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Abstract
We use evolution to speedup the Single Instruction Multiple Data
(SIMD) parallel interpreter for Peter Nordin’s linear genetic pro-
gramming GPengine. MAGPIE (Machine Automated General Per-
formance Improvement via Evolution of software) is provided with
existing hand-optimised source code, its revision history and the
Intel 256 bit SSE intrinsics documentation as XML. Fitness is mea-
sured via perf’s hardware instruction count, while validity and
safety are enforced through systematic test cases and memory
sandbox protection via Linux mprotect. In a matter of hours local
search discovered small, non-obvious program modifications that
improve the performance of 128 lines of SIMD C++ code by 2%,
without sacrificing correctness. We see genetic improvement can
effectively exploit Intel Advanced Vector Extensions (AVX) par-
allelism, automatically refining complex code that is difficult for
human developers to optimise reliably.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; Genetic programming; • Software and its engineer-
ing → Search-based software engineering.
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1 Introduction
Often in modern computer hardware there are vector operations
which can process multiple data items in parallel. For example,
some Intel 256 bit SSE instructions allow 32 8-bit numbers to be
processed simultaneously. More powerful Intel servers also support
512 bit AVX instructions. Since our 3.4 GHz i7-6700 supports SSE
and we use GPengine with 8-bit byte data [17], during manual
development we tried to use the 256 bit SSE intrinsics available to
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C++. However this proved difficult and manual development was
initially abandoned.

Although it has long been obvious that the future of computing
hardware is parallel, the software tools to support general program-
ming on parallel hardware are lacking and fully automatic parallel
programming has not been obtained. Instead manual parallel pro-
gramming remains hard and calls for specialist programmers.

Rather than relying purely on manual effort, Conor Ryan [37, 43]
suggested the use of search based tools in the form of genetic
programming [13, 36] to aid the generation of parallel code. More
recently Genetic Improvement (GI) has been used to speed-up [6]
production parallel code (e.g. SSE [26] and CUDA [22, 25]) and even
to improve evolutionary computing itself (EC to improve EC! [5]).
For example, GI was used to speed up two different traditional tree
genetic programming systems: Beagle puppy [31] and GPquick [14].
Here we apply Magpie to the performance critical component of
linear genetic programming, towit GPengine’s interpreter. For our
Mackey-Glass experiments [17], GPengine needs to support eight
bit, addition, subtraction, multiplication and (protected) division.

Genetic programming interpreters need high performance [15]
but also require operations to be “protected” [13]. In particular
they need to protect division by zero and so protected division by
zero is often defined to give a result: 0, rather than, for example,
throwing an exception. This simple way of protecting division
causes implementation problems with parallel vector instructions
SIMD [12, 21, 42] which require all data to be treated in the same
way. In the manually written SSE interpreter this was eventually
resolved by replacing actual division by looking up the answers in
a 256 by 256 (8-bit by 8-bits, 65 536) table of precomputed results.
Since the look up table involved complicated indexing operations,
it was far from clear that the manual code was optimal and so it
was initially abandoned in production [17]. Therefore in Section 2.1
we turn to Genetic Improvement. The GI improvements we found,
together with those in [16], have now been manually incorporated
into the parallel version of GPengine [17].

The next two sections describe the history of our target software:
GPengine and then our “out of the box” use of Magpie, particularly
setting up the C++ sources it is to optimise as XML files, test cases
for a simple program interpreter and sandbox hardening the fit-
ness function. Section 3 describes the general code improvements
found and Magpie’s performance, which is further discussed in
Section 4. In Section 6 we conclude that Magpie can find correct
and useful parallel SIMD speed-ups which exploit the available SSE
instructions.

https://github.com/bloa/magpie
https://doi.org/10.1145/3786162.3793233
https://doi.org/10.1145/3786162.3793233
https://creativecommons.org/licenses/by/4.0
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2 Experimental Design
In this section, we present the experimental design followed in this
study.

2.1 Target System and GI Framework
2.1.1 GPengine. We investigate the genetic improvement of GPengine.
GPengine was provided by Peter Nordin, who wrote the commer-
cial linear genetic programming system Discipulus [10, 35]), used
in our earlier work [20, 29]. It is a simple clean C++ implementation
of linear GP and seemed ripe for conversion to modern parallel
computing.

2.1.2 Genetic Improvement Framework. Magpie1 [4] is a develop-
ment of PyGGI [11, 38] but is language independent. Released by
Aymeric Blot in 2022.

As for setting upMagpie, we present the defaults and the scenario
File. Magpie’s local search [3, 40] with 100 000 steps was used on
three C++/XML source files (see next section). The XML edits were:
SrcmlArithmeticOperatorSetting, SrcmlComparisonOperator
Setting, SrcmlNumericSetting, SrcmlRelativeNumericSett-
ing, SrcmlStmtDeletion, SrcmlStmtInsertion, SrcmlStmt
Replacement, XmlNodeDeletion<stmt>, XmlNodeInsertion
<stmt,block>, XmlNodeReplacement<stmt>. OtherwiseMagpie
defaults (e.g. time outs) were used.

2.2 XML: Documentation, Revision History
and Manual Code

srcml2 version 1.0.0 was used to automatically create three XML
files: IntrinsicsGuide.cpp.xml, diffs.cpp.xml and eval.cpp.xml. The
first two are read only and are used as feedstock for Magpie, whilst
the last contains the GPengine interpreter (i.e. the target SUT itself).
Magpie modifies eval.cpp.xml and from the new XML it generates
a mutated version of the eval.cpp C++ code, which it attempts to
compile and run on four test programs.

2.2.1 Intel IntrinsicsGuide. IntrinsicsGuide.txt3 documents Intel’s
C++ runtime library to support its AVX instruction set4. It is plain
text and was automatically converted into C++ code. For example,
the sixteen by 16-bit pabsw instruction is documented as

__m128i _mm_abs_epi16 (__m128i a) which is automatically
converted to the C++ code __m128i a = _mm_abs_epi16 (a);

Also _MM_SHUFFLE was included, via the following code:
unsigned char a = _MM_SHUFFLE (z, y, x, w);

Comments and assert statements were removed and then srcml
was used to generate XML. IntrinsicsGuide.cpp contains 3 393 dec-
larations, such as __m128i a = _mm_abs_epi16 (a); and 211
direct library calls, for example:
1Downloaded 30 Sep 2025 https://github.com/bloa/magpie.
2srcML https://www.srcml.org/ is a popular tool for analysing the syntax of computer
programming languages, such as C, C++ and Java. Like a compiler, it generates an
Abstract Syntax Tree (AST), which describes the syntax of the source code. But instead
of compiling the code, srcML generates an XML description of the AST. Magpie, along
with many other tools, can manipulate the XML, e.g. editing it to copy, move or delete
subtrees within the AST, and then create a new program from the modified XML. By
respecting the AST tree structure, many mutated program are syntactically correct,
and many compile and are runable Section 3.4.
3https://software.intel.com/sites/landingpage/IntrinsicsGuide/# 26 Jan 2017
4 512 bit operations, which are not supported by our “skylake” i7-6700 CPU, are
ignored.

_mm_mask_compressstoreu_epi32(base_addr,k,a);

As IntrinsicsGuide.txt is highly repetitive it gives a large but reg-
ular XML file which lacks diversity. In particular it contains no C++
comparison operators or simple statements. Therefore, there is noth-
ing for XML edit operations SrcmlComparisonOperatorSetting
or SrcmlStmtInsertion to operate upon. Unfortunately when
Magpie randomly choose either and IntrinsicsGuide.cpp.xml, it
found no suitable target and aborted. To avoid this, we appended
the dummy code if(a==a) {a=a+1;}, which contains both a com-
parison, ==, and a statement, a=a+1;.

2.2.2 GPengine Revision History. Although it is quite common for
software engineering experiments to consider commits and revision
metadata, this seems rare in genetic improvement [9, 28]. During
manual development of the AVX version of GPengine’s interpreter
24 snapshots had been saved into RCS [41] over 10 days

Each change was automatically extracted and split into individ-
ual changes (89 in total, 1–54 lines each, median 1). Comments
and assert statements were again removed and empty files were
removed leaving 69 C++ files of between 1 and 51 lines (median 2).
These were concatenated in order, giving a single C++ file composed
of the individual fragments. srcml was again used, creating a single
file, diffs.cpp.xml, holding all the code changes as XML. Again Mag-
pie is forced to treat diffs.cpp.xml as a read only store of potentially
useful code fragments which it can incorporate into the evolved
interpreter and the functions it calls. Like IntrinsicsGuide.cpp.xml
(above), this is enforced by the fitness function rejecting illegal code
changes before Magpie is allowed to compile the modified code.

2.2.3 GPengine Interpret16. Interpret16 and its six supporting func-
tions were extracted from the GPengine’s C++ source code, com-
ments and assert statements were removed leaving 128 lines of
code. Then srcml was run to give eval.cpp.xml.

2.3 Magpie Fitness Function
Asmentioned above, the first part of the fitness function is to inspect
the modified C++ sources and reject Magpie edits that try to impact
read only code (i.e. IntrinsicsGuide.cpp and diffs.cpp, Tables 2 and 3).
Magpie now supports read only ingredient_files and so these
checks are no longer needed. At the same time, after warmup, XML
changes which make no difference to the source code, e.g. replace
a value with an identical value, are also rejected.

For simplicity, the evolved code is compiled with the test harness
as an #include file. We use the GNU C++ compiler (version 11.5.0),
with optimisation -O3, -fmax-errors=1 and for our version of AVX
(-march=skylake). Changes which failed to compile are rejected
(refer to Tables 3 and 4).

2.4 Creating Test Cases, Four Random
Programs

We randomly create four linear GPengine programs each composed
of four instructions presented in Figure 1. Each is given 16 test
cases to be processed in parallel, i.e. 64 test cases in total. As we
anticipated that protected division would be the most problem-
atic, we insist that all four programs start with division. The three
remaining instructions in each program are selected at random.
However in the third program we insist, that in total across all

https://github.com/bloa/magpie
https://www.srcml.org/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
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Table 1: 16 test input x,y pairs for each of the four test programs. protected division rows show output of each 0th instruction.
Figure 1.

Program
1 x = R4 170 255 243 221 150 130 255 154 4 200 96 17 232 202 99 213
1 y = R6 0 1 1 5 2 0 1 1 40 0 122 0 1 0 0 0
protected division x/y 0 255 243 44 75 0 255 154 0 0 0 0 232 0 0 0
2 x = R5 111 255 53 20 28 216 20 169 116 63 160 248 217 82 255 255
2 y = R7 0 1 0 189 127 2 79 1 0 0 2 236 8 0 1 1
protected division x/y 0 255 0 0 0 108 0 169 0 0 80 1 27 0 255 255
3 x = R4 166 118 130 125 255 250 255 205 198 11 224 191 246 130 91 240
3 y = R2 0 0 1 112 1 3 1 0 1 0 3 25 128 3 0 2
protected division x/y 0 0 130 1 255 83 255 0 198 0 74 7 1 43 0 120
4 x = R7 232 28 130 216 12 231 227 196 115 186 151 161 219 204 57 185
4 y = R3 0 54 1 2 171 2 2 125 0 1 0 0 0 0 32 2
protected division x/y 0 0 130 108 0 115 113 1 0 186 0 0 0 0 1 92

Program Instruction
1 x = R4 y = R6 0 R6=R4/R6

1 R6=R6/93
2 R6=R4*32
3 R6=R6+74

2 x = R5 y = R7 0 R0=R5/R7
1 R2=R5/116
2 R5=R7+18
3 R4=R5/128

3 x = R4 y = R2 0 R2=R4/R2
1 R7=R2-105
2 R5=R2+75
3 R1=R2+24

4 x = R7 y = R3 0 R2=R7/R3
1 R0=R3*R7
2 R5=R7/73
3 R3=R2*118

Figure 1: Four GPengine test programs each with four in-
structions

four programs, there is at least one of each of the four possible
arithmetic operations (+ − × and protected division).

GPengine’s instructions comprise an opcode (+ − × or /), an
output register and two inputs. One input is always a register and
the second is either a constant or a register. There are 8 registers.
For each of the four programs we choose uniformly at random two
input registers and an output register. The first instruction uses as
input the two input registers and uniformly at random chooses its
own output register. All three registers are randomly chosen and
so are free to overlap.

The second and third instructions similarly randomly choose
their output registers. However, they are forced to choose their
input registers from registers with known values, i.e. those previ-
ously written to or the two program input registers. However the
opcode’s second input is chosen like GPengine does, i.e. a fraction
(20%) are one of these registers with a known value and the rest are

constants (uniformly chosen from the range 0 to 127). The last in-
struction is the same, except its output is forced to be the program’s
chosen output register.

2.4.1 Creating Test Cases, Edge Cases and Uniform Output Distribu-
tion. Care was taken with the first instruction’s (protected division)
data values. The results of that instruction may be propagated to
the remaining three instructions. Originally, to force execution of
all paths, we force division by zero uniformly at random for half
the data as presented in Table 1. Half the remaining 50% are chosen
to force edge cases. One in eight pairs of input values are chosen to
give output of 0, of 1, of 255 and a random value between 1 and 255.
The remaining four in eight (i.e. 25% of all test cases) are chosen
to give an output uniformly chosen between 2 and 127, cf. [33].
Figures 2 and 3 in [16] show examples of distributions of inputs
and outputs.

2.4.2 Sandboxing using memory protection (Linux mprotect). “Sand-
boxes” are techniques to limit the damage that running random
code might cause. By default Magpie provides some limited protec-
tion against evolved code running amok. These are chiefly; timing
out evolved code that is stuck in indefinite loops and by running
it in a separate process and thus taking advantage of the operat-
ing system’s protection. Note eval.cpp does not contain file I/O
statements or system calls, which also limits the scope for damage.

Early eval_avx experiments showed mutant code writing to ar-
ray index -1, i.e. outside the legit range of the array, which C++ does
not forbid (it is undefined). Early grammar based GI approaches
enforced array bound checks, common in modern programming
languages but absent from C++ [14]. Therefore we use Linux mpro-
tect (Figure 2) to provide guards around data which is given to
the evolved code. It appears that this is the first time the mprotect
mechanism has been used with Genetic Improvement.

Inorder to measure the evolved code’s performance, the C++ test
harness calls the mutated function Interpret16(). Interpret16() has
five arguments: the length of the program, the program itself, its
inputs/outputs (using two arrays, an unsigned char array and
an int array), and the protected division lookup table, i.e. in total
a scalar and four arrays. Linux (Rocky 9.6) mprotect works on
4KB memory pages. Each of our four arrays is forced to start at a
4KB boundary (Figure 2). Either side of each array the test harness
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PROT_NONE 4KB

PROT_NONE 4KB

registers 0x5a

Figure 2: To detect many array indexing errors, the I/O regis-
ters are surrounded by 4K byte buffers where either read or
write access will cause an illegal access violation SegFault.
As the registers do not fill a 4KB window, the excess bytes
are padded with 0x5a (i.e. 90, Z, 4 bits set 4 bits clear). Af-
ter running the mutant, the test harness checks the padding
has not been disturbed. The division look up table and the
program are similarly surrounded by 4KB guards and inad-
dition made read only (PROT_READ).

declares empty 4KB arrays, which it uses mprotect to disable any
access to. Thus if the evolved code attempts to access array element -
1, it will try to access memory in one of the protected 4KB guard
regions and the operating system will issue a segmentation error
(SegFault), and the test harness will be aborted and Magpie will
treat this as a failure to set a fitness and move on to generate the
next code mutation. Also the pages holding the program and the
lookup table are protected to allow only read access. To simplify
the test harness, and avoid a SegFault on main() return, rather
than undoing all the mprotect calls, the test harness simply uses
the Linux process exit routine directly.

Neither I/O register array (reg and registers) fill a complete
4KB window. Therefore they are both padded up to 4KB and the
unused memory is loaded with a non obvious data pattern. The
same pattern is loaded into all the registers except those holding the
test program’s inputs. After each time the evolved code finishes, the
test harness checks that the padding pattern has not been changed.
Obviously this cannot check if a mutation read memory inside the
4KB window it should not have, but write access is likely to be
detected (Status 2 in Table 5). Like SegFaults this is treated as a
fatal error, the test harness stops immediately and Magpie does not
assign the mutant a fitness.

This protection seems to be good enough. However, it is not
100% fool proof. For example, it only protects memory address,
not array indexes. The test programs and the protected division
lookup table are multi dimensional arrays and so have multiple
indexes; any small misuse of these is liable to incorrectly access
a different part of the array, which to the operating system, will
appear as a legitimate address within the array and no SegFault
will be issued. Similarly a large addressing error may step over the
4KB protection windows, possibly into an unprotected random part
of the test harness.

Table 2: Mean out come of 100 003 mutants across five Mag-
pie runs

Magpie cache 27 062 Section 3.2
diffs.cpp failed 25 196 Sections 2.2.2 and 3.4, Table 3
IntrinsicsGuide.cpp failed 21 112 Sections 2.2.2 and 3.4, Table 3
Compilation error 15 115 Section 3.4, Tables 3 and 4
Run time error 5 962 Sections 2.3 and 3.6, Table 5
All tests past 5 549 Section 3.1
RUN_TIMEOUT 3.2 Section 3.6
WARMUP 3 Section 2.3
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Figure 3: Best fitness in 5 Magpie runs (fewer instructions is
better). Log x-scale

2.5 Measuring speed
The evolved code is free to put its answer in either of the arrays
(reg or registers) corresponding to the randomly chosen output
register (see above). Only this register is checked. In any optimi-
sation we need to define a fitness in all circumstances. However,
as we use Magpie’s local search, if any of our mutants incorrectly
calculates any output, the mutation will not be accepted.

Previously Blot [2, 5], ourselves [18, 19, 23, 24, 30] and Bouras
et al. [7] have used Linux perf to gather statistics on run time
(https://github.com/wblangdon/linux_perf_api). In particular, here
we use perf’s instruction count as it is far less noisy than elapsed
time.

3 Results
Table 2 summarises the outcome of the five Magpie runs. The next
section describes in detail the fastest of the (average of) 5 549 correct
mutants per run.

3.1 Code Changes and Fitness Improvement
Figure 3 shows the evolution of the best fitness, i.e. the sum of
the number of instructions used by the four test programs in five
independent runs. Surprisingly three runs found the same solution,
with one other finding only the first part of it and the last extending
it, see Figures 4 and 5.

https://github.com/wblangdon/linux_perf_api
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SrcmlComparisonOperatorSetting((eval.cpp.xml, operator_comp,

3), >=) | SrcmlNumericSetting((eval.cpp.xml,number,92), -1)

XmlNodeInsertion<stmt,block>((eval.cpp.xml, _inter_block,

87), (eval.cpp.xml, stmt, 75))

Figure 4: Best solutions. Top: the common Magpie patch
takes 965 instructions to execute the test cases. All
runs found this solution (except run 4 did not find the
SrcmlNumericSetting edit). It comprises two edits (separated
by vertical bar |). SrcmlComparisonOperatorSetting replaces
operator_comp number 3 which is a == by a >=. This was
found first and saves one instruction. The second replaces
number 92 (which is 255) by -1 and saves a further 16 instruc-
tions. Bottom: Run 5’s additional edit XmlNodeInsertion
copies statement 87 (c = _mm256_mullo_epi16(a,b);) and in-
serts it at statement 75. It saves one instruction.

Figure 5: Best solution makes three C++ code changes (see
also Figure 4 and Section 3.1). The first is in Interpret16() at
top of the for loop which steps through the program. The
second is in function InstrReg16(), which is called by Inter-
pret16() for each of the non division opcodes. The last is at
the start of Interpret16()’s non-division code.

The mutations and their speed ups are described in Figures 4
and 5. We can see that not only are the code changes valid but their
impact can be explained by examining the C++ source code:

For the first Magpie edit, since div_op is the largest opcode, re-
placing an equality test by a ≥makes no difference to the Instr[i][2]
vs. div_op comparison, nevertheless the edited code is faster.

The second Magpie edit replaces 255 (0xff) by -1 (0xffffffff) and
so appears to make mask useless, as now all its bits are set (mask
is intended to ensure inputs to the non division opcodes are byte
sized). The compiler appears to have recognised this and optimised
it away [39]. However the non division opcodes are followed by a
sequence of moves and masks which truncate their 16-bit answers
back to 8-bits. Hence the edit speeds the code up without damaging
it.

The third edit copies a statement from later in the same section
of code. It writes an initial value into variable c but all subsequent
paths also write to c (including the copied one), so the new as-
signment has no effect. It appears the optimising compiler takes
notice of the two identical writes to c and reduces the number of
instructions by one (fitness improved from 965 to 964).

The peak speed of the evolved GPengine interpreter (excluding
crossover mutation etc.) is 4 × 4 × 16 × 3.40GHz/964 = 903 million
GP operations per second (903 MGPops−1), i.e. 2% faster.
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fitness □, Figure 3, uses ≈1 fewer edits, whilst at the end the
best run 5 (solid line) uses ≈1 more.

3.2 Size of XML Edits; Number of Mutations
In our five runs, 27% of Magpie mutations are not new but instead
Magpie is trying again a mutation and so does not recalculate
its fitness but instead pulls it from its cache (top row in Table 2).
Excluding those cached, mutations typically contain between 1 and
7 individual edits (peak at 3) with on average Magpie concentrating
90% of its new trials on the most popular lengths (typically 2–4
edits).

Figure 6 shows the average length of Magpie edits as it searches.
Figure 6 includes Magpie’s use of its cache but the data are split
into mutants which failed (top) and those which ran and produced
the right answers (+). The local search strategy appears to give
rise to most additional edits (i.e. increase length by 1) failing either
compilation or run time checks (top lines in Figure 6).

The fact that the difference between top and bottom lines (+) in
Figure 6 is approximately 1.0, is because of Magpie’s local search
strategy, which both randomly adds and deletes edits from its active
search point. As our edits appear to be somewhat independent,
random removal is likely to yield a viable mutant (lower lines in
Figure 6), whereas a random additional edit is liable to fail (upper
lines in Figure 6).

3.3 Success of XML File Mutations
Table 3 shows, as expected, on average across the five runs, approx-
imately a third of new edits impact each of the three XML files. As
explained above in Section 2.3, attempts to change the revision his-
tory and the documentation (two lower rows) are rejected. About
25% of changes are internal to each XML file and about 5% each
bring changes from the other two files. Almost all new edits are
rejected before or during runtime.

In total 7.5% of edits change only the target source code, eval.cpp,
compile, run without aborting and give the right answers (2nd
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Table 3: Source (columns) and destination (rows) of XML
changes. Mean percentages across five runs. Note all at-
tempts to change diffs and IntrinsicsGuide are rejected
(“err”). 7 500 Magpie mutations are valid (row “valid”).

eval.cpp diffs Guide total
eval.cpp err 19.6% 4.4% 4.8% 28.9%

valid 6.7% 0.7% 0.1% 7.5%
diffs err 4.9% 24.8% 4.9% 34.6%

Guide err 4.7% 4.9% 19.4% 29.0%

“valid” row in Table 3). Although one tenth of “valid” edits draw
on the revision history (diffs) and about 1% come directly from
Intel’s documentation (IntrinsicsGuide), no change from either is
incorporated into any of the best solutions found (Figures 4 and 5).

3.4 Compilation Errors
Table 4 gives the compilation errors encountered in five Magpie
runs. It shows most compilation errors are related to problems with
variable names (id). Only about 9% are due to syntax errors.

The compilation process (including checks that the Magpie edits
have not tried to change IntrinsicsGuide.cpp or diffs.cpp, Section 2.3
above) never timed out. Typically it takes less than 2 seconds.

3.5 IntrinsicsGuide.cpp.xml Transplantation
Errors

Section 3.3 (see “diffs” and “Guide” columns in Table 3) shows
almost all (≈99%) edits which try to transplant code from Intel’s
AVX library fail to compile. Commonly this is because variable
names transferred with the example library function call either do
not exist (e.g. “error: k was not declared in this scope”) or clash
with existing usage (e.g. “error: conflicting declaration __m128 a”).

It seems our text based conversion to XML is too simplistic.
Transplantation work by Alexandru Marginean [1, 32] showed
that search in the form of genetic programming can be used to
fix up variable name differences between the donor code (here
IntrinsicsGuide or diffs.cpp) and the host (eval.cpp). Alternatively,
earlier work [14, 27, 28] automatically extracted type information
from the Intel documentation and incorporated it into a grammar
and used the grammar to enforce type constraints.

3.6 Runtime Errors
Table 5 gives a summary of errors detected after compilation during
fitness testing in five Magpie runs. Most run time errors (81.9%,
status 1, first row of Table 5) are caused by mutants returning one
or more wrong answers. 15.9% (status 139) of run time errors are
SegFaults, some of which are illegal reads or writes detected by
mprotect (described above in Section 2.4.2). SIGABRT and SIGEMT
are described in Table 5. The 166 status 2 errors indicate illegal
writes by mutants (described in Section 2.4.2). It appears that the
81 SIGILL errors are not due to AVX-512 instructions, which are not
supported by our skylake CPU, but due to mutations of arguments
in existing 256 bit AVX (skylake compatible) code.

Table 4: 75 574 Compilation errors across five runs by type

33651 44.53% id was not declared in this scope
15571 20.60% id was not declared in this scope; did you mean id?
8698 11.51% conflicting declaration id
4821 6.38% redeclaration of id
3836 5.08% expected primary-expression before ? token
1908 2.52% invalid type argument of unary ? (have id)
1258 1.66% id without a previous id
1223 1.62% lvalue required as decrement operand
879 1.16% cannot convert id to id
815 1.08% break statement not within loop or switch
790 1.05% expected primary-expression before id
776 1.03% cannot resolve overloaded function id based on con-

version to type id
365 0.48% the last argument must be scale 1, 2, 4, 8
203 0.27% cannot convert id to id in return
181 0.24% cannot convert id aka id to id
152 0.20% unterminated #ifndef
99 0.13% jump to case label
79 0.10% narrowing conversion of nnn from id to id

[-Wnarrowing]
75 0.10% #endif without #if
50 0.07% invalid types id for array subscript
47 0.06% inlining failed in call to id: target specific option

mismatch
30 0.04% decrement of read-only variable id
26 0.03% assignment of read-only variable id
24 0.03% declaration of ‘retval reg [512]’ shadows a parameter
12 0.02% the last argument must be an 8-bit immediate
3 0.00% invalid operands of types ‘int [16]’ and id to binary

‘operator*’
2 0.00% could not convert id to id

Table 5: 29 810 run time errors across five Magpie runs

Status fraction
1 24 419 81.9% Ran ok but gave erroneous outputs

139 SIGSEGV 4 746 15.9% SegFault
134 SIGABRT 396 1.3% Deleted return (e.g. in InstrReg)

corrupted test harness so assert
failed [8]

2 166 0.6% Forbidden write outside reg
132 SIGILL 81 0.3% Illegal Instruction
RUN_TIMEOUT 16 54 10−5 Exceed 30 seconds
135 SIGEMT 2 7 10−5 Perhaps index error with reg

There are almost no runtime time outs. On average only 3.2 of
Magpie’s 100 000 mutations per run were timed out at run time (the
default 30 seconds was used). Nevertheless, for example, a time out
was caused by a mutation editing the support function InstrArg to
call itself, giving rise to an infinite recursion. Note without a time-
out, such an infinite loop would have caused the whole Magpie run
to fail.

4 Discussion
Next, we present a discussion based on our experimental results.
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4.1 Testing
Even with Magpie’s cache, on average it takes 0.5 seconds to gener-
ate, check, compile and test each mutant. Most of this is consumed
by the optimising compiler. In contrast running the fitness test har-
ness typically takes about 5 milliseconds, although a few erroneous
mutants take much longer. Both compilation and test harness time
could be reduced further by re-organising so that only changed
code is compiled and run for each mutation (Section 2.3). However
this would not eliminate Magpie overheads, particularly of creating
and checking the mutants.

4.2 Test Suite Effectiveness
Although we test only four short randomly created GPengine pro-
grams (Figure 1), with 4×16 = 64 x,y pairs of inputs (Table 1), these
are responsible for eliminating 82% of erroneous mutants (top of
Table 5). It seems the forced use of all paths through the interpreter,
and the use of both input and output edge cases and a wide range
of output values [33] has been effective at ensuring mutants which
pass the test cases are indeed correct.

4.3 mprotect
The Linux mprotect system routine gives a runtime efficient way
of eliminating a small fraction of badly behaving C++ mutants.
However Table 5 contains 396 assert failures, which detected cor-
ruption within the test harness (not the evolved code). Although
Table 5 also shows 4746 SegFaults, the assert failures suggests
mprotect is not fully effective. In principle mprotect could be ex-
tended to cover all of the test harness but this raises of the practical
issues of turning it off again, without causing a SegFault, when
the mutated code returns control to the test harness and making
reasonable assumptions about how the optimising compiler will
layout its use of memory. Nevertheless the mprotect windows ei-
ther side of critical data structures appears to efficiently detect 90%
of array index corruption issues without impacting measurement
(by perf) of elapsed time.

5 Threats to Validity
Internal Validity. We performed five independent Magpie runs.
All runs produced performance improvements. Together with con-
sistent results from closely related AVX-512 experiments [16], this
reduces the likelihood that this is just chance. Correctness is en-
forced through compilation checks, functional test cases, and run-
time sandboxing using Linux mprotect. While this combination is
effective, it cannot detect all forms of undefined behaviour in C++,
such as subtle out-of-bounds reads within valid memory pages.
Nevertheless, the large proportion of mutants rejected due to in-
correct outputs suggests that undetected faults among accepted
mutants are unlikely.

Construct Validity. Wemeasure performance using Linux perf
instruction counts, which are less noisy than wall-clock time and
commonly used in genetic improvement studies. However, instruc-
tion count does not capture all performance factors, such as cache
behaviour or memory bandwidth. The reported 2% improvement
therefore reflects reduced instruction count under the tested con-
ditions, rather than guaranteed reductions in elapsed time for all

workloads. Fitness is evaluated using four short, randomly gener-
ated GPengine programs designed to exercise all interpreter paths
and edge cases. While effective for correctness checking, these
programs may not fully represent the instruction mix or memory
behaviour of larger or more complex workloads.

External Validity. The experiments were conducted on a sin-
gle hardware platform, compiler, and interpreter configuration, so
results may differ on other architectures or toolchains. In addition,
the target system is a SIMD-based linear genetic programming
interpreter, and the results do not directly generalise to arbitrary
software. Nevertheless, the discovered changes are small, com-
prehensible, and reusable, and have already been integrated into
GPengine, supporting their practical relevance.

ConclusionValidity. The observed improvement ismodest (2%)
but the interpreter is a core bottleneck executed at very high fre-
quency in large GP runs. Replication across multiple runs, determin-
istic measurement, and consistency with follow-up experiments
support the reliability of the results.

6 Conclusions
At presentMoore’s Law [34] continues to increase computing power
by increasing the degree of parallelism. However, although the im-
portance of parallel programming has long been recognised, in
general efficient programming of vector computing remains almost
impossible for the ordinary human programmer. Nevertheless in
about 14 hours, Magpie found small compact non-obvious, com-
prehensible, correct and reusable improvements (Figure 5) to per-
formance critical parallel vector code, which had taken well over a
week to write by hand. The Linux tools mprotect and perf worked
well, giving efficient, clean and stable performance measures, lead-
ing to code changes we can be confident in. The automatically
evolved code improvements (plus AVX512 experiments [16]) were
easily integrated into GPengine. This enable linear genetic program-
ming runs of 100 000 generations. Which were needed for long term
evolution experiments (LTEE) of continued fitness improvement.
They also give insights into software robustness and information
theory [17].

Data Availability: XML files and test suites are available via
https://github.com/wblangdon/GPengine_eval_SSE256 (TheAVX512
versions for [16] are in https://github.com/wblangdon/GPengine_
eval_AVX512.)
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