Evolving Better Software Parameters
Created by W.Langdon from
gp-bibliography.bib Revision:1.7975
- @InProceedings{Langdon:2018:SSBSE,
-
author = "William B. Langdon and Justyna Petke",
-
title = "Evolving Better Software Parameters",
-
booktitle = "SSBSE 2018 Hot off the Press Track",
-
year = "2018",
-
editor = "Thelma Elita Colanzi and Phil McMinn",
-
volume = "11036",
-
series = "LNCS",
-
pages = "363--369",
-
address = "Montpellier, France",
-
month = "8-9 " # sep,
-
publisher = "Springer",
-
keywords = "genetic algorithms, genetic programming, genetic
improvement, software engineering, SBSE, GGGP, software
maintenance of empirical constants, data
transplantation, glibc, sqrt, cbrt",
-
isbn13 = "978-3-319-99241-9",
-
URL = "http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2018_SSBSE.pdf",
-
DOI = "doi:10.1007/978-3-319-99241-9_22",
-
size = "7 pages",
-
abstract = "Genetic improvement might be widely used to adapt
existing numerical values within programs. Applying GI
to embedded parameters in computer code can create new
functionality. For example, CMA-ES can evolve 1024 real
numbers in a GNU C library square root to implement a
cube root routine for C.",
-
notes = "See also \cite{Langdon:TELO}
code:
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi_cbrt.tar.gz
https://github.com/oliver-krauss/Replication_GI_Division_Free_Division
see also \cite{replication_package}
slides:
http://www.cs.ucl.ac.uk/staff/W.Langdon/ssbse2018/Langdon_2018_SSBSE_slides.pdf",
- }
Genetic Programming entries for
William B Langdon
Justyna Petke
Citations