Empirical Comparison of Runtime

Improvement Approaches: Genetic
Improvement, Parameter Tuning and Their

Combination

Thanatad Songpetchmongkol, Aymeric Blot, Justyna Petke

thanatad.songpetchmongkol.22 @ucl.ac.uk

Software Optimisation

= Everyone uses software on a dalily basis.
= To optimize existing software,
= Configure compiler option(s)
_ Algorithm Configuration (AC)
= Configure developer-exposed parameter(s)
= Directly manipulate source code - Genetic Improvement (Gl)
= MAGPIE is a framework for improving functional and non-functional properties of software.
= Combines 3 optimisation approaches (compiler, AC and Gl) into a single tool.

= Capable in optimising both AC and GI simultaneously.

Thanatad Songpetchmongkol 2

Motivation

8
)
£
=]
=
E
=
3
g
=1

m

11

Magpie (Machine Automated General Performance

Improvement via Evolution of software) * MAGPIE app”es First Improvement Local

Seach (LS) to all 3 optimisation approaches.

= LS might not be the best search algorithm for
all optimisation approaches.

= We aim to implement a well-performing search
algorithm into MAGPIE.

apr-

Magpie: your software, but more efficient!

Introduction

Magpie is a tool for automated software improvement. It implements MAGPIE, using the genetic improvement
methodology to traverse the search space of different software variants to find improved software.

https://github.com/bloa/magpie

Thanatad Songpetchmongkol 3

Algorithm Selection

Selection Criteria

= Generalisable for both AC and Gl domains.

= Shown to perform well on various
benchmarks.

= Experimental time is realistically feasible.

Thanatad Songpetchmongkol

Gl Domain

First Improvement Local Search (LS)

AC Domain

Genetic Algorithm (GA)

Genetic Algorithm

Thanatad Songpetchmongkol

Population initialisation
& evalution

A 4

Tournament selection

A\ 4

Crossover
& Mutation

A 4

Evaluation

|
|
|
|

GA — Population Representation

lbd-cut var-decay asymm

iIndividual 1 3 0.3 false [StmtDelete(stmtl), Stmtinsert(stmt4, stmt257)]
Individual 2 10 0.45 true []
individual Nt~ 5 0.9 true [StmtReplace(stmt8, stmt36)]
\ J\ J
| |
Parameter Edit Statement Edit

(numerical / categorical)

Thanatad Songpetchmongkol 6

GA — Population Initialisation

= Mutate only N individuals, where N = population_size — default_size
= Value

= Parameter Edit = default value

= Statement Edit = empty patch

= Randomising a large number of parameter values at once results in uncompilable individuals

Ibd-cut var-decay asymm

individual 1 5 0.8 false 1]
Default size —
Jndividual 2 5 0.8 false []
Mutated - jndividual 10 9 0.33 true | StmtDelet(stmt8)]

—_—

Thanatad Songpetchmongkol

GA — Crossover

= First, check whether to perform crossover between two parents with 0.5 probability.

= Second, uniform crossover is performed between each gene with 0.5 probabillity.

= Numerical parameter = random new numbers between existing values.

= Categorical parameter = swap value between parents.

= Statement edit = swap edit.

Ibd-cut asymm
3 false [StmtDelete(stmtl) |

Ccrossove

10 true []

Thanatad Songpetchmongkol

Ibd-cut asymm

8

5

true

false

]

| StmtDelete(stmtl)]

GA — Mutation

= First, check whether to perform mutation with 0.2 probability.

= Second, mutation is performed for each gene with 0.1 probability.
= Parameter edit = random new value
= Statement edit = remove

= Third, insert a new statement edit with 0.5 probability

Ibd-cut asymm

5 false | Stmthte(stmtl)]
mutates 1 1
9 true [StmtReplace(stmt43, stmt98) |

Thanatad Songpetchmongkol

Benchmark

= MiniSAT_HACK_ 999ED_ CSSC program with 25 exposed parameters.

= Target file = core/Solver.cc
= CircuitFuzz instances:
" Training = 247 instances.

= Testing = 277 instances.

Thanatad Songpetchmongkol

(XVYANXA=Y)A(mxAY)

(

SAT Formula

Z)N(—xVy)

10

Experimental Protocol

= Time budget of ~3 hours. = 3 phases:
= K-fold cross-validation, where K = 10. " Training
= Fitness function with Linux $perf command = Validation

for # CPU instruction counts. " Testing

Training $edining Set

o] o o) o) o) o] o o o) o

\ \

J

—
Valig4t|siae Set

Thanatad Songpetchmongkol

11

Research Questions

= RQ1: How effective are AC and Gl at software performance improvement?

= RQ2: How effective is the simultaneous exploration of the joint search space of parameter values
and software edits for runtime improvement?

= RQ3: Which search strategy is best for improving software performance?

Thanatad Songpetchmongkol

12

RQ1: Algorithm Configuration
vSs. Genetic Improvement

%1012 First Improvement vs. Genetic Algorithm

—— base line
—— First Improvement

—— Genetic Algorithm
8.5

i

Ap
iF
%)
-
i)
= 8.0
-
& ¢ o
2 7.5 L
83 L[] |]
b %
L[] 1
7.0 1 L
o N v
0 iF
1 2 3 4 5 6 7 8 9 10
K-Fold

Thanatad Songpetchmongkol

/ Original Program

18 05% speed up with Gl
14 32% speed up with AC

13

RQ1: Algorithm Configuration
vs. Genetic Improvement

Elitism can help preserve and pass good individuals to the next generation.

Genetic Algorlthm (K'4) 10 Genetic Algorlthm (K-lO)
110 D ”
o ' : Q
S~ 105+ ™ ’
= =100) |-
c c
0)100’=I_|=========e==9=|_u o o O o5 . Q
E o u — 4 — . E
2 o5 S 90 _dereooo — c
o o o?uﬂc
o 901 O 85 .
£ £
80
e 8 e
£ E” N H H
S 80 \ = A
Y . o 70
75_ T T T T / ! | I ! ! ! !
0 5 11 17 23 0 5 11 16 22 27 33 39 44
Generation Generation

Thanatad Songpetchmongkol 14

RQ2: First Improvement Local Search
vs. Genetic Algorithm for Joint Search Space

= LS leads to the best speed-up.
= We found that increasing population size led to better performance, for GA.
= Additional time might be necessary as the search space size increases.

= Edit’s representation can influence the number of each type of edit.

Technique Joint Technique # Parameter # Statement
LS 9.88% YK Edit (avg) Edit (avg)
GA (population 10) N/A LS ~4 ~/

GA (population 10) ~10 ~2

GA (population 100) 5.59%

Thanatad Songpetchmongkol 15

RQ3: Best Search Strategy in MAGPIE

" We conducted a code review on all statement
edits of the best variants.

= We classified patches: correct and incorrect.

= Manual inspection reveals no incorrect patch.

" Removal of an assert statement can lead to an
error.

Thanatad Songpetchmongkol

Rank Technique Speed-up
1 Gl with LS 18.05%

2 AC with LS 17.75%

3 Gl with GA 16.12%

4 AC with GA 14.32%

5 AC + Gl with LS 9.88%

6 AC + Gl with GA N/A

16

Y

Conclusion
Rank Technique Speed-up
1 Gl with LS 18.05%
= Simultaneous optimisation of parameters (AC) and .
: . . . 2 AC with LS 17.75%
code (GIl) with state-of-the-art algorithms is possible W ’
. . . 3 Gl with GA 16.12%
" The best improvement is from Genetic |
Improvement with Local Search (18.05%). 4 AC with GA 14.32%
= Genetic Algorithm cannot find any improvement in 5 AC+Glwithls 9.88%
the joint search space. 6 AC + Gl with GA N/A

= Future work should explore addition of elitism and
the increase in population size when navigating the
joint search space of parameters and code.

QR to our paper
Thanatad Songpetchmongkol, thanatad.songpetchmongkol.22@ucl.ac.uk 17

	Slide 1: Empirical Comparison of Runtime Improvement Approaches: Genetic Improvement, Parameter Tuning and Their Combination
	Slide 2: Software Optimisation
	Slide 3: Motivation
	Slide 4: Algorithm Selection
	Slide 5: Genetic Algorithm
	Slide 6: GA – Population Representation
	Slide 7: GA – Population Initialisation
	Slide 8: GA – Crossover
	Slide 9: GA – Mutation
	Slide 10: Benchmark
	Slide 11: Experimental Protocol
	Slide 12: Research Questions
	Slide 13
	Slide 14: RQ1: Algorithm Configuration vs. Genetic Improvement
	Slide 15: RQ2: First Improvement Local Search vs. Genetic Algorithm for Joint Search Space
	Slide 16: RQ3: Best Search Strategy in MAGPIE
	Slide 17: Conclusion

