Created by W.Langdon from gp-bibliography.bib Revision:1.8098
The performance of the optimal DE-inspired model was thereafter compared to those developed via conventionally-used multiple linear regression and standard time series technique: exponential smoothing as well as other prominent soft computing techniques, namely support vector machines (SVM) and conjugate-gradient (CG)-trained multilayer perceptron (MLP). Results show that the DE-inspired ANN model was superior to the four other techniques for both the baseline scenario and optimal subset of features. DE showcased robustness in fine-tuning algorithm parameter values thereby producing good performance in terms of the solution efficiency and quality. Generally, this study demonstrates that water demand models can account for the impacts of weather and socioeconomic variations by incorporating explanatory variables based on weather and socioeconomic factors. This study also suggests that the synergetic use of feature selection techniques, DE algorithm and an early stopping criterion could be used in addressing the limitations of ANN and developing an improved and more reliable water demand forecasting model.
This work goes further to propose for a novel and more comprehensive integrated water demand and management modelling framework (IWDMMF) that is capable of syncing conventional evolutionary computation techniques and social aspects of society. The methodologies, principles and techniques behind this study fosters sustainable development and thus could be adopted in planning and management of water resources.",
Supervisors: Akshay Kumar Saha and Albert Thembinkosi Modi",
Genetic Programming entries for Oluwaseun Kunle Oyebode