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Figure 1: Databending images with PYGGI - (left) Original - (middle) Test Set - (right) PYGGI-Generated. Original photo taken
by GVSU University Communications’ Kendra Stanley-Mills.

Abstract
Genetic improvement (GI) is typically used as an approach for opti-
mizing source code for a particular task, where examples include
minimizing runtime, improving energy efficiency, and reducing
memory footprint. As with any evolutionary algorithm, GI will
optimize for a desired fitness objective and can be coerced into
objectives that are not strictly for the improvement of software.
This paper presents in-progress work towards using GI as a method
for generating glitch art, or artwork that is created by intentionally
corrupting files (i.e., databending) to provide an aesthetic or emo-
tional experience. We use the PYGGI framework to explore how
code patches can impact an existing glitch art framework, with the
goal being to find new and interesting outputs that are different
from what can be found with random search. Our proof of concept
did not find a significant different between randomly-generated and
PYGGI -generated images, and as such we present future avenues
of research to improve results.
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• Software and its engineering→ Search-based software en-
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1 Introduction
Databending is a glitch art technique that intentionally corrupts
data files to produce an intentionally-corrupted aesthetic, often
resulting in warped or stretched colors [3, 21]. Typically these
techniques involve manually modifying the bytes within an image
file or deleting specific frames within a movie file. The second
and third images in Figure 1 represent samples of glitched images.
A number of tools and filters have been developed to make this
process easier, however they are often designed as proof of concept
programs with room for improvement. This paper presents early
work on using genetic improvement (GI) to discover patches for
an existing open source glitching tool to yield new and interesting
results.

PYGGI (Python General Framework for Genetic Improvement) is
a Python-based framework for applying GI via source code manip-
ulation and managing patches [1]. While written in Python, PYGGI
is able to improve programs in multiple languages including both
Python and Java. PYGGI provides a cohesive framework to apply
a variety of GI methods regardless of the language targeted, sim-
plifying the difficulty in parsing multiple languages and applying
the desired GI modifications. PYGGI, and GI in general, have been
shown to be capable of both automatic program repair when bugs
exist in the target software as well as non-functional improvement
(e.g., runtime speed, energy usage) [4, 5]. We focus on using GI
to improve existing software, but use a fitness metric that aims to
intentionally corrupt output image files to obtain an aesthetic or
emotional response rather than a typical program improvement
(e.g., reduce execution time).

https://orcid.org/0000-0003-4287-3339
https://orcid.org/0009-0009-3650-583X
https://orcid.org/0000-0003-2173-1331
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786162.3793235
https://doi.org/10.1145/3786162.3793235


GI ’26, April 12–18, 2026, Rio de Janeiro, Brazil Fredericks, DeVries, and Hariri

Prior work in this field involved applying GI to generate draw-
ing programs comprising different techniques and parameteriza-
tions [11–13], with results heavily relying upon the suite of input
drawing functions. For this paper we apply PYGGI [1] to glitch-
tool [19], an open source proof of concept program developed
for demonstrating the capability of glitching various image types
with Python file manipulation. We configured PYGGI to maxi-
mize the overall differences of generated images with a suite of
randomly-generated test images, along with maximizing the num-
ber of patched lines of code, with the overall goal being to find soft-
ware patches that yielded new and interesting forms of databending
(i.e., code that yields new image results).

Experimental results suggest that applying GI to a glitching pro-
gram, with the aim of maximizing the novelty of generated images,
is feasible. However, current results do not significantly differ from
a randomly-generated test set, leading to the indication that fur-
ther study and improvements to the search procedure are required.
The rest of this paper is organized as follows. Section 2 presents
background information and related work. Section 3 presents our
intended approach for extending PYGGI for databending and maxi-
mizing novelty in outputs. Section 4 then details our in-progress
results and Section 5 discusses our findings and presents future
directions.

2 Background and Related Work
This section details background and related work on purposeful
glitching or databending images for aesthetic or artful purposes
work within the contexts of both GI and generative art.

Image glitching, or databending, alters images by purposefully
applying methods that corrupt the original image file to alter the ap-
pearance of the image [3]. In 2011, Rosa Menkman wrote The Glitch
Moment(um) [21] that described the art-based impact of image
glitching as more than an aberrant technical process. That is, image
glitching, or databending, produces an artistic expression intended
to impact the viewer. From a technical perspective, glitched images
are created by altering the encoding of an image file in such a way
that it creates visual artifacts similar to those in Figure 1 and can be
produced by purpose-built applications, including glitch-tool [19].

Typically, GI is used to enable a wide range of improvements
across both functional and non-functional properties [5] including
optimizing performance, repairing programs, and parallelization [8,
14, 15, 25]. Importantly, the search-space of GI methods allow for a
variety of search methods to be employed, though it is not clear if an
individual search method is most effective [24]. Recent fundamental
work in this area has ranged from LLM-based mutations in GI [7],
maintaining diversity [22], and improving GI operator selection [6].
GI has yielded impressive results on SAT solvers (e.g., MiniSAT [26]),
image processing software (e.g., ImageMagick [27]), and problem-
specific optimizations for LLVM compilers [17]. This work differs
from the existing work by applying GI to a specific application area
that, uniquely, does not necessarily improve the target software.

Prior work in the domain of creating aesthetically pleasing visu-
als via evolution and exploring generative art techniques includes
generating art via grammatical evolution with GI [12, 13]. Further,
a comparison investigating the impact of the different fitness func-
tions was performed using many-objective search [11]. Though,
these approaches only used GI in the lightest sense (i.e., creating

a list of parameterized function calls). Typically, GI that is used
to generate images is focused on improving an aspect of the soft-
ware rather than new or different resulting images. For example,
work on improving shaders for Graphics Processing Units (GPUs)
focused on reducing code footprint while maintaining an existing
visual output [28] or transplanting code between image processing
applications [27]. Another evolutionary image glitching project
used genetic programming to create glitch art, though it focused
on corrupting the image itself rather than the program [10]. Finally,
the EvoMusArt conference series has explored how evolutionary
computation (among other search/optimization algorithms) can be
applied to the domains of music and art generation [20].

3 Approach
We now discuss our approach for incorporating databending into
PYGGI. In searching for techniques for corrupting images we found
a blog post [18] detailing glitch-tool [19]. This post was particu-
larly interesting as the tool was specifically developed as a proof of
concept with no intention of maintenance or becoming production-
ready and was instead made to show the feasibility of corrupting
images with Python. glitch-tool itself modifies the bytes of a source
image file to yield a glitched result, based on a set of input pa-
rameters. This type of project seemed highly amenable to GI for
discovering improvements to the source code, given that (to us) it is
an interesting and useful tool that is no longer maintained and may
be improved via GI. Furthermore, we were especially interested in
expanding on the typical GI applications based on existing work in
optimizing drawing programs [11–13].

We used the improve_python example in PYGGI and extended
the fitness calculation to maximize the difference in images cor-
rupted by glitch-tool. As a basis, we extended glitch-tool to generate
a configurable number of test images for comparison to PYGGI -
generated images.

Each of the available parameters within glitch-tool were encoded
in a PYGGI test script to enable execution, with the exception of the
--amount and output-iterations parameters. These parameters
specify the number of images to generate and changes between
each iteration for a glitch-tool execution and for this work we only
wanted one output per execution. Each of the other parameters
were randomly instantiated, within constraints empirically chosen
by the authors, per PYGGI evaluation. Table 1 lists out the glitch-tool
parameters and their defined constraints for this paper. Note that
we do not include required parameters that do not influence the
glitching process as they are assumed to be included (e.g., input file
to glitch, output directory). We also prevent the parameterization
of glitch-tool from being optimized by PYGGI as well to ensure that
only the source code itself is patched.

To calculate the difference between two images, we use a hashing
algorithm (using an average hash algorithm from the Python library
imagehash [9]) to quantify each image and then take the Hamming
distance (i.e,. ℎ_𝑑𝑖 𝑓 𝑓 ) as shown in Equation 1. We note that there
are a significant number of approaches that can be used to calculate
the difference between images, including thresholding [23] and
machine learning [11]. For this paper, we preferred a lightweight
approach to minimize time spent within the evolutionary loop
calculating fitness. Fredericks et al. [12, 13] used pixel differences
as a metric for calculating distance, however slight pixel differences
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Parameter Constraint
File change mode (-m) random(mode)

Amount of random changes (-c) random(0,100)

Amount of bytes to change (-b) random(0,100)

Amount of bytes to repeat (-r) random(0,100)

mode options [change, reverse,
repeat, remove
zero, insert
replace, move]

Table 1: glitch-tool parameters [19] and defined constraints.

were indistinguishable from noise and not overly helpful in the
realm of glitch art.

We calculate individual fitness by combining the averaged Ham-
ming distance between the newly created image and a suite of
randomly-generated test images with the number of lines in the
patched file, as is demonstrated in Equation 2. The aim of this calcu-
lation is to maximize the overall difference between the generated
image and test images as well as to induce the search process to
“provide more” patches, where the intention is to generate new
images not previously discovered by random generation. As such,
we were intending that “more patches” would potentially discover
new avenues for glitching an image.

ℎ_𝑑𝑖 𝑓 𝑓 = |𝑎𝑣𝑔_ℎ𝑎𝑠ℎ(𝑛𝑒𝑤_𝑖𝑚𝑎𝑔𝑒) − 𝑎𝑣𝑔_ℎ𝑎𝑠ℎ(𝑡𝑒𝑠𝑡_𝑖𝑚𝑎𝑔𝑒) | (1)

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 =

(∑ |𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 |
𝑖=0 ℎ_𝑑𝑖 𝑓 𝑓 (𝑛𝑒𝑤_𝑖𝑚𝑎𝑔𝑒, 𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 [𝑖])

|𝑡𝑒𝑠𝑡_𝑠𝑒𝑡 |

)
+ |𝑙𝑖𝑛𝑒𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑_𝑓 𝑖𝑙𝑒 |)

(2)

4 In-Progress Results
4.1 Configuration
We now present current results from our early-stage efforts. We
used the current version of PYGGI (i.e., commit 14361𝑏𝑏) [2] to
enable GI processes and the current version of glitch-tool (i.e., com-
mit 7𝑓 𝑐𝑒𝑑34) [19] for our target tool. To compare images we used
an average hash algorithm, provided by the ImageHash Python li-
brary [9]. Comparing image hashes provides a relatively lightweight
approach for determining image similarity and can be embedded
within an evolutionary algorithm. Our code may be found on our
GitHub repository1 and our generated output images can be found
on Zenodo.2 We configured PYGGI as follows in Table 2:

We experimented with different configurations for PYGGI, in-
cluding testing both Line and Tree modes, using local and Tabu
search, and using different values for the number of iterations and
epochs. Ultimately the values we settled on in Table 2 provided a
search process that subjectively appeared to provide more patches
and visual differences in generated files. As part of the test set
creation process, 5000 images were generated however over half
were found to be corrupted and removed from the test set, leaving
2094 images to be used for comparison. The corrupted images were
1See https://github.com/efredericks/pyggi/tree/gi2026.
2See https://zenodo.org/records/17407891.

Parameter Value
Number of replicates 25
Type and Search Improve Python, Tabu Search
Mode Tree
Iterations 10
Epochs 1000
Number of generated test images 5000
Number of valid test images 2094
Image comparison algorithm Average hash
Fitness See Equation 2

Table 2: PYGGI configuration.

not considered as attempting to use them in the image hashing
fitness calculation would cause errors in parsing the image data
(either leading the program to halt or ignore those images as part
of try/catch blocks).

4.2 Results
As this is early-stage research, we leave a full empirical evaluation
for future work. However, we present our current results from
initial PYGGI runs in generating patches that yield digitally-glitched
images. Our initial research question was to determine if PYGGI is
suitable for automatically patching a glitching program to create
new and interesting glitch art that could not be found by running
the normal program, where the overall intent was not necessarily
to improve a program, but to generate diversity in its outputs. To
evaluate this question, we generated a set of test images using
randomly-instantiated parameters (see Table 1) to the glitch-tool
program and then performed a fitness evaluation per Equation 2 to
determine the overall difference from each test image to all others
in the test set. We then instrumented PYGGI with the ability to
patch the glitch-tool program, leveraging the same random forms
of selection for its input parameters (see Table 1), and executed it
per Table 2.

Listing 1 presents two sample (truncated) patches generated by
PYGGI that were considered “the best” at the end of a run. The first
patch includes a transplanted variable (i.e., iteration) that is not
used within the current code block. The second patch transplants
a function changeBytes that is used as a global function for mod-
ifying image bytes, however its inclusion within the conditional
statement does significantly not impact program behavior.
∗ ∗ ∗ b e f o r e : g l i t c h _ t o o l . py
−−− a f t e r : g l i t c h _ t o o l . py
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 2 1 , 2 6 ∗ ∗ ∗ ∗
−−− 2 1 , 2 7 −−−−

)
i f not a r g s . q u i e t :

print ( ' Wr i t ing ␣ f i l e ␣ t o ␣ ' + ou tPa th )
+ i t e r a t i o n = 1

open ( outPath , 'wb ' ) . w r i t e ( \
b y t e s ( f i l e B y t e L i s t ) )

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 4 0 , 4 5 ∗ ∗ ∗ ∗
−−− 4 1 , 5 3 −−−−

i f ( a r g s . o u t p u t _ i t e r a t i o n s > 0 and \
i t e r a t i o n % a r g s . o u t p u t _ i t e r a t i o n s \

== 0 ) :
w r i t e F i l e ( newByteL is t , f i leNum , \

https://github.com/efredericks/pyggi/tree/gi2026
https://zenodo.org/records/17407891
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Figure 2: Test set image with highest averaged distance. Figure 3: PYGGI-image with highest averaged distance.

i t e r a t i o n , bytesToChange , seed )
+ def changeBytes ( b y t e L i s t , \

bytesToChange ) : [ 4 0 / 1 8 4 8 ]
+ global a r g s
+ pos = random . r a n d i n t ( 0 , \

len ( b y t e L i s t ) − bytesToChange )
+ chunk = [ random . r a n d i n t ( 0 , 2 5 5 ) \

for i in range ( bytesToChange ) ]
+ b y t e L i s t [ pos : pos + bytesToChange ] \

= chunk
+ return b y t e L i s t

w r i t e F i l e ( newByteL is t , f i leNum , i t e r a t i o n , \
bytesToChange , seed )

Listing 1: Generated patches.

Figure 4: Average Hamming distances comparisons between
test set images and PYGGI-generated images.

Figures 2 and 3 demonstrate the two images with the largest
Hamming distance (see Equation 1), averaged over comparisons
to all test set images, between the test set and PYGGI, respectively.
Their scores are relatively close (37.235 and 38.887, respectively)
and visually the main differences appear to be the color palette.
Note that we don’t include the patch size as part of the score here,
as the test set does not include any patching. Additionally, each of
the PYGGI -generated images that we included in this paper would
not render as they were corrupted – the images included are post-
processed and saved as PNGs to enable LaTeX to render them (i.e.,
opened in Krita and exported as PNG).

Figure 4 shows the maximum Hamming distance (see Equation 1)
found between images generated for our test set (and compared
to all other test images in that set) and for those images that were

generated via PYGGI. The boxplot on the left (test set differences)
shows our baseline Hamming distances and the boxplot on the
right shows the comparison of PYGGI -generated images to the test
set images. While there is a disparate number of values per boxplot
(2094 for the test set and 74714 for PYGGI ), there is presently no
significant difference between fitness values.

We also noted that most of the generated patches at the end of
a run appear to be fairly trivial. For example, we found in results
summaries that patches often resolved to moving around variable
declarations. Our initial assumption is that either our solution space
is too limited or that we are getting stuck in a local optima. Regard-
less, further study is required.

Figures 5 and 6 present screenshots of the image thumbnails
from our test image set and one replicate of a PYGGI run. While
visually there do not appear differences in the glitched outputs,
we note that subjectively there appear to be “more” glitches in
the PYGGI -generated files. Notably, there are more files that are
“corrupted” (denoted by the blank image icon) and there seems to
be more that are “glitchier” than those in the test set. However,
when verifying with our image difference calculations there does
not appear to be a significant difference in scores.
Our future plans to extend these initial results are to incorporate
other hashing algorithms (e.g., perceptual hashing, wavelet hashing)
to determine if one approach induces more useful patches than
another. We also plan to compare our PYGGI results with those
found with GenerativeGI [11–13] by extending its current suite
of drawing/glitching techniques to incorporate a base image layer
to corrupt. Further, we plan to incorporate novelty search [16]
into PYGGI with the aim of improving its searching potential for
diversity in patches.

5 Discussion
This paper has presented early work towards optimizing a program
for generating a wide variety of outputs using GI. Our early results
suggest that, while interesting, our implementation performs on
par with random generation. These results indicate that further
study is warranted to determine where our fitness calculations are
plateauing. Our initial thoughts are that: (1) our implementation
of PYGGI is not modifying the base program enough to merit a
difference in outputs, (2) our search procedure has hit a local optima
that our current fitness calculations and evolutionary operators do
not move beyond, and (3) that the base glitch-tool program requires
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Figure 5: Screenshot of test image previews. Figure 6: Screenshot of generated image previews.

additional extensions to enable PYGGI to provide more nuance in
its patches.

Future work for this project includes a deeper empirical analy-
sis of databending with PYGGI, including exploring the impact on
other art creation tools and manually-corrupting image and video
files. Additionally, we aim to include other image comparison tech-
niques within our fitness calculation to determine if other methods
improve the results set, including histogram comparisons, pixel dif-
ferences (as was previously explored in [12, 13]) and using machine
learning techniques [11]. Finally, we intend to explore other unique
optimization problems, including procedurally-generating content
for video game environments and guided fuzzing for safety-critical
systems.
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