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Software Optimisation

▪ Everyone uses software on a daily basis.

▪ To optimize existing software,

▪ Configure compiler option(s)

▪ Configure developer-exposed parameter(s)

▪ Directly manipulate source code  → Genetic Improvement (GI)

▪ MAGPIE is a framework for improving functional and non-functional properties of software.

▪ Combines 3 optimisation approaches (compiler, AC and GI) into a single tool.

▪ Capable in optimising both AC and GI simultaneously.
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Algorithm Configuration (AC)



Motivation

▪ MAGPIE applies First Improvement Local 

Seach (LS) to all 3 optimisation approaches.

▪ LS might not be the best search algorithm for 

all optimisation approaches.

▪ We aim to implement a well-performing search 

algorithm into MAGPIE.

https://github.com/bloa/magpie
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Algorithm Selection

Selection Criteria

▪ Generalisable for both AC and GI domains.

▪ Shown to perform well on various 

benchmarks.

▪ Experimental time is realistically feasible.

GI Domain

First Improvement Local Search (LS)

AC Domain

Genetic Algorithm (GA)
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Genetic Algorithm

Population initialisation

& evalution

Tournament selection

Crossover

& Mutation

Evaluation
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GA – Population Representation

[ StmtDelete(stmt1), StmtInsert(stmt4, stmt257) ]

[ StmtReplace(stmt8, stmt36) ]

[ ]

Statement Edit

individual 1

asymmlbd-cut var-decay

false3 0.3

true10 0.45

true5 0.9

individual 2

individual Nth

Parameter Edit 

(numerical / categorical)

…
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GA – Population Initialisation 

▪ Mutate only N individuals, where N = population_size – default_size 

▪ Value

▪ Parameter Edit = default value

▪ Statement Edit = empty patch

▪ Randomising a large number of parameter values at once results in uncompilable individuals

[ ]individual 1

asymmlbd-cut var-decay

false5 0.8

false5 0.8 [ ]individual 2
Default size

[ StmtDelet(stmt8) ]true9 0.33individual 10

…

Mutated
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GA – Crossover 

▪ First, check whether to perform crossover between two parents with 0.5 probability.

▪ Second, uniform crossover is performed between each gene with 0.5 probability.

▪ Numerical parameter = random new numbers between existing values.

▪ Categorical parameter = swap value between parents.

▪ Statement edit = swap edit.

[ StmtDelete(stmt1) ]

asymmlbd-cut

false3

true10 [ ]

[ ]

asymmlbd-cut

true8

false5 [ StmtDelete(stmt1) ]

crossover
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GA – Mutation 

▪ First, check whether to perform mutation with 0.2 probability.

▪ Second, mutation is performed for each gene with 0.1 probability.

▪ Parameter edit = random new value

▪ Statement edit = remove

▪ Third, insert a new statement edit with 0.5 probability

[ StmtDelete(stmt1) ]

asymmlbd-cut

false5

[ StmtReplace(stmt43, stmt98) ]true9
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mutates



Benchmark

▪ MiniSAT_HACK_999ED_CSSC program with 25 exposed parameters.

▪ Target file = core/Solver.cc

▪ CircuitFuzz instances:

▪ Training = 247 instances.

▪ Testing = 277 instances.
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(𝑥 ∨ 𝑦) ∧ (𝑥 ∧ ¬𝑦) ∧ (¬𝑥 ∧ 𝑦)

((𝑥 ∧ 𝑦) ∨ 𝑧) ∧ (¬𝑥 ∨ 𝑦)

SAT Formula



Experimental Protocol

▪ Time budget of ~3 hours.

▪ K-fold cross-validation, where K = 10.

▪ Fitness function with Linux $perf command 
for # CPU instruction counts.

▪ 3 phases:

▪ Training

▪ Validation

▪ Testing

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Validation Set

Training Set
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1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Validation Set

Training Set



Research Questions

▪ RQ1: How effective are AC and GI at software performance improvement?

▪ RQ2: How effective is the simultaneous exploration of the joint search space of parameter values 

and software edits for runtime improvement?

▪ RQ3: Which search strategy is best for improving software performance?
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x1012 First Improvement vs. Genetic Algorithm
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18.05% speed up with GI

14.32% speed up with AC

Original Program

RQ1: Algorithm Configuration 
vs. Genetic Improvement
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RQ1: Algorithm Configuration 
vs. Genetic Improvement

Elitism can help preserve and pass good individuals to the next generation.

R
u

n
ti
m

e
 I

m
p

ro
v
e

m
e

n
t 

(%
)

Genetic Algorithm (K-4)

Generation

Genetic Algorithm (K-10)

R
u

n
ti
m

e
 I

m
p

ro
v
e

m
e

n
t 

(%
)

Generation

14Thanatad Songpetchmongkol



RQ2: First Improvement Local Search
vs. Genetic Algorithm for Joint Search Space

▪ LS leads to the best speed-up.

▪ We found that increasing population size led to better performance, for GA.

▪ Additional time might be necessary as the search space size increases.

▪ Edit’s representation can influence the number of each type of edit.

LS 9.88%

GA (population 10) N/A

Technique Joint

GA (population 100) 5.59%
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LS ~4

GA (population 10)

Technique # Parameter

 Edit (avg)

# Statement

Edit (avg)

~7

~10 ~2



RQ3: Best Search Strategy in MAGPIE

▪ We conducted a code review on all statement 
edits of the best variants.

▪ We classified patches: correct and incorrect.

▪ Manual inspection reveals no incorrect patch.

▪ Removal of an assert statement can lead to an 
error.

Rank

1 GI with LS 18.05%

2 AC with LS 17.75%

3 GI with GA 16.12%

4 AC with GA 14.32%

5 AC + GI with LS 9.88%

6 AC + GI with GA N/A

Technique Speed-up
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Conclusion

▪ Simultaneous optimisation of parameters (AC) and 
code (GI) with state-of-the-art algorithms is possible

▪ The best improvement is from Genetic 
Improvement with Local Search (18.05%).

▪ Genetic Algorithm cannot find any improvement in 
the joint search space.

▪ Future work should explore addition of elitism and 
the increase in population size when navigating the 
joint search space of parameters and code.

Rank

1 GI with LS 18.05%

2 AC with LS 17.75%

3 GI with GA 16.12%

4 AC with GA 14.32%

5 AC + GI with LS 9.88%

6 AC + GI with GA N/A

Technique Speed-up

QR to our paper
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