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Genetic Improvement

An automated process
that uses search-based
techniques to enhance
both functional and 
non-functional aspects
of existing software

Large Language Models

Neural networks trained
on vast text data for

    tasks like text generation
 and question answering.
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Genetic Improvement

More diverse patches
compared to LLMs [1]

Large Language Models

Patches more likely to 
compile and pass 
tests[1]

Our 
Paper

[1] A. E. I. Brownlee, J. Callan, K. Even-Mendoza, A. Geiger, C. Hanna, J. Petke, F. Sarro, and D. 
Sobania, “Large language model based mutations in genetic improvement,” ASE, 2024.
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We experiment with two new concepts

The masking operator Combining Masking with 
traditional GI
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The masking operator

Buggy Bubble sort
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The masking operator

Buggy Bubble Sort

7Speaker: Carol Hanna



The masking operator

Masking
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The masking operator

Patched Bubble Sort
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RQ1: Does the masking mutation create a denser search space with more 
unique, compiling, and test-passing patches compared to the replacement 
mutation?

RQ2: Can the masking mutation identify patches that yield greater runtime 
improvements compared to the replacement mutation when using the same 
LLMs on identical datasets?

RQ3: What is the runtime efficiency of the masking mutation compared to 
the replacement mutation?

RQ4: How does the combination of masking and traditional GI mutations 
compare to using either method alone?

Research Questions
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● Gin Framework
● 5 Open-source projects: Jcodec, JUnit4, Gson, Commons-net, 

and Karate
● 4 LLMs: Gemma2:2B, Gemma2:9B, Llama3.1:8B Mistral:7B
● 2 Search strategies: local and random search
● Mini-experiments to identify impactful statement types to be 

used in the masking statement selection
● 30%, 50%, 70% probabilities of selecting the masking 

mutation over traditional GI mutations

Experimental Setup
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Masking Prompt
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RQ1: Does the masking mutation create a denser search space with more unique, compiling, 
and test-passing patches compared to the replacement mutation?

Answer to RQ1: The GI process using the LLM-based masking mutation operator 
provides a denser search space with compiling and test-passing patches compared 
to the LLM-based replacement mutation operator, although it produces slightly fewer 
unique valid patches.

(Random Sampling)
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RQ2: Can the masking mutation identify patches that yield greater runtime improvements 
compared to the replacement mutation when using the same LLMs on identical datasets?

Answer to RQ2: The LLM-based masking mutation outperformed the LLM-based 
replacement mutation in 4 out of 5 projects.
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RQ2: Can the masking mutation identify patches that yield greater runtime improvements 
compared to the replacement mutation when using the same LLMs on identical datasets?

Answer to RQ2: The masking mutation generated more performance-improving 
patches and consistently outperformed traditional GI mutations across all 
experiments.
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RQ3: What is the runtime efficiency of the masking mutation compared to the replacement 
mutation?

Answer to RQ3: The GI process using the LLM-based masking mutation operator 
offers competitive performance while significantly reducing model response time 
compared to the replacement mutation.
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RQ4: How does the combination of masking and traditional GI mutations compare to using 
either method alone?

Answer to RQ4: Alternating between traditional GI mutations and LLM-based 
masking mutations generates more valid patches than masking alone, but 
inconsistent runtime improvements suggest further investigation is needed to 
maximise this approach’s effectiveness.
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Common LLM Response Issues

Category 1: Incomplete Code Returned
e.g. only instructions or examples instead of executable code.

Category 2: Code Not in Expected Format
20% of cases deviated from the expected format and didn’t allow for automated extraction

Category 3: Meaningful Code Without Improvement
e.g. returning input code unchanged, replacing placeholder with comments, and producing 
repetitive outputs across runs.
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Threats to Validity

● Possible variability in results: black-box models + non-determinism

● Runtime improvement measurement

● Prompt Engineering
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