Genetic Programming Bibliography entries for Jalal Shiri

up to index Created by W.Langdon from gp-bibliography.bib Revision:1.7906

GP coauthors/coeditors: Mohammad Ali Ghorbani, Rahman Khatibi, Ali Aytek, Oleg Makarynskyy, Ozgur Kisi, Bagher Nikoofar, Ali Hosseinzadeh Dailr, Mesut Cimen, Mustafa Tombul, Sepideh Karimi, Shahaboddin Shamshirband, Shervin Motamedi, Dalibor Petkovic, Roslan Hashim, Saman Maroufpoor, Eisa Maroufpoor, Kiyoumars Roushangar, Samira Akhgar, Farzin Salmasi, Dominique Mouaze, Gorka Landeras, Jose Javier Lopez, Amir Hossein Nazemi, Louis C P M Stuyt, Heesung Yoon, Kang-Kun Lee, Ali Ashraf Sadraddini, Ahmad Fakheri Fard, Pau Marti,

Genetic Programming Articles by Jalal Shiri

  1. Saman Maroufpoor and Jalal Shiri and Eisa Maroufpoor. Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables. Agricultural Water Management, 215:63-73, 2019. details

  2. Ozgur Kisi and Jalal Shiri and Sepideh Karimi and Shahaboddin Shamshirband and Shervin Motamedi and Dalibor Petkovic and Roslan Hashim. A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Applied Mathematics and Computation, 270:731-743, 2015. details

  3. Jalal Shiri and Ali Ashraf Sadraddini and Amir Hossein Nazemi and Ozgur Kisi and Gorka Landeras and Ahmad Fakheri Fard and Pau Marti. Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology, 508:1-11, 2014. details

  4. Kiyoumars Roushangar and Dominique Mouaze and Jalal Shiri. Evaluation of genetic programming-based models for simulating friction factor in alluvial channels. Journal of Hydrology, 517:1154-1161, 2014. details

  5. Kiyoumars Roushangar and Samira Akhgar and Farzin Salmasi and Jalal Shiri. Modeling energy dissipation over stepped spillways using machine learning approaches. Journal of Hydrology, 508:254-265, 2014. details

  6. Jalal Shiri and Ozgur Kisi and Heesung Yoon and Kang-Kun Lee and Amir Hossein Nazemi. Predicting groundwater level fluctuations with meteorological effect implications-A comparative study among soft computing techniques. Computer \& Geosciences, 56:32-44, 2013. details

  7. Ozgur Kisi and Jalal Shiri and Mustafa Tombul. Modeling rainfall-runoff process using soft computing techniques. Computer \& Geosciences, 51:108-117, 2013. details

  8. Ozgur Kisi and Jalal Shiri. REPLY to Discussion of ``Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models''. Water Resources Management, 26(12) 2012. details

  9. Jalal Shiri and Ozgur Kisi and Gorka Landeras and Jose Javier Lopez and Amir Hossein Nazemi and Louis C. P. M. Stuyt. Daily reference evapotranspiration modelling by using genetic programming approach in the Basque Country (Northern Spain). Journal of Hydrology, 414-415:302-316, 2012. details

  10. Ozgur Kisi and Jalal Shiri. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Computer \& Geosciences, 43:73-82, 2012. details

  11. Ozgur Kisi and Ali Hosseinzadeh Dailr and Mesut Cimen and Jalal Shiri. Suspended sediment modelling using genetic programming and soft computing techniques. Journal of Hydrology, 450-451:48-58, 2012. details

  12. Ozgur Kisi and Jalal Shiri and Bagher Nikoofar. Forecasting daily lake levels using artificial intelligence approaches. Computer \& Geosciences, 41:169-180, 2012. details

  13. Jalal Shiri and Ozgur Kisi. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Computer \& Geosciences, 37(10):1692-1701, 2011. details

  14. Ozgur Kisi and Jalal Shiri. Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models. Water Resources Management, 25:3135-3152, 2011. details

  15. Mohammad Ali Ghorbani and Rahman Khatibi and Ali Aytek and Oleg Makarynskyy and Jalal Shiri. Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks. Computer \& Geosciences, 36(5):620-627, 2010. details