
Empirical Comparison of Runtime
Improvement Approaches: Genetic
Improvement, Parameter Tuning and Their
Combination

Thanatad Songpetchmongkol, Aymeric Blot, Justyna Petke

thanatad.songpetchmongkol.22@ucl.ac.uk

1

Software Optimisation

▪ Everyone uses software on a daily basis.

▪ To optimize existing software,

▪ Configure compiler option(s)

▪ Configure developer-exposed parameter(s)

▪ Directly manipulate source code → Genetic Improvement (GI)

▪ MAGPIE is a framework for improving functional and non-functional properties of software.

▪ Combines 3 optimisation approaches (compiler, AC and GI) into a single tool.

▪ Capable in optimising both AC and GI simultaneously.

2Thanatad Songpetchmongkol

Algorithm Configuration (AC)

Motivation

▪ MAGPIE applies First Improvement Local

Seach (LS) to all 3 optimisation approaches.

▪ LS might not be the best search algorithm for

all optimisation approaches.

▪ We aim to implement a well-performing search

algorithm into MAGPIE.

https://github.com/bloa/magpie

3Thanatad Songpetchmongkol

Algorithm Selection

Selection Criteria

▪ Generalisable for both AC and GI domains.

▪ Shown to perform well on various

benchmarks.

▪ Experimental time is realistically feasible.

GI Domain

First Improvement Local Search (LS)

AC Domain

Genetic Algorithm (GA)

4Thanatad Songpetchmongkol

Genetic Algorithm

Population initialisation

& evalution

Tournament selection

Crossover

& Mutation

Evaluation

5Thanatad Songpetchmongkol

GA – Population Representation

[StmtDelete(stmt1), StmtInsert(stmt4, stmt257)]

[StmtReplace(stmt8, stmt36)]

[]

Statement Edit

individual 1

asymmlbd-cut var-decay

false3 0.3

true10 0.45

true5 0.9

individual 2

individual Nth

Parameter Edit

(numerical / categorical)

…

6Thanatad Songpetchmongkol

GA – Population Initialisation

▪ Mutate only N individuals, where N = population_size – default_size

▪ Value

▪ Parameter Edit = default value

▪ Statement Edit = empty patch

▪ Randomising a large number of parameter values at once results in uncompilable individuals

[]individual 1

asymmlbd-cut var-decay

false5 0.8

false5 0.8 []individual 2
Default size

[StmtDelet(stmt8)]true9 0.33individual 10

…

Mutated

7Thanatad Songpetchmongkol

GA – Crossover

▪ First, check whether to perform crossover between two parents with 0.5 probability.

▪ Second, uniform crossover is performed between each gene with 0.5 probability.

▪ Numerical parameter = random new numbers between existing values.

▪ Categorical parameter = swap value between parents.

▪ Statement edit = swap edit.

[StmtDelete(stmt1)]

asymmlbd-cut

false3

true10 []

[]

asymmlbd-cut

true8

false5 [StmtDelete(stmt1)]

crossover

8Thanatad Songpetchmongkol

GA – Mutation

▪ First, check whether to perform mutation with 0.2 probability.

▪ Second, mutation is performed for each gene with 0.1 probability.

▪ Parameter edit = random new value

▪ Statement edit = remove

▪ Third, insert a new statement edit with 0.5 probability

[StmtDelete(stmt1)]

asymmlbd-cut

false5

[StmtReplace(stmt43, stmt98)]true9

9Thanatad Songpetchmongkol

mutates

Benchmark

▪ MiniSAT_HACK_999ED_CSSC program with 25 exposed parameters.

▪ Target file = core/Solver.cc

▪ CircuitFuzz instances:

▪ Training = 247 instances.

▪ Testing = 277 instances.

10Thanatad Songpetchmongkol

(𝑥 ∨ 𝑦) ∧ (𝑥 ∧ ¬𝑦) ∧ (¬𝑥 ∧ 𝑦)

((𝑥 ∧ 𝑦) ∨ 𝑧) ∧ (¬𝑥 ∨ 𝑦)

SAT Formula

Experimental Protocol

▪ Time budget of ~3 hours.

▪ K-fold cross-validation, where K = 10.

▪ Fitness function with Linux $perf command
for # CPU instruction counts.

▪ 3 phases:

▪ Training

▪ Validation

▪ Testing

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Validation Set

Training Set

11Thanatad Songpetchmongkol

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Validation Set

Training Set

Research Questions

▪ RQ1: How effective are AC and GI at software performance improvement?

▪ RQ2: How effective is the simultaneous exploration of the joint search space of parameter values

and software edits for runtime improvement?

▪ RQ3: Which search strategy is best for improving software performance?

12Thanatad Songpetchmongkol

x1012 First Improvement vs. Genetic Algorithm

K-Fold

C
P

U
 I

n
s
tr

u
c
ti
o

n
s

18.05% speed up with GI

14.32% speed up with AC

Original Program

RQ1: Algorithm Configuration
vs. Genetic Improvement

13Thanatad Songpetchmongkol

RQ1: Algorithm Configuration
vs. Genetic Improvement

Elitism can help preserve and pass good individuals to the next generation.

R
u

n
ti
m

e
 I

m
p

ro
v
e

m
e

n
t

(%
)

Genetic Algorithm (K-4)

Generation

Genetic Algorithm (K-10)

R
u

n
ti
m

e
 I

m
p

ro
v
e

m
e

n
t

(%
)

Generation

14Thanatad Songpetchmongkol

RQ2: First Improvement Local Search
vs. Genetic Algorithm for Joint Search Space

▪ LS leads to the best speed-up.

▪ We found that increasing population size led to better performance, for GA.

▪ Additional time might be necessary as the search space size increases.

▪ Edit’s representation can influence the number of each type of edit.

LS 9.88%

GA (population 10) N/A

Technique Joint

GA (population 100) 5.59%

15Thanatad Songpetchmongkol

LS ~4

GA (population 10)

Technique # Parameter

 Edit (avg)

Statement

Edit (avg)

~7

~10 ~2

RQ3: Best Search Strategy in MAGPIE

▪ We conducted a code review on all statement
edits of the best variants.

▪ We classified patches: correct and incorrect.

▪ Manual inspection reveals no incorrect patch.

▪ Removal of an assert statement can lead to an
error.

Rank

1 GI with LS 18.05%

2 AC with LS 17.75%

3 GI with GA 16.12%

4 AC with GA 14.32%

5 AC + GI with LS 9.88%

6 AC + GI with GA N/A

Technique Speed-up

16Thanatad Songpetchmongkol

Conclusion

▪ Simultaneous optimisation of parameters (AC) and
code (GI) with state-of-the-art algorithms is possible

▪ The best improvement is from Genetic
Improvement with Local Search (18.05%).

▪ Genetic Algorithm cannot find any improvement in
the joint search space.

▪ Future work should explore addition of elitism and
the increase in population size when navigating the
joint search space of parameters and code.

Rank

1 GI with LS 18.05%

2 AC with LS 17.75%

3 GI with GA 16.12%

4 AC with GA 14.32%

5 AC + GI with LS 9.88%

6 AC + GI with GA N/A

Technique Speed-up

QR to our paper
17Thanatad Songpetchmongkol, thanatad.songpetchmongkol.22@ucl.ac.uk

	Slide 1: Empirical Comparison of Runtime Improvement Approaches: Genetic Improvement, Parameter Tuning and Their Combination
	Slide 2: Software Optimisation
	Slide 3: Motivation
	Slide 4: Algorithm Selection
	Slide 5: Genetic Algorithm
	Slide 6: GA – Population Representation
	Slide 7: GA – Population Initialisation
	Slide 8: GA – Crossover
	Slide 9: GA – Mutation
	Slide 10: Benchmark
	Slide 11: Experimental Protocol
	Slide 12: Research Questions
	Slide 13
	Slide 14: RQ1: Algorithm Configuration vs. Genetic Improvement
	Slide 15: RQ2: First Improvement Local Search vs. Genetic Algorithm for Joint Search Space
	Slide 16: RQ3: Best Search Strategy in MAGPIE
	Slide 17: Conclusion

