abstract = "In this work the problem of devising an appropriate
scheduling policy for different environments is
addressed. The methodology which uses genetic
programming to evolve scheduling heuristics is
described. The scheduling heuristics are developed in
the form of scheduling rules which define dynamic
priorities for the elements in the system. Scheduling
rules for different environments are devised using
genetic programming: one machine, parallel proportional
machines, unrelated machines and job shop environment.
Scheduling algorithms are defined with two components:
one component represents meta-algorithm which operates
in scheduling environment, and the other represents an
appropriate scheduling policy which derives job or
machine priorities. The scheduling policy is evolved
with genetic programming. For each scheduling
environment a set of learning and a set of evaluation
scheduling instances is defined. Devised algorithms are
compared with existing algorithms in each environment.
The evolved algorithms exhibit similar or better
efficiency in all cases, and a significant improvement
is achieved in scheduling environments where there are
no fitting algorithms. Additionally, a method for
evaluation of terminals in genetic programming solution
and adaptive probabilities for genetic operators
crossover and mutation are devised. The adaptive
methods increase the probability of finding a good
solution and may speed up the evolution process.",
abstract = "U radu se promatra problem definiranja prikladnih
postupaka rasporedivanja za razlicita okruzenja s
obzirom na uvjete rasporedivanja i zadane kriterije.
Predlaze se metodologija izvodenja algoritama
rasporedivanja uz pomoc genetskog programiranja.
Algoritmi rasporedivanja poprimaju oblik pravila u
kojima se elementima u sustavu dodjeljuje prioritet na
temelju kojega se aktivnosti pridruzuju sredstvima.
Koristeci genetsko programiranje, izvode se pravila za
razlicita okruzenja rasporedivanja: rasporedivanje na
jednom stroju, na paralelnim jednolikim strojevima,
nesrodnim strojevima te u okruzenju proizvoljne obrade.
Za pojedino okruzenje postupak rasporedivanja definiran
je u dva dijela: jedan dio predstavlja meta-algoritam
koji koristi prioritete elemenata u sustavu kako bi
pridruzivao aktivnosti sredstvima, a drugi dio
predstavlja funkciju koja odreduje prioritete
elemenata. Prioritetna funkcija dobiva se primjenom
genetskog programiranja. Za svako okruzenje definirani
su skupovi ispitnih primjera za ucenje i ocjenu, a
predlozeni algoritmi usporedeni su sa postojecim
algoritmima rasporedivanja. Algoritmi rasporedivanja
izvedeni uz pomoc genetskog programiranja pokazuju
slicnu ili bolju ucinkovitost u usporedbi s postojecim
algoritmima, a znacajnu prednost ostvaruju u okolinama
rasporedivanja za koje ne postoje prikladni postupci
rasporedivanja. U radu je takoder opisan postupak
vrednovanja podatkovnih elemenata rješenja genetskog
programiranja te postupak prilagodbe primjene genetskih
operatora krizanja i mutacije. Predlozeni postupci
prilagodbe olakšavaju pronalazenje kvalitetnog
rješenja i povecavaju uspješnost evolucijskog
procesa.",