Created by W.Langdon from gp-bibliography.bib Revision:1.7964
In this paper, we report an artificial financial market and its use in studying the behavior of stock markets. This is an endogenous market, with which we model technical, fundamental, and noise traders. Nevertheless, our primary focus is on the technical traders, which are sophisticated genetic programming based agents that co- evolve (by learning based on their fitness function) by predicting investment opportunities in the market using technical analysis as the main tool.
With this endogenous artificial market, we identify the conditions under which the statistical properties of price series in the artificial market resemble some of the properties of real financial markets. By performing a careful exploration of the most important aspects of our simulation model, we determine the way in which the factors of such a model affect the endogenously generated price. Additionally, we model the pressure to beat the market by a behavioral constraint imposed on the agents reflecting the Red Queen principle in evolution. We have demonstrated how evolutionary computation could play a key role in studying stock markets, mainly as a suitable model for economic learning on an agent- based simulation.",
Genetic Programming entries for Serafin Martinez Jaramillo Edward P K Tsang