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Abstract
We use Genetic Improvement (GI)-based Automated Program Re-
pair (APR) techniques for syntax correction on transpiled code
produced by both large language models (LLMs) and rule-based
translators. A three-stage pipeline was developed, combining rule-
based test generation, an optional LLM-driven preprocessing stage
for syntax correction, and GI-based repair strategies. LLM-assisted
Type Change Operator and Boolean Value Change Operator were
added to the MAGPIE GI framework, which reduced transpilation
bugs from Python to Java by 33% (LLM) and by 18% on rule-based
translations. A comprehensive taxonomy of common transpila-
tion bugs was developed, mapping faults to mutation operators,
alongside an evaluation of the effectiveness of secondary LLM in-
terventions.

CCS Concepts
• Software and its engineering → Search-based software en-
gineering.
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1 Introduction
Source-to-source transpilers, also known as source-to-source trans-
compilers/translators, transform source code from one program-
ming language to another while preserving the program’s logic
and functionality. These tools are used for performance optimisa-
tion, legacy system migration, and cost enhancement [5] [6]. How-
ever manual source-to-source translation can be highly resource-
intensive. For instance, the Commonwealth Bank of Australia spent
≈$750 million over five years to switch from COBOL to Java [11].

Initial techniques for source-to-source translation involved man-
ually specifying translation rules for the translation of Ada to Pas-
cal and Pascal to Ada [3]. Nyugen et al. [14] used lexical phrase
based statistical machine translation to perform method-to-method

This work is licensed under a Creative Commons Attribution 4.0 International License.
GI ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2394-0/2026/04
https://doi.org/10.1145/3786162.3793234

Figure 1: Three Stage Approach for Translation Repair

migration from Java to C#. Despite achieving high lexical transla-
tion accuracy, many translations were syntactically incorrect and
had parsing errors [1, 14, 21]. More recently Transcoder [20] used
sequence-to-sequence (seq2seq) Large Language Models (LLMs)
and achieved over 80% functional translation accuracy across Java,
C++ and Python. As of today, three primary techniques are used for
source-to-source code translation: rule-based, machine translation-
based and deep learning-based methods. Despite significant ad-
vancements, source-to-source translation has yet to achieve fully
automated and functionally reliable results, particularly due to resid-
ual errors that persist even after applying state-of-the-art transla-
tion models. Pan et al. [17] have highlighted this gap in translation
quality and the need for alternative approaches to complement and
enhance the capabilities of LLMs in source-to-source translation.

Unlike LLMs, deep learning and rule-based techniques, genetic
improvement (GI) can automatically adapt and evolve program
fixes [12], making it particularly well-suited for correcting diverse
and unpredictable errors generated by LLMs. GI-based APR ap-
plies evolutionary search techniques to automatically detect and
correct errors in programs by evolving program variants toward
improved correctness and functionality. We integrate GI-based APR
into the source-to-source translation pipeline to enable automated
post-translation correction and so reducing the need for manual
intervention.

2 GI-based Repair of Transpiled Code
Figure 1 shows our design for producing fixes for translation bugs.
We start with Testfile and apply a rule-based solution, which gives
a possibly buggy Java translation. Optionally this is processed by
an LLM, and then one of three the GI Pipelines. All details are
presented in Section 3.
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To evaluate our approach, we pose these research questions:
RQ1: What are the common categories of bugs in transpiled

code, and how can they be effectively mapped to specific mutation
operators within GI tools?

RQ2: To what extent can secondary LLM interventions enhance
the quality of buggy transpiled code to enable successful application
of GI tools?

RQ3: How effective are existing standard GI tools and LLM-
augmented GI tools in repairing LLM-translated code?

RQ4: How do traditional mutation operators compare to custom
mutation operators in their ability to produce correct patches for
transpilation-induced bugs?

RQ5: How does the performance of our approach differ when
applied to rule-based transpiled code compared to LLM-based tran-
spiled code?

3 Methodology
The following section outlines the methodology used to investigate
the effectiveness of GI tools in addressing translation bugs. We
describe the implementation of three key stages of our approach:
Rule-based Test Generation, the LLM preprocessor, and the GI
pipelines.

3.1 Rule-based Test Generation
For the Rule-based Test Generation functionality we considered
existing off-the-shelf rule-based translators like p2j and Py2Java.
However, these translators lacked native support for Python test
cases, making themunsuitable for our needs. Since the translation of
Python test cases was a critical component of this project, it became
evident that implementing a custom rule-based test generation
script would provide more flexibility and ensure compatibility with
the specific format required for JUnit 4 syntax. The Rule-based
Test Generation script was written in Python 3.11, to parse the
plaintext test case file and output the test cases in JUnit 4 syntax.

We briefly outline the steps followed in the implementation of
this script. The first step in parsing each individual test case began
by extracting the <assert_statement> using one of three different
regular expressions: r‘self.assertEqual\((.*)\)’,
r‘self.assertTrue\((.*)\)’, r‘self.assertFalse\((.*)\)’.
These three regular expressions were chosen based on a preliminary
analysis of the test case corpus. The second step is parsing the asser-
tion arguments. Once the argumentswithin the <assert_statement>
were captured, the next step was to extract the expected_output
and the function call in the form <test_function>(**function_args).
This was accomplished by locating the first comma, which typi-
cally served as the delimiter between the two arguments. However,
an edge case arose when the expected_output itself contained a
comma, such as when it was a list or String. To correctly handle
such cases, two flag variables, inside_quotes and bracket_level,
were maintained while parsing the argument string from left to
right. The first comma encountered when both flags were set to
false was reliably identified as the true delimiter separating the
expected_output from the function call. The third step is process-
ing and typing the arguments. The extracted <test_function>was
first converted to camelCase to adhere to Java naming conventions.

Then, the expected_output, initially extracted as a string, was con-
verted to its corresponding datatype using Python’s eval() func-
tion, which dynamically interprets Python expressions from strings.
Based on the parsed value, the expected output was mapped to one
of the following Java-compatible types: List, int, long, float,
double, boolean, or Object. The Object type served as a fallback,
particularly for string values, since all Java datatypes—primitive
or reference—inherit from Object, ensuring compatibility and pre-
venting type mismatch errors during compilation.

3.2 Optional LLM Preprocessor
The LLM preprocessor selects the files that need to be preprocessed
for syntax errors, prompting the GPT-4o-mini LLM with the faulty
code and a custom prompt, extracting the code from the LLM’s
response, and storing it back to the file. It was written in Python 3.11
with OpenAI, dotenv, re, os and sys libraries. A regular expression
was used identify and extract the code block from the text returned
by the LLM.

We used Structured Prompting [9] with GPT-4o-mini. Prompts
were carefully designed using clear delimiters (e.g., XML tags for
code and error sections) to guide the LLM to producing output that
could be parsed using regular expressions.

3.3 Three GI Pipelines:
Faulty Code, Type Change, Logic Flip

The final stage of our solution design was the GI Pipelines’ Stage,
incorporated to evaluate the effectiveness of automated evolution-
ary algorithms in fixing faults left over from previous stages of our
solution. We divided our experimental setup into three pipelines
with different GI configurations – each incorporating modifications
in key components including mutation operators, fitness function,
search algorithm, and crossover operator.

In MAGPIE [7], the fitness evaluation of a program variant in-
volves compiling the modified program and its associated test suite,
executing the test suite, and calculating the fitness score as the ratio
of failing test cases to the total number of test cases. However, this
process is sequential, meaning each step is only performed if the
preceding step is successful. Consequently, if a program variant fails
to compile, the evaluation halts, and that variant is excluded from
further consideration in the search process. More critically, if the
original input program contains a compile-time error, no mutations
are applied at all, and the genetic improvement process terminates
prematurely. As many of the transpiled programs in our dataset
contained compile-time errors, it was essential to enable the search
process to operate even on faulty code. Therefore, we modified
MAGPIE to allow the evolutionary process (mutation, selection,
and crossover) to continue with broken code. We modified MAGPIE
to select the top k = 10 program variants for crossover, thereby
allowing some non-compiling variants to participate in crossover.
This introduced greater diversity and improved its ability to repair
more complex translation faults.
We introduce two novel mutation operators. The first is
LLM-assisted Type Change Operatorwhich is designed to mod-
ify the data type of a variable by leveraging an external LLM (Sec-
tion 5.1). (Bouras et al. [8] have also reported successful use of
MAGPIE with LLMs.) The LLM-assisted Type Change Operator



extracts a target program statement and queries an external LLM to
suggest appropriate type modifications. We used Llama3-70b LLM’s
APIwith a Chain-of-Thought prompting strategy. The prompt used
is shown in Listing 1

Listing 1: Prompt for Type Change
Here is some expression from a programming language:

{code}

You are tasked with modifying the datatype in the

expression if any. If no datatype is present in

the expression, return the same expression.

Here's an example of how you might approach the task

when given an expression of the form "int x =

5;":

1. Identify if any datatype is in the expression,

here "int" is the datatype.

2. Think of which programming language it might

belong to, here it is Java.

3. Modify the datatype in the expression. For

example "int x = 5;" can be modified to "long x

= 5;".

4. Return only the modified expression like "long x

= 5;".

5. If no datatype is present in the expression,

return the same expression "int x = 5;".

Don't return any additional text, only the modified

or unmodified expression. Here is the expression

again: {code} Your output response must adhere

to the text format: Expression: ***the

expression***. Your output response should not

contain any text on thinking.

The second novel operator is Boolean Value Change Mutation
which replaces True with False and vice versa. Like the LLM-
assisted Type Change Operator, it operates at the statement level
by using Python’s replace() and searching for the keywords true,
false.

4 Experimental Setup
To address RQ1 we conducted a manual analysis of the training set
of EvalPlus dataset (next section). For RQ2, we also passed these
files through the LLM preprocessor (previous section) collected
the outputs and performed a detailed manual inspection of the
remaining bugs to assess its effectiveness. To evaluate RQ3 and
RQ4 we implemented and compared three GI pipelines described
in Sections 4.2 and 4.3. Finally, to investigate RQ5, we used Py2Java
rule-based translation tool, to compare our system’s end-to-end
effectiveness with rule-based Python-to-Java translation.

Due to non-determinism of the LLMs and the GI process, we
ran our experimental pipeline 5 times end-to-end starting from
rule-based test generation to running GI. All experiments in our
empirical evaluation were conducted on an Apple MacBook Pro
with a M4 chip, running macOS Sequoia 15.3.2.

4.1 Training and Test Datasets
Due to their usage in previous LLM-translation bug studies, we con-
sidered the following datasets: CodeNet [19], AVATAR [2],
EvalPlus [13], CoST [22], Click [10], and Commons CLI [4]. How-
ever, Pan et al. [17] have previously shown that LLMs perform
poorly when translating long programs from real-world projects,
with translation accuracy falling to nearly zero. In addition to size,
and the availability of test cases, the EvalPlus dataset offered the
most practical and rigorous environment for evaluating the per-
formance of our repair system. For these reasons, we ultimately
selected the EvalPlus dataset which includes single, self-contained
Python functions. To conduct our experimental analysis, we ran-
domly split the EvalPlus dataset into a training set of 100 samples
and a test set of 65 samples. The training set was used to identify
common transpilation errors and inform the development of our
approach for addressing them. We then evaluated the effectiveness
of it on the test set.

4.2 Common MAGPIE Configurations
Each of the three GI Pipelines shared several core settings. Each
began by using srcML to convert the source program file into an
equivalent XML representation. Similarly since our objective is to
fix translation-induced bugs, rather than optimising performance or
reducing code size (i.e. removing bloat), all pipelines set MAGPIE’s
fitness attribute to repair.

To ensure a sufficient search capacity to explore a diverse set of
program variants through mutation and crossover, we followed typ-
ical GI practice [18] of a population size of 100 and 20 generations
for each run.

4.3 Three Genetic Improvement Pipelines
GI Pipeline #1 employed MAGPIE’s default genetic programming
configuration, which included standard XML tree statement level
mutation operators Insert, Delete, and Replace, alongside its
default crossover strategy, Uniform Concatenation. This crossover
uniformly combining program edits from two parents, either by
mixing and matching edits between them or by discarding one
parent entirely and preserving the more promising variant. The
purpose of this pipeline was to evaluate the baseline effectiveness
of standard genetic programming techniques in addressing transpi-
lation bugs.
GI Pipeline #2: investigated the effectiveness of manually curated
combinations of novel and standard mutation operators. Specif-
ically, we defined two operator subsets: the first combined our
LLM-assisted Type Change operator with the standard Replace and
Delete operators, while the second combined our Boolean Value
Change operator with the same standard set. These combinations
were suggested by our analysis of the buggy translation dataset,
and so we hoped to design a set of operators to deal with the fault
patterns observed. As with Pipeline #1, we used MAGPIE’s default
Uniform Concatenation crossover.

To ensure that high-fitness candidate patches were not prema-
turely excluded, we also configuredMAGPIE so that both Offspring_
elitism and Offspring_crossover were 1.0. This encouraged ex-
ploration by enabling crossover between all candidate patches,
regardless of their fitness scores.



To evaluate our custom operators, we applied each subset inde-
pendently across all faulty translations and assessed their impact
on the success of the GI repair process.
GI Pipeline #3: combined standard mutation operators with our
LLM-assisted crossover mutation operator. This operator uses an
external LLM to perform crossover by providing it with a set of
parent candidates, each represented as an edit sequence. The LLM
is then tasked with selecting suitable parents and generating off-
spring through a learned crossover strategy. The LLM returns a
list of offspring programs derived from these crossover operations.
MAGPIE employed the Llama3-8B model.

5 Results and Discussion
Next, in Sections 5.1 to 5.5, we present the findings of our empirical
evaluation and show how they answer our research questions, RQ1:
to RQ5: (Section 2 above).

5.1 RQ1: “What are the common transpilation
bugs?”

We analysed 100 program files in the EvalPlus training set: 50 gave
compilation errors, 11 runtime errors and 39 executed successfully.
Later we refer to this base line as File State(s)

As 50% of the files failed to compile, we further classified them.
There are four primary compilation errors:
22 Invalid Tokens: Files containing unintended LLM response
text (e.g., Sure, here’s your code).
18 Missing Imports: Vital import statements for essential data
structures were omitted.
5 DatatypeMismatches: Inconsistencies between datatypes of ar-
guments in the source file and expectations in the test file (e.g., pass-
ing int instead of long as parameters to a function).
5 Missing Testcases: Cases where no tests were generated, were
often due to context window limit being exceeded by our LLM
prompt.
The high incidence of Invalid Tokens and Missing Imports is
likely to be due to inherent limitations in the LLM. GPT-4o-mini
has a smaller context window [15]. This meant that it often strug-
gled with handling long-range dependencies within source code,
i.e. keeping track of important information spread across longer
program files. This often led to inconsistencies in API usage, data
structure handling, and control flow when processing larger pro-
grams.

For the classification of the causes of runtime errors, we identi-
fied three primary categories:
6 Logic Errors: Files containing logic mistakes, such as performing
operations without appropriate checks (e.g., initialising an array
variable without verifying that its value is non-negative).
4 Type Selection Error: Files in which numeric computations
exceeded the range of variable for the data type, resulting in arith-
metic overflow (e.g., attempting to store the 41st Fibonacci number
in a 32-bit signed integer).
1 Output Format: consisting of ill-formatted unicode characters
in a test case.
By analysing the distribution of compilation and runtime errors,
we were able to develop a targeted approach. Specifically, the high
incidence of compilation errors stemming from missing imports

Table 1: Mapping Error Groups to Magpie Mutation Opera-
tors

Error Group Error Types
Included

Magpie Muta-
tion Operators

Translation-
induced Errors

Invalid Tokens,
Missing Imports,
Missing Test Cases

Insert, Delete,
Replace State-
ments

Type & Logic Datatype Mismatch,
Type Selection
Error, Logic Error

LLM-assisted
Type Change,
Boolean Value
Change, Delete,
Replace State-
ments

Output Handling
Errors

Output Formatting
Error

Insert, Delete,
Replace State-
ments

and invalid tokens motivated the design of our LLM preprocessor.
Additionally, errors related to missing test cases and type errors led
us to incorporate a rule-based test generation module. Compilation
errors caused by datatype mismatches informed the development of
novel, custom mutation operators. After constructing our complete
solution, we conducted testing on the Evalplus test set, Section 5.1.
Table 1 summarises our mapping of transpilation errors to groups
of Magpie mutations.

Key Takeaway: Most transpilation bugs are related to com-
pilation errors, which outweigh runtime errors that lead to
failing tests. Among these compilation issues, the most preva-
lent are Missing Imports and Unrecognised Tokens. Be-
yond these, two additional categories: Type Selection and
DatatypeMismatch, emerge as particularly relevant for fur-
ther investigation from a genetic improvement perspective.

5.2 RQ2: Effectiveness of Secondary LLM calls
The first step in our approach to addressing transpilation bugs
involved processing each source file through the LLM preprocessor.
This step effectively simulates a secondary LLM invocation aimed
at improving translation accuracy. As illustrated in Figure 2, the
LLM-based preprocessing step improved compilation success rates
by 78% in the training set and 57.8% in the test set.

However, there were still files which gave compilation errors
after preprocessing. We conducted a detailed analysis of the com-
pilation errors that persisted in the eight files of the test set fol-
lowing LLM-based preprocessing (dark green RHS lower part of
Figure 2). Among these, six files exhibited type mismatches between
the source code and corresponding test files, where the argument
type of the function under test differed from the arguments speci-
fied in the test assertions. These type mismatches stemmed from
limitations in the rule-based test generation process. For example,
passing arguments of type List where the method signature ex-
plicitly required an array. This caused the test case to fail. Also, two
files still had unrecognised tokens such as ‘End of Code’ at the
end of the file, which highlighted the inconsistent formatting of
the output produced by the LLM. In Section 5.3.1 we will describe



Error-Free Compilation Error Runtime Error

Figure 2: Error transitions: Top train (100), bottom test (65)
files

in detail the analysis, which we made for RQ3, of the files in the
test set with runtime errors after preprocessing.

To ensure the consistency of secondary calls, we repeated the
preprocessing stage across 5 runs and measured the preprocess-
ing success rates across the 5 runs. This was done to evaluate the
stability and determinism of the LLM preprocessor when invoked
multiple times under identical conditions. Since large languagemod-
els can exhibit variability in their outputs due to sampling-based
generation, even when given the same prompt, it was important to
assess whether the preprocessing outcomes remained consistent.
In four run on training the success rate was 78% and in one 76%.

The success rate of the LLM preprocessor for the test set re-
mained stable across all five runs, consistently achieving 57.8%.
This stability suggests that the LLM’s output was highly consistent
and free from large variation or hallucinations. We suggest this may
be partially attributed to prompt caching mechanisms employed by
OpenAI [16], which can reduce output variability when identical
prompts are reused. In contrast, the train set exhibited a slight dip
in success rate at Turn 4 before returning to the previous level.
Upon investigating the underlying cause, we identified that the
model (GPT-4o-mini) had omitted a closing parenthesis in one of
the Java files during that turn, leading to a compilation failure and
a temporary decline in preprocessing success.

In addition to evaluating error correction, we also collected sup-
plementary statistics during the preprocessing stage. Specifically,
we measured the average preprocessing time as well as the compi-
lation times before and after preprocessing. This analysis aimed to
identify any implicit performance optimisations introduced by the

Table 2: Mean time (seconds) for the Preprocessing Stage

Dataset Preprocessing Compilation
(Before Pre-)

Compilation
(After Pre-)

Train 22.17 ± 17.50 0.40 ± 0.04 0.43 ± 0.04
Test 17.27 ± 6.70 0.36 ± 0.03 0.40 ± 0.04

LLM, such as faster compilation resulting from improved or simpli-
fied code, even in the absence of explicit directives. The recorded
statistics for both the training and test sets are presented below.

As shown in Table 2, average compilation times increased slightly
after preprocessing compared to before. This is expected, as pre-
processed files compiled successfully and fully, whereas failed files
likely terminated early due to syntax or semantic errors.

In contrast, the LLM preprocessor introduced the largest time
overhead, averaging 22.17 seconds for the training set and 17.27
seconds for the test set. This disparity is expected due to the latency
involved in querying a large language model, particularly for larger
code files, which includes network communication, model inference,
and response processing. Most of the overhead stemmed from the
LLM’s compute-intensive effort to parse and correct large inputs.
Even the smaller variant such as GPT-4o-mini we used still requires
substantial computational resources to perform inference, espe-
cially under high-load conditions. Furthermore, as the preprocessor
relies on remote LLM services, overall performance is dependent
upon network stability and bandwidth; intermittent connectivity
or server-side queuing can introduce additional, non-deterministic
delays.

Key Takeaway: Secondary LLM calls proved effective in re-
solving 78% of previously non-compiling files in the train set
and 57.8% in the test set. Although resource-intensive, these
invocations of the remote LLM successfully addressed the
majority of Missing Imports and Unrecognised Tokens,
enabling the programs to reach a compilable state suitable
for APR genetic improvement-based repair.

5.3 RQ3: GI Tool’s Performance on
Transpilation Bugs

We evaluate the performance of MAGPIE in addressing transpi-
lation bugs generated by LLMs, under two distinct experimental
settings. The first is MAGPIE’s default configuration, which em-
ploys standard mutation operators (Insert, Delete, and Replace)
alongside the Uniform Concatenation crossover operator. The sec-
ond configuration adds LLM-assisted crossover. The following 2
subsections (5.3.1 and 5.3.2) present and analyse the results ob-
tained from each configuration, highlighting their effectiveness in
generating correct program fixes. As in the previous stage of our
approach, MAGPIE was executed five times, each time using the
corresponding output generated by one of the five runs of the LLM
preprocessor.

5.3.1 RQ3.1: GI Performance with Standard Strategies. We evalu-
ated MAGPIE’s performance under its default configuration on
train and test files exhibiting both compilation and runtime errors.



Table 3: MAGPIE performance using standardmutation and
crossover operators on files with transpilation bugs

Dataset Error Type Files Processed Fixes

Train Compilation Error 11 0
Runtime Error 32 0

Test Compilation Error 8 0
Runtime Error 19 0

Table 4: Runtime error types remaining after preprocessing

Error Type Number of Files

Runtime Exceeded 2
Type Selection Error 5
Logic Error 12

Our results from the 5 experimental runs show that MAGPIE’s stan-
dard mutation and crossover strategies had no measurable effect in
repairing transpilation faults across both compilation and runtime
error categories. In all cases, the evolved variants either failed to
compile or did not lead to improved program fitness.

As summarised in Table 3, it was found that running MAGPIE
with its standard configuration did not yield correct or plausible
patches to improve the fitness of the program. To understand the
limitation of the standard MAGPIE configuration, we performed
a post experimental analysis of the kind of runtime errors in the
test set. Table 4 contains our results summarised from our post
experimental analysis.

As shown in Table 4, the majority of runtime errors encountered
in the test set were logic-related. These errors stemmed from issues
such as missing method calls (e.g., .split()), missing input vali-
dation, or improper loop initialisation values. Consequently, the
outputs generated by the buggy functions deviated from the ex-
pected outputs defined in the test suite, leading to test failures. Many
of these logical errors required non-trivial corrections that were
beyond the capabilities of standard mutation operators (i.e., Insert,
Delete, and Replace) employed by MAGPIE.

However, upon manual inspection of two files exhibiting logic
errors, we observed that MAGPIE was capable of generating plausi-
ble fixes. That is, patches that improved runtime behaviour without
fully correcting the bug. To further explore this, we reran MAGPIE
for five additional iterations on these files and discovered one run
in which it successfully composed a sequence of edits that yielded
a 50% improvement in the fitness score. Despite this improvement,
the resulting patches did not fully resolve the underlying logical
bugs and would likely fail under a more comprehensive test suite.

Among the remaining error types, issues due to incorrect type
selection were prevalent. In several cases, functions intended to
return numeric values produced incorrect results due to arithmetic
overflow, stemming from the use of an incorrectly chosen data
type for storing the computed result. A notable example involved
a program calculating Fibonacci numbers: although the function
returned an integer, the 41st Fibonacci number exceeds the bounds
of Java’s 32-bit signed integer type, resulting in overflow. Such

issues were also beyond the scope of correction using standard
mutation operators.

A particularly insightful observation was that, while standard
mutation operators occasionally produced patches that enabled
previously failing test cases to pass, they often did so at the cost
of causing previously passing cases to fail. This behaviour led to
patches that increased the overall fitness score but diverged from
the goal of achieving zero failing tests.

As for the compilation errors, our analysis in Section 5.2 we
found that more than half the errors were due to a type mismatch
in the arguments of the function being tested whereas the rest
were either due to invalid tokens or missing dependencies. For
the programs with type mismatches, fixes could not be found by a
combination of Insert, Delete, and Replace operators.

We had expected errors with invalid tokens to have been resolved
by MAGPIE’s deletion operator. However, upon inspecting the XML
representation generated for this code snippet, we found that the
‘End of Code’ text was not recognised as a valid program statement.
As a result, the deletion operator could not be applied to the XML
node corresponding to the unrecognised tokens.

5.3.2 RQ3.2: GI Performance with LLM-assisted Crossover. Similar
to our findings with the Uniform Concatenation crossover opera-
tor in MAGPIE, the use of LLM-assisted crossover did not lead to
measurable improvements in any of the target files. Despite lever-
aging a large language model to guide the combination of program
mutations, the resulting variants failed to produce any fixes which
improved the fitness of the program.

A key factor contributing to this was the form in which mutation
information was provided to the model. Specifically, edits were ex-
pressed in an abstract format such as SrcmlStmtDeletion((<file
name>, <node_tag>, <numeric_location>)). While this repre-
sentation is suitable for tracking changes internally, it likely lacked
sufficient context for the LLM to meaningfully reason about the
underlying program logic or the intended effect of the mutation.

As a result, many LLM-assisted crossover attempts were effec-
tively random, producing variants that neither improved the fitness
of the program nor provided meaningful diversity. The lack of
grounding in concrete code context limited the model’s ability to
generate semantically relevant edits.

Furthermore, the LLM’s output frequently deviated from the
structured format specified in the prompting instructions. This
misalignment often caused the crossover phase to be skipped en-
tirely due to parsing failures, thereby reducing the number of valid
candidates explored.

Overall, while LLMs offer powerful language modelling capa-
bilities, their effectiveness in GI crossover tasks appears limited
without additional context.

Key Takeaway: Although we initially thought that stan-
dard mutation operators and LLM-based crossover strategies
could repair transpilation errors, our experimental results
demonstrated that these approaches were largely ineffective
at producing plausible patches.



5.4 RQ4: Effectiveness of Novel Mutation
Operators

Next we discuss our findings on the effectiveness at addressing
transpilation bugs that were either present in the original dataset
or remained after preprocessing of two novel mutation operators:
LLM-assisted Type Change (Section 5.4.1 and Boolean Value Change
(Section 5.4.2). We assess their impact on both compilation and
runtime errors and provide a critical analysis of the reasons behind
their effectiveness.

5.4.1 Performance of LLM-assisted Type Change Operator. The
LLM-Assisted Type Change Operator was highly effective in reduc-
ing compilation errors, achieving a 45% (11 → 6) reduction in the
train set and a 50% (8 → 4) reduction in the test set. Additionally,
the operator reduced runtime errors by 23% (32 → 26) in the train
set and 26% (19 → 14) in the test set. These results support our
initial hypothesis that transpilation bugs necessitate the introduc-
tion of a novel Type Change Operator. Upon further analysis, we
identified that the primary issues addressed by our operator were
Type Selection Errors and Datatype Mismatches, as discussed
in earlier sections. Notably, a closer examination of the logs for the
fixed files revealed that the fixes often involved a combination of
two or more mutations applied sequentially. Interestingly, these
individual mutations frequently had a fitness value of inf, as they
did not compile on their own. This suggests that allowing weaker
program variants to crossover, despite their inability to compile
individually, can lead to the generation of a correct fix in the con-
text of transpilation bugs. The success of the LLM-Assisted Type
Change Operator can also be attributed to the special modifications
and configurations applied to MAGPIE. Specifically, we observed
that setting the Offspring_elitism and Offspring_crossover
variables to 1.0 was crucial in enabling weaker variants to crossover
and be added to the search space. Here, Offspring_elitism refers
to the proportion of the previous population that is carried over
unchanged into the next generation, while Offspring_crossover
denotes the proportion of the previous population selected to un-
dergo crossover with randomly chosen valid parents. Without these
configurations, MAGPIE exhibited inconsistency in identifying the
correct fix, frequently exhausting its step budget before finding a
solution.

5.4.2 Performance of Boolean Value Change Operator. The Boolean
Value Change Operator did not lead to any measurable improve-
ment in the overall success rate of program repair. In several cases,
while it was able to fix some failing test cases, it introduced regres-
sions. This suggests that the operator may be too coarse-grained,
making broad changes that disrupt the program’s existing logic
rather than targeting the root cause.

The trade-off between fixing and breaking behaviour suggests
that Boolean mutations may result in overfitting to specific test
cases rather than producing generalisable fixes. As such, its ap-
plication in the context of transpilation bugs appears limited, and
further refinement would be necessary for it to be reliably useful
in this setting.

Table 5: Py2Java compilation
error types remaining after
preprocessing

Error Type Number of Files

Datatype Mismatch 20
Incorrect API Usage 5

Table 6: Py2Java runtime er-
ror types after preprocessing

Error Type Number of Files

Logic Error 9
Output Formatting 2
Type Selection Error 2

Key Takeaway: The LLM-assisted Type Change Opera-
tor was effective in addressing Datatype Mismatch and
Type Selection errors, reducing compilation errors by 50%
and runtime errors by 26% in the test set. In contrast, the
Boolean Value Change Operator was largely ineffective
at fixing transpilation bugs.

5.5 RQ5: Performance Rule-Based Transpiled
Code Py2Java

In the final stage of our research, we conducted an empirical evalu-
ation of our proposed approach on code generated by a rule-based
transpiler. Specifically, we tested the robustness of our method on
outputs produced by the Py2Java translator. Our findings showed
that Py2Java achieved a 0% success rate, where a translation is
deemed successful if the resulting Java file at least compiles with-
out errors.

This outcome is primarily due to the complexity of the pro-
grams in the Evalplus dataset, which make use of advanced Python
features and diverse data structures. The Py2Java tool lacks the
sophisticated rules required to accurately translate such constructs
into Java, and thus was unable to perform successful translations
on its own.

To further understand the nature of the failures, we manually
inspected a sample of the translations and observed common pat-
terns such as incorrect type assignments, missing class or method
definitions, and invalid syntax constructs that have no direct Java
equivalent. These observations highlight the limitations of relying
solely on handcrafted rules.

Consequently, our approach relied heavily on the secondary
LLM-based preprocessing step to resolve syntactic issues, infer
types for complex data structures, and address missing dependen-
cies. We observe that LLM-Preprocessing resulted in half of the
compilation error files being fixed, thereby proving the effective-
ness of secondary LLM calls. Since the distributions of the train
and test sets were similar, we decided to perform a manual analysis
on the test set to discover the different kind of compilation and
runtime errors leftover after the preprocessing stage. A breakdown
of the error types are shown in Tables 5 and 6.

Except for the Incorrect API Usage errors (Table 5), several of the
errors observed after preprocessing were consistent with those seen
in LLM-based translations. These specific errors arose from the use
of functions that exist in Python but have no direct equivalents in
Java, leading to compilation failures. The rule-based translator, con-
strained by its limited set of transformation rules, lacked the ability
to map such APIs across languages. Additionally, the LLM-based
preprocessor likely failed to correct these issues due to the presence



Table 7: Type-Change Operator on rule-based transpiled
code

Dataset Error Type Num Files Fixes Improvement

Train Compilation Error 32 4 12.5%
Runtime Error 23 3 13.0%

Test Compilation Error 25 5 20.0%
Runtime Error 13 2 15.3%

of multiple other errors in the same file, compounding the difficulty.
It appears that GPT-4o-mini, which we used for preprocessing, is
not capable of resolving all the complex syntactic issues within
those files.

The error distributions presented in Tables 5 and 6 differ from
those observed in LLM-based translations. We attribute this to the
fundamental differences in how type inference is handled by rule-
based versus LLM-based translation approaches. Specifically, we
observed a higher incidence of data type mismatch errors in the
Py2Java rule-based translations, largely because it tends to rely on
rigid heuristics, which often default to a single data type, such as
arrays.

When these error-prone fileswere passed through theGI pipelines,
no measurable improvement was observed with Pipelines #1 and
#2, which employed standard mutation operators and standard or
LLM-assisted crossover techniques. Additionally, even Pipeline #3
with the Boolean Value Change Operator saw no measurable im-
provement. This outcome mirrored the results previously seen with
LLM-based translations. In contrast, our pipeline incorporating the
LLM-Assisted Type Change operator demonstrated a modest but
meaningful improvement, Table 7. Specifically, it reduced the num-
ber of runtime error files from 23 to 20 in the train set and from 13
to 11 in the test set, primarily resolving errors related to type issues
that caused arithmetic overflows. Regarding compilation errors,
the Type Change operator reduced the number of erroneous files
by 4 on the train set and 5 on the test set. These corrected files
predominantly involved type mismatches between the source code
and its corresponding test cases. A summary of these results is
presented in Table 7.

Further analysis revealed that out of the 20 files in the test set
affected by type mismatch errors, only 5 were successfully repaired.
This limited success was due to dependencies within the code that
relied on the original argument types. For example, while changing
a test case argument to the correct type (e.g., from List to an array)
resolved the immediate mismatch, however subsequent statements,
such as the use of the get() method, became invalid, introducing
new errors.

KeyTakeaway: Our approach yielded similar results on rule-
based translated code as it did on LLM-translated code, both
showing a reduction in compilation errors after preprocessing,
and further reductions in both compilation and runtime errors
following GI-based repair with the LLM-assisted Type Change
Operator. However, the Type Change Operator achieved only
20% reduction in compilation errors and 15.3% in runtime
errors.

6 Conclusion
The cost of refactoring can be horrendous in both time and money.
Even a single project moving a code base between well known
industry standard languages can run into hundreds of millions of
dollars and take multiple years. This is well known but modern
artificial intelligence techniques, such as Large Language Models
(LLMs), unaided, cannot be trusted with computer program refactor-
ing. Yet this is the first time LLM have been combined with Genetic
Improvement for program source-to-source transpilation. Our re-
sults are based on state-of-the-art LLMs (OpenAI’s commercial
GPT-4o-mini) and genetic improvement tools (open source Magpie).
With widely used datasets (EvalPlus), we found our novel genetic
operations gave a 33% increase in error free files for LLM-based
translations and a 18% increase for rule-based translations.
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