e

SAF: SootUp
Program
Representation:
Call graph
Analysis Precision:
VTA

Property-
Based

Grouping

Potential Faults

......

Fault Warnings

Presenter Notes
Presentation Notes
Then I will introduce the detailed workflow of SAScope.

First, various input programs will be fed into SAScope and it can leverage an invocation template to run different static analysis frameworks on these programs.

Then, take three analysis reports as examples, for the analysis results generated by the CHA algorithm in SootUp and Wala, we perform differential analysis on these reports.

For the SootUp reports generated by CHA and VTA algorithms, we adopt the metamorphic testing to reveal potential bugs.

At last, due to too many fault warnings, we use a property-based grouping to filter some warnings and get potential faults.

30

 Four Static Analysis Frameworks

 SootUp, Wala, Soot, Doop

 Dataset

 Top 200 popular Maven libraries

Effectiveness of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

30

Number of unique faults detected by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

SAFs # Warnings # Groups # Unique Faults # Fixed
SootUp 26951 10 8 1
Wala 31734 11 7 4
Soot 21051 6 3 0
Doop 12896 4 1 0

Overall 92632 31 19 5

Presenter Notes
Presentation Notes
To evaluate the effectiveness of SAScope, we selected four static analysis frameworks including SootUp, Wala, Soot, and Doop.

We select top-200 popular maven libraries as the input programs dataset.

This table shows the number of unique faults detected by SAScope. Overall, SAScope detect 19 unique faults, and five of them have been fixed.

Characterizing and Detecting Program
Representation Faults of Static Analysis Frameworks

Huaien Zhang, Yu Pei, Shuyun Liang, Zezhong Xing, Shin Hwei Tan

• First empirical study on program representation faults in static analysis frameworks.

• Inspired by study findings, we implemented an automated testing framework SAScope to detect
PRFs based on metamorphic and differential testing.

• We evaluated SAScope on four studied static analysis frameworks and found 19 new faults, five of
which have been fixed by developers.

GI versus Testing Program Analyzers
1. Profiling/Localization
2. Program Generation
 Mutations

3. Program Evaluation

1. Modified Line Localization
 Statfier: Analysis report guided location

(AL)
2. Patch Generation
 Semantically-equivalent Transformation
 Annotation Injection

3. Program Analyzer Evaluation
 Design of Metamorphic Relation
 Statfier validates semantically-equivalent

programs
 AnnaTester validates annotated programs
 SAScope validates program representations

32

Understanding and Testing Semantically Equivalent
Transformation

33

Towards Diverse Program
Transformations for Program

Simplification (FSE’25)

Towards Understanding
Refactoring Engine Bugs

(TOSEM’25 Under Review)

Testing Refactoring Engine via
Historical Bug Report driven

LLM (FORGE’25)

Towards Diverse Program Transformations for
Program Simplification

Haibo Wang, Zezhong Xing, Chengnian Sun, Zheng Wang,
Shin Hwei Tan

*Accepted and Will Present in FSE’25

Program Simplification
35

 The simpler the better!
 Why developer simplify program?
Cleanup code
Improve readability
Reduce complexity
Improve Reusability

Transformations in Program Simplification
36

 Simplification Goal: Produce smaller programs (less lines of code)

Given an input program, what kind of
program transformation would you use to
produce a simplified program with less
lines of code?

Existing Work on Program Simplification

37

 Syntactic Simplification:
 Rule-based transformation
 Refactoring:
 Genetic Programming:

 “Using Numerical Simplification to
Control Bloat in Genetic Programming”
[SEAL’08]

 “Algebraic simplification of GP
programs during evolution” [GECCO’06]

 Semantic Simplification:
 Use test executions to check for

behavioral equivalence
 Deletion-based
 Delta Debugging
 Program Reduction
 Program Debloating
 Program Slicing

 Genetic Programing
 Mutation and crossover operator in “Genetic

Programming for Shader Simplification” [TOG‘11]

Most technique are deletion-based!
Does these correspond to transformations used by developers?

RQ1: Frequently used Transformations in
Program Simplification

38

 Refactoring: Extract Method (19%)
 Unsupported:
 Replace with equivalent API (16.2%)
 Deletion-based: Remove unnecessary code (12.3%)
 Simplify boolean and algebraic expression (8.4%)

false == co.isExpired()→ co.isExpired()
 Java language feature: Use diamond operator (4.2%)
Set<String> conditionKeys = newHashSet<String>(); →
Set<String> conditionKeys = new HashSet<>();

Unsupported transformations:
Replace with equivalent API

39

Replace a few lines of code with equivalent method call
 Challenge in rule-based approaches: Need to check for equivalent code
 Learning-based approaches can be used to support diverse

transformations

SimpT5: Program Simplification Framework
40

GI versus Automated Program Simplification
1. Profiling/Localization
2. Program Generation
 Mutations

3. Program Evaluation

1. Modified Line Localization
 Trained Using Tagged modified line

2. Simplified Program Generation
 CodeT5 tuned using our collected

benchmark
3. Program Validation
 Test-equivalent check
 Quality Checkers
 Complexity
 Readability

41

Replace with equivalent API
42

 SimpT5 successfully generate the correct
simplified program!

 SimpT5 can generate simplified programs via
14 diverse types of transformations

Refactoring
Syntactic Simplification: Rule-based
Refactoring is the process of changing a software system in
a way that does not alter the external behavior of the code
yet improves its internal structure.

Martin Fowler

http://martinfowler.com/

Towards Understanding
Refactoring Engine Bugs

Haibo Wang, Zhuolin Xu, Huaien Zhang, Nikolaos Tsantalis,
Shin Hwei Tan

*Under review in TOSEM

Refactoring Engine in Eclipse and IntelliJ
IDEA

Understanding Refactoring Engine Bugs
46

RQ1: What kind of refactorings are more likely to trigger refactoring engine
bugs?
 Extract
 Pull Up/Down
 Extract Method
 Extract Variable

 Inline
 Inline Method
 Inline Variable

 Move
 Move Method
 Move Type to New File

Example bugs in Extract Local Variable
47

Where is the bugs?
Eclipse-104293: extract local
does not replace all
concurrences of expression

Understanding Refactoring Engine Bugs
48

EclipseIntelliJ IDEA

RQ4: What are the input characteristics that trigger bugs in refactoring engine?

RQ2: What are the symptoms of refactoring engine bugs?
RQ3: What are the root causes of refactoring engine bugs

Understanding Refactoring Engine Bugs
49

RQ2: Common symptoms
 Compilation Error
 Crash
 Behavior Change
RQ3: Common root causes
 Incorrect transformations
 Improper handling code comments
 Incorrect modifier modification

 Incorrect precondition checking
 Incorrect flow analysis

Eclipse IntelliJ IDEA

RQ4: Error-prone Input Characteristics
50

 Lambda expression
 Java generics
 Annotations

Can we use these input characteristics
for testing refactoring engine?

Testing Refactoring Engine via Historical Bug
Report driven LLM

Haibo Wang, Zhuolin Xu, Shin Hwei Tan

*Accepted and Will Present in FORGE’25

Example: Pull Up Method

"Pull Up Method" means moving a method from a subclass
to its superclass, promoting code reuse and reducing
redundancy when multiple subclasses share similar
functionality.

Example: Pull Up Method

Pull up sleep()

A more complex input program for pull up
method refactoring

Eclipse (V202406) produces a syntax-error
program

Pull up innerMethod()

https://github.com/eclipse-jdt/eclipse.jdt.ui/issues/1533

Historical bug reports

The seed bug report information

Error-prone input program characteristics

Select

Wang, H., Xu, Z., Zhang, H., Tsantalis, N., & Tan, S. H. (2024). An Empirical Study of Refactoring
Engine Bugs. arXiv preprint arXiv:2409.14610.

Select error-prone input program characteristics from
our study of refactoring engine bugs

How to mutate?

Seed input program from historical bug report Error-prone input program characteristics

Leverage LLM to perform mutation

The prompt template used to perform mutation

Extract template

Extract

Intuitive
- Larger mutation space
- Reusable

RETESTER: Automated Refactoring Engine Testing

Overall workflow of RETESTER

LLM for mutation
Oracle: Different testing of refactoring engine

Experiment setup

Five refactoring types Three characteristics

Variant generated by Lambda Operator

Variant generated by RETESTER

Seed input program

Template

Presenter Notes
Presentation Notes
Merge this example with previous example

Eclipse-issue-1823 (Fixed)

Syntax
error.

Bugs Detected by RETESTER

18 new bugs, 7 confirmed, 3 fixed.

Summary

18 new bugs, 7 confirmed, 3 fixed.

Haibo Wang
haibo.wang@mail.concordia.ca

Open-sourced repository

Test refactoring engine via historical
bug report driven LLM

Presenter Notes
Presentation Notes
slide 26. needs to add take away message/findings (key contribution of the approach, and total bugs found)

67

 Understanding and finding
bugs in Program Analyzers
 Understanding and

Automating Diverse
Program Simplification

 Understanding and finding
bugs in Syntactic Program
Simplification (Refactoring

Engine)

Broader View of Automated Program Generation
68

Automated Program
Generator

Input Program

APR: Fix bugs Find bugs
Program
Analyzer

Program
Transformation

Generated Program

Questions to think about:
• What are other software maintenance tasks where you can use automated program

generation?
• What kind of automated program generation techniques have/would you used?

Long Term Future Work:
Generating Programs to Test Program Generation Tools

69

Why restricted to Program Analyzer and
Refactoring Engine?

• Many program generation tools
• Code Generation Models
• Any program generation tools that

take in programs
• Have you developed a new automated

programming tool or a new APR?
• Let me and my group test it!
• Ensure reliability of program

generation tools via test generation

Generated by Bing Image Creator

Testing Genetic Improvement Engine
70

Genetic Improvement
Engine

Input
Program

What kind of input
does Genetic
Improvement
Engine takes?

 Good News! Genetic Improvement
Engine is also an Automated
Program Generator!

 Similar technique can be used to
generate semantically equivalent
variants as inputs for testing genetic
improvement engine!
 Check if particularly semantically

equivalent variant is easier to be
improved?

Testing Genetic Improvement Engine
71

Genetic Improvement
Engine

Input
Program

Improved Output
Program

What is the
expected output
(aka. oracle)?

 Not so Good News :(We may need to design
new oracle as we need to check if the
improved output program are the same for
different semantically equivalent variants

 We may be able to use differential testing to
compare the outputs of different GI engines?

??? Any idea on this?

Tester Perspective: Coverage
72

Genetic Improvement
Engine

What are the
criteria to cover?

Software Quality Standard

 My talk mainly cover “Maintainability” and “Reliabilility”
 Most GI papers focus on “Performance Efficiency”
 How about improvement of other quality aspects?

	Put on Your Tester Hat: Improving programs for Automated Program Generation
	From the Past to Current
	The Past: My Prior Work on APR
	Automated Program Generation
	Automated Program Generation
	 versus Testing Program Analyzers
	Automated Test Generation for Program Analyzer
	Statfier: Automated Testing of Static Analyzers via Semantics-Preserving Program Transformations
	Slide Number 9
	Challenges of Testing Static Analyzer & Our Solution
	But there are too many programs�How do Statfier select Input Programs?
	How to Modify?�Semantically-equivalent Program Transformations
	Slide Number 13
	Statfier: Automated Testing of Static Analyzers via Semantics-Preserving Program Transformations
	Automated Test Generation for Program Analyzer
	Understanding and Detecting Annotation-Induced Faults of Static Analyzers
	Java Annotation & Challenges of Handling Annotation for Static Analyzers
	AnnaTester: Testing annotation-induced Fault
	Checkers Design in AnnaTester
	Checkers Design in AnnaTester
	Checkers Design in AnnaTester
	Effectiveness of 𝐴𝑛𝑛𝑎𝑇𝑒𝑠𝑡𝑒𝑟
	Understanding and Detecting Annotation-Induced Faults of Static Analyzers
	Automated Test Generation for Program Analyzer
	Characterizing and Detecting Program Representation Faults of Static Analysis Frameworks
	Program Representation Faults
	Key insight 1 of 𝑆𝐴𝑆𝑐𝑜𝑝𝑒:�Differential Testing
	Key insight 2 of 𝑆𝐴𝑆𝑐𝑜𝑝𝑒:�Metamorphic Testing
	Workflow of 𝑆𝐴𝑆𝑐𝑜𝑝𝑒
	Effectiveness of 𝑆𝐴𝑆𝑐𝑜𝑝𝑒
	Characterizing and Detecting Program Representation Faults of Static Analysis Frameworks
	 GI versus Testing Program Analyzers
	Understanding and Testing Semantically Equivalent Transformation
	Towards Diverse Program Transformations for Program Simplification
	Program Simplification
	Transformations in Program Simplification
	Existing Work on Program Simplification
	RQ1: Frequently used Transformations in Program Simplification
	Unsupported transformations: �Replace with equivalent API
	SimpT5: Program Simplification Framework
	 GI versus Automated Program Simplification
	Replace with equivalent API
	Refactoring

	Towards Understanding �Refactoring Engine Bugs
	Refactoring Engine in Eclipse and IntelliJ IDEA

	Understanding Refactoring Engine Bugs
	Example bugs in Extract Local Variable
	Understanding Refactoring Engine Bugs
	Understanding Refactoring Engine Bugs
	RQ4: Error-prone Input Characteristics
	Testing Refactoring Engine via Historical Bug Report driven LLM
	Example: Pull Up Method

	Example: Pull Up Method

	A more complex input program for pull up method refactoring

	Eclipse (V202406) produces a syntax-error program

	Historical bug reports

	Error-prone input program characteristics

	How to mutate?

	Leverage LLM to perform mutation

	Extract template

	RETESTER: Automated Refactoring Engine Testing
	﻿Experiment setup
	Variant generated by Lambda Operator

	Eclipse-issue-1823 (Fixed)

	Bugs Detected by RETESTER
	Summary
	Slide Number 67
	Broader View of Automated Program Generation
	Long Term Future Work: �Generating Programs to Test Program Generation Tools
	Testing Genetic Improvement Engine
	Testing Genetic Improvement Engine
	Tester Perspective: Coverage

