
GI-Agent Search-Based LLM Agent for
Code Optimization with Genetic Improvement

Donghyun Lee, William B. Langdon and Justyna Petke
lukeleeai@gmail.com,w.langdon@cs.ucl.ac.uk,j.petke@ucl.ac.uk

Computer Science, University College London, Gower Street, WC1E 6BT, London
United Kingdom

Abstract
GI-Agent integrates Large Language Models (LLMs) into Genetic
Improvement (GI) to autonomously optimise computer program
source code. GI-Agent uses an LLM to allow multi-generational
evolutionary learning. Guided by a memory of past actions, known
in AI as reflections, it exploits them to give insight and rationale
behind software edits, giving better context-aware, less stochastic,
mutations and crossovers. Reflections enable GI-Agent to reason
about both earlier compile time and runtime successes and failures,
and so refine its strategy over time. Integrated into the Magpie GI
framework and evaluated on the SAT4J (Java) and MiniSAT (C++)
benchmarks, GI-Agent consistently generates more viable and bet-
ter variants. By combining few-shot prompting with structured
search, GI-Agent demonstrates how LLMs can enhance automated
program optimisation.

CCS Concepts
• Software and its engineering → Search-based software en-
gineering.

Keywords
Artificial Intelligence (AI), Chain-of-Thought, LangChain, OpenAI
GPT-o3 Mini, SBSE, Evolutionary Computing, Genetic Program-
ming, Lamarck multigenerational learning, Linux perf.

ACM Reference Format:
Donghyun Lee, William B. Langdon and Justyna Petke. 2026. GI-Agent
Search-Based LLM Agent for Code Optimization with Genetic Improvement.
In 15th International Workshop on Genetic Improvement (GI ’26), April 12–
18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3786162.3793232

1 Introduction
We investigate a compelling proposition: the potential for Large
Language Models (LLMs) to serve as agents for search-based code
optimization that learn from successive genetic improvement (GI)
generations. We propose a novel agentic framework, GI-Agent for
iteratively evolving program source code for optimization. GI-agent
generates multiple code variants, evaluates their performance, re-
flects on the factors contributing to success or failure, and applies
these insights to refine subsequent GI mutations and crossovers.

This work is licensed under a Creative Commons Attribution 4.0 International License.
GI ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2394-0/2026/04
https://doi.org/10.1145/3786162.3793232

2 Literature Review
2.1 Genetic Improvement (GI) Applications in

Software Engineering
Bruce et al. [5] showed that genetic improvement (GI) can be suc-
cessfully applied to reduce energy consumption in software systems,
they used GI techniques to optimize runtime efficiency. Petke et
al. [22] employed GI to enhance the performance of the MiniSAT
solver (Section 5), demonstrating its utility in refining existing soft-
ware tools. Beyond CPU-based systems, Langdon et al. [13, 14]
extended GI to GPU software, improving CUDA-based DNA anal-
ysis and medical imaging tools and showing GI’s scalability to
parallel computing environments. Recent work by Wang et al. [9]
and Bouras et al. [3] has demonstrated the potential of using Large
Language Models (LLMs) to guide genetic operations, specifically,
mutation and crossover, showcasing their promise in finding effec-
tive speedup patches.

2.2 Large Language Models (LLMs) and
Search-Based Software Engineering

The fusion of LLMs with SBSE has emerged as a promising avenue
for enhancing automation and optimization in software develop-
ment. For example, Gao et al. [25] propose a hybrid approach that
integrates genetic algorithms (GAs) with LLMs for code optimiza-
tion. Their GA finds optimization patterns, which their SBLLM
retrieves (using a Retrieval-Augmented Generation (RAG) LLM
[17]) and applies them by using an LLM to mutation and crossover
operations. However, their method lacks a fitness feedback loop for
the LLM-generated transformations, relying instead on the retrieval
process to navigate the search space. Kang and Yoo [11] presented
a proof-of-concept where an LLM serves as a mutation operator.
While Haraldsson [7] extend this idea to automatic program repair
(APR), using LLMs for both mutation and crossover operations.
Brownlee et al. [4] incorporate few-shot LLMs as a subroutine for
mutation in GI. Also Lemieux et al. [16] propose CODAMOSA, a
hybrid SBSE approach that employs LLMs to overcome coverage
plateaus in test generation.

2.3 LLM-Based Agents:
Chain of Thought (CoT), Agents and
Software Engineering

Agent-based methodologies, facilitated through advanced prompt
engineering and architectural innovations, enable LLMs to emu-
late human-like reasoning processes, such as step-by-step analysis,
exploration of alternatives and self-improvement [8] and so are a
natural fit with Software Engineering (SE).

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/J.Petke/
https://doi.org/10.1145/3786162.3793232
https://doi.org/10.1145/3786162.3793232
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786162.3793232

Xi et al. [32] explain that LLMs increasingly serve as the “brain”
for computational agents.

The Chain-of-Thought (CoT) prompting technique, introduced
byWei et al. [28], prompts LLMs to generate intermediate reasoning
steps before arriving at a final answer. Zhang et al.’s AI-Assisted
Software Development Framework (AISD) [26] leverages Reflexion
[24] to iteratively refine code implementations based on feedback,
achieving a 75.2% pass rate on benchmark tasks. By incorporating
Reflexion’s self-reflection mechanism, AISD enables agents to learn
from failed attempts and improve over time. Joshi et al. [10] use
LLMs to create bug fixes. Similarly, Ma et al’s SpecGen [18] employs
mutation operators and heuristic selection to generate and optimize
program specifications.

3 Genetic Improvement Agent: GI-Agent
We propose GI-Agent to address the limitations of traditional GI:
namely its lack of memory across generations, absence of context-
aware edit strategies, and limited interpretability. GI-Agent en-
hances standard GI by enabling learning from prior outcomes, gen-
erating effective program source code edits and explaining the
reasoning behind them. It adds the following innovations to Mag-
pie [2]:

Context-Aware Genetic Operations: Traditional GI applies
mutation and crossover operators heuristically, often disregarding
the structure or semantics of the target program. GI-Agent instead
leverages LLMs to perform edits that are informed by both the
code context and past outcomes, producing more targeted and
meaningful modifications.

Iterative Learning Across Generations: While traditional GI
is guided by fitness scores, it lacks the ability to remember or gener-
alize from prior edits. GI-Agent introduces a reflection mechanism
that records feedback from each edit. These reflections are used to
inform future mutation and crossover decisions, seeking to enable
adaptive optimization over time.

Interpretability and Justification: In traditional GI, patches
are generated through random or heuristic means, offering no expla-
nation for why a particular change was made. In contrast, GI-Agent
prompts the LLM to reason about the strategy before generating
an edit. This built-in reasoning (articulated before the code update)
is visible and reviewable, offering insights into the intent behind
each modification. As a result, GI-Agent enhances interpretability
by revealing the LLM’s decision-making process.

3.1 Implementing GI-Agent
We extended Magpie1 to seamlessly incorporate GI-Agent, start-
ing by adding algorithm = GeneticProgrammingLLM to Mag-
pie’s scenario file format. The GeneticProgrammingLLM algorithm
is implemented (Figure 1) by 1) initialising reflection memory to
support learning across generations. 2) sample LLM reflections.
3) create offspring via LLM-guided mutation using sampled reflec-
tions. 4) reflections generated by LLM comparing parent with its
offspring. 5) create offspring via LLM-guided crossover using re-
flections. 6) add more reflections by LLM comparing both parent

1GI-Agent extends Magpie (commit 83e0276) downloaded from https://github.com/
bloa/magpie January 2025.

Figure 1: Reflection process within GI-Agent. Two LLMs
(1. 6. dark) and a Reflection store (7.) are integrated
into genetic improvement’s mutation/crossover patch cre-
ation (2. 3.) and fitness testing (5.) (white boxes).

with their offspring. Figure 1 shows the position of the genetic LLM
generating offspring and reflection LLM within GI-Agent.

This iterative process enables the GI-Agent to learn from past
generations, refining its mutation and crossover strategies over time.
The use of reflections addresses the limitation of traditional GI’s
stochastic edit selection by introducing adaptability and context-
awareness. Futurework, such as incorporating Retrieval-Augmented
Generation (RAG) [17] for more contextually relevant reflection
retrieval, could further enhance this process by ensuring the most
helpful reflections are used.

3.2 Mutation
3.2.1 Diversification. We ask the LLM to generate multiple mu-
tations in one output generation. This approach ensures the LLM
is aware of all mutations it produces within a single prompt. To
encourage both more intentional and varied edits, we also require
the LLM to specify a high-level “strategy” for each mutation (e.g.,
is it optimizing a specific method, blocks, or import packages),

3.2.2 Reflections. We add reflections from prior generations into
the prompt given to the “genetic” LLM. These reflections, summa-
rizing past successes and failures, enable the LLM to learn from
previous outcomes and refine its strategies.

3.2.3 Diff Format LLM prompts. As was found with GenProg [29],
when dealing with mutations etc., it is better to work with code
differences rather than complete programs. Therefore we use a
diff-based format, common in tools like Cursor [6], where the LLM
outputs lines to remove (prefixed with a “-”) and replace (prefixed
with a “+”).

Each mutation in GI-Agent is represented as a diff node con-
taining only the LLM generated edit. To execute a variant, the
corresponding diff is applied dynamically to the original source
code, reconstructing the modified program on the fly.

https://github.com/bloa/magpie/commit/83e027619ae3ddbd3df081350217a47a7f788361
https://github.com/bloa/magpie
https://github.com/bloa/magpie

3.3 Crossover
Crossover is a fundamental genetic operation used to combine
parts of multiple parent solutions to produce new variants that
potentially inherit beneficial traits from each. The intuition is that
combining complementary “genes” may yield offspring with higher
performance than any single parent.

In traditional GI crossover is random, operating at the line or AST
level usually without deeper semantic reasoning. In contrast, GI-
Agent uses the reasoning capabilities of a LLM to guide crossover. It
aims to generate semantically coherent and performance-improving
variants by selecting and merging traits based on contextual under-
standing. Notice the LLM’s output should contain text giving its
strategy:.

3.3.1 Diversification. As with mutation, we ask the LLM to gen-
erate multiple crossover outputs in each generation. To enable
informed crossover decisions, we provide it with the fitness score
of each parent.

3.3.2 Reflections. Similar to mutations, we incorporate reflections
for crossover operations. Unlike mutations, however, these reflec-
tions focus solely on prior crossover attempts (excluding muta-
tion operations), enabling the LLM to concentrate on successful
crossover strategies.

3.3.3 Complete Original Code for Crossover. In contrast to muta-
tions, we include the original target code as an input for crossovers.
This serves as an anchor, providing a consistent reference for the
LLM to generate a crossover diff. Without this, the LLM might
produce diffs relative to either parent code, complicating the subse-
quent logic and processing.

3.4 Reflection
Here, we elaborate on the mechanism of reflection, a process where
the LLM analyzes modifications between parent and child code to
assess their impact on fitness. The LLM is prompted with contextual
inputs, such as parent code, child code, fitness scores, and run results
(see prompt below), to generate concise reflections (limited to 100
words) explaining what strategies succeeded or failed.

You are an expert developer. Previously, you were given
a code and you wrote a new code to make the code faster
by improving the fitness score.

This was the parent code you were given: {parent_codes}

This was the fitness score of the parent code: {par-
ent_fitnesses}

This was the new code you wrote: {child_code}

Here is the run result: {run_result}

Here is the run stderr (if the code failed): {run_stderr}

New code fitness score: {run_fitness} (-1 means the code
failed to run. The positive, smaller fitness score means
the new code is faster.)

Now, you need to reflect on this.
The purpose is to learn what strategy worked, what
didn’t, so that you can later use this compressed
knowledge to write better codes.

For example, if the new code is faster, you should
reflect on what strategies made it faster.
If the new code is slower, you should reflect on what
strategies made it slower.
If the test or compile failed, you should reflect on
what went wrong by looking at the stderr.

First, reflect on the changes.
And then, rewrite the reflection by starting with
<reflection> tag and end with </reflection> tag so that
another LLM can learn from the reflection inside those
tags without seeing the code.
Now, please reflect on the new code and the run result:

Wedefined three reflection types to guide theMutation/Crossover
LLM in generating improved code variants: ALL, TOP K [1, 23] and
NONE. ALL means all four reflection types (Speedup, Increased
Latency, Compilation and Test Error) are provided to the Muta-
tion/Crossover LLM, enabling it to learn from both successes and
failures. In contrast, TOP K feeds only the speedup reflection. For
example, Speedup gave the reflection “Removing the call to sort lit-
erals in the clause addition routine significantly reduced overhead
during clause insertion, yielding a roughly 20% speed improvement.
Other minor refactoring and formatting had minimal impact. This
suggests that minimizing unnecessary array operations in hot paths,
like eliminating sort(ps) in addClause, can substantially enhance
SAT solver runtime.”

4 Research Questions
RQ1: How Does GI-Agent Compare to Traditional Genetic Improve-
ment in Terms of Solution Quality?

RQ2: How Efficiently Does GI-Agent Discover High-Quality Program
Variants?

RQ3: How Does GI-Agent Affect the Viability of Generated Program
Variants?

RQ4: How Does the Use of Reflection Influence the Diversity of Gen-
erated Patches?

5 Experiments
5.1 Benchmarks: MiniSAT and SAT4J
MiniSAT [27] is a compact SAT solver implemented in C++. With
a relatively small codebase (approximately 1000 lines of code, LOC),
it is often used in optimization [21].

SAT4J, in contrast, is a Java-based SAT solver that supports a
broader range of SAT-related problems, including pseudo-Boolean
andMaxSAT. SAT4J’s more than 2 500 lines of Java code (2.5k+ LOC)
have been carefully optimized for practical use cases and are ac-
tively maintained [15].

5.2 LLM: LangChain GPT-o3 Mini
Configuration

All mutation, crossover, and reflection operations are performed
using the GPT-o3 Mini language model (o3-mini-2025-01-31),
accessed via the OpenAI API within the LangChain framework
[12]. Following Yang et al. [31], we use a temperature of 1.0 to
encourage the generation of diverse and creative solutions [19].

5.3 GI-Agent and Magpie Configuration
Following Bouras et al. [3] we chose:

• pop_size = 20
• max_steps = 220
• offspring_elitism = 0.2
• offspring_mutation = 0.6
• offspring_crossover = 0.2

This enables both GI-Agent andMagpie to explore 220mutations
and crossovers across 10 generations (max_steps / pop_size). (20
evaluations are used for the initial random populations.) We adopt
this setup across all GI-Agent variants: NoReflect, ReflectAll
and ReflectSuccess. For ReflectAll, we feed the LLM a curated
set of 15 operations per generation: the top 5 operations with high-
est speedup improvement, the bottom 5 with lowest improvement,
and 5 randomly sampled operations that failed tests or compila-
tion. For ReflectSuccess, we reflect only on the top 15 highest-
performing successful operations. This selective strategy prevents
overwhelming the LLM with excessive context while preserving
informative diversity in reflective prompts.

Experiments were conducted on a dedicated Intel Xeon CPU
E5-1620 3.60GHz, 8 cores, running Rocky Linux.

6 Results and Critical Analysis
6.1 RQ1:

How Does GI-Agent Compare to
Traditional Genetic Improvement in Terms
of Solution Quality?

We compare the speed up achieved byGI-Agent variants (NoReflect,
ReflectAll and ReflectSuccess) against traditional genetic im-
provement (Magpie). Each is evaluated over 20 runs using different
pseudo-random seeds. The results are summarized in Table 1, which
reports the minimum, median, and maximum speedups. Magpie
and GI-Agent use independent pseudo random number seeds and
so our twenty runs should be independent however there is some
evidence that due to caching [20] LLM runs using identical prompts
are not independent. Nevertheless we feel that this is not likely to
affect the validity of our results due to the (pseudo) randomness of
the prompts given to the LLM. Therefore we use the Mann-Whitney
U test as it is non-parametric (i.e., unlike the common student’s
t-test, it does not assume a particular distribution of values) to es-
tablish when our results cannot be reasonably attributed to simple
luck.

From Table 1, we observe that GI-Agent variants consistently
achieve superior solution quality compared to traditional GI. On
the SAT4J benchmark, the median speedup for traditional GI is
only 1.8%, while all GI-Agent variants exceed this. ReflectSuccess
achieves the highestmedian speedup of 3.5% and tieswith ReflectAll
for the highest minimum improvement (1.2%), indicating both better
central performance and improved reliability.

The Mann-Whitney U test confirms that for SAT4J (Java 2 500
LOC) all GI-Agent variants significantly outperform traditional GI
(p < 0.05). However it does not distinguish results on MiniSAT
(C++, 1000 LOC).Which suggests that reflective guidance, especially
when conditioned on successful edits, can reliably lead to higher-
quality solutions on more structured codebases.

To further understand the source of these improvements, we quali-
tatively examined the diffs produced by eachmethod. Traditional GI
primarily removes control-path conditions such as redundant reini-
tialisation logic (e.g., if(!alreadylaunched || !this.keepHot)),
which reduces overhead but only yields modest gains. In contrast,
GI-Agent introduces more impactful edits. For example, in Mini-
SAT, it removes calls to simplify(outLearnt), a potentially ex-
pensive clause simplification routine, as well as debug-related listen-
ers like toDimacs(p) during propagation. These edits streamline
the solver’s inner loop, optimizing hot paths that dominate run-
time. This suggests that LLM-guided edits identify and remove
deeper computational bottlenecks compared to shallow control
flow changes made by traditional GI, especially when performance
is governed by tight inner-loop logic.

To better understand the source of these gains, we also con-
ducted a comparative diff analysis between traditional GI and GI-
Agent on MiniSAT. Without LLM assistance, Magpie made a small
number of superficial edits, mostly unwrapping one-line condi-
tions and removing /*auto*/ wrappers, but introduced a seman-
tically redundant line that duplicated learnts.shrink(i - j),
indicating low edit precision and no substantive structural change.
By contrast, GI-Agent made a key semantic modification: it dis-
abled MiniSAT’s restart mechanism by replacing the entire restart
loop in solve_() with a single call to search(-1). This prevents
MiniSAT using periodic restarts, eliminating overhead from restart
bookkeeping, garbage collection triggers, and heuristic resets. In
a lean and efficient solver like MiniSAT, where many instances
are already tractable, this “no-restart" strategy accelerates exe-
cution significantly. Additionally, GI-Agent applied a broader set
of micro-optimizations across high-frequency code paths such as
propagate() and analyze(), reducing branching and simplifying
logic in inner loops. These edits compound at runtime, leading to a
solution that is up to 3× faster than traditional GI.

Also, we note that no statistically significant differences are ob-
served among the three GI-Agent variants on either SAT4J or Mini-
SAT. Possibly because the main driver of improved solution quality
is the integration of LLMs into the mutation and crossover pro-
cesses, with the specific reflection strategy contributing marginally,
if at all, to final performance.

We suggest the effectiveness of reflective mechanisms in GI-
Agent may be task-dependent. I.e., they offer greater benefit on
complex, modular codebases like SAT4J, where past edits provide
meaningful structure to learn from, but yield limited additional
gains on simpler systems like MiniSAT. Alternatively the LLM may
be better able to cope with a verbose language like Java than with
C++.

In summary (for RQ1), GI-Agent significantly outperforms tra-
ditional GI in terms of solution quality, particularly on structured
and modular codebases. The LLM component contributes substan-
tially to this improvement, while the role of reflection appears more
nuanced and context-sensitive.

Table 1: Speedup improvements above baseline for 20 independent runs

SAT4J MiniSAT

Method Min Median Max Min Median Max

GI 0.0% 1.8% 2.9% 0.0% 15.2% 81.0%
NoReflect 0.0% 2.9% 8.3% 10.3% 34.9% 82.9%
ReflectAll 1.2% 2.6% 9.9% 4.8% 30.8% 80.9%
ReflectSuccess 1.2% 3.5% 5.7% 9.8% 31.5% 80.8%

6.2 RQ2: How Efficiently Does GI-Agent
Discover High-Quality Program Variants?

To answer RQ2 we analyze the rate at which each method finds
improved program variants during the optimization process. Table 2
shows the median speedup at 20%, 40%, 60%, 80%, and 100% of the
total 220 steps.

On the SAT4J benchmark, traditional GI is consistently the least
efficient approach. It gets to its peak performance early, but reaches
only 1.8% by the 60% step mark and remaining flat for the remain-
der of the search. In contrast, all GI-Agent variants demonstrate
substantially improved efficiency. Among them, ReflectSuccess
achieves the highest overall performance (3.5%) and converges
early—reaching this value as early as the 40% step mark. This sug-
gests that selectively reflecting on top-performing edits reinforces
effective transformations and accelerates convergence. NoReflect
and ReflectAll also improve upon traditional GI, though to a
lesser extent. ReflectAll performs best at the very beginning (2.6%
at 20%) but fails to improve further. NoReflect, on the other hand,
improves more gradually and ultimately achieves a final speedup
of 2.9%. Perhaps ReflectAll’s stagnation is due to the inclusion of
low-quality and failed edits in its reflective context. While Reflec-
tAll’s diverse sampling strategy aims to increase robustness, it may
also introduce noise and conflicting optimization signals, confusing
the LLM and impeding learning. The LLM may struggle to recon-
cile mixed quality signals, particularly on structured systems like
SAT4J, leading to early saturation. As expected, the Mann-Whitney
U test confirms that for SAT4J all GI-Agent variants outperform
traditional GI with high statistical confidence.

OnMiniSAT, the efficiency dynamics aremore nuanced. NoReflect
exhibits the strongest early performance, achieving a 16.2% speedup
by 20% of steps, suggesting that LLM-driven edits alone can quickly
explore promising regions of the search space. However, Reflect
Success quickly catches up, by 40% and 60% it surpasses NoReflect,
peaking at 30.7%. Interestingly, after this point, ReflectSuccess
appears to stall, while NoReflect continues to improve, ultimately
reaching the highest final speedup (34.9%).

Despite this consistent performance advantage over traditional
GI, no statistically significant differences are observed among the GI-
Agent variants themselves at any step percentile, on either bench-
mark. The similarity of the our results for our three LLM approaches
suggests that the primary driver of efficiency gains is the integra-
tion of the LLM into the mutation and crossover pipeline. While
reflection mechanisms offer task-specific advantages, their relative
impact is modest when compared to the advantage introduced by
the LLM itself.

Perhaps the efficiency of GI-Agent arises from the LLM’s ability
to propose high-quality edits early in the search, reducing the need
for extensive trial-and-error. On structured systems like SAT4J,
reflective strategies such as ReflectSuccessmay help reinforce useful
transformation patterns and accelerate convergence. On simpler
systems like MiniSAT, however, the added memory of prior edits
may reduce exploration and increase the risk of local stagnation.
In such cases, NoReflect maintains higher exploratory pressure,
possibly enabling it to ultimately discover better solutions.

In summary (for RQ2), all GI-Agent variants discover high-
quality variants more efficiently than traditional GI. ReflectSuccess
provides the fastest improvement rate on SAT4J, while NoReflect
achieves the strongest final outcomes on MiniSAT by sustaining
exploration throughout the search.

6.3 RQ3: How Does GI-Agent Affect the
Viability of Generated Program Variants?

To answer RQ3, we measure the the proportion of patches that
both compile and pass all tests. In addition to successful outcomes,
Table 3 also reports test errors (patches that compile but fail tests)
and compilation errors (patches that fail to compile).

From Table 3, we observe that Magpie without LLMs suffers from
relatively high failure rates. On SAT4J, only 54.2% of variants are
viable, with nearly half of the remaining cases failing to compile
(45.3%). On MiniSAT, it performs slightly better, reaching a 64.2%
success rate, but on average still suffers from a high compile error
rate of 32.1%.

In contrast, all GI-Agent variants dramatically improve the via-
bility of generated patches. On SAT4J, they achieve success rates ex-
ceeding 91%, while on MiniSAT, success rates are consistently near
or above 80%. These improvements are primarily due to substan-
tial reductions in compile errors. For example, NoReflect reduces
compile errors from 45.3% to just 3.0% on SAT4J, and from 32.1% to
7.0% on MiniSAT. This indicates that LLM-guided transformations
are more likely to produce syntactically valid and type-safe edits,
thereby reducing low-level failures in the compilation pipeline.

At the same time, we note a modest increase in runtime test
errors across all GI-Agent variants. This suggests that while the
patches generated by GI-Agent are more likely to compile, they may
still introduce subtle semantic issues that lead to test failures. One
possible explanation is that the LLM is biased toward generating
syntactically plausible code snippets, which do not always preserve
program behavior. Unfortunately, this trade-off (fewer compile-time
issues but more test failures) is consistent with the observation
that LLMs favour fluent generation over precise semantics unless

Table 2: Median speedup during SAT4J and MiniSAT GI runs. The values are the increase at 20%, 40%, 60%, 80%, and 100% of the
whole run across 20 runs.

SAT4J MiniSAT

Method 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

Traditional GI 0.6% 1.5% 1.8% 1.8% 1.8% 0.3% 7.8% 8.1% 14.9% 15.2%
NoReflect 1.8% 2.3% 2.6% 2.9% 2.9% 16.2% 21.3% 27.4% 28.0% 34.9%
ReflectAll 2.6% 2.6% 2.6% 2.6% 2.6% 6.0% 14.0% 29.2% 30.7% 30.8%
ReflectSuccess 2.3% 3.5% 3.5% 3.5% 3.5% 7.5% 28.6% 30.7% 30.7% 31.5%

Table 3: Viability of SAT4J andMiniSAT patches. Percentages are the median proportion of successful variants, test errors and
compilation errors across 20 runs.

SAT4J MiniSAT

Method Success Test Error Compile Error Success Test Error Compile Error

Traditional GI 54.2% 0.5% 45.3% 64.2% 2.5% 32.1%
NoReflect 92.5% 4.0% 3.0% 78.9% 12.4% 7.0%
ReflectAll 91.5% 3.5% 4.0% 80.1% 11.4% 7.2%
ReflectSuccess 91.5% 4.0% 4.0% 79.6% 10.0% 7.0%

explicitly constrained. Which is of course expensive and potentially
labour intensive.

Mann-Whitney tests confirm for both SAT4J and MiniSAT all
GI-Agent variants significantly outperform traditional GI across
all three viability metrics (p < 0.0001 in every case). However, no
statistically significant differences are found among the GI-Agent
variants themselves. Suggesting that the choice of reflection strat-
egy (whether to reflect on all past operations, only successful ones,
or not at all) does not substantially affect viability. We hypothesize
that the primary driver of improved viability is the LLM’s learned
understanding of programming syntax and structure, which allows
it to avoid typical compilation pitfalls seen in traditional random-
mutation-based GI. While reflection strategies may influence how
the search is guided, their impact on syntactic correctness and basic
functional behavior is comparatively minimal. Instead, the quality
and safety of generated patches appear to depend more on the
model’s prior knowledge than on its memory of previous edits.

In summary (to answer RQ3:), GI-Agent significantly improves
the viability of generated variants compared to Magpie without
LLMs, achieving higher compilation and test-passing rates with
both Java SAT4J and C++MiniSAT. These improvements are largely
attributable to the LLM’s ability to produce syntactically correct
code. Differences between reflection strategies are negligible in
this regard, suggesting that all three variants are similarly good at
producing viable patches.

6.4 RQ4:
How Does the Use of Reflection Influence
the Diversity of Generated Patches?

To answer RQ4, we analyse the structural diversity of the generated
patches by measuring the percentage of repeated variants across
different experimental runs. For each of GI-Agent’s methods, we
compute the minimum, median, and maximum repetition rates

across the 20 runs. A higher repetition rate indicates lower diversity,
(meaning the LLM) generates structurally identical patches more
frequently, Table 4,

Somewhat surprisingly as shown in Table 4, Magpie without
LLMs consistently generates the most diverse set of patches, with
the lowest repetition rates across both benchmarks. Even so, on
average it repeats more than a third of its mutants (median repeti-
tion rate 37.3% SAT4J and 36.6% MiniSAT). In contrast, all GI-Agent
variants exhibit significantly higher repetition, with median values
generally above 50%. This suggests that the addition of LLM-driven
mutation and crossover, while improving viability and solution
quality, leads to more convergent and less exploratory behaviour
during search.

Among the GI-Agent variants, ReflectAll shows an intriguing
edge case: while it achieves 0% repetition in the best case on SAT4J,
its median and maximum repetition rates remain high (50.7% and
61.2%, respectively), indicating that the 0% scenario is rare and
does not reflect its typical behaviour. This outcome could be the
result of occasional high-variance runs where reflection injects
sufficient diversity, but overall, the method does not appear to offer
consistent improvements in structural variation. This may be due
to ReflectAll’s inclusion of both successful and unsuccessful edits;
potentially introducing noise or conflicting optimization signals
that obscure the LLM’s ability to generalise diverse edits effectively.
All differences between traditional GI and GI-Agent variants are
statistically significant on both SAT4J and MiniSAT, with p < 0.001
for every pairwise comparison.

However, the Mann-Whitney test found no statistically signifi-
cant differences between the GI-Agent variants themselves. This
suggests that the specific reflection strategy (whether reflecting
on all edits, only successful ones, or not using reflection at all) has
limited impact on diversity outcomes. Instead, the dominant factor

Table 4: Minimum, median and maximum percentage of repeated patches for SAT4J and MiniSAT. Values are percentages of
repeated variants across 20 runs.

SAT4J MiniSAT

Method Min Median Max Min Median Max

Traditional GI 28.9% 37.3% 44.3% 23.9% 36.6% 48.8%
NoReflect 44.8% 52.5% 60.2% 32.8% 45.3% 53.2%
ReflectAll 0.0% 50.7% 61.2% 39.8% 44.8% 55.2%
ReflectSuccess 46.8% 51.2% 58.2% 35.5% 44.3% 50.7%

appears to be the shift from Magpie’s stochastic mutation-based ex-
ploration to the more deterministic and convergent editing patterns
produced by the LLM.

It is also important to note that the repetition values in Table 4
were calculated after applying a normalization pass to eliminate
non-semantic differences. In the original computation, patches were
compared as raw strings, including differences in whitespace and
comments. In our (presented) analysis, we strip whitespace and
remove comments before computing repetition. This refinement
results in higher andmoremeaningful repetition values. On average,
the minimum, median, and maximum repetition rates increased by
29.2%, 36.3%, and 163.3%, respectively. This emphasises that many
patches differed only superficially, and that LLM-generated edits
are often semantically similar or identical.

In conclusion (for RQ4), while GI-Agent variants outperform
traditional GI in efficiency and quality, they do so at the cost of
reduced diversity. The use of LLMs introduces more directed and
convergent behaviour, leading to higher repetition rates. Reflection
strategy has little influence on this trend, and future work may
consider hybrid approaches that reintroduce diversity-promoting
mechanisms without compromising solution quality.

7 Conclusions
We have presented GI-Agent, a novel framework that uses the
power of Large Language Models (LLMs) to enhance code optimisa-
tion in Search-Based Software Engineering (SBSE). By integrating
LLMs into the Genetic Improvement (GI) process (in particular
into the widely used GI framework, Magpie), GI-Agent enables
context-aware mutations and crossovers, reducing dependence on
external code corpora and introducing iterative learning through
reflection. Experimental results on the MiniSAT and SAT4J bench-
marks demonstrate its capability to generate viable, performance-
enhancing code variants, outperforming traditional GI. While GI-
Agent employs few-shot learning for lightweight deployment and
rapid adaptation, our investigations reveal that the reflection mech-
anism, despite its conceptual appeal, offered limited additional per-
formance benefit in practice.

Overall, this work advances the synergy between LLMs and
SBSE, laying the groundwork for adaptive, interpretable software
optimization tools capable of autonomously evolving code with
improved efficiency and effectiveness.

Acknowledgments
We would like to thank our anonymous referees.

References
[1] Kumail Alhamoud, Shaden Alshammari, Yonglong Tian, Guohao Li, Philip H.S.

Torr, Yoon Kim, and Marzyeh Ghassemi. 2025. Vision-Language Models Do Not
Understand Negation. In Computer Vision and Pattern Recognition (CVPR 2025).
IEEE, Nashville, TN, USA, 29612–29622. http://dx.doi.org/10.1109/CVPR52734.
2025.02757

[2] Aymeric Blot and Justyna Petke. 2022. MAGPIE: Machine Automated General
Performance Improvement via Evolution of Software. doi:10.48550/arXiv.2208.
02811 arXiv:2208.02811 [cs].

[3] Dimitrios Stamatios Bouras, Sergey Mechtaev, and Justyna Petke. 2025. LLM-
Assisted Crossover in Genetic Improvement of Software. In 14th International
Workshop on Genetic Improvement @ICSE 2025, Aymeric Blot, Vesna Nowack,
Penn Faulkner Rainford, and Oliver Krauss (Eds.). Ottawa, 19–26. http://dx.doi.
org/10.1109/GI66624.2025.00012 Best presentation.

[4] Alexander E. I. Brownlee, James Callan, Karine Even-Mendoza, Alina Geiger,
Carol Hanna, Justyna Petke, Federica Sarro, and Dominik Sobania. 2023. Enhanc-
ing Genetic Improvement Mutations Using Large Language Models. In SSBSE
2023: Challenge Track (LNCS, Vol. 14415), Paolo Arcaini, Tao Yue, and Erik Freder-
icks (Eds.). Springer, San Francisco, USA, 153–159. http://dx.doi.org/10.1007/978-
3-031-48796-5_13

[5] Bobby R Bruce, Justyna Petke, and Mark Harman. 2015. Reducing energy con-
sumption using genetic improvement. In Genetic and Evolutionary Computation
Conference, GECCO 2015. Madrid, Spain, 1327–1334. http://dx.doi.org/10.1145/
2739480.2754752

[6] Cursor Team. 2025. Cursor: The AI Code Editor. https://www.cursor.com/.
Accessed: 2025-04-24.

[7] Gudny B. Saemundsdottir and Saemundur Oskar Haraldsson. 2024. Large
Language Models as All-in-one Operators for Genetic Improvement. In Ge-
netic and Evolutionary Computation Conference Companion (GECCO 2024), Do-
minik Sobania and Aymeric Blot (Eds.). ACM, Melbourne, Australia, 727–730.
http://dx.doi.org/10.1145/3638530.3654408

[8] Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. 2024.
From LLMs to LLM-based Agents for Software Engineering: A Survey of Current,
Challenges and Future. arXiv:2408.02479. https://arxiv.org/abs/2408.02479

[9] Jingyuan Wang, Carol Hanna, and Justyna Petke. 2025. Large Language Model
based Code Completion is an Effective Genetic Improvement Mutation. In 14th
International Workshop on Genetic Improvement @ICSE 2025, Aymeric Blot, Vesna
Nowack, Penn Faulkner Rainford, and Oliver Krauss (Eds.). Ottawa, 11–18. http:
//dx.doi.org/10.1109/GI66624.2025.00011 Best paper.

[10] Harshit Joshi, Jose Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen,
and Ivan Radicek. 2023. Repair Is Nearly Generation: Multilingual Program
Repair with LLMs. In AAAI-2023, Vol. 37. Washington, DC, USA, 5131–5140.
https://doi.org/10.1609/aaai.v37i4.25642

[11] Sungmin Kang and Shin Yoo. 2023. Towards Objective-Tailored Genetic Im-
provement Through Large Language Models. In 12th International Workshop
on Genetic Improvement @ICSE 2023, Vesna Nowack, Markus Wagner, Gabin
An, Aymeric Blot, and Justyna Petke (Eds.). IEEE, Melbourne, Australia, 19–20.
http://dx.doi.org/10.1109/GI59320.2023.00013 Best position paper.

[12] LangChain. 2025. LangChain: Empowering Language Model Applications. https:
//www.langchain.com/. Accessed: March 25, 2025.

[13] William B. Langdon, Brian Yee Hong Lam, Marc Modat, Justyna Petke, and Mark
Harman. 2017. Genetic Improvement of GPU Software. Genetic Programming and
Evolvable Machines 18, 1 (March 2017), 5–44. http://dx.doi.org/10.1007/s10710-
016-9273-9

[14] William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman.
2015. Improving CUDA DNA Analysis Software with Genetic Programming. In
GECCO ’15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, Sara Silva et al. (Eds.). ACM, Madrid, 1063–1070. http://dx.doi.org/
10.1145/2739480.2754652

[15] Daniel Le Berre and Anne Parrain. 2011. The Sat4j library, release 2.2: System
description. Journal on Satisfiability, Boolean Modelling and Computation 7, 2-3

http://dx.doi.org/10.1109/CVPR52734.2025.02757
http://dx.doi.org/10.1109/CVPR52734.2025.02757
https://doi.org/10.48550/arXiv.2208.02811
https://doi.org/10.48550/arXiv.2208.02811
http://dx.doi.org/10.1109/GI66624.2025.00012
http://dx.doi.org/10.1109/GI66624.2025.00012
http://dx.doi.org/10.1007/978-3-031-48796-5_13
http://dx.doi.org/10.1007/978-3-031-48796-5_13
http://dx.doi.org/10.1145/2739480.2754752
http://dx.doi.org/10.1145/2739480.2754752
https://www.cursor.com/
http://dx.doi.org/10.1145/3638530.3654408
https://arxiv.org/abs/2408.02479
http://dx.doi.org/10.1109/GI66624.2025.00011
http://dx.doi.org/10.1109/GI66624.2025.00011
https://doi.org/10.1609/aaai.v37i4.25642
http://dx.doi.org/10.1109/GI59320.2023.00013
https://www.langchain.com/
https://www.langchain.com/
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1145/2739480.2754652
http://dx.doi.org/10.1145/2739480.2754652

(2011), 59–64. https://doi.org/10.3233/SAT190075
[16] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen.

2023. CodaMosa: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). 919–931. http://dx.doi.org/10.1109/ICSE48619.
2023.00085

[17] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in neural information processing
systems, NeurIPS 2020, Vol. 33. virtual, 9459–9474. https://proceedings.neurips.
cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

[18] LezhiMa, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. 2025. SpecGen: Automated
Generation of Formal Program Specifications via Large LanguageModels. In ICSE-
2025. IEEE Computer Society, Ottawa, Canada, 16–28. doi:10.1109/ICSE55347.
2025.00129

[19] OpenAI. 2024. OpenAI API Documentation. https://platform.openai.com/docs/
api-reference/introduction

[20] OpenAI. 2024. Prompt Caching Guide. https://platform.openai.com/docs/guides/
prompt-caching.

[21] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2014.
Using Genetic Improvement and Code Transplants to Specialise a C++ Program
to a Problem Class. In EuroGP 2014 (LNCS, Vol. 8599), Miguel Nicolau et al. (Eds.).
Springer, Granada, Spain, 137–149. http://dx.doi.org/10.1007/978-3-662-44303-
3_12

[22] Justyna Petke, William B. Langdon, and Mark Harman. 2013. Applying Genetic
Improvement to MiniSAT. In Symposium on Search-Based Software Engineering
(Lecture Notes in Computer Science, Vol. 8084), Guenther Ruhe and Yuanyuan
Zhang (Eds.). Springer, Leningrad, 257–262. http://dx.doi.org/10.1007/978-3-642-
39742-4_21 Short Papers.

[23] O. Rosenbaum. 2023. LLMs Don’t Understand Negation. HackerNoon (2023).
https://hackernoon.com/llms-dont-understand-negation Accessed: 25 March
2025.

[24] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. 2023. Reflexion: Language agents with verbal reinforcement learn-
ing. NeurIPS 2023 36 (2023), 8634–8652. https://openreview.net/forum?id=
vAElhFcKW6

[25] Shuzheng Gao, Cuiyun Gao, Wenchao Gu, and Michael Lyu. 2025. Search-
Based LLMs for Code Optimization. In ICSE 2025. Ottawa, Canada. doi:10.1109/
ICSE55347.2025.00021

[26] Simiao Zhang et al. 2024. Experimenting a New Programming Practice with
LLMs. arXiv:2401.01062. https://arxiv.org/abs/2401.01062

[27] Niklas Sorensson and Niklas Een. 2005. MiniSat v1.13 – A SAT Solver with
Conflict-Clause Minimization. SAT 2005, 53 (2005), 1–2.

[28] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,
Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-thought
prompting elicits reasoning in large language models. In Thirty-Sixth Con-
ference on Neural Information Processing Systems, NIPS 2022 (New Orleans,
LA, USA). Curran Associates Inc., New Orleans, USA, Article 1800, 14 pages.
https://openreview.net/forum?id=_VjQlMeSB_J

[29] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In International
Conference on Software Engineering (ICSE) 2009, Stephen Fickas (Ed.). Vancouver,
364–374. http://dx.doi.org/10.1109/ICSE.2009.5070536 Winner ACM SIGSOFT
Distinguished Paper Award. Gold medal at 2009 HUMIES. Ten-Year Most Influ-
ential Paper [30].

[30] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2019.
It Does What You Say, Not What You Mean: Lessons From A Decade of Program
Repair. ICSE 2019 Plenary Most Inflential Paper. https://conf.researchr.org/
profile/icpc-2019/westleyweimer

[31] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou,
and Xinyun Chen. 2024. Large Language Models as Optimizers. In International
Conference on Learning Representations, ICLR 2024. Vienna, Austria. https://iclr.
cc/virtual/2024/poster/19209

[32] Zhiheng Xi et al. 2025. The rise and potential of large language model based
agents: A survey. Science China Information Sciences 68, 2 (2025), 121101. https:
//doi.org/10.1007/s11432-024-4222-0

https://doi.org/10.3233/SAT190075
http://dx.doi.org/10.1109/ICSE48619.2023.00085
http://dx.doi.org/10.1109/ICSE48619.2023.00085
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1109/ICSE55347.2025.00129
https://doi.org/10.1109/ICSE55347.2025.00129
https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/guides/prompt-caching
https://platform.openai.com/docs/guides/prompt-caching
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1007/978-3-642-39742-4_21
http://dx.doi.org/10.1007/978-3-642-39742-4_21
https://hackernoon.com/llms-dont-understand-negation
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://doi.org/10.1109/ICSE55347.2025.00021
https://doi.org/10.1109/ICSE55347.2025.00021
https://arxiv.org/abs/2401.01062
https://openreview.net/forum?id=_VjQlMeSB_J
http://dx.doi.org/10.1109/ICSE.2009.5070536
https://conf.researchr.org/profile/icpc-2019/westleyweimer
https://conf.researchr.org/profile/icpc-2019/westleyweimer
https://iclr.cc/virtual/2024/poster/19209
https://iclr.cc/virtual/2024/poster/19209
https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.1007/s11432-024-4222-0

	Abstract
	1 Introduction
	2 Literature Review
	2.1 Genetic Improvement (GI) Applications in Software Engineering
	2.2 Large Language Models (LLMs) and Search-Based Software Engineering
	2.3 LLM-Based Agents: Chain of Thought (CoT), Agents and Software Engineering

	3 Genetic Improvement Agent: GI-Agent
	3.1 Implementing GI-Agent
	3.2 Mutation
	3.3 Crossover
	3.4 Reflection

	4 Research Questions
	5 Experiments
	5.1 Benchmarks: MiniSAT and SAT4J
	5.2 LLM: LangChain GPT-o3 Mini Configuration
	5.3 GI-Agent and Magpie Configuration

	6 Results and Critical Analysis
	6.1 RQ1: How Does GI-Agent Compare to Traditional Genetic Improvement in Terms of Solution Quality?
	6.2 RQ2: How Efficiently Does GI-Agent Discover High-Quality Program Variants?
	6.3 RQ3: How Does GI-Agent Affect the Viability of Generated Program Variants?
	6.4 RQ4: How Does the Use of Reflection Influence the Diversity of Generated Patches?

	7 Conclusions
	Acknowledgments
	References

