Created by W.Langdon from gp-bibliography.bib Revision:1.7917
In this thesis, two novel techniques that increase the robustness of TTSs and reduce over-fitting are described and compared to standard GA/GP optimization techniques and the traditional investment strategy Buy & Hold. The first technique employed is a robust multi-market optimization methodology using a GA. Robustness is incorporated via the environmental variables of the problem, i.e. variablity in the dataset is introduced by conducting the search for the optimum parameters over several market indices, in the hope of exposing the GA to differing market conditions. This technique shows an increase in the robustness of the solutions produced, with results also showing an improvement in terms of performance when compared to those offered by conducting the optimization over a single market.
The second technique is a random sampling method we use to discover robust TTSs using GP. Variability is introduced in the dataset by randomly sampling segments and evaluating each individual on different random samples. This technique has shown promising results, substantially beating Buy & Hold.
Overall, this thesis concludes that Evolutionary Computation techniques such as GA and GP combined with robust optimization methods are very suitable for developing trading systems, and that the systems developed using these techniques can be used to provide significant economic profits in all market conditions.",
AUTOR: Jose Manuel Berutich Lindquist http://orcid.org/0000-0002-0918-9634
Supervisors: Francisco Luna Valero and Francico Lopez Valverde
https://core.ac.uk/download/pdf/214843381.pdf",
Genetic Programming entries for Jose Manuel Berutich