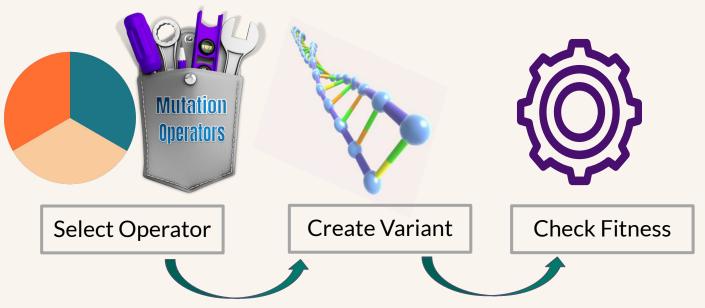


Enhancing Software Runtime with

Reinforcement Learning-Driven Mutation Operator Selection in Genetic Improvement

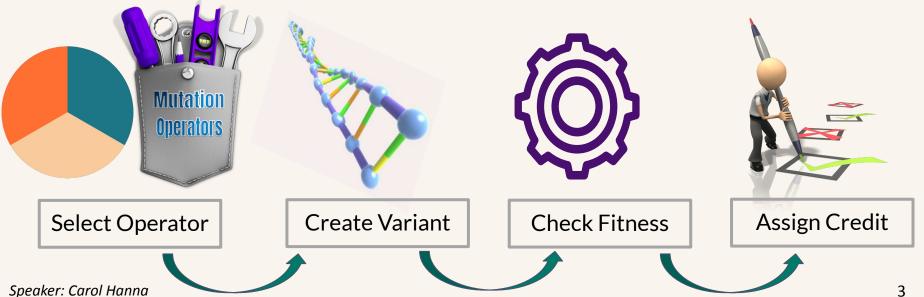
Damien Bose and Carol Hanna and Justyna Petke GI Workshop @ ICSE 2025

Search-based runtime improvement of software

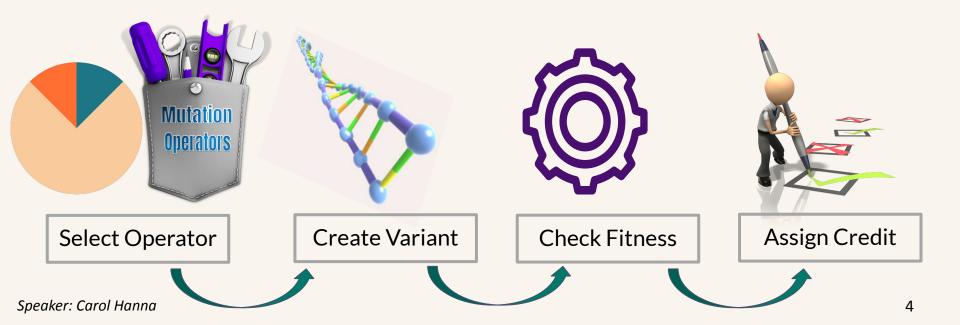


Speaker: Carol Hanna

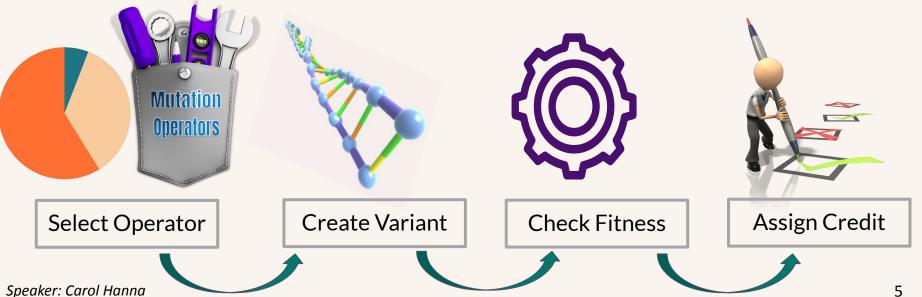
Reinforcement learning aided mutation operator selection



Reinforcement learning aided mutation operator selection



Reinforcement learning aided mutation operator selection



Operator Selection

We experiment with 4 operator selection algorithms:

Probability Matching	Upper Confidence Bound
Epsilon-Greedy	Policy Gradient

Mutation Operators

Operator Selection

We experiment with 4 operator selection algorithms:

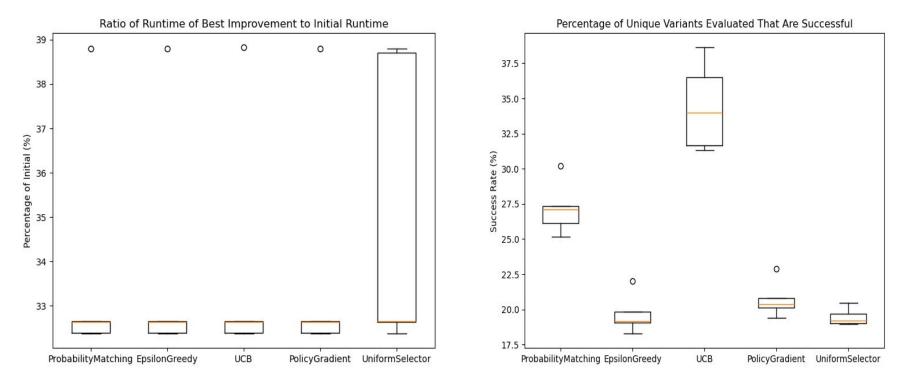
Probability Matching	Upper Confidence Bound
Epsilon-Greedy	Policy Gradient

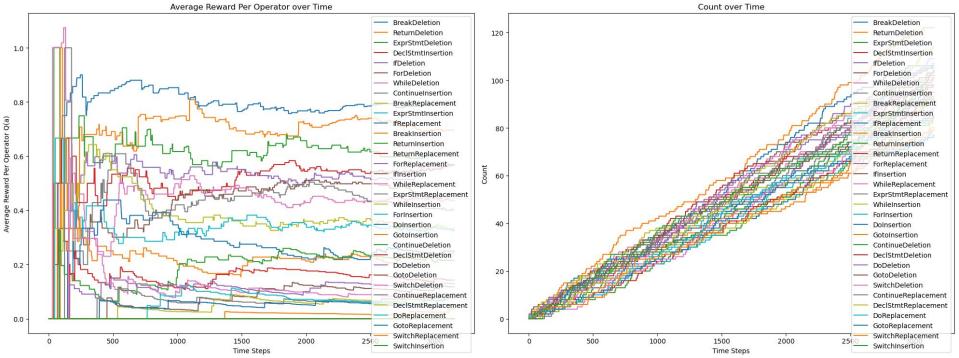
[1] Hanna, C., Blot, A. & Petke, J. Reinforcement learning for mutation operator selection in automated program repair. *Autom Softw Eng* 32, 31 (2025)

Mutation Operators

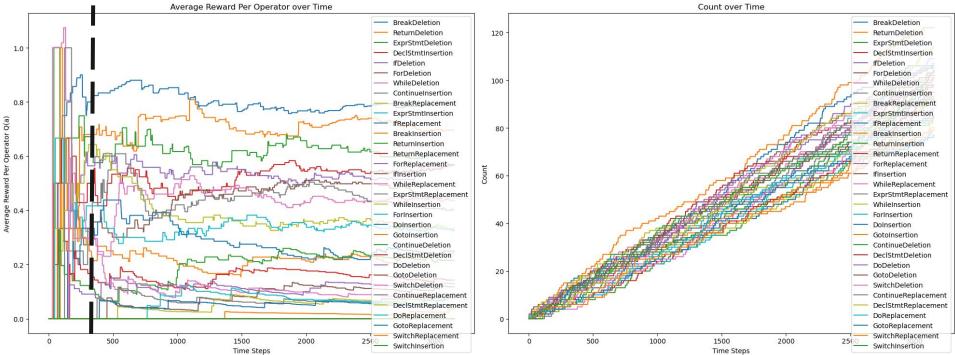
Methodology

- <u>Tool</u>: Magpie
- <u>Benchmark</u>: MiniSAT (1000 test instances)
- 20 test training set (for fitness during search) and 980 validation set for checking true runtime improvement
- 2 search strategies: neighborhood search and hill climbing
- 5 repetitions
- Limited time budget
- <u>Metrics</u>:
 - Best runtime improvement found (ratio of new runtime to original runtime)
 - Percentage of unique variants evaluated that are successful

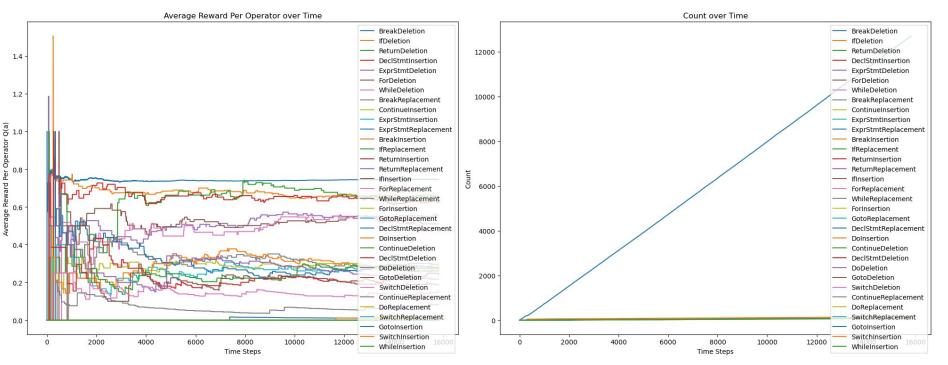




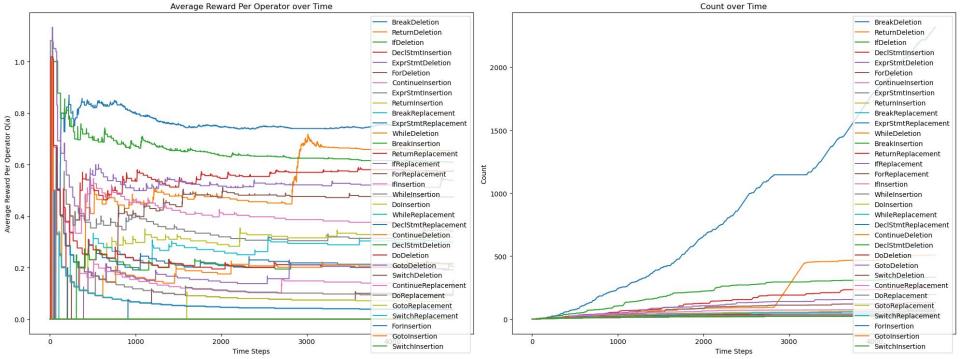
Run statistics for Uniform Selector



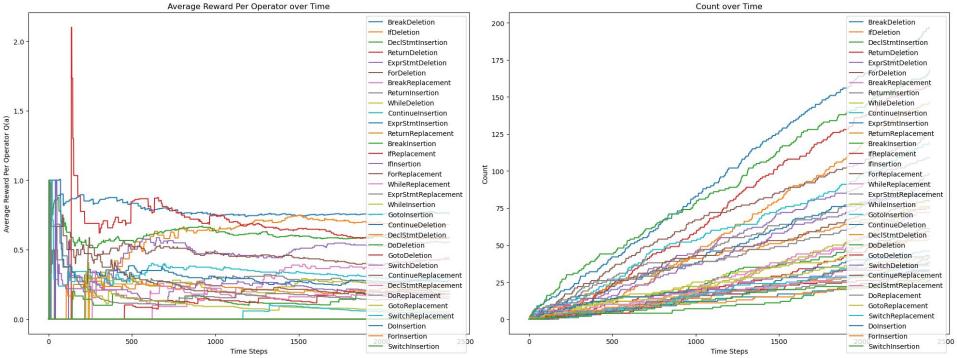
Run statistics for Uniform Selector



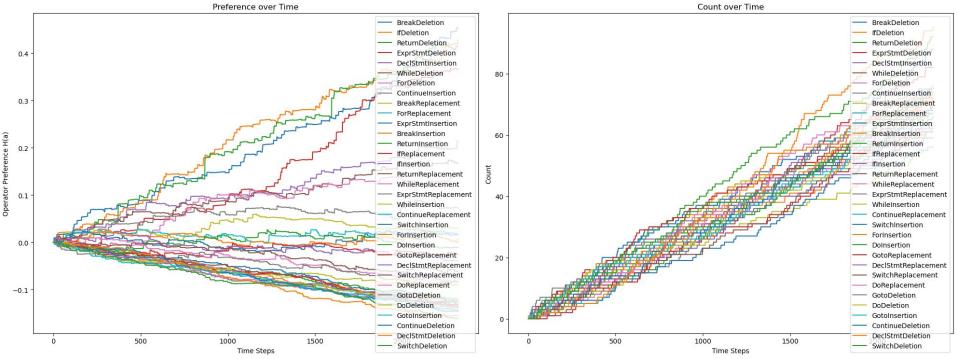
Run statistics for Epsilon Greedy



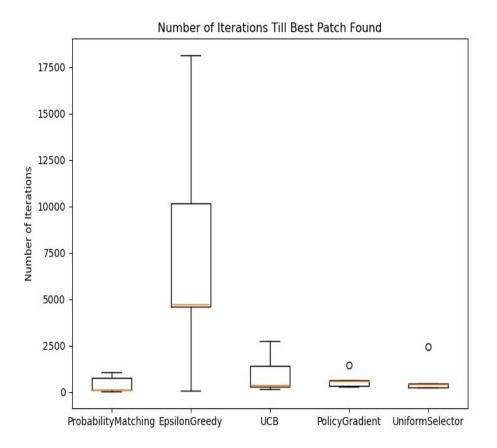
Run statistics for UCB



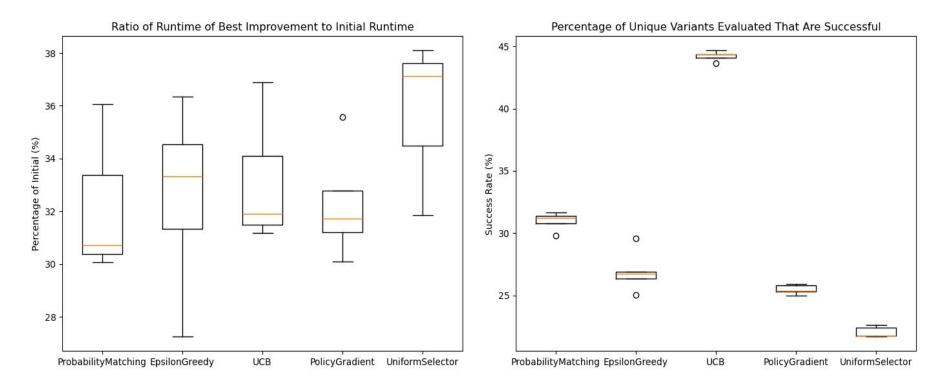
Run statistics for Probability Matching

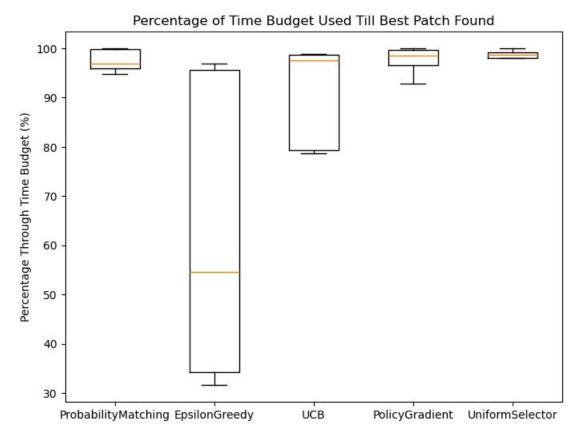


Run statistics for Policy Gradient



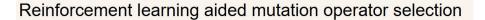
Speaker: Carol Hanna

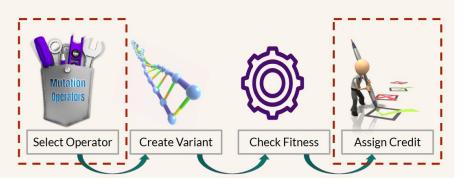


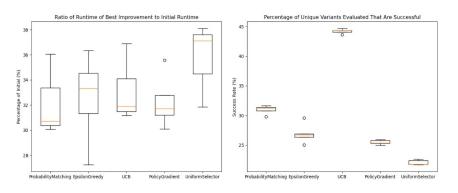


Discussion

- The results for Hill Climbing are similar to those with the Neighbourhood Search experiments. E.g. BreakDeletion, ReturnDeletion still have the highest average reward
- The best edit found took only 27.24% of the original runtime to evaluate the 980 test instances in the validation split.
- Test-suite passing vs Manual analysis
- All operator selectors heavily value code deletion as is common with GI for runtime improvement (e.g. none of the test cases checks for exceptions, so the assert statements are redundant and thus deleted)
- Generalizability of MiniSAT benchmark
- Hyperparameter tuning



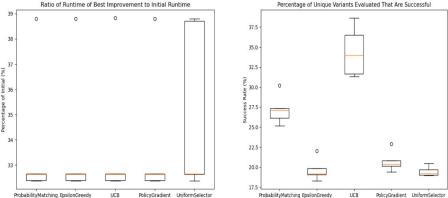




≜

Carol Hanna

carol.hanna.21@ucl.ac.uk



- The results for Hill Climbing are similar to those with the Neighbourhood Search experiments. E.g. BreakDeletion, ReturnDeletion still have the highest average reward
- The best edit found took only 27.24% of the original runtime to evaluate the 980 test instances in the validation split.
- Test-suite passing vs Manual analysis
- All operator selectors heavily value code deletion as is common with GI for runtime improvement (e.g. none of the test cases checks for exceptions, so the assert statements are redundant and thus deleted)
- Generalizability of MiniSAT benchmark
- Hyperparameter tuning

EXTRA SLIDES

Value-based methods: focus on learning how good each action is in a given situation.

"How good is each action?"

Policy-based methods: focus on learning the policy directly; learning what action to take in each state. They don't estimate values. Instead, they directly learn a policy function $\pi(s)$, which maps states to actions.

"What action should I take?"