
GI Workshop @ ICSE 2025

Large Language Model based Code

Completion is an Effective Genetic

Improvement Mutation

Jingyuan Wang and Carol Hanna and Justyna Petke

1

Genetic Improvement Large Language Models

Our
Paper

2Speaker: Carol Hanna

Genetic Improvement

An automated process
that uses search-based
techniques to enhance
both functional and
non-functional aspects
of existing software

Large Language Models

Neural networks trained
on vast text data for

 tasks like text generation
 and question answering.

Our
Paper

3Speaker: Carol Hanna

Genetic Improvement

More diverse patches
compared to LLMs [1]

Large Language Models

Patches more likely to
compile and pass
tests[1]

Our
Paper

[1] A. E. I. Brownlee, J. Callan, K. Even-Mendoza, A. Geiger, C. Hanna, J. Petke, F. Sarro, and D.
Sobania, “Large language model based mutations in genetic improvement,” ASE, 2024.

4Speaker: Carol Hanna

We experiment with two new concepts

The masking operator Combining Masking with
traditional GI

5Speaker: Carol Hanna

The masking operator

Buggy Bubble sort

6Speaker: Carol Hanna

The masking operator

Buggy Bubble Sort

7Speaker: Carol Hanna

The masking operator

Masking

8Speaker: Carol Hanna

The masking operator

Patched Bubble Sort

9Speaker: Carol Hanna

RQ1: Does the masking mutation create a denser search space with more
unique, compiling, and test-passing patches compared to the replacement
mutation?

RQ2: Can the masking mutation identify patches that yield greater runtime
improvements compared to the replacement mutation when using the same
LLMs on identical datasets?

RQ3: What is the runtime efficiency of the masking mutation compared to
the replacement mutation?

RQ4: How does the combination of masking and traditional GI mutations
compare to using either method alone?

Research Questions

10Speaker: Carol Hanna

● Gin Framework
● 5 Open-source projects: Jcodec, JUnit4, Gson, Commons-net,

and Karate
● 4 LLMs: Gemma2:2B, Gemma2:9B, Llama3.1:8B Mistral:7B
● 2 Search strategies: local and random search
● Mini-experiments to identify impactful statement types to be

used in the masking statement selection
● 30%, 50%, 70% probabilities of selecting the masking

mutation over traditional GI mutations

Experimental Setup

11Speaker: Carol Hanna

Masking Prompt

12Speaker: Carol Hanna

RQ1: Does the masking mutation create a denser search space with more unique, compiling,
and test-passing patches compared to the replacement mutation?

Answer to RQ1: The GI process using the LLM-based masking mutation operator
provides a denser search space with compiling and test-passing patches compared
to the LLM-based replacement mutation operator, although it produces slightly fewer
unique valid patches.

(Random Sampling)

13Speaker: Carol Hanna

RQ2: Can the masking mutation identify patches that yield greater runtime improvements
compared to the replacement mutation when using the same LLMs on identical datasets?

Answer to RQ2: The LLM-based masking mutation outperformed the LLM-based
replacement mutation in 4 out of 5 projects.

14
Speaker: Carol Hanna

RQ2: Can the masking mutation identify patches that yield greater runtime improvements
compared to the replacement mutation when using the same LLMs on identical datasets?

Answer to RQ2: The masking mutation generated more performance-improving
patches and consistently outperformed traditional GI mutations across all
experiments.

15Speaker: Carol Hanna

RQ3: What is the runtime efficiency of the masking mutation compared to the replacement
mutation?

Answer to RQ3: The GI process using the LLM-based masking mutation operator
offers competitive performance while significantly reducing model response time
compared to the replacement mutation.

16Speaker: Carol Hanna

RQ4: How does the combination of masking and traditional GI mutations compare to using
either method alone?

Answer to RQ4: Alternating between traditional GI mutations and LLM-based
masking mutations generates more valid patches than masking alone, but
inconsistent runtime improvements suggest further investigation is needed to
maximise this approach’s effectiveness.

17Speaker: Carol Hanna

Common LLM Response Issues

Category 1: Incomplete Code Returned
e.g. only instructions or examples instead of executable code.

Category 2: Code Not in Expected Format
20% of cases deviated from the expected format and didn’t allow for automated extraction

Category 3: Meaningful Code Without Improvement
e.g. returning input code unchanged, replacing placeholder with comments, and producing
repetitive outputs across runs.

18Speaker: Carol Hanna

Threats to Validity

● Possible variability in results: black-box models + non-determinism

● Runtime improvement measurement

● Prompt Engineering

19Speaker: Carol Hanna

Carol Hanna

carol.hanna.21@ucl.ac.uk 20

