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Search-based runtime improvement of software
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Operator Selection

We experiment with 4 operator selection algorithms:

Probability Matching

Upper Confidence Bound

Epsilon-Greedy

Policy Gradient
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Methodology

e Tool: Magpie

Benchmark: MiniSAT (1000 test instances)

20 test training set (for fitness during search) and 980 validation set for checking

true runtime improvement

2 search strategies: neighborhood search and hill climbing

5 repetitions

Limited time budget

Metrics:
o Best runtime improvement found (ratio of new runtime to original runtime)
o Percentage of unique variants evaluated that are successful

Speaker: Carol Hanna



Which operator selection strategy leads to the best
efficacy and efficiency of search for
Neighbourhood Search and Hill Climbing?

Speaker: Carol Hanna



RQ1: Which operator selection strategy leads to the best efficacy of search for
Neighbourhood Search and Hill Climbing?

Ratio of Runtime of Best Improvement to Initial Runtime Percentage of Unique Variants Evaluated That Are Successful
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Average Reward Per Operator Q(a)

RQ1: Which operator selection strategy leads to the best efficacy of search for
Neighbourhood Search and Hill Climbing?

Average Reward Per Operator over Time

Count over Time
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Average Reward Per Operator Q(a)

RQ1: Which operator selection strategy leads to the best efficacy of search for
Neighbourhood Search and Hill Climbing?

Average Reward Per Operator over Time

Count over Time
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Average Reward Per Operator Q(a)

RQ1: Which operator selection strategy leads to the best efficacy of search for

Neighbourhood Search and Hill Climbing?

Average Reward Per Operator over Time
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Average Reward Per Operator Q(a)

RQ1: Which operator selection strategy leads to the best efficacy of search for
Neighbourhood Search and Hill Climbing?

Average Reward Per Operator over Time
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Operator Preference H(a)

RQ1: Which operator selection strategy leads to the best efficacy of search for
Neighbourhood Search and Hill Climbing?

Preference over Time

Count over Time
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RQ1: Which operator selection strategy leads to the best efficiency of search for

Neighbourhood Search and Hill Climbing?

Speaker: Carol Hanna
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RQ2: Which operator selection strategy leads to the best efficacy of search for
Neighbourhood Search and Hill Climbing?

Ratio of Runtime of Best Improvement to Initial Runtime Percentage of Unique Variants Evaluated That Are Successful
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RQ2: Which operator selection strategy leads to the best efficiency of search for
Neighbourhood Search and Hill Climbing?

Percentage of Time Budget Used Till Best Patch Found
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Discussion

- The results for Hill Climbing are similar to those with the Neighbourhood Search
experiments. E.g. BreakDeletion, ReturnDeletion still have the highest average
reward

- The best edit found took only 27.24% of the original runtime to evaluate the 980 test
instances in the validation split.

- Test-suite passing vs Manual analysis

- All operator selectors heavily value code deletion as is common with Gl for runtime
improvement (e.g. none of the test cases checks for exceptions, so the assert
statements are redundant and thus deleted)

- Generalizability of MiniSAT benchmark

- Hyperparameter tuning

Speaker: Carol Hanna
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Reinforcement learning aided mutation operator selection

Select Operator

Create Variant

W/

Check Fitness

RQ2: Which operator selection strategy leads to the best efficacy of search for
Neighbourhood Search and Hill Climbing?

Ratio of Runtime of Best Improvement to Initial Runtime
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RQ1: Which operator selection strategy leads to the best efficacy of search for

Neighbourhood Search and Hill Climbing?

Ratio of Runtime of Best Improvement to Initial Runtime
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The results for Hill Climbing are similar to those with the Neighbourhood Search
experiments. E.g. BreakDeletion, ReturnDeletion still have the highest average

reward

The best edit found took only 27.24% of the original runtime to evaluate the 980 test

instances in the validation split.

Test-suite passing vs Manual analysis

All operator selectors heavily value code deletion as is common with Gl for runtime
improvement (e.g. none of the test cases checks for exceptions, so the assert

statements are redundant and thus deleted)

Generalizability of MiniSAT benchmark

Hyperparameter tuning
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EXTRA SLIDES
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Value-based methods: focus on learning how good each action is in
a given situation.

"How good is each action?"
Policy-based methods: focus on learning the policy directly; learning

what action to take in each state. They don'’t estimate values. Instead,
they directly learn a policy function 11(s), which maps states to actions.

"What action should | take?"
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