Put on Your Tester Hat. Improving programs for
Automated Program Generation

Shin Hwei Tan
Concordia University

IIIIIIIIII

Q?Concordia

IIIIIIIII

From the Past to Current

Dagstuhl Seminar 18052 Dagstuhl Seminar 24431
Genetic Improvement of Software Automated Programming|and Program Repair
(Jan 28 — Feb 02, 2018) (Oct 20 - Oct 25, 2024)

gegcsmos st o | | Testing Program Analyzers and Verlflers
June 9, 2025

https://door.dagstuhl.de/Controllers/respond.php?eventId=89892

or

\
The Past: My Prior Work on APR
Ec?ppltl_catllons of Program Repair Benchmarks for APR
ucation. : : * Codeflaws [ICSE17 Poster] Is CopeEFORCES"
Feedback Generation for Programming . p g C fit
Assignments [FSE17,ISSTA23] rogramming L.ompettion
GitHub-OSS Fixit [ICSE21] * Diverse types of defects
Taught students to fix bugs in SE class * Droixbench [ICSE18]
Our lesson plan won World Teacher Day Challenge . Reproducible crashes in Android apps
W LLMDefects [/CSE23]

EEEEEEEEE

Others:
First Repair System for Android Apps [ICSE18]
Test Repair [ICSE21 Tool, Huawei Grant]
GPU programs [ASE19]
CrossFix: Resolution of GitHub issues via
Similar Bugs Recommendation [JSME12] Y

Introducing the winners of the

World Teacher Day Challenge

« Defects in auto-generated programs by
Codex

Workshops for APR
Co-organized Genetic Improvement Workshop
(Gl @ ICSE 2019)

Founded and co-organized 5 editions of
International Workshop on Automated
Program Repair (APR20, APR21, APR22,
APR23, APR24)

/

Presenter Notes
Presentation Notes
Two main problems for program repair
-overfitting
-lack of real deployment
What is repair operator?
What is Context Operators?
What is lifecycle-aware？

™~
o

Automated Program Generation

Automated Program
Generator

Input L_ 2 Q\‘ -, Output
—

What kind of input
does the system
takes?

What is the
expected output
(aka. oracle)?

™~
©

Automated Program Generation

Instruction in natural language

Write a program ... Automated Program
Generator

public String
makeFancyString(String s) {
StringBuilder sb = ..

for (int 1 = 2; i < ..

}

Input Program

I

' }
public String

}/
makeFancyString(String s) —
{ 2 § N

e

\ Fix bugs Find bugs Program
_/ Generator

™
o

Gl versus Testing Program Analyzers

Seed Input Program
Bug Report

1. Modify Line Localization
Where to Modify?

— Analysis Report J
2. Program Generation

How to Modify?

3. Program Analyzer Evaluation
Does the program trigger a bug o 6500
in the analyzer? |

Program Analyzer

4 ‘\

Automated Test Generation for Program Analyzer

Statfier: Automated Testing of Characterizing & Detecting
Static Analyzers via Semantics- Program Representation Faults of
Preserving Program Static Analysis Frameworks
Transformations (FSE’23) (ISSTA'24)

Understanding &
Detecting Annotation-
Induced Faults of Static
Analyzers (FSE'24)

—

Program
Analyzer

Statfier: Automated Testing of Static Analyzers via
Semantics-Preserving Program Transformations

*& &

Huaien Zhang, Yu Pe1, Junjie Chen Shin Hwel Tan
ZQ\ THE HONG KONG
&R

POLYTECHNIC UNIVERSITY

&/ ik SUSTech

ee

*Accepted and Presented in FSE'23

Background: Static Analyzer

* Widely used to detect common issues without running programs.

- Inaccurate or incomplete analysis reports due to unrevealed bugs

» Improving reliability of static analyzers is impo

rtant

A General Workflow of A Static Analyzer

Input Data Front-end Analysis Back-end Analysis Fault Detection

Challenge 2: :Conﬁgurationl
How to generate |
high-quality input|
programs?

Rule
Checkers

— — — — — — — — —

Challenge 1:
How to check if
the analysis
results are
correAct?

-

Challenges of Testing Static Analyzer & Our Solution

Challenge 1: Lack of automated test oracle Challenge 2: Automated generation of high-
Metamorphic testing quality input programs

» Metamorphic relation: Original Reusing official test suites & documentation
:carogram P and generated program P « Official test suites contain test programs
rom semantics-preserving with oracles

transformations should have equivalent
analysis reports

‘ (I)Ir‘iginal JJ Static »
Program P | —-/ Analyzer_-/

* Documentation includes example
programs to explain the rule checkers

IC: Superclass uses subclass during initialization
(IC_SUPERCLASS_USES_SUBCLASS_DURING_INITIALIZATION

rin; initializa 3 ve use
vet be initialized at the time of this use. For example, in the following code, +er will be

4 Scmantic- Py .
: Equivalent — Xyiseese
preserving Q JURRATI |
. nalysis neports AN AR oS 5 e SRR
\/ Trans fo rmatl On \/ y p a b ‘: - SI: Static initializer creates instance hefore all static final fields
%) (SI_INSTANCE_BEFORE_FINALS_ASSIGNED)

I instance of the class before all of the static final f

The class's static initializer creates an

IGener‘ated H —-/ —-/
Program P’

/

But there are too many programs
How do Statfier select Input Programs?

Automated
Reduced Variants Testing Reports

] E] Differential
Variant Analysis
! ' ~—
5
aE@Ea . o

Result
. : Analyzer @
Semantic-preserving >

Input
Program

Program
Transformation:

Where to modify? Candidate Selection
Analysis report guided location (AL) Heuristic 2: Structurally diverse variant selection (SS)
e Use locations in analysis report e Avoid selecting variant where the context and the

« Control/data dependency related to these locations ~ S€lected type of transformation is the same

-

How to Modity?
Semantically-equivalent Program Transformations

Level Transformation Example Source
- invoke_method("String Literal");
— : 3 - n : : ",
Variable-level Extract local variable + ?trlng str = "String Literal"; [11, 51]
+ invoke_method(str);
- int var = 10;
Move assignment + int var; (11]
+ var = 10;
Equivalent boolean expression:
Add ||false or &&true expression S 2 Sl PR [27, 31]
. . + boolean tag = true || false;
Expression-level | Swap symmetrical elements, e.g, a==b - b==a
Equivalent arithmetic expression: - int value = 10; (2, 27]
Add +0, -0, or +1-1 expression + int value = 1@ + @; ’
Add parenthesis to expression R ?n 2 el =) [11, 23]
+ int value = (10);
5 |eve|S — Equivalent statement conversion: B 1-'"or SRR RN Sl e [11]
Convert to equivalent for/while/do-while/lambda uil _ 0;)
Statement-level + while(i++ < 1) {}
Statement wrapping: - target_statement; [27, 65]
Wrap statements with if/while/for/do-while + if(true) { target_statement; } ’
Dead code injection: target_statement; [49, 51]
Insert dead if/while/for statement + for(int i = @; 1 < @;) { target_statement; } ’
- SecretKeySpec("Hardcode") ;
Method-level | Encapsulate field + String getHardcode() { return "Hardcode"; } [11, 23]
+ SecretKeySpec(getHardcode());
Nested class wrapping - oi'lglnal_prcl)gram; ieinal [21]
Class-level e ?s§ NestClass { original_program; }
Anonymous class wrapping - or:%g1nal_progr‘am; . — [22]
S + Object ¢ = new Object() { original_program; 3};
Enum wrapping - original_program; o [56]
+ enum enumClass { original_program; }

Experimental Results

e 5 Static Analyzers (PMD, SpotBugs, CheckStyle, SonarQube, and Infer)

Sp@¢Bugs checksty e
sonarqube\\\

RQ1: How many unique bugs can Statfier find?

DON'T SHOOT THE MESSENGER

v Find 79 bugs in 5 analyzers, of which 46 have been confirmed

RQ2: Are proposed heuristics effective?

v Two heuristics in Statfier selects less variants (40.2%—41.3%) but still find more unique bugs than
other baselines

RQ3: How many bugs can each transformation find?

v" Each program transformation can find at least one bug in the evaluated analyzers

Statfier: Automated Testing of Static Analyzers via

Semantics-Preserving Program Transformations

& Q}? Q'b

Huaien Zhang, Yu Pe1, Junjie Chen Shin Hwel Tan

/* Proposed Statfier, an automated testing approach to detect bugs in static analyzers based on \
semantic-preserving transformations and metamorphic testing

* 2 heuristics: (1) Analysis report guided location and (2) Structurally diverse variant selection

* Find 79 bugs in 5 analyzers, of which 46 have been confirmed

* Checkout our website at https://sa-research.github.io/

4 @\

Automated Test Generation for Program Analyzer

Statfier: Automated Testing of Characterizing & Detecting
Static Analyzers via Semantics- Program Representation Faults of
Preserving Program Static Analysis Frameworks
Transformations (FSE’23) (ISSTA24)

Understanding &
Detecting Annotation-
Induced Faults of Static
Analyzers (FSE'24)

Understanding and Detecting Annotation-

Induced Faults of Static Analyzers

Huaien Zhang, Yu Pei, Shuyun Liang, Shin Hwei Tan

& ¢ T

*Accepted and Presented in FSE'24

Java Annotation & Challenges of Handling O
Annotation for Static Analyzers

A form of metadata

Attach information to program elements

Machine {
List versions;

@SuppressWarnings("unchecked")

volid addVersion(String version) {
versions.add(version);

Challenges:
Annotations introduce extra tokens

Static analyzers may overlook or mishandle the tokens, leading to incorrect
analysis results or even crash.

Annotations introduce changes to the structure or behavior of the programs at compile
or execution time.

Presenter Notes
Presentation Notes
Annotations can be used by the compiler to detect errors or suppress warnings.
Software tools can process annotation information to generate code, XML files, and so forth
Some annotations are available to be examined at runtime.
The compiler will issue a warning about this method. It’ll warn that we’re using a raw-typed collection. If we don’t want to fix the warning, then we can suppress it with the @SuppressWarnings annotation.
This annotation allows us to say which kinds of warnings to ignore. While warning types can vary by compiler vendor, the two most common are deprecation and unchecked.

™~
o

AnnaTester: Testing annotation-induced Fault

S — / Seed File /—’

Seed Corpus

Annotation
Database

LSS
@)

I" .
M 4
Cr,

ok

Annotation = Equivalent
Injector Mutants
Metamorphic Static
| .
Relations

Source level @Data, @Value, ...

Analyzer

annotation | Automated
Testing
No semaptlcs @MockAnnotation Analysis
annotation
_ Reports
Equivalent @org.junit. AfterClass : .
annotation (@org.testing. AfterClass Jleferentlal
Analysis
Annotation Generator / Results /

Checkers Design in AnnaTester
How to Modify?

e Source level annotation injection

Evaluation: Incomplete Semantics Checker

* Program P should be analysis equivalent to the program produced by processing the annotations in P.

Source level annotatiory? - -
@Data, Annotation » reprocesse
@Value,... » Processor Program

Static Analyzer Static Analyzer

1% 1%

Equivalent Analysis Reports

N 4

Checkers Design in AnnaTester

How to Modify?
 No semantic annotation injection
Evaluation: Annotation Syntax Checker

* Program P and P injected by no semantics annotation should be analysis equivalent.

No Semantics Annotation ¢
Program } Preprocessed
B oVockamoutcn I [S

Static Analyzer Static Analyzer

1% 1%

Equivalent Analysis Reports

N 4

Checkers Design in AnnaTester

How to Modify?
e Equivalent Annotation Pair Injection
Evaluation: Equivalent Annotation Checker

» Given a program P annotated with an annotation a; and another annotation a, that is equivalent

to a;, P should be analysis equivalent with P, |4,

Static —
»@org Junit.AfterClass » Modified Program1 Analyzer _-/

Equivalent Annotation Pair sl Equ@valent
} Q Analysis Reports
@ ing.AfterCl Modified Program?2 A
org.testing. After ass» —
> °C

Effectiveness of AnnaTester

e 6 Static Analyzers
e SonarQube, Infer, PMD, CheckStyle, SpotBugs, Soot

Sp@{Bugs checksty e

DON'T SHOOT THE MESSENGER

be \ S oot
Checker #Violations #UniqFaults #FP #Fixed Time (min, max) (hour)
ISC 258 19 8 11 (4,62)
ASC 52 8 0 4 (2,24)
EAC 123 16 0 5 (6,87)
Overall 433 43 8 20 (6,87)

* 43 new bugs found in static analyzers, 20 have been confirmed and
fixed. 22

Presenter Notes
Presentation Notes
Notably, we consider two faults duplicated if they are in (1) an identical rule checker and (2) an identical faulty location (determined by root cause diagnosis) in a static analyzer.

Understanding and Detecting Annotation-
Induced Faults of Static Analyzers

Huailen Zhang, Yu Pei, Shuyun Liang, Shin Hwei Tan

/- Conducted the first empirical study on annotation-induced faults in static analyzers, and analyzed their \
root causes, symptoms, fix strategies, and types of AlF annotations, deriving ten findings.

* Proposed an automated testing framework AnnaTester that uses metamorphic testing to detect three
types of annotation-induced faults in static analyzers.

« Evaluated AnnaTester on six static analyzers, which revealed 43 new bugs in these static analyzers, 20
k of them have been confirmed and fixed. /

- /

4 @\

Automated Test Generation for Program Analyzer

Statfier: Automated Testing of Characterizing & Detecting
Static Analyzers via Semantics- Program Representation Faults of
Preserving Program Static Analysis Frameworks
Transformations (FSE’23) (ISSTA24)

Understanding &
Detecting Annotation-
Induced Faults of Static
Analyzers (FSE'24)

Characterizing and Detecting Program Representation

Faults of Static Analysis Frameworks

Huailen Zhang, Yu Pei, Shuyun Liang, Zezhong Xing, Shin Hwe1 Tan

%THEHONGKONG 6 CUN'VERS'TE
POLYTECHNIC UNIVERSITY " ONcCor d 1d
Q& HHEH T A5 SUSTeCh V UNIVERSITY

ee

*Accepted and Presented in ISSTA24

a\
Program Representation Faults

e Construct various program representations to encode the properties and
behaviors of the given programs for further analysis

A General Workflow of A Static Analysis Framework

-
Program Parser Core Analysis 4“ \
P mm—— - | Foo————————mmmmm o mmmmmmm o = ,’ \\x X
! ! | | Class Hierarchy Data Flow Graph | ' 1 N
I AST : :II \
' ' l ' Analysis
p /j — ' | Call Graph Dependency Graph ' — / Repz)lrir
. I 1 1
Input Program | fises g IR | ' | Control Flow Pointer Assignment | |
A o’ ! : Graph Graph !

Program Representation

Key insight 1 of SAScope:
Differential Testing

Static Analysis Equivalent
Frameworks Algorithms

.@ Compare generated
program representations
Two program representation ¢p1 and ¢2 are equivalent 1f

and only 1f (1) G1 = G2 or L1 =L2; (2) ¢1 and ¢2 are
generated by the same algorithm (e.g., call graph).

Presenter Notes
Presentation Notes
To verify our designed oracles motivated by analyzed issues, we implemented SAScope, which is a two-dimensional testing tool.

The two-dimensional means metamorphic testing for intra static analysis frameworks and differential testing for inter static analysis frameworks. Then, let me introduce its key insights.

As we know, static analysis frameworks usually support different algorithms with different precision levels, but their target is producing the same program representation. So, our key insight of metamorphic testing is more precise program representations is a subset of more complete program representations.

Different static analysis frameworks usually have equivalent algorithms to generate the program representations at the same precision level. So, we can compare generated program representations to identify potential bugs.

Key insight 2 of SAScope:
Metamorphic Testing

More Precise Program} Subset Af More Complete Program
Representation J L Representation

Given the program representation ¢1 and ¢2 generated
by 61 and 62 under the same input program, they should
possess the property ¢1 2 @2 if §1 < 62 (61 less precise
than §2).

Presenter Notes
Presentation Notes
To verify our designed oracles motivated by analyzed issues, we implemented SAScope, which is a two-dimensional testing tool.

The two-dimensional means metamorphic testing for intra static analysis frameworks and differential testing for inter static analysis frameworks. Then, let me introduce its key insights.

As we know, static analysis frameworks usually support different algorithms with different precision levels, but their target is producing the same program representation. So, our key insight of metamorphic testing is more precise program representations is a subset of more complete program representations.

Different static analysis frameworks usually have equivalent algorithms to generate the program representations at the same precision level. So, we can compare generated program representations to identify potential bugs.

Static
Analysis
Frameworks.

Sootw

' T. 1 WETSOM UERARIES FOR AKALYSIS

) o
poot

PDoor

Invocation
Template

SAF: SootUp
Program
Representation:
Call graph
Analysis Precision:
CHA

\/—
!

Ditferential

| Analysis
|

SAF: Wala
Program
Representation:
Call graph
Analysis Precision

(CHA)

Workflow of SAScope

Metamorphic
— Relation

SAF: SootUp
Program
Representation:
Call graph
Analysis Precision:
VTA

\/—

Fault Warnings

Potential Faults

Presenter Notes
Presentation Notes
Then I will introduce the detailed workflow of SAScope.

First, various input programs will be fed into SAScope and it can leverage an invocation template to run different static analysis frameworks on these programs.

Then, take three analysis reports as examples, for the analysis results generated by the CHA algorithm in SootUp and Wala, we perform differential analysis on these reports.

For the SootUp reports generated by CHA and VTA algorithms, we adopt the metamorphic testing to reveal potential bugs.

At last, due to too many fault warnings, we use a property-based grouping to filter some warnings and get potential faults.

e Four Static Analysis Frameworks

* SootUp, Wala, Soot, Doop

» Dataset SOOT@ ﬂ

Effectiveness of SAScope

Top 200 popular Maven libraries

HHHHHHHHHHHHHHHHHHHHHHHHH

Number of unique faults detected by SAScope

SAFs # Warnings # Groups # Unique Faults # Fixed
SootUp 26951 10 8 1
Wala 31734 11 7 4
Soot 21051 6 3 0
Doop 12896 1 0
Overall 92632 31 19 5

30

Presenter Notes
Presentation Notes
To evaluate the effectiveness of SAScope, we selected four static analysis frameworks including SootUp, Wala, Soot, and Doop.

We select top-200 popular maven libraries as the input programs dataset.

This table shows the number of unique faults detected by SAScope. Overall, SAScope detect 19 unique faults, and five of them have been fixed.

Characterizing and Detecting Program

Representation Faults of Static Analysis Frameworks

Huailen Zhang, Yu Pei, Shuyun Liang, Zezhong Xing, Shin Hwe1 Tan
4 N

» First empirical study on program representation faults in static analysis frameworks.

» Inspired by study findings, we implemented an automated testing framework SAScope to detect
PRFs based on metamorphic and differential testing.

 We evaluated SAScope on four studied static analysis frameworks and found 19 new faults, five of
K which have been fixed by developers. /

o
Gl versus Testing Program Analyzers

1. Profiling/Localization 1. Modified Line Localization

2. Program Generation » Statfier: Analysis report guided location
» Mutations (AL)
3. Program Evaluation 2. Patch Generation

» Semantically-equivalent Transformation
* Annotation Injection

3. Program Analyzer Evaluation

» Design of Metamorphic Relation

Statfier validates semantically-equivalent
programs

AnnaTester validates annotated programs
SAScope validates program representations

/

g Understanding and Testing Semantically Equivalent@\

Transformation
Towards Diverse Program Testing Refactoring Engine via
Transformations for Program Historical Bug Report driven
Simplification (FSE’25) LLM (FORGE'25)

Towards Understanding
Refactoring Engine Bugs
(TOSEM'25 Under Review)

Towards Diverse Program Transformations for

Program Simplification

Haibo Wang, Zezhong Xing, Chengnian Sun, Zheng Wang,
Shin Hwei Tan

*Accepted and Will Present in FSE’25

Program Simplification

e The simpler the better!
 Why developer simplify program?
v Cleanup code
v Improve readability
v"Reduce complexity
v’ Improve Reusability

Transformations in Program Simplification

o Simplification Goal: Produce smaller programs (less lines of code)

9u.

Given an input program, what kind of
program transformation would you use to
produce a simplified program with less
lines of code?

™~
©

Existing Work on Program Simplification

e Syntactic Simplification: e Semantic Simplification:
* Rule-based transformation » Use test executions to check for
Refactoring: behavioral equivalence
Genetic Programming: o Deletion-based
e “Using Numerical Simplification to Delta Debugging
Control Bloat in Genetic Programming”

Program Reduction
Program Debloating
Program Slicing

[SEAL08]

« “Algebraic simplification of GP

programs during evolution” [GECCQO’06] _ .
» Genetic Programing

Mutation and crossover operator in “Genetic
Programming for Shader Simplification” [TOG"11]

Most technique are deletion-based!
Does these correspond to transformations used by developers?

/

™~
RQ1: Frequently used Transformations in ©
Program Simplification

e Refactoring: Extract Method (19%)

e Unsupported:
» Replace with equivalent API (16.2%)
» Deletion-based: Remove unnecessary code (12.3%)
o Simplify boolean and algebraic expression (8.4%)

false == co.isExpired()— co.isExpired()

» Java language feature: Use diamond operator (4.2%)
Set<String> conditionKeys = newHashSet<String>(); —
Set<String> conditionKeys = new HashSet<>(),

Unsupported transformations:
Replace with equivalent API

+ public void assertHasAndNotNull (String str) {

+ assert(str != null);

+ assert(!str.equals("")); }

publlc Builder playlist_id(final String playlist_id) {
assert (playlist_id != null);

- assert (!playlist_id.equals(""));

+ assertHasAndNotNull (playlist_id);
return setPathParameter("playlist_id", playlist_id);]

Replace a few lines of code with equivalent method call

» Challenge in rule-based approaches: Need to check for equivalent code

» Learning-based approaches can be used to support diverse
transformations

a\
SimpT5: Program Simplification Framework

Training Stage |

———————— — —— ——y

| Tokenized

13 Tag modified IinesJ

1.Filter 2.Extract
GitHub — e

4 Tokenize Tokenized

Tokenized

]
I

I

I

I _ .
:_J Transformer
I

I

I

I

I

———— — — — — — — — —

|
|
<50 »2/>II
|
|
|

code code

™~
©
Gl versus Automated Program Simplification

1. Profiling/Localization 1. Modified Line Localization

2. Program Generation » Trained Using Tagged modified line
» Mutations 2. Simplified Program Generation
3. Program Evaluation e CodeT5 tuned using our collected
benchmark

3. Program Validation
» Test-equivalent check

 Quality Checkers
Complexity
Readability

™~
o

Replace with equivalent API

+ public void assertHasAndNotNull (String str) {
+ assert(str != null);

+ assert(!str.equals("")); }
public Builder playlist_id(final String playlist_id) {
- assert (playlist_id != null);
- assert (!playlist_id.equals(""));
+ assertHasAndNotNull (playlist_id);
return setPathParameter("playlist_id", playlist_id);]

v SimpT5 successfully generate the correct
simplified program!

v’ SimpT5 can generate simplified programs via
14 diverse types of transformations Y,

Refactoring

Syntactic Simplification: Rule-based

Refactoring is the process of changing a software system in
a way that does not alter the external behavior of the code

yet improves its internal structure.

Martin Fowler

http://martinfowler.com/

Towards Understanding

Refactoring Engine Bugs

Haibo Wang, Zhuolin Xu, Huaien Zhang, Nikolaos Tsantalis,
Shin Hwei Tan

*Under review in TOSEM

Refactoring Engine in Eclipse and Intellid

Refactor Mavigate Search Project Run Window Help Refactor Build Run Too (dow Help

Rename... Alt+5Shift+R
Move... Alt+Shift+V Refactor This... Ctri+Alt+Shift+T
Change Method Signature... Alt+Shift+C
Extract Method... Alt+Shift+M Rename File...
Extract Local Vanable... Alt+5Shift+L
Extract Constant... Change Signature... Ctrl+Fg
Inline... Alt+Shift+1 E!tract”ntrﬂduce Vﬂriﬂble... I_p-ll"'r'.l-"lv
Convert Local Variable to Field... Inline Method... Ctri+Alt+MN Constant... Ctrl+Alt+C
Convert Anonymous Class to Nested... E R c b

ind and Replace Code Duplicates... i s
Mowe Type to Mew File... P - P Field... Ctri+Alt
Extract Interface.. Move Classes... F& Parameter... Ctri+Alt+P
s S Copy Class... Fa Functional Parameter... Ctri+Alt+Shift+P
Use Supertype Where Possible... . .

Functional Variable...

Pull Up...
Push Down... Pull Members Up... Parameter Object...
Extract Class... Push Members Down... Method... Ctri+Alt+M

Intreduce Parameter Object... i)
Replace Method With Method Object...

Make Static... Alt+Shift+ K
Delegate...

Intreduce Indirection...

Introduce Factory... Interface...

Intreduce Parameter... .
_ Use Interface Where Possible... Superclass...
Encapsulate Fields...

_ Replace Inheritance with Delegation...
Generalize Declared Type...

Infer Generic Type Arguments...

Migrate JAR File... Migrate Packages and Classes
Create Script...

Apply Script...

History...

a\
Understanding Refactoring Engine Bugs

RQ1: What kind of refactorings are more likely to trigger refactoring engine
bugs?
o Extract

* Pull Up/Down

» Extract Method

» Extract Variable

e Inline
* Inline Method
* Inline Variable
e Move
» Move Method
* Move Type to New File

LN o L3 B e

0O =] o

11
12

.

Where is the bugs?

1

import static java.util.Arrays.#*; 2
class Bug { :
{ 5
String[lside=new String[@a]; 6
if(true){ -

= System.out.println(asList(side)); 8
¥ 9

else{ 10
System.out.println(asList(side)); 11

¥ 12

} 13

} 14

Listing 3. Code before refactoring.

™
o

Example bugs in Extract Local Variable

Eclipse-104293: extract local
does not replace all
concurrences of expression

+import java.util.List;

import static java.util.Arrays.=*;
class Bug {
{
String[Jside=new String[e];
+ List<String> list = aslList(side);
if(true){
+ System.out.println(list));
¥
else{
System.out.println(asList(side)));
¥
1
}

Listing 4. Code after refactoring.

Understanding Refactoring Engine Bugs

EclipselntelliJ IDEA

Refactoring Engine

Input Data o
Initialization

r—-—————7= 1

| . A 4

I COHﬁgurathﬂ I Initial preconditions

I I

I I r

| , I Y

| | More

| | ||- information?

I Input I

: Program : T Refactored program

| | Final preconditions

| </> |

I I

| - Y
_______ Create change

RQ2: What are the symptoms of refactoring engine bugs?

RQ3: What are the root causes of refactoring engine bugs
RQ4: What are the input characteristics that trigger bugs in refactoring engine?

™~
o

/

Understanding Refactoring Engine Bugs

Eclipse

IntelliJ IDEA

RQ2: Common symptoms
e Compilation Error

e Crash

e Behavior Change

RQ3: Common root causes

e |[ncorrect transformations
» Improper handling code comments
e Incorrect modifier modification

 |ncorrect precondition checking
 Incorrect flow analysis

™~
o

RQ4: Error-prone Input Characteristics

Category

Sub-category

(T1) Language Features

(T1.1) Lambda expression
(T1.2) Java generics

(T1.3) Enum

(T1.4) Record

(T1.5) Varargs

(T1.6) instanceofl

(T1.7) Foreach

(T1.8) Switch case

(T1.9) Try-with-resources
(T1.10) Var

(T1.11) Try-catch-finally
(T1.12) Joint variable/field declaration
(T1.13) Multi-dimension Array
(T1.14) Vector

(T1.15) Synchronized block
(T1.16) Java ternary conditional
(T1.17) Keyword “this”

(T2) Class-related

(T2.1) Inner class
(T2.2) Anonymous class
(T2.3) Cyclically dependent class

(T3) Annotations

(T3.1) Annotations

(T4) Code Comment

(T4.1) Comment related

(T5) Method-related

(T5.1) Overloaded method
(T5.2) Static method
(T5.3) Method reference
(T5.4) Recursive method
(T5.5) Default method

(T6) Static

(T6.1) Static initializer
(T6.2) Static import
(T6.3) Static field

(T7) Constructor-related

(T7.1) Super constructor
(T7.2) Nested constructor
(T7.3) Implicit constructor

(T8) Others

(T8.1) Special String

(T8.2) Arithmetic expression

(T8.3) Time-consuming method call
(T8.4) Dead code block

(T8.5) Method chaining

Lambda expression
Java generics
Annotations

NTTT—

Can we use these input characteristics
for testing refactoring engine?

™~
o

Testing Refactoring Engine via Historical Bug

Report driven LLM

Haibo Wang, Zhuolin Xu, Shin Hwei Tan

*Accepted and Will Present in FORGE’25

Example: Pull Up Method

"Pull Up Method" means moving a method from a subclass
to its superclass, promoting code reuse and reducing
redundancy when multiple subclasses share similar

functionality.

Unit

Unit

Zlk

T

4 R
Example: Pull Up Method

class Animal { class Animal {

J void sleep() {

System.out.println("Sleeping...");
class Dog extends Animal { y P (ping):

void sleep() { }
System.out.println("Sleeping..."); Pull up sleep(}
} A
} class Dog extends Animal {
}
class Cat extends Animal {
void sleep() { class Cat extends Animal {
System.out.println("Sleeping..."); }

A more complex input program for pull up
method refactoring

public class A {
public class Baselnner {}

public class Outer {
public int x = ©;
public void foo(){};

public class Inner extends Baselnner {
void innerMethod() { // Pull this method up to class Baselnner
System.out.println(OQuter.this.x);
Outer.this.foo();

Eclipse (V202406) produces a syntax-error
- program

1 package com.my.hello.retester;

2
3 public class A {) Ajsve
4 public class BaseInner {} —_—

1 package com.my.hello.retester;
public class OQuter { 2

public int x = ©; . .
public void foo(3{}; 3 import com.my.hello.retester.A.Outer.Inner;

4
public class Inner extends BaseInner { 5 public class A {
void innerMethod() { // Pull this method up - .
System.out.println(Outer.this.x); ? pUbllc class Baselnner {
Outer.this.foo();
} | @ refoctoring o x R void innerMethod(Inner inner) { // Pull
} L] - - .
) PZI:I:; . N :13 Pull up mnerMethod() 9 %ystem.out.prlntln(lnner*.;m),
17 } elect the destination type and the members to pull up, 16 1nnep.m();
ig Select destination type: | com.my.hello.retester A Baselnner ~ — 1 1 } }
20 Use the destination type where possible 1 2
21 DUsethedestinationtypem'in.stanceof'expressions o 13_ public class Uuter. {
Create necessary methods stubs in non-abstract subtypes of the destination type . .
;g Specify actions for members: 14 pUbllc 1nt X = a.;
24 Member Action Select All 15 pUbliC VOid 'FOO(){};
25 A innerfethod() pull up Deselect Al 16
26 Ao 17¢ public class Inner extends BaseInner {
27
28 Add Required 1 8 }
29 Member 'innerMethod()’ selected. 1 9 }
3@ 28
31 }
32 - - - - - - -
33 @ [cwd [New https://github.com/eclipse-jdt/eclipse.jdt.ui/issues/1533
34

YT

YouTrack

Istorical bug reports

[Bug][Pull Up Refactoring] Pull up method refactoring for method in the inner
class fails #1533
RETester66 opened this issue on Jul 22 - 0 comments - Fixed by #1590

RETester66 commented on Jul 22

Assignees
jichnstn
Steps to reproduce
Labels
1.Create aclass A: @
public class A { (_[;]
public class BaseInner {} Projects
None yet
public class Outer {
public int x = @;
public void foo()}{}; Milestone

public class Inner extends Baselnner { Mo milestone

void innerMethod() { // Pull this method up te class BaseInner
System.out.println(Outer.this.x);

Outer.this.foo(); Development

} jichnstn/eclipsejdt.ui-1

2. Like | commented on the above code, left click method innermMethod , then right click -> Refactor -> Pull Up, set the Notifications

destination as class Baselnner, and use the default configuration as following, click Finish: B, Unsubscribe

4] Ajava x
1 package com.my.hello.retester;

thread.

2
3 public class A { 2 participants
e public class BaseInner {}

Source Initial Compilable Mean LOC Median LOC
ECLIPSE 245 101 11 9
INTELLL] IDEA 213 66 11 9
Total 458 167 - -

The seed bug report information

-

¥ Successfully merging a pull request may close this issue.

¥ ¥ Add outer class checking to Pull Up Refactoring

You're receiving notifications because you authored the

Customize

Error-prone input program characteristics

Calegory

Sub-category

(T1) Language Features

(T1.1) Lambda expression
(T1.2) Java generics

(T1.3) Enum

(T1.4) Record

(T1.5) Varargs

(T1.6) instanceof

(T1.7) Foreach

(T1.8) Switch case

(T1.9) Try-with-resources
(T1.10) Var

(T1.11) Try-catch-finally
(T1.12) Joint variable/field declaration
(T1.13) Multi-dimension Array

1.14) Vector e CIE

g1_15; Synchronized block Characteristic Description

(T1.16) Java ternary conditional Lambd Anonymous functions used to implement functional

g;i?hlfn‘:r“:;:sds this” Select ambda interfaces with a more streamlined syntax
(T2) Class-related (T2.2) Anonymous class Java generics Java generics allow to create classes, ilnterfaces,

(T2.3) Cyclically dependent class and methods that operate with unspecified types
(T3) Annotations (T3.1) Annotations Class defined without a name, often used for one-time
(T4) Code Comment (T4.1) Comment related AnDnymous class

implementations of interfaces or abstract classes

(T5) Method-related

(T5.1) Overloaded method
(T5.2) Static method
(T5.3) Method reference

(T35 et et Select error-prone input program characteristics from

(To6) Static

(T6.1) Static initializer

(162 Staic import our study of refactoring engine bugs

(T6.3) Static field

(T7) Constructor-related

(T7.1) Super constructor
(T7.2) Nested constructor
(T7.3) Implicit constructor

(T8) Others

(T8.1) Special String

(T8.2) Arithmetic expression

(T8.3) Time-consuming method call
(T8.4) Dead code block

(T8.5) Method chaining

Wang, H., Xu, Z., Zhang, H., Tsantalis, N., & Tan, S. H. (2024). An Empirical Study of Refactoring
Engine Bugs. arXiv preprint arXiv:2409.14610.

How to mutate?

public class A {
public class BaseInner {}

public class Outer {
public int x = 6;
public void foo(){}; Characteristic Description

Anonymous functions used to implement functional
interfaces with a more streamlined syntax

Java generics allow lo create classes, interfaces,

and methods that operate with unspecified types

Class defined without a name, often used for one-time
implementations ol interfaces or abstract classes

public class Inner extends BaseInner { Lambda

void innerMethod() {
System.out.println(Outer.this.x);
Outer.this.foo();

Java generics

Anonymous class

N

}
Seed input program from historical bug report Error-prone input program characteristics

-

Leverage LLM to perform mutation

Now, I will give the definition of the current refactoring, you need to
understand it. You need (o make sure the original refactoring could
still be applied on the variant.

1. {Refactoring Type}: {Definition}

2. To expose more bugs in the refactoring engines, please generate
edge case variant considering the {Characteristic} in current
refactoring scenario. You need (o generate the variant according

to the Input Program Structure Template, it is {Template}.

3. You should give me the variant, the program elements

to be refactored, and the procedures to refactoring.

4. The generated variant should not contain any syntax errors.

The Java program you generated should conformance with the
JDK {Version} standard.

Please generate one edge case variant considering different edge
usage scenarios of {Characteristic} based on the template. The
variant format should be {Format}.

The prompt template used to perform mutation

Extract template

public class A {
public class BaseInner {}

public class OQuter {
public int x = 6;
public void foo(){};

Extract

public class Inner extends BaseInner {
void innerMethod() {
System.out.println(Outer.this.x);
Outer.this.foo();

i
y v'Intuitive

public class OuterClass {

public class BaseTargetClass {}
public class OriginalClass {
public DataType memberVariable;
public void memberMethod() ;
public class NestedOriginalClass extends BaseTargetClass {
void methodToBePul ledUp () {
// Method logic that accesses OriginalClass’s context

}

- Larger mutation space

- Reusable

e

™

RETESTER: Automated Refactoring Engine Testing

|
I
|
a
|
I
I‘_
I
I
I
I
|
I

|1 Refactorlng type i

| |
: |
I II_ ________ AI _________ .I: IZRf t d
I__O_ T | </>=I |</>=» I</>=’I I</>'=’I : I gp I
|
|
|
|

I|6. Bug symptom ||
|17. Input program structure template I

ﬁl'
g
=
g
=~
||=V
|
5|
=g
c
""I
o
3|
o
)
= |
Q
3|
|
1]
21°
-+
-
|
(@]
-+
o |
ol
-
=
o |
3110
o
c |L
o
- |
(1]
S |
o
S |
—+
“
I—

I_________ _________l

IEug reports that contian compllable input program| | Mutation prompt construction I

— ———— — — —— — — — — — — — — — — — — — — — — — — —

Overall workflow of RETESTER

v'LLM for mutation

I
I
I
I
I
Refactoring engines |
I
I
I
I
I

% 5=
o=
o=
~*

Differential testing

v'Oracle: Different testing of refactoring engine

/

Experiment setup

ID Source Issue No. Refactoring Type Symptom Characteristic Description
S Ecli 1533 Pull C 1 Lambd Anonymous functions used to implement functional
2 Edipse 1529 Inline mothod Compile orror e nterfaces with & more stcamlined syntax

) 3 . : ! . Java generics allow to create classes, interfaces,
S-3 ID}{‘A 142_3_61 Extract Van?ble Complle error Java generics and methods that operate with unspecified types
S-4 IDEA 354116 Make static Behavior change A) Class defined without a name, often used for one-time
S-5 IDEA 354122 Extract method Compile error fionymous class implementations of interfaces or abstract classes

Five refactoring types P

Three characteristics

. . < - Oracles Bugs
Refactoring Template | ET (s) | TGV | MT (s) | CV | RPV UC WS Diff. EC IDEA
Extract method Y 6 30 g7 27 37 1 0 0 1 0
xract metho N 7 30 131 28 28 0 0 0 0 0
Inline method Y 8 30 91 26 26 5 0 0 5 0
N 7 30 81 20 20 3 0 0 3 0
Extract variable Y 6 30 78 30 30 0 0 0 0 0
N 6 30 73 25 25 0 0 0 0 0
Pull Y 7 30 105 20 20 8 I 0 7 2
up N 8 30 109 20 20 2 0 0 1 I
) Y 10 30 104 25 22 0 0 2 0 0
Make static N 11 30 179 26 | 21 1 0 0 1 0
Average - 7.6 30 103.8 25 24 — -
Total f 76 300 1038 | 247 | 239 | 20 I 2 I8 (15) 3

Template = Whether input program template is used during mutation, ET = Time taken in seconds to extract refactoring information, TGV = Total generated
variants, MT = Mutation time for TGV in seconds, CV = Compilable variants, RPV = Refactoring-preserving variants; Oracles: UC = Uncompilable Oracle,
WS = Warning Status Oracle, Diff. = Differential Oracle; EC = ECLIPSE, IDEA = INTELLILJ IDEA.

Variant generated by Lambda Operator

public class A {
public class BaseInner {}

public class Outer {
public int x = 6;
public void foo(){};

public class Inner extends BaselInner {
void innerMethod() {
System.out.println(Outer.this.x);
Outer.this.foo();

N

Seed input program

public class OuterClass {
public class BaseTargetClass {}
public class OriginalClass {
public DataType memberVariable;
public void memberMethod() ;
public class NestedOriginalClass extends BaseTargetClass {
void methodToBePulledUp () {
// Method logic that accesses OriginalClass’s context

}

Template

public class A {

public class BaseInner {
void innerMethodLambda(Outer outer) {
Runnable r = () -> {
System.out.println(outer.x);
outer.foo();
}s

r.run();

}

public class Outer {
public int x = ©;
public void foo(){};

public class Inner extends BaselInner {
void innerMethod() { // Pull this method up to class BaselInner
innerMethodLambda(Outer.this);
}

Variant generated by RETESTER

Presenter Notes
Presentation Notes
Merge this example with previous example

[Ajava X

1 package com.example.one;

2

3 public class A {

4= public class BaseInner {

5e void innerMethodLambda(Outer outer) {
6 Runnable r = () -> {

9 1;

1@ r

12 }

System.out.println(outer.x);
outer.foo();

run();

14s public class Outer {
15 public int x = @;
16 public void foo(){};

18= public class Inner extends BaseInner {
§ 19 void innerMethod() { // Pull this method up to class Baselnner

21 }

innerMethodLambda(Outer.this);

Eclipse-issue-1823 (Fixed)

[®] Refactoring

Pull Up
Select the destination type and the members to pull up.

X

)

Select destination type: | com.example.one A Baselnner

Use the destination type where possible
[Use the destination type in 'instanceof' expressions

Create necessary methods stubs in non-abstract subtypes of the destination type

Specify actions for members:

Member Action
& innerMethod() pull up

Member ‘innerMethod ()’ selected.

Select All

Deselect All

Set Action...

Add Required

® < Back Next >

Cancel

&) Ajava
1 package com.example.one;
2
3 import com.example.one.A.Outer.Inner;
4
5 public class A {
e public class BaseInner {
7¢ void innerMethodLambda(Quter outer) {
8 Runnable r = () -> {
9 System.out.println(outer.x);
1e outer.foo();
11 1
12 r.run();
13 }
14
15¢ void innerMethod(Inner inner) { // Pull this method up to class Baselnner
6 innerMethodLambda(Outer.this);
7 }
18} Syntax
19
20e public class Outer { error.
21 public int x = @;
22 public void foo(){};
23
24= public class Inner extends Baselnner ﬂ
25
26 }
27 }
28

Bugs Detected by RETESTER

1D IDE Issue No. Refactoring Type Symptom Status

B-1 Eclipse 1785 Extract Method Compile error Submitted
B-2 Eclipse 1824 Make Static Compile error Confirmed
B-3 Eclipse 1783 Inline Method Compile error Submitted
B-4 Eclipse 1781 Inline Method Compile error Submitted
B-5 Eclipse 1780 Inline Method Compile error Fixed

B-6 Eclipse 1779 Inline Method Compile error Submitted
B-7 Eclipse 1778 Inline Method Compile error Submitted
B-8 Eclipse 1777 Pull Up Compile error Submitted
B-9 Eclipse 1776 Pull Up Compile error Submitted
B-10 Eclipse 1775 Pull Up Compile error Submitted
B-11 Eclipse 1774 Pull Up Failed refactoring ~ Submitted
B-12 Eclipse 1773 Pull Up Compile error Fixed

B-13 Eclipse 1772 Pull Up Compile error Submitted
B-14 Eclipse 1766 Pull Up Compile error Submitted
B-15 Eclipse 1823 Pull Up Compile error Fixed

B-16 IDEA 364110 Pull Members Up Compile error Confirmed
B-17 IDEA 362805 Pull Members Up Compile error Confirmed
B-18 IDEA 362804 Pull Members Up Compile error Confirmed

The issues of INTELLIJ IDEA, and ECLIPSE can be
found at https://youtrack.jetbrains.com/issue/IDEA-XXX, and
https://github.com/eclipse-jdt/eclipse.jdt.ui/issues/X XX, where “XXX”
can be replaced with the concrete numbers in Issue No..

18 new bugs, 7 confirmed, 3 fixed.

or

-

Summary

Open-sourced repository

Differential testing

. , ' Mk
I] I
| | _l_ o |
| P ———t i | = = = = |
— e me—y | me—n e | |) hepaonne tbe | RS &/y| [¢ro]
______ | 1E p=— | |2. Refac gprocedure | ||_ |
| ||[</>='| [</>='| |</>= |</> S5l I | = S —S==—===
I | Refactoring-pre ng variants
[||_ __________________ il ||GBgvmptm ||
| Input programs extracted from bug reports | ||7 Input program structure template | I
| : | | ' -
_______ ({ -
| J VM : Refactoring engi
I SR |
| i_ _] s 1
@] e'% e:% @] - =S
l L —— == === I w* b
Iig eports that contian compilable input progr m|

_—,— e —— — — — — — — —— — =

Test refactoring engine via historical
bug report driven LLM

18 new bugs, 7 confirmed, 3 fixed.

Haibo Wang
haibo.wang@mail.concordia.ca

Presenter Notes
Presentation Notes
slide 26. needs to add take away message/findings (key contribution of the approach, and total bugs found)

e

Automated Test Generation for Program Analyzer

Staftfier: Automated Testing of Characterizing & Detecting

Static Analyzers via Semantics- Program Representation Faults of
Preserving Program Static Analysis Frameworks
Transformations (FSE’23) (ISSTA'24)
Understanding &
Detecting Annotation-
Induced Faults of Static
Analyzers (FSE’'24)

Understanding and Testing Semantically Equivalent €

Transformation
Towards Diverse Program Testing Refactoring Engine via
Transformations for Program Historical Bug Report driven
Simplification (FSE’25) LLM (FORGE’25)

° ° ° (L

Towards Understanding
Refactoring Engine Bugs
(TOSEM'25 Under Review)

6\
(@)

v Understanding and finding
bugs in Program Analyzers
v" Understanding and
Automating Diverse
Program Simplification
v" Understanding and finding
bugs in Syntactic Program
Simplification (Refactoring
Engine)

~ R
O

Broader View of Automated Program Generation

Input Program
0 2 = Automated Program Generated Program
— Generator —

" 4 D

- Program
'Q\\‘ APR: Fix bugs Find bugs [EAEIZ<

Program
Transformation

Questions to think about:

« What are other software maintenance tasks where you can use automated program
generation?

« What kind of automated program generation techniques have/would you used?

g Long Term Future Work: @\
Generating Programs to Test Program Generation Tools

i ChatGPT '

€
‘1, Genpapilst

3 A e o @ o) . Why restricted to Program Analyzer and
bl . o« StarCode o

(e gown @ (o | Refactoring Engine?
.) . Complitat '_' " .‘.':'_.‘--.'_ : ° Many prOgram generation tOOIS

B copiiae 7 D T @ S _
. ;" L0 - + Code Generation Models
B (e o Any program generation tools that
Y &L, g take in programs
* Have you developed a new automated
programming tool or a new APR?
* Let me and my group test it!
« Ensure reliability of program

generation tools via test generation

Generated by Bing Image Creator

™
o

Testing Genetic Improvement Engine

Genetic Improvement
Engine

Input L2
Program

» Good News! Genetic Improvement
Engine is also an Automated
Program Generator!

v’ Similar technique can be used to
generate semantically equivalent
variants as inputs for testing genetic
improvement engine!

v Check if particularly semantically
equivalent variant is easier to be
improved?

What kind of input
does Genetic
Improvement
Engine takes?

™
o

Testing Genetic Improvement Engine

Genetic Improvement
Engine

mp Improved Output
Program

Input L2
Program

What is the
expected output
(aka. oracle)?

» Not so Good News :(We may need to design
new oracle as we need to check if the Q
improved output program are the same for 0 S
different semantically equivalent variants

» We may be able to use differential testing to

compare the outputs of different Gl engines? -
??7? Any idea on this?

Tester Perspective: Coverage

Genetic Improvement
Engine

Maintainability

Portability % ﬁ

Functional ISQVIEC
Suitability 25010

What are the

. . Performance g
criteria to cover?

Efficiency " FT TS

Compatibility

™
@

Software Quality Standard

Security

Reliability

Usability

v' My talk mainly cover “Maintainability” and “Reliabilility”
v' Most Gl papers focus on “Performance Efficiency”
v' How about improvement of other quality aspects?

	Put on Your Tester Hat: Improving programs for Automated Program Generation
	From the Past to Current
	The Past: My Prior Work on APR
	Automated Program Generation
	Automated Program Generation
	 versus Testing Program Analyzers
	Automated Test Generation for Program Analyzer
	Statfier: Automated Testing of Static Analyzers via Semantics-Preserving Program Transformations
	Slide Number 9
	Challenges of Testing Static Analyzer & Our Solution
	But there are too many programs�How do Statfier select Input Programs?
	How to Modify?�Semantically-equivalent Program Transformations
	Slide Number 13
	Statfier: Automated Testing of Static Analyzers via Semantics-Preserving Program Transformations
	Automated Test Generation for Program Analyzer
	Understanding and Detecting Annotation-Induced Faults of Static Analyzers
	Java Annotation & Challenges of Handling Annotation for Static Analyzers
	AnnaTester: Testing annotation-induced Fault
	Checkers Design in AnnaTester
	Checkers Design in AnnaTester
	Checkers Design in AnnaTester
	Effectiveness of 𝐴𝑛𝑛𝑎𝑇𝑒𝑠𝑡𝑒𝑟
	Understanding and Detecting Annotation-Induced Faults of Static Analyzers
	Automated Test Generation for Program Analyzer
	Characterizing and Detecting Program Representation Faults of Static Analysis Frameworks
	Program Representation Faults
	Key insight 1 of 𝑆𝐴𝑆𝑐𝑜𝑝𝑒:�Differential Testing
	Key insight 2 of 𝑆𝐴𝑆𝑐𝑜𝑝𝑒:�Metamorphic Testing
	Workflow of 𝑆𝐴𝑆𝑐𝑜𝑝𝑒
	Effectiveness of 𝑆𝐴𝑆𝑐𝑜𝑝𝑒
	Characterizing and Detecting Program Representation Faults of Static Analysis Frameworks
	 GI versus Testing Program Analyzers
	Understanding and Testing Semantically Equivalent Transformation
	Towards Diverse Program Transformations for Program Simplification
	Program Simplification
	Transformations in Program Simplification
	Existing Work on Program Simplification
	RQ1: Frequently used Transformations in Program Simplification
	Unsupported transformations: �Replace with equivalent API
	SimpT5: Program Simplification Framework
	 GI versus Automated Program Simplification
	Replace with equivalent API
	Refactoring

	Towards Understanding �Refactoring Engine Bugs
	Refactoring Engine in Eclipse and IntelliJ IDEA

	Understanding Refactoring Engine Bugs
	Example bugs in Extract Local Variable
	Understanding Refactoring Engine Bugs
	Understanding Refactoring Engine Bugs
	RQ4: Error-prone Input Characteristics
	Testing Refactoring Engine via Historical Bug Report driven LLM
	Example: Pull Up Method

	Example: Pull Up Method

	A more complex input program for pull up method refactoring

	Eclipse (V202406) produces a syntax-error program

	Historical bug reports

	Error-prone input program characteristics

	How to mutate?

	Leverage LLM to perform mutation

	Extract template

	RETESTER: Automated Refactoring Engine Testing
	﻿Experiment setup
	Variant generated by Lambda Operator

	Eclipse-issue-1823 (Fixed)

	Bugs Detected by RETESTER
	Summary
	Slide Number 67
	Broader View of Automated Program Generation
	Long Term Future Work: �Generating Programs to Test Program Generation Tools
	Testing Genetic Improvement Engine
	Testing Genetic Improvement Engine
	Tester Perspective: Coverage

