PROCEEDINGS OF
AN INTERNATIONAL CONFERENCE ON
GENETIC ALGORITHMS
AND THEIR APPLICATIONS

July 24-26, 1985
at
Carnegie-Mellon University
Pittsburgh, PA

Sponsored By
Texas Instruments, Inc.

U.S. Navy Center for Applied Research
in Artificial Intelligence

(NCARALI)

John J. Grefenstette
Editor

(s

I
I 4wt 50 - sd by me
MITRE (Va.)

Lieaw 5 ‘l:-'r - ‘]zlﬂl)fr’f - Rd;r‘/ﬂ f f)r.’-{
crean et ~mews F11]

PROCEEDINGS OF
AN INTERNATIONAL CONFERENCE ON
GENETIC ALGORITHMS

AND THEIR APPLICATIONS

July 24-26, 19856
al
Carnegie-Mellon University
Pittsburgh, PA.

Sponsored By
Texas Instruments, Inc.
U.S. Navy Center for Applicd Research

in Artificial Intelligence
(NCARATI)

John J. Grefenstette
Editor

Copyright (€ 1985 John J. Grefenstette

B

R

S . o S e

sl

(Y%

PREFACE

It has been ten years since the publication of John Holland’s seminal book, Adaptation
in Natural and Artificial Systems. One of the major contribution of the book was the
formulation of a class of algorithms, now known as Genelic Algorithms (GA’s), which
incorporate metaphors from natural population genetics into artificial adaptive systems.
Since the publication of Holland’s book, interest in GA’s has spread from the University
of Michigan to research centers throughout the U.S., Canada, and Great Britain. GA’s
have been applied to a striking variety of areas, from machine learning to image
processing to combinatorial optimization. The great range of application attests to the
power and the generality of underlying approach. However, much of the GA research
has been reported only in Ph. D. theses and informal workshops. This Conference was
organized to provide a forum in which the diverse groups involved in GA research can
share results and ideas concerning this exciting area.

On behalf of the organizing committee, it is my pleasure to acknowledge the support of
Texas Instruments, Inc. and the U.S. Navy Center for Research in Applied AL Special
thanks go to Dave Davis for his efforts in obtaining the Tl Grant.

John J. Grefenstette
Program Chair

Conference Committee

John H. Holland, University of Michigan {(Conference Chair)
Lashon B. Booker, NCARAI

Kenneth A. De Jong, NCARAI and George Mason University
John J. Grefenstette, Vanderbilt University (Program Chair)
Stephen F. Smith, CMU Robotics Institute (Local Arrangements)

™ ol e i

A iyt

PR NPT AR

(1S

TABLE OF CONTENTS

Wednesday, July 24, 1985

Session 1: 8:45 a.m - 10:15 a.m.
Chair: John Holland

Properties of the bucket brigade
John H. Holland, University of Michigan

Genetic algorithms and rule learning in dynamic system conirol
David E. Goldberg, Universily of Alabama

Knowledge growth in an artificial animal
Stewart W. Wilson, Rowland Institute for Science

Coflfee Break: 10:15 a.m. - 10:45 a.mn,

Session 2: 10:45 a.m. - 12:00 noon
Chair: Lashon Booker

Implementing semantic network structures using the classifier system
Stephanie Forrest, Universily of Michigan

The bucket brigade ts not genelic
Thomas H. Westerdale, University of London

Genetic plans and the probabilistic learning system: synthesis and results
Larry Rendell, University of illinois al Urbana-Champaign

Lunch: 12:00 noon - 2:00 p.m.

Session 3: 2:00 p.m. - 2:50 p.m.
Chair: Stephen Smith

Learning multiclass pattern discrimination
J. David Schaffer, Vanderbilt University

Improving the per formunce of genetic algorithms in classifier systems
Lashon B. Booker, Navy Center for Applied Research in Al

Coffee Break: 2:50 p.m. - 3:15 p.m.

page 1

page 8

page 16

page 24

page 45

page 60

page 74

page 80

Discussion: 3:15 p.m. - 4:30 p.m.
Topic: GA’s and Machine Learning
Chair: John Holland

Thursday, July 25, 1985

Session 4: 9:00 a.in. - 10:15 a.m.
Chair: John Grefenstette

Multiple objective optimization with vector evaluated genetic algorithms
I. David Schaffer, Vanderbilt Universily

Adaptive selection methods for genetic algorithms
James E. Baker, Vanderbilt Universily

Genetic search wilh approximate function evaluations
John J. Grefenstette and J. Michael Fitzpatrick, Vanderbilt University

Coffee Break: 10:15 a.m. - 10:45 a.m.

Session 5: 10:45 a.m. - 12:00 noon
Chair: John Grefenstetle

A connectionist algorithm Jor genctic search
David H. Ackley, Carnegie-Mellon University

Job shop scheduling with genetic algorithms
Lawrence Davis, Bolt, Beranek and Newman, Inc.

Compaction of symbolic layoul using genetic algorithms
Michael P. Fourman, Brunel University

Lunch: 12:00 noon - 2:00 p.m

Session 6: 2:00 p.m. - 3:15 p.m.
Chair: Ken De Jong

Alleles, loci, and the traveling salesman problem
David E. Goldberg and Robert Lingle, Jr., Universily of Alabama

Genetic algorithms for the traveling salesman problem

John J. Grefensteite, Rajeev Gopal, Brian J. Rosmaita and Dirk Van Gucht,

Vanderbilt University

page 93

page 101

page 112

page 121

page 136

page 141

page 15

page 160

i Genetic algorithms: a 10 year perspective page 169
Kenneth De Jong, George Mason University

Coffee Break: 3:15 p.m. - 3:45 p.m.

Discussion: 3:45 p.m. - 4:30 p.m.
Topic: GA's as Search Algorithms
Chair: Kenneth De Jong

Friday, July 26, 1985

Session 7: 9:00 - 10:30 a.m.
Chair: John Grefenstette

¢ e A R T e e e

Classt fier systems with long term memory page 178
f Hayong Zhou, Vanderbilt University

A representation for the adaptive generation of simple sequential programs page 188
Nichael Lynn Cramer, Texas Instruments, Inc.

Adaptive "cortical” pattern recognition page 188
Stewart W. Wilson, Rowland Institute for Science

T

Machine learning of visual recognition using genetic algorithms page 197
Arnold C. Englander, Itran Corp.

bl T ol iy M

Bin packing with adaptive search page 202
Derek Smith, Texas Instruments, Inc.

o - R

Directed tress method for fitting a potential function page 207
Craig Schaefer, Rowland Institule for Science

Coffee Break: 10:30 a.m. - 11:00 a.m.

Discussion: 11:00 a.m. - 12:00 noon
Topic: Summary and Future Directions
Chair: John Holland

e e O e e B

A AN R T T S TN I i SR L S e MR S

PROPERTIES OF THE BUCKET BRIGADE ALGOR!THM
John H. Holland

The University of Michigan

The bucket brigade algorithm is designed to solve the apportionment
of credit problem for massively parallel, message-passing, rule-based
systems. The apportionment of credit problem was recognized and
explored in one of the earliest sigmficant works in rachine learning
{Samuel [1959]). In the context of rule-based systems it is the problern of
deciding which of a set of early acting rutes should receive credit for
"setting the stage” for later, overtly successful actions. in the systems of
interest here, in which rules conform to the standard condition/action
paradigm, a rule's overall usefulness to the systerm is indicated by a
parameter called its sérength. Each time arule is active, the bucket
brigade algorithra modifies the strength so that 1t provides a better
estimate of the rule's usefulness in the contexts in which it is activated

The bucket brigade algorithm functions by intreducing an elernent of
competition into the process of deciding which rules are activated.
Norrnally, for a paraliel message-passing system, all rules having
condition parts satisfied by some of the messages posted at a given time
are automatically activated at that time. However, under the bucket
brigade algorithm only some of the satisfied rules are activated. Each
satisfied rule makes a £/d based in part on its strength, and only the
highest bidders become active {thereby posting the messages specified by
their action parts). The size of the bid depends upon both the rule’s
strength and the specificity of the rule’'s conditions. (The rule's
specificity is used on the broad assumption that, other things being equal,
the more information required by a rule's conditions, the more likely it is
to be "relevant” to the particular situation confronting it). In a specific
version of the algorithm used for classifier systems, the bid of classifier
C at time t is given by

b(C,t) = cr(C)s(C,t),
where r(C) is the specificity of rule C (equal, for classifier systems, to
the difference between the total number of defining positions in the
condition and the number of "don't cares” in the condition), s(C,t) is the
strength of the rule at time t, and c 1s a constant considerably jess than |

1

e
e

(e.g, I/dor 1/8)

The essence of the bucket brigade algorithm is its treatment of each
rule as akind of mid-level entrepreneur (a2 "middieman”) in a complex
€nconorny. When a rule C wins the competition at time {, it must decrease
1ts strength by the amount of the bid. Thus its strength on time-step t+1,
after winning the competition, is given by

S(C, t+1) =5(C, Y- b(C, t) = (] - cr{C)3(C, t).
Ineffect C has paid for the privitege of posting its message. Moreover
this amount is actually paid to the classifers that sent messages
satisfying C's conditions -- in the simplest formulation the bid is split
equatly amongst them. These rnessage senders are C's suyop//ers, and each
receives its share of the payment from the consumer C. Thus, if Cy has

posted a message that satisfies one of C's conditions, C] has its strength

increased so that
s(C,, t+1) = S(CI, by + b(C, t)/C, t)y=(] - cr(C)/n(C,ENS(C,),

where n(C, t) is the number of classifiers sénding messages that satisfy C
at tirme t.

in terms of the economic metaphor, the suppliers {C +} are paid for

setting up a situation usable by consumer C. C, on the next time step,
changes from consumier to supplier because it has posted its message. I
other classifiers then bid because they are satisfied by C's message, and 1f
they win the bidding competition, then C in turn will receive some fraction
of those bids. C's survival in the system depends upon its turning a profit
as an intermediary in these local transactions. In other words, when C is
activated, the bid it pays to its suppliers must be Jess (or, at least, no
more) than the average of the sum of the payments it receives from its
consumers.

It is important that this process involves no complicated
“bookkeeping” or mernory over long sequences of action. When activated, C
simply pays out its bid on one time-step, and is immediately paid by its
consumers (if any) on the next time-step. The only variation on this
transaction occurs on time-steps when there is payoff from the
environment. Then, all classifiers active on that time-step receive equa!
fractions of the payoff in addition to any payments from classifiers active
on the next time-step. ineffect, the environment is the system's ultimate
consumer. From a global point of view, a given classifier C is likely to be

e el i e R T

Lo+ Fideinine

el R, L el o S G

profitable only if its usual consumers are profitable. The profitability of
any chain of consurners thus depends upon their relevance to the uitimate
consumer. Stated more directly, the profitability of a classifier depends
upon its being coupled into sequences leading to payoff.

As a way of illustrating the bucket brigade algorithm, consider a set
of 2-condition classifiers where, for each classifier, condition | attends
to messages from the environment and condition 2 attends to rnessages
fror other classifiers in the set. As above, let a given classifier C have a
bid fraction b(C) and strength s(C,t) at time t. Note that condition 1 of C
defines an equivalence class £ in the environment consisting of those
environmental states producing messages satisfying the condition

Consider now the special case where the activation of C produces a
response r that transforms states In £ to states in another equivalence
class £ having an (expected) payoff u. Under the bucket brigade
ailgorithm, when C wins the competition under these circumstances its
strength will change from s(C,t) to

s(C,t+1) =s(C,t) - b{C)s(C,t) +u
+ (any bids C receives from classifiers active on
the next time-step).
Assuming the strength of C is small enough that its bid b(C)s(C,t) is
considerably tess than u, the usual case for a new rule or for a rule that
has only been activated a few times, the effect of the payoff is a
considerable strengthening of rule C.

This strengthening of C has two effects. First, C becornes rnore Hikely
to win future competitions when its conditions are satisfied. Second,
rules that send messages satisfying one (or more) of C's conditions witl
receive higher bids under the bucket brigade, because b(C)s(C,t+i) >
b{C)s(C,t).

Both of these effects strongly influence the development of the
systern. The increased strength of C means that response r will be made
more often to states in £ when C competes with other classifiers that
produce different responses. if states in £ are the only payoff states
accessible from £, and r is the only response that witl produce the
required transformation from states in £ to states in £°, then the higner

probability of a win for C translates into a higher payoff rate to the
classifier system.

Of equal importance, C's higher bids mean that rules sending
messages satisfying C's second condition will be additionally strengthened
because of C's higher bids. Consider, for exarnple, a classifier C, that

transforms environmental states in some class £, to states in class £ by
evoking response Fo That is, CO acts upon a causal relation in the
environment to "set the stage” for C. If Co also sends a message that
satisfies C's second condition, then Co will benefit from the "stage
setting” because C's higher bid is passed to it via the bucket brigade.

It is instructive to contrast the ‘stage setting” case with the case
where some classifier, say C, sends a message that satisfies C but dres

nad transform states in £ (the environmental equivaience class defined
by its first condition) to states in £. That is, C] attempts to "parasitize"
C, extracting bids from C via the bucket brigade without modifying the
environment in ways suitable for C's action, Because Cy is not
instrumental in transforming states in &) to states in £, it will often
happen that activation of Cy isnot Tollowed by activation of C on the
subsequent time-step because C's rirst (environmental) condition is not
satisfied. Every time C) is activated without a subsequent activation of
1t suffers a loss because it has paid out its bid b(CI)s(Cl,t), without
receiving any income from C. Eventually C 1 S strength will decrease to the

point that it is no longer a competitor. (There is a more interesting case
where C and Cy manage to become active simultaneously, but that goes

beyond the confines of the present illustration).

One of the most important consequences of the bidding process is the
automatic emergence of default hierarchies in response to compiex
environments. For rule-based systems a "default” rule has two basic
properties:

1) 1t 1s a general rute with relatively few specified properties and

many “don't cares” in its condition part, and

2) when it wins a competition it is often in error, but it st}

manages to profit often enough to survive.

It is clear that a default rule is preferable to no rule at all, but, because it
IS often in error, it can be improved. One of the simplest improvements is
the addition of an "exception" rule that responds to situations that cause

4

e Sl AT T W i i b S R L ey A

bk

the default rule to be in error. Note that, in attempting to identify the
error-causing situations, the condition of the exception rule specifies a
subset of the set of messages that satisfy the default rule. That is, the
condition part of the exception rule ref/nes the condition part of the
default rule by using aaw/t/ona/ identifying bits (properties). Because
rule discovery algorithms readily generate and test refinements of
existing strong rules, useful exception rules are soon added to the system

As a direct result of the bidding competition, an exception rule, once
in place, actually aids the survival of its parent default rule. Consider the
case where the default rule and the exception rule attempt to set a given
effector to a different values. In the typical classifier system this
conflict is resolved by letting the highest bidding rule set the effector.
Because the exception rute is rnore specific than the default rule, and
hence makes a higher bid, it usually wins this competition. In winning, the
exception rule actually prevents the default rule from paying tts bid This
outcorne saves the the default rule from a loss, because the usual effect
of an error, under the bucket brigade, is activation of consumers that do
not bid enough to return a profit to the default rule. In effect the
exception protects the default from some errors. Sirilar arguments
apply, under the bucket brigade algorithm, when the default and the
exception only influence the setting of effectors indirectly through
intervening, coupled classifiers.

Of course the exception rules may be imperfect themselves, selecting
sorne error-causing cases, but making errors in other cases. Under such
circumstances, the exception rules become default rules relative to more
detailed exceptions. iteration of the above process yields an ever more
refined, and efficient, default hierarchy. The process improves both
overall performance and the profitability of each of the rutes in the
hierarchy. tt also uses fewer rules than would be required if all the rules
were developed at the most detatled level of the hierarchy {see Holland,
Holyoak, Nisbett, and Thagard [1986]). The bucket brigade algorithm
strongly encourages the top-down discovery and development of such
hierarchies (cf. Goldberg [1983] for a concrete example)

At first sight, consideration of long sequences of coupied rules would
seem to uncover an important limitation of the bucket brigade algorithm
Because of its local nature, the bucket brigade algorithm can only
propagate strength back along a chain of suppliers through repeated
activations of the whole sequence. That is, on the first repetition of a

5

sequence leading to payoff, the increment in strength is propagated to the
immediate precursors of the payoff rule(s). On the second repetition it is
propagated to the precursors of the precursors, etc. Accordingly, it takes
on the order of n repetitions of the sequence to propagate the increments
back to ruies that "set the stage” n steps before the final payoff. However,
this observation is misteading because certain kinds of rule can serve to
‘bridge” long sequences.

The simplest "bridging action” occurs when a given ruie remains
active over, say, T successive time-steps. Such a rule passes increments
back over an interval of T time-steps on the nart repetition of the
sequence. This qualification takes on importance when we think of a rule
that shows persistent activity over an eooch -- an interval of time
characterized by a broad pian or activity that the system is attempting to
execute. For the activity to be persistent, the condition of the
epoch-marking rule must be general enough to be satisfied by just those
properties or cues that characterize the epoch. Such arule, if strong,
marks the epoch by remaining active for its duration.

To extract the consequences of this persistent activation, consider a
concrete plan involving a sequence of activities, such as a “going home"
plan. The sequence of coupled rules used to execute this plan on a given
day will depend upon variable requirements such as "where the car is
parked’, "what errands have to be run”, etc. These detailed variations will
calt upon various combinations of rules in the system's repertoire, but the
epoch-marking “going home” rute D will be active throughout the execution
of each variant. Inparticular, it will be active both at the beginning of the
epoch and at the time of payoff at the end of the plan ("arrival home") As
such it “bridges" the whole epoch.

Consider now arule | that initiates the plan and is coupled to (sends a
message satisfying) the general epoch-marking rule D. The first
repelrtion of the sequence initiated by I will result in the strength of t
being incremented. This comes about because D is strengthened by being
active at the time of payoff and, because it is a consumer of I's message,
it passes this increment on to | the very next time | is activated. D
“supports” | as an elernent of the ‘going home" plan. The result is a kind of
one-shot learning in which the earliest elements in a plan are rewarded on
the very next use. This occurs despite the local nature of the bucket
brigade algorithm. It requires only the presence of a general rule -- a kind
of default -- that is activated when some general kind of activity or goal

6

m

e MDA | TR ST i o ey e o 11 o

ke A i

T ek . o e

el Ty e i)08

is to be attained. An appropriate rule discovery algorithm, such as a
genetic algorithm, will soon coupie more detailed rules to the
epoch-marking rule. And, much as in the generation of a default hierarchy,
these detailed rules can give rise to further refined offspring. The resuit
is an emergent plan hierarchy going from a high-ievel sketch through
progressive refinements yielding ways of combining progressively more
detailed components (rule clusters) to meet the particular constraints
posed by the current state of the environment. in this way a limited
repertoire of rules can be combined in a variety of ways, and in parallei, to
meet the perpetual novelty of the environment.

References.

Goldberg, D. E. Computer-aided Gas Pipeline Qpération Using Genetic
Algorithms and Machine Learning. Ph. D, Dissertation (Civil Engineering).
The University of Michigan. 1983,

Holland, J. H., Holyoak, K. J,, Nisbett, R. E., and Thagard, P. R. /nauction:
Learning Discovery, and the Growth of Knowledge. (forthcoming, MIT
Press].

Samuel, A. L. "Some studies in machine learning using the game of
checkers." /BMJournal of Research and Develogpment, 3. 211-232, 1839,

GENETIC ALGORITHMS AND RULE LEARNING
IN
DYNAMIC SYSTEM CONTROL

David E. Goldberg
Department of Engineering Mechanics
The University of Alabama

ABSTRACT

In this paper, recent research results
[1] are presented which demonstrate the
effectiveness of genetic algorithms in the
contrel of dynamic systems. Genetic algo-
rithms are search algorithms based upon the
mechanics of natural genetics, They combine
a survival-of-the-fittest among string
structures with a Structured, yet randomized,
information exchange to form a search algo-
rithm with some of the innovative flair of
human search, While randomized, genetic
algorithms are no simple random walk. They
efficiently exploit historical information to
speculate on new search points with improved
performance,

Two applications of genetic algorithms
are considered, 1In the first, a tripartite
genetle algorithm is applied to a parameter
optimization problem, the optimization of a
serial natural gas pipeline with 10 com-
pressor stations, While solvable by other
metheds (dynamic programming, gradient
search, etc.) the problem is interesting as a
straightforward engineering application of
genetic algorithms, Furthermore, a surpris-
ingly small number of function evaluations
are required (relative to the size of the
discretized search space) to achieve near-
optimal performance,

In the second application, a genetic
algorithm is used as the fundamental learning
algorithm in a more complete rule learning
system called a learning classifier system.
The learning system combines a complete
string rule and message system, an apportion-
ment of credit algorithm modeled after a
competitive service economy, and a genetic
algorithm to form a system which continually
evaluates 1its present ruyles while forming
new, possibly better, rules from the bits and
pieces of the old, 1In an application to the
control of a natural gas pipeline, the
learning system is trained to control the
pipeline under normal winter and summer
conditions. It is also trained to detect the
presénce or absence of a leak with increasing
accuracy,

INTRODUCTION

Many industrial tasks and machines that
once required human intervention have been
all but completely automated, WYhere once a
person tooled a part, a machine tools,
senses, and tools again. Where once a person
controlled a machine, a computer controls,
senses, and continues its task, Repetitive

tasks requiring a high degree of precision
have been most susceptible to these extreme
forms of automated contrel. Yet despite
these successes, there are still many tasks
and mechanisms that require the attention of
a human operator, Piloting an airplane,
controlling a pipeline, driving a car, and
fixing a machine are just a few examples of
ordinary tasks which have resisted a high
degree of automation. What is it about these
tasks that has prevented more autonomous,
automated control? Primarily, each of the
example tasks requires, not just a single
capability, but a broad range of skills for
successful performance, Furthermore, each
task requires performance under circumstances
which have never been encountered before,
For example, a pilot must take off, navigate,
control speed and direction, operate auxilia-
Ty equipment, communicate with tower control,
and land the aircraft. He may be called upon
to do any or all of these tasks under extreme
weather conditions or with equipment malfunc-
tions he has never faced before. Clearly,
the breadth and perpetual novelty of the
piloting task (and similarly complex task
environments) prevents the ordinary algo-
rithmic solution used in more repetitive
chores, In other words, difficult environ-
ments are difficult because not every possi-
ble outcome can be anticipated in advance,
nNOr can every possible response be pre=-
defined, This truth places a premium on
adaptatien,

In this paper, we attack some of these
issues by examining research results in two
distinet, but related problenms, In the
first, the steady state contrel of a serial
gas pipeline is optimized using a genetic
algorithm. While the optimization problem
itself is unremarkable (a straightforward
parameter optimization problem which has been
solved by other methods), the genetic algo-
rithm approach we adopt 1is noteworthy because
it draws from the most successful and longest
lived search algorithm known to man (natural
genetics + survival-of-thefittest)}. Further-
more, the GA approach is provably efficient
in its exploitation of important similari-
ties, and thus connects to our own notions of
innovative or creative search. In the second
problem, we use a genetic algorithm as a
primary discovery mechanism in a larger rule
learning system called a learning
classifier system (LCS), In this particular
application the LCS learns to control a
simulated natural gas pipeline. Starting
from a random rule set the LCS learns appro-
priate rules for high performance control
under normal summer and winter conditicns;
additionally {t learns to detect simulated
leaks with increasing accuracy.

T T i Tl T % s T I T A

S

e

T

A

A TRIPARTITE GENETIC ALGORITHM

Genetic algorithms are different from
the normal search methods encountered in
engineering optimization in the following
ways:

1. GA's work with a coding of the parameter
set not the parameters themselves,

2. GA's search from a population of points.

3. CGA's use probabilistic not deterministic
transition rules.

Genetic algorithms require the natural
parameter set of the optimization problem to
be coded as a finite 1length string. A
variety of coding schemes can and have been
used successfully., Because GAs work directly
with the underlying code they are difficult
to fool because they are not dependent upon
continuity of the parameter space and deriva-
tive existence,

In many optimization methods, we move
gingerly from a single point in the decision
space to the next using some decision rule to
tell us how to get to the next point. This
peint-by-point methed is dangerous because it
often locates false peaks in multimodal
search spaces. OGA's work from a database of
points simultaneously (a population of
strings) climbing many peaks in parallel,
thus reducing the probability of finding a
false peak.

Unlike many methods, GAs use probabi-
listic decision rules to guide their search.
The use of probability does not suggest that
the method is simply a random search, howev-
er. Genetic algorithms are quite rapid in
locating improved performance,

For our work, we may consider the
strings in our population of strings to be
expressed in a binary alphabet containing the
characters {0,1}. Each string is of length
and the population contains a total of n such
strings. Of course, each string may be
decoded to a set of physical parameters
according to our design. Additionally, we
assume that with each string (parameter set)
we may evaluate a fitness value, Fitness is
defined as the non-negative figure of merit
we are maximizing. Thus, the fitness in
genetic algorithm work corresponds to the

objective function 1in normal optimization
work.

A simple genetic algorithm which gives
good results is composed of three operators:

1. Reproduction
2, Crossover

3. Mutation

With our simple genetie algorithm we
view reproduction as a process by which

individual strings are copied according to
their fitness. Highly fit strings receive
higher numbers of copies in the mating pool.
There are many ways to do this; we simply
give a proportionately higher probability of
reproduction to those strings with higher
fitness (objective function value), Repro-
duction is thus the survival-of-the-fittest
or emphasis step of the genetic algorithm.
The best strings make more copies for mating
than the worst.,

After reproduction, simple crossover may
proceed in two steps. First, members of the
newly reproduced strings in the mating pool
are mated at random. Second, each palr of
strings undergoes crossing over as follows:
an integer position k along the string is
selected uniformly at random on the interval
{1,8-1). Two new strings are created by
swapping all characters between positions 1
and k Inclusively.

For exasmple, consider two strings A and
B of length 7 mated at random from the mating
pool created by previous reproduction:

A
B

al a2 a3 a4 a5 ab a7
bl b2 b3 b4 b5 b6 b7

[}

Suppose the roll of a die turns up a four.
The resulting crossover yields two new
strings A' and B' following the parcial
exchange

AI
B‘

bl b2 b3 b4 a5 ab a7
al aZ a3 abt b5 bé b7

The mechanics of the reproduction and
crossover operators are surprisingly simple,
involving nothing more complex than string
copies and partial string exchanges; however,
together the emphasis step of reproduction
and the structured, though randomized,
information exchange of crossover give
genetic algorithms much of their power. At
first this seems surprising. How can such
simple (computationally trivial) operators
result in anything useful let along a rapid
and relatively robust search mechanism?
Furthermore, doesn't it seem a little strange
that chance should play such a fundsmental
tole in a directed search process? The
answer to the second question was well
ge?ognized by the mathematician J. Hadamard

2]:

We shall see 2 little later that
the possibility of imputing discov-
ery to pure chance is already
excluded,.,.0n the contrary, that
there is an intervention of chance
but alse a necessary work of
unconsciousness, the latter imply-
ing and not contradicting the
former.... Indeed, it is obvious
that invention or discovery, be it
in mathematics or anywhere else,
takes place by combining ideas.

The suggestion here {s that while
discovery is not a result of pure chance, it

is almost
serendipity,
that a proper role for chance is to cause the

certainly guided by directed
Furthermore, Hadamard hints

juxtaposition of different notions. It is
interesting that genetic algorithms adopt
Hadamard's mix of direction and chance in a
manner which efficiently builds new solutions
from the best partial solutions of previous
trials,

To see this, consider a population of n
strings over some appropriate alphabet coded
50 that each is a complete IDEA or prescrip-
tion for performing a particular task (im our
coming example, each string is a description
of how to operate all 10 COMPTessors on a
natural gas pipeline.)., Substrings within
each string (IDEA) contain various NOTIONS of
what's important or relevant to the task.
Viewed in this way, the population contains
not just a sample of n IDEAS, rather it
contains a multitude of NOTIONS and rankings
of those NOTIONS for task performance.
Genetic algorithms carefully exploit this
wealth of information about important NOTIONS
by 1) reproducing quality NOTIONS according
to their performance and 2) crossing these
NOTIONS with many other high performance
NOTIONS from other strings. Thus, the act of
crassover with previous reproduction specu=-
lates on new IDEAS constructed from the high
performance building blocks (NOTIONS) of past
trials.

If reproduction according to fitness
combined with crossover give genetic algo-
rithms the bulk of their processing power,
what then is the purpose of the mutation

operator? Not surprisingly there 1is much
confusion about the role of mutation in
genetics (both natural and artificial).

Perhaps it is the result of too many B movies
detailing the exploits of mutant eggplants
that devour portiens of Chicago, but whatever
the cause for the confusion, we find that
mutation plays a decidedly secondary role in
the operation of genetic algorithms, Muta-
tion is needed because, even though reproduc-
tion and crossover effectively search and
recombine extant NOTIONS, occasionally they
may become overzealous and lose some poten=~
tially useful genetic material (1's or O's at
particular locations), The mutation operator
protects against such an unrecoverable loss,
In the simple tripartite GA, mutation is the
occasional random alteration of a string
position. In a binary code, this simply
means changing a 1 to a 0 and vice versa. By
itself, mutation is a random walk through the
string space. When used sparipgly with
reproduction and crossover it is an insurance
policy against premature loss of important

ROTIONS,
That the mutation operator plays a
secondary role we simply note that the

frequency of mutation to cbtain good results
In empirical genetic algorithm studies iz on
the order of 1 mutation per thousand bit
(position) transfers, Mutation rates are
similarly small in natural populatiens which
leads us to conclude that mutation Is

10

appropriately considered as a secondary
mechanism,

The wunderlying processing power Of
genetic algorithms 1is understood fn more

rigorous terms by censidering the notion of a
NOTION more carefully, If two or more
strings (IDEAS) contain the same NOTION there
are similarities between the strings at one
or mere positiens. To consider the number
and form of the possible relevant similari-
ties we consider a schema [3] or similarity
template; a similarity template is simply a
string over our original alphabet {1,0} with
the addition of a wild card or don't care
character *, For example, with string length
£ = 7 the schema 1*0%*** represents all
strings with a 1 in the first position and a

0 in the third position, 4 simple counting

argument shows that while there are only 22

strings, there are # well~defined schemata
or possible templates of similarity,
Furthermore, it is easy to show that a

particular string is itself a representative

of 2% different schemata, Why 1s this
interesting? The interesting part comes from
considering the effect of reproduction and
crossover on the multitude of schemata
contained in a population of n strings (at

most ne2% schemata). Reproduction on average
glves exponentially more samples to the
observed best similarity patterns (a near-
optimal sampling strategy if we consider a
multi-armed bandit problem). Second, cross-

over, combines schemata from different
strings so that only very long defining
length schemata (relative to the string

length) are interrupted. Thus, short defin-
ing length schemata are propagated generation
to generation by giving exponentially {in-
creasing samples to the observed best, and
all this goes on In parallel with little
explicit book-keeping or special memory other
than the population of n strings. How many

of the n.of schemata are usefully processed
per generatien? Using a conservative esti-
mate, Holland has shown that 0(n?) schemata
are usefully sampled per generation., This
compares favorably with the number of func-
tion evaluations {(n), and because this
processing leverage is so important (and
apparently unique to genetic algorithms)
Holland gives it a special name, implicit
parallelism. In the next section we exploit
this leverage 1in the optimization of a
natural gas pipeline, '

THE TRIPARTITE GENETIC ALGORITHM IN NATURAL
GAS PIPELINE CPTIMIZATION

We apply the genetic algorithm to the
steady state serial natural gas pipeline
problem of Wong and Larsen (4]. As mentioned
previously, the problem 1s not remarkable.
Wong and Larson successfully used a dynamic
programming approach and gradient procedures
have also been used, Our goal here is to
connect with extant optimization and control

e

—— T —

e o, il

il T e s

literature. We alse look at some of the
{ssues we face in applying genetic algorithms
to more difficult problems where standard
techniques may be inappropriate.

We envision a serial system with an
alternating sequence of 10 compressors and 10
pipelines, A fixed pressure soutce exlsts at
the inlet; gas is delivered at line pressure
to the delivery polnt. Along the way,
compressors boost pressure using fuel taken
from the line. Modeling relationships for
the steady flow of an 1ideal gas are well
studied, We adopt Wong and Larson's formula-
tion for consistency. The reader interested
in more modeling detail should refer to their
original work.

Along with the wusual modeling rela-
tionships, we must pose a reasonable objec-
tive function and constraints. TFor this
problem, we use Wong and Larson's objective
function and constraint specification.
Specifically, we minimize the summed horse-
power over the 10 compressor stations in the
serial line subject to maximum and minimum
pressure constraints as well as maximum and
minimum pressure ratio constraints. Con-
straints in these state variables are ad-
joined to the problem using an exterior
penalty method. Whenever a constraint is
viclated a penalty cost 15 added to the
objective function in proportion to the
square of the violation. As we shall see iIn
a moment, constraints {in control variables
may be handled with the choice of some
appropriate finite coding.

As discussed in the previous section,
one of the necessary conditions for using a
genetic algorithm is the ability to code the
underlying parameter set as a finite length
string. This is no real limitation as every
user of a digital computer or calculator

knows; however, there is motivation for
constructing special, relatively crude
codings. In this study, the full string Is

formed from the concatenation of 10, four bit
substrings where each substring is a mapped
fixed point binary inteper (precision = 1
part in 16) representing the difference in
squared pressure across each of the ten
compressor stations. This rather crude
discretization gives an average precision in
pressure of 34 psi over the operating range
500-100C psia.

The model, objective function, con-
straints, and genetic algorithm have been
programmed in Pascal, We examine results
from a number of iIndependent trials and
compare to published results. To initiate
simulation, a starting population of 50
strings is selected at random. For each
trial of the genetic algorithm we run to
generation 60. This represents a total of
50%61=3050 function evaluations per dinde-
pendent trial. The results from three
trials ure shown in Figure 1. This figure
shows the cost of the best string of each
generation as the solution proceeds. At
first, performance is poor. After sufficlent

11

genetic action, near-optimal results are
obtained. In all three cases, near-optimal
results are obtained by generation 20 (1050
function evaluations}.

¥
i
i
i .
3 . = = r - -

Best-of-Generation
Results = Steady
Serial Problem

Figure 1,

To better understand these results, we
compare the best solution obtained in the
first trial (run SS.1) to the optimal results
obtained by dynamic programming. A pressure
profile is presented in Figure 2. The GA
results are very close to the dynamic
programming solution, with most of the
difference explained by the large discretiza-
tion errors associated with the GA solution.

&

[

e m e st S s A - S —_——

PRESSURE PSTR
[Ty

=== gon@traint
i — optimal
A computed

5 : k)
STATIGN NUMBER

Pressure Profile -
Run S55.1 Steady
Serial Problem

Figure 2,

To gain a feel for the search rapidity
of the genetic algorithm, we must compare the

;B

number of points searched to the size of the
search space. Recall that in this problem,
near-optimal performance is obtained after
only 1050 function evaluations, Ta put this

in perspective, with a string of lemgth 40,

there are 2 different possible solutions in

the search space (240 - 1.1e12). Therefore,
we obtain near-optimal results after search-
ing only le-7% of the possible alternatives.
If we were, for example, to search for the
best person among the worids 4.5 billion
people as rapidly as the genetic algorithm we
would only need to talk to & or 5 people
before making our near-optimal selection.

A LEARNING CLASSIFIER SYSTEM FOR DYNAMIC
SYSTEM CONTROL

In the remainder of this paper, we show
how the genetic algorithm's penchant for
discovery in string spaces may be usefully
applied to search for string rules in a
learning classifier system (LCS). Learning
classifier systems are the latest outgrowth
of Holland's continuing work on adaptive
systems [5], Others have continued and
extended this work in a variety of areas
ranging from visual pattern recognition to
draw poker [6-8],

A learning classifier system (LCS) {s an
artificial system that learns rules, called
classifiers, to guide its interaction in an
arbitrary environment, It consists of threae
main elements:

1. Rule and Message System
2 'Apportionment of Credit System
3. Genetic Alporithm

A schematic of an LCS is shown in Figure
3. 1In this schematic, we see that the rule

and message system receives environmental
information through 1its sensors, <called
detectors, which decode to some standard

message format. This environmental message
is pfaced on & messape list along with a
finite number of other Internal messages
generated from the previous cycle, Messages
on the message 1ist may activate classifiers,
rules in the classifier store 1If activated a
classifier may them be chosen to send a
message to the message 1list for the next
cycle. Additionally, certain messages may
call for external action through a number of
action triggers called effectors. In this
way, the rule and message system combines
both external and internal data to guide
behavior and the state of mind in the next
state cycle,

In an LCS, it 1s important to maintatin
simple syntax in the primary units of infor-

mation, messages and classifiers. In the
current study messages are L-bit (binary)
strings and classifiers _are 3-position
strings over the alphabet {0,1,#}. In this

alphabet the # 15 a wild card, matching a ©

e
[—— ="

12

or a 1l in a given message. Thus, we maintain
powerful pattern recognition capability with
simple structures,

rd

ENVIRONMENT

EFFECTORS

SO=—=0Dn

Figure 3. Schematic - Learning

Classifier System

In traditional rule-based expert sys-
tems, the value or rating of a rule relative
to other rules is fixed by the programmer in
conjunction with the expert or group of
experts being emulated, In a rule learning
system, we don't have this luxury. The
relative value of different rules is one of
the key pleces of information which must be
learned, To facilitate this type of learn-
ing, Holland has suggested that rules coexist
in a competitive service economy. A competi-
tion is held among classifiers where the
right to answer relevant messages goes to the
highest bidders with this payment serving as
a source of income to previously successful
message senders. In this way, a chain of
middlemen is formed from manufacturer (source
message) to message consumer (environmental
action and payoff%. The competitive nature
of the economy insures that the good rtules
survive and that bad rules die off.

In addition
must also have
possibly better,

to rating existing rules, we
a way of discovering new,
rules. This, of course, is
the appropriate role for our genetic algo-
rithm, In the learning classifier system
application, we must be less cavalier about
replacing entire string populations each
generation, and we should pay more attention
to the replacement of low performers by new
strings; however, the genetic algorithm
adopted in the LCS is very similar to the
simple tripartite algorithm described ear]li-
er.

Taken together, the learning classifier
system with a computaticnally complete and
convenient rule and message system, an
apportionment of credit system modeled after

e

T e S s

s

NI I e

e e

e

L]

a competitive service economy, and the
innovative search of a genetic algorithm,
provides a unified framework for investipa-
ting the learning control of dynamic systems.
In the next section we examine the applica-
tion of an LCS te natural gas pipeline
operation and leak detection.

A LEARNING CLASSIFIER SYSTEM CONIROLE A
PIPELINE

A pipeline model, load schedule, and
upset conditlons are programmed and inter-
faced to the LCS. We briefly discuss this
environmental model and present results of
normal operations and upset tests.

A model of a pipeline has been developed
which accounts for linepack accumulation and
fricticonal resistance. User demand varies on
a daily basis and depends upon the weather.
Different patterns may be used for winter and
summer operation. In addition to normal
summer and winter conditions, the pipeline
may be subjected to a leak upset. During any
glven time step, a leak may occur with a
specified 1leak probability. If a leak
occurs, the leak flow, a specified value, is
extracted from the upstream junction and
persists for a specified number of time
steps.

The LCS receives a message about the
pipeline condition every time step. A
template for that message is shown in Figure
4, The system has complete, albeit imperfect
and discrete, knowledge of 1ts state includ-
ing inflow, outflow, fnlet pressure, outlet
pressure, pressure rate change, season, time
of day, time of year, and current temperature
reading.

=13
BN
Variable Descripsion ala m3x | posizicns
Pl inlet presscre a | 2000 1
Qr inler flow 0 30 H
FO outlet pressure 0 [2000 2
Q0 outlet flew 0 BO 2
[+14 U. 3. pressure rate | -200 200 2
TOD time of day 0 24 2
k11 tine af year 1] i %
™ teoperatucre 0 1 1
Figure 4. Pipeline LCS Environmental

Message Template

13

In the pipeline task, the LCS has a
number of alternatives for actions it may
take. It may send out a flow rate chosen
from one of four values, and it may send a
message Indicating whether a leak is suspect-
ed or not,

The LCS receives reward from its traimer
depending upon the quality of its action in
relation to the current state of the pipe-
line. To make the trainer evervigilant, a
computer subroutine has been written which
administers the reward consistently. This is
not a necessary step, and reward can come
from a human trainer,

Under normal operating conditions we
examine the performance of the learning
classifier system with and without the
genetic algorithm enabled. Without the
genetic algorithm, the system is forced to
make do with i{ts original set of rules. The
results of a normal operating test are pre-
sented 1n Figure 5. Both runs with
the LCS outperform a random walk (through the
operating alternatives}. Furthermore, the
run with genetic algorithm enabled Is superi-
or to the run without GA. 1In this figure, we
show time-averaged total evaluation versus
time of simulation (maximum reward per
timestep = 6).

g
with GA {PCLLE.20
-
LA i no GA (PCLCS.1) ‘

3
5
Ea
n‘ Random

L

|

%‘W P 400 0]] .00 .03

TInE (DAYS)
Figure 5. Time-averaged TOTALEVAL

vs, Time. Normal
Operations. Runs
POLCS.1 & POLCS,2

More dramatic performance differences
are noted when we have the possibility of
leaks on the system, Figure 6 shows the
time-averaged total evaluation versus time
for several runs with leak upsets. Once
again the LCS is initialized with random
rules and permitted to learn from external
reward. Both LCS runs outperform the random
walk and the run with GA clearly beats the
run with no new rule learning. To understand
this, we take a look at some auxiliary
performance measures, In Figure 7 we see

the percentage of leaks alarmed correctly
versus time. Strangely, the run without GA
alarms a higher prercentage of leaks than the
Tun with GA. This may seem counterintuitive
until we examine the false alamm statistics
in Figure 8. The run without GA is only
able to alarm a high percentage of leaks
correctly because it has so many false
alarms. The run with GA decreases its false
alarm percentage, while increasing its leaks
correct percentage.

5
with CA {PCLCS.6)
2
1
g o CA (PRICE.%)
L]
E Randeom
L]
3
L + 4
000 100,01 200.00 300.00 400.C0

0
TINE (DAYS)

Figure 6, Time-averaged TOTALEVAL
vs, Time - Leak Runs -
POLCS.5 & POLCS,6

L

no GA (POLCS.S)
ga——
with GA [PCLCS.6)
5
1Y - g8
()
(v
g Random
Gg
ml‘i
X
ul
-
g
) ,)
.00 10,00 200.60 300.00 00,0

TINME (3AYS)

Figure 7. Percentage of Leaks
Correct vs, Time Runs
POLCS.5 & POLCS,6

CONCLUSICNS

In this paper, we examined the perfor-
mance of a genetic algorithm {in two appli-
cations. In the first, a triparcite genetic
algorithm consisting of reproduction, cross-
over, and mutation was applied to the

g
£
- no €A (PCLLS.S)
= . .
&
dﬂ Random
ldl’e
-
[+
.
"y
with GA (PocLcs m1l
8 al
%00 100.00 a00.c0 aC0.00

20tco
TIME (DAYS)

Figure 8. Percentage of False
Alarms vs. Time Runs
POLCS.5 & POLCS.6

optimization of a natural gas pipeline's
operation. The control space was coded as 40
bit binary strings. Three initial popu-
lations of 50 strings were chosen at random,
The genetic algorithm was started and in eal1l
three cases, very near-optimal performance
was obtained after only 20 generations (1050
function evaluations).

In the seceond application, a genetic
algorithm was the primary discovery mechanism
in a 1larger rule-learning system called a
learning classifier system, The LCS, con-
sisting of a syntactically simply rule and
message system, an apportionment of credit
mechanism based on a competitive service
economy, and a genetic algorithm, was taught
to operate a gas pipeline under winter and
summer conditions. It also was trained to
alarm correctly for leaks while minimizing
the number of false alarms.

REFERENCES

1. CGoldberg, D. E., "Computer-Aided Pipe-
line Operation using Genetic Algoricthms
and Rule Learning," Ph.D. Dissertation,
University of Michigan, Ann Arbor, 1983,

2. Hadamard, J., The Psycholo of Inven-
tion in the Mathematical Field, Prince-
ton University Press, Princeton, 1945,

3. Holland, J. H., Adaptation in MNaturat
and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975,

4, Wong, P, J. and R. E. Larson, "Optimi-
zation of HNatural Gas Pipeline Systems
via Dynamic Programming," IEEE Trans.,

Auto. Control, vol. AC-13, no. 5, pp.
475-481, October, 1968.

i

,4‘.\:-"\‘.‘1“ AT e R e

LA

Holland, J. H, and J. 5. Reitman,
"Cognitive Systems Based on Adaptive
Algorithms," in Pattern-Directed Infer-

ence Systems, Waterman, D. A, and F.
Hayes-ﬁotﬁ {eds.), pp. 313-329, Academic
Press, New York, 1978,

Smith, 8. F., "A Learning System Based
on Genetic Adaptive Algorithms," Ph.D,
dissertation, University of Pittsburgh,
Pittsburgh, 1980,

Booker, L, B,, "Intelligent Behavior as
an Adaptation to the Task Environment,"
Ph.D, dissertation, University of
Michigan, Ann Arbor, 1982,

Wilson, S., "Adaptive 'Cortical' Pattern
Recognition," wunpublished manuscript,
Rowland Institute cf Science, Cambridge,
MA, 1983,

15

ENOWLEDGE GROWTH IN AN ARTIFICIAL ANIMAL

by

Stewart W. Wilson

Rowland Institute for Science, Cambridge MA 02142

ABSTRACT

Results are presented of experiments with a sim-
ple artificial animal model acting in a simulated en-
vironment containing food and other objects. Proce-
dures within the model that iead to improved perfor-
mance and perceptual generalization are discussed.
The model is designed in the light of an explicit
definition of intelligence which appears to apply Lo
all animal life. It is suggested that study of artifi-
cial animal models of increasing complexity would
contribute to understanding of natural and artificial
intelligence.

INTRODUCTION

The science of understanding and realizing in-
telligence in artificial systems needs a definition of
intelligence. Every science needs good definitions
of the problems it addresses. But in the artificial
intelligence field there has been a hesitancy zbout
defining intelligence. For example, on the first page
of a recent, widely used Al textbook we find: “A
definition in the usual sense seems impossible be-
cause intelligence appears to be an amalgam of so
many information-representation and information-
processing talents.” |1} For many Al goals, this omis-
sion is not important. But the lack of a good work-
ing definition can lead to uncertainty in evaluating
progress toward understanding intelligence per se,
even though results are in other respects substan-
tial.

This paper reports work using an artificial, be-
having, animal model to study intelligence at a
primitive level. An explicit definition of intelligence
is adopted, and guides construction of the model,
The definition has intuitive appeal and apparent ap-
plicability to the range of life from human beings to
very primitive animals. Because of this range, some
results with the primitive animal model should pro-
vide insight into intelligence in general.

A DEFINITION OF INTELLIGENCE

A good definition should be relatively simple and
yet cover most of the things we regard as belonging
to the concept and few we regard as not belong-

16

ing. The psychological literature offers a number of
useful similar efforts but the best definition of in-
telligence we have found is the following, from the
physicist van Heerden:

Intelligent behavior is Lo be repeatedly successful
in satisfving one’s psychological needs in diverse,
observably different, situations on the basis of
past experience.{2]

This definition {vH) is suitable for the camputer
study of intelligence because it is comprehensive and
its terms are not difficult Lo define computationally
for experimental purposes. A high rate of receipt
of certain reward quantities can correspond to “re-
peatedly successful in satisfying one’s psychological
needs” (on the simplest level. somatic needs). To
“diverse, observably different, situations” can corre-
spand sets of distinet sensory input “vectors” with
each set having a particular implication for optimal
action. To “past experience” can correspond a suit-
able internal record of earlier interactions with the
environment, and their results.

THE ANIMAT MODEL

Computer modeling of human levels of intell-
gence is complex. VH's apparent applicability to
both simple animals and human beings (assuming
appropriate translations of its Lerms) suggests the
uselulness of the easier course of considering basic
problems that simple animals must solve, and con-
structing behaving models aimed at solving them.
Observation of the models should aid understand-
ing of all intelligence, and the construction of more
complex models.

To define our model, we abstract four basic char-
acteristics of simple animals:

.

1) The animal exists in a sea of sensory signals. At
any moment only some signals are significant;
the rest are irrelevant.

2} The animat is capable of actions (e.g. movement)
which tend to change these signals.

3) Certain signals {e.g. those attendant on con-
sumption of food}, or certain signals’ absence
(e.g. absence of pain} have special status for him.

s ———

é
i
i
i
|
|
1
!
!
i
!
!
i
i
q

ek 2

4) He acts, both externally and through internal
operations, so as approximately to optimize the
rate of occurrence of the special signals.

An animal’s sensory-motor situation is described
in very general terms by (1) and (2). Characteristics
(3) and (4) are assumptions which provide a way
of making definite the notion of “needs” and their
satisfaction. Together, the four characteristics form
the basis of our artificial animal model. For brevity,
we call such a mode!l an “animal”.

We take as the animat’s basic problem the gen-
eration of rules which associate sensory signals with
appropriate actions so as Lo achieve the optimiza-
tion of {4), above. For this, the major questions are
adaptive, namely:

1) How to discover and emphasize rules that work

2) Get rid of those that don't (since memory space
is Jimited and noise is undesirable), and

3) Optimally generalize the rules that are kept (since
space is limited}).

There is some previous work along these lines.
Notable were Grey Walter’s: machina speculatriz,
which was a sort of sub-animat which chose actions
based on needs and the sensory situation, but did
not adapt its rules; and m. docilis, which could be
taught a conditioned response|3. More recently,
Holland and Reitman(4} exhibited successful perfor-
mance by a rule-adaptive animat-like system which
optimized its rate of satisfaction of two distinct
needs. Booker 5| experimented with an animat-like
“hypothetical organism” which adapted its rules in
a simple environment that contained both attrac-
tive and aversive stimuli; he also provides a review
of earlier systems. The present investigation is in-
debted to the last two works.

IMPLEMENTATION

Within the above framework we make the model
definile by defining the animat’s: environment, sen-
sory channels, repertoire of actions, its association

rules, and then its performance and adaptation al-
gorithms.

Environment:

A rectangle on the compuier terminal screen 18
rows by 58 columns and continued torcidally st its
edges defines the environmental space. Alphanu-
meric characters at various positions represent ob-
jects; the animat itself is denoted by *. Some, pos-
sibly many, positions are just blank.

Sensory_Channels:

_ In studies so far, * has been given the ability to
pick up seusory signals from objects which happen
Lo be one step (row and/or column) away, in any of

17

the eight (including diagonal) directions; nothing is
detected from more distant objects. Thus the “sense
vector” has eight positions. With * located, for ex-
ample, as shown below left, the sense vector would
be as shown at the right:

T
*F TTFbbbbb,

where b stands for blank. To form the sense vec-
tor, the circle of positions surrounding * is mapped,
clockwise starting at 12 o'clock, into a lefi-to-right
string.

But this vector is not the final sensory input. We
imagine that an object is ultimately sensed as the
outcome of measurements upon it by one or more
feature or attribute detectors. Without loss of gen-
erality we assume each detector produces either 2 0
or 1 output. If there are d detector types, an ob-
ject translates into a binary string d bits in length.
The sense vector as a whole thus translates into a
“detector vector” of 8d bits. Detector translations
or encodings of objects are fixed in *’s “low-level”
sensory hardware. They are assigned at the begin-
ning of an experiment. For example. in experiments
discussed here, “F” (food) is encoded as “117; “T"
(tree or obstacle) as “01"; and “b” {open space} as
“00”. {The first bit might be thought of as the out-
put of a “food smell?” detector; the second, of an
“opacity” detector.] Thus the above sense vector
translates into the detector vector:

01 01 11 00 00 GO 00 00

The associative apparatus takes the detector vector
as input.

Repertoire of Actions:

*'3 actions are restricted to single-step moves
in each of the eight directions. The directions are
numbered 8-7 starting at 12 o’clock and proceeding
clockwise; for example, 2 move in direction 3 would
be south-easterly.

The animat may move, or attempt to move, to a
position occupied by an object. The environment'’s
response for each kind of object is predefined. In
present experiments, if the move is into a position
whose encoding is 00 {the blank object), there is
no response (though the new sense vector will in
general be diffierent). If * steps into a space occupied
by an object whose encoding has the first bit equal
to 1, * is regarded as having eaten the object and
receives a reward signal. If * tries to step toward an
adjacent object whose encoding is 01, the step is not
permitted to occur (a collision-like banging may be
displayed).

The foregoing establish a semi-realistic situation
in which sensory signals carry partial, but uncertain,
information about the location of food, and avail-

I

able actions permit exploration and approach. En-
vironmental predictability can be varied through the
choice and arrangement of the objects. The number
of object types which may be experimented with is
limited only by the number of bits in the detector
encoding scheme.

Assoctation Rules:

For its association rules, the animat uses a rudi-
mentary form of Holland's!8| “classifier” rule. The
animat’s rules each consist of a “taxon”™ and an “ac-
tion”. The taxon is a sort of template capable of
matching a certain set of detector vectors. The ac-
tion is some one of the available actions. The ani-
mat’s classifier says, in effect, “if my taxon matches
the current detector vector, then consider taking
this action.” It is a kind of hypothesis about what
to do given a certain sensory situation {class of de-
tector vectors}). An example of a classifier would be

0# 01 1# 0# 00 00 0 0% 2

The matching rule requires that fur any taxon
position having a 0 or 1, the same value must oceur
in the detector vector; taxon positions with # (don’t
care) match unconditionally. Because of the #s,
which confer a kind of generality on the classifier,
the above taxon, for example, will match 8¢ possible
detector vectors, including the one discussed earlier.

It is worth making a few further observations
about this classifier. First, it is a pretty good one
because if food is present in direction 2 and the clas-
sifier matches the detector vector, the action rec-
ommended is to move in direction 2 and not some
other direction! Second, in directions 0, 3, 6, and 7,
the taxon only requires that the object be, in effect,
non-food, it being irrelevant whether these direc-
tions have obstacles or are blank. Directions 1, 4,
and 5 have not been so generalized. Broadly speak-
ing, a classifier is more useful to the animat to the
extent it is general (matches many detector vectors)
without being so general that it makes too many
errors (i.e., that in certain matching sitvations its
recommended action is inappropriate),

Besides taxon and action, each classifier pos-
sesses a “strength”, a quantity serving as the prin-
cipal measure of a classifier’s value to the animat.
There may be other associated quantities, as well.

The animat keeps a classifier population |P] of
fixed size. Usually, [P is initialized by filling all
the taxa with 0, 1, and # according to some ran-
dom rule; actions are similarly filled in. As the an-
imat’s CRT “life” evolves, the classifier population
changes, as will be described.

PERFORMANCE ALGORITHM

*’s basic cycle is one “step”, within which events
having purely to do with immediate behavior are

18

very simple. First, the current detector vector is cal-
culated. Second, [Pj is searched for classifiers which
match it; these form the “match set” |[M|. Third, a
classifier is selected from M| using a probability dfs-
tribution over the strengths of [M ’s classifier’s; that
is, the probability of selection of a particular clas-
sifier is equal to its strength divided by the sum of
strengths of classifiers in |[M|. Fourth, * moves ac-
cording Lo the action of the selected classifier, or
tries to. The environment’s response to the move
will be as described earlier.

It can be seen that *'s move choice tends o be
the one having the greatest. total strength among the
‘M classifiers advocating it. Thus, overall, * first
asks which classifiers of P’ “recognize” the current
sensory situation, then from these tends to pick the
move with the greatest associated strength. The
subset of M consisting of classificrs whose action is
the same as the chosen action is called the “action

set”™ Al

ADAPTATION ALGORITHM

The adaptation algorithm has three distinct as-
pects: 1} reinforcement of classifier strengths; 2)
“genetic” operations on classifiers yielding new clas-
sifiers; and 1) direct creation of classifiers.

Remforcement:

As discussed in the last section, a classifier’s
strength is a major determinant of its ability to infiu-
ence *’s action and therefore performance. We con-
sequently want strength to reflect the performance
which tends to result when this classifier is in [Al.
That would be straightforward if every step were
rewarded: we could, for example, adjust the clas-
sifier’s strength by an amount proportional to the
reward. Classifiers which got bigger rewards would
be stronger, thus more likely to be an [A], etc.

Realistically, however, it is usually the case that
only some of an organism’s actions receive a del-
inite reward from the environment. Actions lead-
Ing up to, or setting the stage for, & rewarded ac-
tion are themselves not directly rewarded, but they
must somehow be encouraged or the final payoff
will not occur. Holland|7| addressed this problem
in proposing a “bucket-brigade” algorithm in which,
very briefly, 1) classifiers make payments out of their
strengths to classifiers which were active on the pre-
ceding cycle, and 2) the same classifiers later corre-
spondingly receive payments from the strengths of
the next set of active classifiers. External reward
goes (o the final active set in the chain. In effect, a
given amount of external reward will eventually flow
all the way back through a reliable chain, reinforcing
every precursor classifier,

Our basic implementation of this idea is as fol-
lows. On each step:

LxY

pp—— . LI e

TN

i T " O P i Tt T ST S

SR T T . e

Mo Sl

i i

1) all classifiers in A} have a fraction ¢ of therr
strengths removed;

2) the total strength thus removed from [A] is dis-
tributed to the strengths of any classifiers in [A-
1/, defined as the action set in the previous step;

3) * then moves and i external reward is received
it is distributed to the strengths of 'Al; i exter-
nal reward 1s not received. the classifiers of A
replace those of [A-1.

Thus every |A participates in general in two trans-
acLions, one paying out, the other receiving. Wecan
write

S =84 —eS4+p
where S4 i5 |A's votal strength on one step, 5, its
total on the next, and p is the total payoff received
(either external reward or from the next Al Ifpis
the same over time, S approaches a constant value
given by p/e, so that under reasonably steady pay-
off conditions, 54 is an estimator of typical payoff.
Similarly, the strength of any individual classifier is
an estimator of its typical payofl.

The total payofls to [A and A-1] are in the sim-
plest case shared equally by the recipient classifiers.
This has the consequence that the more classifiers
are in, say, ‘A, the less payoff each gets.

Genelic Operations;

Consider two classifiers which match similar sit-
uations:

04 01 14 O£ 0000 0# 0% | 2
and
04 0# 1101 0004 0# 0% | 2

Each is good. but cach still lacks something in gener-
ality since, for example. the matching requirements
for 01 in bits 2-3% and 6-7. respectively, of each are
perhaps unnecessarily restrictive. Suppose we make
a new classifier by combining bits 5-9 of the first
with bits 0-4 and 10-15 of the second. The result
would be the slightly more general classifier:

04 O# 17 0# 00 0% 0# 0% | 2

The above operation on two classifiers resembles a
kind of crossing-over or recombination of chromo-
some parts in genetics. It is an operation in which
two “parent” classifiers produce an offspring that is
possibly an improvement over both of them. An-
other “genetic” operation, this time using just one
parent, would first clone the parent, then mutate one
or more of the clone’s taxon positions. Other types
of operations on classifier structure can be imagined
{one will be discussed later). In each case the at-
tempt is to use existing classifiers as the starting
points for improved classifiers.

But the crossover points above were chosen quite
carefully; otherwise the offspring might have been no

improvement, or even a retrogression (Lo a classifier
more spectfic than either parent). We do not expect
the animat to know where best to cut and mutate.
How can we expect genetic operations to be of any

3

use .

Holland & presents a mathematical theory show-
ing that a population of individual symbol strings
in which cach string can be assigned a numerical
worth, will progressively increase in average worth
as 1ts members underpgo reproduction, genetic oper-
ations on or among the offspring, and deletion of in-
dividuals Lo maintain constant population size. The
key requirement is that an individual’s probability
of reproduction be proportional to its worth. Hol-
land extended the theory to include classifier sys-
tems. In employing genetic operations, our animat
constitutes an exploration and test of the theory.

The specific algorithm employed is as [ollows:

1} A first classifier c] of P! is selected with prabu-
bility proportional to its strength:

2) If el is merely to be reproduced, a copy of it
is made and added to 'P . To make room. some
classifier 1s deleted;

3) If cl is to be crossed with another classifier. a
second, ¢2, is selected, also with probability pro-
portional to strength, but from the subset of P
of classifiers having the same action as el. Two
cut points are chosen as above, but at random,
and an offspring ¢3 constructed out of the parts.
¢3 is added to P’ and some classifier is deleted.

Note that the parents are kept (unless one happens
to suffer the deletion, but this is unlikely). The
offspring, in effect, go into competition for payofl
with the parents. Better (higher strength} offspring
should proliferate more rapidly than their parents,
driving them out; for worse offspring, the reverse
should be the case.

“Create” Operations:

Occasionally, as * executes the performance algo-
rigthm, a detector vector may occur that no classi-
fier of [P matches, i.e., the situation is unrecognized,
The animat’s response is to create a new. match-
ing, classifier. A taxon is made by adding some #°s
at random to the detector vector; an action is cho-
sen randomly. The created classifier is added to P
and one is deleted. The new classifier immediately
matches the previously unrecognized situation and
action occurs by the normal mechanism.

EXPERIMENTAL PROCEDURE

The animat model was designed with the vH-
intelligence definition as a guide. In experiments
with the model we are interested in finding pro-
cedures and parameter values that seem to give ”

19

greater rather than less vH-intelligence. For this
two measures have been adopted. One is a perfor-
mance measure: given an environment, how many
steps does * take, on average, to find food objects?

The other is a generality measure: does * evolve

¢classifiers each tending to be useful in a number of
distinct situations? Generality 1s important because
it suggests that a high level of performance devel-
oped in one environment will carry over to a some-
what different environment.

The experimental procedure is to fix *’s methods
and parameters, then have him do a large number
of “problems”® in a particular environment £. The
measures of performance and generality are tracked.
A “problem” always consists of starting * al a ran-
domly selected blank position in E; then * moves
until he eats some lood, at which point the problem
ends. The number of steps between start and food s
recorded: a moving average of this quantity over the
previous 50 problems is the performance measure,

STPSAV,

To track generality, we calculate a histogram
over the “periods™ of all classifiers in P, The pe-
riod of a classifier i1s a moving average of the number
of steps by * between veccurrences in A of this clas-
sifier. Thus a frequently used classifier will have a
low period. |P| will then be general to the extent the
histogram of periods is largest at low period. As |P]
evolves we expect the histogram peak to move to-
ward lower period. if [P]’s generality is increasing.

TFT

T

T ™ T
F F T F FT
T A F
T T F T
TFT TFT F 8 F
T T
v T v T
F T F 7 F
T
T T 7T T
F T FT F T TFT
T F
T T T T
F F FT F ™
T T T
T T
TFT F F F T
T T T T

Figure 1. The Environment “WOODS7?".

An environment used for many of the exper-
iments is “WOODS7”, shown in Fig. 1. Although
WOODST? may look easy, it actually contains a to-
tal of 92 distinct sense vectors, so *’s need to dis-
cover and generalize is substantial. To obtain per-
formance baselines, we can start * randomly, then
let him also move completely randomly until food
(F) is bumped into. For WOODS7, the long-term
average of the number of steps this takes is about 41

20

steps. We may also ask [9]: what is the best possible
performance (if, say, the animat had human capa-
bilities)? For every starting position, the number of
steps to the nearest F can be found and averaged
over all starting positions. The result for WOODS7
15 2.2 steps.

RESULTS AND DISCUSSION

Fig. 2 shows a performance curve for a combi-
nation of procedures and parameter settings that is
among the best so far found. There is an initial rapid
improvement within the first 1000 problems (un-
typically good during the first 100 problems, where
STPSAV usually stays above 15}, followed by very
gradual improvement thereafter. The performance
at 8000 problems, between 4 and 5 steps, is quite
respectable compared with “perfect” (2.2 steps), es-
pecially since * has no information whatsoever until
he is next to a nonblank object.

i4
T

-

1@
L

116

Average steps to food
6 B8
¥

L SN -,

e 1 2 3 4 3 6 7
Number of problems x 1808

Figure 2. STPSAV (ragged line) and Period Av-
erage (broken line) for * to 8000 prob-
lems. Period values as marked.

For the same animat, Fig. 3 shows the histogram
of periods of [P] 2t 8000 problems. There is a defi-
nite bulge for Jow periods; the average period is 118.
For comparison, the broken line in Fig. 2 shows the
trend of the period averages at earlier epochs, indi-
cating gradual generalization in the sense we have
defined.

Qualitatively, a * such as this one gives the im-
pression of “knowing” the Woods quite well. When
next to F, * nearly always takes it directly; occa-
sionally he will move one step sideways and take it
from that direction. When next to one or more T's,

- R =5 T

but with no F immediately in sight, * quite reliably
steps around the obstacle(s) and finds the F. When
* is “out in the open”, i.e., the sense vector consists
of blanks, he has no information about the best way
to go, as in a thick fog. One might expect *'s be-
havior Lo resemble a random walk but this is not the
case. Instead. the movements look more like a gea-
eral “drift” in some direction, with some superim-
posed randomness. After several problems the drift
may shift to another direction.

70

1

Humber of Classifiers
49
¥
t

: . 1l

P 6@ (0@ 159 200 256 380 350 400 4E0
Period

Figure 3. Histogram of classifier periods for the
* of Figure 2 at 8000 problems.

Parameter Values:

Parameler values for the animat of Fig. 2 were
arrived at by experiment. Three basic parame-
ters are discussed in this section, with observations
about setting them reasonably.

For Fig. 2, |P| contained 400 classifiers. A suit-
able value for this number appears related to the
number of distinct sense vectors or “scenes” (here,
92} in the environment. Too small a ratio of clas-
sifiers to scenes results in “forgetful” behavior in
which * keeps losing good moves that appeared well
learned. A small ratio means that for some scenes
deletion has a high probability of eliminating all
matching classifiers. For ratios above about four,
the forgetting is much less noticeable. To the extent
* generalizes, more and more classifiers match each
sense veclor, further reducing the problem.

The “estimator fraction”, e, was set at 0.2, lLe.,
a classifier lost 20 percent of its strength each time
1t entered [A]. In general, smaller values of ¢ mean
that a classifier’s strength reflecis 2 weighted av-

21

erage of pavoffs that reaches farther tnio the past.
Conversely, a larger value makes the strength more
sensitive Lo recent payoffs. It was found that e = 0.4
produced a noticeably more erratic STPSAV curve,
whereas changing from ¢ = 0.2 to 0.1 did not affect
the curve significantly. Strength should accurately
estimate a classifier’s typical payoff. In this problem,
payoff fluctuations are apparently large enough so
that e = 0.4 results in too short an averaging interval
for good estimation. If e is too small, though, newly
formed classifiers may get evaluated too slowly; we
therefore kept ¢ at 0.2

The rate at which genetic operations occurred
was set proportional to the problem rate. Specif-
ically, at the end of each problem, a single genetic
event (as described earlier) vook place with probabil-
ity RGPROB. Given the event, crossover occurred
with probability XPROB. Settings were typically
0.25 and 0.50, respectively. These seemed Lo ensure
that, on average, classifiers would be fully evaluated
by the reinforcement process by the time they were
selected for a genetic operation {or deleted). Typ-
ically, a problem took five steps in which each set
Al had about 10 members, giving about 50 evalu-
ations. The above value for RGPROB then implies
200 evaluations per genetic event. This seems ex-
cessive except that some classifiers are much more
frequently used than others and we wanted 1o allow
for the well-rewarded but infrequently called-upon
classifier. It is possible our results would have been
speeded up, without adverse side effects. by a ligher
genetic rate.

Distance Estimation:

Performance in the earliest animat experiments
was far below the level of Fig. 2. One delect was a
kind of “dithering” in which while * would tend to-
ward F's, the path would have unnecessary sidesieps
and wanderings. It was then realized that the ba-
sic reinforcement algorithm does not care whether a
path from point A to food is long or short; there is
nothing which preferentially reinforces the most ex-
peditious classifiers. Any path, even a looping one,
will come to equilibrium at a high strength level in
its constituent classifiers.

The solution had to be more subtle than simply
penalizing long paths. What is required is a tech-
nique that, at every position, tends to prefer the
most direct of several possible moves. but does not
prevent the setting up of a long path if that is ac-
wually the shortest path available. Our solution was
twofold. Tirst. each classifier was made 1o keep an
estimate of its distance (in steps) to food. This did
not require elaborate look-ahead. Instead each clas-
sifier in A-1! adjusted its distance estimate accord-
ing to an average of the distance estimates of A ;
when reward was received, the members of |A were
similarly adjusted. using the quantity 1. This tech-

nique, with cach estimate an average over the last
few updates, 1s quite satisfactory.

The distances are employed as follows. In the
performance cycle, selection from (M| is based on
probability proportional to strength /distance instead
of just strength. Consequently, a move tends to be
selected that is not only strong, but alse “short”.
Now comes the second part of the solution. At the
same time as | Al 1s formed, the set NOT'A| of the re-
maining classifiers in M) 1s taxed by a small amount
(1ypically five percent): the “longer” classifiers thus
tend to incur & loss by not being selected. This
“ateral inhibition” induces a sort of catastrophe in
which the shorter classifiers become even more likely
to be picked and the longer become ever weaker, and
can disappear entirely. Note that the competition 1s
purely local and does not work against the setting
up of minimal long paths.

This technique is very cffective against “dither-
ing”; the progressive takeover of a match sct by
a discovered shorter move has been repeatedly ob-
served. Our solution is not perfect, however, be-
cause to suppress the special case of occasional loop-
ing situations we had to impose a small tax (five
percent) on |A|. Since [A] is the set which receives
payoff, the tax has little effect except if a loop is
taking place, and then the tax is soon very effective.
Still, in principal, even a small tax on [A| reduces
the strength flow in very long chains, putting them
at a reproductive disadvantage. This residual prob-
lem may be an indication that as paths grow, they
should be “condensed” into units of behavior longer
than one step.

Extensions to “Create”

A second area of changes which improved perfor-
mance had to do with the “Create” operations. As
discussed, Create at first only occured when M’ was
empty. It was found that * sometimes also got stuck
looping among situations with nonempty [M|’s. The
tax on |A| enabled recognition of these loops because
the total strengths in each |A] would tend to zero.
We put in a threshold that triggered Create if the
strength of any [M| got too low. This suppressed
looping dramatically and improved performance.

It was also found important to trigger Create
randomly, at & very low rate (typically, with prob-
ability 0.02 per step). * is engaged in path con-
struction, using the best available current evidence.
This can lead to good but nevertheless suboptimal
paths which might be improved if * would only try
something different. Random Creates are one way
to introduce a new move direction. Usually the new
classifier is no improvement. But when 1t is, and it
gets tried (gets in [A[}, it will be {often heavily) rein-
forced and therefore given a good chance at eventual
reproductive success.

22

A different type of Create was also found useful.
Instead of randomly picking the action in a Created
classifier. * may make an educated guess, as [ol-
lows. From its current position, * steps tentalively
into a randomly selected adjacent position. There,
|M| is determined and the strength-weighted aver-
age of the distances of its classifiers, MNDIST{M],
is lormed. The same is done for several adjacent
positions. These values are then compared with
MNDIST M for the starting position. Several de-
cision schemes are possible, with the general idea
of picking an action direction corresponding to the
shortest apparent path. If, however, none of the ad-
jacent MNDIST|M’s is better by more than I than
the current position’s value, it is preferable not to
create a new classifier. This technigue is important
early in *’s existence, when very little is yet known:
but, interestingly, it appears that * should not rely
entirely upon it. Some suboptimal paths get set up
which tend not to be improved. The problem goes
away if random Creates are also available.

Effect of Genetic Operations:

Finally, we shall discuss what the experiments
suggest about the role of the genetic operations. To
begin. it is helpful to define a “concept™ as a set of
classifiers from |P! having exactly the same laxon
and action, and for which there is no other classifier
in |P| with that taxon and action. The basic effect
of *’s genctic operations then appears to be to ex-
ert a pressure tending to increase the generality of
IP!’s concepts. That is, with time, the periods of
the concepts in [P| tend to decrease. The pressure
is restrained by the requirement that the concepts
be more or less correct (* must get the food expe-
ditiously). The precise point of balance appears Lo
depend on the parameter regime.

An important expertment is to evolve an animat
with reinforcement and Create going as usual, but
with genetic operations turned off. The result 1s a
performance almost as good as Fig. 2. But signifi-
cant generalization does not occur; the curve of his-
togram averages remains cssentially flat at a value
of about 270. There thus appears to be a division
of effort: Create introduces the raw material, the
specific examples to be evaluated; and the genetic
operations produce more general concepts from the
examples.

It is clear that crossover is capable of making a
more general classifier out of two less general par-
ents: this was illustrated eartier. We are not sure,
however, just why for * the more general concept
has a selective advantage. Somehow, greater gener-
ality must lead to greater concept strength; there is
no other way to win out. Yet being active more fre-
quently does not in itself result in greater strength:
strength is an estimator typical payoff, not payoff
rate,

1at

watl

58
ifi-
115-
Jue
ion
the
etic
the

1g 2
par-
ure,
cepl
ner-
re 1s
. fre-
igth:
ayoft

.

el T e e g SR

i el bl 7 peiiak v

PR, L A

QOur tentative hypothesis stems from noting that
a more specific concept will always have to share
payoff with any more general offspring that comes
into existence. This initially weakens the specific
concept so that the number of classifiers making 1t
up tends to fall {at equilibrium, numbers are propor-
tional to total strength). Consequently, the specific
gets even less of the payolff. since payofl is shared.
The result is a cascading situation in which the more
general concept wins out. The odds favor the gen-
eral because it has more than this one source of pay-

off.

While general classifiers appear to have a selec-
tive advantage, this is of no use unless such classi-
fiers ean be formed and introduced in the first place.
Crossover is adequate for some types of generaliza-
tien. But a natural operation for the purpase 1s
obviously intersection. We have implemented this
operation as follows. Two parents are chosen and
a new taxon 15 formed by intersecting copies of the
parents' taxa over a randomly selected interval. In
that interval, if the parents differ at a position, the
new taxon gets a #; if not, the new taxon gets the
common value. Qutside the interval, the new Laxan
is filled in from parent 1.

Intersecticn is a “hot” operation which should
be used cautiously because it can introduce 7 's
at a high rate. Nevertheless, our results show in-
creased generalization with little performance loss
when crossover and intersection are both available
toges

Space remains only discuss the deletion tech-
nique. The simplest method, conceptually, is to
delete at random. Then, to a first approximation,
the equilibrium number of classifiers in a concept
or in any subset of [P whatsoever —1s proportional
1o its total strength. A drawback of random deletion
is that a vajuable concept that happens to consist
of one classifier is at considerable risk until 1L re-
produces. This is not a problem on average if P
is large enough. Yet one wonders whether “deleting
the weak” might not be better.

Several methods have been tried, all but oune
clearly worse than random deletion. The possibly
better method is to delete with probability propor-
tional to the reciprocal of strength. This has the
obvious effect of tending to protect the precious clas-
sifier just mentioned. It can also be shown that the
probability that a concept [C will lose a member
under this type of deletion is proportional to the
square of its number, which place: a strong restraint
on over-expansion.

The * of Fig. 2 employed both intersection
(along with crossover) and inverse-strength deletion.

CONCLUSION

In its simple way, * meets the definition of intel-
ligence stated at the beginning. * becomes good
at satisfying its need for food in a Woods of di-
verse object configurations on the basis of experi-
ence. Though not yet tested, *'s rule generaliza-
Lion over time suggests that performance would be
maintained in a somewhat different Woods, or if the
Woods slowly changed.

While the present animat has numerous limi-
tations (sensory, motor, memory. etc.} there does
not seem to be any essential barrier 1o removal of
the limitations and to carrvover of the present algo-
rithms to a more sophisticated model in more com-
plicated environments.

ACKNOWLEDGEMENT

The author wishes 1o acknowledge valuable cun-
versations with C G. Shaefer of the Rowland Insti-
tute.

REFERENCLES

1. Winston, P.H. Artificial Intelligence, 2nd ed.
Reading, Massachusetts: Addison-Wesley, 1984.

2 van Heerden, P.1. The Foundation of Empirical
Knowledge. Wassenaar, The Netherfands: Wis-
Lik, 1968,

3 Walter, W.G. The Living Brain.
Norton, 1953.

4. Holland, J.H., & Reitman, J.5. Cognitive sys-
tems based con adaptive algorithms. In Pattern-
Directed Inference Systems, Waterman, D A, &
Hayes-Roth, F., (eds.). New York: Academic
Press, 1978.

New York:

5 Booker, L. Intelligent Behavior s an Adapta-
tion to the Taesk Environment, Ph.D. Dissertation
{Computer and Communication Sciences}, The
University of Michigan, 1982,

6 Holland, J.H. Adaptation. In Progress tn Theo-
retical Biology, {, Rosen, R., & Snell, F.M., (eds.).
New York: Plenum, 1976.

7 . Genetic algorithms and adaptation.
In Adaptive Control of Ill-Defined Systems, Self-
ridge, O.G. Rissland, E.L., & Arbib, M.A .. (eds.)
New York: Plenum, 1984,

8 . Adaptation in Natural and Artifictal
Systems. Ann Arbor: University of Michigan
Press, 1975,

9 Martha Gordon, personal communication.

IMPLEMENTING SEMANTIC NETWORK STRUCTURES

USING
THE CLASSIFIER SYSTEM
Stephanie Forrest

The University of Michigan
Ann Arbor, Michigan

Introduction

One common criticism of Classifier Systems is the low-level nature of their
representations. In Classifier Systems information is stored as rules (classifiers) that have a
very constrained format (binary bit strings). Low-level binary bit string representations
support adaptive learning algorithms well {Holland, 75)(Holland, 80). However, it is difficult
to interpret the behavior of these systems without a high-level interpreter that can code and
de-code the ones and zeroes into more meaningful terms. In particular, although gross
behaviors can be measured at various intervals using some fitness function it is difficult to
chart how learning takes place or to determine what role is played by each component of the
system. This feature of low-level representations makes it difficult to establish direct
connections between the behavior of Classifier Systems and more common high-level
symbolic representations used in artificial intelligence programs.

The research described in this paper addresses this criticism by demonstrating that
Classifier Systems are capable of representing sophisticated high-level structures. This has
been accomplished by selecting one class of knowledge representation paradigms (semantic
networks) and showing how they can be implemented as a collection of Classifier System
rules. The described system takes high-level semantic network descriptions as input and
automatically translates them into a Classifier System representation. It also provides a
“query processor” that takes high-level queries about the semantic network, translates them

into a sequence of Classifier System operations, and translates the results of the queries back

24

e

il

Al e T T =

i o, i

1
|
|
|
i

Ty

into higher-level answers.

In large scale parallel systems such as the Classifier System. the issue of control is
central. Control issues arise in two ways for the Classifier System: in deciding which
external classifiers are to be generated, and in deciding which external messages are to be
placed on the message list and when. As the number of rules in the system increases, it
quickly becomes impossible to do control the system manually. There are at least two
possible ways to automate the process: “learning” and “compiling.” Compilation can be
viewed as mapping high-level structures onto lower-level operations (“top down™”). Likewise,
some kinds of learning (for example, genetic algorithms) can be viewed as the gradual
emergence of higher-level structures from a random assortment of low-level processes;
systems using these kinds of learning organize themselves from the “bottom up.” The
bottom-up approach is the one that has been studied previously for Classifier Systems
(Holland, 80) (Booker. 82) (Goldberg. 83). The top-down approach 1s being explored in this
paper.

The implementation takes the form of a compiler, mapping “high-level” semantic
network definitions onto the Classifier System. In this context, the Classifier System is
properly viewed either as a lower-leve! target language or as a specification for an abstract
parallel machine. One particular semantic network formalism was selected for this research:
KL-ONE (Brachman. 78) (Schmolze and Brachman.82) (Brachman and Schmolze. 85}.
The KL~-ONE family of languages i1s widely used: it contains most of the common semantic
network constructs (the most notable exception being cancel links). has been precisely
described, and includes sophisticated accessing functions as part of the design of the
language. These characteristics make KL-ONE an excellent exemplar of the semantic
network representation paradigm.

The remainder of this paper is divided into five sections: (1) brief description of my
version of the Classifier System, (2) short introduction to KL-ONE. (3) description of the

Classifier System implementation of KL-ONE. (4) discussion. and (5} conclusions

25

The Classifier System

Since there are several variants of Classifier Systemns, 1 will describe below the one
used for this project. This particular system does not include those features that are specific
to the use of adaptive algorithms, such as bidding, support, etc. This is because 1 am
interested in showing what sorts of representations are possible, not how they can evolve.
The following view of the Classifier System emphasizes how it can be used to represent
higher-level structures and does not rely on any particular hardware implementation. Thus,
it is appropriate to describe the language of possible programs for the Classifier System as a
formal grammar. The input to a Classifier program is the set of external messages (often
called detector messages) that are added to the message list during the program’s execution.
The output is the set of messages (called effector messages) read from the message list by an
external agent. Just as many traditional programs can be run interactuvely. a classifier
program can be thought of as receiving intermittent mput from the external environment

and occasionally emitting output messages. The syntax for the Classifier Systemn s as

follows:
»x
<classifier system> ::= <classifier>
<classifier> ::= <condition> => <action=>
- n
<condition> = <alphabet>" ~<alphabet>"

<action> ;= <alphabet>"
<alphabet> :=1 0 =%
Each classifier, or production rule, consists of a condition part and an actlon part.
The action part specifies exactly one action. while the condition part may contain many
conditions (pre-conditions of activation). Rules with more than one condition are referred to
as “multiple-condition classifiers.” A multiple-condition classifier must have each of its pre-
conditions fulfilled in a singie time step for it to be activated. The conditions and actions
are fixed length strings over the alphabet (1.0,#) where = denotes “don’t care” and 1 and 0

are literals. The determination of whether or not a specific message matches a condition ic a

26

ay
Lo
te-
s

10

sa

|
¥

(49

logical bit comparison on the defined {1 or 0} bits. If 2 “not” condition is used, the
condition is fulfilled just in the case that no message on the message list matches it. The
#'s in the condition part designate “don’t care” positions in the sense that they match
either 1 or 0. The action part of the classifier determines the message to be posted. All
defined bits appear directly in the output message. Any # symbols in the action part
indicate that the corresponding bit value in the activating message should be substituted for
the # symbol in the output message.! Actual messages are always completely defined in
that they do not contain “don’t care” symbols. Separate conditions are placed on separate
lines, and the first condition (the distinguished condition) of a classifier is used to pass
through messages to the action part.
As a simple example, consider the following four bit (n = 4) classifier system:
#00£ => 1101

#101
EHE] => mklé

~ 1111 ==> 1111.
This classifier system has three classifiers. The second classifier illustrates multiple-
conditions, and the third contains a negative condition. If an initial message, “0000” is
placed on the message list at time TO, the pattern of activity shown below will be observed

on the message list:

Time Step Message List Activating Classifier
TO: 0000 external
T1: 1101 first
1111 third
103 1111 second
T3:
T4: 1111 third.

_1For multiple-condition classifiers. this operation 1s ambiguous since 1t is not clear
what it means to simultaneously perform “pass through” on more than one condition. The
ambiguity is resolved by selecting one condition to be used for pass through. By convention,
this will always be the first condition. Another ambiguity arises if more than one message
matches the distinguished condition in one time step. Again by convention, in my system I
process all the messages that match this condision. The example illustrates this procedure.

27

The final two message lists {null and “11117) would continue alternating until the system

was turned off. In TI1. one message (1101) matches the first (distinguished) condition and °
both messages match the second condition. Pass through 1s performed on the first
condition, producing one output message for time T2. If the conditions had been reversed
(##+#1 distinguished), the message list at time T2 would have contained two identical

messages (1111).

KL-ONE

KL-ONE organizes descriptive terms into a multi-level structure that aliows
properties of a general concept. such as “mammal” to be inherited by more specific
concepts, such as “zebra.” This allows the system to store properties that pertain to all
mammals (such as “warm-blooded”) in one place but to have the capability of associating
those properties with all concepts that are more specific than mammal (such as zebra). A
multi-level structure such as KL-ONE is easily represented as a graph where the nodes of
the graph correspond to concepts and the links correspond to relations between concepts.
Such graphs, with or without property inheritance, are often referred to as semantic
networks.

KL-ONE resembles NETL [Fahlman. 79] and other systems with default hierarchies
In its exploitation of the idea of structured inheritance of properties, It differs by taking the
definitional component of the network much more seriously than these other systems. In
KL-ONE. properties associated with a concept in the network are what constitute its
definition. This is a stronger notion than the one that views properties as predicates of a
“typical” element, any one of which may be cancelled for an “atypical” case. KL-ONE does -
not allow cancellation of properties. Rather. the space of definitions is seen as an infinite
lattice of all possible definitions: there are concepts to cover each “atypical” case. All
concepts in a KL-ONE network are partially ordered by the “SUBSUMES™ relation. This
‘relation, often referred to as “IS-A” in other systems. defines how properties are inherited

through the network. That is, if a concept A is subsumed by another concept B, A inherits

28

LY

Pore e, o B SR

L. 2 A T

T

0 e T, By i 0 e

g FIETI etal o

Folde

all of B's properties. Included in the latuice of all possible definitions are contradictory
concepts that can never have an extension (instance) in any useful domain, such as "a
person with two legs and four legs.” Out of this potentially infinite lattice, any particular
KL-ONE network will choose to name a finite number of points (because they are of interest
in that application), always including the top element, often referred to as “THING”

KL-ONE also provides a mechanism for using concepts whose definitions either
cannot be completely articulated or for which it is inconvenient to elaborate a complete
definition — the PRIMITIVE construct. For example, if one were representing abstract
data types and the operations that can be performed on them, it might be necessary to
mention the concept of “Addition.” However, it would be extremely tedious and not very
helpful in this context to be required to give the complete set-theoretic definition of
addition. In a case such as this, it would be useful to define addition as a primitive concept.
The PRIMITIVE construct allows a concept to be defined as having something special
about it beyond its explicit properties. Concepts defined using the PRIMITIVE construct
are often indicated with “*” when a KL-ONE network is represented as a graph.

While NETL stores assertional information (e.g., “Clyde is a particular elephant”) in
the same knowledge structure as that containing definitional information (for example,
“typical elephant”), KL-ONE separates these two kinds of knowledge. A sharp distinction is
drawn between the definitional component, where terms are represented, and the assertional
component, where extensions (instances) described by these terms are represented. It is
possible to make more than one assertion about the same object in any world. For example.
it may be possible to assert that a certain object is both a “Building” and a “Fire Hazard”
In KL-ONE, the definitional component (and its attendant reasoning processes) of the
system is called the “terminological” space, and a collection of instances (and the reasoning
processes that operate on it) is referred to as the “assertional” space. The features of KL-
ONE that are discussed here (structured inheritance. no cancellation of properties. primitive
concepts, eic.) reside in the terminological component, while statements in the assertional
component are represented as sentences in some defined logic. Reasoning in the assertional

part of the system is generally viewed as theorem proving.

29

i,

At the heart of knowledge acquisition and retrieval is the problem of classification.

Given a new piece of information. classification 15 the process of deciding where to locate
that information in an existing network and knowing how to retrieve it once it has been
entered. This information may be a single node (concept) or, more likely, it may be a
complex description built out of other concepts. Because KL-ONE maintains & strict notion
of definition, it is possible to formulate precise rules about where any new description
(terminological) should be located in an existing knowledge base.

As an example of this classification process in KL-ONE, if one wants to elaborate a
new concept XXXX that has the following characteristics:
1

-]
-

3

XXXX is a kind of vacation,
XXXX takes place in Africa, and
XXXX involves hunting zebras,

there exists a precise way to determine which point in the lattice of possible definitions
should be elaborated as XXXX.® Finding the proper location for XXXX would invoive
finding all subsumption relationships between XXXX and terms that share characteristics
with it.

If the terminological space is implemented as a multi-level network, this process can
be described as that of finding those nodes that should be immediately above and
immediately below XXXX in the network. The notions of “above” and “below” are
expressed more precisely by the relation “SUBSUMES.* Deciding whether one concept
SUBSUMES another is the central issue of classification in KL-ONE. The subsumption
rules for a particular language are a property of the language definition
(Schmolze and Israel, 83).

In summary. there are two aspects to the KL-ONE system: (1) data structures that
store information and (2) a sophisticated set of operations that control interactions with'
those data structures. In the following sections. the first of these aspects is emnphasized. A

more detailed treatment of K1-ONE operations is contained in (Lipkis. 81).

*More precisely, XXXX has a location role which is value restricted to the concept
Africa. an activity role which is value restricted to concept HuntingZebras, and a SUPERC
link connecting it to the concept Vacation.

30

e |

S o e e G S el AN T e . e e o

Classifier Svstem Implementation of KL-ONE

In this section, a small subset of the KL-ONE language is introduced and the
corresponding representation in classifiers is presented. Then it is shown how simple queries
can be made to the Classifier System representation to retrieve information about the
semantic network representation. The simple queries that are discussed can be combined to
form more complex interactions with the network structure (Forrest, 83).

A KL-ONE semantic network can be viewed as a directed graph that contains a finite
number of link and node types. Under this view, a Classifier System representation of the
graph can be built up using one classifier to represent every directed link in the graph. The
condition part of the classifier contains the encoded name of the node that the link comes
from and the action part contains the encoded name of the node that the link goes to.
Tagging controls which type of link is traversed. In the following, two node types (concepts
and roles) and six link types (SUPERC. ROLE. VR, DIFF, MAX. and MIN) are discussed.
These node and link types comprise the central core of most KL-ONE systems and are
sufficiently rich for the purposes of this paper.

For the purposes of encoding, the individual bits of the classifiers have been
conceptually grouped into fields. The complete description of these fields appears below.
The description of the encoding of KL-ONE is then presented in terms of fields and field
values, rather than ‘using bit values. It should be remembered that each field value has a
corresponding bit pattern and that ultimately each condition and action is represented as a
string of length thirty-two over the alphabet {1,0,#}. The word nil denotes “don’t care” for
an entire field. There are several distinct ways in which the classifiers’ bits have been
interpreted. The use of tagging ensures that there is no ambiguity in the interpretations
used. The type definition facilities of Pascal-like languages provide a natural way to express

the the conceptual interpretations I have used. as shown below:

3l

type
tag = (NET,NUM,PRE):
link = (SUPERC,ROLE,DIFF.V RLINK.MAX.MIN);
direction = (UP, DOWI\)
compare = (AFIELD,BFIELD ,CFIELD);
name = string;
message = string;
numeric = 0 .. 63;

classifier pattern = record
case tag : tagfield

NET : /* Structural Variant *of
{tagfield name link direction);

NUM : "* Numeric Variant */
(tagﬁeld name nil direction compare numeric);

FRE : /* PreDefined Variant */
(tagfield message);

end;

This definition defines three patterns for constructing classifiers: structural, numeric.
and predefined. The structura patiern is by far the most important. It is used to represent
concepts and roles. The numeric pattern i5s used for processing number restrictions. The
predefined pattern is used for control purposes; it has no don't cares in it, providing reserved
words, or constants, to the system.

The structural pattern has been broken into four fields: tag, name, link, and direction.
The tag field is set to NET. the name field contains the coded name of a concept or role, the
link field specifies which link type is being traversed (SUPERC, DIFF. etc.), and the
direction determines whether the traversal is up (specific to general) or down (general 1o
specific).

The Numeric pattern has six fields: tag, name, link, direction, compare, and number,
In most cases the name., link. and direction fields are not relevant to the numeric processing
and are filled with don’t cares. The tag field is always set to NUM., and the compare field is
one of AFIELD. BFIELD. or CFIELD. The compare field is used to distinguish operands in
arithmetic operations. The number field contains the binary representation of the number
being processed.

The Predefined pattern has the valye PRE in the tag field. The rest of the pattern is

assigned to one field. These bits are always completely defined (even in conditions and

izl

e

sy

b gl e 7 — g e

actions) as they refer to unique constant messages. These messages provide internal control

information and they are they are used to initiate quertes from the command processor.

Concept Specialization

All concepts in KL-ONE are partially ordered by the “SUBSUMES” relation. One
concept, for example Surfing, is said to specialize another concept, say WaterSport, if
Surfing is SUBSUMEd by WaterSport. This means that Surfing inherits all of WaterSport's
properties. The “SUBSUMES” relation can be inferred by inspecting the respective
properties of the two concepts, or Surfing can be explicitly defined as a specialization of
WaterSport. Graphically. the specialization is represented by a double arrow (called a
SUPERC link) from the subsumed concept to the subsuming concept (see Figure 1). KL-
ONE’s SUPERC link is often called an ISA link in other semantic network formalisms.
Since the SUBSUMES relation is transitive, SUPERC hnks could be drawn to all of

WaterSport's subsumers as well. Traditionally, only the local links are represented

explicitly.

WaterSport

Surfing

Figure 1
Concept Specialization
Two classifiers are are needed to represent every explicit specialization in the network.
This allows traversals through the network in either the UP (specific to general) or DOWN
(general to specific) direction. The classifiers form the link between the concept that is

being specialized and the specializing concept. The following two classifiers represent the

33

network shown in Figure 1:

NORM-WaterSport-SUPERC-DOWN => NORM-Surfing-SUPERC-DOWN
NORM-Surfing-SUPERC-UP => NORM-WaterSport-SUPERC-UP.

Roles

A role defines an ordered relation between two concepts. Roles in KL-ONE are
similar to slots in frame-based representations. The domain of a role is analogous to the
frame that contains the slot; the range of a role is analogous to the class of allowable slot-
fillers. In KL-ONE. the domain and range of a role are always concepts. Just as there is a
partial ordering of concepts in KL-ONE, so is there a partial ordering of roles. The relation
that deterrmines this ordering is “differentiation.” Pictorially, the DIFFERENTIATES
relation between two roles is drawn as a single arrow (called a DIFF link). Roles are
indicated by a circle surrounding a square (see Figure 2). This allows roles to be defined in
terms of other roles similarly to the way that concepts are defined from other concepts. The
domain of a role is taken to be the most general concept at which it is defined, and, likewise,
the range is taken to be the most general concept to which the role is restricted (called a
value restriction). If there is no explicit value restriction in the network for some role, its
range is assumed to be the top element. THING.

Roles are associated with a concept. and one classifier is needed to represent each
association (link) between a concept and its role. For example, the role Arm might be

associated with the concept Person (see Figure 2) and the following classifier would be

generated:

nil-Person-nil-nil-ni!
PRE-RoleMessage => nil~Arm-DIFF-nil-nil.

Roles can be defined in terms of other roles using DIFF hinks. For example. the role
Sibling can be defined as a differentiater of “Relatives” (see Figure 3). Building on this
definition. the conjunction WealthySibling is defined by constructing DIFF links from

WealthySibling both to Sibling and to Wealthy as shown in Figure 3.

34

b, o

e R T i

Figure 2
Concept and Role

Figure 3 shows how these would be drawn.

Wealthy Sibling

|
5!
4

WealthySibiing
Figure 3
Role Differentiation

There are two links specified by this definition. Two classifiers are needed to
represent each link so that queries can be supported in both directions (UP or DOWN).
They are shown below:

NORM-Wealthy-DIFF-DOWN => NORM-WealthySibling-DIFF-DOWN

NORM-WealthySibling-DIFF-UP => NORM-Wealthy-DIFF-UP

NORM-Sibling-DIFF-DOWN => NORM-WealthySibling-DIFF-DOWN

NORM-WealthySibling-DIFF-UP == NORM-Sibling-DIFF-UP.
These classifiers control propagations along DIFF links. They could be used to query the

systern about relations between roles.

Value Restrictions

Value restrictions limit the range of a role in the context of a particular concept. In

1 35

frame /slot notation. this would correspond to constraining the class of allowable slot fillers

for a particular siot. To return to the sibling example. we might wish to define the concepgt
of a person all of whose siblings are sisters (Person WithOnlySisters). In this case the role,
Sibling, is a defining property of Person WithOnlySisters. The association between a concept
and a role is indicated in the graph by a line segment connecting the concept with the role.
Value restrictions are indicated with a single arrow from the role to the value restriction (a

concept). Figure 4 illustrates these conventions.

PersonWith
OnlySisters

Sibling

Figure 4
Value Restrictions

One classifier is needed for each explicitly mentioned value restriction. This classifier
associates the local concept and the relevant role with their value restriction. The control
message. VR, ensures that the classifier is only activated when the system 1s looking for
value restrictions. The following classifier is produced for the value restriction:

nil-Person WithOnlySisters-nil-nil-nil

nii-Sibling~nil-nil-ni)

PRE-VRMessage => nil-Female-SUPERC~nil-nil.

It should be noted that the above definition does not require a Person WithOnlySisters
to actually have any siblings. It just savs that if there are any. they must be female. The
definition can be completed to require this person to have at least one sister by placing a

number restriction on the role.

36

e e

o S s i i i i e

Number Restrictions

Pictorially, number restrictions are indicated at the role with (x,y), where x is the
lower bound and y is the upper bound. Not surprisingly, these constructs place limitations
on the minimum and maximum number of role fillers that an instance of the defined concept
can have. In KL-ONE, number restrictions are limited to the natural numbers. The default
MIN restriction for a concept is zero. and the default MAX restriction is infinity. Thus, in
the above example, the concept Person WithOnlySisters has no upper bound on the number

of siblings.

(0.0)

OnlyChild
Sibling

Figure 5
Number Restrictions

Consider the definition of an only child, shown in Figure 5. This expresses the
definition of OnlyChild as any child with no siblings. The following two classifiers would be
generated for the number restriction:

nil-Sibling-nil-nil-nil

nil-Only Child-nil-nil-nil

PRE-MaxMessage => NUM-nil-MAX-nil-nil-0

nil~Sibling-nil-nil-nil

nil-OnlyChild-nil-nil-nil
PRE-MinMessage => NUM-nil-MIN-nil-ni}-0.

Querving The Svstem

Four important KI-ONE constructs and their corresponding representations in

a7

classifiers have been described. These are: concept specialization. role attachment and

differentiation, value restriction, and number restriction. Once a Classifier System
representation for such a system has been proposed, it is necessary to show how such a
representation could perform useful computations. In particular, it will be shown how the
collection of classifiers that represent some network (as described above) can be queried to
retrieve information about the network. An example of such a retrieval would be
discovering all the inherited roles for some concept.

In the context of the Classifier System. the only 10 capability is through the global
message list. The form of a query will therefore be a message(s) added to the message list
from some external source (a query processor) and the reply will likewise be some collection
of messages that can be read from the message list after the Classifier System has iterated
for some number of time steps.

As an example. consider the network shown in Figure 6 and suppose that one wanted

to find all the inherited roles for the concept HighRiskDriver. First, one new classifier must

be added to the rule set:

NET-nil
~ PRE-ClearMessage => NET-nil.

This classifier allows network messages to stay on the message list until it is explicitly de-
activated by a ClearMessage appearing on the message list.

The query would be performed in two stages. First. a message would be added to the
message list that would find all the concepts that HighRiskDriver specializes (to locate all
the concepts from which HighRiskDriver can inherit roles). This query takes two time steps.
After the second vime step (when the three concepts that HighRiskDriver specializes are on
the message list). the second stage is initiated by adding the “Role” message to the message
list. It is necessary at this point to ensure that the three current messages will not be
rewritien at the next time step so that the role messages will not be confused with the
concept messages. This is accomplished by adding the ClearMessage. which “turns off” the

one overhead classifier. Both stages of the query are shown below:3

3The -> symbol indicates messages that are written to the message list from an

38

SN

|
i
| Thing
|
1'| = Y
i Person Gender
Sex
| T
Limb L) -
1 Female Male
j Legs
1 Sex
H
g Woman
: Sex
Man
b Sex Sex
HighRisk
- Driver
Young Age
e
Age YoungMan
Figure 6

Example KL-ONE Network.

external source.

39

Time Step Message List

TO: -> NET-HighRiskDriver-SUPERC-UP ’

T1: NET-HighRiskDriver-SUPERC-UP
NET-Person-SUPERC-UP

T2: NET-HighRiskDriver-SUPERC-UP
NET-Person-SUPERC-UP
NET-Thing-SUPERC-UP
-> PRE-RoleMessage
-> PRE-ClearMessage
T3: NET-Sex-DIFF-UP
NET-Age-DIFF-UP
NET-Sex-DIFF-UP
NET-Limb-DIFF-UP
T4: NET-Sex-DIFF-UP
NET-Age-DIFF-UP
NET-Limb-DIFF-UP.
The query could be continued by adding more messages after time T4. For example, the
VRMessage could be added (with the ClearMessage) to generate the value restrictions for all
the roles on the list.

This style of parallel graph search is one example of the kinds of retrievals that can be
performed on a set of classifiers that represent a an mbheritance network. Other parallel
operations include: boolean combinations of simple queries. limited numerical processing,
and synchronization. An example of a query using boolean combinations would be to
discover all the roles that two concepts have in common. This is accomplished by
determining the inherited roles for each of the two concepts and then taking their
intersection. Queries about number restrictions invalve some numerical processing. Finally,

it is also possible to synchronize the progression of independent queries. For these three

types of queries. additional overhead classifiers are required

Discussion

The techniques discussed in the previous section have been implemented and fully

described (Forrest, 85). These techniques are presented in the context of more complex KL-

40

ally

LL--

ONE operations such as classification and determination of subsumption.

The implemented system (excluding the Classifier System simulation) is divided into
four major parts: parser, classifier generator, symbol table manager. and external command
processor. The parser takes KL-ONE definitions as input, checks their syntax, and enters all
new terms (concepts or roles) into a symbol table. The classifier generator takes
syntactically correct KL-ONE definitions as mput and {using the symbol table) constructs
the corresponding classifier representation of the KL-ONE expression. The parser and
classifier generator together may be thought of as a two pass compiler that takes as input
KL-ONE network definitions and produces “code” (a set of classifiers) for the Classifier
System. Additional classifiers that are independent of any given KL-ONE network (for
example, the overhead classifier described in the previous section) are loaded into the list of
network classifiers automatically. These include classifiers to perform boolean set operations,
sorting, arithmetic operations, etc. The symbol table contains the specific bit patterns used
to represent each term in a KL-ONE definition. One symbol table is needed for each KL-
ONE network. Thus, if new concepts are to be added to a network without recompilation,
the symbol table must be preserved after “compilation.” The external command processor
runs the Classifier Systemn, providing input {and reading output) from the “classifier
program.”

Several techniques for controlling the behavior of a Classifier System have been
incorporated into the implementation. Tagging, in which one field of the classifier is used as
a selector, is used to maintain groups of messages on the message list that are in distinct
states. This allows the use of specific operators that are defined for particular states, This
specificity also allows additional layers of parallelism to be added by processing more than
one operation simultaneously. In these situations, the messages for each operation are kept
distinct on the global message list by the unique values of their tags.

Negative conditions activate and deactivate various subsystems of the Classifier
System. Negative conditions are used to terminate computations and to explicitly change
the state of a group of messages when a “trigger” message is added to the list. The trigger

condition violates the negative condition and that classifier is effectively turned off.

41

Computations that proceed one bit at a time illustrate two techniques: (1) using

control messages to sequence the processing of a computation. and (2) how to collect and
combine information from independent messages into one message. Sequencing will always
be useful when a computation is spread out over multiple time steps instead of being
performed in one step. Collection is important because in the Classifier System 1t 1s easy to
“parallelize” information from one message into many messages that can be operated on
independently. This is most easily accomplished by having many classifiers that match the
same message and operate on various fields within the message. The division of one message
into jts components takes one time step. However, the recombination of the new
components back into one message (for example. an answer) is more difficult. The collection
process must either be conducted in a pairwise fashion or a huge number of classifiers must
be employed. The computational tradeoff for n bits is 2" classifiers (one for each
combination of possible messages) in one time step versus n classifiers (one for each bit) that
are sequenced for n time steps. Intermediate solutions are also possible.

Synchronization techniques aliow one operation to be delayed until another operation
has reached some specific stage. Then both operations can proceed independently until the
next synchronization point. Synchronization can be achieved by combining tagging with

negative conditions.

Conclusions

Classifier Systems are capable of representing complex high-level knowledge
structures. This has been shown by choosing one example of a common knowledge
representation paradigm {KL-ONE) and showing how it can be translated into a Classifier
System rule set. In the translation process the Classifier System is viewed as a low-level
target language into which KL-ONE constructs are mapped. The translation is described as
compilation from high-level KL-ONE constructs into low-level classifiers.

Since this study has not incorporated the bucket brigade learning algorithm, one

obvious direction for future study is exploration of how many of the structures described

42

here are learnable by the bucket brigade. This would test the efficacy of the learning
algorithm and it would allow an investigation of whether the translations that 1 have
developed are good ones or whether there are more natural ways to represent sirmilar
structures. While the particular algorithms that 1 have developed might not emerge with
learning, the general techniques could be expected to manifest themselves. It is possible
that some of these structures are not required to build real world models, but this seems
unlikely based on the evidence of KL-ONE and some initial investigations with the bucket
brigade. These structures are for computations that are useful in many domains and could
be expected to play a role in most sophisticated models that are as powerful as KL-ONE.
Since they are useful in KL-ONE, this suggests that they might be useful in other real world
models.

A start has already been made in this direction. Goldberg [Goldberg, 83] and Holland
[Holland, 85] have shown that the bucket brigade is capable of building up default
hierarchies, using tags. using negative conditions as triggers, and limited sequencing
(chaining). In addition. I would look for synchronization. more sophisticated uses of tags.
more extensive sequencing, and in the context of knowledge representation, the formation of
roles. Roles are more complex than “properties” for two reasons. First, they are two place
relations rather than one place predicates. and second. relations between roles (DIFF links)
are well defined. Of the other structures. it 1= possible that some are so central to every
representation system that they should be “bootstrapped” into a learning system. That 1s.
they should be provided from the beginning as a “macrc” package and not required to be

learned from the beginning every time.

43

References

Booker, Laiton (1982) “Intelligent Behavior as an Adaptation to the Task Environment’.
Ph. D. Dissertation (Computer and Communication Sciences) The University of
Michigan, Ann Arbor, Michigan.

Brachman, Ronald J. (1978) “A Structural Paradigm for Representing Knowledge”
Technical Report No. 3605, Bolt Beranek and Newman Inc., Cambridge, Ma.

Brachman, Ronald J. and Schmolze, James G. (1985), “An Overview of the KL-ONE
Knowledge Representation System,” Val. 9, No. 2.

Fahiman. Scott E. (1979), NETL: A System for Representing and Using Real-World
Knowledge. The MIT Press, Cambridge, Ma.

Forrest, Stephanie (1985), “A Study of Parallelism in The Classifier System and Its
Application to Classification in KL-ONE Semantic Networks”, Ph. . Dissertation
(Computer And Communication Sciences) The University of Michigan, Ann

Arbor, Mi.
Goldberg, David (1983), Ph. D. Dissertation. The University of Michigan, Ann Arbor, M.

Holland, John H. (1975) Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Mi.

Holland, John H. (1980). “Adaptive Algorithms for Discovering and Using General Patterns
in Growing Knowledge Bases”, International Journal of Policy Analysis and
Information Systems, Vol.4 No. 3.

Holland, John H. (1985), Personal Communication.

Lipkis, Thomas (1981), “A KL-ONE Classifier”, Consu! Note =35. USC/Information Sciences
Institute, Marina del Rey, Ca.

Schmolze, James G. and Brachman, Ronald J. (1982) (editors) “Proceedings of the 1981 KL-
ONE Workshop,” Technical Report No. 4842, Bolt Beranek and Newman Inc..
Cambridge. Ma.

Schmolze, James G. and lsrael, David (1983). “KL-ONE: Semantics and Classification.” in
Sidner, C., et al., (editors) Technical Report No. 5421, Bolt Beranek and Newman
Inc.. Cambridge. Ma.. pp. 27-39.

44

= B ML

B e

- ek a ATy g =~y

| %
|

om

T S ke R

bl R B e e ST

The Bucket Brigade is not Genetic

T. H. WESTERDALE

Abstract -- Unlike genetic reward schemes, bucket brigade
schemes are subgoal reward schemes. Genetic schemes operat-
ing in parallel are here compared with a sequentially
operating bucket brigade scheme. Sequential genetic schemes
and parallel bucket brigade schemes are also examined in
order to highlight the non-genetic pature of the bucket bri-
gade.

1. INTRODUCTION

The Burket Brigade can he viewed as a class of appor-

tionment of credit schemes for production systems. There 1s
an essentially different class of schemes which we call
genetic. Bucket Brigade schemes are subgoal reward schemes.

Genetic schemes are not.

For concreteness, let us suppose the environment of
each production system 1s a finite automaton, whose outputs
are non-negative real numbers called payoffs. (To simplify
our discussion, we are excluding negative payoff, but most
of our conclusiong will hold for negative payoff as well.)
Each production’'s left hand side is a subset of the enviraon-
ment state set and each production’s right hand side is a
member of the environment's input alphabet. Assocliated with
each production is a positive real number called that
production's availability.

Probabilistic sequential selection systems are systems
in which the following four steps take place each time unit:
(1) The state of the environment is ewamined and those pro-
ductions whose left hand sides contain this state form the

eligibility set. (2) A member of the eligibility set 1s
selected, probabilistically, each production 1in the set
being selected with probability proportional to its availa-
Bility. (3) This production then fires, which means merely

that its right hand side is input into the environment caus-
ing an environment state transitiom and an output of payoff.
{4) A reward scheme (or apportiomment of credit scheme)
Eﬁamlnes the payoff and on its basis adjusts the availabili-
ties of the various productions. Thus the availabilities
dre real numbers which are being continually changed by the
Teward scheme. Probabilistic sequential selection systems
differ from one another in their differing reward schemes.

S We assume that for any ordered pair of environment
ates there is a sequence of productions which will take us

from the first state to the second.

The average payoff per unit time is a reasonabhle meas-
ure of how well the system 1s doilng. I¥f the availabilities
are held fixed, the system-environment complex becomes a
finite state Markov Chain, and the average payoff per unit
time (at equilibrium) is formally defined in the obvious

way. As the avallabilities change, the average payoff per
unit time changes. Thus the average payoff per unit time
can be thought of as a function of the availabilities. The

object of the reward scheme is to change the availabilities
sO as to increase the average payoff per unit time.

The systems above have been simplified so as to mare
easlly 1llustrate the points we wish to make. In any useful
system the environment would output other symizols in addi -
tion to payoff, symbols which we could call ordinary output
symbols., The left hand sides of the productions would then
be sets of ordinary output symbols. A useful system would
also contain some working memory (a "blackboard” or "message
list”} which could be examined and altered by the produc-
tions. In the above systems the working memory is regarded
as part of the environment and instead of sets of output
symbols we have sets of (Moore type) automaton states which
produce those symbols., For i1llustrative purposes we have
simplified the system by removing various parts and leaving
only those parts on which the reward scheme operates,

In our systems the set of productions is fixed. We
want to study the reward scheme, and allowing generation of
new productions from old ones (E.g. [4]) will merely dis-

tract us.

I1. GENETIC SYSTEMS WITH COMPLETE RECOMBINATION

At any given time, the production system can be thought
of as a population of productions, the availability of a
production giving the number of coples of that production in
the population, or some fixed multiple of the number of
coples., Thus the process of probabilistic selection of the
production to fire «can be thought of as randomly drawing
productions from the population, until one is drawn that 1is
in the eligibility set. In some systems the population is
held explicitly and the availabilities are implicit whereas
in cthers the avallabilities are held explicitly and the
population 1s implicit.

1f the system is to be viewed as a population of pro-
ductions, then of course after each production is success-
fully selected from the pocpulation it is tested on the
environment with the environment in the state in which the
previously selected production left it.

46

=l

¥ Lt

o g e LT B e

It is easier to analyse systems in which the result of
a test of a production is independent of which productions
were tested previously. Such systems are usually unrealis-
tic, but if the system is viewed as a population of produc-
tion strings, rather than of individual productions, then it
is often realistic to view the test of a string as being
independent of which strings were tested previously. Let us
Look at a population system of this kind. The system will
consist of a populaticn of production strings. The popula-
tion will change over time. Time is viewed as divided into
large units called generations. During a generation, every
string in the population 1i1s tested against the environment
and, as a result of the tests, the reward scheme determines
the composition of the population in the next generation. A
system of this kind we call a string population system.
Let's examine such a system and give its reward scheme in
detail. We shall call the system, System A. System A 1s a
genetic system with complete recombination.

Begin with a set of productions, each with an avalla-

bility. Let g} and N be large integers with n much larger
than N. The set of availabilities define a population of
length n strings of productions (possibly with repeats) as
follows. Let v be the sum of all the avallabilities. For

any length n string, the number nf coples of that string 1n
the population is n?'v'"™” times the product of the avarlabil-
ities of its constituent productions., In each generation,
the number of preogeny of each string is given by testing the
string and summing the payoff obtained during the test. To
test a string one selects the first production in the string
that is in the eligibility set, fires it, then moves on down
the string until one finds the next production in the string
that is now in the eligibility set, fires it etc. etc. until
N productions have fired. We will not worry here about the
few rcases where one gets to the end of the string before N
productions have fired.

We are assuming that during a generation, every string
is tested against the environment. We are also assuming
that there is an "initial state" of the environment and that
when each string 1s tested the test always begins with the
environment in the initial state, so that the results of a

string test are independent of which strings were previously
tested.

! The formation of progeny is followed by complete recom-
plnation. In other words., each production’'s availability 1s
incremented by the number of times that production cccurs 1n
the new progeny, and the next generation’'s population 1s
formed from the availabilities Jjust as the previous
generation's population was. {In effect, the strings are
broken into individual productions and these productions

then re-combine at random to form a new population of
length-n strings.)

47

We could have demanded that each string test begin with
the environment in the state in which the last string left
it, but if N and n are large then this demand will rmake
hardly any difference to the test results. This is because
the environment "forgets" what state it started in during a
long test. For example, suppose there 1s one production
whose left hand side is the set of all envircnment states
and whose right hand side is a symbol which resets the
environment to one particular state. Let's call this pro-
duction the resetting production. Then during any string
test, once the resetting production is encountered, the pay-
off for the rest of the test and the successive availability
sets are independent of the state the environment was in
when the test stavted. Thus each string has a value
independent of which strings were tested previously, except
for a usually small amount of payoff at the start of the
test before the first occurrence of the resetting produc-
tion. One can generalize these comments usefully to the
case where there is no resetting production (6], but we will
not do so formally here. The important thing to nnote is
that except for a=a usually small initial segment, the
sequence of successive eligibility sets would be independent
of which strings were tested previously (provided n and N
are large enough) . Thus we do not lose anything important
if we assume that each test begins with the environment in
some initial state. S0 we can think of the tests imn a gen-
eration as taking place sequentially or in parallel, it
makes no difference.

Let the value of a string be the sum of the payoffs
when the string is tested with the environment begun in the

initial state. If there are x copies of a string »~ o in the
population, and 1if the value ijﬁ 1s y, then the number of
progeny of/o will be xvy. I+ r 1s a production which occurs

2 times in the string’p then zxy will be the contribution of
the progeny of/o to the increase in the availability cf 1.
This is obvious, and we have only re-stated matters in this
way to make it clear that we need not insist that x, v, and
the activations are integers. The formalism makes perfect
sense provided they are non negative real numbers. If the
value of is 0.038 then every copy of 2 will have 0.038
progeny. {But remember, we insist that activations, and
hence x, are actually positive.) '

Note that the behavior of System A can be thought of as
a4 sequence of availability tuples. In any given generation,
the population composition is given by the avallabililities.
Just as in the probabilistic segquential selection systems,
the availabilities determine the average payoff per unit

time (averaged over the tests of all the strings in the gen-
erationt},

- System A is deterministic. Given a tuple of availabil-
ities it is completely determined what the next tuple of

48

ava.
cal:
duct
any

tie:

wil!.
cum:
mal.
equ.

reg;
To 1
per
set
schi
eve:
tem
two
tha
Sys®
tor
sSYS
alw
Sys-
by

"th
sam

wil
com
sel
the
tho
bil
cha
an
the
whe
poi
ize
jec
dir
the
tio
imp

SYS
gen
all

v Se DO+ T

[{s]

0 et D 3w |

& T &L 7T W v =~ D

T

.-owW oW W

- W

[FI

C o R T]

Sl

R

T e Ao

e P, S5

iy e i

availabilities (in the next generation) will be, We will
call two string population systems equivalent if they pro-
duce the same change in the davallabilities, that is if given
any tuple of availabilities, the next tuple of availabili-
ties will be the same whichever system we are examining.

Actually we need a weaker notion of eguivalence. We
will also call two systems equivalent i1n several other cir-
cumstances. We will describe these circumstances infor-
mally, but will not give here a rigorous definition of

equivalence.

Let the set of all possible tuples of availabilities bhe
regarded as a subset of Euclidean space in the usual way.
To each point in the subset corresponds an average payoff

per unit time. System A defines for each point in the sub-
set a vector giving the change in availabilities which its
scheme would produce, Two systems are eguivalent 1f at
every point the change vector is the same for the two sys-
tems and the average Payoff 1s also the same. We also call
two systems equivalent if there is a positive scalar k such
that at each point (1) the average payoff for the second
system is k times that of the first, and (2} the change vec-
tor of the two systems aims in the same divection. So a

system which was like System A but whose reward scheme
always gave Just half as Mmany progeny would be eguivalent to
System A. If we define hormalizing a vector as dividing 1t
by the sum of its components, then condition (2) becomes

"the normalized change vector of the two systems 1is the
sgme. "

For completeness I must mention a complication which
will not be important in our discussion. We need to loosen
condition (2) by narmalizing the points in the space them-
selves., Normalizing a point 1n the space projects it onto
the normalized hyperplane. {Its components can then be
thought of as Probabilities and it is of Course these proba-
bilities that we are really interested in.) I+ we take a
change vector at a point, and think of the change vector as
an arrow with its tail at that point, then we can normalize
the point where its tail 1s and also normalize the point
where its head is. The arrow between the two normalized
points is a Projection of the thange vector onto the normal-
1zed hyperplane. We want condition (2) to say "the pro-
Jected change vector of the two systems aims in the same
direction”, or "the normalized prosjected change vector of
the two systems 1s the same". Sorry about this complica-

?ion. It does make Sénse, but the detaills will not be
important in our discussion.

Of course many schemes are probabilistic. Consider a
System (System B) Just like System A except that in each
98neration instead of its reward scheme giving progeny to
all strings in the Population, the reward scheme randomly

49

selects just one string and gives only that string progeny

[the same number of progeny System A would give 1t). Now
the change in availabilities 1s probabilistic. At each
point there are many possible change vectors, depending on
which string is selected. When a system produces many pos-

sible change vectors at a point, we simply average them,
weighting each possible change vector with the probability
that it would represent the change. It is the average
change vector that we then use in deciding system
equivalence (or rather, the normalized projected average
change vector). We call a scheme nolsler the more the pos-
sible «change vectors at a point differ from each other. S0
System B is equivalent to System A, though System B 1is much
noisier.

Fisher's fundamental theorem of natural selection {1]
[z} applies to Systems A and B so we know that for these
systems the expectation of the change in the average payoff
per unit time 1s non-negative. We call a system with this
property safe. A safe system, then, is one in which at
every point, the average change vector aims in a direction
of non-decreasing average payoff. Clearly then, a system
that is equivalent to a safe system is alsoc safe.

Cansider a system like System A except that the initial
state (the state in which all string tests begin) is dif-
ferent from the ainitial state in System A, Technically,
this new system would not be equivalent to System A, but if
n and N are large enough 1t is nearly equivalent. In decid-
ing system equivalence we will assume n and N are large
enough, More precisely, we note that as n and N increase, a
system's normalized projected average change vectors gradu-
ally change. At any polint, the normalized projected average
change vector approaches a limit vector as n and N approach
infainity. It i1s this limit vector that we use as Our nor-
malized projected average change vector in deciding system
equivalence. Thus the change in initial state produces a
new system that 1s equivalent to System A. In fact, a sys-
tem like A or B which begins each string test with the
environment in the state the last string test left it is a
system equivalent to A and B.

In all the systems discussed in this paper, a tuple of
availabilities defines an average payoff per unit time, and
the reward scheme defines, for each such tuple, an average
change vector. This is true also in the probabilistac
sequential selection systems. Thus we can compare any two
of our systems and ask whether they are equivalent.

We ask 1f there is a reward scheme for a probabilistic
sequential selection system that makes the system equivalent
to Systems A and B. The natural candidate is System C
defined by the following reward scheme: Reward every N pro-
ductions which fire by incrementing the availabilities of

50

— .]

G

T e e T L e ha SO

)

s SRS

these N productions by the sum of the payoffs over these N

firings. But System C is not equivalent to System A. In
the System A string tests, productions are skipped when they
are not in the eligibility set. System A rewards these

{increments their availabilities) whereas System C does not.
to make C equivalent to A we must do something about reward-
ing the productions that are not in the eligibility set.

fquivalently we can instead penalize the wvarious pro-
ductions that are in the eligihility set. {See [5] for the
formal details of the argument in the remainder of this sec-
tion, including the effect of increasing string length.) The
ijdea is that whenever production r 1s vrewarded (has its
availability incremented), the eligibility set R at the time
r fired is penalized as follows. Let S be the sum of all
availabilities and R the sum of the availabilities of pro-
ductions 1in R. The absolute probability of r is the availa-
pility of r divided by S. The problbility of r relative to
R is the availability of r divided by R. It the reward 1is
X, the availability of r is first increased by x. Then the
availabilities of all members of R are adjusted to bring R
back down to what it was before the reward. The adjustment
is done proporticnally: i.e. the adjustments do not change
the probabilities, relative to R, of the members of R. We
call these adjustments penalties since they penalize a pro-
duction for being eligible.

Let System C' be System € with this penalty scheme
added. Then-System C' 1s equivalent to Systems A and B.

In fact we can easily make this penalty scheme more
sensible if we reward every time unit. The payoff in a time
unit becomes the reward of the last N productions that fired
{with corresponding penalties for the eligibility sets}).
This gives an eguivalent, but more sensible scheme.

More sensibly, we can use an exponential welghting

function, so that the reward of the production that fired z
time units ago is ¢® times the payo¥ff. (¢ is a constant and
0 < c <1 . Instead of assuming N large, we assume < 1S
very close to 1.) This gives an equlvalent scheme which 15

easy to implement because one only needs to keep for each
production a count

:;i:?<(2)-cz

= |
where ¥(z) is 1 if the production fired z time units ago and
U'OFherwise. A second count, called the production’s eligi-
bility count is also kept. This has the formula
(=]
£(2) . Cz
Fcz2)
2=
where F(z) is the sum of the availabilities of the

51

productions that were in the eligibility set z time units
ago and f(z) 1s the avalilablility of the given production if
i1t was in the availability set z time units ago, and 0 oth-
erwise. The count and the eligibility «cnunt are particu-
larly easy to update. Each time unit, all productions are
rewarded by the product of the current payoff times the
difference between the count and the eligibility count.
Call the probabilistic sequential selection system using
this scheme System D,

System 0 is equivalenl to System A. (Provided, as we
said, we let n ancd N approach infinity and ¢ approach 1.}
Thus System D is safe (assymptotically safe ag c —~> 1) since
System A Lis. Unfortunately a system using a bucket brigade
scheme will not in general be safe, and 1t will not be

equlvalent to System A.

Since System D is equivalent to the genetic Systems A
and 8, we can call D also a genetic system. (Fisher's
theorem says that a genetic system must be safe.) We can
call the reward scheme of System D a genetic scheme for a
probabilistic sequential selection system.

ITE. THE BUCKET BRIGADE

Genetic schemes like the scheme of System D form one
class of reward schemes for probabilistic sequential selec-
tion systems. Another class 1s the class of bucket brigade
sichemes.

We shall examine the following bucket brigade scheme.
Let C and K be constants, D<K<£1, 0<C<g1. Far each pro-
duction the system holds twe quantities, the availability
and the cash balance. Productions are chosen from the eli-
gibility set probabilistically on the basis of the availa-
bilities. Each time unit, the production that fires pays
proportion C of its cash Dbalance to the pProduction that
fired in the previous time unit. The production that fired
then has the current payoff added to its cash balance, and
then its availabillity is increased by K times its cash bal-
ance., The members of the eligibility set are then penalized
as in System C'. I know that Holland [4] employs a bidding
system with the bucket brigade, but that system 1s much more
difficult to analyze, so I shall uvse the probabilistic
sequential selection system described above.

Let System E be a probabilistic sequential selection
system using the above bucket brigade scheme. System E
looks rather like System D. The most fundamental difference
however is the following. In the bucket brigade, a produc-
tion r is rewarded 1f it is followed by a production which
is usually successful., In the genetic schemes of the last

52

S, - g T R T e]

gsection, r is rewarded only if it is followed by a produc-
tion which is successful this very time.

For this reason, a bucket brigade like the one in Sys-
tem E i1s not safe. Suppose the environment is such that the
productions must come in triples, each triple being elther
hbc, dbe, or dfg. Suppose pavoff is 10 for e, and zero for
the other productions. Suppose hbc and dbe are equiprob
able. The bucket brigade will pass b a cash payment of 5 on
average, whereas f will get 0, so dfg will become less prob-
able wvis a vis dbe. Nevertheless, h gets passed §5 on aver-
age, whereas d gets passed less than 5, since it is some-
times followed by F, and g is broke.

The bucket brigade gives reward for achieving a
subgoal. In the production system context, the subgoal is
to put the environment in a state which will make eligible
some production t. t says (via 1ts left hand side) under
what conditions it thinks it can convert the situation into
one which will vield payoff. The subgoal is to provide
those conditions. If r achieves that subgoal then {(provided
t 1is the production actually selected)} r is rewarded. The
amount of reward quite properly depends on how good t is, on
how useful achlieving that subgoal has been found in the
past. This 1s the essence of a subgoal reward scheme.

Now of course 1t may happen that although t camn usually

achieve ultimate payoff, the particular state in which r
happens to place the envirenment is one which (though
included on the left hand side of t) t actually can never
convert into ultimate payoff. That i1s, there 1is something

slightly wrong with the left hand side of t. The subgoal
{the left hand side of t) is badly formulated. In this case
r will still be rewarded handsomely for achieving the

subgoal since t usually does well. t of course will be
mildly penalized for its indescriminateness since 1t wlll be
in the eligibility set when it shouldn't he. Thus the

effect of poor subgoal formulation can be to penalize the
calling subroutine (t} for i1ts poor formulation of the
subgoal while rewarding the subroutine called (r) for the
fact that it did what the calling routine asked. {I believe
this is the correct analogy: the preceding production 1s the

called suybroutine and the following one is the calling sub-
routine.)

Now this is not what happens 1in the genetlc schemes.
In those schemes r would not get rewarded when followed by

?- The called subroutine would only be rewarded for achlev-
ing a subgoal in the case where the ultimate result achieved
Payoff. Thus genetic schemes are not subgoal reward
Schemes .

At first sight it looks as if some reinterpretation of

t :
he System could reconcile the two approaches. Perhaps the

o

53

bucket brigade will loaok genetic 1f an allele is something
other than a single production. I can't prove that such a
reconciling reinterpretation is impossible, but I'm rather
convinced that the dichotomy between subgoal reward schemes
and non subgoal reward schemes is tooc fundamental to permit
of such a reinterpretation. What I shall do now is to try
to highlight that dichotomy via one of the obvious ways of
trying to make the bucket brigade look genetic. It will
fail, and the way in which it fails will be illustrative.

Systems D and E are both probabilistic sequential
selection systems. System D 1is equivalent to System A, a
string population system. We now construct a string popula-
tion system (System F) that is equivalent to System E. The
ways in which systems F and A differ will be informative.

In System A, the composition of the population in a

particular generation could be determined by examining a
tuple of production avallabilities, This will also be true
in System F, though the way in which the avallabilities

determine the population composition will be different.

The trick in constructing System F is to find a way of
explicitly stringing together those productions to which a
bit of cash would be successively passed by the bucket bri-
gade.

We form a population of length M strings of productions
as follows by induction on M. If we have a population of
length M strings, then the Population of length M+1 strings
is formed as Tfollows. Take each length M string in turn.
For each of these strings/m note the eligibility set R at
the end of a test of it. (Each string test begins with the
environment in the initial state.) For each r in R make
10000y «copies of the string Ar , where vy is the Probability
of r relative to R. Put these copies in the population of
length M+t strings.

We are interested in the case where M=N, These strings
can be tested with no skipping.

In such a population of length N strings, any given
Production will oecur many times, and may of course occur
many times in the same string. For concreteness, let us

call each production odccurrence an allele, and let us say

two alleles are of the same type if they are occurrences of
the same production.

We are interested in two kinds of recombination. One
is ordinary complete recaombination, in which the strings are
broken into individual alleles and these then recombine at
random to form a new population of length N strings. The
other is what we will call Crazy recombination. In this the
strings are broken into their individual alleles, but each

54

allele remembers the type of the allele thal preceded it 1in
its string. Then these alleles recombine at random, but an
aliele, in combining with others, must follow the same type
of allele that it followed in its original string. The
result of crazy recombination is a population of strings
which represent the paths that cash may taka 1in being passed
I by the bucket brigade.

R e o R e

i System F works as follows. As described above, we use
the availabilities to make a population of length N strings
which can be tested with no skipping. The payoff for each

of these strings is then determined, but it 1s not summed.
Instead the system tests each string, noting for each time
unit the eligibility set, the allele that fired, and the
payoff received. The system then physically attaches the
eligibility sets and payoffs to the alleles in the string,
like clothes attached to a clothesline. To each allele 1n
the string is attached the eligibility set from which that
allele was selected and the payoff that arrived when that

allele Fired. Now we have a population of strings of
alleles with each allele in each string having a number and
a set attached to it. We now do crazy recombination, but

the alleles carry their numbers and sets with them S0 that
after recombination the strings still have numbers and sets

hung along them. Now and only now are the payoffs for each
string summed. Each production that occurs in the string 1is
rewarded with this sum. For each allele 1n the string, the

production of which that allele is an occurrence has the sum
i added to its availability; then the eligibility set attached
: to the allele 1s penalized 1n the usual way. The next gen-
¥ eration population is formed from the new availabilities.

It is the crazy recombipation that implements the
bucket brigace notion that a production’'s reward depends on
the production which follows and on how much reward that
production achieved duraing some entirely different test.
Though System F 15 equivalent to System E, it is a bit
noisier because it 1s like a bucket brigade in which the
cash is passed forward as well as backwards, Cash passed
forwards, however, doesn't affect the biases and so doesn’t
affect equivalence in the sense in which we mean it.

1 ¥ System F doesn’'t look much like System A, but we can
i change System F slightly to improve matters. Carryilng
: 1 :'_ around the eligibility sets looks rather un-genetic.
/ R - Instead of carrying around these sets and penalizing them we
F i could carry around their complements and reward them.
 Egquivalently (though with an increase in noise) we could
by .xeirry around strings of productions selected from the com-
Plements apnd reward the productions in the strings much as
original genetic scheme.

; '§ffinThe ;dea here 1is to build a population of length n
z o, 9S8 Just as in System A. The system then marks on each

e
e
t
e
e
h

string the first N alleles that will fire and attaches the
appropriate paveffs to these alleles. Crazy recombination
then proceeds as follows. {(We can call this version insane
recombination.) Each string 1is broken into segments, the
breaks occurring at the N alleles. Each segment remembers
the type of the allele that preceded it. The segments then
recombine to form strings composed of N segments ([the long
tails which contain none of the N alleles are thrown away --
or, equivalently, they are attached to the ends of the new

stringsl}. In recombining, each segment must Ffollow an
allele of the same type as the one it followed before recom-
bination. The new strings will naow not all be of the same
length. Each segment carries with it the payoff that was
attached to its terminal production before the insane recom-
bination. In each of the new strings the payoffs are summed

and the sum gives the number of progeny of the new strings.
Then the strings, including the new progeny are all broken
apart into individual alleles and the total number of
occurrences of a production (alleles) 1s 1Lts new availabil-
ity. The population of the next generation is formed using
the new availabilities. Thus this final breaking apart and
formation of the next generation can be viewed as ordinary
complete recombination.

So, beginning with the population thus formed, a gen-
eration consists of the following steps: (1) Mark on each
string the N alleles which fire and attach to them the pay-
offs. {2) Do insane recombination, breaking at the N
alleles, and having each segment carry i1ts payoff with 1it.
{3) Sum the payoeffs on each of the new strings and produce
the number of progeny given by the sum. {4) Do ordinary

complete recombination.

Call the 'system using this scheme System G. System G
is equivalent to System E.

The scheme of System G looks a bit like alternation of
generations, but 1t has a dissatisfying artificiality. It
1s possible to remove the almost Lamarkian oddity of carry-
ing payonffs attached to segments, but not in any particu-
larly convincing fashion. Note that in step (3) we need not
sum all the payoffs on a string. Equivalently we could just
reward using one of those payoffs, or Just a few. The pay-
offs we use need not be carried from before the i1nsane
recombination. They could be re-calculated afterwards. We
need only take a re-combined string and run it, and then
note one of the payoffs during the run. Actually it's not
that trivial. The payoff we use must be one that arrvrives as
the result of the firing of one of the N productions, not
the other intervening productions.

Still, the scheme contalins insane recombination and 1t
is this that makes it inherently different from the genetic
schemes.

56

T i ER—

TN i

Iv. FURTHER QUESTIONS

This raises several further questions which I find it
difficult to answer.

(1) The bucket brigade now begins to look rather 51illy. Is
this just because of the bucket brigade version used here?
Holland's bidding system bucket brigade is rather different.
Perhaps it is the penalty scheme that is at fault. In
genetic systems the penalty scheme preserves safety, but
systems employing a bucket brigade aren ' t safe anyway. If
the penalty scheme were removed we could go back to crazy
recombination, but without the attached eligibility sets.
This is less insane looking than insane recombination, but
still not convincing. Nevertheless, we feel intuitively
that subgcal reward 1s good. 1t certainly is a sensible way
of combating scheme noise. So is it the genetirc schemes
that are the silly schemes? Or is there vyet some way of
viewing the bucket brigade so that it looks genetic?

(2) 1f the genetic schemes and the bucket brigade are for-
mally different, 1is there anyway a biological system analo-
gue of the bucket brigade? One can imagine a crossing over

rule that implements 1nsane recombination. But there are
two problems with this. One 1s that we have not merely
insane recombination, but insane recombination alternating
with ordinary recombination. Unfortunately the ordinary

recombination 1s required in order to retain equivalence.
It may be possible to remove the ordinary recombination and
replace it with a phase which takes the strings and forgets
which the special N preductions are and then marks N new
productions by determining which of the productions would be

the first N to fire if that particular strinyg were TUun. I
don't think, though, that this change would retain
egquivalence.

{31} In the more general context, do we see trrological Gy 5 -

tems with subgoal reward? If so, then perhaps the bucket
brigade has a sound biologlcal basis, but 1t 1s merely that
our wusual population Qenetlcs formalism fTails to capture
that basis. For example, one might claim that a gene that
qoes its own Job {arhlieves a subgoal) more efficiently
lncurs lower cost, even 1f that Job 1is useless for the
current organism. The trouble is that 1f the Job 1s con

verting metabolite A into B then the efficiency would prob

3b1¥ give lower cost only if accumulation of B (or an
@Qulivalent) reduced gene expression. But then 1f B 1s not

I Téedeé _it will accumulate and reduce the cost of even an
Té;"Eff;c;ent gene. Postulating leakage of B and other fid-
; }es doesn't seem to help. The gene really only ends up

Eﬂarded when B 1=z useful, and fiddling with cost only

1 ?d3“5tS how much it 1s rewarded, but doesn’'t change the

basic fact that reward 1is much more when B is useful than
when 1t isn't. Sa that doesn’'t secem to work.

A possibility not discussed 1in this paper 1s that in
the bucket brigade the string of productions to whiech the
cash 1s passed is the analog of a metabolic pathway in which
each metabolite inhibits the expression of the gene respon-
sible for the reaction that produces that metabolite [3].
Then each gene raises the expression rate (passes cash to)
the gene preceding 1t in the pathway, In this view, the
version of the bucket brigade described in this paper is
wrong. In the correct versian the cash 1s passed by a
bucket brigade, the availabilities are adjusted by a genetic
scheme that pays no attention to cash balances funless vyou
believe in Lamark), and the probabilities of the various
productions firing are proportional to the products of the
correspondLng cash balances and avallabilities, The biolog-
ical analogue of these probabilities 15 then the prevalence
of the various enzyme molecules rather than the prevalence
of the various alleles.

Of course one can look for ecological models which use
subgoal reward. This leacds us into the quagmire 0¥
altruism, where current formalisms seem to me unhelpful.

It may be that examining some parasitic systems or sym-
biotic systems might be helpful. Parasites and endosym
bionts must regulate their reproduction rate so as not to
destroy a host. In effect they are passing cash to the
host. But this 1s a situation where admittedly group selec-
tion is operating. Is 1t possible tov regard twoc genes on
the same chromosome as symbionts, regulating their reproduc-
tion rate to help each other? Perhaps we should explicitly
implement group selection 1n our production systems (1 don't
believe this would be difficult) and let productions with
varlious cash-passing schemes compete under such a group
selection scheme.

V. CONCLUSIONS

It looks as 1f genetic systems are Lnherently different
from systems employing the bucket brigade. We usually view
genetlic systems as populatinn systems operating 1n parallel,
whereas the bucket brigade operates essentially sequen-
tially. This 1s a superficial difference. The essential
difference appears to be that bucket brigade schemes are
subgoal reward schemes, whereas genetlc schemes are not.

58

s e i il

[!

L1

[11
(21
[31]

(4]

(sl

[61]

REFERENCES

J. F. Crow and M. Kimura, An Introduction to Populatian
Genetics Theory. New York: Harper and Row, 1970.

R. A. Fisher, The Genetical Theory of Natural Selec-
tion. New York: Pover, 1958.

P. W. Hochachka and G. N. Somero, Biochemical Adapta
tion Princeton: Princeton University Press, 1984,

J. H. Holland, "Escaping brittleness: the possibili-
ties of general purpose learning algorithms applied to
parallel rule based systems,” to appear 1n Machine
Learning II (R. S. Michalski, J. 6. Carhonell, and T.
M. Mitchell, eds.). Palo Alto: Tioga, 1984,

T. H. Westerdale, "A Reward Scheme for Production Sys-
tems with Overlapping Conflict Sets,” to appear in IEEE
Trans. Syst., Man, Cybern.

T. H. Westerdale, "An Automaton Decomposition for
Learning System Environments,” submitted.

GENETIC PLANS AND THE PROBABILISTIC LEARNING SYSTEM:
SYNTHESIS AND RESULTS

Larry Rendell
Department of Computer Science,
University of llinocis at Urbana-Champaign,
1304 West Springficld Avenue, Urbana, lllinois 61801

ABSTRACT

This paper describes new conceptual and experi-
mental results using the probabilistic learning
system PLS2. PLS2 is designed for any task in
which overall performance can be measured, and
in which choice of task objects or operators
influences performance. The system can manage
incremental learning and noisy domains.

PLS? learns in two ways. Its lower “percep-
tual” layer clusters data into economical cells or
regions in augmented feature space. The upper
“genetic” level of PLS2 selects successful regions
(compressed genes) from multiple, parallel cases.
Intermediate between performance data and task
control structures, regions promote efficient and
effective learning.

Novel aspects of PLS2 include compressed
genotypes, credit localization and “population
performance”. Incipient principles of cfficiency
and eflectiveness are suggested. Analysis of the
system is confirmed by experiments demonstrat-
ing stability, efficiency, and eflectiveness.

IGEWE TIC)

PLS2

PLSA

3
3

s

W LE
ICLVITERIR B RECR{L3EAY

PE
130LVERI

Figure 1. Layered learning system PLS2. The percep-
tual learning system PLS1 serves as the performance
element (PE) of the genetfc system PLS2. The PE of
PLS! is some task. PLS2 activates PLS1 with different
knowledge structures {“cumulative region scts”) which
PLS2 continually improves. The basis for improve-
ment is competition and credit localization.

1. INTRODUCTION

The author's probabilistic learning sysiem PLS is]
capable of efficient and effective generalization’
learning in many domains [Re83a, ReSBd,.'.
Re853). Unlike other systems [La83, Mit83,]
Mic 83a), PLS can manage noise, and learn incre-¢
mentally. While it can be used for “single con-
cept” learning, like the systems described in
[Di82], PLS has been developed and tested in the
difficult domain of heuristic search, which
requires not only noise management and incre-
mental learning, but also removal of bias
acquired during task performance |[Re83a]. The
system can discover optimal evaluation lunctions
(sce Fig.2). PLS has introduced some novel

approaches, such as new kinds of clustering.’

Figure 2. One use of PLS. In heuristic search, an
object is a state, and its utility might be the probabil-
ity of contributing to success [appearing on a salution

s - Tt

b:
i
I’

e

I3

.
W

path). E.g., for ry, this probability is 1/3. Here the |

pair (rg, pa) is one of three regions which may be used
to create a heuristic evaluation function. Region
characteristics are determined by clustering.

1. See [Re83aj for details and [Re85a, Re85b]
for discussion of PLS's “conceptual clustering’
[Mic 83b] which began in [Re76, Re77]. PLS “utility’
of domain objects provides “category cohesiveness”
[Me85]. [ReB5c] introduces “higher dimensional” clus-
tering which permits creation of structure. Appendix
A summarizes some of these terms, which will be ex-
panded in later sections of this paper.

Another successful approach to adaptation
is genetic algorithms (GA’s). Aside from their
: ability to discover global optima, GA's have
several other important characteristics, including
stability, efficiency, flexibility, and extensibility
[Ho75, Ho81]. While the full behavior of genetic
algorithms is not yet known in detail, certain
A charncteristics have been established, and this
i approach compares very favorably with other
: methods of optimization [Be80, Br8l, Des0|.
Because of their performance and potential, GA's
have been applicd to various Al learning tasks

o

%5 [Re83¢, Sm B0, Sm83].
;:30(;1 _ In [Re83c] a combination of the above two
-83: . approaches was described: the doubly layered
cre- learning system PLS2 (see Fig.1)® PLSt, the
on- lower level of PLS2, could be considered “percep-
in tual”; it compresses goal-oriented information
the | (task “utility”) into a gencralized, economical,
hich and useful form (“regions” —see Figs.2,4). The
Cre- upper layer is genetic, a competition of parallel
bias | knowledge structures. In [Re83c|, cach of these
Thell components was argued to improve efficacy and
Jions efliciency.?
ovel

This paper extends and substantiates these
claims, conceptually and empirically. The nexi
section gives an example of a genetic algorithm
which is oriented toward the current context.
Section 3 describes the knowledge structure
(regions) from two points of view: PLSI and PLS2.
Section 4 examines the synthesis of these two
systems and considers some reasons for their
efficicncy. Sections 5 and 6 present and analyze
the experimental results, which show the system
to be stable, accurate, and cfficient. The paper
closes with a brief summary and a glossary of
terms used in machine learning and genetic sys-
tems.

2. For the reader unfamiliar with learning sys-

tem and other terminology, Appendix B provides brief
explanations.

3. PLS? is applicable to any domain for which
features and “uscfulness” or utility of objects can be
-dlﬂ.ned fRe83d]. An object can represent a physical
~ entity or an operator aver the set of entities. Domains

o be simple (c.g. “single concept” learning), or com-
‘ EIEI_‘ (e.. expert systems). State-space problems and

- Eames have been tested in [Re83a, Re83d]. The PLS
. 2pproach is uniform and can be deterministic or pro-
* babilistic. The only real difficulty with a new domain
s in constructing features which bear a smooth rela-
“hianship to the utility {the system can evaluate and
sereen features presented to it).

2. GENETIC SYSTEMS: AN EXAMFPLE

This section describes a simple GA, to introduce
terminology and concepts, and to provide a basis
for comparison with the more complex PLS2.
The reader already familiar with GA's may wish
to omit all but the last part of this section.

2.1, Optimization

Many problems can be regarded as (unction
optimization. In an Al application, this may
mean discovery of a good control structure for
executing some task. The function to be optim-
ized is then some measure of task success which
we may call the performance p. In the terminol-
ogy of optimization, p is the sbjective function.
In the context of genetic systems, p is the
fitness, payeff, or merit.!

The merit p depends on some control
structure, the simplest example of which is a vec-
tor of weights b = (b, b,, ..., b,). Frequently
the analytic form of w(b) is not known, so exact
methods cannot be used to optimize it (this is the
case with most Al problems). But what often is
available (at some cost} is the value of p for a
given control structure. In our example, let us
suppose that & can be obtained for any desired
value of b, by testing system performance. If p
is 1 well behaved, smooth funetion of b, and if
there is just one peak in the p surface, then this
local oplimum is also a global eplimum, which
can be efficiently discovered using hill climbing
techniques. However, the behavior of u is often
unknown, and g may have numerous optima; in
these cases a genelic adaplive algorithm s
appropriate.

2.2. Genetic Algorithms

In 2 GA, a structure of interest, such as a
weight vector b, 15 called a phenotype. Fig. 3
shows a simple example with just two weights, b,
and b,. The phenotype is normally coded as a
string of digits (usually bits) called the genolype
B. A single digit is a gene; gene values are
alleles. The position of a gene within the geno-
type is given by an index called the locus.
Depending on the resolution desired, we might
choose u greater or lesser number of sequential
genes to code each b,. If we consider 5 bits to be

4. @ might also be called the “utility”, but we
reserve this term for another kind of quality measure
used by PLSI.

sufficient, the length of the genotype B will be L
= 5n bits (see Fig. 3).

Instead of searching weight space directly
for an optimal vector b, a GA searches gene
space, which has dimensionality L (gene space is
Hamming space if alleles are binary). A GA con-
ducts this search in parallel, using a set of indivi-
dual genotypes called a population or gene pool,
By comparing the relative merits p of individuals
in a population, and by mating only the better
individuals, a GA performs an informed search of
gene space. This search is conducted iteratively,
over repeated generations. In each new genera-
tion, there are three basic operations performed:
(1} selection of parents, (2) generation of
offspring, and (3) replacement of individuals. (1)
and (2) have been given more attention. Parcnt
selection is usually stochastic, weighted in favor
of individuals having higher p values. Offepring
generalion relics on genefic operalors which
modify parent genotypes. Two natural examples
are mutation (which alters one allele), and cross-
over (which slices two genotypes at a common
locus and exchanges segments— see Fig.3).

POPULATION
Geootype B Phenotype b Ment p
—=—— BD001111110 {a,-2 g:
: a 08
0011011031 {6,-5} 17
L o a7
L g 09
0010011100 {4,-4) 14
OFFSPRING
FParcots B Childten B Children b
0010 111110 Q0010111060 (2,-4)
crossover
\——— 0001 011100 oolo1t1110 (5-2

Figure 3. Simple genetic system, The upper part of
this diagram shows a small pepulation of just seven
individuals. Here the set of characteriztics {the pheno-
type) is a simple two element vector b. This is coded
by the genotype B. Each individual is associated with
its measured merit u. On the basis of their p values,
pairs of individuals are stochastically chosen as
parents for genetic recombination. Their genctypes
are modified by crossover to produce two new
offspring.

Because the more successful parents are
selected for mating, and because limited opera-

62

tions are performed on them to Produce.
offspring, the eflect is a
knowledge retention and controlled search. Hol-.

land proved that, using binary alleles, the crose.

over operator, and parent selection proportiona||
to g, a GA is K3 times more cfficient thay

exhaustive search of gene space, where K is the
population size [Ho 75, Ho81|. Several empirical |
studies have verified the computational efliciency |
of GA’s compared with alterative procedures for. !
discovered

global optimization, and have
interesting properties of GA's, such as effects of

varying K. For example, populations smaller

than 50 can cause problems [Br81, De80j.

2.3. Application in Heurlstic Search

combination gl

One Al use is search for solutions to prob- |

lems, or for wins in games [Ni80|.° Here we wish |

to learn an evaluation function H as a combina- |
tion of variables Xy, Ng, ..., X called altribufes or |

features (features are often used to describe
states in search).

expressed as the linear combination b, x; + bux,

In the simplest case, H is

+....+ byx; = b.x, where the b, are weights to |
be learned. We want to optimize the weight vee- |

tor b according to some measure of the perfor-
mance pw when His used to control search.

A rational way (o define W (which we shall

use throughout this paper) is related to the aver- |

age number D of states or nodes developed in
solving a set of problems. Suppose D is observed
for a population of K heuristic functions H,
defined by weight vectors b,. Since the perfor-
mance improves with lower values of D, a good
definition of the merit of H, (i.e. of b,) is the rela-

tive performance measure p, = D / D,, where D
is the average over the population, jie. D = X,

D;/ K. This expression of merit could be used to
assess genotypes B representing weight vectors
b, as depicted in Pig. 3.

Instead of this simple genetic approach,
however, PLS2 employs unusual genotypes and

operators, some of which relate to PLS1. In the |

remaining sections of this paper, we shall exam-
ine the advantages of the GA resulting from the
combination of PLSI with PLS2.

5. Notice that search takes place both at the
level of the task domain (for good problem sclutions),
and at the level of the learning element (for 2 good
control structure H),

5ev
Ift
hav
feat

i

con

aid

R's
Not
tas}
me;

stru
abo
por
don

" its

cate

COon
are

utili
also

ce
of
sl
38-
1al
an
e
cal
1y
for
red
of
ler

-ob-
¥ish
ina-
7 or
ribe
1 is
b.x,
ts to
vee-
rfor-

shall |
aver- .|
od i
srved

at the
lutions

a3 9SS

~ cone
B

3. PLS INFORMATION STRUCTURING:
DUAL VIEWPOINT

The connection between PLS1 perceptual learning
and PLS2 genetic adaptation is subtle and
indirect. Basically PLS1 deals with objects x
(which can be just about anything), and their
relationships to task performance. Let us call
the usefulness of an object x in some task
domain its uiility u(x).

Since the number of objects is typically
immense, even vast observation is incomplete,
and generalization is required for prediction of u,
given a previously unencountered x. A
significant step in generalization is usually the
expression of x as a vector of high-level, abstract
features X;, Xp, ...y Xy, 50 that x really represents
not just one object, but rather a large number of
similar objects {e.g. in a board game, x might be
a vector of features such as piece advantage,
center control, etc.). A further step in generali-
zation is to classify or calegorize x’s which are
similar for current purposes.® Since the purpose
is to succeed well in a task, PLS1 classifies x's
having similar utilities u.

Class formation can be accomplished in
several ways, depending on the model assumed.
If the task domain and features permit, objects
having similar utilities may be clustered in
feature space, as illustrated in Figs.2&4, giving
a “region sel” R.” Another model is the linear
combination I = b.f of §2.

It is at this point that a GA like PLS2 cap
aid the learning process. Well performing b's or
R's may be selected according to their merit .
Note that merit p is an overall measure of the
task performance, while utility u is a quality
measure localized to individual objects.

The question now is what information
structures to choose for representing knowledge
about task utility. For many reasons, PLS incor-
porates the “region set” (Fig.4), which represents
t.i_omain knowledge by associating an object with
1ts utility. We examine the region set from two

8. Here to classify means te form clusses,

. categories, or concepts. This is difficult to automate.

7. PLS1 initiated what has become known as
_ emqnl clustering — where not just feature values
7€ considered, but also predetermined forms of classes
_(?-.E:-rectangles), and the whole data environment (e.g.
utility). See [Re76, Re 77, Re 83a, Re 852, Re 85b], and
also Appendix A.

points of view: as a PLS1 knowledge structure,
and as a PLS2 genetic structure.

X2
‘—
2- P L0004
.2 .o
0= L0G3
L)]] [1 1 T T] L
0 4] 12 16 20 x,

Figure 4. Dual interpretation of a region set R. A
region set is a partition of feature space (here there
are 6 regions). Points are clustered into regions
according to their utility u in some task domain (e.g. u
= probability of contributing to task success-—-see
Fig.2). Here the u values are shown inside the rectan-
gles. A region R is the triple {r,u,e), where ¢ is the
error in u. The region set R = {R} serves both as the
PLS1 knowledge structure and as the PLS2 genolype.
In PLSI, R is a discrete (step) function expressing vari-
ation of utility u with features x,. In PLSZ, R s a
compressed version of the detailed genotype illustrated
in Fig. 5.

3.1. The Region as PLS1 Knowledge Struc-
ture

In a fealure space represeniation, an object
is a veetor x = (X, Xp, .., X;).2 In a problem
or game, the basic object is the slale, frequently
expressed as a vector of features such as piece
advantage, center control, mobility, cte.? Obser-
vations made during the course of even many
problems or games normally cover just a fraction
of feature space, and generalization is required
for prediction.

In generalization learning, objects are
abstracted to form clagses, categories, or con-
cepts. This may take the form of a partition of
feature space, i.e. a set of mutually exhaustive
local neighborhoods called clusters or cells
[An73, Di82). Since the goal of clustering in PLS
is Lo aid task performance, the basis for generali-
zation is some mecasure of the worth, quality, or

8. Ieature spaces are sametimes avoided because
they cannot easily express structure. However, alter-
native representations, as normally used, are also
deficient for realistic generalization learning. A new
scheme mechanizes of a very difficult inductive prob-
lem: feature formation [Re 83d, Re 85¢].

0. The object or event could just as well be an

operator to be applied to a state, or 8 state-operator
pair. See [Re83d].

ulilily of a state or cell, relative to the task. One
measure of utility is the probability of contribut-
ing to a solution or win. In Figs. 2,4, probability
classes are rectangular cells (for economy). The
leftmost rectangle r has probability v = 0.2.1°
The rectangle r is a category generzlizing the
conditions under which the utility u applies.

In PLS, a rectangle is associated not just
with its utility u, but also with the utility error
e. This expression e of uncertainty in u allows
quantification of the effect of noise and provides
an informed and concise means for weighting
various contributions to the value of u during
learning. The triple R (r,u,e), called a
region, is the main knowledge structure for PLSI.
A set R = {R} of regions defines a partition in
augmented feature space.

R may be used directly as a (discrete)
evalualion or heuristic function H u(r) to
assess state x €r in search. For example, in
Fig.4, there are six regions, which differentiate
states into six utility classes. Instead of forming
a discrete heuristic, R may be used indirectly, as
data for determining the weigh! vector b in a
smooth cvaluation function H = b.x {employing
curve fitting techniques). We shall return to
these algorithmic aspects of PLS in §4.

Ey

Figure 5. Definition of maximally detailed genotype U.
If the number of points in feature space is finite and a
value of the utility is associated with each point, com-
plete information can be captured in a detailed geno-
type U ol concatenated utilities u, u, ... Coordi-
nates could be linearly ordered as shown here for the
two dimensional case. U is an fully expanded genotype
corresponding to the compressed version of Fig. 4.

up.

10. This could be expressed in other ways. The
production rule form is r-u, Using logie, r is
represented: (0 < x; 5 4) N (0 5 x, 5 2),

64

3.2. The Region Set as Compressed and
Unrestricted PLS2 Genotype '

Now let us examine these
structures from the genetic viewpoint. The
weight vector b of evaluation function H could
be considered a GA phenotype. What might the i
genotype be? One choice, a simple one, was |

described in §2 and illustrated in Fig.3: here the &

genotype B is just a binary coding of b, A |

F

informatiop °

different possibility is one that captures exhays-
tive information about the relationship between i
utility u and feature vector x {see Fig.5). In this |

case, the gene would be (x,u). If the number of

genes is finite, they can be indexed and con-
catenated, to give a very dectailed genotype U,
which becomes a string of values uu, ...
ing the entire utility surface in augmented
feature space.

uy, cod- |

This genotype U is unusual in some impor- |

tant ways. Let us compare it with the earlier
example B of §2 (Fig.3). B is simply a binary
form of weight vector b. One obvious difference
between B and U is that U is more verbose than
B . This redundancy aspect will be considered
shortly. The other important difference between
B ard U is that alleles within B may well interact
(to express feature nonlinearity), but alleles u,
within U cannst interact (since the u, express an
absolute property of feature vector x, i.e. its util-
ity for some task). As explained in the next sec-
tion, this freedom from gene interdependence

permits localization of credit.!!

The detailed genotype U codes the utility
surface, which may be very irregular at worst, or
very smooth at best. This surface may be locally
well behaved (it may vary slowly in some
volumes of feature space). In cases of local regu-
larity, portions of U are redundant. As shown in
Fig.5, PLS2 compresses the genotype U, into the
region set R (examined in §3.1 from the PLSI
viewpoint). In PLS2, a single region R = (r,u,e)
is a gef of genes, the whole having just one allele
u (we disregard the genetic coding of ¢). Unlike.
standard genotypes, which have a stationary
locus for each gene and a fixed number of genes,
the region set has no explicit loci, but rather a

11. While one of the strengths of a GA is its abil-
ity to manage interaction of variables (by “co-
adapting” alleles), PLS2 achieves efficient and concise
knowledge representation and acquisition by flexible
gene compression, and by certain other methods exam-
ined later in this paper.

e T —

variable number of elements (regions), each
representing a variable number of genes. A
region compresses gene sets having similar utility
according to current knowledge.

4. KNOWLEDGE ACQUISITION:
SYNERGIC LEARNING ALGORITHMS

In this section we examine how R is used to pro-
vide barely adequate information about the util-
ity surface. This compact representation results
in economy of both space and time, and in
effective learning. Some reasons for this power
are considered.

The ultimate purpose of PLS is to discover
utility classes in the form of a region set R, This
knowledge structure controls the primary task:
for example, in heuristic search, R = {R} =
{{r,u,e)} defines a discrete evaluation function
H(r}) = u.

The ideal R would be perfectly accurale
and maximally compressed. Accuracy of utility
u determines the quality of task performance.
Appropriate compression of R characterizes the
task domain concisely but adequately (sce
Figs.3, 1), saving storage and time, both during
task performance and during learning.

These goals of accuracy and economy are
approached by the doubly layered learning sys-
tem PLS2 (Fig.1). PLS1 and PLS2 combine to
become effective rules for generalization (induc-
tion), specialization (diflerentiation), and reorgan-
ization. The Ltwo layers support each other in
various ways: for example PLS2 stabilizes the per-
ceptual system PLSI, and PLS1 maintans geno-
tyvpe diversity of the genetic system PLS2. In the
following we consider details, first from the
standpoint of PLS1, then from the perspective of
PLS2.

4.1. PLS1 Revision and Differentiation

Even without a genetic component, PLS1 is
a flexible learning system which can be employed
in noisy domains requiring incremental learning.
It can be used for simple concept learning like
the systems in [Di82], but most experiments have
involved state space problem solving and game

playing.!® Here we examine PLS in the context of

12. These experiments have led to unique results
such as discovery of locally optimal evaluation func-
tions (see [Re 83, Re83d]}

65

these difficult tasks.

As deseribed in §3.1, the main PLS!
knowledge structure is the region set R =
{{(r,u,e)}. Intermediate between basic data
obtained during search, and a general heuristic
used to control search, R defines a feature space
augmented and partitioned by u and e. Because
R is improved incrementally, it is called the
cumulalive region sel. PLS! repeatedly performs
two basic operations on R. One operation is
correction or revision (of utility u and error e),
and the other is specialization, differentiation, or
refinement (of feature space cells r). These
operators are detailed in [Re83a, Re83d|; here
we simply outline their effects and note their lim-
itations.

Revision of u and e. For an established
region R = (r,u,e) € R, PLS1 is able to modily u
and to decrease e by using new data. This is
accomplished in a rough fashion, by comparing
established values within all rectangles r with
fresh values within the same r. Tt is difficult or
impossible to learn the “true” values of u, since
data are acquired during performance of hard
tasks, and these data are biased in unkrown
ways because of nontrivial search.

Refinement of R. Alternately performing
then learning, PLS1 acquires more and more
detail about the nature of variation of utility u
with features. This information accumulates in
the region set R = {R} = {(r,u,e)}, where the
primary effect of clustering u is increasing resolu-
tion of R. The number, sizes, and shapes of rec-
tangles in R reflect current knowledge resolution.
As this differentiation continues in successive
iterations of PLS1, attention focuses on more use-
ful parts of feature space, and heuristic power
improves.

Unfortunately, so does the likelihvod of
error. Further, errors are diflicult to quantify
and hard to loealize to individual regions.

In brief, while the incremental learning of
PLS! is powerful enough to learn locally optimal
heuristies under certain conditions, and while
PLSt feedback is good enough to control and
correct mild errors, the feedback can become
unstable in unfavorable situations: instead of
being corrected, errors can become more pro-
nounced. Morcover, PLS1 is sensitive to parame-
ter settings (see Appendix B). The system needs
support.

4.2. PLS2 Genetic Operators

Qualities missing in PLS1 ran be provided
by PLS2. As §4.1 concluded, PLSI, with its single
region set, cannot discover accurate values of
utilities u. PLS2, however, maintains an entjre
population of region sets, which means that
several regions in all cover any given feature
space volume. The availability of comparable
regions uitimately permits greater accuracy in u,
and brings other benefits,

As §3.2 explained, a PLS2 genotype is the
region set R = {R}, and cach region R = (r,u,¢)
€ R is a compressed gene whose allele is the util-
ity w. Details of an early version of PL3? are
given in [Re83c]. Those algorithms have been
improved; the time complexity of the operators
in recent program implementations is linear with
population size K. The following discussion out-
lines the overall effects and propertics of the
various genctic operators (compare to the more
usual GA of §2),

K-sexual mating is the operator analo-
gous to crossover. Consider a population {R} of
K different region sets R. ach set is composed
of a number of regions R which together cover
feature space. A new region set R’ is formed hy
selecting individual regions (one at a time) from
parents R, with probability proportional to merit
K (merit is the performance of R defined at the
end of §2). Selection of regions from the whole
population of region sets continues until the
feature space cover is approximately the average
cover of the parents. This creates the offspring
region set R’ which is generally not a partition.

Gene reorganization. For economy of
storage and time, the offspring region set R’ is
repartitioned so that regions do not overlap in
feature space.

Controlled mutation. Standard muta-
tion operators alter an allele randomily. In con-
trast, the PLS2 operator analogous to mutation
changes an allele according to evidence arising in
the task domain. The controlled mutation
operator for a region set R = {(r,u,e)} is the
utility revision operator of PLS1. As described in
§4.1, PLS1 modifics the utility u for each feature
space cell r,

Genotype expansion. This operator is
also provided by PLS1. Recall the discussion of
§3.2 about the economy resulting from compress-
ing genes (utility-feature vectors) into a region

66

= A I i
set R. The ,.'éﬁ{lé;‘n'g‘n'i-@'aﬁérator. was described in
§4.1. This feﬁtﬁ'r"aii’];ﬁagfﬁ;ﬁnément amounts‘to
= expansi__og-?;ﬁthh':iﬁﬁ&iﬁ;':ﬂ’ and is carried
out when da@-‘,&hjﬁﬁﬁﬁ'ﬁ?@iﬁ}nimiﬂ8“““'

Both controlled mutation and_genotype
expansion pfo_—fxi’c)ié'-u%é';i:l;ty_l;e- diversity. Thus
PLS1 helps PLS2 to avoid premature convergence,
» typical GA problem [Br 81, Ma 84].

4.3, Eﬂ'ectiv_épg'uqf'gﬁ@i'@_ﬂlciency

The power, of 'F.’f-S;!_ may be traced to cer-
Lain aspects of the perceptual and genetic algo-
.nthms just outlined. Some existing and L
Ing principles of effective and efficient learning

are briefly discussed below (see also [Re85a,
Re 85h, Re 85¢|).

Credit locallzation. The seclection of
regions for K-sexual mating may use a single
merit value w for each region R within a given
set R. However, the value of W can just as well
be localized to single regions within R, by com-
paring R with similar regions in other sets. Since
regions estimate an absolute quantity (task-
related utility) in their. own volume of feature
space, they are independent of each other. Thus
credit and blame may be assigned to feature
space cells (i.e. to gene sequences).

Assignment of credit to individual regions
within 2 cumnulative set R is straightforward, but
it would be difficult to do directly in the final
evaluation function H, since the components of
H, while appropriate for performance, omit infor-
mation relevant to learning {compare
Figs.2,4).18

Knowledge medlation. Successfyl 5y s-
tems tend to employ information structures
which mediate data objects and the ultimate
knowledge form. These mediating structureg
include means to record growing assurance of
tentative hypotheses.

When used in heuristic search, the pLs
region set mediates large numbers of states and 5

13. There are various possibilities for the evalya.
tion function H, but all contain less useful information
than their determinant, the region set R. The gim.
plest heuristic used in [Re83a, Re83d] is H = b.f,
where b is a vectar of weights for the ft_za.bure vector [
(This linear combination is used exclusively in experi.
ments to be described in §5-! The value of b is foung
using regions as data in linear regression [Re 83a,
Re 83b.

very concise evaluation function H. Retention
and continual improvement of this mediating
structure relieves the credit assignment problem.
This view is unlike that of [Di81,p.14, Di82}:
learning systems often attempt to improve the
control structure itself, whereas PLS acquires
knowledge cfliciently in an appropriate structure,
and utilizes this knowledge by compressing it
only temporarily for performance. In other
words, PLS does not directly search rule space for
a good H, but rather searches for good cumula-
tive regions from which H is constructed.

Full but controlled use of every datum.
Samuel's checker player permitted each state
encountered to influence the heuristic H, and at
the same time no one datum could overwhelm
the system. The learning was stochastic: both
conservative and economic. In this respect PLS2
is similar (although more automated}.

Schemata In learning systems and
genetic algorithms. A related efficiency in
both Samuel's systems and PLS is like the sche-
mata concept in a GA. In a GA, a single indivi-
dual, coded as a genotype (a string of digits),
supports not only itself, but also all its sub-
strings. Similarly, a single state arising in heuris-
tic search contains information about every
foature used to describe it. Thus each state can
be used to appraise and weight each feature.
(The effect is more pronounced when a state is
described in more elementary terms, and combi-
nations of primitive descriptors are assessed — see
[iRe 85¢]).

5. EXPERIMENT AND ANALYSIS

PLS? is designed to work in a changing environ-
ment of increasingly difficuit problems. This see-
tion describes experimental evidence of eflfective
and efficient learning.

5.1. Experimental Conditions

Tame features. The features used for
these experiments were the four of [Re83a). The
relationship between utility and these features is
fairly smooth, so the full capability of a GA is not
tested, although the environment was dynamic.

Definition of merit p. As §4 described,
PLS2 choses regions from successful cumulative
sets and recombines them into improved sets
For the experiments reported here, the selection
criterion was the global merit W, i.e. the perfor-

mance of a whole region set, without localization
of credit to individual regions. This measure p
was the average number of nodes developed D in
a training sample of 8 fifteen puzzles, divided
into the mean of all such averages in a popula-

tion of K sets, ie. b = 13/D, where D is the
average over the population (D = X D,/ K).

Changing environment. For these exper-
iments, successive rounds of training were
repeated in incremental learning over several
iterations or generations. The environment was
altered in successive generations; it was specified
as problem difficulty or depth d (defined as the
number of moves from the goal in sample prob-
lems). As a sequence of specifications of problem
difficulty, this becomes a training difficully vector
d= (d,, d,, ..., d,)

Here d was static, one known to be a good
progression, based on previous experience with

user training [Co84]!* In these experiments, d
was always (8,14,22,50, #,#,..). An integer
means random production of training problems
subject to this difficulty constraint, while “#"
demands production of fully random training
instances.

5.2. Discussion

Before we examine the experiments them-
selves let us coansider potential differences
between PLS1 and PLS2 in terms of their
effectiveness and efficiency. We also need a cri-
terion for assessing diflerences between the two
systems.

Vulnerability of PLS1. With population
size K =1, PL52 degenerates to the simpler PLSL.
In this case, static training can result in uiter
failure, since the process is stochastic and various
things can go wrong (sce Appendix B). The
worst is [lailure to solve any problems in some
generation, and consequent absence of any new
information. If the control structure H is this
poor, it will not improve unless the fact is

14. PLS and similar systems for problems and
games are sometimes neither fully supervised nor fully
unsupervised. The original PLS1 was intermediate in
this respect. Training problems were selected by a hu-
man, but from each training instance, a multitude of
individual nodes for learning are generated by the sys-
tem. Each node can be considered a separate example
for concept learning [Re83d]. [Co84] describes experi-
ments with an automated trainer,

e

e e

detected and problem difficulty is reduced (i.e.
dynamic training is needed).

Even without this catastrophe, PLS1 per-
forms with varying degrees of success depending
on the sophistication of its training and other
factors (explained in Appendix B). With minimal
human guidance, PLS] always achieves a good
evaluation function H, although not always an
optimal one. With static training, PLS1 succeeds
reasonably about half the time,

Stability of PLS2. Iy contrast, one would
expect PLS2 to have a much better success rate.
Since PLS1 is here being run in parallel (Fig.1),
and since PLS2 should reject hopeless cases (their
k's are small), a complete catastrophe (sll H’s
lailing) should occur with probability p = qK,
where q is the probability of PLS] failure and K
is population size. If q is even as large as one
half, but K is 7 or more, the probability p of
catastrophe is less than 0.01.

Cost versus beneflt: a meagure. Failure
plays a part in costs, so PLS2 may have an
advantage. The ultimate criterion for system
quality is cost eflectiveness: is PLS? worth its
extra complexity? Since the main cost is in task
performance (here solving), the number of nodes
developed D to atiain some performance is a
good measure of the expense,

Il training results in catastrophic failure,
however, all effort is wasted, so a better measure
is the expected cost D/p, where p is the probabil-
ity of success. For example, if D = 500 for
viable control structures, but the probability of
finding solutions is only %, then the average cost
of useful information is 500 / % = 1000.

To extend this argument, probability p
depends on what is considered a success. Is suc-
cess the discovery of a perfect evaluation func-
tion H, or is performance satisfactory if D
departs from optimal by no more than 25237

5.3. Resultg

) Table 1 5h0w5 performances and costs W.ith
various values of . Here p is estimated using
roughly 36 trialg of PLS1 in a PLS2 context {if K
=1, 36 distinct runs; if Kk =2, 18 runs; etc.).
Since variances in) are high, performance tests
were made over a rapndom sample of 50 puzzles.
This typically gives 959% confidence of D = 40.

Accuracy of learning. Let us first com-
pare results of PLS] versys PLS2 for four different
success criteria. We consider the learning to be
successful if the resulting heuristic H approaches
optimal quality within g given margin (of 100%,
50%, 25%, and 10%).

Columns two to five in the table (the
second group) show the proportion of H's giving
performance D within a specified percentage of
the best known D (the best D is around 350
nodes for the four features used). For example,
the last row of the table shows that, of the 36
individual control structures H tested in {two
different) populations of size 19, all 36 were
within 1009 of optimal D {column two). This
means that all developed no more than 700 nodes
before a solution was found. Similarly, column
five in the last row shows that 0.21 of the 36 H's,
or 8 of them, were within 10%, ie. required no
more than 385 nodes developed.

Cost of accuracy. Columns ten and
eleven (the two rightmost columns of the fourth
group) show the estimated costs of achieving per-
formance within 10055 and within 109 of
optimum, respectively. The values are based on
the expected total number of nodes required (ie.
D/p), with adjustments in favor of PLS1 for extra
PLS2 overhead. (The unit is one thousand nodes
developed.) As K increases, the cost of a given
accuracy first increnses. Nevertheless, with just
moderate K values, the genetic system becomes
cheaper, particularly for an accuracy of 109,

TABLE 1. COSTS and PERYORMANCES at GENERATION 5,

= N
Proportlon Satisfyi Hean HNodes Developed
Pop. Sﬂﬂctlln:l’lltr ln!\ o [Randoa Saople of 50) Cask Per rxpected Cost :n P;r:onmce
Blza {proximity to optimal D) Avg Best Pap. Individual u of One 8 Hl:l;in t!c‘rmcn-:::‘;tg
K 1008 50% 251 108 5 Dy Op 110% “nodes) 100% iailegy |
- m
1 A7 .24 .12 L4 32654 5 12,3 26.6 2
. TR '3 .03 573 et 408 17.4 25.2 aae i
7 .82 .41 Y . 0B 531 Eb ELE 18.1 22.7 o in
12 1.00 .51 1] L1 507 384 ot 18.7 18.7 in an
15 1.00 .69 L6l L14 150 170 3540 18,2 13.2 HH EN
19 1.00 .71 L83 .21 453 11 387 1%.7 15.7
— —
68

The expected cost benefit is not the only
advantage of PLS2.

Average performance, best perfor-
mance, and population performance. Con-
sider now the third group of columns in Table L.

The sixth column gives the average D for all H’s
in the sample (of 36}. The seventh column gives
D, for the best Hy in the sample. These two
measures, average and bes! performance, are
often used in assessing genetic systems [Br81).
The eighth column, however, is unusual; it indi-
cates the population performance D resulting
when all regions from every set in the population
are used together in a regression to dctermine
H,,. This is sensible because regions are indepen-
dent and estimate the utility, an absolute quan-
tity {{Re83¢|, cf [Br81, Ho75]).

Several trends are apparent in Table L
First, whether the criterien is 100%, 50%, 25%,
or 107 of optimum (columns 2-5), the proportion
of good li's increases steadily as population size
K rises. Similarly, average, best, and population
performance measures D, Dy and D, (columns G-
8) also improve with K. Perhaps most important
is that the population performance D is so reli-
ably close to best, even with these low K values,
This means that the whole population of regions
can be used (for 1I,) without independent
verification of performance. In contrast, indivi-
dual H's would require additional testing to dis-
cover the best (column 7), and the other alterna-
tive, any I, is likely not as good as I, (columns
6 and 8}. Furthermore, the entire population of
regions can hecome an accurate source of mas-
sive data for determining an evalueation function
capturing feature interaction [Re83b).

This aecuracy advantage of PLS2 is illus-
trated in the final column of the table, where, for
a constant cost, rough estimates are given, of the
expected error in population performance D
relative to the optimal value.

It is interesting that such small populations
improve performance markedly; usually popula-
tion sizes are 50 or more.

6. EFFICIENCY AND CAPABILITY

Based on these empirical observations lor PLSZ,
on other comparisons for PLS1, and on various
conceptual diflerences, general properties of three
competing methods can be compared: PLSI,

69

PLS2, and traditional optimization. In [Rc81|,
PLS1 was found considerably more efficient than
standard optimization, and the suggestion was
made that PLS1 made better use of available
information. By studying such behaviors and
underlying reasons, we should eventually identify
principles of eflicient learning. Some aspecls are
considered below,

Traditional optimization versus PLSI1.
First, let us consider efficiency of search for an
optimal weight vector b in the evaluation func-
tion I = b.f. One good optimization method is
response surface fitting (RSF). It can discover a
local optimum in weight space by measuring and
regressing the response (here number of nodes
developed D) for various values of b. RSF util-
izes just a single quantity (i.e. D) for every prob-
lem solved. This seems like a small amount of
information to extract from an entire searci,
since a typical one may develop hundreds or
thousands of nodes, each possibly containing
relevant information. In contrast to this tradi-
tional statistical approach, PLSt, like ISnGS,
Sa67], uncovers knowledge about every feature
from every node (see §4.3). PLSL, then, might be
expected to be more efficient than RSF. Experi-
ments verify this [Re81].

Traditional optimization versus PLS2.
As shown in §3, PL52 is more efficient still. We
can compare it, too, with RSI". The accuracy of
RSF is known to improve with VN, where N is
the number of data (here the number of of prob-
lems solved). As a first approximation, a parallel
method like PLS? should also cause accuracy to
increase with the square root of the number of
data, although the data are now regions instead
of D values. If roughly the same number of
regions is present in each individual set Rt of a
population of size K, accuracy must therefore

improve as V K. Sinee each of these K structures
requires N problems in training, the accuracy of

PLS2 should increase as \/T\-", like RSF.

Obviously, though, PLS2? involves much
more than blind parallelism: a genetic algorithm
extracts accurate knowledge and dismisses
incorrect {unfit) information. While it is impossi-
ble for PLSI alone, PLS2 can refine merit by
localizing eredit to individual regions [Re83c).
Planned experiments with this should show
further increases in efficiency since the additional
cost is small. Another inexpensive improvement

will attempt to reward good regions by decreas-
ing their estimated ecrrors. Even without these
refinements, PLS2 retains meritorious regions
{64), and should exhibit accuracy improvement

better than V' N. Table I suggests this.

PLS2 versus PLS2. As discussed in §4.1
and Appendix B, PLSI is limited, necessitating
human tuning for optimum performance. In con-
trast, the sccond layer learning system PLS?2
requires little human intervention. The main
reason is that PLS2 stabilizes knowledge
automatically, by comparing region sets and
dismissing aberrant ones. Accurate cumulative
sets have 2 longer lifetime.

This ability to diseriminate merit and
retain successful data will likely be accentuated
with the localization of credit to individual
regions (see §1.2). Another improvement is to
alter dynamically the error of a region (estimated
by PLS1) as a function of its meril {found by
PLS2). This will have the eflect of protecting a
good region from imperfect PLSt utility revision;
once some parallel PLS? has succeeded in discov-
ering an accurate value, it will be more immune
to damage. A fif region will have a very long
lifespan.

Inherent differences in capability. RESF,
PLS1, and PLS2 ean be characterized differently.
I'rom the standpoint of time costs; given a chal-
lenging requirement such as the location of 2
local optimum within 10%, the ordering of these
methods in terms of efficiency is RSF =< PLSI =
PLS2. In terms of capability, the same relation-
ship holds. RSF cannot handle feature interac-
tions without a more complex model (which
would increase its cost drastically). PLSE, on the
other hand, can provide some performance
improvement using piccewise linearity, with little
additional cost |Re83b). PLS2 is more robust
than PLS1. While the original system is some-
what sensitive to trainring and parameters, PLS2
provides stability using competition to overcome
deficiencies, obviate tuning, and increase accu-
racy, all at omce. PLS2 buffers inadequacics
inherent in PLS1. Moreover, PLS2, being geneti-
cally based, may be able to handle highly
interacting features, and discover global optlima
[Re83c]. This is very costly with RSF and seems
infeasible with PLS1 alone.

70

7. SUMMARY AND CONCLUSIONS

PLS2 is a pgenera) learning system [Re83a,
Re83d]. Given a set of user-defined features and
some measure of the weiyy (e.g. probability of
success in task performance), PLS2 forms and
refines an appropriate knowledge structure, the
cumulative region ggy R, relating utility to
feature values, and permitting noise manage-
ment, This economical apq flexible structure
mediates data objects and abstract heuristic
knowledge,

Since individual regions of the cumulative
set R are independent of one another, both credit
localization and feature interaction are possible
simultaneously. Separating the task control
structure H from the main store of knowledge R
allows straightforward credit assignment to this
determinant R of H, while H itself may incor-
porate feature nonlinearities without being
responsible for them,

A concise and adequate embodiment of
current heuristic knowledge, the cumulative
region set R was originally used in the learning
system PLS1 [Re83a). PLSI is the only system
shown to discover locally optimal evalyation
functions in an Al context. Clearly superior to
PLSY, its genetic successor PLS2 has been shown
to be more stable, more accurate, more efficient,
and more convenient. PLS2 employs an unusual
genelic algorithm having the cumulative set R as
a compressed genotype. PLS2 extends PLSt's Jin-
ited operations of revision (controlled mutation)
and differentiation (gemotype expansion), (o
include generalization and other rules (K-sexual
mating and genotype reorganization). Credit
may be localized to individual gene sequences.

These improvements may be viewed 35
effecting greater efficiency or as allowing greater
capability, Compared with a traditional method
of optimization, PLS1 is more efficient [Reg5a),
but PL52 does even better. Given a required
accuracy, PLS2 locates an optimum with lower
expected cost. In terms of capability, PLS? ingy-
lates the system from inherent inadequacies ang
sensitivities of PLS]. PLS2 is much more stahle
and ¢an use the whole population of regions reli-
ably to create a highly informed heuristic (this
pepulation performance is mot meaningfyl i,
standard genetic systems). This availability of
massive data has important implications for
feature interaction [Re83b).

Additional refinements of PLS2 may further
increase efliciency and power. These include
rewarding meritorious regions so they become
immune to damage. Future experiments will
investigate nonlinear capability, ability to dis-
cover global optima, and ecfficiency and
effectiveness of localized credit assipnment.

This paper has quantitatively allirmed some
principles believed to improve efficiency and
effectiveness of learning (e.g. credit localization).
The paper has also considered some simple but
little explored ideas for realizing these capabili-
ties (e.g. full but controlled use of each datum).

REFERENCES

[An73] Anderberg, M.R., Cluster An alyeis for Applica-
tfons, Academic Press, 1973,

[Be80] Bethke, A.D., Genetic algorithms ae Junction
optimizers, Ph.D. Thesis, University of Michigan, 1980.

[Br81] Brindle, A., Genetic algorithms for function
optimization, C.S. Department Report TR81-2 {PhD
Dissertation), University of Alberta, 1981,

[Bu78] Buchanan, B.G., Johnson, C.R., Mitchell,
T.M., and Smith, R.G., Models of learning systems, in
Belzer, J. (Ed.), Encyclopedia of Computer Science and
Technology 11 (1978), 24-51.

[Co84] Coles, D. and Rendell, L.A., Some issues in
training learning systems and an autonomous design,
Proc. Fifth Dicanial Conference of the Canadien
Socicty for Computational Studies of Intelligence, 1984,

[De80] Delong, K.A., Adaptive system design: A
genctic approach, /EEE Transactions on Systems,
Aan, and Cybernetice SMC-10, {1980}, 566-574.

[Di81] Dictterich, T.G. and Buchanan, B.G., The role
of the critic in learning systems, Stanford University
Report STAN-CS-81-801, 1981,

[Di82} Dietterich, T.G., London, B., Clarkson, K., and
Dromey, G., Learning and inductive inference, STAN-
CS.89-613, Stanford University, also Chapter XIV of
The flandbook of Artificial Intelligence, Cohen, P.R,,
and Feigenbaum, E.A. (Ed.), Kaufmann, 1982,

[(lo75] Holland, J.H., Adaptation in Natural and
Artificial Syetems, University of Michigan Press, 1975.

[llo80] Holland, J.H., Adaptive algorithms [or discov-
ering and using general patterns in growing knowledge
bases, Intl. Journal en Policy Analyeis and [nformation
Syeteme 4, 2 (1980), 217-2.10.

[Ho81] Holland, J.H., Genetic algorithms and adapta-
tion, Proc. NATO Adv. Res. Inst. Adaptive Control of

71

Hl-defined Systems, 1981,

[Ho83] Holland, J.1., Escaping brittleness, Proc.
Seeond International Afachine Learning Workehop,

1983, 92-95.

{La83] Langley, P., Bradshaw, G.L., and Simon, HL.A.,
Rediscovering chemistry with the Bacon system, in
Michalski, R.S., Carbonell, J.G., and Mitchell, T.M.
(Ed.), Machine Learning: An Artificial Intelligence
Approach, Tioga, 1983, 307-329.

(Ma84] Mzuldin, M.L., Maintaining diversity in
genetic search, Proc. Fourth National Conference on
Artifieral Intelligence, 1984, 247-250.

[Me85] Medin, D.L. Wattenmaker, W.D,,
Category cohesiveness, theories, and cognitive archeol-
ogy (as yet unpublished manuscript), Dept. of Psychol-
ogy, University of [llincis at Urbana Champaign, 1685.

[Mic83a] Michalski, R.S., A theory and methodology
of inductive learning, Artificial Intelligence 20, 2
(1983), 111-161; reprinted in Michalski, R.S. et al (Ed.},
Machine Learning: An Artificial Intelligence Approach,
Tiogn, 1983, 83-134.

[Mic83b] Michalski, R.S. and Stepp, R.E., Learning
from observation: Conceptual clustering, in Michalski,

R.S. et al (Ed.), Machine Learning: An Artificial Intel-
ligence Approach, Tioga, 1983, 331-363.

and

[Mit83] Mitchell, T.M., Learning and problem solving,
Proc. Eighth [International Joint Clonference
Artifieial Intelligence, 1983, 1138-1151.

[Nig0] Nilsson, N.J., Principles of Artificial [ntelli-
gence, Tioga, 1980,

on

[Re76] Rendell, LA, A method for automatic genera-
tion of heuristics for state-space problems, Dept of
Camputer Science CS-76-10, University of Waterloo,
1976.

[Re77] Rendel, L.A., A locally optimal solution of the
fifteen puzzle produced by an automatic evaluation
function generator, Dept of Computer Science CS-77-
36, University of YWaterloo, 1977,

[Re81] Rendell, L.A., An adaptive plan for state-space
problems, Dept of Computer Science CS-81-13, (PhD
thesis), University of Waterloo, 1081.

[Re83a] Rendell, L.A., A new basis for state-space
learning systems and a successful implementation,
Artifietal Intelligence 20 (1983), 4, 369-392.

[Re83b} Rendell, L.A, A learning system which
accommodates feature interactions, Proc. Eighth Inter-
national Joint Conference on Artificial [ntelligence,
1983, 469-472.

[Re83c] Rendell, L.A., A doubly layered, genetic
penctrance learning system, Proe. Third National
Conference on Artificial Intelligence, 1983, 343-347.

[Re83d] Rendell, L.A., Conceptual knowledge acquisi-
tion in search, University of Guelph Report CIS-83-15,
Dept. of Computing and Information Science, Guelph,
Canada, 1983 (to appear in Bolc, L. {ed.), Knouledge
Bared Learning Systems, Springer-Verlag).

[Re 83a] Rendell, L.A., Utility patterns as criteria for
efficient generalization learning, Proe. 1855 Conference
on Inielligent Syeteme and Machines, (to appear), 1985,

[Re83b] Rendell, L.A, A approach to
applied induction, Proc. 1985 International Machine

scientific

Learning Workshop, Rutgers University (to appear),
1985,

[Re85¢c| Rendell, L.A., Substantial constructive induc-
tion using layered information compression: Tractable
feature lormation in search, Proc. Ninth International
Joint Clonference on Artifictal Intelligence, (to appear),
1985,

[S283] Samuel, AL., Some studics in machine learn-
ing using the game of checkers, in Feigenbaum, E.A.
and Feldman, J. (I2d)), Computers and Thought,
MeGraw-Hill, 1963, 71-105.

[Sa67] Samuel, A.L., Some studies in machine learn-
ing using the game of checkers II—recent progress,
IDM J. Rea. and Develop, 11 (1967) 601-617,

[$m80] Smith, SF., A learning system based on
genetic adaptive algorithms, PhD Diszertation, Univer-
sity of Pittsburgh, 1980,

[Sm83] Smith, 5.F., Flexible learning of problem salv-
ing heuristics through adaptive secarch, Prec. Eighth
International Joint Conference on Artificral [ntelli-
gence, 1983, 422-425,

APPENDIX A. GLOSSARY OF TERMS

Clustering. Cluster anglyzis has long been
used as a tool for induction in statistics and pat-
tern recognition [An73]. (See “induction”.)
Improvements to basic clustering techniques gen-
erally use more than just the features of a datum
([An73,p.194] suggests “external criteria”).
External criteria in [Mi83, Re76, Re 832, Re85b]
involve prior specification of the forms clusters
may take {this has been called “conceptual clus-
tering” ([Mi83]). Criteria in [Re76, Re83a,
Re85b] are based on the data environment (see

72

“Utilit)’”) bEIOW).15 Th]s pnper uses clustcring to
create economical, compressed genetic structures
fgenotypes).

Feature. A feature is an attribute or pro-
perty of an object. Features are usually quite
abstract (e.g. “center control” or “mobility”) in 2
board game. The utility (see below) varies
smoothly with a feature.

Genetic algorithm. In a GA, a the char-
acter of an individual of a population is called a
phenotype. The phenotype is coded as a string of
digits called the genotype. A single digit is a
gene, Instead of searching rule space directly
(compare “learning system”), a GA scarches gene
space (i.e. a GA searches for good genes in the
population of genotypes). This search uses the
merit p of individual genotypes, selecting the
more successful individuals to undergo genctic
operations for the production of offspring. See
§2 and Fig. 3.

Induction. [Induction or generalization
learning is an important means for knowledge
acquisition. Information is actually created, as
data are compressed into classes or calegories in
order to predict future events efficiently and
effectively. Induction may create feature space
neighborhoods or clusters. See “clustering” and
§4.1.

Learning System. Buchanan et al.
present a general model which distinguishes com-
ponents of a learning system [Bu78]. The perfor-
manece element PE is guided by a conirol siruc-
{ure 11. Based on observation of the PE, the cri-
{ic assesses H, possibly localizing credit to parts
of H [Bu 78, Di81]. The learning clement LE uses
this information to improve H, for the next
round of task petformance. Layered systems
have multiple PE's, critics, and LE’s (e.g. PLS2
uses PLS! as its PE —sce Fig.1). Just as a PE
searches for its goal in problem space, the LE
searches in rule space [Di82] for an optimal H to
control the PE.

To facilitate this higher goal, PLS2 uses an
intermediate knowledge structure which divides
feature space into regions relating feature values
to object utility [Re83d] and discovering a useful
subset of features (cf {Sa63|). In this paper, the
control structure M is a linear evaluation lunc-

15. A new learning system [RgSSc] introduces
higher-dimensiona! clustering for creation of structure.

tion [Ni80], and the “rules” are feature weights
for H. Search for accurate regions replaces direct
scarch of rule space; i.e. regions mediale data
and H. As explained in §3, sets of regions
become compressed GA “genotypes”. See also
“genetic algorithms”, “PLS", “region”, and Fig.1.

Merit w. Also called payoff or fitness, this
is the measure used by a genctic algorithm Lo
select parent genotypes for preferential reproduc-
tion of successful individuals, Compare “uotility”,
also sce “genetic algorithms™.

Object. Objects are any data to be gen-
eralized into categories. Relationships usually
depend on task domain. See “utility™.

PLS. The probabilistic lesrning syslem
can learn what are sometimes called “single con-
cepts” |Di82], but PLS is capable of much more
difficult tasks, involving noise management,
incremental learning, and normalization of biased
data. PLS1 uniquely discovered locally optimal
heuristics in search |[Re83a], and PLS2 is the
eflective and efficient extension examined in this
paper. PLS manipulates “regions™ (sce below),
using various inductive operations described in
g,

Region or Cell. Depending on one's
viewpoint, the region is PLS's basic structure for
clustering or for the genetic algorithm. The
region is a compressed representation of a utility
surface in augmenied feature space; it is also a
compressed genotype representing a ulility func-
tion to be optimized. As explained in [Re83d],
the region representation is fully expressive, pro-
viding the features are. Sce §3 and Figs.3& 4.

Utility u. This is any measure of the use-
fulness of an object in the performance of some
task. The ntility provides a link between the
task domain and PLS generalization algorithms.
Utility can be a probability, as in Fig.2. Com-
pare merit. See §1,3.

APPENDIX B. PLS1 LIMITATIONS

PLS1 alone is inherently limited. The problems
relate to modification of the main knowledge
structure, the cumulative region set R =
{(r,u,e)}. As mentioned in §4.1, R undergoes
two basic alterations. PLS1 gradually changes
the meaning of an established feature space rec-
tangle r by updating its associated utility u
(along with u's error e). PLS1 also incrementally

73

refines the feature space, as rectangles r are con-
tinually split.

Both of these medifications {utility revision
and region refinement) are largely directed by
search data, but the degree to which newer infor-
mation aflects R depends on various choices of
system parameters [Re83a). System parameters
influence estimates of the error ¢, and determine
the degree of region refinement. These, in turn,
affect the relative importance of new versus esta-
blished knowledge.

Consequently, values of these paramelers
influence task performance. For example, there
is 2 tradeoff between utility revision and region
refinement. If regions are refined too quickly,
accuracy suffers (this is theoretically predictable).
If, instead, utility revision predominates, regions
become inert (their estimated errors decline), but
sometimes incorrectly.'®

There are several other problems, including
difficulties in training, limitation in the utility
revision algorithm, and inaccurate estimation of
various errors. As a result, utility estimations
are imperfect, and binsed in unknown ways,

Together, the above uncertainties and sen-
sitivitics explain the failure of PLS! always to
locate an optimum with static training (Table I).
The net effect is that PLS1 works fairly well with
no parameter tuning and unsophisticated train-
ing, and close to optimal with mild tuning and
informed training [Co84|, as long as the features
are well behaved.,

By nature, however, PLS1 requires {eatures
exhibiting no worse than mild interactions. This
is a serious restriction, since feature nonlinearity
is prevalent. On its own, then, PLS1 is inherently
limited. There is simply no way to learn utility
accurately unless the effects of differing heuristic
functions I are compared, as in PLS2,

ACKNOWLEDGEMENTS

I would like to thank Dave Coles for his lasting
enthusiasm during the development, implementa-
tion and testing of this system. 1 appreciate the
helpful suggestions from Chris Matheus, Mike
Mauldin, and the Conference Reviewers.

16, Although system parameters are given by
domain-independent statistical analysis, tuning these
parameters nevertheless improves performance in some
cases. (This is not required in PLS2)

Learning Multiclass Pattern Discriminatien

J. David Schaffer
Department of Electrical Engineering
Vanderbilt University
Nashville, TN 37235

ABSTRACT

Genetic algorithms (GA's) are powerful,
general purpose adaptive search techniques which
have been use successfully in a variety of learning
systems. Previous implementations have tended to
use scalar feedback concerning the performance of
alternate knowledge structures on the task to be
learned. This approach was found to be inadequate
when the task was multiclass pattern
discrimination. By providing the GA with
multidimensional feedback, a problem of this type
was successfully learned. In addition, a careful
balance of reward and punishment was found to be
necessary in order to guide the opportunistic GA to
a correct solution of the problenm.

1. Introduction

This paper presents some results of
experiments with a software system designed to
learn rules for multiclass pattern discrimination
from examples of correctly classified patterns.

The original motivation for this research
arose from attempts to develop computer programs
capable of intelligent signal analysis. One such
application domain is computer analysis of
bioelectric signals such as EMG's and EEG's.
Previous attempts to model the actions of an
electroencephalographer using variations of
traditional electrical engineering approaches had
met with some success, but complete agreement with
the human expert eluded us [2,4). Attempts to
elicit the knowledge from the expert for use by an
expert system had similarly met with limited
success [5]. Nevertheless, it was clear that the
expert was able to reliably preform this complex
pattern discrimination, even if he was wunable to
completely articulate how he did it. Therefore, an
algorithm capable of inferring rules for
discrimination from examples of correctly
classified patterns, seemed to hold promise.

A search of the literature for methods by
which machines- could learn rules from examples
revealed a small number of currently active
approaches [11,12]). Of these, the methods based on
Holland's Genetic Adaptive Plans [9), or Genetic
Algorithms (GA's) seemed to held the most promise
for the following reasons. They have been shown
both theoretically [9] and empirically [6,7,8] to
take near optimal advantage of the information
gained during attempts to solve a problem. In
addition, the preferred coding for the example

74

patterns is as bit strings, This offers the
possibility that one may avoid the usual feature
extraction processes, which, although capable of
considerable data reduction, also carry with them
the risk that the reduced feature set may no longer
contain the information contained in the original
signal which made the discrimination possible. A GA
might be developed that operates on the raw
digitized signals.

For the remainder of this paper, an
understanding of the basics of GS's has been
assumed. They are well described elsewhere
[3,6,7,8,9,10,13F.

2. Background

There are two learning systems based on
GA's in the literature which might be considered
immediately ancestral tc the research described
herein. The Cognitive System One (CS-1) of Holland
and Rietman [i0] was the first published account of
a system which combined the computational power of
a production system {PS)with a GA-based learning
component. This system exhibited an ability to
learn a dual-reward 1linear mazas, The Learning
System One (LS-1) of Smith (13} took this concept
further and demonstrated learning behavior in two
different problem dowmains, the maze problem and
draw poker playing.

LS-1 appeared to have an important
advantage over CS-1. CS5-1 maintained a population
of knowledge structures which were individual PS
rules, which pgave rise to the credit assignment
problem. A heuristic method had to be devised to
distribute credit for rewarded behavior among the
rules which cooperated in producing that behavior.
LS-1 avoided this problem by using complete rule
sets, or P§ programs, as the individvals in its
populations. A difficulty with this approach
involved the use of scalar evaluations for the
individuals, When the task to be learned is
multidimensional, then scalarization of the
feedback to tha CGA creates difficulties which will
be described below.

3. A Vector Extension of LS-1 (LS-2)

Several attempts to learn a multiclass
pattern discrimination problem with LS-1 vere
unsuccessful. Examination of the populations of
programs in both the early and late stages of the
searches revealed a common pattern. Knowledge of
how te recognize a particular class was frequently
absent from the populations in the latter stages of

the search even when such knowledge was present in
earlier populations. The hypothesis for this was
that the scalar feedback was forcing competition
between programs whose knowledge was complementary.

Consider this simple example. Suppose the
feedback to the GA consists essentially of the
numbar of training cases correctly classified.
Suppose program Pl contains rules which correctly
classify classes A and B while program P2
classifies only instances in class C. If all
classes are equally represented in the training
sat, then Pl will appear to be twice as "fit" as
P2. In a survival-of-the-fittest selection process,
specialized knowledge such as that possessed by P2
may die out.

The solution to this problem was to modify
the critic so that a vector of performances could
te reported back to the GA, one for each facet of
the problem (class of pattern to be learned, in
this case). The selection process of the GA was
also modified in such a way that an independent
survival-of-the-fittest selection is performed on
sach dimension of the performance vector, each time
selecting only the appropriate fraction af the
population. This selection 1s performed with
replacement so that individuals with better that
average performance on more than one dimension have
the appropriate probability of multiple selection
while simultaneously protecting individuals with
specialized knowledge from unfair competition.
This represents a simple generalization of the
traditional selection process which reverts to the
traditional process when the number of dimensions
of performance is one.

4.1 Enowledge Representation

The binary coding scheme for the IF-THEN
rules was devised by Smith and called Knowledge
Structure One (KS-1). On the IF side of each rule a
number of clauses which are sensitive to external
signals are allowed as well as a number of clauses
sensitive to internal signals l.e. signals from
other rules. These clauses are simply strings on
the alphabet {0,1,#} where O and 1 require an exact
match and ## will match either 0 or l. For example,
the clause 1/ would match any 3-bit signal whose
first bit is a 1. On the THEN side, each rule has a
signal which it deposits in short term memory if
the rule fires. From there, it becomes accessible
to other rules. Also on the THEN side is an actien
which is performed if the rule fires and also
survives the conflict resolution at the end of the
production system cycle. This general scheme as
well as an example of the binary coding of these
rules is shown in figure 1.

An individual for the purposes of the GA is
a set of rules in KS-1 format concatenated
together. For pattern discrimination problems, each
rule would have one detector {external signal)
clause and one message (internal signal) clause.
The length of the detector clause is set to the
length of the patterns to be learned and the length
of the message clause would be set to the lenmgth of
the messages. The message length need only be a
function of the maximum number of rules an
individual may contain, the only requirement being
that there should be enough bits so that every rule

75

ir
datector 1 (nat flag, string {0,1,0))

datéctor p
manshge_detactor 1 (ignors flag, bot flag, string (0,1,1))

ln;ngn_uuctur L

sassags {string (0,1})
action (string (0,1})

axanpler 1 datactor of langth 3 (net 01f)
1 massags_detsctor of langth 3 (1#H)
nesaage of length 3 (D11}

action of lsngth 3 {01}

Ir =-» THIX
= PG 11

, 81
tarnary binary
bit coding: 10011010011100%01501 o =» 00

1 =» 11
4 -» Ol erld

lat

Figure 1. KS-1 Knowledge Representation Scheme

might have a unique signal. The actions would
include one for each class of pattern to be
discriminated with one for ne-operation {noop). The
noop action is a simple device which allows for the
evolution of sets of rules which perform a chain
caleulation leading to a final classification
decision.

It may be noticed that the binary ceding
scheme illustrated in figure 1 admits a certain
redundancy. By having two bipary codings for the
don't care symbol (#f = 0! or 10}, there are many
binary codings possible for any given rule, with
the problem growing worse as the number of fi's
increases. This observation pgave rise to the
conjecture that the knowledge structures might be
coded directly in their natural ternary (0,1,#)
alphabet. To counter this conjecture, is the known
superiority of binary ceding for the gathering of
information from the hyperplanes of the search
space {see Holland [(10,p7l] or 5mith [13,p56]).
However, it was unclear how these two arguments,
might be compared and the better coding selected.
Therefore, several tests ware conducted wherein the
same problems were solved by LS5-2 using first
binary coding and then ternary coding.

4.2 Recognize-act Cycle

The production system contained the usual
recognize-act cycle with parallel firing of rules
allowed in the following fashion. On each cycle,
evary rule 1is tested for a match of its IF-side
clauses. Every rule which does match, "fires" in
the sense that its message is posted in short term
memory, but its action is merely tallied in an
array called the suggested-action array. Only at
the end of the cycle is an action selected and
actually performed. If the number of "real" {non
noop) actions suggested is zera, then another cycle
is initiated. If one action is suggested, then it
is performed. If more than one action is suggested,
then a stochastic conflict resolution scheme is
invoked which randomly selects one of the suggested
actions with the probability of selection being
proporticnal to the number of rules suggesting it.

4.3 The Halting Problem

The question of halting such a
computational scheme is quite a real one. Since
this system will be executing programs produced by
genetic search, one must worry about the
possibility of infinite loops. On the other hand,
an arbitrary stopping thresheld in terms of the
number of cycles to allow must be carefully chosen
S0 as not to render a problem unsolvable if it
requires more lengthy computation that the
threshold permits. The stopping procedure
implemented for LS-2, which differs from LS-1,
examines four criteria in the following order: (1}
Stop if no rules fired this cycle. (2) Stop if the
number of consecutive ncop cycles equals the number
of rules. This allows for a worst case chain
calculation which utilizes every rule in the
program. (3} Stop if the total number of cycles is
N times the number of rules. The setting of N is
the arbitrary threshold just mentioned and is
currently set to 3, but at least the actual
stopping threshold is also a function of the number
of rules. {4) Stop if the task has been learned.

5. The Critic

Besides vector performance and the stopping
criteria, the other major area of difference
between LS-} and LS-2 was that of the ecritic.
Smith anticipated a problem with a critic which
only rewarded task successes. In the early stages
of a genetic search, especially one started with a
random population, successes are likely to be rare
and thus such a critic would be unable to give the
GA any information about which population members
were more promising than others. In the absence of
such information the GA would revert to near random
search. In addition, in the later stages of the
search when successes were plentiful, some way of
identifying the better {e.g. more parsimonious)
individuals would lead more efficiently to good
solutions, Smith sought measures to provide this
kind of information which were alse task
independent. He devised two classes, static
measures which could be computed just by examining
the rule set, and dynamic measures which could be
computed only by monitoring the action of the rule
set on the task. The static measures included such
items as the amount of interrule communication
measured by how many rule messages would match the
message clause of other rules, the generality of
the clauses measured by the number of # symbols and
50 on. The dynamic measures included the amount of
random behavior measured by the activity of the
conflict resolution procedure and the percentage of

inactive rules. While these measures havae an
intuitive appeal, it is not clear that they are
always associated with superior performance
regardless of the task. In addition, some

prelipinary experiments with LS-2 using these
measures as an independent dimension of the
performance vector revealed a poor correlation with
task success. These measures, then, were dropped
from LS-2 in favor of the critic described below.
This critic did incorporate the amount of random
activity which was called guessing behavior.

The properties sought for a eritic for
pattern discrimination learning were similar to
those identified by Smith. In the early stages of

1f act is right

reward

it act 1s wrong

0 i

guessing factor

Figure 2. The Reward Function for the First Critic

the search, guessing should be encouraged so as to
locate as quickly as possible, some knowledge which
seems to work. However, the same critic must
discourage guessing in the later stages when more
reliable classification becomes the goal. The first
critic reward function designed with these
properties is illustrated in figure 2. The guessing
factor is a measure of the uncertainty with which
the production system reaches a conclusion as
measured by the number of rules suggesting some
other conclusion. This reward function would give
some credit for a wrong conclusion if the right
action were at least suggested and would also give
less than maximum credit for the right action if it
were only guessed. While this critic seemed
reasonable, it had a subtle weakness which was
revealed by experimentation. Better critics were
later designed, but they will be discussed with the
results which lead to them.

6. The Test Problems

6.1 The Parity Problem

As a direct test that the GA is capable of
producing more powerful programs than perceptrons,
the parity problem was included. This problem
involves the discrimination of two classes which
are inextricably mixed in tha feature space as
shown in figure 3. Although a discriminator
requiring linear separability in the feature space
would be unable to solve this problem, a system
able to compute the parity {(a derived feature) of
the given features would be able to solve this
problem easily.

6.2 A Hulticlass Pattern Problem

As a test of a GA on a multiclass signal
discrimination learning task a small problem was
selected from the 1literature which used EMG
signals. Bekey at al [l] measured the neural firing
patterns enervating six muscles in the lower leg
and then reduced the signal from each muscle to a
two-bit string indicating that the muscle was
either on (1) or off (0} during two phases of the
gait cycle. Thus, each subject tested yielded a

3 2 1 2 1
2 1 2 1

x1 2
1 2 1 2 1
0 1 2 1 2

x0

Figure 3. The Parity Problen

12-bit string which was classified by the clinician
as belonging to one of five classes of gait as
shown in figure 4.

The 11 patterns shown in figure 4 were
considered by Bekey and his colleagues to be
typical of their classes and were used as a
training set for a statistical discrimination
experiment. This training set has several features
to recommend 1t as a test bed for a GA learning
experiment, The strings were short and binary
coded. Also the training set is small implying a
small computational burden. Although the problem
is underconstrained {(there are many possible
solutions), it is rich enough to frustrate a simple
linear discriminator like a perceptron.

7. Results

7.1 The Parity Problem

After trying 5040 different PS programs
{evaluations}on the parity problem, L5-2 found the
solution shown in figure 5. The training set for
this problem consisted of all 16 patterns shown in
figure 3 with x0 and xl coded at two bits each. The
“jgnore" in figure 5 indicates that the message
clauses in all of the rules were turned off. Thus,
the solution did not require any interrule
communication. Instead two rules were evolved for
each combination of low order bits in the feature
strings. The 2-bit strings to the right of the ->
symbol in figure 5 are the signals placed in short
term memory which are ignored by the other rules.
The rightmost number in each rule is the action
{classification asserted for the pattern if the
rule fires).

7.2 The EMG Problem

The first trials with the EMG problem
clearly indicated the superiority of the KS-1
binary coding over the ternary coding. Comparison
runs to discriminate different pairs of classes and
one run to discriminate a 3-class subset of the
Bekey training set all learned the discrimination
faster with binary coding than with ternary coding.
Besides this series, all other experiments reported
in this paper utilized binary ceding.

A solution to a 2-class subproblem of the
Bekey set was located in 2520 evaluations. However,
a 3-class subproblem required almost 30000
evaluations and the full 5-class problem remained
unsolved after 100000 evaluatiens. This rapid

77

increase in computational effort soon drew
attention to the critic as a possible cause. By
examining some of the individuals in different
populations, the survival strategy that L5-2 was
adopting was discovered. It was observed that very
early in the searches, even in the initial
populations, individuals appeared who veceived
maximum credit for one class of patterns and zero
for all other classes. These were named specialists
since they seemed to have knowledge of how to
idantify one pattern class without guessing, but no
others. However, ciose examination revealed their
simple strategy. Each specialist contained a single
over-general rule which fired for every pattern,
calling class x. If the pattern was class x, the
critic assigned maximum credit, if not then the
critic assigned zero. However, under the vector
survival-of-the-fittest, maximum fitness on one
dimension was sufficient to assure survival. These
specialists also tended to persist since their
genes combined poorly, net producing offspring able
to perform well on more than one dimension. This
strategy of wild pguessing was encouraged by the
eritic; some form of punishment for wrong actions
was clearly needed.

The original critic was then replaced by
one which simply assigned two points for each
correct suggestion and minus one for each wrong
suggestion. More credit for right than wrong seemed
appropriate in light of the need to preserve
individuals with some good knowledge, even if
imperfect. This critic also embodied a shift of
focus from the overt actions of the individual to
the suggested actions, thus rewarding the
"thinking" more directly.

Under the new critic, LS-2 solved the
2-class problem in only 1440 evaluations, a 437
reduction in search effort. However, this advantage
did not hold for higher order problems. Again, an
examination of the individuals persisting in the
population revealed the new survival strategy. With
a 2?-class task, the expectation for wild guessing
under this critic, is one half the maximum credit
so long as each class in equally represented in the
training set. However, as the number of classes
increasess, this eaxpectation decreases and even
becomes negative for fairly modest tasks. When

class 1 (normal}

(0,1,1,1,1,1,1,0,0,0,0,0)
class 2 (equinus)
(0,1,1,1,1,1,0,0,0,0,0,0)
(0,1,1,0,1,1,1,0,0,0,0,0)
(0,2,1,1,0,2,1,1,0,0,0,0)
(0,1,1,1,0,1,9,0,0,1,0,0)
class 3 (flat footed)
(0,0,0,0,1,1,1,0,0,0,0,0)
(0,1,0,0,0,1,1,1,0,0,0,1)
class 4 (varus}
(lrollllrotolllolollfolu)
(,1,1,0,1,1,0,0,0,0,0,0)
class 5 (valgus)
{0,0,1,0,%,1,1,0,0,0,1,1)
(0,1,1,0,0,1,1,0,0,0,0,1)

Figure 4. The Bekey Training Cases

LG - R

Ir => THEN
rule O: 141 ignore -» 01 1
rule 1: #0041 ignore -> 01 2
rule 2: f040 ignore -> 10 1
rule 3: f1¢0 ignore -» 10 2

Figure 5. The Solution to the Parity Problem

this occurs, LS-2 quickly begins evolving
individuals with no rules that fire at all. Doing
nothing at least scores zero which is better than
being punished. A balance of reward and punishment
which will be maintained as tasks increase in
complexity is needed so as to avoid the GA's
ability to quickly exploit this weakness in the
critic function.

The next critic employed a computational
scheme based on that used on the Scholastic
Apptitude Test and so was called SAT scoring. The
main idea in the scoring of multiple choice tests
is that indiscriminant guessing should have an
expectation of =zero, but that if a student can
eliminate some of the choices on a question, then
he should be encouraged to guess by having the
expected score increase as the range of guessing
decreases. For the BSAT, this 1s achieved by
subtracting from the number of correct answers, the
number of wrong answers weighted by the inverse of
the number of choices minus one. This gives an
expectation which varies from zero for wild
guessing to the maximum score for no guessing. For
L5-2 a slightly different expectation was thought
desirable. Wild guessing was deemed better than
doing nothing because this at least would give the
GA some active rules to deal with. So the designed
expectation was that wild guessing (e.g. calling
every case the same class) should score half of the
maximum.

At this point in the experimentation, an
effort was also initiated to learn about the
sensitivity of LS-2 to changes in four of its main
parameters, population size, crossover, mutation
and inversion rates. All experiments reported so
far used a population size of 30 per dimension of
the performance vector, a crossovar rate of .95, a

mutation rate of .0l and an inversion rate of .25,
These first three values were suggested by
Greffenstette (B8] and the inversion rate by Smith

[13]. Limited resources prevented the best approach
which would have been the meta-GA approach of
Greffenstette, so different settings were produced
by increasing the population size in steps of 10
per dimension and simultaneously reducing the rates
more or less in unison, This process was continued
until the mean evaluations-to-solution stopped
improving. Means were computed for three runs at
each setting with different random seeds.

The SAT critic has the same expectation as
the previous critic for 2-class problems with
balanced training sets, so this task was not
repeated. A J-class subproblem was solved in 6921
evaluations, a 77X improvement over the original
critie. A 4-class subproblem was sclved in 26591
evaluations. Both of these results represented a

78

best parameter setting of 40, .90, .005 and .20 for
population size per dimension, crossover, mutation
and inversion rates respectively.

One final improvement was made in LS-2,
this tize to the conflict resolution. In LS-1 Smith
had not permitted conflict resclution to consider
the noop action so long as a "real" action were
suggested. In all the LS-2 experiments so far, noop
competed equally with the '"real" actions. The
argument for this was that for some task
environments, doing nothing, or continuing to think
(eycle} was a decision and that if the environment
were dynamic, then this might well affect
performance. Howaver, some counter arguments can
also be made. The pattern discrimination tasks
considered so far are not dynamic; the patterns
don't change while LS-2 is trying to decide. Also,
this strategy allows for some stochastic effect to

remain in the critic-reported values. By deciding
to cycle again when a "real" acticn had been
suggested, LS-2 postponed the computation of the

credit in a non-deterministic way. Tha critic was
only permitted to evaluate the suggested action
array on the final cyele. I would now argue that if
the task environment is dynamic, and a do nothing
action should be considered, then it should be
explicitly included as one of the "real"” actions.
Noop should not be considered a do nothing action.

With this final improvement, LS-2 solved
the 3-, 4- and full 5-class problems in 5647, 15938
and 44509 evaluations respectively. The taming
effect of these improvements in LS-2 are
i1llustrated in figure 6.

w
B
i LEGEND
iC ® oripinel scoring
w SAT sewring
- s wp=woup rmenflulion
1
Sg.
pot 4
x
-
[4-]
o
—-—=
-
F
=}
€S
e
281
[}
o
8
B
=N
[--]
]
Lo
=3
=R
E
=
= T —)
i : i
®0' oo 100 2.00 3.00 y.00 5.00 5.0

number of clasees

Figure 6. Improvements in L§-2 with Changing Critic

8. Discussion

The major finding of this research was that
vector feedback is essential te multiclass
discriminant learning. Vector selection provides
the necessary protection against unfair competition
while simultaneously providing the proper pressure
for the evolution of the utopian individual capable
of high performance on all facets of the task.

Secondary to this major finding are &
number of observations which may contribute to
better understanding of GA's and how to effectively
utilize them.

The solution of the parity problem clearly
demonstrates LS-2's ability to learn non-linear
discrimination.

Ternary coding of KS-1 was dinferior to
binary coding, even with the redundancy inherent in
the binary coding scheme. A search for coding
schemes which are binary and yet avoid this
redundancy might pay handsome dividends.

Grefenstette's finding [8] chat genetic
search may be very efficient with smaller
populations and higher mixing rates than previous
wisdom suggested, seems generally to have been
confirmed. Populations of 40 per dimension of
performance with crossover rates of .7 to .9,
mutation rates of .001 to .0l and inversion rates
of .1 to .2 provided the best performance on the
problems studied here. It should be noted, however,
that the search was limited and began with
Grefenstette's solution,

As Smith observed, the critic is critical.
The GA is capable of exploiting the properties of
its critic and so good performance was only
achieved when reward and punishment were carefully
balanced. The application of punishment to a
performance vector has raised a question which did
not oeeur with scalar performance systems. There
are two places where this punishment may be
applied. Suppose that a PS5 program incorrectly
classifies & class 1 case as class 2. By applying
the punishment to the class 1 slot of the
performance vector one is punishing the failure te
do the right thing. By applying it to the class 2
slot, one is punishing the program for doing the
wrong thing. It is unknown which strategy, or bath
leads to faster learning. The experiments reported
here applied the punishment to the slot
corresponding to the case to be classified, thus
always punishing the failure to do the right thing.
Other approaches might be profitably studied.

The task independent measures proposed by
Smith did not seem to be sufficiently closely
associated with good performance te warrent their
use. However, his strategy of disallowing noop
actions to compete in conflict resalution was
superior to allowing it.

A final observation is in order on the
original question of wusing a GA for intelligent
signal classification. The strategy used in Ls-2
seems to be promising, but requires that a prior
decision be made on the length and sampling rate

for the signal. The patterns must be "frozen" so
that the system can examine them. This feature
seems to impose undesirable limitations. A more

dynamic method of examining the signal, bit by bit,
and only reporting a decision when enough
information has been acquired to do so with

79

confidence, seems to offer a more robust approach.

1.

a)g

ig.

il.

12.

13,

REFERENCES
A.B. Bekey, C. Chang, J. Perry, and M.M.
Hoffer, "Pattern recognition of multiple EMG

signals applied to the description of human
gait," Proceedings of the IEEE,Vol. 65 Neo. 3,
May 1977.

J.R. Bourne, V. Jagannathan, B. Hamel, B.H.
Jansen, J.W. Ward, J.R. Hughes and C.W. Erwin
"Evaluation of a syntactic pattern recognition
approach to quantitative electroencephalo-
graphic analysis,” Electroencephapography &
Clinical Neurophysiology, 52:57-64, 1981.

A. Brindle, Genetic Algorithms for function
optimization, Ph.D. Dissertation, University
of Alberta, Edmonton, Alberta, Canada, 1975.

D.A. Gilese, J.R. Bourne and J.W. Ward,
"Syntactic analysis of the
electroencephalogram,"” IEEE Trans. Systems,
Man and Cybernetics, Vol. SMC-9 No. 8, Aug

1979.

V. Jagannathan, An artificial intelligence
approach to computerized electroencephalogram
analysis, Ph.D. Dissertation, Vanderbilt
University, Nashville, Tennessee 19Bl.

Kenneth DeJong, Analysis of the behavior of a

class of genetic adaptive systems, Ph.D.
Dissertation, University of Michigan, Ann
Arbor, 1973,

Kenneth DeJong, "Adaptive system design: a
genetic approach," IEEE Trans. Systems, Man
and Cybernetics, Vol. SMC-10 No. 9, Sept 1980.

John J. Greffenstette, "Genetic algorithms for
multilevel adaptive systems,'" IEEE Trans. on
Systems, Man and Cybernetics, in press.

natural and
of Michigan

John H. Holland, Adaptation in
artificial systems, University
Press, Ann Arbor, Michigan 1973.

J.H. Holland and J.S5. Reitman, '"Cognitive
systems based on adaptive algorithms," in
Pattern-Directed Inference Systems, Waterman

and Hayes-Roth (Eds.), Academic Press, 1978.

R.5. HMichalski, J.G. Carbonell and T.M.
Mitchell, (Eds.), Hachine Learning, Tioga
Publishing Co.,Palo Alto, California 1983,

R.S. Michalski, J.G. Carbonell and T.H.
Mitchell, (Eds.), Proceedings of the
International Machine Learning Workshop,
University of Illinois, Urbana-Champaign,

Iilinoils, 1983.

S.F. Smith, A learning system based on genetic
adaptive algorithms, Ph.D., Dissertation,
University of Pittsburg, 1980.

re

IMPROVING THE PERFORMANCE OF GENETIC ALGORITHMS
IN CLASSIFIER SYSTEMS

Lashon B. Booker

Navy Center for Applied Research in Al
Naval Research Laboratory, Code 7510
Washington, D.C. 20375

ABSTRACT

Classifier systems must continucusly infer useful categories and other generalizations — in the form
of classifier taxa — from the steady stream of messages received and transmitted. This paper describes

ways to use the genetic algorithm more effectively in discovering such patterns.

Tweo Issues are

addressed. First, a flexible criterion is advocated for deciding when a message matches a classifier taxon.
This is shown to improve performance over a wide range of categorization problems. Second, a restricted
mating policy and crowding algorithm are introduced. These modifications lead to the growth and
dynamic management of subpopulations correlated with the various pattern categories in the environ-

ment.

INTRODUCTION

A classifier ayatem is a special kind of
production system designed to permit noa-
trivial modifications and reorganizations of
its rules as it performs a task [Holland,1976].
Classifier systems process binary messages.
Each rule or classifier is a fixed length string
whose activating condition, called a tazon, is
a string in the alphabet {0,1,#}. The
differences between classifier systems and
more conventional production systems are
discussed by Booker [1982] and Holland
(1983].

One of the most important qualities of
classifiers systems as a computational para-
digm is their fexibility under changing
environmental conditions {Holland,1983].
This is the major reason why these systems
are being applied to dynamic, real-world
problems like the control of combat systems
[Kuchinski,1985] and gas pipelines [Gold-
berg,1983]. Conventional rule-based systems
are brittle in the sense that they function

80

poorly, if at all, when the domain or under-
lying model changes slightly. Several factors
work together to enable classifier systems to
avoid this kind of brittleness: parallelism,
categorization, active competition of alterna-
tive hypotheses, system elements
structed from “building blocks” | etc.

con-

Perhaps the most important factor is
the direct and computationally efficient
implementation of categorization. Holland
(1983, p.92] points out that

Categorization is the system’s sine qua

non for combating the environment’s

perceptual novelty.

Classifier systems must continuously infer
useful categories and other generalizations
— in the form of taxa — from the steady
stream of messages received and transmit-
ted. This approach to pattern-directed
inference poses several difficulties. For
example, the number of categories needed to
function in a task environment is usually not
known in advance. The system must there-
fore dynamically manage its limited classifier

memory so that, as a whole, it accounts for
all the important pattern classes. Moreover,
since the categories created depend on
which messages are compared, the system
must also determine which messages should
be clustered into a category.

The fundamental inference procedure
for addressing these issues is the genetic
algorithm [Holland,1975]. While genetic
algorithms have been analyzed and empiri-
cally tested for years
[DeJong,1975;Bebhke,1981], most of the
knowledge about how to implement them
has come from applications in function
optimization. There has been little work
done to determine the best implementation
for the problems faced by a classifier system.
This paper begins to formulate such an
understanding with respect to categoriza-
tion. In particular, two questions related to
genetic algorithms and classifiers systems are
examined:

(1) What kinds of performance measures
provide the most informative ranking
of classifier taxa, allowing the genetic

" algorithm to efficiently discover useful
patterns?

(2) How can a population of classifier taxa
be dynamically partitioned into distin-
guishable, specialized subpopulations
correlated with the set of categories in
the message environment?

Finding answers to these and related ques-
tions is an important step toward improving
the categorization abilities of classifier sys-
tems; and, expanding the repertoire of prob-
lems these systems can be used to solve.

THE CATEGORIZATION PROBLEM

In order to formulate these issues more
precisely, we begin by specifying a class of
categorization problems. Subsequently, a
criterion is given for evaluating various solu-
tions to one of these problems.

Deflning Message Categorles

Hayes-Roth [1973] defines a
t'schematic” approach to characterizing pat-
tern categories that has proven useful in
building test-bed environments for classifier
systems |Booker,1982|. This approach
assumes, in the simplest case, that each pat-
tern category can be defined by a single
structural prototype or characteriatic. Each
such characteristic is a schema designating a
set of features values required for category
membership. Unspecified values are
assumed to be irrelevant for determining
membership.

The obvious generalization of using just
one characteristic to define a category is to
permit several characteristics to define a
category disjunctively. Pattern generators
based on the schematic approach generate
exemplars by assigning the mandatory coin-
binations given by one or more of the pat-
tern characteristics and producing irrelevant
feature values probabilistically. In this way,
each exemplar of a category manifests at
least onme of the defining characteristics.
The categorization problem can be very
difficult under the schematic approach since
any given item can instantiate the charac-
teristics of several alternative categories.

Classifiers receive, process, and
transmit binary message strings. We define
a category of binary strings by specilying a
set of pattern characteristics. Each charac-
teristic is a string in the alphabet {1,0,*}
where the * is a place holder for irrelevant
features. A characteristic 1s a template for
generating binary strings in the sense that
the 1 and O indicate mandatory values and
the * indicates values to be generated at
random. Thus the characteristic 1*0* gen-
erates the four strings 1000, 1001, 1100, and
1101. When more than one characteristic is
associated with a category, one is selected at
random to gencrate an exemplar. The

correspondence between the syntax of a
taxon and the designation of pattern charac-
The class of pattern

teristics is obvious.

e e — e —— e il

categories defined in this manner therefore
spans the full range of categorization prob-
lemns solvable with a set of taxa.

An Evaluation Criterlon

A set of taxa is a solution to a categori-
zation problem if it corresponds directly
with the set of characteristics defining the
category. In this sense, the set of taxa
models the structure of the category. One
way to evaluate how closely a set of taxa
models a set of characteristics is to define
what an “ideal” model would look like; then,
measure the discrepancy between the model
given by the set of taxa and that ideal.

More specifically, the structure of a
pattern category is given by its set of
characteristics. We first consider the case
involving only one characteristic. As the
genetic algorithm searches the space of taxa,
the collection of alleles and schemata in the
population become increasingly less diverse,
Eventually, the best schema and its associ-
ated alleles will dominate the population in
the sense that alternatives will be present
only in proportions roughly determined by
the mutation rate. A population with this
property will be called a perfect model of
the category. The taxon which corresponds
exactly with the characteristic will be called
the perfect taxon.

One way to describe the perfect model
quantitatively is in terms of the probability
of occurrence for the perfect taxon. An
exact value for this probability is difficult to
compute, but for our purposes it can be
approximated by the “steady state’ proba-

bility! P(¢) = [TP(¢,) , where P(£,) is the

;
proportion of the allele occurring at the jth
position of the perfect taxon £. In the ideal
case, il 4 is the mutation rate, what we want
is P(§,}) = 1—pu for the alleles of £, In order
to measure the discrepancy between an

! The probabiity of occurrence under repeated cross-
over with uniform random pairing, in the absence of other
operators

82

arbitrary population and the perfect model,
we can use the following metric:

P 0 peyin [.(L_P(ilL

G =PI 51 (1=P/(E)

where P(§) is the ideal probability of
occurrence for £ and P'(£) is £'s probability
of occurrence in the current population.
This information-theoretic measure is called
the directed divergence between the two
probability distributions [Kullback,1959].

1s a non-negative quantity that approaches
zero as the “resemblance” between P and P’
increases. The G metric has proven useful
in evaluating other systems that generate
stochastic models of their environment (eg.
Hinton et al. [1984]).

When a pattern category is defined by
more than one characteristic, we can use the
G metric to evaluate the population’s model
of each characteristic separately. Tlis
involves identifying the subset of the popula-
tion involved in modeling each characteris-
tic; and, treating each subset as a separate
entity for the purpose of making measure-
ments. A method for identifying these sub-
sets will be discussed shortly.

MEASURES FOR RANKING TAXA

Given a class of categorization prob-
tems to be colved, and 2 criterion for
evaluating solutions, we are now ready to
examine the performance of the pgenetic
algorithm. The starting point will be the
measures used to rank taxa. Only if the
taxa are usefully ranked can the genetic
algorithm, or any learning heuristic, have -
hope of inferring the best taxon. In this see-
tion we first point out some deficiencies in
the most often used measure; then, alterna-
tive measures are considered and shown to
provide significantly better performance.

Brittleness and Match Scores

The first step in the execution cycle of
every classifier system is a determination of

which classifiers are relevant to the current
set of messages. Most implementations
make this determination using the straight-
forward matching criterion first proposed by
Holland and Reitman [1978]. More

specifically, if M=mmg---m;, m € {01 is

a message and C=c e, - ¢, ¢ € {0,1.#}i5

a classifier taxon, then the message M
satisfies or matches C if and only if m=¢
wherever ¢, is 0 or 1. When ¢,=#, the value
of m, does not matter. Every classifier
matched by a message is deemed relevant.
Relevant classifiers are ranked according to
the specificity of their taxa, where specificity
is proportional to the number of non-#’s in
the taxon. Holland and Reitman used a sim-
ple match score to measure relevance. The
score is zero if the message does not match
the taxon; otherwise it is equal to the
number of non-# positions in the taxon.

This simple match score — hereafter
called M1 — effectively guides the genetic
algarithm in its search of relevant taxa.
Because all non-relevant taxa are assigned a
score of zero, however, M1 is the source of a
subtle kind of brittleness. Whenever a mes-
sage matches no taxon in the population, the
choice of which taxa are relevant must be
made at raudom. This can clearly have
undesirable consequences for the perfor-
mance of the classifier system; and, also for
the prospects of quickly categorizing that
message using the genetic algorithm.

In order to circumvent this difficulty,
Holland and Reitman use an initial popula-
tion of classifiers having a 90% proportion of
#'s at each taxon position. This makes it
very likely that relevant taxa will be avail-
able for the genetic algorithm to work with.
Unless the pattern categories in the environ-
ment are very broad, though, the brittleness
of this approach is still a concern. Suppose,
for example, a classifier system must
categorize the pattern characteristic
11010**. A fairly well-adapted population of

83

classifiers will contain taxa such as
1101044, 1401044, 11#1041, 1141040,
etc. As the categorization process under the
genetic algorithm continues, the variability
ip the population decreases. It therefore
becomes unlikely that the population will
contain many taxa having four or more #'s.
Such taxa would have a match score too low
to compete over the long run and survive.
Now suppose the environment changes
slightly so that the characteristic is **010*%;
that is, the category has been expanded to
allow either a 0 or 1 in the first two posi-
tions. In order to consistently match the
exemplars of the new category, the popula-
tion needs 2 taxon with four #'s at exactly
the right loci. There is no reason to expect
such good fortune since the combinations of
attribute values are no longer random. The
population will most likely have no taxon to
match new exemplars, and the genetic algo-
rithm will blindly search for a solution.

Another proposed resolution of this
dilemma is to simply insert the troublesome
message into the population as a taxon [Hol-
land,1976], perhaps with a few #’s added to
it. The problem with this is that the rest of
the classifier must be chosen more or less al
random. By abandoning the “building
block” approach to generating classifiers,
this method introduces the brittleness
inherent in ad hoc constructions that cannot
make use of previous experience. What is
needed is a way of determining partial
relevance, so the genetic algorithm can dis-
cover useful building blocks even in taxu
that are not matched. In the example cited
above, such a capability would allow the
genetic algorithm to recognize F1010##
and 1#010## as “near miss” categoriza-
tions and work from there rapidly toward

the solution ##0104#.

Alternatives to M1

The brittleness associated with the
match score M1 has a noticeable impact on
categorization in classifier systems. To
demonstrate this effect, a basic genetic

[pe—

algorithm [Booker,1982] was implemented to
manipulate populations of classifier taxa.
Taxa in this system are 18 positions long.
The eflectiveness of a match score in identi-
fying useful building blocks is tested by
presenting the genetic algorithm with a
categorization problem. Each generation, a
binary string belonging to the category is
constructed and match scores are computed
for every taxon. The genetic algorithm then
generates a new population, using the match
score to rate individual taxa.

To test M1, three pattern categories
were selected:

C1 = 1111111111111111
C2 = T1111111**¥¥*****

03 = 1***#‘****#*#**#

i

I

These characteristics are representative of
the kinds of structural properties that are
used to define categories, from the very
specific to the very broad. Three sets of
tests were run, each set starting with an ini-
tial population containing a different propor-
tion of #t's. Each test involved a population
of size 50 observed for 120 generations, giv-
ing a total of 6000 match score computa-

tions.2 At the end of each rum, a G value
was computed for the final population to
evaluate how well the characteristic had
been modeled. The results of these experi-
ments — averaged over 15 runs — are given
in Table 1. For each pattern category, there
are statistically significant® decreases in per-
{ormance as the proportion of #'s is changed
from 80% to 33% (Recall that the best G
value is zero). Given this quantitative evi-
dence of M1's brittleness, it is reasonable to
ask if there are better performing alterna-
tives.

The primary criterion for an alterna-
tive to M1 is that it identify useful buiiding

2 §000 function evaluations ia the observation interval
used by DeJong [1975] that bas become a standard in analys-
ing genetic algorithms,

3 por all results presented in this paper, this means 2 ¢
test was performed comparing the means of two groups. The

(e |

84

Table 1
Final Average G Value Using M1
Category Initial Percentage of #'s
80% 509% 33%
Cl 7.83 10.28 12.25
Cc2 4.95 16.72 25.13
C3 5.98 13.67 36.57

blocks in non-matching taxa; and, that it
retain the strong selective pressure induced
by M1 among matching taxa. One way to
achieve this is to design a score that is equal
to M1 for matching taxa, but assigns non-
matching taxa values between 0 and 1. The
question is, how should the non-matching
taxa be ranked?

If we are concerned with directly iden-
tifying useful alleles, the following simple
point system will suffice: award 1 point for
each matched 0 or 1, % point for each #,
and nothing for each position not matched.
The value for # is chosen to make sure it is
more valuable for matching a random bit in
a message than a 0 or 1, whose expected
value in that case would be '%2. To convert
this point total into a value between O and
1, we divide by the square of the taxon
length. This insures that there is an order
of magnitude difierence between the lowest
score for a matching taxon and all scores for
non-matching taxa. More formally, if { is
the length of a taxon, n, is the number of
exactly matched 0's and 1’s, and n, is the
number of #'s, we define a new match score .

M1 if the meesage malches the taron

N = B
Mz n, + %n, otherwise

‘2

Another way to rank non-matching
taxa is by counting the number of

alpha level for each test was 05

T

mismatched 0's and 1's. This approach
measures the Hamming distance between a
message and a taxon for the non-# positions.
A simple match score M3 can be defined to
implement this idea. If r is the number of
mismatched 0's and 1’s, then

M1 if the meassage malchea the lazon
M3= .
{ — n otherwise

IE

Now it must be determined if M2 and
M3 usefully rank non-matching taxa; and, if
so, whether that gives them an advantage
over M1. Accordingly, M2 and M3 were
tested on the same three patterns and types
of populations described above for ML.
These experiments are summarized in
Tables 2 and 3. As before, all values are
averages from 15 runms. First consider the
final G values shown in Table 2. When the
population is initialized to 80% #'s there is
little difference among the three match
scores. The only statistically significant
differences are with pattern C3, where both

Table 2
Comparison of Final G Values
80% #'s

Category Match Score
M1 M2 M3
Cl 7.83 | 10.30 7.78
C2 4.95 2.25 4.32
C3 5.98 1.42 0.97
50% #'s
Cl 10.28 B.17 6.96
c2 16.72 7.03 4,39
C3 13.67 8.67 9.13
33% #'s
C1 12.25 8.06 5.19
C2 25.13 | 13.99 { 10.37
C3 36.57 | 11.41 7.28

M2 and M3 do better than M1. This is
interesting because C3 is a category that has
no generalizations other than the set of all
messages. M1 operates by seizing upon
matching taxa quickly, then refining them to
fit the situation. This strategy is frustrated
when general taxa that consistently match
are hard to find. Since M2 and M3 can both
take advantage of other information, they do
not have this problem with C3. When the
population is initialized to 33% #'s the lia-
bilities of M1 become very obvious. For
each pattern category, the performance of
M2 and M3 are both statistically significant
improvements over M1.

In order to further understand the
behavior of the match scores, we also com-
pare them using Delong’s [1975] on-line per-
formance criterion. On-line performance
takes into account every new structure gen-
erated by the genetic algorithm, emphasiz-
ing steady and consistent progress toward
the optimum value. The structures of
interest here are populations as models of
the pattern characteristic. The appropriate

Table 3
Comparison of On-line Performance
80% #'s
Category Match Score
M1 M2 M3
Cl 25.75 24.33 22.93
C2 14.06 11.26 13.45
C3 775 | 429 | 282
50% #'s
Cl 34.41 26.3 21.98
C2 27.09 20.22 17.81
C3 21.26 14.78 13.54
33% #'s
Cl 26.35 21.46 17.23
C2 35.3 26.75 24.64
C3 40.16 19.34 15.66

on-line measure is therefore given by

=T
£(T) = (=) ¥ G(T), where T is the number
T o

of generations observed and G(t) is the G
value for the fth generation. The on-line
performance of the match scores is given in
Table 3. When there are 809 #'s, the only
statistically significant difference is the one
between M3 and M1 on category C3. In the
case of 5095 #'s, the statistically significant
differences occur on Cl, where both M2 and
M3 outperform M1; and, on C2, where only
M3 does better than M1. Finally, in the
difficult case of 33% +#'s, the differences
between M3 and M1 are all statistically
significant. M2 is significantly better than
M1 only on category C3.

Taken together, these results suggest
that M3 is the best of the thrce match
scores. It consistently gives the best perfor-
mance over a broad range of circumstances.
Figure 1 shows that, even in the case of 33%
#'s, M3 reliably leads the genetic algorithm
to the perfect model for all three categories.
Using M3 should therefore enhance the abil-
ity of classifier systems to categorize mes-
sages.

How should a classifier system use M3
to identify relevant classifiers? The criterion
for relevance using a score like M3 is cen-
tered around the idea of a variable thres-
hold. The threshold is simply the number of
mismatched taxon positions to be tolerated.
Initially the threshold is set to zero and
relevance is determined as with M1. If there
are no matching classifiers, or not enough to
Rl the system’s channel capacity, the thres-
hold can be slowly relaxed until enough
classifiers have been found. Note that this
procedure is like the conventional one in
that it clearly partitions the classifiers
according to whether or not they are
relevant to a message. This means that
negated conditions in classifiers can be
treated as usual; namely, a negated condi-
tion is satisfied only when it is not relevant
to any message.

B6

5

DISCOVERING MULTIPLE CATEGORIES -~

In developing the match score M3, we
have enhanced the ability of the genetic
algorithm to discover the defining charac-
teristic for a given pattern category. What
if there is more than one category to learn,
or a single category with more than one
defining characteristic? In this section we
show how to modify the genetic algorithm to
handle this more general case. First, two
modifications are proposed for the way indi-
viduals are selected to reproduce and to be
deleted. Then, the modified algorithm is
shown to perform as desired.

An Ecologleal Analogy

The basic genetic algorithm is a reli-
able way to discover the defining charac-
teristic of a category. When there is more
than one characteristic in the environment,
however, straightforward optimization of
match scores will not lead to the best set of
taxa. Suppose, for example, there are two
categories given by the characteristics
11**...** and 00**..**. The ideal popula-
tion for distinguishing these categories would
contain the classifier taxa 11##.. .## and
0044 .. #4; that is, two specialized sub-
populations , one for each category. The
genetic algorithm as described so far will
treat the two patterns as one category and
produce a population of taxa having good
performance in that larger category. In this
case, that means the taxon ####.. . ## will
be selected as the best way to categorize the
messages. The problem is obvious. Requir-
ing each taxon to match each message

results in an averaging of performance that .

is not always desirable.

Various strategies have been proposed
for avoiding this problem. When the
number of categories is known in advance,
the classifier system can be designed to have
several populations of classifiers [Holland
and Reitman,1978]; or, a single population
with pre-determined partitions and operator

FI1 GURE 1
o] CONVERGES T60 THE PERFECT HODEL

50
40 —f
c1
G
10 —
¥ c2
A
L cs3
v
20 —
E
10 —f
u—-
| | | [
0 t oo 200 300 400

GENERATI @GNS

87

restrictions [Goldberg,1983]. Both of these
approaches involve building domain depen-
dencies into the system that lead to brittle-
ness. If the category structure of the
domain changes in any way, the system
must be re-designed.

It is preferable to have a non-brittle
method that automatically manages several
characteristics in one population. What is
needed is a simple analog of the speciation
and niche competition found in biological
populations. The genetic algorithm should
be implemented so that, for each charac-
teristic or “niche” , a “species” of taxa is
generated that has high performance in that
niche. Moreover, the spread of each species
should be limited to a proportion determined
by the “carrying capacity” of its niche.
What follows is a description of technical
modifications to the genetic algorithm that
implement this idea.

A Restricted Mating Strategy

If the genetic algorithm is to be used to
generate a population containing many spe-
cialized sub-populations, it is no longer rea-
sonable for the entire population to be
modified at the same time., Only those indi-
viduals directly relevant to the current
category need to be involved in the repro-
ductive process. Given that the overall
population size is fixed and the various sub-
populations are not physically separated,
two questions immediately are raised: Does
modifying only a fraction of the population
at a time make a difference in overall perfor-
mance? How is a sub-population identified?

Delong [1975] experimented with
genetic algorithms in which only a fraction
of the population is replaced by new indivi-
duals each generation. His results indicate
that such a change has adverse effects on
overall plan performance. The problem 1s
that the algorithm generates fewer samples
of the search space at a time. This causes
the sampling error due to finite stochastic
effects to become more severe. An increase

a8

in cumulative sampling error, in turn, makes
it more likely that the algorithm will con-
verge on some sub-optimal solution.

The strategy adopted here to reduce
the sampling error is to make sure that the
“productive’’ regions of the search space
consistently get most of the samples. In the
standard implementations of the genetic
algorithin, the search trajectory is uncon-
strained in the sense that any two individu-
als have some non-zero probability of mating
and generating new offspring (sample points)
via crossover. This means, in particular,
that taxa representing distinct characteris-
tics can be mated to produce taxa not likely
to be useful for categorization. As a simple
example, consider the two categories given
by 1111**** and 0000****. Combining taxu
specific to each of these classes under cross-
over will lead to taxa like 1100**** which
categorize none of the messages in either
category. There is no reason why such func-
tional constraints should not be used to help
improve the allocation of samples. It there-
fore seems reasonable to restrict the ability
of functionally distinct individuals to become
parents and mate with each other. This will
force the genetic algorithm to progressively
cluster new sample points in the more pro-
ductive regions of the search space. The
clusters that emerge will be the desired spe-
ciatized subpopulations.

As for identi{ying these functionally
distinct individuals, any restrictive designa-
tion of parent taxa must obviously be based
on match scores. This is because taxa
relevant to the same message have a similar
categorization function. Taken together,
these considerations provide the basis for a
reatricted mating policy. Only those taxa
that are relevant to the same message will
be allowed to mate with each other. This
restriction 1s enforced by using the set of
relevant classifiers as the parents for each
invocation of the genetic algorithm.

Crowding

Under the restricted mating policy,
each set of relevant taxa designates a
species. Each category characteristic desig-
nates a niche. Following this analogy, indi-
viduals that perform well in a given niche
will proliferate while those that do not do
well in any niche will become extinct. This
ecological perspective leads to an obvious
mechanism for automatically controlling the
size of each sub-population. Briefly, and
very simply, any ecological niche has limited
resources to support the individuals of a
species. The number of individuals that can
be supported in a niche is called the carry-
ing capacity of the niche. 1f there are too
many individuals there will not be enough
resources to go around. The niche becomes
“‘crowded,” there is an overall decrease in
fitness, and individuals die at a higher rate
until the balance between niche resources
and the demands on those resources is
restored. Similarly, if there are too few indi-
viduals the excess of resources results in a
proliferation of individuals to fill the niche
to capacity.

The idea of introducing a crowding
mechanism into the genetic algorithm is not
new. Delong [1975) experimented with such
a mechanism in his function optimization
studies. Instead of deleting individuals at
random to make room for new samples, he
advocates selecting a small subset of the
population at random. The individual in
that subset most similar to the new one is
the one that gets replaced. Clearly, the
more individuals there are of a given type,
the more likely it is that one of them will
turn up in the randomly chosen subset.
After a certain point, new individuals begin
to replace their own kind and the prolifera-
tion of a species is inhibited.

A similar algorithm can be imple-
mented much more naturally here. Because
a message selects via match scores those
taxa that are similar, there is no need to
choose a random subset. Crowding pressure

B9

can be exerted directly on the set of
relevant taxa. This can be done using the
strength parameter normally associated with
every classifier [Holland,1983]. The strength
of a classifier summarizes its value to the
system in generating behavior. Strength is
continuously adjusted using the bucket bri-
gade algorithm [Holland,1983] that treats the
system like a complex economy. Each
classifier’s strength reflects its ability to turn
a “profit” from its interactions with other
classifiers and the environment. One factor
bearing on profitability is the prevailing “tax
rate”. Taxation is the easiest way to intro-
duce crowding pressure. Assume that a
classifier is taxed some fraction of its
strength whenever it is deemed to be
relevant to a message. Assume, [urther,
that all relevant classifiers share in a fixed
sized tax rebate. The size of the tax rebate
represents the limited resource available to
support a species in a niche. When there
are too many classifiers in a niche their
average strength decreases in a tax transac-
tion because they lose more strength than
they gain. Conversely, when there are too
few classifiers in a mniche their average
strength will increase. The crowding pres-
sure is exerted by deleting classifiers in
inverse proportion to their strength. The
more individuals there are in a niche, the
less their average strength. Members of this
species are therefore more likely to be
deleted. In a species with fewer members,
on the other hand, the average strength will
be relatively higher which means members
are more likely to survive and reproduce. In
this way, the total available space in the
population is zutomatically and dynamically
managed for every species. The number of
individuals in a niche increases or decreases
in relative proportion to the average
strength in alternative niches.

Testing the New Algorithm

Having described the restricted mating
policy and crowding algorithm, we now
examine how well they perform in an actual

v

e it e

implementation. The genetic algorithm used
in previous experiments was modified as
indicated above. The number of taxa in the
population was increased to 200, and each
taxon was given an initial strength of 320. A
taxation rate of 0.1 was arbitrarily selected,
and the tax rebate was fixed at 50*32; In
other words, whenever there are 50 relevant
taxa, the net tax transaction based on initial
strengths is zero. Each generation the tax
transaction is repeated 10 times to help
make sure the strengths used for crowding
are near their equilibrium values.

Four categorization tasks involving
multiple characteristics were chosen to test
the performance of the algorithm:

1) 1111111 0%**%res

2) 11111111 %****%x
***ttt##llllllll

) IT11111111% *e*
t**#**#*llllllll

4) 1111111 **%**s*s
00000000* *******
ttttttttllllllll

The first task involves two categories that
are defined on the same feature dimensions.
The second task contains categories defined
on different dimensions. In the third task
the categories share some relevant features

Table 4
Performance With Multiple Categories
Task On-line Ave. G Valu‘.a
for all categories

1 12.12 8.3

2 10.91 8.41

3 12.77 7.89

4 15.75 11.64

in common. Finally, the fourth task involves
three categories to be discriminated.

Experiments were performed on each of
these tasks, running the genetic algorithm
enough generations to produce 6000 new
individuals per characteristic. Each genera-
tion, one of the characteristics was selected
and a message belonging to that category
was used to compute match scores. In the
first three tasks, at least 50 relevant taxa
were chosen per generation. Only 30 were
chosen on task 4 to avoid exceeding the lim-
ited capacity of the population. All popula-
tions were initialized with 80% #'s. The
results are summarized in Table 4 and show
that the algorithm behaves as expected.
The performance values are comparable to
those obtained with M1 working on a
simpler problem with a dedicated popula-
tion. More importantly, an inspection of the
populations revealed that they were parti-
tioned into specialized sub-populations as
desired.

CONCLUSIONS

This research has shown how to
improve the performance of genetic algo-
rithms in classifier systems. A new match
score was devised that makes use of all of
the information available in a population of
taxa. This improves the ability of the
genetic algorithm to discover pattern
characteristics under changing conditions in

the environment. Modifications to the algo-
rithm have been presented that transform it
from a function optimizer into a sophisti-
cated heuristic for categorization. The first
modification, a restricted mating policy,
results in the isolation and development of
clusters of taxa, or sub-populations, corre-
lated with the inferred structural charac-
teristics of the pattern environment. The
second modification, a crowding algorithm, is
responsible for the dynamic and automatic
allocation of space in the population among
the various clusters. ‘Together, these
modifications produce a learning algorithm
powerful enough for challenging applica-
tions. As evidence of this claim, a full-scale
classifier system has been built along these
lines that solves difficult cognitive tasks
[Booker,1982].

Acknowledgements

1 The ideas in this paper were derived
from work done on the author’s Ph.D.
dissertation. That work was supported by
the Ford Foundation, the IBM Corporation,
the Rackham School of Graduate Studies,
and National Science Foundation Grant
MCS78-26016.

REFERENCES

Bethke, A.D. (1981), “Genetic Algorithms as
Function Optimizers”, Ph.D.
dissertation, University of
Michigan.

Booker, L.B. (1982), “Intelligent Behavior as
an Adaptation to the Task
Environment”, Ph.D. disser-

of Michigan.

Goldberg, D.E. (1983), “Computer-Aided
Gas Pipeline Operation Using
Genetic Algorithms and Rule
Learning”, Ph.D. dissertation,
University of Michigan.

Hayes-Roth, F. (1973), “A Structural
Approach to Pattern Learn-
ing and the Acquisition of
Classificatory Power",
Proceedings of the First
International Joint Confer-
ence on Pattern Recognition,
p. 343-355.

Hinton, G., Sejnowski, T., and Ackley, D.
(1984), “Boltzmann Machines:
Constraint Satisfaction Net-
works that Learn”, Technical
Report CMU-C5-81-119,
Carnegie-Mellon University,.
Holland, J.H. (1975), Adaptation in Natural
and Artificial Systems,
University of Michigan Press,
Ann Arbor.

Holland, J.H. (1976), “Adaptation” , In Pro-
gress in Theoretical Diology §
(Rosen, R. and Snell, F. eds).
Academic Press, New York.

Holiand, J.H. (1983), “Escaping Brittleness”,
Proceedings of the Interna-
tional Machine Learning
Workshop, June 1983, Monti-
cello, inois, pp.92-95.

! T W = Holland, J.H. and Reitman, J.8. (1978},
tation, University of Michi- “Cognitive Systems Based on
gan. Adaptive Algorithms”, In

.) Pattern-Directed Inference
Delong, K.A. (197?), Analysis of the Systems, (Waterman, D. and
Behavior of a Class ?‘f Hayes-Roth, F. eds), pp. 313-
Genetic Adaptive Systems”, 329. Academic Press, New
Ph.D. dissertation, University York.
91

Kuchinski, M.J. (1985), “Battle Management
Systems Control Rule Optim-
ization Using Artificial Intelli-
gence’”, Technical Note,
Naval Surface Weapons
Center, Dahlgren, VA,

Kullback, S. (1959), Infermation Theory and
Statistica, John Wiley and
Sons, New York.

92

Multiple Dbjective Optimizastion with Vector Evaluated Genetic Algorithms

J. David Schaffer
Department of Electrical Engineering
Vanderbilt University
Nashville, TH 37235

ABSTRACT

Genetic algorithms {GA's) have been shown
to be capable of searching for optima in function
spaces which cause difficulties for gradient
techniques. This paper presents a method by which
the power of GA's can be applied to the
optimization of multiobjective functions.

1. Introduction

There is currently considerable intereat in

optimization techniques capable of handling
multiple non-commensurable objectives, Many
practical problems are of this type where, for
example, such factors as cost, safety and

performance must be taken into account.

A class of adaptive search procedures known
as genetic algorithms (GA's) have already been
shown to possess desireable properties [3,10] and
to out perform gradient techniques on some
problems, perticularly those of high order, with
multiple peaks or with noise disturbance [4,5,6].
This paper describes an extension of the
traditional GA which allows the searching of
parameter spaces where pultiple objectives are to
be optimized, The software system implementing
this procedure was called VEGA for Vector Evaluated
Genetic Algorithm,

The next section of this paper will
describe the basic GA and the vector extension.
Then some properties are described which might

logically be expected of this method. Some
preliminary experiments on some simple problems are
then presented to illuminate these properties and
finally, VEGA is compared to an established
multiobjective search technique on a set of more
formidable problems,

2. A Vector Genetic Algorithm

Unlike many other search techniques which
maintain a single "current best" solution and try
to improve it, a GA maintains a set of possible
solutions called a population. This population is
improved by a cyclie two-step process consisting of
a selection step {survival of the fittest) and a
recombination step (mating). Each cycle 18 usually

called a generation, More detailed descriptions of
these operations may be found 4in the literature
[3Iu!5!6!1030

53

The questlon addressed here 1is, how can
this process be applied to problems where fitness
is a vector and not 8 scalar? How might survival of
the fittest be implemented when there ia more than
one way te be [it? We exclude scalarization
processes such as weighted sums or root mean square
by the assumption that the different dimensions of
the vector are non-commensurable.

When comparing vector quantities, the usual
concepts employed are those proposed by Pareto
[1%,13]. For two vectors of the same size, the
equality, less-than and greater-than relations
require that these relations hold element by
element, Another relaticn, partiaslly-less-than, is
defined as follows: vector X = {x1, x2, ... , xnl
is said to be partially-less-than vector ¥ = [y,
¥2, eea y ¥} Aff xi ¢= yi for all 1 and for at
least one value of 1, xi ¢ yi. Assuming that minima
are sought, if ¥ is partially-less-than Y, then Y
is said to be inferior to or dominated by X. The
objective of a search for minima in a vector-valued
space is, then, a search for the set of non-
inferior members, or the members not dominated by
any others, At least one member of this Pareto-
minimal set will dominate each vector outside the
set, but among themselves, none is dominated.

With these concepts in mind, a8 simple
vector survival of the fittest process was
implemented, The selection step in each generation
became a loop, each time through the loop the
appropriate fraction of the next generation was
selected on the basis of another element of the
fitness vector, This process, illustrated in figure
1, protects the survival of the best individuals on
each dimension of performance and, simultaneously,
provides the appropriate probabilities for multiple
selection of 1individuals who are better than
average on more than one dimension.

3. Some Anticipated Properties of VEGA

3.1 Multiple Solutions

One potential advantage of VEGA over other
optimization searches should now be clear. Since
the object of the search is a set of solutions, &
GA has a built-in advantage by working with a
population of test solutions. By comparing each
individual in a population to every other, those
who are dominated by any other/s can be flagged as
inferior. The set of non-inferior individuals in
each generation is the current best guess at the

————m e = S PP A S L

L

gene performance
—_———— e
L [1fzf ~-- Tnj
parents Generation{t+]}

Generatioﬂ(:l’/,/’/,

, :

1

.

popsize

. E—— 5
select n . shuffle apply
subgroups . genetic
using each operators
dimension of
performance
in turn

popsize

Figure 1, Schematic of VEGA Selection

Pareto-optimal (P0) set. By presenting a numbar of
non-inferior solutions, VEGA provides the user with
an idea of the tradeoffs required by his problem if
a single solution must be selected. It should be
noted that VEGA's view of non-infariority is
strictly local; it {is 1limited to the current
population. While a locally dominated individual is
also globally dominated, the converse is5 not
necessarily true, An individual who is non-
dominated in one generation may become dominated by
an individual who emerges in a later generation.

3.2 Possible Speciation

There {s a potential problem with this
vector selection process. Survival pressure is
applied favoring extreme performance on at least
one dimension of performance. If a utopian
individual {i.e. one who excels on all dimensions
of performance) exists, then he may be found by
genetic combinations of extreme parents, but for
many problems this utopian solution does not exist.
For these problems, the location of the Pareto-
optimal set or front is sought. This front will
contain some members with extreme performance on
each dimension and some with "middling" performance
on all dimensions. Frequently, these compromise

solutions are of most interest, but there may be
danger of their not surviving VEGA's selection
process. This might give rise to the evolution of

"species" within the population which excel on
different aspects of performance. This danger is
expected to be more severe for problems with a
concave PO front than for those with a convex one.
See figure 2.

Two methods for combating this potential
property of -VEGA were conceived. One trick would be
to provide a heuristic selection preference for
non-dominated individuals in each generation. This

would provide extra protection for the 'middling"
individuals.
Another, not necessarily exclusive,

approach would be to try to encourage crossbreeding
among the "species” by adding some mate selection

94

heuristics. In a traditional GA, mates are selected

at random. On the assumption that utopian
individuals are more 1likely to result from
crossbreeding than inbreeding, such heuristics
might speed the search.
4. Preliminary Experiments
4.1 The Test Functions

In order to test the properties of VEGA

search, a set of three simple functions (fl1, f2 &
£3) was selected.

Fl was a single-valued quadratic function
of three variables. (l.e. fl{xl,x2,x3) = x1#**2 +
x2**Z + x3**2), This function was run to test
whather VEGA reverts to a traditional GA when the
performance vector has only one dimension.

F2 was a two-valued function of one
variable (i.e. f21(x) = x**2; £22(x) = (x-2)%%2},
The initial randem population for the search on
this function is illustrated in figure 3. In
addition to the locations of x, f£21 and £22, this
figure also shows the dominated fiag for each x (1
if dominated, 0 if pot). The PO region is 0¢=x<=2,

F3 was another two-valued function of one
variable, but with two disjoint PO regions O<=x¢=2
and 4<=mxd=5,

4.2 Heuristics

In order to mitigate the anticipated loss
of '"middling" dindividuals a heuristic was tested
which gave an extra selection preference to locally
non-dominated individuals. This preference took the
form of numeric adjustments to the performance
measures which were required by the selection
algorithm to sum to zero across the population.
Therefore, a small penalty was deducted from each
inferior individual and the sum of these penalties
was divided among the non-inferior individuals.

Experiments were also conducted to see if
the search for the PO front could be improved by
mate-selection heuristics which encouraged
crossbreeding. Inbreeding, in this context, means a

.

od
-]
:
(=]
3 CONVEX
&
B & C
are close ¢
‘ !
A& B Performance 1
are close

o~d
8
E CONCAVE
(=]
L™
e
['H]
(-9

8 & C

are not

close

A & B Performance 1
are not close

Figure 2, A Concave and Convex Pareto-Optimal Front

mating between two individuals whose high
performance is on the same dimension. Two such
heuristics were tested, both attempting to improve

upon the performance of VEGA with random mating.
Random mating was implemented by shuffling the
population and mating pairs from the top, shown
as step three in figure 1. Each heuristic proceeded
by selecting a individual at random and then
selecting a mate whose distance in performance
space was maximum. Two distance measures were
tested, Euclidian distance and "“improvement"
distance which was computed ignoring those
dimensions on which the proposed mate performed
worse.

4.3 Results

All of these experiments were conducted
with populations of 30 individuals per dimension of
the performance vector, and crossover and mutation
rates of .95 and .0l respectively. This represents
a smaller population size and higher rates of

95

5. 00

- LEGEND
o a f211%)
s f22:1)
a X peinta
= « docinste flag
g
E
]
=1
[-]
=]
N
=
-8
L
B
S
E
-
= 4+
=
= 1 T —g Rl T 1
«6.00 -4.00 -2.60 .00 7.L0 4.00 6.00
Figure 3. F2 Generation Zero
application of the genetic operators than has been

traditional [3,5]. These setting were,
suggested by the work of Grefenstette [B].

On £1, VEGA replicated a search previously
conducted on this function by a traditional GA [7]
when started with the same random seeds. Thus, VEGA
does appear to be a vector generalization of a
scalar GA.

On f2, VEGA evolved the population
illustrated in figure 4 in just three generations.
While not all the individuals are in the PO region

however,

(0¢=x<=2), those which are outside are known to be
dominated. This result, combined with similar
performance by VEGA on f3 yielded some confidence
in the soundness of the VEGA approach.

However, during these experiments, a
dangerous property of the heuristic selection
preference for non-dominated individuals was
discovered. It had a tendency to produce sudden
premature convergence of the populatien te a

subcptimal solution. This occurred when, in an
early generation, only one or two individuals
managed to be non-dominated. Then, the sum of the
dominated penalties was large and, when divided
among very few, gave them an overwhelming selection
advantage. This lead to subsequent generations
consisting only of offspring of a few parents with
too little pgenetic diversity. After this
observation, this heuristic was removed. VEGA has,
so far, not exhibited the anticipated loss of the
"middling"” 4individuals from the PO set. Perhaps
concave PO fronts are not a characteristic of many
practical problems.

The mate-selection heuristics faired no
better. Random mating proved superior to both of
them. This was an encouraging finding for two-

35.00
1

LEGEND

o FZLIFI
e F221X

= a X goints

i + deminsie fleg
g-

=

=

e

n

=

(-]

-
=
wB

LS

&

=4

g

-1 %

L &

\
=) - 171£:El=£ . .
-6.03 -4, 22 -2.00 gioo 2.00 4.00 5.00
Figure 4, F2 Generation Three

valued problems, since the probability of

inbreeding with random mating decreases as the
number of dimensions of performance increases. All
subsequent experiments utilized neither of these
heuristics.

5. Comparison of VEGA with ARSQ

Once some confidence was acquired that VEGA
was able to conduct a genetic search in spaces with
multiple objectives, it was desired to compare the
performance of VEGA with that of an established
technique for multiple objective search.

5.1 The ARSO Technique

For compariscn purposes, the Adaptive
Randem Search Optimization (ARSO) procedure,
pioneered by Beale [1,2), was selected. ARSO
requests a starting point in the parameter space to
be searched and proceeds to try to improve upon it
by randomly perturbing the parameters. Statistics
(mean & variance) are maintained for all
perturbations which produce improvements (defined
as a new solution which dominates the old one), and
these statistics are used to guide the future
perturbations. Random perturbation techniques have
been shown to solve a large class of optimization
problems faster than gradient techniques when the
number of parameters exceeds four, and furthermore,
the convergence time seems to increase only
linearly with this number. ARS0 had already
exhibited high performance in problems of the sort
tested here.

g6

LS —

5.2 Some Methodological Problems

The comparison of two search procedures
presents some methodological problems which are
complicated when there are multiple objectives.
One approach is to run each procedure until the”
solution is within some tolerance of a known
solution and then compare the computaticnal effort.
This approach was rejected since the true solution
was not known for the test problems. It was desired
to compare the methods on problems whose solutions
ware not known so as to include in the comparison,
the stopping criterion of each method. ARSO has a
threshold on the number of perturbations tried
without finding an improvement which forces a halt
to the search. VEGA has no such preset stopping
criterion and is stopped by the user when no
further improvement is evident.

Another approach is to run both procedures
for the same amount of computational effort and
then compare the quality of the solutions.
Comparing vector solutions is probably best done by
checking if any are dominated by those provided by
the other procedure. If not, then a tie must be
declared. This approach may be unfair since ARSO
reports only a single solution while VEGA may
report several.

The approach adopted was to run each
procedure to its natural stopping criterion. All
proposed non-dominated solutions were then compared
and, if any were found to be inferior, they were
rejected. (Included in this set were solutions
provided by Hartley [9] who used a variant of ARSO,
but solved the scalar problem of the equally
weighted sum of the errors on all dimensions.)
Then, the number of "ultimately" non-dominated
solutions found by each procedure was plotted
against computational effort (number of function
evaluations).

5.3 The Test Functions

A set of three problems, drawn from the
domain of control engineering was contributed by a
colleague, Hartley [38]. All involved the
simulation of a system with a different integration
operator for each of the system state variables.
The systems were of orders 2, 3 and 7 respectively.
The object of the search was an optimal set of
integrators, each characterized by three
parameters, making the dimensions of the parameter
search spaces 6, 9 and 21, respectively., The
performance measures wera the rms error of the
simulated solution from a known solution, one feor
each of the state variables making the dimensions
of the performance spaces 2, 3 and 7.

All searches were conducted using the same
GA parameters as were used for the preliminary
problems., The integrator parameter sets were gray
coded (see Schaffer(l12] or Bethke[3]) to 12 bit
precision, making the binary search spaces
2R (12%6) = 4,7 * J0%K2], 2%*(12%9) = 3,5 ® 1Q¥%*32
and 2%%(12#%%2]1) = 7,2 * 10%%*75 for the three
systems, respectively.

5.4 Results

While the true system behavior was assumed
known, the object of the search was for optimal
integrators for the simulations, and these were not
known. Thus the problem of when to stop searching
had to be faced. To illustrate, a scatter plet of
performance of the initial random generation for

the second order system is shown in figure 3.
Figure 6 shows that considerable improvement had
been achieved in three generations. Figure 7 shows
the leading edge of the population after 49
generations. Note that the axes have been expanded
three orders of magnitude. After running VEGA to
generation 110 no substantial increase in
performance was evident. See figure B. There are
however, several more points on what appears to be
the PO front. Thus, a decision to stop such a
search must be a judgement call based on a belief
that the PO front has been located and that further
search effort would be wasted,

The experiences were similar for the third
and seventh order systems, but scatter plots for
these high order systems could not be drawn.

Before proceding to the comparison of VEGA
with ARSO, it may be instructive to illustrate cne
of the ARSO searches in the second order system
problem. Figure 9 traces the improvements in the
solution found by ARSO and is presented on the same
axes scales used for figures 5 to B. ARSO found a
solution which was judged “ultimately" non-
dominated in 607 evaluations. ARSD's stopping
criterion halts if no improvement is located after
1000 consecutive evaluations and so this run
continued until 1607 evaluations and halted.

A second run of ARSO was initiated with one

of the two non-dominated individuals £from the
initial population generatad by VEGA. This run
halted after about 1300 evaluations, but its
solution was inferior. VEGA, on the other hand,

did not locate its first "ultimately" non-dominated
solution until 2621 evaluations and by 6000 it had
found eight. These results are shown in figure 10.

=
o
@ LEGEND
5 1 dostinsied
2 nanswnfariar
=
it
[
= [1
=
=
. [T T |
]
[T |
o
s) 5
5
o [}
: LI
[T
Ng .
mé_ 1
g :
?
o
o
a
o~
o
=
.
o
©
o T T T T T
0.03 10.00 20.00 3c.00 wd.@a 50.00 6C.CO

rms error |

Figure %, Second Order System — Generation Zero

97

70.00
J

60,00
t

50.00
1

40.00

rme error 2
30.00

20,00

10.00

LECEND

1 dowiaated

2 non-iaflerior

T
10.00

T
20.00
*mE

T
30.00
error

1
40,00

L]
50.00

1
60.00

Figure 6. Second Order System — Generation Three

0.60 0.70

0.50

wlD-!
f

2.40

1

0.30

rma error 2
0.20

10

1,00

LEGENWD

1 domimuked

2 mon=infaeriar

0. 63

T
0.20

7
0. 20

rme error]

1
0.50

Figure 7. Second Order System -- Generation U9

a,. 50 0.6 i

wlp-!

0.0

0.30

rms error &
ﬂf?ﬂ ;

0.ta

The tentative conclusion from these runs is that
chﬂ._“,, ARSC is fast, but may get trapped on local extrema,
2 mom=inferier VEGA is slower, but more robust.

Four searches were made on the 3rd order
system, two with VEGA and two with ARS0. VEGA was
initiated with a random population for one run and
given a whole population of clones of Hartley's
solution for the other. ARSO was started with a
reasonable starting point analogous to the starting
point that lead to success on the 2nd order
problem, and also the Hartley solution. The results
of these tests are presented in figure 11. ARSO
again found a good solution in under 2000

. evaluations on its first run. When given a PO
solution, it could only try for 1000 evaluations to
improve it and then halt. VEGA found a non-

dominated solution quite early in its search (415

evaluations), but because it was not sufficiently

extreme on any one dimension of performance, it did

, not survive into future generations. More good
Y. 121 solutions emerged later with VEGA having five after

10000 evaluations. VEGA, unlike ARSO, when given a

PO solution, quickly located many variants of it.

The same four searches were run on the 7th
order system. This time neither VEGA nor ARSO
located any sclutions which vere not dominated by

0,00

o, 1E

T T 1 T 1 the Hartley solution. Hartley had wused his
r?,;:ue,.we.' 3? ,1%-'10 6.50 0.62 knowledge of the problem to start his search at a
close-to-P0 point, but both VEGA and ARSO were
started without this prior knowledge. The stopping

Figure 8. Second Order System — Generation 110 criteria for ARSO had been relaxed to lengthen the

0. 40 a. e

D. %0

g.u

t i

rme error &
Q.30

0.00

search and a variance parameter had also been
relaxed so as to broaden the search, but after
almost 12000 evaluations no non-dominated solutions
had been found. Its best solutien at that time was

wWw. 00

rms error ¢
20.0C !F.UU

i

10.co

i

b.uo

1 1
B.06 D 0w %'_1n 080 o 0.00 10.00 20.00

kl
;.o wnog 50.00 0.0
rag error | w]

rag BRTrOr

Figure 9. Trace of ARSO Search, Second Order System

98

also known to be unstable. VEGA searched for almost
36000 evaluations without locating any solutions
not dominated by Hartley's, however many of them
were stable. Again, when told where to look, VEGA
generated many more PO solutions.

The tentative conclusion, then, seems to
have been supported by the higher order searches.

6. Discussion

The major finding of this research was that
vectorization of performance feedback and the
selection process of a GA can be successfully done.
This opens the domain of multicbjective
optimization problems to the already established
power of genetic search.

Heuristic modifications of the traditional
method to gilve selection preference to non-
dominated members of a population and to try to
improve on random mating proved to be inferior to
the traditional method. The possibility that VEGA
may have a weakness in the central region of a
concave PO front cannet be eliminated, but
empirical evidence to date suggests that it may not
be serious.

The comparisons of VEGA with ARSC contain
no small amount of "apples versus oranges.” The
methods differ in the number of solutions presented
and in the way their searches are normally halted.
However, both contain stochastic elements, both
conduct multidimensional search and both are halted
when no further improvement is apparent. Both may
be started with random information, or may take
advantage of prior knowledge the user possesses
about his search space. In the comparison tuns VEGA

o
=
= LEGENT
W a AAST sap.l
e AASE mep.?
+ YEGR rendos
2
a
d- &
o]
H)
o '
- "
EL]
- -3 L}
0” !
'
1
o A
-] Fie
as -
‘-7 ’-
o 7
1 -
[L
=
£8 ,"
e o
L
g—n e
o PN
= L
o T v T T T 1
g.oc IL.CO 2c.o0 n.co 'JQ".QCI 50,00 £3.03
evalualicns w10

Figure 10, ARSO v= VEGA on Second Order System

g9

21.00

- LEGEND
& PARSD eup)
s RARED e=pali
a YECA rendes
‘Eaf - « VELA weedsd
10
©
&
)
®
<
o
-]
-0
S
E
H
[~
[-1
oS
L@
o
L
F
Jo
£a
&
-l
.
a -
= -
m L
!.--
¢ -
.
o - T T T T T 1
0,00 20,03 &C.00 Ec.00 EG.CO 100. 00 $23.02
evaluat vans =il

Figure 11. ARSO vs VEGA on Third Order Sysatem

=] \
o
2‘ LEGEN]D
w AASD mep-?
e AASO asp-b
o « YERA random
o + YEGA seeded
o
™
=
a
W
N
@
c
=}
e
- i
£
-
Q
"]
S
=
ﬁ.ﬁ-
-
o
£
'I.l
=1
E
.
=
&
e
g et
a 7 bl T T T —T*
0.0G BG. GO 1230, 0 192,00 2%: o joc.co 5. 40
nlld

evalunat ions

Figure 12. ARSO vs VEGA on Seventh QOrder System

R S SR " ==

was given several times more computational effort
than was ARSO, due largely to differences in the
methods for stopping each search.

The general conclusion of the comparison
was that ARSO is capable of very quickly locating
solutions to complex multidimensional problems, but
its preformance may be less robust than VEGA's.
VEGA, on the cther hand, takes longer to locate the
good regions of complex search spaces, but seems to
be able to do so more reliably. This conclusion is
not dissimilar to previous results from comparison
?f scalar genetic search with gradient techniques

5,6].

Finally, a simple method has been conceived
which may dimprove beth VEGA and ARSO. By
maintaining a data structure "off to the side"
containing all non-dominated solutions encountered
in the search, VEGA would be protected against the
loss of pgood but not extreme individuals, as
occurred in the search on the 3rd order problem.
Similarly, ARSO would then have the power to report
a number of solutions instead of only one.
Furthermore, by monitoring the adding and
subtracting of members to this set, both techniques
might be given a more rational stopping criterion.
Work on this addition to both methods will commence
in the near future.

REFERENCES
1. Guy O, Beale Optimal Alrcraft Simulator
Development by Adaptive Random Search

Optimization, Ph.D. Dissertation, University
of Virginia, Charlottesville, Virginia, May
1977.

2. Guy 0. Beale and Gerald Cook, "Optimal digital
simulation of aircraft via random search
techniques," J. Guidance and Control, Vol. 1,
no. 4, July-Aug. 1978,

3. Albert Donmally Bethke Genetic Algorithms as
Function Optimizers, Ph.D. Dissertation,
University of Michigan, Ann Arbor, Michigan,
Jan 1981,

4. Anne Brindle Genetic Algorithms for Function
Optimization, Ph.D. Dissertation, University
of Alberta, Edmonton, Alberta, Canada, Jan
1981,

5. Kenneth DeJong, Analysis of the behavior of a
class of genetic adaptive systems, Ph. D.
Dissertation, University of Michigan, Ann
Arbor, Mich., 1975.

6. Kenneth DeJong, "Adaptive System Design: A
Genetic Approach," IEEE Trans. Systems, Man
and Cybernetics, Vol. SMC-I0 No. 9, Sept 1980.

7. John Grefenstette, "A user's guide to
GENESIS," Tech. Report C5-83-11, Computer
Science Dept., Vanderbilt University,
Nashville, Tenn., Aug. 1983,

8. John Grefenstette, "Genetic algorithms for

multilevel adaptive systems,'" IEEE Trans. on
Systems, Man and Cybernetics, in press.

100

i0.

11.

12.

13.

Thomas Hartley, Parellel Methods for the Real
Time Simulation of Still Nonlinear Systems,
Ph.D. Dissertation, Vanderbilt University,

Nashville, Tenn., Aug. 1984,

John H. Holland, Adaptation in Natural and
Artificial Systems, University of Michigan
Press, Ann Arbor, Michigan 1975.

V. Pareto, Cours g‘Economie Politique, Rouge,
Lausanne, Switzerland, 1896.

J. David Schaffer Some Experiments in Machine
Learning Using Vector Evaluated Genetic
Algorithms, Ph.D. Dissertation, Vanderbilt

University, Nashville, Tennessee., Dec 1984.

Thomas L. Vincent and Walter J. Grantham,
Optimality in Parametric Systems, John Wiley
and Sons, New York, 1981,

Pl

Adaptive Selection Methods for Genetic Algorithms

James Edward Baker

Computer Science Department
Vanderbilt University

Abstract

Premature convergence is a common problem 1n
Genetic Algorithms. This paper deals with
inhibiting premature convergence by the use of
adaptive selection methods. Two new measures
for the prediction of convergence are presented
and their accuracy tested. Various selection
methods are described, experimentally tested and
compared.

1. Introduction

In Genetic Algorithms, it is obviously desirable
to achieve an optimal solution for the particular
function being evaluated. Ilowever, it is not
necessary or desirable for the entire population- to
converge to a single genotype. Rather the
population needs to be diverse, so that a
continuation of the search is possible. The loss of
an allele indicates a restriction on the explorable
search space. Since the full nature of the
function being evaluated is not known, such a
restriction may prevent the optimal solution from
ever being discovered. If convergence occurs too
rapidly, then valuable information developed in
part of the population is often lost. This paper
deals with the control of rapid convergence.

Three measures are typically used to compare
genetic algorithms. They are the Online
Per formance, the average of all individuals that
have been generated, the Offline Performance,
the average of the Best Individuals from each
generation;, and the Best Individual, the best
individua! that has been generated. We attempt
to optimize functions and therefore use the Best
Individual measure lor comparison. In order Lo
improve this measure, we promote diversity
within the population and control rapid
convergence. Increased diversity detrimentally
affects the Online Performance measure and
inhibited convergence detrimentally affects the
Offline Performance measure. [mproving these
two performance measures is not in the scope of
this paper.

101

Methods for the prediction of a rapid
convergence are the topics of section 2. Section 3
will describe various algorithms with which to
slow down convergence, and section 4 will present
their results. A conclusion section will follow the
results.

2. Prediction of Rapid
Convergence
There are two different aspects to the control of
rapid convergence. First, how can one tell that it
has occurred and second, how can one predict
when it will occur

Recognizing rapid convergence after it has
occurred 1s rather straightforward. By its very
meaning, a rapid convergence will result in a
dramatic rise in the number of lost and converged
alleles. A lost allele occurs whenever the entire
population has the same value for a particular
gene. Thus subsequent search with that gene 1s
impossible. A converged allele, as defined by
Delong [1], is 2 gene for which at least 95% of
the population has the same value. However, the
effects of rapid convergence are not limited to
only those alleles which are indicated by these
measures, A rapid take over of the population
will cause all genes Lo suddenly lose much of Lheir
variance. We define bias as the average percent
convergence of each gene. Thus for binary genes,
this value will range between 50, for a completely
uniform distribution (in which for each gene there
are as many individuals with a one as a zero) and
100, for a totally converged population (in which
each gene has converged to a one or a zero). The
bias mcasure provides an indication of the entire
population's development without the
disadvantage of a threshold, such as the one
suggested by DeJung to indicale a converged
allele. A threshoid does not indicate the amount
by which individuals exceed it or the number of
individuals which fall just short. We can
therefore monitor the sudden jumps in the lost,
converged or bias values to determine when a
rapid convergence has occurred.

The prediction of rapid convergence is necessary
for selection algorithms to be able to adapt
accordingly. Lost, converged or bias values
cannot be wused for this purpose since their
measurement occurs after potentially vital
information has been discarded. Two different
prediction methods will be described.

A common cause of rapid convergence is the
existence of super tndividuals, that is individuals
which will be rewarded with a large number of
offspring in the next generation. Since the
population size is typically kept constant, the
number of offspring allocated to a super
individual will prevent some other individuals
from contributing any offspring to the next
generation. In one or two generations, a super
individua! and its descendants may eliminate
many desirable allefes which were developed in
other individuals. The first method addresses the
problem of super individuals by setting a
threshold on an individual's expected number of
offspring. If, after all individuals in a generation
have been evaluated, an individual has an
expected value above this threshold, then a rapid
convergence is deemed imminent.

A closer analysis of rapid convergence leads to
the second measure. Rapid convergence is not
caused solely by an individual receiving too many
offspring, but also by the often related situation
of many individuals being denied any offspring.
Thus rapid convergence may also be predicted
not by monitoring how many olfspring the most
fortunate individual receives, but rather by
monitoring how many individuals receive no
offspring. We define percent tnvolvement as the
percentage of the current population which
contributes offspring for the next generation.
The percent involvement measure has the
advantage that it can predict a rapid convergence
caused by several individuals even when none of
them would exceed the threshold of the [irst
method. If that threshold were lowered to catch
this case, then it might predict a rapid
convergence when it was not occurring.

3. Modifications to Selection

This section presents various methods designed
to prevent or control rapid convergence. There
are basically two choices: either develop a fixed

102

gelection algorithm which avoids rapid
convergence; or develop a hybrid system, which
adapts its selection algorithm to handle rapid
convergence when it occurs.

3.1. Standard Selection

The expected value model presented by Delong
is taken as the standard for comparison, since a °
number of properties about its behavior have
been proven [1,3]. This model evaluates each
individual and normalizes the value with respect
to the population’s average. The result for each
individual is called his expected value and
determines the number of offspring that he will
receive. In our implementation [2], the actual
number of offspring will be either the floor or the
ceiling of the expected value. Thus, the number
of offspring atiributed to a particular individual
is approximately directly proportional to that
individual's performance. This direct
proportionality is necessary for Holland's
theorems to hold, however it is also the core of
this method’s susceptibility to rapid convergence.
Since there is no constraint on an individual’s
expected value, an individual can have as many
offspring as the population size will allow.
Therefore, the expected value model can exhibit
rapid convergence leading to sharp increases in
lost, converged and bias values as well as non-
optimal [inal results.

Because of the theoretical advantages associated
with the expected value model, all of the hybnd
systems listed below use this selection algorithm
when rapid convergence is not indicated.

3.2. Ranking

One way to control rapid convergence is to
control the range of trials allocated to any single
individual, so that no individual receives many
offspring. The ranking system is one such
alternative selection algorithm. In this algorithm,
each individual receives an expected number of
offspring which is based on the rank of his
performance and not on the magnitude. There
are many ways to assign a number of offspring
based on ranking, subject to the following two
constraints:

1. the allocation of trials should be
monotonically increasing with respect

to increasing performance values, to
provide for desirable rewarding,

2. the total of the individual allocation
of trials should be such that the
desired number of individuals will be
in the next generation.

Determining the values for our ranking
experiments was done by taking a user defined
value, MAX, as the upper bound for the expected
values. A linear curve through MAX was taken
such that the area under the curve equaled the
population size. For this construction, several
values are easily derivable:

1. lower bound,

MIN = 2.0 - MAX;

2. difference between "adjacent"
individuals,
INC = 20 * (MAX - 10) /

Population Size ;

3. lowest individual's expected value,
LOW = INC / 20.

Hence for a population size of 50 and a MAX of
2.0 : MIN = 0.0, INC = 0.04, LOW = 0.02.

However, ranking with MAX = 2.0 causes the
population to be driven to converge during every
generation, including very stable searching
periods, i.e., all individuals being within 10% of
the mean. Ranking forces a particular percent
involvement rather than preventing low percent
involvement values from occurring. Qur
experiments show the desirable range for the
percent involvement value is between 94% and
100%. The above settings force a percent
involvement value of approximately 75%, and
hence cause undesirable convergence To prevent
this, one must choose a MAX wvalue of
approximately 1.1, which force the percentage
involvement value into the desirable range.

3.3. Hybrid Systems

The following two systems use the expected
value model as the default. When rapid
convergence is predicted, the system will
temporarily switch to a different selection
method, designed to better handle the situation.

103

3.3.1. Hybrid with Ranking

We have investigated two systems in which
Ranking is used as the alternative selection
method. The systems differ only in the way in
which a rapid convergence is predicted. The first
one uses a threshold on the maximum allowable
expected value; the second system wuses a
threshold on the minimum allowable percent
involvement. Ranking was chosen since, as
described previously, it should work better during
pericds of rapid convergence and the expected
value model should work better during the other
periods. Thus, these two system's strengths and
weaknesses complement each other and should
create a good hybrid.

3.3.2. Dynamic Population Size

Recall that one cause of rapid convergence is
that super individuals prevent other individuals
from having offspring. This is due to the
enforcement of a constant population size, and
clearly results in a drop in the percent
involvement. If the population size were allowed
to grow, then a super individual would not force
the elimination of many other individuals.

The dynamic population size method 1is
implemented by enforcing a lower bound on the
percent involvement. This 15 done by adding
individuals to the population until both the
original population size and the acceptable value
for the percentage involvement are reached. Due
to the requirements of crossover, additions to the
population are made in increments of two.
Additiona! individuals are added to the system on
the same basis as belore, that is by their expected
value.

During periods of slow convergence, the size of
the population will be constrained toward the
original population size, since the lower bound on
the percent involvement will be satisfied before
the entire current population is chosen. Although
the population size may grow as large as deemed
necessary {within physical memory limitations), it
wilt be guided back to the original population size
during periods of slow convergence, as long as the
lower bound wvalue is set below 100%
Furthermore, on our system, the floor of the
individual's expected wvalue was taken as a
minimum for his number of offspring. This
periodically led to percent involvement values

which were higher than the required lower bound
even during a time of high population size. This
is a characteristic of our implementation and has
not yet been investigated for its desirability.

This method has good intuitive appeal and has
the advantage of using the expected value model
throughout,. The advantage of reacting
differently to differing magnitudes of potential
rapid convergence is also present.

A possible disadvantage of this system is that a
super individual can still obtain a large
percentage of the population very quickly; while
other individuals are not completely lost, their
effect on the population is tremendously
undermined.

4. Results

All experiments were performed using the
Genesis System [2] at Vanderbilt University. The
initial population size was set to 50, the crossover
rate to 0.6, and the mutation rate to 0.001. Each
curve in figures 1 through 10 were taken from
single, representative executions of the
appropriate functions. Each curve in figures 11
and 12 represent the average of five executions.

4.1, Detection

In order to confirm the predicting capability of
the percent involvement and greatest expected
value, a function was designed on which a
standard GA would experience a rapid
convergence. This function had a gentle slope
over more than 99.5% of the search space. A
ateep, highly valued spike existed in the
remaining one half of one percent. To achieve
the optimal result, the system needed to find the
spike and then to optimize within it. The
outlying, gentle slope discouraged those alleles
necessary for the optimal result. Thus when a
super individual occurred, that is one within the
spike, vital information was likely to be lost.

This function was used with the expected value
model of selection. For each generation, the
values of the percent involvement and greatest
expected value were output. For these values to
be useful as predictors, they must noticeably
change prior to a rapid increase in the lost,

104

converged and bias values. Graphs comparing
these predictors with the lost, converged and bias
values can be seen in figures 1 - 6.

Figure 1 shows that the percent involvement
value drops sharply, prior to the dramatic rise in
the lost value. A similar relationship exists for
the converged value in Figure 2. Figure 3 shows
the bias value climbing before the percent
involvement value has reached its minimum.
This occurs since the percent involvement values
are already below their normal range prior to
reaching its minimum. The normal range for the
percent involvement has been found to be
between about 94% and 100% . The drop in the
percent involvement which occurs around the
23rd generation causes no appreciable effect, since
(as the bias value indicates) the population is
already over 90% converged. Note the first
indication that a rapid convergence has occurred
is given by the bias value, and the last indication
by the lost value. This is seen by the primary
increase occurring in the fourth generation for the
bias value, in the fifth generation for the
converged value and in the sixth generation for
the lost value,

The maximum expected value also experienced
a sharp change prior to the rapid convergence,
Figures 4, 5 and 6 show this clearly. Note that
the spike in the maximum expected value
occurred one generaticn before the minimum
percent involvement value. This shows clearly
the more global nature of the percent
involvement discussed earlier. That is for
generation number three, there was a single super
individual, evident from the maximum expected
value and percent involvement. However, the
largest loss of other members of the population
occurred during the following generation, when
this super individual’s offspring were reproducing.
This is seen in the fourth generation’s percent
involvement value,

Figures 1 - 6 show that bolh the percent
involvement and the maximum expected value
provide a good prediction of the occurrence of
rapid convergence in this example. However, the
percent involvement appears to be superior in
general, since it can detect some rapid
convergence not caused by a super individual

4.2, Comparison of Methods

Recall that a superior method potentially
produces better Best Individuals by retaining
diversity in the population and controlling rapid
convergence. Thus the lost, converged and bias
values should remain low with increases occurring
only gradually.

The wvarious selection methods discussed in
section 3 were tested with a variety of functions.
In all cases, Ranking uses a MAX of 1.1, as
discussed in section 3.2. Figure 7 compares their
lost alleles values for the same function used for
Figures 1 - 6. These results were chosen because
they are fairly representative of the various
functions tested. The standard selection method
consistently experienced rapid convergence sconer
and more dramatically. This can also be seen in
Figure 8, a comparison of the bias values for the
same function. Just as consistently, the ranking
system did not rapidly converge.

Figures 9 and 10 show the loss of alleles and
bias for Shekel’s “foxhole problem®" studied by
DeJong [1,4]. These figures also show the same
two characteristics: 1) standard selection
performing worst; and 2) ranking performing
best. However, note the vast superiority of the
hybrid system which was based on the percent
involvement over the other hybrid system. This
is probably the result of the percent
involvement’s superior ability to predict rapid
convergence.

The population variance method performed no
worse than the standard system, but for this
function, it did not perform significantly better.
The hybrid methods did experience convergence,
However, it is delayed, it is extended over more
generations, and its magnitude is lessened.
Therefore one should expect these systems to be
able to produce better final solution than the
standard system, although it may take longer.

Figures 11 and 12 show the average DBest
Individual versus trial number for the various
methods. These values represent the average for
five executions. Figure 11 15 for the "[oxhole
problem”. Note that all of the methods
performed at least as well as standard selection,
given a suflicient number of trials. Furthermore,
standard selection has lost nearly hall of its

105

alleles by the 2000th trial. Ranking has
outperformed all the others and after 2000 trials
has not lost any alleles. Thus ranking has the
best final result and the best potential for
improvement. Note that ranking is the slowest of
the methods, not preducing a “competitive®
result until about the 900th trial. This causes the
Offline Performance to be very bad, and the high
diversity causes the Online Performance to suffer.

Figure 12 is from a function which has a sharp
optimal region which the system must {ind. The
function also has various local optima which may
cause convergence before the discovery of this
region. Figure 12 indicates the relative ability of
the systems to find the optimal region. Each
curve plotted represents the average over five
executions. Ranking was able to find the region
four out of five times, but again was the slowest
in starting.

5. Conclusions

To varying degrees, all of the methods discussed
in this paper were able to control rapid
convergence. The ranking method shows the
greatest promise. It results in better solutions for
many functions experiencing rapid convergence
and it maintains virtually all of its alleles. This
gives it the potential for continued search and
even further improvement on its selutions. The
primary drawback to this system is that it
requires a larger number of trials to obtain these
results, especially for functions not exhibiting
rapid convergence. We have observed that in the
expected value model all of the individuals are
typically within 209 of the mean during non-
rapidly converging periods. Hence, the ranking
system, with MAX = 1.1 , should be roughly
equivalent to the expected value system during
these periods, yet has the advantage of being able
to control rapid convergence. Of course, it also
has the disadvantage of avoiding rapid
convergence, even when the convergence is
desirable. Hence, ranking warrants further study
both for its robustness and its particular handling
of rapid convergence.

At present there is insufficient justification to
rank the other methods' performance. However,
they all represent improvements over the
standard selection algorithm. For some functions

they were able to significantly slow down the
rapid convergence and retain more diversity
within their genes. This typically led to better
final results than the standard selection algorithm
would produce. Standard selection did nol
outperform any of the other methods on any of
the functions tested, given a sufficient number of
trials.

Both the percent involvement and the expected
value provide a prediction of rapid convergence
and can be used to help control it. However, the
prediction based on the expected value applies
only for rapid convergence caused by super
individuals, Therefore, the percent involvement
value should be used as a more general predictor.

Many other methods to control rapid
convergence should be studied and compared.
Among them are:

1. providing a simple upper bound on
the number of offspring allowable to
an individual;

2. limit super individuals to a very small
number of offspring (1 or 2) in
combination with the elitist strategy,

3. a ranking system based on non-linear
curves or adaptively changing curves;

4. providing multiple thresholds for the
varying population size method, to
use separate thresholds for growing
and for shrinking the population, or
separate values for the prediction and
the processing phases.

The methods presented in this paper should be
tested further on a larger number of functions
before definitive conclusions can be made

References

1. K. A Delong, Analysis of the
behavior of a class of genetic
adaptive systems, Ph.D. Thesis, Dept.
Computer and Communication
Sciences, Univ. of Michigan (1975).

2. J. J. Grefenstette, "A user’s guide lo
GENESIS,* Tech. Report CS-83-11,

106

Computer Science Dept., Vanderbilt
Univ. (August 1983).

. }. H. Holland, Adaptation in Natural

and Artifictal Systems, Univ.
Michigan Press, Ann Arbor {1975).

. J. Shekel, "Test functions for

multimodal search techniques,” Fifth
Ann. Princeton Conf. Inform. Sci.
Syst. (1971).

yomy Eigure 2. o ~ 100
— 50
— B0
B
O]
) - \-/V'-\‘_\/— 2
A--Lost o
B-=percent
invelvement
104 4+ 50
- 40
- 30
A
b s b '
1 Generation 2 30
30 Higure 2. ~ - 100
V——/- o
~ B0
20 %
— 70
A--converged e
B--percent
involvement
10 —~ 50
~ 40
- 30
2. T T T 1
10 Generation 20 30
100 = F_i.g&r-EB- [_N—v. < R S 100
a w:__/ 80
- 80
g5 B
— 70
A--Bias | 6o
B--percent
énvolve.ment
70— - 50
~ 40
A L 30
30 Generation
107

30~

- 15
20 N \/\/—_\/— 10
B-~maximum
A--Lost expected
value
10— | .
A 4/—'-_‘
A
! i 1 T
Fione L Generation ey 30
30 T 15
299 —10
A= a B--maximum
converge expected
value
10 _
B /\
A - < v et
L [| 1 |
10 . 20 a0
Generaticon
Figure 6.
100+ === — 15
T
a5 L 10
i B--maximum
St R expected
value
70 — 5
B /\
A —A\—
85 T -
¢ i
1b Generation iy 30

108

30— Figure 7. 10

20 20
Lost
Alleles
10~ 10
Generation
100 - Figure 8. 100
o N—
e
90 ~""1 90
80 BO
Bias
70 - 70
- g _/
60 — 60
S0 T T T T T] 56
10 20 30
h-=-Standard
B--Hybrid/max, exp. val, Generation

C--Hybrid/perct. invol.
D--Pop. variance
E--Ranking

109

30 Figure 5.
207
Lost
Alleles
107
D [
B
s e —
E
1 B i L I T
10 20 30
Generation
1007 Figure 10.

Bias

50

| T T T] 1

10 20 30
A--Standard
B--Hybrid/max. exp. val. Generation
C~-Hybrid/perct. invol.
D--Pop. variance
E~--Ranking

110

30

20

10

io0

20

80

70

&0

50

5 — D Figure 11, -5
c E
B
A
{4 - - 4
Average
Best 3 -3
2 . 2
ey
1 T T T T T 1 ¥ T 1 T 1 1 7 T 1 I | | !
500 1000 1500 2000
Trial
40~ Figure 12, — 40
1 \\\ \ N
; B8
Average | \\
Best = < 20

D
10 - 10
E
o — T T T T 1 T T 7 T T T T 7 .
500 1000 1500 2000
A--Standard .
Trial

B--Hybrid/max. exp. val.
C--Hybrid/perct. invol.
D--Pop. variance
E-=Ranking

111

yme

Genetic Search with Approximate Function Evaluations

John J. Grefenstette!
J. Michael Fitzpatrick

Computer Science Department
Vanderbilt, University

Abstract

Genetic search requires the evaluation of many
candidate solutions to the given problem. The
evaluation of candidate solutions to complex
problems often depends on statistical sampling
techniques. This work explores the relationship
between the amount of effort spent on individual
evaluations and the number of evaluations
performed by genetic algorithms. It is shown
that in some cases more efficient search results
from less accurate individual evaluations.

1. Intreduction

Genetic algorithms (GA’s) are direct search
algorithms which require the evaluation of many
points in the search space. In some cases the
computational effort required for each evaluation
is large. In a subset of these cases it is possible Lo
make an approximate evaluation quickly. In this
Paper we investigate how well GA’s perform with
approximate evaluations. This topic is motivated
in part by the work of De Jong [5], who included
a2 noisy function as part of his Lest environment
for GA'’s, but did not specifically study the
implications for using approximate evaluations on
the elficiency of GA's. Our main queslion is:
Given a fixed amount of computation time, is 1t
better to devote substantial effort to getting
highly accurate evaluations or to obiain quick,
rough evaluations and run the GA for many more
generations? We assume that the evaluation of
each structure by the GA involves a Monte Carlo
sampling, and the effort required for each
evaluation is equal to the number of sainples
performed.

Since the GA’s we consider do not obtain
accurate evaluations during the search, the

traditional metrics, online performance and
offline performance, are not appropriate (or at
least not easily obtained). Instead, we assume
that the GA runs for a fixed amount of time,
alter which it yields a single answer. The
performance measurement we use is the absolute
per formance, that is, the exact evaluation of the
suggested answer after a fixed amount of time.

In section 2 we describe the statistical
evaluation technique. In section 3 we describe
the result of testing on a simple example
evaluation function. In section 4 we describe the
result of testing on image comparison functions
In section 5 we present future directions of
research on approximate evaluations.

2. The Statistical Evaluation
Technique

In this work we investigate the oplimization of
a function f(z) whose value can be estimated by
sampling. The variable z ranges over the space
of structures representable to the GA. We are
interested in functions for which an exact
evaluation requires a large investment in time but
for which an approximate evaluation can be
carried out quickly. Examples of such functions
appear in the evaluation of integrals of
complicated integrands over large spaces. Such
integrals appear in many applications of physics
and engineering and are commonly evaluated by
Monte Carlo techniques [13,15]. An example
from the field of image processing, examined in
detail below, is the comparison of two digital
images. Here the integrand is the absolute
difference between image intensities in two
images at a given point in the image and the
space is the area of the image.

lResearCh supported in part by the National Science Foundation under Grant MCS-8305693.

112

Throughout our discussions it 18 convenient to
treat the function, f(z)}, to be optimized as the
mean of some random variable r(z). In terms of
the evaluation of an integral by the Monte Carlo
technique, f(z) would be the mean of of the
integrand’s value over the space and r(z) 1s
simply the set of values of the integrand over the
space. The approximation of f(z) by the Monte
Carlo technique proceeds by selecting n random
sample from r{z). The mean of the sample serves
as the approximation and to the extent that the
samples are random, the sample mean s
guaranteed by the law of large numbers to
converge to f(z} with increasing n. Once f(z) 1s
approximated, the desired value of the integral
can be approximated by multiplying the
approximation of f(z) by the volume of the space.
There are many approaches to improving the
convergence of the sample mean and the
confidence in the means for a fixed n (15} We
will not investigate these approaches. Here we
will be concerned only with the sample mean and
an estimate of our confidence in that mean

The idea which we are exploring is to use as an
evaluation function in the GA optimization of
f(z), not f{z) itself, but an estimate, e{z), of f(z)
obtamed by taking n randomly chosen samples
from r(z). It 1s intuitive that e(z) approaches
\z) for large n. From statistical sampling theory
it 1s known that if r(z) has standard deviation
o(z) then the standard deviation of the sample
mean, o (), is given by

(1) o,(z) = o(z)/Vn

In general o(z) will be unknown. It is simple,

however, to estimate o{z) from the samples using
the unbiased estimate,

T
(2) o) =3 (sel=))/(n-1)
um |
It 15 clear from equation (1) that reducing the
size of ¢ (2} can be expensive. Reducing o (z) by
a factor of two, for example, requires four times
as many samples. It 1s intuitive that the GA will
require more evaluations to reach a fixed level of
optimization for f(z) when o (z) is larger.
Concomitantly, it 1s intuitive that the GA will

113

achieve a less satisfactory level of optimization
for f{z) for a fixed number of evaluations when
o (z) is larger. What is is not obvious is which
effect is more important here, the increase in the
number of evaluations required or the increase in
the time required per evaluation. The following

experiments explore the relative importance of
these two effects.

3. A Simple Experiment

As a simple example function we have chosen to
minimize

flz,y,2) = :."'-i-y"’+z'"

We imagine that f{z,yz) is the mean of some
distribution which is parameterized by z, y and ¢,
but instead of actually sampling such a function
to achieve the estimate e(z,y,z), we use

e(x,y,2) = f(z,y,2) + noise

where notse represents a pseudo-random

function chosen to be normally distributed and to

have zero mean. The standard deviation,

o (z,1,2), of e(z,y,2) is in this case equal to that of

the noize function and it is chosen artificially. No
actual sampling is done. The advantage of this

experimental scheme is that we can investigate

the effects of many dilferent distributions and

sample sizes for each cr,(::,y,z) we choose without

performing all the experiments

In order to get some idea of the effect of the
dependence of ¢ (x,y,2) on z, y and z, we perform
two different sets of experiments on f(z,y,2): (a)
o (x,y,2) independent of z, y and z; and (b)
o (z,y,2) = X flz,y,2)- The space is
limted to z, ¥ and z between -5.12 and +5.12
digitized to increments of 0.01. The GA
parameters are the standard ones suggested by
De Jong {50 population size 50, crossover rate
0.6, mutation 0.001. For the experiments of type

(a) we determine for several values of o, the

number of evaluations necessary to find z, y and

z such that f(z,y,z) falls below a threshold of

005. For the experiments of type (b) we

determine for several values of \ the number of

search

et e

Wy

evaluations
threshold,

necessary to

achieve Lhe

0.05

The results of 50 runs at each setiing are shown
in Figure 2. It is immediately obvious that these
graphs are approximately linear.
regresston analysis produces a correlation
coeflficient of 0.99 in each case. The linearity of
these graphs simplifies their analysis considerably.
To see the relative importance of number of
evaluations versus time per evaluation we can
start with the equation for the straight lines:

In fact linear

(3) E, = 1244+22680
(4) E, = 18,020--9285X

where £ and E are the number of evaluations
required for case a and b, respectively, We
imagine that the evalualions were obbained by
sampling from a normal distribution whose
standard deviation is ¢ in case (a) and X\ f(z,y,2)
in case (b). In that case we can use Equation (1)
for o (z,,2) in both Equations (3) and (4) to get

(5) E, == 1244+22680/Vn
(6) E,= 18,020+9285\/v/n

These equations give the number of evaluations
required to achieve the threshold as a function of
the number of samples taken per evaluation, but
they do not indicate the total effort required to
achieve the threshold. The total time required
for the optimization procedure includes the time
for the n samples taken at each evaluation and
the overhead incurred by the GA for each
evaluation. Taking these factors into
consideration we arrive at two equations for the
time necessary to achieve the threshold,

(7) t,=(a B p)(1244+22680/Vn)
(8) ty=(cx ;B 2)(18,020+9285) /Vn)

where a is the GA overhead per evaluation and
8 is the time per sample. These equations allow
us to determine the optimal value for n, i.e, the
value which will minimize the time necessary to

reach the desired threshold in this sample

114

problem. It can be seen that for large n each

expression for the time increases linearly with n.
Thus, regardless of the relative size of the
overhead, the optimal 18, not
surprisingly, finite. As n approaches zero each
expression approaches infinity, but the smallest
possible value for n is one. The optimal value of
n for elther case can be found by finding the
minimum of the appropriate expression subject to
the restriction that n be an integer greater than
zero. [Further analysis requires some idea of the
size of o/f8. Since the results apply only to the
particular example evaluation function f(z,y,2) a
detailed analysis is not worthwhile. We simply
note that in the case in which « is negligible, the
optimal value of n 1s 1, and as ¢ increases the
optimal value will increase. Thus, at least for
small overhead the to the question
concerning the relative importance of the number
of evaluations versus the time required for a
given evaluation is clear. The time required for a
given evaluation is more important. The
accuracy of the evaluation should be sacrificed in

order to obtain more evaluations.
proceeds

value of n

answer

Optimization
with many rough
evaluations than with few precise evaluations.

nore

quickly

4. An Experiment on Image
Registration

The preceding simple example has the following
special characteristics: (1) the function to be
optimized is simple; (2) r(z) has a normal
distribution; (3) the standard deviation of r(z) is
a known function. These charactleristics make it
possible to do simple experiments which are easy
to analyze. In more general problems these
characteristics are not guaranteed, but they are
not necessary to insure the efficacy of the
statistical approach. To demonstrate the method
for practical problems, we describe here out
approach to a problem which has none of these
characleristics. The problem is found in the
registration of digital images. The [unctions
which are optimized in image registration are
measures of the difference between two images of
a scene, in our case X-ray images ol an area of a
human neck, which have been acquired at
different times. The images differ because of

motion which has taken place between the two
acquisition times, because of the injection of dye
into the arteries, and because of noise in the
image acquisition process. The registration of
such images is necessary for the success of the
process known as dtgital subtraction angiography
in which an image of the interior of an artery is
produced by subtracting a pre-injection image
from a post-injection image. The details of the
process and the registration technique can be
found in [7]. By performing a geometrical
transformation which warps one image relative to
the other it is possible to improve the registration
of the images so that the difference which is due
to motion 1s reduced. The [unction parameters
specify the transformation, and it is the goal of
the genctic algorithms to find the parameter
values which minimize the image diflerence.

The general problem of image registration is
lmportant 1n such diverse felds as aerial
photography [8,16,17] and medical imaging
[1,7,12,14,18]. General introductions to the field
of image registration and extensive bibliographies
may be found in {3,9,11]. An image comparison
technique based on random sampling, different
from the method used here, is described in [2].
The class of transformations which we consider
includes elastic motion as well as rotation and
translation.

The transformations which are employed here
are illustrated in Figure 1. Two images are
selected and a square subimage, the region of
interest, i1s specified as image one -- iml A
geometrically transformed version of that image
1s to be compared to a second image -- im2. The
transformation is specified by means of four
vectors -- d1, d2, d3, and d4 -- which specify the
motion of the four corners of iml The
transformed image is called im3. The motion of
intermediate points is determined by means of
bilinear interpolation f{rom the corner points
The magnitudes of the horizontal and vertical
components of the d vectors are hmited to be less
than one-fourth of the width of the subimage to
avoid the possibility of folding [6] (More
complicated warpings will require additional

115

vectors.)

The images are represented digitally as square
arrays of numbers representing an approximate
map of image intensily. Each such intensity is
called a przel. The image difference is defined to
be the mecan absolute difference between the
pixels at corresponding positions in im2 and im3.
The exact mean can be determined by measuring
the absolute difference at each pixel position; an
estimate of the mean may be obtained by
sampling randomly from the population of
absolute pixel differences. The effort reguired to
estimate the mean is approximately proportional
to the number of samples taken; so, once again,
the question arises as to Lhe relative importance
of number of evaluations used in the GA versus
the time required per evaluation.

In general, the distribution of pixel differences
for a given image transformation is not normal.
Its shape will, in fact, depend in an unknown way
on the geometrical transformation parameters,
and consequently the standard deviation will
change in an unknown way. Thus, while the
experiments on f{z,y,z) suggest that better results
will be realized if less exact evaluations are made
it 1s not clear how the level of accuracy should be
set. We note thal in the analysis of the
experiments on f({z,y,z) flixing the number of
samples, n, has the effect of fixing, either o, or
X, = o /f(z,y,2), given the assumed forms of o.
In the unage registration case and in the general
case, however, lixing n fixes neither of these
quantities, since the o's behavior cannot in
general be expected to be so simple. We could,
however, fix either of these quantities
approximately by estimating o using Equation (2)
as samples are taken during an evaluation and
continuing the sampling until n is large enough
such that the estimate of o obtained from
Equation (1) is reduced to the desired value.
Thus, the results [rom the previous experiments
suggest three experimenis on image registration —
(1) try to delermine an optimal fixed n; (2) try to
determine an optimal fixed o, (3) try to
determine an optimal fixed A, We have
implemented the {irst idea and a variation of the

third idea, The variation is motivated by noting
from statistical sampling theory that by fixing A,
we are equivalently [ixing our confidence in the
accuracy of the sample mean as representative
the actual mean. If, for example, we require that
the sample mean be within {100p)% of the actual
mean with 95% confidence, we should sample
until we determine that X is less than or equal to
p/1.96 |19} If we can fix only an estimate of X,
as in the general case, then the (100p)% accuracy
at 95% conlidence level requires Lhat the estimate
of X be less than or equal to p/t {n). Here t4n)
is student’s t at a confidence level of 100(1—7)%
and a sample size of n[4]. This t-test is exact
only if the distribution of the sample mean is
normal. In order to assure that the sample mean
is approximately normal the sample size, n,
should be at least 10 [4]. Our varnation on fixing
A, 1s to pick a confidence level of 95% (an
arbitrary choice) and then Nx p, subject to
n = 10 to determine an oplimal p,

The experiments to determine an optimal value
of n and p for image registration and in the
general case differ from those described for
flz,y,2) above in two ways. Firsi, because so
little 15 known about the distributions in the
general case, actual sampling 1s necessary.
Second, because zo little 1s known about the mean
which is to be optimized {minimized) it 1s difficult
to determine in the pgeneral case whether a
threshold has been reached, and therefore the
criterion for halling must be different. We have
considered two alternative halting criteria: (1)
determining an exact mean, or a highly accurate
estimate of the mean, of the structure whose
estimate 1s the best at each generation, halting
when that value reaches a threshold, and using as
a measure of performance the total number of
samples taken; (2) halting after a fixed number of
samples have been taken and using as the
measure of performance the exact evaluation of
the structure whose estimate i1s the best at the
last generation. The Nrst alternative sulfers Iruin
the disadvantage that the additional evaluation
at each generation 1s expensive and tends to
offset the savings gained through approximate
evaluation. The severity of the disadvantage 1s,

116

on the other hand, diminished as the size of the
generation is increased. ‘Therefore this method
suggests a new consideration in setting the
number of structures per generation. We choose
in this work to avoid the question of the optimal
number of siructures by choosing the simpler
alternative, {2).

The results of our experitnents on 1mage
registration are shown in Figure 3. The Figure
shows dala resulting from 10 runs at each selting.
The subimage iml 15 100 by 100 pixels, giving a
sample space of size 10,000. The motion of the
corners is limited to 8 pixels in the x and ¥y
directions. In each case the GA is halted after
the generation during which the total number of
samples taken exceed 200,000. The parameters
for the transformation comprise the x and vy
componenis of the four d vectors. The range for
each of these eight components is {-8.0, +8.0]
digitized to eight bit accuracy. The GA
parameters are set to optimize offhne
performance, as suggested by [10]. population size
80, crossover rate 0.45, mutation rate 0.10.

In Figure 3a each GA takes a fixed number of
samples per evaluation. It can be seen from the
Figure that the
approximately 10 per evaluation.
Apparently, taking one sample per evaluation
does not give the GA sulficient information to
carry out an efflicient search. The fact that
performance deteriorates when we take fewer
than 10 samples may indicate thal the underlying
distribution of pixel difference i1s not in general
normal, and so this application does not

correspond to the ideal experiments described in
sectlon 3

optimal sample size is
samples

In Figure 3b the estimated accuracy interval;
based on the t-test, i1s fixed subject to the
restriction that the sample size be at least 10.
(Note that in Figure 3b, a 10% accuracy interval
means that we are 95% confident that the sample
mean 15 within 10% of the true mean.) These
experiments suggest that the optimal accuracy
interval at 95% confidence is nearly 100%), which
corresponds to taking on the average 10 samples

per evaluation. Given that the performance level
is nearly identical whether we take exactly 10
samples per evaluation or we take on the average
10 samples, the first approach is preferable, since
it does not require the calculation of the t-test for
each sample.

It should be pointed out that, as in the
experiment on f(z,y,z), the GA overhead is
ignored here. If the overhead were included, the
optimal sample size would be somewhat larger.
In any clear that a substantial
advantage is obtained in statistical evaluation by
reducing sampling sizes and accuracies, at least

for this case of image registration.

case, it s

5. Conclusions

GA’s search by allocating trials to hyperplanes
based on an estimate of the relative performance
of the hyperplanes, One result of this approach is
that the individual structures representing the
hyperplanes need not be evaluated exactly. This
observation makes GA's applicable to problems in
which evaluation of candidate solutions can only
be performed through Monte Carlo techniques.
The present work suggests that in some cases the
overall efficiency of GA’s may be improved by
reducing the time spent on individual evaluations
and

increasing the number

performed.

of generalions

This works suggests some topics which deserve

deeper study. First, the GA
in performing operalions
selection, crossover, and mutation,

Incurs some

overhead such as
Il the GA
runs for many more generations as a result of
performing quicker evaluations, this
may offset the time savings. Tuture studies
should account for this overhead in identifying
the optimal time to be spent on each evaluation

Second, it would be inleresting to see how using

overhead

approximate evaluations effects the usual kinds of
performance
performance.

metrics, such as online and offline
Finally, additional theoretical work
in this area work be helpful, since experimental
results concerning, say, the optimal sample sizc
can be expected to be highly
dependent.

application

117

Relerences

L.

10

. Chaim Broit,

. Chapman

.J. Michael

. Ardesir

D. C. Barber, "Automatic Alignment of
Radionuclide Images," Phys. Med. Biol.
Vol. 27(3), pp.387-96 (1982).

. Daniel I. Barnea and Harvey F. Silverman,

"A Class of Algorithms for Fast Digital
Image Registration," IEEE Trans. Comp.
Vol. 21(2), pp.179-86 (Feb. 1972).

Optimal Registration of
Deformed Images, Ph. D. thesis, Computer
and Info. Sci., Univ. of Pennsylvania (1981).

and Schaufele,
Probability Models
Inference, Xerox

Waltham, MA (1970).

Elementary
Statistical
Publ. Co,,

and
College

. K. A. Delong, Analysis of the behavior of

a class of genetic adaptive systems, Ph.
D. Thesis, Dept. Computer and
Communication Sciences, Univ. of Michigan
{1975).

Fitzpatrick and Michael
R. Leuze, "A class of injective two

dimensional transformations," to be
published

. J. M. Fitzpatrick, J. J. Grefenstette, and

D. Van Gucht, "lmage registration by
genebic search," Proceedings of I[FEEE
Southeastcon ‘84, pp.460-464 (April 1984)

Werner Frei, T. Shibata, and C. C. Chen,
"Fast Matching of Non-stationary Images
with Ialze Fix Protection," Proc. 5th Intl.
Conf Patt. Recog. Vol. 1, pp.208-12, IEEE
Computer Society (Dec. 1-4, 1980).

Goshtasby, A Symbolically-
asststed Approach to Digital [Image
Registration with Application in Computer
Vision, Ph. D. thesis, Computer Science,
Michigan State Univ. {1983).

J. I Grefenstette, "Optimization of control
parameters for genetic algorithms®, to
appear in [EEE Trans. Systems, Man,
and Cybernetics (1985).

11.

12,

13.

14,

15.

16.

17.

18.

19.

Ernest L. Hall, Computer Image

Processing and Recognition Academic
Press, Inc., New York (1979).

K. H. Hohne and M. Bohm, "The
Processing and Analysis of Radiographic
Image Sequences," Proc. 6th Intnl. Conf.
Fatt. Recog. Vol. 2, ppB884-897, IEEE
Computer Society Press (Oct. 19-22, 1982)

F. James, "Monte Carlo theory and
practice," Rep. Prog. Phys. Vol. {8, p.73
(1980).

J. H. Kinsey and B. D. Vannelli, "Applic.
of Digit. Image Change Detection to Diagn,
and Follow-up of Cancer Involving the
Lungs," Proc. Soc. Photo-optical Instrum.
Eng. Vol. 70, pp.99-112, Society of Photo-
optical Instr. Eng. (1975).

B. Lautrup, "Monte Carlo methods in
theoretical high-energy physies," Comm
ACM Vol. 28, p.358 (April 1985).

James J. Little, "Automatic Registration of
Landsat MSS Images to Digital Elevation

Mocdels," Proc. Workshop Computer Vision:

Representation and Control, pp.178-84
IEEE Computer Science Press (Aug. 23-25,
1982).

Gerard G. Medioni, "Matching Regions in
Aerial Images," FProc. Comp. Wision and
Fatt. Recog., pp.364-65, [IEEE Computer
Sociely Press (June 18-23, 1983).

Michael I. Potel and David E. Gustafson,
“"Motion Correction for Digital Subtraction
Angiography," IEEE Proc. 5th An. Conf.
Eng. tn Med. Biol. Soc., pp.166-9 (Sept.
1983).

Murray R. Spiegel, Theory and Froblems
of Probability and Statistics, McGraw-Hill,
New York (1975).

118

Figure la.

Subimage iml is represented by the amaller
inner square. The arrows represent the four d-
vectors.

Figure 1b.

im?2 is the larger image. im3. is the inner image
formed by transforming iml according to the d-
vectors shown in Fig. 1a.

”
8000} 4
y -
//
e
mtsoo- e
= —
| =] //
- ,/
o Rl
> 83000} -,
._' ® ,, []
3 Vo
/ﬁ
1500}
8o 0.4 0.8 L2 Le 2.0
SIGMA,
Figure 2a.

Evaluations Until Threshold vs. Absolute Error.

20000}
® ,
”
rd
//
s

15000} ,,’
L4 rd
=
[=) //o
- /s
« %
S 10000} /
K P
< P -
>
w //

//’
50001 e
rd
”
P v
[3 /(
/ R 3 L A 1
8 0. 4 5.8 L2 1.8 3.0
LAMBDA,
Figure 2b.

Evaluations Until Threshold vs. Relative Error.

119

) w

FINRLrﬂvE. PIXEL DIFFERENCE

L i A i

s

50 100 150 200
SAMPLES PER EVALURTIGN

Figure 3a.
Performance vs. Fixed Sample Size.

wéf
Q)
=
T3]
[+ =4
-
w3t
. - oL
[]
|
Ll
Xat
a.
ul
=

1 9
-
[=
=
L.

% 25 50 75 100

ACCURACY INTERVAL

Figure 3b.
Performance vs. Accuracy Interval.

120

A connectionist algorithm for genetic scarch!

David 1I. Ackley
Department of Computer Science
Carnegice-Mellon University
ittsburgh, PA 15213

Abstract

An architecture for function maximization is proposed. The design is motivated
by genetic principles, but connectionist considerations dominate the implementa-
tion. The standard genectic operators do not appear explicitly in the model, and
the description of the model in genelic terms is somewhat intricate, but the imple-
mentation in a connectionist framework is quite compact. The learning algorithm
manipulates the gene pool via a symmetric converge /diverge reinforcement opera-
tor. Preliminary simulation studies on illustrative Munctions suggest the model is
at least comparable in performance to a conventional genectic algorithm.

1 Overview

A new implementation of a genetic algorithin is presented. The possibility for it was noted
during work on learning evaluation functions for simple games [1| using a variation on a
recently developed connectionist architecture called a Boltzmann Machine [2]. The present
work abstracts away from game-playing and focuses on relationships between genetic al-
gorithms and massively parallel, neuron-like architectures.

This work takes function maximization as the task. The system obtains information by
supplying inputs to the function and receiving corresponding function values. By-assump-
tion, no additional information about the function is available. Finding the maximum of
a complex function possessing an exponential number of possible inputs is a formidable
problem under these conditions. No strategy short of enumerating all possible inputs can
always find the maximum value. Any unchecked point might be higher than those al-
ready examined. Any practical algorithm can only make plausible guesses, based on small
samples of the parameter space and assumptions about how to extrapolate them.

However, the function maximization problem avoids two further complexities faced
by more general formulations. First, performing “associative learning” or “categorization”
can be viewed as finding maxima in specified subspaces of the possible input space. Second,
in the most general case, the function may change over time, spontaneously or in response
to the system’s behavior. There the entire history of the search may alfect the current
location of the maximum value.

Section 2 presents the model. For those familiar with genetic algorithms, highlights of
Section 2 are

¢ Real-valued vectors are used as genotypes instead of bit vectors. Reproduction and
crossover are continuous arithmetic processes, rather than discrete boolean processes.

This rescarch is supported by the System Development Foundation.

121

o The entire population is potentially involved in cach crossover operation, and crossover
is not limited to contiguous portions of genes.

® The reproductive potential of genotypes is not determined by comparison to the average
fitness of the population, but by comparison to a thresholkl. Adjusting the threshold
can induce rapid convergence or diverge an already converged population.

Section 3 describes simulation studies that have been performed. The model is tested
on functions that are constructed to explore its hehavior when faced with various hazards.
First a simple convex lunction space is considered, then larger spaces with local maxima
are tried.

Section 4 discusses the model with respect to the framework of reproductive plans and
genetic operators developed in [10]. Possible implications for connectionist research are
not extensively developed in this paper.

Section 5 concludes the paper.

2 Development

The goal of this research was to satisfy both genetic and connectionist constraints as
harmoniously as possible. As it turned out, the standard genctic operators appear only
implicitly, as parts of a good description of how the model behaves. On the other hand,
the implementation of the model in connectionist terms is not particularly intuitive. After
sketching a genetic algorithm, this section presents the model via a loose analogy to the
political process of a democratic society. The section concludes by detailing the implemen-
tation of this “clection” model and drawing links between the genetic, the political, and
the connectionist descriptions.

2.1 Genetic algorithms. Genetic evolution as a computational technique was proposed
and analyzed by Holland [10). It has been claborated and refined by a number of re-
searchers, e.g. [3, 4] and applied in various domains, e.g. (13, 6]. In its broadest formula-
tions it is a very general theory; the following description in terms of function maximization
is only one of many possible incarnations.

Genetic search can be used to optimize a function over a discrete parameter space,
typically the corners of an n dimensional hypercube, so that any point in the parameter
space can be represented as an n bit vector. The technique manipulates a set of such
vectors to record information gained about the function. The pool of bit vectors is called
the population, an individual bit vector in the population is called a genotype, and the bit
values at each position of a genotype are called alleles. The function value of a genotype
is called the genotype's fitness or figure of merit.

There are two primary operations applied to the population by a genetic algorithm.
Reproduction changes the contents of the population by adding copies of genotypes with
above-average figures of merit. The population is held at a fixed size, so below-average
genotypes are displaced in the process. No new genotypes are introduced, but changing
the distribution this way causes the average fitnéss of the population to rise toward that
of the most-fit existing genotype.

In addition to this “reproduction according to fitness,” it is necessary to generate
new, untested genotypes and add them to the population, else the population will simply

122

converge on the best one it started with. Crossover is the primary means of gencrating
plausible new genotypes for addition to the population. In a simple implementation of
crossover, two genotypes are selected at random from the population. Since the population
is weighted towards higher-valued genotypes, a random selection will be biased in the same
way. The crossover operator takes some of the alleles from one of the “parents” and some
from the other, and combines them to produce a complete genotype. This “olfspring”
is added Lo the population, displacing some other genotype according to various criteria,
where it has the opportunity to flourish or perish depending on its fitness.

To perform a search for the maximum of a given function, the population is first ini-
tialized to random genotypes, then reproduction and crossover operations are iterated.
Eventually some (hopefully maximal valued) genotype will spread throughout the popula-
tion, and the population is said to have “converged.” Once the population has converged to
a single genotype, the reproduction and crossover operators no longer change the makeup
of the population.

One technical issue is central to the development of the proposed medel. In addition to
reproduction and the crossover operator, 1most genetic algorithms include a “background”
mutation operator as well. In a typical implementation, the mutation operator provides a
chance for any allele to be changed to another randomly chosen value. Since reproduction
and crossover only redistribute existing alleles, the mutation operator guarantees that every
value in every position of a genotype always has a chance of occuring. If the mutation
rate is too low, possibly critical alleles missing from the initial random distribution (or lost
through displacement) will have only a small chance of getting even one copy (back) into
the population. However, if the probability of a mutation is not low enough, information
that the population has stored about the parameter space will be steadily lost to random
noise. In either of these situations, the performance of the algorithm will suffer.

2.2 A democratic society metaphor. Envision the democratic political process as a
gargantuan function maximization engine. The political leanings of the voting popula-
tion constitute the system’s store of information about maximizing the nebulous function
of “good government.” An election summarizes the contents of the store by computing
simple sums across the entire population and using the totals to fill each position in the
government. When the winners are known, voters informally express opinions about how
well they think the clected government will fare. The bulk of the time between elections
is spent estimating how well the government actually performs. By the pext clection, this
evaluation process has altered the contents of the store: better times favor incumbents;
worse times, challengers.

In society, the function being optimized is neither well-defined nor arbitrary, and the
final evaluation of a govermment must be left to history, but in the abstract realm of
function maximization the true value of a point supplied to any function can be determined
in a single operation. The immediacy and accuracy of this feedback creates an opportunity
for an explicit learning algorithm that would be difficult to formalize in a real democracy.
Credit and blame can be assigned to the voters based on how well their opinions about
the successive governments predict the results produced by the objective function. Voters
that approved of a high-scoring government can be rewarded by giving them more votes,
so their preferences become a bit more influential in the subsequent election. Voters in
such circumstances tend to favor the status quo. Voters whose preferences cause them to

123

et -

approve of a low-scoring government lose voling power, and become a bit more willing to
take a chance on something new. The proposed model is built around such an approach
to learning.

An iteration of the algorithm consists of three phases which will be called “election,”
“reaction,” and “outcome.” The function maximization society is run by an n member
“government” corresponding to the n dimensions of the function being maximized. In
each election all n “government positions” are contested. There are {wo political parties,
“Plus” and “Minus.” A genotype represents a voter’s current party preferences, recording
a signed, real-valued number of votes for each of the positions. Which party wins a position
depends on the net vote total for that position. A government represents a point in the
parameter space, with Plus signifying a 1 and Minus signifying a 0.

After an clection is concluded, each voter chooses a reaction to the new government:
“satisfied,” “dissatisfied,” or “apathetic.” The complete state of a voter includes the
weights of its genotype plus its reaction. In general, voters whose genotypes match well
with the government—i.e., most (or the most strongly weighted) of the positions have the
same signs as the genotype weights—will be satisfied and therefore share in the credit or
blame for the governiment’s performance. Voters that got about half of their choices are
likely to be apathetic, and therefore are unaffected by any consequent reward or punish-
ment. Voters that got few of their choices are likely to be dissatisfied with the election
results. Dissatisfied voters share in the fate of the government, but with credit and blame
reversed in a particular way discussed below. Satisfied and dissatisfied voters are also
referred to as active, and apathetic voters are also referred to as inactive.

In the outcome phase, the performance of the government is tested by supplying the
corresponding point to the objective function and obtaining a function value. This value is
compared to the recent history of function values produced by previously elected govern-
ments to obtain a reinforcement signal. A positive result indicates a point scoring better
than usual and vice-versa. The reinforcement signal is used to adjust the preferences of the
active voters. Positive reinforcement makes the reactions of the population more stable,
and negative reinforcement makes them more likely to change. Finally, the newly ob-
tained function value is incorporated into the history of function values, and an iteration
is complete.

Two points are worth making before considering the actual implementation. The frst
point is that there is noise incorporated into both the election and the reaction processes.
If the sum of the vote for a given position is a landslide, the result will essentially always be
as expected, but as the vote total gets closer to zero the probability rises that the winner
of the position will not actually be the party that got the most votes. There are no ties
or runoff elections; if the sum of the vote for a position totals to exactly zero the winner
is chosen completely at random. Voter reactions are also stochastic, based on the net
degree of match over mismatch between each genotype and the elected point. Although
real election systems try to ensure that the winner got the most votes, in the proposed
model this nondeterminisin serves the crucial function of introducing mutation. Moreover,
unlike the constant-probability mutation operator mentioned in the previous section, it is
data dependent. Mutation is very likely in those positions where no consensus arises from
the population, but it will almoest never upset a clear favorite.

The second point is that only the currently active voters participate in the election.

124

IO URATHITTR 1T

positions

Point tested: 1 = Q1
Point vaduwe: v = 87.7
IR /5.6 Lxpectation evel: @ - 113.8
Reinforcornem: r (0.3462

volors

population

Figure L. A very sl instance of the model, There are two positions and three voters, The state
af the system b= shown in the middle of an onteome phase. just belore apportionment of eredit,
The clection results are shown in the top row of civeles: the enseing voter reactions are shown in
the bottom row. The first voter = apathetic, The sccond voter s satisfied. even though it didn’t
get itz preference on the first position. The third voter is dissatislied with the election results. On
the right are the other data maintained by the model. The elected government corresponds to the
biniry veetor 0F, which liis been passed to the objective function which returned the value 87.7,
Thiz is less than expected so the reidoreement signal is negative. The symbols next to the link
weights indicate whethier the weights will increase (7). decrease (). or remain the same (=) when
the reinforcement signal 1s applicd. Negative reinforcement rewards inconsistency; in this exmnple,
only the first weight of the second voter increases in magnitude.

Satisfied voters vote in the manner described above. Dissatisfied voters vote in a sign-
reversed manner: positive weights vote for Minus and negative weights vote for Plus.
Apathetic voters do not vote at all, but they react to each election and may become
active. Section 4 discusses a genetic interpretation of this strategy.

2.3 A connectionist implementation. The ever-incrcasing demand for computational
power and the continuing desire to understand the human brain has encouraged research
into massively parallel computational architectures that resemble the physiological picture
of the brain more closely than does the standard Von Neumann model. The basic as-
sumption of the connectionist approach (see, e.g., [5] or [7]), is that computation can be
accomplished collectively by large numbers of very simple processing units that contain
very little storage. The bulk of the memory of the system is located in communication links
between the units, usually in the form of one or a few scalar values per link that control
the link’s properties. In terms of individual! units and links, the Perceptron [12] typifies
the kinds of hardware considered: a unit is simple linear threshold device, adopting one of
two numeric output states based on a comparison between the sum of its input links and
its threshold; a link connects two units and contains a scalar variable that is multiplied by
the link input to produce the link output.

In terms of problem formulations, network organizations, and learning algorithms,
connectionist research has moved in many directions from the Perceptron; the proposed
model uses assumptions most closely related to those employed in (1, 2,9, 11]. There is not
space to explicitly motivate all of the decision designs of the implementation, but analogies
to the political and genetic descriptions are discussed as they arise. Figure 1 sketches an
instance of the model and defines terminology.

The basic processing element of the model is called a unit. Each unit ¢ has a ternary

125

i - i - — -
——— Y t

-1000 =800 =600 400 =200] Jo0 400 600 SO0 fouo
AL

Figure 2. A phase dingran of s, as a function of AE; and £ The boundary curves are spec-
ified by Eq. (2), plotted at T = 200 and o = 100. (AL &} points falling above the solid line
generate sy = — 1, points below the dotted line generate s, = 1, and points hetween the lines gen-
crate a; = (.

state variable s; € {+1,0,—1}. Units communicate their current states to other units via
links. A link between two units ¢ and 7 has a real-valued weight w;;. All links between
units are bidircctional and have the same weight in both directions, i.e. Wiy = wi.

In the political analogy, groups of units represent both the government positions and
the voters. In the former case, s; represents the winner of position ¢, with s; = 1 — Plus

and s; = —1 — Minus. Paramecters are set so that §; = 0 cannot occur for the position
units. In the latter case, s; represents the reaction of voter 7, with 8; = 1 — “satisfied,”
s; = 0 — “apathetic,” and s; = ~1 — “dissatisfied.”

A unit simply retains its current state until it is probed, at which time it .checks
the states of the units it is connected to and the weights on those links and applies a
probabilistic decision rule to select a state. The quantity that sums up the current context
of a unit 7 is called “AE,” and is defined as

AE,‘ = ZZSJ"!U!‘J' i (1)
7

where 7 ranges over all the units in the network and wy;; = 0 if units 7 and j are not
connected. Given AE; and a uniform random variable 0 < £ < 1, the decision rule is

) 1
1 1f621+e_(AE£+Q)/T
. . 1 2)
HEYE fe< (
it 1+ e~(AE~a)/T
0 otherwise,

The boundaries between the unit states are plotted in Figure 2. The size of the model
parameter T > 0—the “temperature”-—determines how sharply the boundaries slope as
AE; moves away from zero; it controls how “noisy” the system is. The model parameter
a 2 0 controls the width of the “apathy window” when the voter units are probed.

In the political analogy, the clection and reaction processes are both implemented by
the probe operation. An election is performed by probing each of the position units once.
Since position units connect only to voter units the ordering of the probes is irrelevant,
and the contests for each position can happen in parallel. When applied to a position

126

unit 7, the summation in lq. (1} toies np the ellective vole count for the position. If a
voler unil 7 is apathetic, then s; = 0 and w;; does not affect the total for the position,
otherwise either w;; or —w;; is included in the total depending on whether the voter is
satisfied or dissatisfied. The winner of the position is then determined by Eq. (2), applied
with @ = 0. As AFE; becomes more positive, the likelihood of Plus winning the contest
increases, and vice-versa. If one takes the limit as T — 0, Kq. (2) approaches a step
function corresponding to a deterministic election based only on the sign of AL;.

The voter reaction is assessed symmetrically, by probing each of the voter units once.
When applied to a voter unit 7, the summation in Eq. (1) produces a net match score
between an elected government and the voter’s prelerences. The match score for the voter
increases when the state of position 7 has the same sign as w,; and decreases when the signs
differ. The voter’s reaction is then determined by Eq. (2), with o sct as a model parameter.
A large positive AFE; indicates a particularly good match between a government and a
voter, and generates a high probability that the voter will be satisfied and adopt 5; = 1; a
large negative value indicates a particularly bad match and strongly suggests s; = —1; and
a near-zero value indicates an ambiguous situation and generates the largest probabilily of
adopting s; = 0. The assumption of bidirectional links with symmetric weights guarantees
that a voter’s behavior during elections and reactions will be consistent. If all of a voter’s
preferred candidates are elected, for example, then in the zero temperature limit the voter
cannot be dissatisfied with the government.

In genetic terms, an election can be viewed as part of a gencralized crossover operation.
If we imagine one satisfied voter in an otherwise apathetic population, the outcome of a
(sufficiently low temperature) election will be a direct expression of that voter’s genotype:
wherever the weight from the voter to a position is positive Plus will win and vice-versa. If
two voters are satisfied, some mixture of their genotypes will be expressed by the position
units, depending on the relative magnitudes of the weights to the positions where the voters
disagree. This situation bears a close resemblance to the standard crossover operator.
The difference is that standard crossover determines the winners of disputed positions by
a random choice of crossover point, whereas the proposed model exploits accumulated
performance data to bias each decision.? In the general case the crossover operation is
hard to see explicitly, considering the effects of many satisfied voters, the dissatisfied vote,
temperature, and the fact that the crossed-over genotype is not guaranteed admission to
the population.

The next steps in the algorithm are straightforward. The states of the position units
are translated into a binary vector [; the vector is passed to the objective [unction; a scalar
value v is returned. The function value has no meaning in itself since the possible range
of function values is unknown. A judgment must be made whether the value is “good” or
“had,” assuming that whatever is deemed good will be made more probable in the future.
The expectation level 8 is used to produce the reinforcement signal

2
= {00 - 1. (3)

r

2 This statement is too strong if the model using standard crossover also nses inversion, since in
that case the grouping induced by the crossover point does depend on the past performance of the model,
as recorded by the inversion operator. Section 4 discusses inversion and crossover further.

127

=

0. Initialization: Given unknown function {v = f(I)| ¢ 2",v ¢ N}. Sclect
model parameters. Create n position units and m voter units. Link each
position unit to each voter unit. Set all nm link weights w;; = 0. Set all
n 4- m unit states 5; = 0. Set 8 = 0.

1. Election: Probe each position unit (Fqs. 1 and 2).

2. Reaction: Probe each voter umt.

3. Outcome:

3.1. Fitness test: Compute v = f{[).
3.2. Discount expéctations: Compute r {IEq. 3).
3.3. Apportion credit: Update w;; (Eq. 4).
3.4. Adjust expectations: Update 0 (Eq. 5).
4. Iterate: Go to step 1.

m > 0 Size of population; number of voters.
T > 0 Temperature of unit decisions.
a > 0 Apathy window for voter reactions.
k > 0 Payoff rate.
T, > 0 “Temperature” of reinforcement scaling.
0 < p < 1 Time constant for function averaging.
& > 0 Excess expectation.

Figure 3. Algorithin summary and list of model parameters.

This employs the same basic sigmoid function used in the unit decision rule, but r is
bounded by #1 and is used as an analog value rather than a probability. The model
parameter T, scales the sensitivity around § = v.3 7 is used to update the weights

Wijpp1 = Wije + krs;s; (4)

where k > 0 is the payoff rate. The change to each link weight depends on the product s;s;.
If the voter unit is apathetic the weight does not change, otherwise either kr or —kr is
added to the weight, depending if the voter and position units are in the same or different
states.

If r is positive, the net elfect of this is that the AE of satisfied units becomes more pos-
itive and the AE of dissatisfied units becomes more negative, i.e., each active unit becomes
somewhat less likely to change state when probed. Consistency is encouraged; the incum-
bents are more likely to be reelected, the voters are less likely to change their reactions.
When r is negative the reverse happens. Inconsistency is encouraged; victory margins
erode, voter reaction becomes more capricious. An updating of weights with positive r is
called “converging on a genotype,” with negative r, “diverging from a genotype.”

In genetic terms, the weight modification procedure both implements reproduction and
completes the implementation of the crossover operator. Only the crossed-over genotype
as expressed in the position units is eligible for reproduction, and then enly if r > 0.
Otherwise the network diverges, and that genotype decreases its “degree of existence”
in the population. It is displaced, by some amount, but it is not replaced with other

3 The precise form of Eq. (3) does not appear essential to the model. Several variations all searched
effectively, though they displayed different detailed behaviors.

128

members of the population—the total “voting power” of tlie population declines a bit
instead. Intuitively speaking, the space vacated by a diverged genotype is filled with noise.

The final implementation issue is the computation of the expectation level. A number
of workable ways to manipulate ¢ have been tried, but the simulations in the next section
all use a simple backward-averaging procedure

Oei1 = pl + (1 — p)(v + 6) (5)

where 0 < p < 1 is the “retention rate” governing how quickly # responds to changes in v.
Just allowing # Lo track v is inadequate, however, for if the network completely converged
there would be no pressure to continue searching for a better value. A positive value for
the model parameter § avoids this complacency and ensures that a converged network will
receive more divergence than convergence, and eventually destabilize.

Figure 3 summarizes the algorithm and lists the seven model parameters.

3 Behavior

This section describes preliminary simulations of the election model. Most of the objective
functions considered here were explored during the design of the model, rather than being
chosen as independent tests after the design stabilized. The functions were created to
embody interesting characteristics of search spaces in general.

All of the simulations described in this paper use the following settings for the model
parameters
m =50 Ti="10n o = 5n k=20

T, =10 p=075 6=40

Note that the temperature and the apathy are proportional to the dimensionality of the
given parameter space. For convenience, these are called the “standard” settings, but
significantly faster searching on a function of interest can be produced by fine-tuning the
parameters. The standard settings were chosen because they produce moderately fast
performances across the four selected functions, each tested at four dimensionalities.

The simulations count the average number of function evalnations before the model
evaluates the global maximum. Two other algorithms were implemented for comparison.
The first was the following hillelimbing algorithm

1. Select a point at random and evaluate it.

2. Evaluate all adjacent points. If no points are higher than the selected point,
go to step 1. Otherwise select the highest adjacent point, and repeat this step.

Iterated hillclimbing is a simple-minded algorithm that requires very little memory.
Its performance provides only a weak bound on the complexity of a parameter space. The
second algorithm was a basic version of Holland’s R1 reproductive plan [10], using only
simple crossover and mutation. Considering the lack of sophisticated operators in the
implementation, and the author’s inexperience at tuning its parameters, the performance
of the R1 implementation should be taken only as an upper bound on the achievable
performance of a simple genetic algorithm.?

4 The Rl modcl parameter values were selected after a short period of trial and error on the test

129

3.1 A convex space. Consider the following trivial function: Score 10 points for each
1 bit. Return the sum. The global maximum equals 10n and occurs when all bits are
turned on. This “one max” [unction was tested becanse it can be searched oplimally by |
hillclimbing, and the generality of a genelic search is unnecessary. Figure 4 tabulates the
simulation results for n = 8,12,16,20. As expected, the hillclimbing algorithm found the
maximum more quickly than did the model, but il is encouraging that on all but the
smallest case the election model comes within a factor of two of hillclimbing's efliciency on
this convex space. Observations made during the simulations suggest that the relatively
poorer performance of R1 arose primarily from the occasional loss of one or more critical
alleles, producing the occasional very long run. Although increasing the mutation rate
reduced the probability of such anomalies, it produced a costly rise in the length of typical
Funs.

One max
n 8 | 12 | 16 20
Method Bvaluations performed*
Hillelimb 31 82 128 198
Election 73 117 187 302
Holland R1 195 674 1807 4161

* Rounded averages over 25 runs.

Figure 4. Comparative smulation results on the “one max™ function. In all simulations, the
performance measure is the number of objective function evaluations performed before the global
maximum is evaluated.

3.2 A local maximum. Convex function spaces are very easy to search, but spaces of
interest most often have local maxima, or “false peaks.” Consider this “two max” function:
Score 10 points for each 1 bit, score —8 points for each 0 bit, and return the absolute value
of the sum. This function has the global maximum when the input is all 1’s, but it also has
a local maximum when the input is all 0's. Figure 5 summarizes the simulation results.
With this function, a simple hillclimber may get stuck on the local maximum, so multiple
starting points may be required.

Two max
n 8 12 | 16 | 20
Method Evaluations performed*
Hillclimb 37 97 186 230
Election 83 152 194 269
Holland R1 113 340 794 1622

* Rounded averages over 25 runs.

Figure 5. Comparative simmlation results on the “two max” function.

functions. Using the notation defined in [10], the values were M=50,Pc=1P =0, 1Py = 0.5, and
e = (1 t)0‘25+2-"“, where n is the dimensionality of the objective function. Constant offsets were added to
the functions where necessary to ensure non-negative function values.

130

ioth e

TR et

. ma =

Nonetheless, on this function also the hillclimber outperforms the model, although only
by a narrow margin on the larger cases. The mere exislence of a local maximum does not
imply that a space will be hard to search by iterated hillclimbing. The regions surrounding
the two maxima of the function have a constant slope of 18 points per step toward the
nearer maximum. The slopes have the smne magnitude, so the higher peak must be wider
at its base. With every random starting point, the hillclimber is odds on to start in the
“collecting area” of the higher peak, so it continues to perform well.

3.3 Fine-grained local maxima. Consider the following “porcupine” function: Score
10 points for cach 1 bit and compute the total. If the number of 1 bits is odd, subtract
15 poinis from the total. Return the total. Every point that has an even number of 1 bits
is a porcupine “quill,” surrounded on all sides by the porcupine’s “back”—lower valued
points with odd numbers of 1 bits. As the total number of 1 bits grows, the back slopes
upward; the task is to single out the quill extending above the highest point on the back.

Porcupine
n 8 | 12 | 16 | 20
Method 1. Evaluations performed?
Hillelimb 145 2474 41973 -
Election 160 211 241 495
Holland R1 163 739 1296 3771

* Rounded averages over 25 runs.

Figure 6. Comparative simulation results on the “porcupine” function.

Unlike the first two functions, the porcupine function presents a tremendously rugged
landscape when one is forced to navigate it by changing one bit at time. Not surprisingly,
hillclimbing fails spectacularly here. Figure 6 displays the results. The landscape acts like
fiypaper, trapping the hillclimber after at most one move, and the resulting long simulation
times reflect the exponential time needed to randomly guess a starting point within a bit
of the global maximum. (The hillclimber was not run with n = 20 for that rcason.) On
the other hand, the election model gains less than a factor of two over its performance on
the one max function. The strong global property of the space—the more 1’s the better,
other things being equal—is detected and exploited by both genetic algorithms.5

Although the porcupine function reduced hillclimbing to random combinatoric search,
in a sense it cheated to do so, by exploiting the hillclimber’s extremely myopic view of
possible places to move. A hillclimber that considered changing two bits at a time could
proceed directly to the highest quill. But increasing the working range of a hillclimber
exacts its price in added function evaluations per move, and can be foiled anyway by using
fewer, wider quills (e.g., subtract 25 points unless the number of ones is a multiple of

5 The concept of parity, which determines whether one lands on quill or back, is not detected or
exploited. All three algorithins continue to try many odd parity points during the scarch. The general notion
of parity, independent of any particular pattern of bits, cannot be represented in such simple models; the
import of this demonstration is that the genctic models can make good progress even when there are aspects
of the objective function that, from their point of view, are fundamentally unaccountable.

131

T ———

: ’ T L L s T {) ' & 'y y
_..3. I't'i) rmal Bris S ulite S 10 ook o8 S |"--':1-- =3 ol g e

three.} Higher peaks may always be just “over the horizon” of an algorithm that searches
fixed distances outward from a single point.

3.4 Broad plateaus. The porcupine function was full of local maxima, but they were
all very small and narrow. A rather different sort of problem occurs when there are large
regions of the space in which all points have the same value, offering no uphill direction.
Consider the following “plateaus” function: Divide the bits into four equal-sized groups.
For each group, if all the bits are 1 score 50 points, if all the bits are 0 score —50 points,
and otherwise score 0 points. Return the sum of the scores for the four groups. In a group,
any pattern that includes both zeros and ones is on a platean. Between the groups the
bits are completely independent of each other; within a group only the combined states of
all the units has any predictive power. When n = 8 there are only two bits in a group and
the function space is convex, because the sequence 00 — {01,10} — 11 is strictly uphill.
However, since each group grows larger as n increases, this function rapidly becomes very
non-linear and difficult to maximize.

Plateaus
n 8 12 | 16 | 20
Method) Evaluations performed®
Hillclimb 34 414 2224 13404
Election - 146 392 758 2364
Holland R1 228 697 2223 8197

* Rounded averages over 25 runs,

Figure 7. Comparative sinmlation results on the “plateaus” [unction.
p P

4 Discussion

The proposed model was developed only recently, and has it has not yet been analyzed
or tested extensively. Although it would be premature to interpret the model and simula-
tions in a very broad scope, a [ew interesting consequences have been uncovered already.
This section touches on a number of relationships between the election model and the
analytic structure of schemata and generalized genetic operators developed by Holland in
Adaptation in Natural and Artificial Systems (ANAS) [10].

Given a population, computational eflects related to simple crossover can be achieved
in many ways. For example, disputed positions could be resolved by random choices
between the parents, or by appealing to a third genotype as a tie-breaker. Like simple
crossover, both of these implementations perform the basic task of generating new points
that instantiate many of the same schemata as the parents. An appropriate crossover
mechanism interacts well with the other constraints of the model and the task domain.
For example, the information represented by a DNA molecule is expressed linearly, so the
sequential ordering of the alleles is critical. In these circumstances, the simple cut-and-
swap crossover mechanism is an elegant solution, since it is cheap to implement and it
preferentially promotes contiguous groups of co-adapted alleles.

In an unconstrained function optimization task, as little as possible should be presumed
a priori about how the external function will interpret the alleles. In these circumstances,

132

the sequential bias of the standard crossover mechanism is unwarranted. ANAS proposes
an inversion operator to compensate for it. The inversion operator tags each allele with
its position number in terms of the external lunction, so the ordering of the genotype can
be permuted to bring co-adapted alleles closer together and therefore shelter them from
simple crossover. However, if two chosen parents do not have their genotypes permuted in
the same way, a simple crossover between them may not produce a complete set of alleles.
ANAS offers two suggestions. If inversion is a rare event, sub-populations with matching
permutations can develop, and crossover can be applied only within such groups. But then
information about the linkages between alleles accumulates only slowly. Alternatively, one
of the parents can be temporarily permuted to match the other parent in order to allow
simple crossover to work, but then half of the accumulated linkage information is ignored
at each crossover.

The proposed model does not use the ordering of the alleles to carry information.
Linkage information is carried in the magnitudes of the genotype weights, in non-obvious
ways involving all three phases and the assumption of symmetric weights. For example,
the defining loci of a discovered critical schema are likely to be represented by relatively
large weights on a genotype, since those weights will receive systematically higher net
reinforcement than the non-critical links. Conversely, relatively large weights to a few
positions cause the designated alleles to behave in a relatively tightly coupled fashion.
In the clection phase, large weights increase the chance that the alleles will be expressed
simultaneously and receive reproduction opportunities. In the reaction phase, the same
large weights increase the chance that the voter will be apathetic when the implied schema
is not expressed, since the genotype’s large weights will tend to cancel. Strongly coupled
alleles will be disrupted more slowly over successive outcome phases.

Although it is not discussed in ANAS, subsequent research found it useful to include
a “crowding factor” that affects how genotypes get selected for deletion to make room for
a new offspring [4]. The idea is to prefer displacing genotypes that are similar to the new
one, thus minimizing the loss of schemata. In the proposed model, note the interaction
between the reaction phase and the outcome phase. Only active voters are affected by
weight modification. Since voters tend to be satisfied or dissatisfied when they strongly
match or mismatch the government, and dissatisfied voters invert the sign of the weight
modifications, converging on a genotype preferentially displaces similar existing genotypes.

The representation of genotypes by real-valued vectors instead of bit vectors has
widespread consequences. One major difference concerns the displacement of genotypes as
a result of reproduction or crossover. When a bit vector is displaced from a conventional
population, the information it contained is permanently lost. In contrast, the proposed
reinforcement operator is an invertible function. Between a constant government and a
voter, any sequence of positive and negative reinforcements has the same effect as their
sum. Observations revealed that the election model exploits this property in an unan-
ticipated and useful way. The happenstance election of a surprisingly good government
often leads to a run of reelections and positive reinforcements, occasionally freezing the
network solid for a few iterations, until the expectation level catches up. If one examines
the signs of the genotype weights at such a point and interprets them as boolean vari-
ables, the population often looks nearly converged. But the expectation level soon exceeds
any fixed value, and weaker negative reinforcements begin to cancel out the changes and

133

to regenerate the pre-convergent diversity. During such times, the government positions
with the smallest victory margins are the first to begin changing, which causes a period
of stochastic local search in an expanding neighborhood around the convergence point, If
further improvement is discovered, the network will frequently converge on it, but often
the destabilization spreads until the government collapses entirely and a period of wide-
ranging global search ensues. It may be that much of the clection model’s edge over the
R1 algorithm on the strict maximization-tinie performance metric used in this paper arises
from this tendency to hillclimb for a while in promising regions of the parameter space,
without irrevocably converging the population.

5 Conclusion

The architectural assumptions of the model—-the unit and link definitions, the decision
rule, and the weight update rule—were frst explored for reasons unrelated to genetic algo-
rithms. The assumption of symmetric links between binary (1) threshold units was made
by Hopfield [11] because he could prove such networks would spontancously minimize a
particular “energy” function that was easily modifiable by changing link weights, Hopfield
used the modifiable “energy landscape™ to implement an associative menory.

Hopfield’s deterministic decision rule was recast into a stochastic form by Hinton &
Sejnowski [8] because they could then employ mathematics from statistical mechanics
to prove such a system would satisfy an asymptotic log-lincar relationship between the
probability of a state and the energy of the state. 0/1 binary units were used. They found
a distributed learning algorithm that would provably hillclimb in a global statistical error
measure. They used the system to learn probability distributions.

The weight update rule was investigated by the author because it provided a sim-
ple method of adjusting energies of states based on a reinforcement signal for a back-
propagation credit assignment algorithm [1]. +1 binary units were used. The connectionist
network was used as a modifiable evaluation function for a game-playing program. The
system learned to beat simple but non-trivial opponents at tic-tac-toe. Observations made
during simulations raised the possibility that genetic learning was occurring as the system
evolved. In that work, the government corresponds to the game board, and a voter, in
effect, specifies a sequence of moves and countermoves for an entire game. The model fre-
quently played out variations that looked like crossed-over “hybrid strategies.” The rapid
spread through the units of a discovered winning strategy was suggestive of a reproduction
process.

The research reported here focused on that possibility. The task was simplified to avoid
problems caused by legal move constraints, opposing play, and delayed reinforcement.
Given an appropriate problem statemnent, the basic election /reaction scheme seemed to
be the simplest approach. Extending the unit state and decision rule to three values
occurred to the author while developing the political analogy. In theory, apathy could
be eliminated, because a unit with a near-zero AE would pick +1 or —1 randomly, so
rewards and punishments irrelevant to that unit’s genotype would cancel out in the long
run. In practice, explicitly representing apathy improves the signal-to-noise ratio of the
reinforcement signal with respect to the genotype. The unit is not forced to take a position
and suffer the consequences when it looks like a “judgment call.” The performance of the
algorithm is generally faster and more consistent, but a percentage of the population is

134

|
|
|
|
E
|

ignored at cach election. For the large populations implied by massively parallel models,
it appears to be an attractive space/time trade-off.

The connectionist model presented here has a much more sophisticated genetic de-
scription than was anticipated at the outset. Only reproduction, crossover and mutation
were intentionally “designed into” the model. It was a surprise to discover that the model
performed functions reminiscent of other genetic operators such as inversion and crowding
factors. As an emergent property, the model displays both local hillclimbing and global
genetic search, shifting between strategies at sensible times. More experience with the pro-
posed model is needed, but a crossing-over of genetic and connectionist concepts appears
to have produced a viable offspring.

References

[1] Ackley, D.H. Learning evaluation functions in stochastic parallel networks. Carnegie-
Mellon University Department of Computer Science thesis proposal. Pittsburgh, PA:
December 4, 1984.

[2] Ackley, D.H., Hinton, G.E., & Sejnowski, T.J. A learning algorithm for Boltzmann
Machines. Cognitive Science, 1985, 9(1), 147-169.

3] Bethke, A.D. Genetic algorithms as function optimizers. University of Michigan Ph.D.
Thesis, Ann Arbor, MI: 1981. .

[4] Dedong, K.A. Analysis of the behavior of a class of genetic algorithms. University of
Michigan Ph.D. Thesis, Ann Arbor, MI: 1975.

|5] Feldman, J., (Ed.) Special issue: Connectionist models and their applications. Coguni-
tive Science, 1985, 9(1).

[6] Goldberg, D. Computer aided gas pipeline operation using genetic algorithms and rule
learning. University of Michigan Ph.D. Thesis (Civil engineering), Ann Arbor, ML:
1983.

[7] Hinton, G.E. & Anderson, J.A. Parallel Models of Associative Memory. Hillsdale, NJ:
Erlbaum, 1981.

[8] Hinton, G.E., & Sejnowski, T.J. Optimal perceptual inference. Procecdings of the
IEEE Computer Society Conference of Computer Vision and Pattern Recognition.
June 1983, Washington, DC, 448-453.

{9] Hinton, G.E., Sejnowski, T.J., & Ackley, D.H. Boltzmann Machines: Constraint satis-
faction networks that learn. Technical report CMU-CS-84-119, Carnegie-Mellon Uni-
versity, May 1984.

(10] Holland, J.H. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[11] Hopfield, J.J. Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the National Academy of Sciences USA, 1982, 79,
2554-2558.

[12] Rosenblatt, F. Principles of neurodynamics: Perceptrons and the theory of brain mech-
anisms. Washington, DC: Spartan, 1961.

[13) Smith, S. A learning system based on genetic algorithms. University of Pittsburgh
Ph.D. Thesis (Computer science). Pittsburgh, PA: 1980.

135

Job Shop Scheduling with Genetic Algorithms

Dr. Lawrence Davis

Bolt Beranek and Newman Inc.

1. INTRODUCTION

The job shop scheduling problem is hard to solve well, for reasons outlined by Mark
Fox et al'. Their chief point is that realistic examples involve constraints that cannot be
represented in a mathematical theory like linear programming. In ISIS, the system that
Fox et al have built, the problem is attacked with the use of multiple levels of abstraction
and progressive constraint relaxation within a frame-based representation system. I1SIS is a
deterministic program. however, and faced with a single scheduling problem it will produce
a single result. Given the vast search space where such unruly problems reside, the chances
of being trapped on an inferior local minimum are good for a deterministic program. In
this paper, techniques are proposed for treating the problem non-deterministically, with
genetic algorithms.

2. JOB SHOP SCHEDULING: THE PROBLEM

A job shop is an organization composed of a number of work stations capable of
performing operations on objects. Job shops accept contracts to produce objects by putting
them through series of operations. for a fee. They prosper when the sequence of operations
required to fill their contracts can be performed at their work centers for less cost than
the contracted amount, and they languish when this is not done. Scheduling the day-to-
day workings of a job shop (specifying which work station is to perform which operations
on which objects from which contracts) is critical in order to maximize profit, for poor
scheduling may cause such problems as work stations standing idle, contract due dates not
being met. or work of unacceptable quality being produced.

The scheduling problem is made more difficult by that fact that factors taken into
account in one’s schedule may change: machines break down, the work force may be
unexpectedly diminished, supplies may be delayed, and so on. A job shop scheduling
system must be able to generate schedules that fill the job shop’s contracts, while keeping
profit levels as high as practicable. The scheduler must also be able to react quickly to
changes in the assumptions its schedules are based on.

In what follows, we shall consider a simple job shop scheduling problem. intended to
be instructive rather than realistic, and show how genetic algorithms can be used to solve
it.

3. SJS-A SIMPLIFIED JOB SHOP

SJS Enterprises makes widgets and blodgets by contract. There are six work stations
in 8JS. Centers 1 and 2 perform the grilling operation on the raw materials that are
delivered to the shop. Centers 3 and 4 perform the flling operation on grilled objects,

136

and centers 5 and 6 perform the final milling operation on filled objects. Widgets and
blodgets go through these three stages when they are manufactured. Thus, the sequence
of processes to turn raw materials into finished objects is this:

RAW MATERIALS - GRILLING - FILLING - MILLING - CUSTOMER.
SJS has collected a number of statistics about its operations. Due to differences in its

machinery and personnel, the expected time for a work station to complete its operation
on an object is as follows, in minutes:

WORK STATION WIDGETS BLODGETS
1 5 15
2 8 20
3 10 12
4 8 15
5 3 6
6 4 8

The cost of running each of the work stations at SJS is as follows, per hour:

WORK STATION IDLE ACTIVE
| 10 70
2 20 60
3 10 70
4 10 70
5 20 80
6 20 100

In addition, SJS has overhead costs of 100 units per hour.
Finally, it requires some time for a work station to change from making widgets to
making blodgets (or vice versa). The change time for each station is:

WORK STATION CHANGE TIME
1 30

10

20

20

9

18

Lor TN & B~ SO TL T o]

4. A SCHEDULING PROBLEM

Suppose SJS is beginning production with two orders, one for 10 widgets and one
for 10 blodgets. How should it be scheduled so as to maximize profits from the point at

137

which operations begin, to the point at which both orders are filled? Let us consider three
schedules that address this problem.

In schedule 1, individual work stations are assigned their own contracts. We notice .
that the production of blodgets takes longer than the production of widgets, and so we
make widgets with centers 2, 4, and 6, and make blodgets with centers 1, 3, and 5. If the
shop follows this schedule, the various work stations are occupied as follows:

STATION CONTRACT WORKING WAITING HRS-WORKED COST

1 blodgets 0-150 30] 210
2 widgets 0-80 40 2 140
3 blodgets 15-162 60 3 210
4 widgets 8-88 40 2 150
5 blodgets 27-168 120 3 240
6 widgets 16-92 80 2 220

In simulating the operation of the job shop under this plan, we note that some work
stations spend a good deal of time waiting for objects to work on. Work stations 5 and 6,
for example, spend from one to two hours waiting because they are faster than the centers
that feed objects to them. It is possible to let them stand idle for the first hour of the day
without delaying the filling of the orders, vielding a second schedule with cost 970, a 17
per cent reduction over the first schedule, achieved by giving these work stations an initial
idle hour. A different way to cut down on the waiting time would be to leave work station
6 idle throughout the day, performing all operations with work station 5 during the second
and third hours of the day. Work station 5 must start work on blodgets when it begins,
switch to widgets later on and finish them, then switch back to making blodgets at the
end. The cost of this schedule is 950, an 18.8 per cent reduction over the direct cost of the
first schedule.

It is interesting to note that a deterministic system would be likely to try one or
the other of the two optimizations on the first schedule, but not both. Each of these
optimizations brings the situation to a local minimum in cost, and advance predictions of
which such optimization will be best appear difficult to make.

5. AN AMENABLE REPRESENTATION OF THE PROBLEM

If we consider a schedule to be a literal specification of the activity of each work sta-
tion, perhaps of the form “Work station w performs operation o on object x from time
tl to time t2.” then one will be caught in a dilemma if one applies genetic techniques to
this problem. Either one will attemnpt to use CROSSOVER operations or not. If so, their
use will frequently change a legal schedule into an illegal one, since exchanging such state-
ments between chromosomes will cause operations to be ordered for which the necessary
previous operations have not been performed. As a result, one would acquire the benefits
of CROSSOVER operations at the cost of spending a good deal of one’s time in a space
of illegal solutions to the problem. If one foregoes CROSSOVER operations, however, one

138

loses the ability to accelerate the search process, the very feature of the genetic method
that gives it its great power.

There is a solution to this dilemma?. It is to use an intermediary, encoded representa-
tion of schedules that is amenable to crossover operations, while employing a decoder that
always yields legal solutions to the problem. Let us consider the scheme of representations
and decoders that generated the second and third schedules above.

A complete schedule for the job shop was derived from a list of preferences for each
work station, linked to times. A preference list had an initial member-a time at which
the list went into effect. The rest of the list was made up of some permutation of the
contracts available, plus the elements “wait” and “idle”. The decoding routine for these
representations was a simulation of the job shop’s operations, assuming that at any choice
point in the simulation, a work station would perform the first allowable operation from
its preference list. Thus, if work station 5 had a preference list of the form (60 contractl
contract? wait idle), and it was minute 60 in the simulation, the simulator looked to see
whether there was an object from contract 1 for the work station to work on. If so, that
was the task the work station was given to perform. If not, the simulator looked to see
whether there was an object from contract 2 to work on. If so, it set the work station to
change status to work on contract 2, noting the elapsed time if contract 1 had been worked
on last, and then set it to work on the new object. If not, the station waited until an object
became available. By moving the “wait” element before contract2, one could cause the
work station to process objects from contract 1 only. never changing over to contract 2.

Representing the problem in this way guarantees that legal schedules will be produced,
for at each decision point the simulator performs the first Jegal action contained on a work
station’s list of all available actions. The decoding routine is a projected simulation, and
the evaluation of a schedule is the cost of the work stations, performing the tasks derived
in the simulation. As we shall see, the simulation decoder also provides some information
that will guide operations to perform useful alterations of a schedule.

6. DETAILS OF OPERATION

The program used a population sized 30, and ran for 20 generations. The problemn
was tried 20 times. It converged on variations of Schedule 2 14 times and a variation of
Schedule 3 6 times®. The operations used were derived from those optimizations made by
us as we tried to solve the problem deterministically:

RUN-IDLE: If a work station has been waiting for more than an hour. insert a preference
list with IDLE as the second member at the beginning of the day, and move the previous
initial list to time 60. The probability of applying this operation was the percentage of
time the work station spent waiting, divided by the total time of the simulation.

SCRAMBLE: Scramble the members of a preference list. Probability was 5 per cent
for each list at the beginning of the run, tapered to 1 per cent at the last generation.

CROSSOVER: Exchange preference lists for selected work stations. Probability was 40
per cent at the beginning of the run, tapered to 5 per cent at the last generation.

Each member of the initial population associated a list of five preference lists with
each work station. The preference lists were spaced at one-hour intervals, and each was a
random permutation of the legal actions.

]

The evaluation function summed the costs of simulating the run of the system for five
hours with the schedule encoded by an individual. (Although SJS overhead costs are not
included in the discussion of the three schedules earlier, the evaluation function included
them.} If, at the end of five hours, the contracts were not filled, 1000 was added to the
Tun costs.

7. CONCLUDING OBSERVATIONS

The example discussed above is much simpler than those one would encounter in
real life, and the range of operations employed here would have to be widely expanded
if a realistic example were approached. In addition, the system here would have to be
extended to handle the sorts of phenomena that the ISIS team has handled: establishing
connections between levels of abstraction, finding useful operations, and building special
constraints into the system, for example.

My belief is that these things could be done if they are successfully done by a deter-
ministic program, for it has been our experience that a quick. powerful way to produce an
genetic system for a large search problemn is to examine the workings of a good deterministic
program in that domain. Wherever the deterministic program produces an optimization
of its solution, we include a corresponding operation. Wherever it makes a choice based on
some measurement, we make a random choice, using each option's measurement to weight
its chances of being selected. The result is a process of mimicry that, if adroitly carried
out, produces a system that will out-perform the deterministic predecessor in the same
environmental niche,

In the case of the schedules produced above, the genetic operators were just those
optimizations of schedules that seemed most beneficial when we attempted to produce
good schedules by hand. The crudeness of the approach stems from our lack of any
fully specified deterministic solution to more realistic scheduling problems. When fuller
descriptions of knowledge-based scheduling routines are available, it will be interesting to
investigate their potential for conversion into genetic scheduling systems.

FOOTNOTES

1. "ISIS: A Constraint-Directed Reasoning Approach to Job Shop Scheduling,” Mark
S. Fox. Bradley P. Allen, Stephen F. Smith, Gary A. Strohm, Carnegie-Mellon University
Research Report. 1983.

2. The strategy of encoding solutions in an epistatic domain for operation purposes,
while decoding them for evaluation purposes, was worked out and applied to a number of
test cases by a group of researchers at Texas Instruments, Inc. The group included me,
Nichael Cramer, Garr Lystad, Derek Smith, and Vibhu Kalyan.

3. A number of variations in the scheduling that made no difference in the final
evaluation have been omitted in this summary.

140

Compaction of Symbolic Lagout
using Genetic Rlgorithms

Michael P. Fourman
Dept of Electrical and Electronic Enginesring
Brunel University, Uxbridge Middx., UK.
michaelRbrueereucl-cs.AC.UK

Introduction.

Design may be viewed abstractly as a problem of optimisation in the presence of
constraints. Such problems become interesting once the space of putative
solutions is too large to permit exhaustive search for an optimum;, and the payoff
function too complex to permit algorithmic solutions. Evoiutionary algorithms
[Holland 1975) provide a means of guiding the search for good solutions. These
algorithms may be viewed as embodying an informal heuristic for problem solving
along the lines of

“To find a better strategy try
variations on what has worked
wetl in the past.”

Here, a "strategy” is an attempt at a solution. A strategy will generally not
address all the constraints imposed by the problem. The algorithms we are
considering guide the search by comparing strategies. We represent this
comparison by the relation

abeatsb

(which will usually be be a partial order, but need not be total). We call strategies
which satisfy all the constraints of the problem "solutions”. In general, solutions
should beat other strategies and, of course, some solutions will beat others.
Abstractly, the algorithms merely search for strategies which are well-placed in
this ordering.

Many probiems in silicon design involve intractable optimisation problems, for
example, partitioning, placement, PLA folding and layout compaction. We say a

141

problem is intractabie when the combinatorial complexity of the solution space)
for the probiem makes exhaustive search impossible, and the varied nature of the
constraints which must be satisfied makes it unlikely that there is a constructive
aigorithmic solution to the problem. Automatic solution of such problems requires
efficient search of the solution space. Simulated annealing has been applied to the
first three problems [Kirkpatrick e/ @/ 1983], branch and bound techniques have
been applied to layout compaction {Schlag e¢ &/ 1983). In this paper we report on
the apptication of a genetic algorithm to layout compaction.

The first prototype solved a highly simplified version of the problem. it produced
layouts of a given family of rectangles under the constraint that no two shall
overiap, with cost given by the area of a bounding box. A more reatistic prototype
deais with the layout of a family of rectangular modules with a single level of
interconnect. These prototypes aliow the designer to add his ideas to the evolving
population of layouts and thus supplement rather than replace his expertise.

Symbolic Layout.
A circuit diagram conveys connectivity information:

1 T3

I
ar Ly L

@21 «prl[l

™ Ps

To manufacture the circuit this must be tranformed to a representation in terms
of layout elements, each layout element must be assigned an absoiute mask _
position. A layout diagram conveys this mask-making information. The passage
from a circuit diagram to a layout may be divided into three stages: firstly the
topology (relative positioning of layout elements) of the tayout is designed and
represented by a symbolic layout, then a mask level is assigned to each wire in
the circuit - the design is now represented by a stick diagram, finally the mask
geometry (absolute size and positions) is created. Engineers commonly use these

142

intermediate notations to represent the intermediate stages in the design process.
Here is a mask layout for our circuit:

........
.....

..............

..............

AN
N
\
N
N

7

Cor ! hj
_I
: r'g

The corresponding stick diagram is:

’//x’////f/;ff/////////f//}f/!/‘/‘///}f/'x'x‘x‘/g/i////

. J//f///?f////'/ﬁf!/xﬁ//f//f//fﬁ//?//z//xf/,f/,o

143

A symbolic layout is a representation of a circuit design which includes some
layout information. The symbolic layout represents a number of design decisions
on the relative placement of circuit elements. A stick diagram may be regarded as
a symbolic layout with a greater variety of symbois.

The procedure leading from a Symbolic layout to a mask layout is a form of
compaction. In general, there are many realisations of a given symbolic layout.
The aim of compaction is to produce a layout respecting the constraints implicit
in the symbolic layout while optimising performance and yield. Current compaction
algorithms require the designer to provide a layout as input. Compaction usually
consists of the modification of this layout- by sliding elements closer together
while retaining the topology. Clearly, the order in which elements are moved
affects the result. Most algorithms simply compact in each coordinate direction in
turn.

Modern designs are modularised hierarchically. The process of symbolic layout and
compaction may occur at any ievel of this hierarchy. The example we have used for
illustration above is a leaf cell (a dynamic NMOS shift register cell) from the
bottom level of the hierarchy. Leaf cell layout provides great opportunities for
area reduction and yield enhancement, as these cells are replicated many times
and any smail improvements at this level have a magnified effect on the chip.
Optimising leaf ce!l layout requires awareness of many interacting constraints
and complex cost functions (for example connectivity constraints given by the
circuit design, geometric constraints given by the process design rules, and the
cost functions arising from performance requirements and knowledge of yield
hazards). Because of this, constructive algorithmic solutions to this problem have

not proved efficient. Traditionatly, this area of design has been left to human
experts.

We hope to apply genetic algorithms to leaf-cell compaction, and have
implemented two prototypes to explore the applicability of these methods in this
domain.

144

Genetic Algorithms.

Genetic algorithms are applicable to probiems whose solution may be arrived at by
a process of successive approximations. This means that we need to be able to
modify strategies tn such a way that modifications of good strategies are likely to
be better than randomly chosen strategies. A simple heuristic in this setting
would be to take a strategy, a, and randomly generate a modification, M(a), of it
which may, or may not, be accepted on a probabilistic basis. An algorithm
embodying this idea Is simulated annealing IKirkpatrick es &/ 1983] The
algorithm procedes by starting with a strategy and repeatedly modifying it in this
way, varying the acceptance procedure according to the value of a variable called
temperature . If M(a) beats a, the modification is accepted. If a beats M(a), the
modification may be accepted (the probability of this increases with temperature
and decreases {f M(a) is badly beaten). The algorithm is run, starting at a high
temperature which 1s gently lowered. This simulates the mechanism whereby a
physical system, gently cooled, tends to reach a low-energy equlibrium position.
Genetic algorithms apply where the strategies have more structure. (in fact, In
most applications of simulated annealing, this extra structure s available.)
Strategies are represented as conjunctions of elementary restrictions on the
search space, or decisions . The evolutionary algorithm produces a population of
strategies, rather than a single strategy. The idea is that by combining some parts
of one good strategy with some parts of another, we are likely to produce a good
strategy. Thus in generating the progeny of a population, we allow not only
modifications or mutation, but also reproduction which combines part of one
strategy with part of another. The basic step is to take a population and produce a
number of progeny using a combination of mutation and reproduction. The progeny
compete with the older generation, and each other, for the right to reproduce.

If reproduction is to maintain good performance, we need to be able to divide
strategies In such a way that decisions which cooperate are Itkely to stay
together. This Is accomplished in an indirect and subtle manner. Strategies are
represented as strings of decisions. The child, R(a,b), of a and b is generated by
randomly splitting a and b and joining part of one to part of the other. Thus,
decisions which are close together in the string are likely to stay together. To
allow cooperating decisions to become close together, we Include Inversions
(which merely choose some substring and reverse it) among the possible

mutations. These act together with reproduction and selection, to move decisions
which cooperate closer to each other.

145

Nothing analogous to the temperature used in simulated anneaiing appears -
explicitly in the genetic algorithm. The likelihood that a nascent fndividuat will
survive to reproduce depends on the degree of competition it experiences from the
rest of the population. As the population adapts, the competition hots up -which
has the same effect as the cooling in the simulation of anneating.

Although genetic algorithms may be seen as a generalisation of simuiated
annealing, mutation plays a subsiduary réie to reproduction. The population at any
generation should be viewed as a repository of information summarizing the
resuits of previous evaluations. Individuals which perform weil survive to
reproduce. Reproduction acts to propagate combinations of decisions occuring in
these individuals. The better an individual performs, the longer it will survive and
the more chances it has to reproduce. The retative frequencies with which various
groups of decisions occur in the population record the degree to which they have
been found to work wel) together. Holland has shown that (under appropriate
Statistical assumptions) the effect of the genetic algorithm is to use this
information to effect an optimal allocation of trials to the various combinations
of genes.

Applying the genetic algorithm to compaction,

The genetic algorithm evolves populations of individuals. In our implementation,
each Indlvidual Is characterised by a chromosome which is a string of genes. The
length of chromosomes Is not fixed. New individuals are produced by a stochastic
mix of the classic genetic operators: crossover, mutation and inversion. Crossover
picks two individuals at random from the population, randemly cuts their
chromosomes and splices part of one with part of the other to form a new
chromosome. Mutation picks an Indlvidual from the population and, at a randomly
chosen number of points In its chromosome, may delete, create or replace a gene.
Inversion reverses some substring of a randomly selected chromosome.

ASimple L ayout Problem,

The layout problem addressed by our first prototype may be thought of as a form of
2-dimensional binpacking: A collection of rectangles Is to be piaced in the plane
to satisry certain design rules and minimise some cost function.

146

e — — - =
Wi, s T —

T

The simplest version of this problem (the one we address) has rectangies of fixed
sizes, the design rule that distinct rectangles should not overlap, and cost given
by area of a bounding box. This version of the problem is already intractable:
Suppose we satisfy the constraint that the distinct rectangles, p,q, should not
overlap, by stipulating that one of the four elementary constraints

p above q

p below ¢

p left_of q
p right_of g

is satisfied. Then, for a problem with n rectangles, we have N = n? - n pairs
and, g priori , 4N elements in our search space. In fact, this estimate of the size
of the problem is unreasonably large, there are ways of reducing the search space
stgnificantly; for example, "branch and bound" procedures have been used [Schlag

et a/ 1983).

Layout Strategies.

We consider layout strategies which consist of consistent lists of elementary
constraints (as above). Given such a list, the rectangles are placed in the first
quadrant of the plane as close to the origin as is consistent with the list of
elementary constraints. (The procedure which interprets the constraints is very
unintelligent. For example, it interprets 'p above q by ensuring that the
y-coordinate of the bottom of p is greater than that of the top of g, even if p is
actually placed far to the right of q (because of other constraints). Any
inconsistent lists of constraints produced by the genetic operators are discarded.

Select] iteri

Populations of consistent lists of constraints are evolved using various orderings
for selection. When defining a selection criterion, various conflicting factors must
be addressed. For example, our simplest criterion attempts firstly to remove
design-rule violations and then to reduce the area of the layout. Strategies with
fewer violations beat those with more and, for those with the same numberof
violations, strategies with smaller bounding boxes win. This simple prioritising of
concerns led to the generation of some rather unpromising strategies; while the
selection criterion was busy removing design rule violations, for exampie, any

147

[e s |
|

‘ | LT . h‘-ﬂl :'.{.!I-I .I i

strategy with few such violations (compared to the current population norm) was
accepted. Typically, these would have large areas and redundant constraints. The
algorithm would later have to spend time refining these crude attempts. In an
attempt to mitigate this effect, we added a further selection, favouring shorter
chromosomes all other things being equal. Smith has pointed out that
implementations of the genetic algorithm allowing variable length chromosomes
tend to produce ever longer chromosomes (as chromosomes below a certain length
are selected against). We did not find this an overwhelming problem as longer
chromosomes were more likely to be rejected as inconsistent by the evaluation
function. Nevertheless, we did find that the performance of the algorithm was
improved by introducing a selection f avouring shorter chromosomes.

We also experimented with trade-offs between the various criteria, established by
computing a composite score for each strategy and letting the strategy with the
better score win. We found that the genetic aigorithm was remarkably robust in
optimising the various scoring functions we tried. However, the results were often
unexpected; the algorithm would find ways of exploiting the trade-offs provided in
unanticipated ways. We have not yet found a selection criterion of this type which
works uniformly well, over a range of examples. However, by tuning the selection
criterion to the example, good solutions have been obtained.

A better way of combining our various concerns was found. Rather than address the
concerns serially, or try to address all the concerns at once, we select a concern
randomly each time we have a selection to make. A number of predicates for
comparing two individuals were programmed. (For example, comparing areas of
bounding boxes, comparing areas of design rule violations, comparing the areas of
rectangles placed.) Each time we are asked to compare two individuals, we
non-deterministically choose one of these criteria and apply it, ignoring the
others. This works surprisingly well. It is easy to code in new criteria and to
adjust the algorithm by changing the relative frequencies with which the criteria
are chosen. The resulting popuiations show a greater variability than with
deterministic selection, and alleles which perform well in some respects, but ,
would have been selected out with our earlier deterministic approach, are
retained.

Results,

Most of our experiments with this prototype have been based on problems with a
large amount of symmetry, for which it is easy (for us) to enumerate the optimal
solutions. If we actually wanted to solve these problems, other approaches

148

exploiting the symmetries available would certainly be more efficient. However,
for the purpose of evaluating the performance of the genetic algorithm, we claim
these examples are not too misleading. The algorithm is not provided with any
knowledge of the symmetries of the problem nor of the arithmetical relationships
between the sizes of the rectangles. For the purposes of evaluating the
applicability of the genetic algorithm to layout compaction, the prototype is
probably pessimistic. Real layout problems are far more constrained (by, for
example, connectivity constraints). This not only reduces the size of the search
space per se but also appears to localise the interdependence of various genes
making the probiem more suitable for the genetic algorithm.

A naive analysis of a very simple exampie is instructive. The example consists of
six rectangles, three 3 x 1 (horizontal) and three 1 x 3 (vertical). A minimal
solution of this problem was found (consistently) in under 50 generations with 20
progeny per generation (1000 points of the search space evaluated).

A solution to this problem must say how each of these rectangies is constrained,

both horizontally and vertically. Thus the search space has 6'2 (about 2 x 10°)

points. The problem has 8 basic solutions and a symmetry group of order 36. There
are about 7.5 x 108 points/solution. Of these, we only examine some 109,

Re ntin out.

Our first prototype deals with a problem which has little direct practical
significance for VLSt layout. (However, Rob Holte has pointed out that scheduling
problems from operations research might be represented by minor variations on
our prototype problem.) As a next step towards a practical layout tool, we have
implemented a system which compacts a simpie form of symbolic layout. The
problem is to formalise the constraints implicit in the symbolic layout, and to
find a representation, suitable for the genetic algorithm, for layout strategies.

We consider a symbolic layout of blocks connected by wires. The rectangles
(blocks) are of fixed size and may be translated but not rotated. The
interconnecting lines (wires) are of fixed width but variable length. The
interconnections shown must be maintained, and no others are allowed. In addition,
there are design rules which prohibit unconnected pairs of tiles (wires or blocks)
from being placed too close together.

149

4 i Hot ¥ g d !

T P L. | ' R i S Dt .__'j
-H‘.‘{‘: ol -.‘_....I L A M5 A LRl - i e

oI, 4 L

This form of the symbotic tayout problem was introduced by (Schlag e¢ a/ 1983)
Here ts their example of a simple symbolic layout:

We represent the problem at two levels:;

A surface level deals with tiles of three kinds - blocks, horizontal
wires and vertical wires. In addition to evolving layout constraints
dealing with the relative positions of tiles (above, right-of etc. as
before), we use a fixed list of structural constraints, to represent
the information in the symbolic layout, and fundamental
constraints which represent the size limitations on tiles.
Structural constraints have the following forms
v crosses h, Nbv, Sbv,Ebh, Wb h

where v, h are vertical and horizontal wires and b is a block. These
constraints allow us to stipulate which wires cross (and hence are
connected) and which wires connect to which edges (North, South,
East or West) of which blocks.

Al a deeper level, unseen by the user, the problem is represented in
terms of the primitive layout elements, north b, south b, east b,
west b, left h, right h, y-posn h, top v, btm v, x_posn v, whose names
are self—explanatory. For each tile, we generate a list of fundamentail

150

e R —

constraints expressing the relationship between the primitive layout
elements arising from it. This representation aliows both blocks and
wires to stretch.

The example above is represented by deciaring the widths of the wires and sizes
of the blocks and then specifying the following list of constraints. (We use a LISP

list syntax as it is more widely familiar, actually, our implementation is written
in ML.):

((EB1 H2)
(crosses V3 H2)
(crosses V3 H3)
(crosses V4 H3)
(NB4 v4)
(W BS H3)

(SB1 V1)
(crosses V1 H1)
(crosses V2 HI)
(N B2 V2)

(E B2 HS)
(W B3 HS)

(S B4 v6)
(crosses V6 H4)
(crosses V5 H4)
(NB3 VS)

(S BS v7)
(NB6 V7))

Again, we evolve lists of layout constraints. These are compiled, together with the
fixed structural and fundamental constraints representing the symbolic layout to
give graphs of constraints on the primitive layout elements, whose positions are
thus determined. The number of design-rule violations and the area of the
resulting layout are again used to select between rival strategies. Solutions to
this problem were found in around 200 generations of 20 progeny, and this was
reduced to around 150 generations when the algorithm was given a few "hints” in

151

the form of extra constraints. Watching the evolving populations showed that -
progress was rapid for around SO generations. Thereafter, the algorithm appeared
to get stuck for long perfods on local minima (in the sense that one conf fguration
would dominate the population). This lack of variation in the population reduced
the usefulness of crossover. When mutation led to a promising new configuration,
there would be a period of experimentation leading rapidly to a new local
minimum. This might suggest that either the population size (100) or the
probability of mutation being used as an operator (0.1) is too small. We have not
yet experimented with variations on these parameters. We think that better
solutions would be either to introduce a further element of competition into the
genetic aigorithm by penalising configurations which become too numerous
(impiementing this is problemaical), or to evolve a number of populations allowing
a limited degree of “intermarriage" (We are currently implementing the iatter

approach. If it is successful it will be a good candidate for parallel
implementation.)

Conclusions.

The genetic algorithm may be viewed as a (non-deterministic) machine which is
programmed by supplying It with a selection criterfon - an algorithm for
comparing two lists of constraints. We have experimented with various selection
criteria based on combinations of the total Intersection area, I, of overlap
involved in deslign-rule violations, and the area, A, of a bounding rectangle.
Experiments were made to compare various performance criteria based on
combinations of the number of design-rule violations, and the area of a bounding
rectangle. From our experience with the prototype, it appears that the cholce of a
selection criterion is an essential difficulty in applying the genetic algorithm to
layout. The problem is that we must evolve populations of partial solutions
(strategies), whtle the optimisation task is defined in terms of a cost function
defined on layouts (solutions). To extend a (technology imposed) cost-function, °
defined on solutions, to the space of strategies, In such a way that the genetic
algorithm will produce a selution (rather than just a high-scoring strategy), is a
non-trivial task.

We Intend to experiment with our second prototype in various ways before going on
to implement a “real” system dealing with design-rules for a practical muiti-layer
technology. We will continue to experiment with selection criteria and we are

152

implementing the idea of having several weakly interacting populations running in
parallel, described above. We also intend to integrate other, rule-based, methods
with the genetic algorithm, automating the provision of “hints". Thus, a number of
suggestions for strategies would be generated and passed to the genetic algorithm
which would then explore combinations and variations of these.

Acknowledgements.

| would like to thank Steve Smith for introducing me to Genetic Algorithms, and
Robert Holte for many stimulating discussions, his criticism and encouragement
have been invaluable.

References.

Holland, John H. 1975. Adaptation in natural and artificial systems. Ann Arbor,
University of Michigan Press.

Kirkpatrick, S., CD. Gelatt, and M.P. Vecchi 1983. Optimisation by simulated
annealing. Sc/ence, 1983, 220, 671-680.

Schlag, M, Y.-Z Liao, and CK. Wong 1983. An aigorithm for optimal
two-dimensional compaction of VLS| layouts. /N7TEGRATION, the VLS! journal
1 (1983) 179-209,

Smith, SF. 1982. Implementing an adaptive learning system using a genetic
algorithm. Ph.D. thesis. U. of Pittsburgh 1982.

ALLELES, LOCI, AND THE TRAVELING SALESMAN PROBLEM

by

David E. Goldberg

and

Robert Lingle, Jr.

Department of Engineering Mechanics
The University of Alabama, University, AL 35486

INTRODUCTION

We start this paper by making several
seemingly not-too-related observations:

1) Simple genetic algorithms work well in
problems which can be coded so the
underlying building blocks (highly fit,
short defining length schemata) lead to
improved performance,

2) There are problems (more properly,
codings for problems) that are GA-Hard
--difficult for the normal reproduc-

tion+crossover+mutation preocesses of the
simple genetic algorithm,

3) Inversion 1is the conventional answer
when genetic algorithmists are asked how
they intend to find good string order-
ings, but inversion has never done much
in empirical studies to date.

4) Despite numerous rumored attempts, the
traveling salesman problem has not
succumbed to genetic algorithm-like
solution,

Our goal in this paper is to show that,

in fact, these observations are closely
related. Specifically, we show how our
attempts to solve the traveling salesman

problem (TSP} with genetic algorithms have
led tc a new type of crossover operator,
partially-mapped crossover (PMX), which
permits genetic algorithms to search for
better string orderings while still searching
for better allele combinations. The
partially-mapped crossover operator combines
a mapping operation usually associated with
inversion and subsequent crossover between
non-homolegous strings with a swapping
operation that preserves a full gene comple=~
ment. The resultant is an operator which
enables both allele and ordering combinations
to be searched with the implicit parallelism
usually reserved for allele combinations in
more conventional genetic algorithms.

In the remainder, we first examine and
question the conventional notions af gene and
locus, This leads us to consider the mechan-
lcs of the partially-mapped crossover opera-
tor {PMX). This discussion is augmented by
the presentation of a sample implementation
(for ordering-only problems) 1in Pascal.
Next, we consider the effect of PMX by
extending the normal notion of a schema by

154

introducing the o-schemata (ordering
schemata) or locus templates, This leads to
simple counting arguments and survival

probability calculations for o-schemata under
PM. These results show that with high
probability, low order o-schemata survive PMX
thus giving us a desirable result: an
operator which searches among both orderings
and allele combinations that 1lead to good
fitness, Finally, we demonstrate the effec-
tiveness of this extended genetic algorithm
consisting of reproduction+PMX, by applying
it to an ordering-enly problem, the traveling
salesman problem (ISP). Coding the problem
as an n-permutation with no allele values, we
obtain optimal or very near-optimal results
in a well-known 10 city problem., Our dis-
cusslon concludes by discussing extensions in
problems with both ordering and value consi-
dered.

THE CONVENTIONAL VIEW OF POSITION AND VALUE

In genetic algorithm work we usually
take a decidely Mendelian view of our arti-
ficial chromosomes and consider genes which
may take on different values (alleles) and
positions (loci). Normally we assume that
alleles decode to our problem parameter set
(phenotype) in a manner independent of locus.
Furthermore, we assume that our parameter set
may then be evaluated by a fitness function
(a non-negative objective function to be
maximized). Symbolically, the fitness f
depends upon the parameter set x which in
turn depends upon the allele values v or more
compactly f = f{x(v)), While this 1is cer-
tainly conventional, we need to ask whether
this is the most general {(or even most
biological) way to consider this mapping.
More to the point, shouldn't we also consider
the possible effect of a string's ordering o
on phenotype cutcome and fitness, Mathemati-
cally there seems to be no good reason to
exclude this possibility which we may write
as f=f(x(o,v)),

While this generalization of our coding
techniques is attractive because it would
permit us to code ordering problems more
naturally, we must make sure we maintain the
implicit parallelism of the reproductive
plans and genetic operators we apply to the
generalized structures, Furthermore, because
GA's are drawn from biological example we
should be careful to seek natural precedent
before committing ourselves to this

extension, To find biclogical precedent for
the importance of ordering as well as value
we need only consider the sublayer of struc-
ture beneath the chromosome and consider the
amino acid sequences that lead to particular
proteins. At this level, the values (amino
aclds) are in no way tagged with meaning.
There are only amino acids and they must
appear in just the right order to obtain a
useful outcome {a particular protein). Thus,
there is biological example of outcomes that
depend upon both ordering and value, and we
do not risk the loss of the right flavor by
considering them both,

Then, wherein lies our problem? If it
is ok to admit both ordering and value
information into our fitness evaluation, what
is missing in our current thinking about
genetic algorithms which prevents us from
exploiting both cordering and value informa-
tion concurrently? In previous work where
ordering was considered at all (primarily for
its effect on the creation of good, tightly
linked, building blocks), the only ordering
operator considered was inversion, a unary
operator which picks two polnts along a
single string at random and inverts the
included substring (1)}. Subsequent crossover
between non-homologous (differently ordered)
strings occurred by mapping one string's
order to the other, crossing via simple
crossover, and unmapping the offspring. This
procedure is well and good f{for searching
among different allele combinations, but it
does little to search for better orderings.
Clearly the only operator eifecting string
order here 1is inversion, but the beauty of
genetic algorithms s contained 1in the
structured, yet randomized information
exchange of crossover--the combination of
highly fit notions from different strings.
With only a unary operator to search for
better string orderings, we have little hope
of finding the best ordering, or even very
good orderings, in strings of any substantial
length. Just as mutation cannot be expected
to find very good allele schemata in reason-
able time, inversion cannot be expected to
find good orderings in substantial problems.
What 1is needed is a binary, crossover-like
operator which exchanges both ordering and
value information among different strings.
In the next section, we present a new opera-
tor which does precisely this, Specifically,
we outline an operator we call partially-
mapped crossover (PMX) that exploits impor-
tant similarities in wvalue and ordering
simultaneously when used with an appropriate
reproductive plan.

PARTTALLY-MAPPED CROSSOVER (PMX) -
MECHANICS

To exchange ordering and value infor-
mation among different strings we present a
new genetic operator with the proper flavor.
We call - this operator partially-mapped
crossover because a portion of one string
ordering 1is mapped to a portion of another
and the remaining information 1s exchanged

after appropriate swapping operations. To
tie down these 1deas we also present a plece
of code used in the computational experiments
to be presented later.

To motivate the partially-mapped cross-
over operator (PMX) we will consider differ-
ent orderings only and neglect any value
information carried with the ordering {(this
is not a limitation of the method because
allele information can easily be tacked on to
city name information). For example, consider
two permutations of 10 objects:

A
B

9 8 4 5 6 7 1 3 210
g8 7 1 2 310 9% 5 4 6

PMX proceeds as follows. First, twe posi-
tions are chosen along the string uniformly
at random, The substrings defined from the
first number chosen to the second number
chosen are called the MAPPING SECTIONS.
Next, we consider each mapping section
separately by mapping the other string to the
mapping section through a sequence of swap-
ping operations. For example, if we pick two
randem numbers say &4 and 6, this defines the
two mapping sections, 5-6-7 in string A, and
2-3-10 in string B, The mapping operation,
say B to A, is performed by swapping first
the 5 and the 2, the 6 and the 3, and the 7
and the 10, resulting in a well defined
offspring. Similarly the mapping and swap-
ping operation of A to B results in the swap
of the 2 and the 5, the 3 and the 6, and the

10 and the 7. The resulting two new strings
are as follows:
At= 9 B 4 2 310 1 & 5 7
B'=810156792h’6';

The mechanics of PMX is a bit more complex
than simple crossover so to tie down the
ideas completely we present a code excerpt
which implements the operator for order-
ing-only structures in Figure 1. 1In this
code, the string 1s treated as a ring and
attention is paid to the order of selectien
of the two mapping section endpoints.

The power of effect of this operator, as
with simple crossover, 1is much more subtle
than is suggested by the simplicity of the
string matching and swapping. Clearly,
however, portions of the string ordering are
being propagated untouched as we should
expect. In the next section, we identify the
type of information bein exchanged by
introducing the o-schemata (ordering schema-
ta), We alsoc consider the probability of
survival of particular o-schemata under PMX,

PARTIALLY-MAPPED CROSSOVER - POWER OF
EFFECT

In the analysis of a simple genetic
algorithm with reproductiontcrossover+muta-
tion, we consider allele schemata as the
underlying building blocks of future solu-
tions. We also consider the effect of the
genetic operators on the survivability of

Data Types and Constants

COREL max_city = 100:

city

tyra =
tourarray =

Loomzas_cCity:
arrasll, imav o citad of citat

Functions and Procedures (find_cicy, swap_city, cross_tour}

function findocity ity nane.n_citluscitus omr tourztourareys s gt

war sliintaasr:
beaim
Jlz=0:
refent
Jlz=il+1:
until «
find_catus=j1:
and?

Procedures FuafFocitydcitu rozl.citu_ro

var temelcftue
beain
tenrt=tourlcity razl]:

tourfcita _Foslli=tourlecityu _rpos2ls

tourlcite Fos2listame;
end:

Frocedurs crarf.tourcn.cits. la_crors, hi_n
tourl_oldaL&ur:_cld»tourl-nem,lour?-neu:tnurarrau';

ar
var HM.hi_testtintzaer:
bzain]
hi_tezt 1= hi_crazz + 1:
tourl_n2u = touri_gld:
tourZ_new s toyrD_old:
if v rloLcrozs

b 2= lo_sprozs:

while Va1 bhi_tests do besin ¢ [T
:Hap*cztufjlvflni_cxtu-Laurl-old[JIJ-n_c:t@-tour:_nema

v hlacrorz? and

if vhitestinLcytued

‘leocrosz:

s2tintanar:

Calinocites or “tourCillscity_names a:

var lourstourarraysy:

faoidat

than hi_test:

=15

hiotexzts © then besin

crarsaeeyr an bolh tours ¢
slourloneust

:nap_:ltvfsisf1nd_c;L;xtourz_oldtﬂlj-n_citg-lourl_nemi;luurl-nem'=

dlz=jil+11
endt
et
endi

if cil>nocttys

Figure 1,

then

=

1

Pascal Implementation of PMX - Partially Mapped

Crossover - procedure cross_tour,

important schemata. 1In a similar way, Iin our
current work we consider the o-schemata or
ordering schemata, and calculate the survival
probabllities of important o-schemata under
the FMX operator just discussed. As in the
previous section we will neglect any allele
information which may be carried along to
focus solely on the ordering information;
however, we recognize that we can always tack
on the allele information for problems where
it is needed in the coding.

To motivate an o-schema consider two of
the 10-permutations:

C=
D=

2 10

1 2 3 4 8
] 9 810

5 6 7
12 3 4 & 7
As with allele schemata (a-schemata) where we
appended a * (a meta-don't-care symbol) to
cur k-nary alphabet to motivate a notation
for the schemata or similarity templates, so

156

do we here append a don't care symbol (the !)
to mean that any of the remaining permuta-
tions will do in the don't care slots, Thus,
in our example we have, among others, the
following o-schemata common among structures
C and D:

1 2 3 v 1 1 111
bz vy v o
LU S S S AT A A
1+ ¢ vt s 1 1 110

To consider the number of o-schemata, we take
them with no positions f£ixed, 1 position
fixed, 2 positions fixed, etc., and recognize
that the number of o-schemata with exactly j
positions fixed is simply the product of the

number of combinations of groups of § among &

objects, (%), times the number of permuta-

tions of groups of j among £ objects.
Summing from O to £ (the string length) we

obtain the number of o-schemata:

o L1 A
Ros & T-1313T =317
While this expression has not been reduced to
closed form, it may be shown for large % that
the number of o-schemata is certainly greater
than (%t)2. Furthermore, it is easily shown
that each particular string {permutation) is

a representative of 2~ o-schemata and that a
population contains at most n'ZE o-schemata.

Next we consider the survival probabili-

ty of a particular o-schema under the
partially-mapped crossover operator. The
easiest way to calculate this is to wuse

conditional probabilities over three mutually
exclusive events: the o-schema is entirely
contained within the match section (Event
W-within), the schema is entirely outside the
match section (Event O-outside), or the
schema is cut by a cross point (Event C-cut),
Thus, the probability of survival (Event
S-survival) may be given:

P(s) = P(s|wr(w) + P(s|oIpo) + pes|cyP(e)

Since the probability of surviving a cut is
very low (P(S|C)20) we dgnore this pos-
sibility and focus on the other two events.
Assuming a cut length k, a defining length of
the schema 6{s), and an o-schema of order
(number of fixed positions) o{s), the overall
probability of survival (for 1large string
length L) may be estimated:

P(S) = k=041 + 2-k-5+l (1 -]%l)

Closer examination of this equation reveals
two modes of survival. When the cut length is
large with respect to the defining 1length,
relatively short defining length schemata
survive with high probability. The second and
more subtle mode of survival occurs when
short, low order schemata survive, because a
small cut length dictates a small probability
of interruption due to swapping. Together
the two modes combine to pass through short,
low order o-schemata so normal reproductive
plans can sample these building blocks at
near-optimal rates. Hence, PMX permits the
same type of implicit parallelism to occur in
both orderings and alleles as we have already
witnessed using simple crossover on allele
information alone,

A PURE ORDERING PROBLEM - THE TRAVELING
SALESMAN PROELEM (TSP)

In some sense we've presented this paper

in the reverse order of discovery. We did
not 1) admit ordering information, 2) dis-
cover PMX and o-schemata, and 3) apply

reproduction+PMX to the traveling salesman

problem. In fact, by trying to solve the TSP
with genetic algorithms, we were led to
PMX-like operaters, then o-schemata, and

finally PMX, The traveling salesman problem
is a pure ordering problem (2,3,4) where one
attempts to find the optimal tour (minimum
cost path which visits each of n cities
exactly once}, The TSP is possibly the most
celebrated combinatorial optimization problem
of the past three decades, and despite
numerous exact (impractical) and heuristic
{inexact) methods already discovered, the
method remains an active research area in its
own rtight, partially because the problem is
part of a class of problems considered to be
NP-complete for which no polynomial time
solution is believed to exist. Our interest
in the TSP sprung mainly from a concern over
claims of genetic algorithm robustness. If
GA's are robust, why have the rumored
attempts at 'solving" the TSP with GA's
failed, This concern led us to consider many
schemes for coding the ordering informatiom,
with strange codes, penalty functions, and
the like, but none of these had the appropri-
ate flavor--the building blocks didn't seem
right. This led us to consider the current
scheme, which does have appropriate building
blocks, and as we shall soon see, does (in
one problem) lead to optimal or near-optimal
results.

The specific problem we consider is Karg
and Thompson's well-studied 10 city problem
(4). While a 10 city problem is no final
touchstone of success, it does contain 91
alternatives {the GA knows nothing of the
problem's symmetry which reduces this number
to (9!)/2).” We code the problem as a normal-
ized (city 1 in the first position) 10-permu-
tation and apply reproduction and PMX to
successive populations. We use roulette
wheel reproduction with selection probabili-
ties set in the normal way, and fitnesses are
created from costs and scaled by subtracting
string cost from population maximum cost,
fi = Chax ~ 4 We choose initial popula-
tions, popsize=200, at random. This number
was selected to obtain a rich spread of order
2 o-schemata in the population. This re-
quires a population size proportional to
n({n-1) or roughly n2?. It might be useful to
have order 3 schemata as well, but this may
require larger populations than we are used
to working with.

We present the results of two rTuns on
the 10 city problem in Figures 2 and 3.
Figure 2 shows the population average cost
with each successive generation. The cross-
over probability was set at 0.6 so each
generation represents roughly 120 new func-
tion evaluations (0.6*200%, Figure 3 shows
the population best results with successive
generarions. As we can See, rTun 1 reaches
the optimal (!!) result rather quickly, while
run 2 converges on a very near-optimal tour
{we only ran twenty generations--there was
still enough diversity left so Iimprovement
was possible in run 2). The best of run 1
was indeed the Karg and Thompson optimum,
tour 1-2-3-4-5-10-9-8-6-7 with cost=378. The
best of run 2 was a near-optimum, the tour
1-2-3-10-9-5-4-6-8-7 with cost=3Bl. We are

o

(wn]

O 550.0

Lt

<

cC

« 500.0

>

<,

=

o 450.0

—

'_

=

T

= 400.0

L

w

350.0 L 1 -)
0 5 10 15 20
GENERATION
Figure 2, Generation Average Cost vs. Generation for 10 City TSP
currently working on a 20 city problem and a The new operator 1s tested in an

33 city problem, although we need to do some
reprogramming to fit the large population
sizes into our IBM PC's, We also have built
in an inversion operator, but have not had a
chance to test its effect on average and best
results,

CONCLUSIONS

In this paper we have examined a new
type of crossover operator, partially-mapped
crossover (PMK), for the exploration of
codings where ordering and allele information
may directly or indirectly effect Ffitness
values. The mechanics of the operator have
been described, and an ordering-only imple-
mentation has been presented in Pascal. The
power of effect of the new operator has been
analyzed using an extension to the concept of
schemata called the o-schemata (ordering
schemata}. Simple counting arguments have
been put forward which show the vast amount
of information contained in the o~schemata,
and survival probabilities have been estima-
ted for o-schematz under the PMX operator,
The result is an operation which preserves
ordering building blocks (and allele building
blocks if they are attached) so orderings and
allele combinations may be explored with
implicit parallelism.

158

ordering-only problem, the traveling salesman
problem, Using reproduction+PMX in two runs,
optimal or very near optimal results are
found in a well-known 10 city problem after
exploring a small portion of the tour search
space. We are continuing our work by testing
the method in larger problems, but we are
encouraged with the GA~like performance
obtained on our first test.

This work has important implications for
improving more general GA-search in problems
where both allele combinations and ordering
information are important. The binary
operation of PMX does permit the randomized,
yet structured, information exchange among
both alleles and ordering building blocks
which simple crossover promotes among allele
schemata alone. This should assist us in our
efforts to successfully apply genetic algori-
thms to ever more complex problems.

REFERENCES
1. Holland, J. H,, Adaptation in Natural

and Artificial Systems, CUniversity of
Michigan Press, Ann Arbor, 1975.

450.0

'_
[¥p]
[am]
[]
=
o
:
°
w 400.0
=
Ll
(i)
L:_
O
E—l-
[¥p]
L
m
350.0 ' |

Figure 3. Best-of-Generation Cost for 10 City TSP

Bellmore, M. and G. L. Neuhauser, 'The
Traveling Salesman Problem: A Survey,"
Operation Research, vol. 16, May-June
1968, pp. 53B-558.

Parker, R. G. and R, L. Rardin, "The
Traveling Salesman Problem: An Update
of Research,'' Naval Research Logistics
Quarterly, vol. 30, 1983, pp. 69-96.

Karg, R. L. and G. L. Thompson, "A
Heuristic Approach to Solving Travelling
Salesman Problems,"™ Management Science,
vol., 10, no. 2, January 1964, pp.
225-248.

10

GENERATION

159

Genetic Algorithms for
the Traveling Salesman Problem

John Grefenstette!, Rajeev Gopal,
Brian Rosmaita, Dirk Van Gucht

Computer Science Department
Vanderbilt University

Abstract

This paper presents some approaches to the
application of Genetic Algorithms to the
Traveling Salesman Problem. A number of
representation issues are discussed along with
several recombination operators. Some
preliminary analysis of the Adjacency List
representation is presented, as well as some
promising expetrimental results.

1. Introduction

Genetic Algorithms (GA’s) have been applied to
a variety of function optimization problems, and
have been shown to be highly effective in
searching large, complex response surfaces even in
the presence of difficulties such as high-
dimensionality, multimodality, discontinuity and
noise [4]. However, GA’s have not been applied
extensively to combinatorial problems. The
major obstacle is in finding an appropriate
representation. This paper presents some
approaches to the design of GA's for a well
known combinatorial optimization problem -- the
Traveling Salesman Problem (TSP). The TSP is
easily stated: Given a complete graph with N
nodes, find the shortest Hamiltonian path
through the graph. (In this paper, we will assume
Euclidean distances between nodes.) The TSP is
NP-Hard, which probably means that any
algorithm which computes an exact solution of
the TSP requires an amount of computation time
which is exponential in N, the size of the preblem
5]. In addition to its many important
applications, the TSP is often used to illustrate
heuristic search methods [2,7,8], so it is natural to
investigate the use of GA's for this problem.

Choosing an appropriate representation is the
{irst step in applying GA’s to any optimization
problem. If the problem involves searching an N-

dimensional space, the representation problem is
often solved by allocating a sufficient number of
bits to each dimension to achieve the desired
accuracy. For the TSP, the search space is a
space ol permutations and the representation
problem is more complex. Consider a path
representation in which a tour is represented by a
list of cities: (a b ¢ d e f). The first problem is
that the representation is not unique; each tour
has N representations. This can be solved by
fixing the initial city. Another problem is that
the crossover operator does not generally yield
offspring which are legal tours. For example,
Buppose we cross tours (a bc de)and (adecb)
between the third and fourth cities. We get as
offspring (a b ¢ ¢ b) and {a d e d e), neither of
which are legal tours. Finally, there is a problem
in applying the hyperplane analysis of GA’s to
this representation. The definition of a
hyperplane is unclear in this representation. For
example, (a # # # #) appears to be a first order
hyperplane, but it contains the entire space. The
problem is that in this representation, the
semantics of an allele in a given position depends
on the surrounding alleles. Intuitively, we hope
that GA’s will tend to construct good solutions
by identifying good building blocks and
eventually combining these to get larger building
blocks. For the TSP, the basic building blocks
are edges. Larger building blocks correspond to
larger subtours. The path representation does
not lend itself to the description of edges and

longer subtours in ways which are useful to the
GA.

In section 2, we present two representations
which offer some improvements over the path
representation. Section 3 discusses the design of
a heuristic recombination operator for what we
consider to be the most promising representation
In section 4, some preliminary experimental

lR.else:arr:h supported in part by the National Science Foundation under Grant MCS-83056803.

160

results are described for the TSP. Section 5
discusses some future directions.

2. Representations for TSP

2.1. Ordinal Representation

In the ordinal representation, a tour is described
by a list of N integers in which the ith element
can range from 1 to (N-i+1). Given a path
representation of a tour, we can construct the
ordinal representation TourList as follows: Let
FreeList be an ordered list of the cities. For each
city in the tour, append the position of that city
in the FreelList to the TourList and delete that
city from the FreeList. For example, the path
tour (a ¢ e d b) corresponds to an ordinal tour
(1 232 1) as shown:

TourList Freelist
0 {abede)
(1) (becde)
12) (bde)
{123) (b d)
(1232) (b)
(12321) 0

Note that it is necessary to fix the starting city
to avoid multiple representation of tours.

A similar procedure provides a mapping from
the ordinal representation back to the path
representation. In fact, the mapping between the
two representations is one-to-one.

The primary advantage of the ordinal
representation is that the classical crossover
operator may be [reely applied to the ordinal
representation and will always produce the
ordinal representation of a legal tour. However,
the results of crossover may not bear much
relation to the parents when translated to the
path representation. For example, consider the
following two tours:

ordinal tours path lours
(12321) (acedb)

161

(24111) (beacd)

Suppose that we cross the ordinal tours between
the second and third positions. We get the
following tours as oflspring:

ordinal tours path tours
(12111) (acbde)
(24321) {bedca)

The subtours corresponding to the genes in the
ordinal tours to the left of the crossover point do
not change. However, the subtours corresponding
to genes to the right of the crossover points are
disrupted in a fairly random way. Furthermore,
the closer the crossover point is to the front of
the tour, the greater the disruption of subtours in
the offspring.

As predicted by the above consideration of
subtour disruptions, experimental results using
the ordinal representation have been generally
poor. In most cases, a GA using the ordinal
representation does no better than random search

on the TSP.

2.2, Adjacency Representation

In the adjacency representation, a tour 1is
described by a list of cities. There is an edge in
the tour from city t to city) iff the allele in
position 1 18 j. For example, the path tour
{1 3 54 2) corresponds to the adjacency tour
{3152 4). Note that any tour has exactly one
adjacency list representation.

2.2.1. Crossover Qperators

Unlike the ordinal representation, the adjacency
representation does not allow the classical
crossover operator. Several modifited crossover
operators can be defined

Alternating Edges

Using the alternating edges operator, an
offspring 15 constructed from two parent tours as
follows: First choose an edge at random from one
parent. Then extend the partial tour by choosing
the appropriate edge from the other parent.

Continue extending the tour by choosing edges

from alternating parents. If the parent's edge
would introduce a eycle into a partial tour, then
extend the partial tour by a random edge which
does not introduce a cycle. Continue until a
complete tour is constructed.

For example, suppose we have

mom=(234561)
dad =(251643)

Then we might get the following offspring:
kid =(254163)

where the only random edge introduced into the
offspring is the edge (4 1). All other edges were
inherited by alternately choosing edges from
parents, starting with the edge (1 2) from mom.

Experimental results with the alternating edges
operator have been uniformly discouraging. The
obvious explanation seems to be that good
subtours are often disrupted by the crossover
operator. Ideally, an operator ought to promote
the development of coadapted alleles, or in the
TSP, longer and longer high performance
subtours. The next operator was motivated by
the desire to preserve longer parental subtours.

Subtour Chunks

Using the subtour chunking operator, an
offspring is constructed from two parent tours as
follows: First choose a subtour of randem length
from one parent. Then extend the partial tour
by choosing a subtour of random length from the
other parent. Continue extending the tour by
choosing subtours from alternating parents.
During the selection of a subtour from a parent,
if the parent’s edge would introduce a cycle into a
partial tour, then extend the partial tour by a
random edge which does not introduce a cycle.
Continue until a complete tour is constructed.

Subtour chunking performed better than
alternating edges, as expected, but the absolute
performance was still unimpressive. An analysis
of the alloeation of trials to hyperplanes provide a
partial explanation for the poor performance of

162

this operataor.

2.2.2. Hyperplane Analysis .
The primary advantage of the adjacency
representation is that it permits the kind of
hyperplane analysis which has been applied to the
N-dimensional function optimization GA
paradigm {1,3,6]. Hyperplanes defined in terms of
a single defining position correspond to the
natural building blocks, i.e., edges, for the TSP
problem. For example, the hyperplane
(# # # 2 #) is the set of all permutations in
which the edge (4 2) occurs. We briefly
summarize the main points of the classical
hyperplane analysis of GA’s: In the absence of
recombination operators, selection of structures
for reproduction in proportion to the structure's
observed relative performance allocates trials to
all represented hyperplanes in the population
(roughly) according to the following formula:

M(H,t+1) = M(Ht)*(u{H,t) / o(P,t))

where

M(H,t) = # of representatives of H at time t
u(H,t) = observed performance of H at time ¢

u(P,t) = mean performance of population at
time t.

The elements of any hyperplane partition
compete against the other elements of that
partition, with the better performing elements
eventually propagating through the population.
This in turn leads to a reduction in the
dimensionality of the search space, and the
construction of larger high performance building

blocks.

In the adjacency representation, a first order

hyperplane partition consists of all of the
hyperplanes which are defined on the same
position. For example:

{F##E#1#) (BFRH#2H), (F##3%),
(###54#))

is a first order hyperplane partition. Each
element of the partition contains an equal

number of tours. Selection is supposed to
distinguish among the elements of this partition
and to favor the high performance hyperplanes.
However, the following theorem shows that
selection has very little information on which to
allocate trials to competing first order
hyperplanes.

Theorem 1. Suppose that H ; and H__ are

two first-order hyperplanes defined by the edges
(2 b) and (a c}, respectively, in a Euclidean TSP.
Then | u(H,,) - u(H)| < 4(ab + ac) where ab
and ac represent the lengths of the edges (a b)
and (a c), respectively.

Proof. We show that there is a one-to-one
mapping { between the tours in Hab and the tours
H,_such that if x is a tour in H | and y = {(x) is
the corresponding tour in HM, then

| Length{y) - Length(x) | < 4(ab+ac).

The theorem follows directly.

The following illustrates the mapping {:

x: a b d
o——0c—0

That 1s, y 15 obtained by exchanging the nodes
b and ¢ in the tour x. Using the triangle
inequality, it is easy to show that:

-(4ab + 2ac) < Distance(y) - Distance(x)
< (4ac + 2ab).

163

So

| Distance(y) - Distance(x) |
QED.

< 4{ab-+ac).

In practice, the observed difference between
competing first order hyperplanes is usually an
order of magnitude less than the bounds in the
theorem. And since the overall tour length is
generally very large compared to the bound in
the theorem, there is generally no significant
difference between the mean relative performance
of any two competing first order hyperplanes.
Our experimental studies have shown that the
difference in the observed performance of
competing first order hyperplanes in a TSP of
size 20 is generally less than 5% of the mean
population tour length. In larger problems, this
difference can be expected to rapidly approach
zero,

One might suspect that the TSP is not a2
suitable problem for GA’s, that the TSP is in
some sense GA-Hard. Bethke[l] characterizes
some problems for which GA’s are unsuitable
Informally, Bethke shows that there are functions
and representations for which the low order
hyperplanes can mislead the GA inte allocating
trials to suboptimal areas of the search space.
However, Bethke's techniques, which involve the
Walsh transform of the objective function, apply
to one-dimensional functions of a real variable
using a fixed-point representation. A similar set
of results may be derivable for combinatorial
problems using the adjacency representation. But
Theorem 1 does not indicate that the information
in the first order hyperplanes of the adjacency
representation i1s misleading, just that it is buried
In other words, measuring the fitness of a tour by
the tour length may be too crude a measure for
apportioning credit. We now describe a crossover
operator which performs a secondary
apportionment of credit at the level of individual
alleles.

3. Heuristic Crossover

Theorem 1 shows that selection alone may not
be able to properly allocate trials to first order
hyperplanes, given cur adjacency representation
for the TSP. The heuristic crossover operator
attempts to perform a secondary apportionment

of credit at the allele level. This operator
constructs an offspring from two parent tours as
follows: Pick a random city as the starting point
for the child’s tour. Compare the two edges
leaving the starting city in the parents and
choose the shorter edge. Continue to extend the
partial tour by choosing the shorter of the two
edges in the parents which extend the tour. If
the shorter parental edge would introduce a cycle
into the partial tour, then extend the tour by a
random edge. Continue until a complete tour is
generated.

In order to compare this operator with the
previous two recombination operators, 1000
random pairs of parents were chosen for a TSP of
size 20. For each pair of parents, an offspring
was constructed according to each of the
crossover operators. For all three operators, the
offspring generally inherited about 30% of the
edges from each parent. The remaining 40%
were random edges introduced by the
recombination operator to create a legal tour.
For the first two operators, the offspring
generally show no improvement in overall tour
length when compared to the better parent. Not
surprisingly, the heuristic crossover produces
offspring which are, on average, about 10%
better than the better parent. It seems
reasonable that such an improvement should give
selection a way to promote the propagation of
good edges through the population. The next
section shows some experimental results which
confirm this expectation.

It is important to note that, with the proper
choice of data structures, the heuristic crossover
operator can be implemented to run as a linear
function of the length of the structures {9]. This
implies that, il E is the number of trials and N is
the number of cities, our GA’s for the TSP run
with asymptotic complexity O(EN), the same as
pure random search.

4. Experimental Results

This section describes some experiments with
the adjacency representation and the heuristic
crossover operator. For each experiment, N cities
were randomly placed in a square Euclidean
space, The initial population consisted of
randomly generated tours. The selection method

164

was based on the expected value model. The
crossover rate was set at 509, and there was no
explicit mutation operator.

-

Figure 1 shows the results of a 50 city problem,
Figure 2 shows a 100 city problem and Figure 3
shows a 200 city problem. Each Figure shows a
representative tour [rom the initial population,
the best tour obtained part way through the
search, and the best tour obtained after the entire
search, along with a randomly selected tour in the
final population. It can be seen, especially in
Figues 2 and 3, that good subtours tend to
survive and to propagate. The figures also show
that there is still a good deal of diversity in the
final population.

Statistical techniques [2] allow us to estimate
that the expected length of an optimal tour for
experiment 1 is approximately 37.45. The
optimal tour obtained by the GA differs from this
expected optimum by about 25%. After an equal
number of trials, random search produces a best
tour of length 148.6, nearly 300% longer than the
optimal tour. The optimal tour obtained in
experiment 2 differs from the expected optimum
by 16%. The optimal tour obtained in
experiment 3 differs from the expected optimum
by about 27%. These results are encouraging and
suggest that further investigation of this
approach Is warranted.

Experiments show that GA’s which use heuristic
crossover but not selection perform better than
random search but significantly worse than GA's
which use both selection and heuristic crossover.
That is, there appears to be a symbiotic
relationship between the two levels of credit
assignment performed by selection and heuristic
crossover, We are currently working on
clarifying the relationship between selection and
the heuristic crossover operator.

5. Future Directions

This papers presents some preliminary
observations and experiments. Many more
questions about the TSP need to be investigated.
Some interesting future projects include:

Combining GA’s with other heuristics. In
may be useful to heuristically choose the initial

population of tours. For example, the nearest
neighbor algorithm can generate a set of
relatively good tours when started from various
initial cities. For very large problems, nearest
neighbor can be approximated by choosing &
random set of cities and taking the one closest to
the current city. Heuristics could also be invoked
at the end of the GA to do some local
modifications to the tours in the final population.
For example, the Figures shows many
opportunities for improving the final tour by
some local edge reversals,

Comparison with simulated annealing.
Simulated annealing is another randomized
heuristic algorithm which has been applied to
very large (N > 1000) TSP's. From the
published literature on simulated annealing (2,7],
it appears that our results are at least
competitive. A careful comparison of these two
techniques would be very interesting.

Effects of GA parameters. There are several
control parameters involved in any GA
implementation, such as population size,
crossover rate, etc. which may have an effect on
the performance of the system. The proposed
GA's are sufficiently different from previous GA's
that it might be useful to investigate the effects
of these parameters for the TSP,

Other combinatorial applications. How do the
ideas developed thus far apply to combinatorial
problems other than the TSP?

References

1. A. D. Bethke, Genetic algorithms as
function optimizers, Ph. D. Thesis,
Dept. Computer and Communication
Sciences, Univ. of Michigan (1981).

2. E. Bonemi and J.-L. Lutten, “The N-
city traveling salesman problem:
statistical mechanics and the
Metropolis Algorithm," SIAM Review
Vol. 26(4), pp. 551-569 (Oct. 1984).

3. K. A Dejong, Analysis of the
behavior of a class of genetic
adaptive systems, Ph. D. Thess,
Dept. Computer and Communication

Sciences, Univ. of Michigan {1975).

.K. A. Dejong, "Adaptive system

design: a genetic approach," IEEE
Trans. Syst.,, Man, and Cyber. Vol.
SMC-10(8), pp. 556-574 {Sept 1980).

.M. R. Garey and D. 8. Johnson,

Computers and Intractability,

W. H. Freeman Co., San Fransisco
(1979).

. J. H. Holland, Adaptation tn Natiural

and Arttfictal Systems, Univ. of
Michigan Press, Ann Arbor (1975).

. 8. Kirkpatrick, C. D. Gelatt, and

M. P. Veecchi, "Optimization by
simulated annealing," Science Vol.
220(4598), pp. 671-680 (May 1983).

. J. Pearl, Heuristics, Addison-Wesley,

Menlo Park (1984).

. B. J. Rosmaita, Ezodus: An extension

of the the geneltc algorithm to
problems dealing with permutations,
M.S. Thesis, Computer Science
Department, Vanderbilt University
(Aug. 1985).

FIGRE is FIGURE b

38 CITIES 5@ CITIES
DISTANCE = 197.82 DISTANCE = 64.76
INITIAL POPULATION . GENERATION 38 1963 TRIALS
FIGURE lc FIGURE 1d
50 CITIES 2B CITIES
DISTANCE = 68.32 DISTANCE = 46.84
FINAL POPULRTION . GENERATION 234 14686 TRIALS
Figure 1.

166

FIGURE 2a FIGURE 2b

198 CITIES 108 CITIES
DISTRANCE = 547.12 DISTANCE = 118.47
INITIAL POPULRTION ~ GENERATION 125 6296 TRIALS

FIGURE 2c FIGURE 2d

188 CITIES 108 CITIES
DISTANCE = 99,84 DISTANCE = 87.21
FINAL POPULATION _ GENERATION 487 28338 TRIALS

Figure 2.
167

e St G I o e o ke e A AT ¢ . MR Tas. L

Ji—
>
ﬂ'
FIGLRE 3a FIGURE 3b
2e8 CITIES 288 CITIES
DISTANCE = 1475.689 DISTANCE = 223.81
INITIAL POPULATION GENERATION 227 11373 TRIALS
FIGURE 3c FIGURE 3d
288 CITIES 28@ CITIES
DISTANCE = 351,27 DISTANCE = 2@3.46
FINAL POPULATION GENERATION 493 24595 TRIALS

Figure 3,

168

Genetic Algorithms: A 10 Year Perspective

Kenneth De Jong
George Mason University
Fairfax, VA 22030

1. Introduction

In 1975 Holland's book, Adeptation in
Natural and Artificial Sysiems, was pub-
lished and provided a summary of the work
which Holland and his students had been
pursuing for some time. An important
theme in this wide ranging study of the pro-
perties of adaptive systems was that adapta-
tion can be usefully modeled as a form of
search through a space of structural changes
which one might make to 2 complex system
in an attempt to “improve' its behavioral
characteristics. This gave rise to a metho-
dology for studying existing (natural) adap-
tive systems and designing (artificial) adap-
tive systems which focused on answering key
questions such as: What are the legal strue-
tural changes one is allowed to make? How
is that space searched in an attempt to iden-
tify structural changes which improve
behavior?! How does one ascertain that
resulting behavioral changes are, in fact, an
improvement?

As an example of the merit of this
approach, Holland specified the architecture
for and provided a theoretical analysis of a
class of adaptive systems in which the struc-
tural modification space is represented by
strings of symbols chosen from some alpha-
bet and the searching of this representation
space is accomplished by an unusual pro-
cedure called a genetic algorithm. I think it
is fair to say, at this point in time, that the
careful definition and theoretic analysis of
these genetic algorithms (GAs) was and con-
tinues to be one of the major contributions
of this effort. In the intervening ten years, a
good deal of interest and activity has
resulted in important new insights into GAs
and their potential applications, culminating
in this conference.

Unfortunately, as is the case in many
novel areas of research, it has been difficult
to fnd a forum in the existing

169

journal/conlerence structure for reporting
the wide ranging activities which have
resulted from Holland's provocative ideas.
With only a few exceplions, much of this
work has been disseminated via unpublished
Master's and Ph.D. theses, personal com-
munications, and presentations at a series of
informal suinmer workshops.

I am pleased to report that this situa-
tion is changing for the better. In addition
to growing institutional support for research
in this area, the renewed interest in machine
learning in the Al community as well as the
continued interest in robust, flexible problem
solving strategies in many different contexts
has led to a dramatic increase in interest in
GAs during the last fTew years. There
remains, however, a lairly serious gap in the
coverage of GA research activities since
1975. Those who are new to the area find it
difficult to ascertain who has been doing
what and frequently get involved unneces-
sarily in rediscovering various aspects of
undocumented ‘'wisdom' regarding the
implementation and application of GAs.
This conference in general and this paper in
particular represent attempts to remedy such
perceived gaps, to suggest open research
issues, and to identify potential application
areas. The following sections summarize my
own personal perspective on the current
state of the art in this field.

2. Conceptual and Perceptual Issues

Most algorithms are developed with a
purpose in mind such as sorting, memory
management, tree traversal, etc. Genetic
algorithms, however, represent a highly
idealized model of a natural process and as
such can be legitimately viewed as a simula-
tion at a very high level of abstraction. This
tends to raise some conceptual and percep-
tual difficulties when trying to understand
exactly what GAs do and how they might be

used,

Much of the early GA research, in an
attempt to simplify an already complicated
situation, focused on understanding how
GAs behaved when the structure space to be
searched was an N-dimensional space of
numerical parameters (corresponding to
independently settable dials on a control
panel) and the behavior of the system under
Lhe new control settings (the fitness measure)
was ascertained by simply computing a
memoryless function whose arguments were
the new control settings. By carefully choos-
ing functions which presented a variety of
well understood payoff surfaces, a great deal
of insight was obtained regarding how GAs
distribute trials in such spaces in response to
the feedback obtained from earlier trials.
This gave rise to a very natural question: Do
GAs provide a new and important technique
for solving global function optimization
problems? A good deal of research
[DeJong75, Brindle80, Bethke8l] has and
continues to be done in this area with
impressive results,

However, because of this historical
focus and emphasis on function optimization
applications, it is easy to fall into the trap of
perceiving GAs lhemselves as optimization
algorithms and then being surprised and/or
disappointed when they fail to find an “obvi-
ous” optimum in a particular search space.
My suggestion for avoiding this perceptual
trap is to think of GAs as a (highly ideal-
ized) simulation of a natural process and as
such they embody the goals and purpose (i
any) of that natural process. ¥'m not sure if
anyone is up to the task of defining the goals
and purpose of evolutionary systems; how-
ever, I think it's fair to say that such sys-
tems are nol generally perceived as function
optimizers.

The question that remains, then, is
how can one characterize what GAs do in a
way which is useful for understanding how
they might be best applied to difficult areas
such as global function optimization,
machine learning, NP-hard problems,
machine vision, etc. [believe we still have a
long way to go in this area. I have
attempted to summarize recent advances as
well as identily some open issues in the next
section. To my mind the best perspective
currently available as to what GAs do is

Holland's characterization of them as simul-
taneously solving a large number of K-armed
bandit problems. (If you haven't read it or
didn't understand it, you should make an
effort to do s0.) Although this characteriza-
tion leaves many unanswered questions,
armed with this viewpoint, one shouldn't be
surprised that: 1) the best individual encoun-
tered so far may not even survive into the
next generation, 2) that the population itself
seldom converges to a global (or even local)
optima, or 3) that the ability of GAs to pro-
duce a steady stream of offspring that are
better than any seen so far can vary {rom
quite impressive to dismal.

At the risk of summarizing the obvi-
ous, it is important to realize that GAs have
properties of their own independent of the
application area, and the key to a successful
application {including global function oplim-
ization) is to understand and exploit these
properties.

3. Representation Issues

The strongest hyperplane analysis
results assume that GAs use a very specific
form of selection, crossover, and mutation to
search a space of fixed length binary strings.
In order to take advantage of the power of
GAs a8 analyzed, the space to be searched in
a particular application must be mapped
onto a representation space of this form.
Depending on the application, selecting an
appropriate mapping can range from a
trivial activity to a highly creative one.
There is now sufficient experience to begin
to characterize search spaces with respect to
choosing a representation mapping. The fol-
lowing is an attempt to do so.

3.1. Searching Parameter Spaces

Typically, the simplest way to make a
complex process more flexible (adaptive) is
to identify a fixed set of parameters which
can be altered to improve behavior. The
obvious mapping is to think of each of the N
parameters as a genes and assign each a gene
(string) position. If we then choose for each
parameter a set of unique symbols
representing the legal values of that parame-
ter, we have a very intuitive interna)
representation as strings of length N. Cross-
over occurs between symbol boundaries and
produces “legal” offspring, and mutation

170

—_ i~y

when applied to position i selects a new sym-
bol from the legal symbol set for that posi-
tion. There is both theoretical and experi-
mental evidence to suggest that such direct
intuitive mappings are appropriate when the
number of legal values a parameter may
take on is quite small (ideally, 2) and inap-
propriate when they deviate much from the
ideal [Holland7§).

Although there are many interesting
problems which permit such direct mappings
(e.g., feature spaces, certain NP-hard prob-
lems), most parameter modification problems
do not. An obvious solution is to map each
of the N symbol sets onto a set of fixed-
length binary strings, concatenate the
results, and apply GAs to this representation
space. While it is easy to demonstrate a
dramatic improvement in the behavior of
GAs in switching from a short length, high
cardinality representation of a problem to a
longer, but lower cardinality representation,
there are a several issues which arise for
which we do not have good answers. Fre-
quently the cardinality of a symbol set is not
a power of 2, requiring rounding up to the
next power of 2 and implying the symbol
map is info but not onfo the set of binary
strings. In so doing, the size of the represen-
tation space can be increased (in the worst
case) by a factor of oN over the original
search space. Since crossover and mutation
will invariably produce some of these unas-
signed strings, there are any number of ways
to handle this including discarding such
strings as illegal, assigning such strings low
payofl, or mapping such strings redundantly
into the symbol set. Each of these
approaches has been tried at various times
with no clear indication (either experimen-
tally or theoreticaily) of the overhead
incurred by such rounding or whether one
approach is consistently better than another.

Frequently the application permits
enough flexibility in defining the original
search space so that the set of legal values
each parameter can take on can easily and
naturally be powers of 2 (e.g., most function
optimization problems) so that rounding up
issues are perceived as critical. There
remains, however, the problem ol selecting
which of the M! ways M objects can be
mapped onto another set of M objects in
order to generate binary representations.
This issue came up early in the lunction

optimization studies in that when presented
with certain relatively simple continuous
surfaces GAs appeared to “lack the killer
instinet” in the sense that they would
quickly find near-optimal points, but rail to
press on to betiter points near by. Further
analysis indicated that such behavior was
generally caused by artificial *‘representation
boundaries” introduced by mapping the ori-
ginal space onto a binary representation
space in such a way that “‘near-by-ness” had
not been preserved. Hence, at a representa-
tion boundary, a small change in the value
of a parameter is achieved only by a radical
change in the binary representation of that
parameter value. Since crossover and muta-
tion are operating at the bit level, only very
low probability sequences of events could
“bump"” the search over such boundaries.
Experiments with alternative encodings such
as gray codes yielded clearly identifiable
improvements in cases where representation
boundaries appeared to be a problem, but
gave mixed results in others {Brindle80,
Bethke8l, ..J. Another suggestion for which
there are no definite results is to redefine
mutation so that it works at the parameter
level, guaranteeing that at any point in time
each parameter value is equally likely to be
generated. The argument against such an
approach is the disruptive effect such an
operator would have on the proper allocation
of trials to hyperplanes at the bit level.

As a consequence, an important open
question is a better understanding of exactly
what has to be preserved when choosing a
mapping and how to find mappings with the
desired properties. The only hints and
suggestions along these lines that I am aware
of are Bethke's use of Walsh transforms to
characterize when representation spaces are
“GA hard” |Bethke81]. Any new results in
this area would greatly improve our under-
standing and use of GAs.

3.2. Adaptive Representations

Since there may not be sufficient @
priori insight to select an appropriate
representation, an alternative approach
which has been discussed but for which there
is little theorctical or experimental insight is
to allow GAs themaselves to select the map-
ping as part of the adaptive process. One
strategy involves including extra "tag bits”
with each individual which identifies the

171

mapping to be used. An interesting issue
here is whether GAs should be modified to
be aware of such tags bits (for example, by
only applying crossover to parents with
identical mappings) or whether GAs should
manipulate the tags bits in the usual way as
undistinguished members of a longer binary
string. In the former case, this introduces
the idea of subpopulations (species) for
which there is considerable support in
natural systems but for which there are no
analytic results. In the latter case, the
presumed usefulness of binary strings inher-
ited from one (and possibly both) parents
can be lost because they are interpreted in a
totally different way in an offspring unless
the parents had identical tag bits and muta-
tion left them unchanged.

Holland raised similar issues while
analyzing the disruptive eflects of crossover
on co-adapted sets of alleles which, because
of the particular representation chosen, hap-
pened to be far apart [Holland75). His
suggestion was to introduce the inversion
operator as a mechanism for changing the
physical location of genes without changing
their functional interpretation. As above,
left unresolved were issues such as whether
there should only be a few inversion patterns
(species) present in a population with mating
{crossover) occurring only within species or
whether crossover should be modified to
allow offspring to inherit an inversion pat-
tern from one parent but gene values from
both. Early experimental work [Franz72,
DelJong75| generated little evidence of any
significant improvement due to introducing
inversion in a function optimization eontext;
however, inversion proved to be eflective in
later work using GAs to search spaces of
production system programs [Smith80),

3.3. Context Sensitive Values

A related but more fundamental prob-
lem arises when the application area has the
property that the legal values for one param-
eter are conlez! gensilive in that they
depend on which values have been chosen at
other ‘positions. While it is frequently con-
venient and natural to view such problems
as defining parameter spaces to be searched,
violating the assumption that values can be
selected independently can have dramatic
effects on the performance of GAs. A simple
example of this occurs il we try to represent

172

the unil circle with Cartesian coordinates
mapped onto fixed-length strings. GAs, by
independently choosing symbols at each
position, will distribute trials over the unit

square. The usual “fix” is to define the
payofl outside the unit circle to be excep-
tionally low (a penalty function) and let the
GAs “learn” to keep new trials inside the
desired region. Suppose, however, we gen-
eralize the problem to that of representing
an N-dimensional hypersphere using Carte-
sian coordinates. I GAs distribute their tri-
als over the enclosing hypercube, as N gets
large, the volume of the hypersphere
becomes vanishingly small relative to the
hypercube and the search process becomes
hopelessly bogged down on a surface which
appears to be uniformly bad almost every-
where. In this case, of course, it doesn't
take much insight to suggest a switch to
polar coordinates. However, there are other
cases in which alternate representations are
not so easy to find.

My favorite example of this is the
Traveling Salesman Problem (TSP), and 1
am delighted to see that it is well
represented at this conference. | ¢ontinue to
believe that it captures in a simple, elegant
way many of the open GA issues. A good
deal of thought and discussion has gone into
the problem of representing TSPs in a form
amenable to GAs with very little success to
this point. Since the problem involves visit-
ing each of N cities exactly once while
minimizing the total distance of a tour, the
most natural way to represent candidate
solutions is to list in order the cities visited.
Obviously, even though this representation
can be viewed as N parameters specilying
the Ith city to be visited, it is strongly con-
text sensitive in that once a city symbol is
used, it cannot be re-used in another posi-
tion. Of course, one can always permit the
GAs to construct illegal tours via crossover
and mutation and assign them a very low
payofl. Unfortunately, just as with hyper-
spheres, the space of interest here (the set of
all permutations of N symbols) becomes a
vanishingly small fraction of the the set of
all combinations as N increases. There have
been many alternative representations
invented and explored, but to my knowledge
none represent the set of permutations in an
efficient, context free way.

The alternative to finding a representa-
tion which fits with the standard versions of
crossover and mutation is to change the
definition of crossover and mutation to fit
the representation. Inventing new mutation
operators is not too difficult in this case, the
most natural being low order permutation
operators., Crossover requires a bit more
creativity and usually involves taking a par-
tial tours from one parent and splicing in
whatever is legally possible from the second
parent. The results to date from this
approach have not been any more encourag-
ing than the previous ones using the stan-
dard versions of crossover and mutation on
inadequate representations. The problem in
this case is that, by altering the genetic
operators, we have altered the way in which
GAs distribute trials and the fundamental
theorems regarding eflicient patrallel search
need to be re-proved.

So we find ourselves “caught between
a rock and a hard place” with few places to
turn. [don't claim to have the answer
either, but there are several observations
which would seem to provide some hints.
TSP problems fall into an equivalence class
of problems called NP-complete because
there are no known polynomial-time solu-
tions for any member of the ¢lass and if one
were found there are polynomial-time
transformations permitting all other
members to be solved in polynomial time,
The Boolean Satisfiability Problem (BSP) is
a member of this class and involves finding
truth value assignments to N boolean vari-
ables in such a way as to make an arbitrary
given boolean expression of these N variables
true. The most natural representation for
BSPs is precisely what is needed for use with
GAs, namely a binary string of length N.
Crossover and mutation work precisely as
intended and problems of surprising size can
be solved. (Unfortunately, there isn't much
interest here in nearly correct assignments!)
What we have then are two problems which
are known to be equivalent in the NP-hard
sense, but are quite different in a GA-hard
sense.

The difference seems to hinge on a sort
of duality relationship between the two
problems. Fitness for BSPs is defined purely
in terms of the values of the symbols and
not their relative positions in the string.
This maps well onto our notion of

hyperplane and in these situations crossover
and mutation are effertive mechanisms for
homing in on good value combinations. On
the other hand, TSP fitness is defined purely
in terms of the order of valueless genes
which represents being in city n. Here inver-
sion seems most natural with crossover and
mutation inappropriate in their usual form.
What seems to be needed is a definition of a
hyperplane in this dual space. Unfor-
tunately, our notions of hyperplanes are so
tightly bound to spaces represented by a
fixed number of independent axes thab it's
hard to conceive of alternate definitions.
With an appropriate definition there would
be a much clearer view of the duals to cross-
over and mutation, and hopefully a dual set
of analytic results,

3.4. Context Sensltive Interpretations

Another form of context sensitivity can
arise and cause difficulty when the same
value of a particular parameter has different
interpretations depending on the values of
other parameters. We have already seen
how this can occur when attempting to
select representations adaptively. Another
nice example arises in attempting to escape
from the context sensitive value representa-
tions of TSPs. One could imagine an N
parameter representation in which the first
parameter specified which of the N cities
should be visited first. Having deleted that
city from our list, the second parameter
always takes on a value in the range 1...N-1,
specifying by position on our list which of
the remaining cities is to be visited second,
and so on. Values for each of the parame-
ters can now be independently selected and
crossover and mutation always produce legal
tours. However, the performance of GAs on
this representation is not significantly better
than the previous ones. The difliculty
appears to be that gene values to the right
of a crossover point or a mutation are inter-
preted quite differently (i.e., specily totally
different sul tours) in an offspring than in the
parent, violaling the concept of minimal
disruption of “building block” formation.
What seems to be needed is a representation
which allows good subtours (co-adapted sets)
to form anJ be passed on in combination
with other subtours, forming better tours,
and so on. With the traditional definition of
a hyperplane, this seems to rule out context

173

sensitive interpretations as bad representa-

tions. 1 am unaware of any alternatives
other than the hope that perhaps a more
general perspective on hyperplanes will clar-
ify these issues.

3.5. Varying Length Representatlions

So far we have been discussing issues
which appear in the context of searching
parameter spaces. There are, of course,
many other (generally more complex) kinds
of spaces which represent the set of permissi-
ble structural changes to an adaptive pro-
cess. In some cases strings are still a natural
representation, but there may be no notion
of a fixed length. A good example are
strings which specify structural changes via
““genes” which represent actions to be taken,
One string may consist of only a few actions
while others require many. If we wish to use
standard GAs, the simplest (but somewhat
ineflicient) approach is to assume some rea-
sonable upper bound on the length, throw in
8 “no-op" action, and require all strings to
be maximum length. Alternatively, cross-
over can be easily generalized (o produce
offspring whose length is different (in gen-
eral) from either parent by choosing
independent crossover points in each parent.

However, it is important to note that
neither approach is sufficient to guarantee
good GA performance on varying string
length spaces. To understand why requires
asking what the hyperplanes are in this con-
text. Both Holland [Holland75| and Smith
[Smith80] discuss the issues. I will not
repeat the discussions here, but just note
that there is considerable evidence that a
sufficient condition for good GA performance
is that the genes express their actions in a
position independent way.

3.6. Non-String Representations

What should one do when elements in
the space to be searched are most naturally
represented by more complex data structures
such as arrays, trees, digraphs, etc. Should
one attempt to ‘linearize” them into a
string representation or are there ways to
creatively redefine crossover and mutation to
work directly on such structures. I am
unaware of any progress in this area. How-
ever, the issues appear to be reasonably
clear. Any linear representations will have

174

to satisfy the properties discussed in the
preceding sections in order to achieve
efflicient GA search. Similarly, any attemnpts
to modify crossover and mutation wiil
require analogous hyperplane analysis results
to guarantec reasonable performance.

3.7. Production System Spaces

One of the most intellectually pleasing
ways to eflect changes in the behavior of a
complex process is to modily its knowledge
base. There has been a good deal of
research within the Al community regarding
appropriate ways to represent knowledge.
Production rules are frequently chosen when
learning is involved |Waterman70, Neweli77,
Buchanan78|. The GA community has also
maintained a long standing interest in pro-
duction system architectures because of their
amenability for use with GAs |Holland?5,
Holland78, Smithso, Booker82|. From my
perspective there are currently two main
approaches Lo searching production system
rule spaces with GAs.

The first is typified by the classifier
systems developed initially by Holland |Hol-
1and78| and Booker [Booker82]. Here indivi-
duals in the population represent single pro-
duction rules (typically fixed length) and the
current population represents the entire set
of rules governing the behavior of the adap-
tive process. GAs play a subservient role
within a larger cognitive model and ate
invoked intermittently to produce new rules
which replace existing rules in the popula-
tion.

The alternate approach is represented
by the LS-1 system developed by Smith
[Smith80]. Individuals represent entire rule
sets to be lugged into the knowledge base
and evaluatrd. The next generation of rule
sets is produced in the usual way by apply-
ing genetic uperators to existing rule sets,

Both approaches have produced
encouraging results in quite different con-
texts. There is not enough experience, how-
ever, to understand precisely the strengths,
wezknesses, and tradeoffs involved in either
of the approaches. My guess is that the
classifier approach will prove to be most use-
ful in an on-line, real-time environment in
which radical changes in behavior cannot be
tolerated whereas the LS- approach will be
best suited lor off-line environments in which

more leisurely exploration and more radical
behavioral changes are acceptable.

4. Fitneas Functions

In addition to choosing an appropriate
representation on which to apply GAs, care-
ful thought must be given to the characteris-
tics of the payoff function used to provide
feedback regarding an individual's fitness to
produce offspring. The wealth of data from
GA function optimization studies simultane-
ously show a general robustness in perfor-
mance over widely varying classes of func-
tions and intermittent dismal results. This
has lead to several informal characterizations
of the kinds of surfaces which are GA-hard.
Surfaces which are flat zlmost everywhere
except for an occasional spike present
difficult search problems for any approach
including GAs. The intuitive explanation is
that, since there is (essentially) no
differential payofi among the competing
hyperplanes, such peaks will be found only
by chance. Unfortunately, it is not all that
difficult to inadvertently construct one in
applications like the hypersphere and BSP
examples discussed earlier.

This immediately suggests another way
to fool GAs: put misleading information in
the hyperplanes. Fortunately, this is much
more difficult to do because of the simul-
taneous sampling of many different hyper-
plane partition elements. Bethke [Bethke8l]
has a nice discussion of this using Walsh
transforms to characterize GA-hard fune-
tions. However, much more work needs to
be done in this area.

It should be also noted that it is quite
easy lo incorrectly blame GAs for poor per-
formance when the fault in fact lies else-
where. One classic case of this arises when
using GAs to improve the performance of a
complex process for which no payoff function
is given. Since one has to be constructed,
care must be taken to verify that high payof
values as seen by GAs corresponds to good
behavior as observed by watching the com-
plex process itsell. Another case arises when
numeric parameter spaces are being
searched. Since there is typically some free-
dom in how finely to discretize a parameter
range, choosing too coarse a discretization
factor may inadvertently leave out optimal
points in the representation space being

searched by GAs and then blame the GAs
for not finding them!

Until recently, most GA research and
applications involved payoff functions which
return a single (scalar) payofl value. There
are situations in which it is more natural to
have the payofl function return a vector of
values reprcsenting, for example, scores on
non-commensurate aspects of performance.
Rather than insisting that an artificial func-
tion be created which combines such scores
into a single payoff value, it would be prefer-
able to have GAs work directly with multi-
valued payofls. Schaffer [Schafler85] has
explored this possibility recently and has
obtained promising results.

5. Genetlc Operators

There certainly is nothing sacred about
the traditional operators defined and
analyzed by Iolland. What is important is
that we have criteria from Holland’s hyper-
plane analy.is which operators should meet.
It changes are made to existing operators or
new ones are introduced, it is important to
verily that they aren’t overly disruptive of
the process of distribution of trials according
to payoff and that they encourage the forma-
tion of building blocks. There are still some
interesting open questions along these lines
with respect to rather modest variations of
the standard operators.

It is pretty much standard procedure
now to view crossover as applying to circular
strings and selecting two crossover points,
the beginning and the end of the segment
provided by the second parent. This
modification is well supported both theoreti-
cally and experimentally. What happens if
we continue along this vein and select two
segments {rom the second parent (via four
crossover points)? Is this helpful or too dis-
ruptive? The answers are pretty clearly
negative by the time we have increased the
number of crossover points to the extent
that an offspring’s gene values are randomly
selected from its parents values. Perhaps
the number of crossover points should be a
function of the length of the strings
involved. Applying the traditional crossover
to strings with thousands of genes {which is
currently being done) seems to be intuitively
more disruptive than one with four or six
crossover points. If so, where does the law

175

of diminishing returns set in?

The role of mutation as a background
operator which introduces new allele values
is fairly well understood and accepted in the
abstract. As discussed earlier, problems can
arise from our choice of representation in
Which mutation (and crossover) are operat-
ing at the bit level, but our interpretation of
the search space is at a higher level. This
can lead to a frequently tried but rarely suec-
cessful strategy of increasing the mutation
rate to improve GA performance. A better
approach in such situations is to think in
terms of both higher and lower level versions
of the genetic operators. Both Holland {Hol-
1and75| and Smith [Smith80| discuss this,
but much more work needs to be done.

8. Selection

The technique of selecting parents for
reproduction with a frequency proportional
to observed fitness has strong theoretical
justification and considerable empirical sup-
port. However, there are occasions when
this process seems to break down when
implementing GAs with finite populations.
This has come to be known as “the scaling
problem” and can occur in 2 number of
ways. If a highly fit individual is encoun-
tered early in the search process among
mediocre peers, selection will give it such
strong preference that it can dominate the
population in a few generations and cause
premature convergence. Similarly, late in
the search process the population can be leg-
itimately dominated by members with very
high payofis which differ on an absolute
scale, but when normalized to produce
expected number of offspring are equivalent
out to the third or fourth decimal place,
The eflect is that essentially every parent
contributes equally to subsequent popula-
tions in spite of fitness differences,

There have been a number of proposed
solutions including the introduction of scal-
ing factors and crowding factors [DeJong7s),
and selection by rank [Wetzel83, Shaffer85).
However, I think it is lair to say that a gen-
eral solution still eludes us.

7. GA Parameters

One of the observations people are
quick to make is that GAs are themselves
complex processes which appear to have a

set of pararneters (crossover rate, mutation
rate, populution size, etc.) which could be
tuned to iinprove performance. There is
considerable empirical support for the state-
ment that within reasonable ranges the
values of such parameters are not all that
critical [DeJong75, Grefenstette85]. As a
consequence most GA applications work
with fixed “accepted” parameter values,
However, there is also evidence to suggest
that additional performance improvements
could be ohbtained if such parameter values
could be dynamically modified. The
dificulty is in deciding when and how to
effect such changes. Should we have a two-
level GA complex with the top level GA
actively searching the parameter space of
the lower level GA and trying out new
parameter combinations? Are there simpler
signals such as allele loss which should
trigger parameter changes? Unfortunately,
the existing theory gives little guidance here.

8, Conclusion

In rereading the previous sections, |
became a little concerned that the reader
might infer 1 strong negative tone from this
long list of problems and open issues in GA
research. Nothing could be further from my
intent. Iam enthusiastic about the potential
which GAs hold and am actively involved in
GA research and applications. It is that
enthusiasm which generated this paper and
this conference. ! hope the result is that the
next time we get together my list will be
considerably shorter (or at least different)!

References

[Bethke80| Bethke, A., "Genetic Algorithms
as Function Optimizers”, Doctoral Thesis,
CCS Department, University of Michigan,
1981.

[Booker82] Booker, L. B., "Intelligent
Behavior as an Adaptation to the Task
Environment”, Doctoral Thesis, CCS
Department, University of Michigan, 1982,

[Brindle80| Brindle, A., "Genetic Algorithms
for Function Optimization™, Doctoral Thesis,
Department of Computing Science, Univer-
sity of Alberta, 1980.

176

- vl
e
ey

x
[

[Buchanan78| Buchanan, B., Mitchell, T.M,,
"Model-Directed Learning of Production
Rules”, in Pattern-Directed Inference Sys-
tems, eds. Waterman and Hayes-Roth,
Academic Press, 1978.

[DeJong75] De Jong, K., "The Analysis of
the Behavior of a Class of Genetic Adaptive
Systems”, Doctoral Thesis, CCS Depart-
ment, University of Michigan, 1975,

|DeJong80a] De Jong, K., "A Genetic-based
Global Function Optimization Technique”,
TR 80-2, Department of Computer Science,
University of Pittsburgh, 1980.

[DeJong80b] Delong, K., "Adaptive System
Design: A Genetic Approach”, IEEE Trans.
on Systems, Man and Cybernetics, 10,9,
Sept. 1980.

|DeJong81] De Jong, K. and Smith, T,
"Genetic Algorithms Applied to Information
Driven Models of US Migration Patterns”,
12th Annual Pittsburgh Conf. on Modelling
and Simulation, April 1981.

[Frantz72| Frantz, D. R., "Non-linearities in
Genetic Search”, Doctoral Thesis, CCS
Department, University of Michigan, 1972,

[Grefenstette85] Grefenstette, J., "Genetic
Algorithms for Multilevel Adaptive Sys-
tems”, to appear in IEEE Trans. on Sys-
tems, Man and Cybernetics.

[Hedrick76] Hedrick, C.L., "Learning Pro-
duction Systems from Examples”, Artificial
Intelligence, Vol. 7, 1976.

[Holland75| J. H. Holland, Adaptation in
Natural and Arlificial Systems. University
of Michigan Press, 1975.

[Holland78] Holland, J.H., Reitman, J,,
"Cognitive Systems Based on Adaptive Algo-
rithms”, in Patlern-Directed Inference Sys-
tems, eds. Waterman and Hayes-Roth,
Academic Press, 1978.

|[Newell77] Newell, A., “Knowledge
Representation Aspects of Production Sys-
tems”, Proc. 5th 1JCAI, 19717.

[Schafler85] Schaffer, J. D., "Multiple Objec-
tive Optimization with Vector Evaluated
Genetic Algorithms”, to appear in Proc. Int']
Conf. on Genetic Algorithms and their
Applications, July 1985.

|Smith80] Smith, S. F., "A Learning System
Based on Genetic Adaptive Algorithms™,
Doctoral Thesis, Department of Computer
Science, University of Pittsburgh, 1980.

[Smith83] Smith, S. F., "Flexible Learning of
Problem Solving Heuristics Through Adap-
tive Search”, Proc. 8th IJCAI, August 1983.

[Wetzel83] Wetzel, A., "Evaluation of the
Effectiveness of Genetic Algorithms to Com-
binatorial Optimization”, Doctoral Thesis,
Department of Library and Information Sci-
ence, University of Pittsburgh, 1983.

177

4 "

£ s

Tihed s
i

Ml
.-

& S

i

Classifier System with Long-term Memory in Machine Learning

Hayong Zhou
Vanderbilt University

ABSTRACT

This paper discusaes the
advantages of classifier asystema
with long-term memory and
tncludes a description of the basic
atructure of auch a syatem. The
learning strategy wsed here ia
twofold one. Firat, an analogical
learning strategy is employed to
inject the appropriate knowledge
into the population. Second, a
production system with a GA-based
learning component 18 snvoked to
perform subsequent learning., The
proposed system has one overall
objective: It seeks to increase the
efficiency and power of the
learning system over a long period
of time of uese.

1. Introduction

A genetic algorithm (GA) is a problem-
solving and non-deterministic search algorithm
first introduced by Holland in 1975{3]. It has been
shown, theoretically and empirically, that GAs
are robust and effective in various task domains,
even in the presence of difficulties such as noise,
high-dimensionality, multimodality and
discontinuity[7].

The outgrowth of the continuing research
in this area evolved into a message-passing, rule-

based production classifier

system called
system[4]. A classifier system is a learning system
in which many classifiers are active
simultaneously. A classifier is a pattern sensitive
element with condition/action form. Each

condition specifies the set of messages satis[ying

178

it, and each action specifies the message to be
sent when its condition part is satisfied. In short,
a2 classifier asystem manipulates knowledge
structures (KSs) in response to performance via a
genetic algorithm. It provides a framework for
cognitive simulation{2).

Several published classifier systems which
incorporate transfer of learning knowledge from
one task to another have been developed: In
1978, Holland and Reitman designed the first
classifier system called CS-1 tested on maze
problems. An experiment was conducted to
demonstrate transfer of learning from a small
mage problem to a large but similar one(4]. The
experimental result showed that CS-1 was able to
solve the large maze problem much faster when
initially supplied with some learned knowledge
In 1982, Booker did in-depth

simulation study of classifier systems as cognitive

structures.

models[2]. He performed several experiments to
demonstrate the effects of prior knowledge
structures on learning in new situation. For
“positive transfer"(transfer of knowledge for
solving similar tasks), his results were very
encouraging,

Before proceeding any further, the
“reversal learning task" needs to be described:
Schrier(6) trained a monkey on a reversal learning
task. Reward and punishment were reversed
repeatedly while keeping the input information to
the monkey unchanged. Performance of this
monkey was inefficient at the outset, but,
eventually, each new reversal could be learned
with a single trial.

In order to test the learning ability of

classifier systems, Booker ran his system on the
reversal learning task. Surprisingly, the resulting
performance was inconclusive. The reasons,
according to Booker, are that “the emphasis on
recency and short-term memory in the system is
too great® because “by the time the organism
had reached criterion on a given reversal, the
classifiers learned during the previous reversal
were likely to have been deleted - that is, become
vextinct® due to the drastic change in the
environment"[2]. In 1984, Schaffer completed the
L5-2 designed for the pattern discrimination task
domain|5]. He also gave the reversal learning task
to his system. The results obtained so far are not
encouraging either(private communication).

In sum, efforts to build powerful classifier
aystems have met with impressive success over
the past. The attempts to transfer learned
knowledge for sclving similar tasks, though
manaully, have been shown to be useful and
effective. However, the failures in solving the
reversal learning task pose a question: Is there
any way that classifier systems can keep
knowledge which is useful but irrelevant to the
current situation intact in order to increase the
efficiency and power of their learning ability? To
answer this question, this paper proceeds from a
general need for having a long-term memory to a

proposed prototype in the following sections.

2. Motivation for the design of classifier
system with long-term memory(CSLM)

We begin this section with several
assumptions which have been associated with
traditional classifier systems.

e The domain of learning is concerned with a
single task.

¢ The changes in environments are slight,
samooth and gradual.

¢ The efficiency for solving similar tasks in a
long run is not important.

179

If task domain satisfies these assumptions, it
would be unnecessary to augment a classifier
systemm with long-term memory. However, an
ideal learning system should be able to switch its
attention as needed while still preserving the
most useful knowledge gained in the past no
matter how its environment has been changed.
By doing so, the system would increase its
efficiency and power over time and improve its
learning ability as the number of learned tasks
grows.

In short, the main concern of this paper is
to investigate how to accumulate and preserve
knowledge not only within a task, but also among
tasks. It has been shown empirically that the size
of a population should be chosen around
50(number of knowledge structures) in order to
maximize computational efficiency[8]. In practice,
most of classifier systems never use a population
larger than 200. For such small knowledge pools,
it is hard to imagine that a set of generalized
knowledge structures could be constructed, for
example, suitable for many pattern discrimination
tasks. A short-term memory, i.e. the population
in a classiflier system, can not be expected to meet
the challenges imposed by drastic environmental
changes, Bach knowledge structure in a
population is evaluated by the Critic designed for
It 18 very difficuli, if not

preserve those

the current task.
impossible, to knowledge
structures which were perfect for some previous
tasks but not suitable for the current situation.
We see this as a serious weakness of the current
model and as the major motivation for the design

of a classifier system with long-term memory

(CSLM).

3. Overall description of CSLM
In this section, an overall organization of
CSLM is outlined. The description is based on

the following diagram and is intended to be

% N
o g L W o ™

instructive rather than specific. In figure 1, an have one of the following three outcomes:

1. Exact matching.
The next step is to bring the learned -

Knowledge
population. Heuristic initialization of
the population is done.

understanding of the basics of classifier systems
has been assumed. It is well described in [2,4,5).

structures into the

Datactors

Form or Recelve
decriptors(Di)

Long-tarm mamo
EM D1 D2 [----- Dn k- Matcher " i 1
= % l 2. Partial n.lat.chmg.

One similar task can be found. The

.| the tasx is

similarity between the incoming task
gimilar ?

and the stored ones indicates that

there might exist some useful building

inject 1¢nrna andomly initialir .
1n'j;n population [L‘.hn pop{lutionn - blocks in the stored knowledge

structures which,

hopefully, can

population (o) provide a promising direction to start

with. Thus the search space would be

‘I' pruned and the computational effort
might be reduced,

Classifier laarning

stora the winnars Systam
(naw ES=)
3. No matching.
Figure 1 The paradigm of CSLM

It tells us that no previous experience

In simplest terms, we can visvalise the main regarding the incoming task is known,

compenents of CSLM as {ollows: or possibly has been forgotten. In this

case the CSLM has to start from
scratch, no worse than current

¢ Descriptors: Descriptors serve as indices

to learned knowledge structures. The

)) classifier systems.
descriptors for various tasks could be very

. Long-term memory: The lon -term
general. In fact, complete and precise i v .

memory consists of two separated memories

Memory(EM) and
Knowledge Base(KB) respectively.

descriptor for a task is neither necessary

called Episodic

nor realistic. In practice, the descriptors

might use a low level language(a string of

e Matcher:

bits) or a high level language(alphabet) to
express main characteristics of tasks. They
may be produced automatically from

incoming tasks, or supplied by users.

The Matcher(a procedure)

performs two functions: matching
deécriptors and initializing a population. We
discuss them together here. Matching the
descriptor of a incoming task with that of

solved tasks in a long-term memory might

180

The EM stores all descriptors for previous
tasks. Each descriptor has one pointer
pointing to its corresponding KSs in the
KB. The content of the EM may be
considered as the indices for accumulated
knowledge structures.

The KB preserves learned KSs.

Whenever a task has been solved, the set of
solutions are satored in the long-term

memory along with the associated pointer.

One of the basic learning strategies

employed in CSLM is "learning by analogy"
which appears to be a central inference method in
human cognition and promises to be a powerful
mechanism in machine learning . Learning by
analogy consists of two phases. The first phase is
called the "reminding phase" which identifies the
gimilarity between an incoming task and the
problems observed or solved before. The second
phase involves the transfer of appropriate
knowledge obtained in the past into the new
situation. Carbonell pointed out the importance
of learning by analogy:" In general, transfer of
experience among related problems appears to be
thecretically significant phenomenon as well as a
practical necessity in acquiring the task -
dependent expertise necessary to solve more
complex real world problems"(1].

The approach used in CSLM is to form
descriptors derived from the detector array to
categorize tasks. In the reminding process,
similarity could be determined by matching these
stored descriptors in a long-term memory with
the descriptor derived from an incoming task. In
the next phase of analogical problem sclving, the
related knowledge structures, if any, would be
brought into the population. Notice that to
inject these learned KSs into a population is not
the end of our story. Instead, it should be viewed
as providing strong guidance for future search.
The genetic algorithm will manipulate these
useful building blocks and transform them into a
form that would be appropriate for the current
task. In the next phase, the classifier system is
invoked to perform the subsequent learning which
will not been detailed here.

4. Solving the reversal learning task in
CSLM

First of all, we need to emphasize that the
interestingness of the reversal learning task is not

o only because it represents a new class of learning

181

tasks, but also, more importantly, it tests the
learning ability of a system on how well it can
preserve useful knowledge from radical changes in
environments,

Let us see what will happen il a reversal
learning task is given to CSLM.

Suppose that a CSLM has created a set of
KSs for a given task and stored it along with its
associated descriptor in a long-term memory, as
shown in figure 2.a. When the second task with
the same appearance but opposite
meaning(reversal task) is given, the CSLM, as
expected, is in the worst possible position to learn
the new task since the Matcher procedure would
have brought the learned KSs into the
population. In this case, the learned KS would
receive a low score and the classifier system
would have to develop a new KS for the reversal
task. However, after the CSLM has created two
sets of KSs for each reversal, it can solve
subsequent reversal learning tasks with a single
trial. As noted earlier, the generality of a
descriptor for a task would guarantee the CSLM
to recognize the tasks with the same or similar
characteristics. Thus the Matcher would be able
to pull two sets of KSs out of the long-term
memeory based on the similarity measurement and
inject them into the population., The initialized
population is shown in figure 2.b. Therefore, the
Critic would be able to choose the appropriate

KS for each reversal,

Population

KS1
RS2

2.4 2.b
rigure 2

Another significance of this demonstration

is to show what happens if a set of bad

knowledge structures has been used to initialize
the population. The full power of genetic
algorithms comes from the parallel nature of the
search and the immunity to false peaks.
Therefore, these injected KSs are only tentative,
and as such are subject to testing. If some of
them prove useless or misleading, they will die
out in subsequent generations.

There is a further point worth noting: the
portion of a population to be heuristically
initialized should be judiciously decided so that
the premature convergence could be avoided
while still giving an opportunity for guiding

future search.

5. Summary and Future Research
This paper has discussed the advantages of
augmenting classifier systems with long-term
memory and described a prototype of CSLM
conceptually. The process of solving the reversal
learning task was demonstrated as well. ‘The
driving force behind this paper is to extend the
current moedel in order to deal with more complex
task and make consistent progress even if
environments have been drastically changed.
Several difficulties which can be anticipated in

the design of CSLM are mentioned here:
o How {o extract descriptors from tasks with
reasonable accuracy and effort while

maintaining the delicate balance between
generality and specificity?

e How to update the content of a long-term
memory dynamically?

» How to best initialize a population?

In seeking the answer to these questions and to
test the feasibility of the proposed ideas, a
CSLM designed in the

discrimination domain is to be implemented. It is

specific pattern
hoped that the experimental results will be
available soon as an evidence of the improved

learning ability of the proposed system.

182

Acknowledgements

The author would like to thank his advisor,
Dr.John Grefenstette for his guidance, and Dr.
David Schaffer for his encouragement during the

development of this paper.

References

1. Carbonell, J.G. Learning By Analogy
Formulating And Generalizing Plans From
Past Experience. Machine learning,
p137-159, Tioga publishing Co.

2. Booker, L. Intelligent Behavior As An
Adaptation To The Task Environment

Ph.D. dissertation, The university of
Michigan, 1982

3. Holland, J.H. Adaptation in Natural and
Artificial _ System The university of
Michigan press, 1975

4. Holland, J.H. and Reitman, IJ.S.
"Cognitive Systems Based On Adaptive
Algorithms, Pattern-directed inference
systern, 313-329, 1978

5. Schaffer, J.D. Some Experiments in
Machine Learning Using Vector Evaluated
Genetic Algorithm PhD. dissertation,
Vanderbilt University.1984

6. Schrier, A.M. Transfer By Macaque
Monkey Between Learning-set and

Reperted-reversal Tasks. Percept. Mot.
Skills, 23, 787-702

7. Dejong, K.A. Analysis of the Behavior of
a Class of Genetic Adaptive Systems.
Ph.D. dissertation,Univ. of Michigan, 1975

8. Grefenstette, J.J. Optimization of
Control Parameters for Genetic Algorithm,
To appear in IEEE Trans. Sys. Man,
Cybn,1985

A Representation for the Adaptive Generation of Simple Sequential Programs

Nichael Lynn Cramer
Texas Instruments Inc.
PO Box 226015,.MS 238

Dallas, TX 75266

ABSTRACT

An adaptive system for generating short sequential computer functions is described.
The created functions are written in the simple “number-string” language JB, and in TB, a
modified version of JB with a tree-like structure. These languages have the feature that they
can be used to represent well-formed, useful computer programs while still being amenable
to suitably defined genetic operators. The system is used to produce two-input, single-
output multiplication functions that are concise and well-defined. Future work, dealing
with extensions to more complicated functions and generalizations of the techniques, is
also discussed.

INTRODUCTION

The techniques of adaptive Genetic Algorithms 'GAs]! have been shown to be useful
in many areas. Initially, these systems involved the adjusting of a fixed set of parame-
ters in order to optimize the performance of a given algorithm?. Much work has been
done toward the goal of evolving the algorithms themselves, particularly in Production
System-like domains!{chaP8).3.4 This paper discusses work towards developing a sequen-
tial programming language that is suitable for manipulation by GAs so as to permit the
adaptive generation of simple computer functions from low-level computational primitives.

FUNCTIONAL REPRESENTATION

The scheme that we will follow is first to find a suitably powerful programming lan-
guage, and then encode the programs in this language in such a way as to make them
amenable to the standard Genetic Operators [GOs|.

The basic language to be used is a variation of the algorithmic language PL having
the following operators:

(:INC VAR]} ;:add 1 to the variable VAR

(:ZERO VAR} ;;set the variable VAR to O

(:LOOP VAR STAT) :;perform the statement STAT VAR times

(:GOTO LAB) ;;jump to the statement with label LAB

Progratns in PL consist of an arbitrary number of globally-scoped (positive) integer
variables and statements containing operators of the above forms. Two simple example PL
Programs are:

;:Set variable VO to have the value of V1

(:ZERO V0)

(:LOOP V1 (:INC V0))

;:Multiply V3 to V4 and store the result in V5

(:ZERO V5)

183

T e 1 —

(:LtOOP V3 (:LOOP V4 (:INC V5)))

While PL can be shown to be Turing Equivalent ®, we will be interested in the language
subset PL-{: GOTO}. This language subset has two useful properties: first, while it is not
fully Turing Equivalent, it still comprises a powerful set of functions (specifically, the
set of primitive recursive functions)® and second, programs written in PL-{: GOTO} are
guaranteed to halt. Finally, we make two small extensions to the language. First, a :SET
operator, which accepts two variables and sets the value of the first variable equal to that of
the second. (As can be seen in in the examples above, this operation is trivially definable
in PL-{: GOTO}; if so desired, it can be considered a macro or subroutine operator.)
Secondly, we define a :BLOCK operator that accepts two statements as arguments and
evaluates the two statements sequentially. (This is essentially just a grouping operation
that has no effect on the overall structure of the language.)

Now, the encoded representation for our programs should have two characteristics:

(Goal 1) It should be amenable to the standard GOs.

(Goal 2) The representation should produce only well-formed programs, even when
subjected to the GOs. While some representations. e.g. character-strings, might be well
suited for the mechanisms of GOs, the random generation and/or altering of characters
is not likely to produce. say, a useful FORTRAN program. Consequently, it is strongly
desirable that the chosen representation be such that all such generated programs stay in
the space of syntactically correct programs. Not all such generated programs would be
useful (adapation would be expected to correct that); it is only important at this point
that such programs be well formed.

This paper will consider lists of integers as a representation for these programs where
the object the integer represents (variable, operator, etc,) is determined by the integer’s
position in the list. Clearly such a representation satisfies Goal 1 above, the standard GOs
(Crossover, Mutation, Inversion) would be well defined on such a list. To satisfy Goal 2,
we need to define a decoding of an arbitrary list into a well-formed program.

THE JB LANGUAGE

A first attempt at such a decoding is the language JB. The list of integers is first divided
into statements of some length large enough for the longest statement size, (three in the
present case). Any integers left over at the end of this list are ignored. The first of these
statements is defined to be the Main Statement MS and the remaining N,, statements are
the Auxiliary Statements AS . Syntactically, these statements are interpreted as follows:

(042) -> (:BLOCK AS4 AS2)

(160) -> (:LOOP V¢ ASy)

(219) -> {:SET V; V)

(317 8) -> (:ZERO V};) 1:the 8 is ignored

(405} > (:INC Vy) ::ithe 5 is ignored

Here the symbols of the forimns 17, and AS,, represent, respectively, example Variables
and Auxiliary Statements.

This body of statements is embedded in an environment containing Ny, body-variables
(initialized to 0) and N,, input-variables. At the end of the execution of the program, any
of the Nyioy = (N;y + Np,) available variables can be returned as ouput.

184

The function is entered by executing the MS, which, typically, will call on one or more
of the AS’s. An example JB program would be:

(00135813214345902)

This would be grouped into the following Statements:

(0 0 1) ;;main statement -> (:BLOCK ASp AS))

{3 5 8) ;;auxiliary statement 0 -> (:ZERO V5)

(1 3 2} ;;auxiliary statement 1 -> (:LOOP Vi AS;)

(1 4 3) ;;auxiliary statement 2 -> (:LOOP V; AS3)

(4 5 9) ;;auxiliary statement 3 -> (:INC Vj)

This is the same as the PL multiplication program above.

As can be seen, virtually (see below) any list (of sufficient length) of integers chosen
from the range [0,N,4,4-1] can be used to generate a well-formed JB program. Where Nygnq
= Nytot* Naa* Nop (Nop is the total number of operator types). A particular language object
(variable, AS, operator-type) needed for the program can then be extracted from a given
integer in the list by taking the modulus of that integer with respect to the respective
number above. This ensures random selection over all syntactic types. Two problems
arise from this straight forward use of the JB language. The first, a minor problem, is
that a JB integer-list will not define a correct program when a loop is created among
the Auxiliary Statements. In practice, with a moderate number of AS’s this is a rare
occurence. Moreover, it is easy to remove such programs during the expansion of the body
of the program. (In any case, this problem will be removed in the TB language below.)

A second. more serious problem is that while the mechanisms of the applications of
the GOs are very simple in the JB language, the semantic implications of their use are
quite complicated. Because of the structure of JB, semantic positioning of a integer-list
element is extremely sensitive to change. As a specific example, consider a large compli-
cated programn beginning with a :BLOCK statement in the top-level Main Statement. A
single, unfortunate, mutation converting this operator to a :SET would destroy any useful
features of the program. Secondly, this strongly epistatic nature of JB seems incompatible
with Crossover, given Crossover's useful-feature-passing nature. A useful JB substructure
shifted one integer to the right will almost certainly contain none of its previously useful
properties.

THE TB LANGUAGE

In an effort to alleviate these problems, we consider a modified version of JB. This
language, called TB, takes advantage of the implicit tree-like nature of JB programs.

TB is fundamentally the same as JB except that the Auxiliary Statements are no
longer used. Instead, when a TB statement is generated, either at its initial creation or
as a result of the application of a GO (defined below), any subsidiary statements that the
generated statement contains are recursively expanded at that time. The TB programs
no longer have the simple list structure of JB, but instead are tree-like. Because we are
simply recursively expanding thie internal statements without altering the actual structure
of the resulting program. the TB programs still satisfy Goal 2. Indeed, it can be seen that,
because of its tree-like structure, TB does not suffer from the problem of internal loops
described above. Thus, all possible program trees do indeed describe syntactically correct
PrOgrams.

185

—————y

An example of a TB program is:

0(35)(13(14(45))))

This expands to the same PL and JB multiplication programs given above.

The standard GOs are defined in the following way:

Random Mutation could be defined to be the random altering of integers in the pro-
gram tree. This would be valid but would encounter the same “catastrophic minor change”
problems as did JB. Instead, Random Mutation is restricted to the statements near the
fringe of the program tree. Specifically: 1) to leaf statements, i.e., those that contain
operators that do not themselves require statements as arguments (:INC, :SET, :ZERO).
And 2) to non-leaf statements (with operators :BLOCK, :LOOP) whose sub-statement ar-
guments are themselves leaf operators. Inside a statement, mutation of a variable simply
means randomly changing the integer representing that variable. Mutating an operator
involves randomly changing the integer representing the operator and making any nec-
essary changes to its arguments, keeping any of the integers as arguments that are still
appropriate, and recursively expanding the subsidiary statements as necessary.

Similarly, following Smith®, we restrict the points at which Crossover can occur.
Specifically, Crossover on TB is defined to be the exchange of subtrees between two parent
programs; this is well-defined and clearly embodies the intuitive notion of Crossover as the
exchange of (possibly useful) substructures. This method is also without the problems that
Crossover entails in JB. In a similar manrer, we could define Inversion to be the exchange
of one or more subtrees within a given program,

EXAMPLE

As a concrete example, an attempt was made to “evolve” concise, two-input, one-
output multiplication functions from a population of randomly generated functions. As
discussed by Smith3(“*#r5) 3 major problem here is one of “hand-crafting” the evaluation
function to give partial credit to functions that, in some sense, exhibit multiplication-like
behavior, without actually doing multiplication.

After much experimentation, the following scheme for giving an evaluation score was
used. For a given program body to be scored, several instantiations of the function were
made, each having a different pair of input variables |IVs|. Each of these test functions
was given a number of pairs of input values and the values of all of the function’s variables
were collected as output variables 'OVs.. The resulting output values were examined and
compared against the various combinations of input values and IVs. The following types of
behavior were noted and each successive type given more credit: 1] OVs that had changed
from their initial values. (Is there any activity in the function?) 2] Simple Functional
dependence of an OV on an IV. (Is the funciion noticing the input?) 3] The value of
an IV is a factor of the value of an OV. (Are useful loop-like structures developing?) 4]
Multiplication. (Is an OV exactly the product of two IVs.})

Furthermore, rather than accept input and,/or output in arbitrary variables, scores
were given an extra weight if the input and or output occurred in the specific target
variables. To ensure that the functions remain reasonably short, functions beyond a certain
length are penalized harshly. Finally, a limit is placed on the length of time a function is
permitted to run; any functior. that has not halted within in this time is aborted.

186

A number of test runs were made for the system with a population size of fifty. These
were compared against a set of control runs. The control runs were the same as the regular
runs except that there was no partial credit given; all members of the population were given
a low, nominal score until they actually started multiplying correctly. All runs were halted
at the thirtieth generation. The system produced the desired multiplcation functions 72%
more often than the control sample.

FUTURE WORK

Finally, a number of questions remain concerning the present system and its various
extensions:

Extensions of the Present System: Generation of other types of simple arithmetic
operations seem to be the next step in this direction. Given the looping nature of the
underlying PL language it seems obvious that the system should be well suited for also
generating addition functions. However, it is less clear that it would do equally well
attempting to generate, e.g., subtraction or division functions, to say nothing of more
complicated mathematical functions. Indeed, the results of the control case above show
that it is difficult not to produce multiplication in this language; generation of other
types of functions would prove an interesting result. On the other hand, are there other,
comparably simple, languages that are better suited to other types of functions?

Concerning Extensions of the Language: A useful feature of the original JB language
is its suitability for the mechanisms of the GOs. Can some further modification be made
to the current TB language to bring it back into line with a more traditional bit-string
representation? Are these modifications, in fact, really desirable? Alternatively, would it
be useful to modify the languages to make GOs less standard? For example, would it be
productive to formalize the subroutine swapping nature of the present method of Crossover
and define a program as a structure comprising a number of subroutines, where the appli-
cation Crossover and Inversion was restricted to the swapping of entire subroutines, and
Random Mutation restricted to occurring inside the body of a subroutine?

ACKNOWLEDGEMENTS
I would like to thank Dr. Dave Davis for innumerable valuable discussions and Dr.
Bruce Anderson for preserving the environment that made this work possible.

REFERENCES

1. Holland, John H., Adaptation in Natural and Artificial Systems, Univerity of Michigan Press,
1975.

2. Bethke, A., Genetic Algorithms as Function Optimizers, Ph.D. Thesis, University of
Michigan, 1980.

3. Smith, S.F., A Learning Sustermn Based on Genetic Adaptive Algorithms, Ph.D. Thesis,
Univ. of Pittsburghm, December, 1980.

4. Holland, J.H. and J. Reit:nan, Cognitive Systems Based on Adaptive Algorithms, in
Pattern Directed Inference Systems. Waterman and Hayes-Roth, Ed. Academic Press, 1978.
5. Brainerd, W.S. and Landweber L.H., Theory of Computation, Wiley-Interscience, 1974.
6. Smith, S.F., Flexible Learrung of Problem Solving Hueristics through Adaptive Search,
Proc. IICAI-83, 1983.

187

ADAPTIVE *CORTICAL” PATTERN RECOGNITION

by

Stewart W, Wilson

Rowland Institute for Science, Cambridge MA 02142

ABSTRACT

It is shown that a certain maodel of the primate
retinn-cortical mapping “sees” all centered objects
with the same “object-resolution™, or number of dis-
tinct =ignals, independent of apparent size. In an
artificial system. this property would permit recog-
nitien of patterns using templates in a cortex-like
space. [ts suggested that with an adaptive produe-
tton system such as Holland’s classifier system, the
recognition process could be made self-organizing.

INTRODUCTION

Templates are generally felt 1o have Jimited use-
fulness for visual pattern recognition. Though they
provide a simple and compact description of shape,
templates cannot directly deal with objects that, as
15 common, vary in real or apparent (ie., imaged)
size. However, the human visual system, in the step
from retina to cortex, appears to perform an auto-
matic size-normalizing transformation of the retinal

" image. This suggesis that pattern recognition using

Figure 1.
each connected to an “MSU” in the “cortex” of
Fig. 2.

“Retina” consisting of “data fields®

188

templates may occur in the cortex, and that arifi-
cial systems having a similar transformation should
be investigated. Properties of the retino-cortical
mapping which are relevant. to pattern recognilion
are discussed in the first halfl of this paper. In the
second half, we outline how an adaptive production
system having template-like conditions might recog-
nize patterns that had been wansformed to a *eor-
tical” space.

THE RETINO-CORTICAL MAPPING

Recent papers in image processing and display,
and in theoretical neurophysiology, have drawn at-
tention to a nonlinear visual field representation
which resembles the primate retino-cortical system.
Weiman and Chaikin [1] propose a computer archi-
tecture for picture processing based on the complex
logarithmic mapping, the formal properties of which
they analyze extensively. They and also Schwartz |2]

@

OORAOCORND

-
=4
n

Q)
QO
QO
Q0
Q0
Q
O
Q

—

Q
O,
Q
O
Q

—

900000 00eE
QOO Q)
Q

Q

O

Q

O

O)

90000000

Q0
o0
QO
QO
Q
Q
QO
QO
Q
Q
Q
Q

Q
OOB®OEOOOCO0

Figure 2. Each MSU receives signals from a data
field in Fig. 1. Letters indicate connection pat-
tern.

OO0

present physiological and perceptual evidence that
the mapping from retina to {siriate) cortex embod-
ies the same function. Wilson |3 discusses the map-
ping in the light of additional evidence and exam-
ines its potential for pattern recognition. Early re-
lated ideas in the patlern recognition literature can
be found in Harmon’s [4| recognizer and in certain
patents [5].

A hypothetical structure (adapted from [3]) sche-
matizing important aspects of the retino-cortical
(R-C) mapping 1s shown in Figures 1 and 2. The
“retina” of Figure 1 consists of “data fields” whose
size and spacing increase linearly with distance from
the center of vision. The “cortex™ of Figure 2 is a
matrix of identical “message-sending units” (MSUs)
each of which receives signals from its own retinal
data field, processes the signals, and generates a rel-
atively simple output message that summarizes the
overall pattern of light stimulus falling on the data
field. The MSU's output message i1s drawn from
a small vocabulary, ie, the MSU's input-output
transform is highly information-reducing and prob-
ably spatially nonlinear.

Further, all MSUs are regarded as computing the
same transform, except for scale. That is, if two
data fields differ in size by a factor of d, and their
luminance inputs have the same spatial pattern ex-
cept for a scale factor of d, then the output messages
from the associated MSUs will be identical. (Physi-
ologically, the cortical hypercolumns (6] are hypoth-
esized in {3] to have the above MSU properties.)

The pattern of connections from retina to cortex
is as suggested by the letters in Figures 1 and 2.
Data fields along a ray from center to periphery map
into a row of MSUs, and simultaneously, each ring
of data fields maps into a column of MSUs. The
lefumnost column corresponds to the innermost ring,
the 12 o'clock ray maps into the top row, and so
forth.

it is convenient to describe position in retinal
space by the complex number z = re*®, where r and
¢ are polar coordinates. We can denote cortical po-
sition by w = u - v, where u is the column index
increasing from left to right and v is the row in-
dex increasing downwards. For the mapping to have
complex logarithmic form, it musi be true that the
position w of the MSU whose data field is at z satis-
fies w = log z or, equivalently, u = logr and v = ¢.

That the equations do hold can be seen from Fig-
ure }. The distance Ar from one data field center
lo the next is proportional to r itself, which implies
that u is logarithmic in r. Similarly, the fact that
all rings have equal numbers of data fields directly
implies that v is linear in polar angle. Thus (with
appropriate units) we have w = logz. (The sin-
gularity at z = 0 can be handled by changing the

function within some small radius of the origin. For
present purposes we are interested in the mapping’s
logarithmic property and will ignore this necessary
“fix”).

Figures 3-5 (at end of article) review three salient
properties of the R-C mapping that have been noted
by previous authors. The photos on the left in each
figure are “retinal” (TV camera) images. On the
right are crude “cortical” imapes obtained by the
expedient of sampling the retinal data field centers.
The mapping used has 64 MSUs per ring and per
ray.

Figure 3 shows a clown seen at two distances
differing by a factor of three. The cortical im-
ages, though “distorted”, are of constant size and
shape. Alsoshown is the result of rotating the clown
through 45 degrees; again, cortical size and shape re-
main Lhe same. The pictures show how retinal scale
change and rotation only alter the position of the
cortical image. Figure 4 illustrates these effects for
a texture. The cortical iimages are again the same
except for a shift., The mapping thus brings ahout a
kind of size and rotation invariance which ene would
expect to be useful for pattern recognition.

Figure 5, in contrast, shows that the mapping
lacks translation invariance. The same clown is seen
at a constant distance but in three different posi-
tions with respect to the center of vision. Transla-
tion mon-invariance would appear to be a distinct
disadvantage for pattern recognition.

As the clown recedes from the center in Figure
5, its cortical image gets smaller and less defined.
The effect illustrates how in a sense the mapping
optimizes processing resources through a resolving
power which is highest at the center and decreases
toward the periphery. This variation is sometimes
cited as a useful property of the eye, and was dis-
cussed in connecticn with an artificial retina-like
structure by Sandini and Tagliasco |7].

OBJECT-RESOLUTION

The pattern recognition potential of the map-
ping’s size-normalizing property is best seen by defin-
ing a somewhat unusual notion of resolution. Recall
first that the resolving power p of a sensor is the
number of distinct signals per unit visual angle; in
the case of a linear sensor (such as a TV camera), p
is a constant. Suppose we ask of a system: when its
sensor lmages a centered object of half-angle A, how
many distinct signals, corresponding to the object,
will the sensor produce? Let us name this quan-
tity the system’s object-resolution, R,. Then, in the
case of a linear system, it is clear that R, will be
proportional to p®A2. That is, B, will depend on
the distance or “apparent size” of the object, or on
the relationship between perceiver and object.

The resulting amount of information may be in-
sufficient for recognition, it may be just right, or
it may overload and therefore confuse the recogni-
tion process. This uncertainty leads to the scale or
“grain” problem noted by Marr 8 and others and
te Marr and Hildreth's 9 proposed solution of com-
putations at several resolutions which are later to be
combined. The grain problem is also a motivation
for the application of relaxation techniques [10] in
patiern recognition.

Let us now ask what is the abject-resolution of an
R-C system. For such a system the resolving power
15 p = c/r, with r the distance from the center of vi-

sion. The constant ¢ ean be defined as the number

of MSU outputs per unit visual angle at an eccen-
tricity of r = 1. Object-resolution R can be found
by taking a centered object of half-angle 4 and ip-
tegrating over the object from a small inner radius
€A (¢ < 1) out to A. We have

2

A
Ry= f -0—221rra'r = 2m:"’lni = 2rC%n .
A T €A 3

independent of A.

Thus the mapping’s object-resolution or spatial
quantization of the seen object is independent of the
object’s apparent size or distance, and independent
of its actual size as well. It depends only on ¢ (and
€). Given a fixed value of ¢, the system may be
said to see every centered object, regardless of size,
equally well, independent of the perceiver-object re-
lationship. {Strictly speaking, the above integral in-
cludes only a fraction 1 —¢2 of the object, the “outer™
fraction. But if ¢ is very small the omitted fraction
¢* will contain an insignificant portion of the object’s
pattern.)

The object-resolution of the R-C mapping can
be thought of in terms of the number of data fields
per retinal ring. By mentally superimposing and
then expanding ‘and contracting a centered object
on Figure 1, one can see that it is examined in an
equivalent way at any scale. In fact, it is convenient
to use the number of fields per ring as a measure of

Ra.

The R-C mapping’s constant object-resolution is
the significant difference between it and a linear sys-
tem. In the remainder of the paper we will develop
implications of this difference. First, why in an im-
portant sense the “grain® problem disappears. Sec-
ond, why Gestali-like templates are, cortically, suit-
able for patiern recognition. Third, in outline, how
the cortical approach with templates allows a sepa-
rate adaptive theory due to Holland [11] to be ap-
plied to pattern recognition—and in the process may
solve the mapping’s apparent problem of translation
non-invariance.

THE “GRAIN" PROBLEM

Basically, a “grain” problem exists if there is no
a priori way to tell whether the size of the elements
with which the perceiver is locking is the same as
that of the optimally informative element of the ob-
Ject or scene. In the linear case, we found that the
information about an object may be insufficient, just
right, or overloading depending on (1) the perceiver-
abject relationship and of course on (2) the amount
ol detail in the object itselr.

In the R-C mapping case, the information is
constant, dependent only on the percciver. Thus
{1) above—uncertainty due to the perceiver-object
relationship — disappears. But the information may
still, it seems, be insufficient, just right, or overload-
ing—depending on object detail.

We can develop a criterion for the latter as fol-
lows. Let an object’s “object frequency spectrum?
be the two-dimensional Fourjer spectrum of a geo-
metrically similar object of unit size, and lel f, be
the highest significant (for discrimination) frequency
in such a spectrum. Then, roughly, we may say that
a mapping with resolution R, (in wnits of fields per
ring} provides sufficient informatjon about an object

if R,2 1.

But this bound is not ultimately limiting. It only
says whether information from one fization is suffi-
cient for recognition. Peculiarly, by the mapping's
constancy of information, any fixated local part of
an object is seen in as much detail as is the whole ob-
ject. Thus if R, < f,, the system can always gather
enough information by scanning, i.e., by moving the
center of fixation to any part not seen clearly. R, is
therefore always sufficient, though several fixations
may be required.

Can there be too much resolution? Only if ob-
Jects turn out to be simpler than expected. But
often this can be known in advance. In contrast,
in the linear case, superfluous resolutjon will always
occur whenever object images become large.

TEMPLATES

In any digital computer implementation, a tem-
plate for pattern matching consists of a finite (usu-_
ally rectangular) array of cells in each of which the
relative brightness to be matched is specified. The
array has a fixed resolution since the number of cells
is fixed.

One major traditional problem with templates is
a variation of the “grain” problem: Unless the tem-
plate’s resolution is the same as the system’s object-
resolution, there is virtually no chance of getting a
correct match. The R-C mapping offers a solution
since the system’s object-resolution is fixed, and the

190

resolution of all stored templates can be made ex-
actly commensurate. For instance, the system can
acquire its templates by copying its own cortical
MSU output images of identified objects. The same
objects when later presented in other sizes will be
“seen” in the same way.

Templates have other problems, e.g., orientation
and brightness variations may lead to mismatch.
These will be taken up later. Our analysis suggests,
however, that templates may yet have an important
role to play in general pattern recognition, provided
the matching occurs in a cortex-like space.

OUTLINE OF AN ADAPTIVE CORTICAL
PATTERN RECOGNITION SYSTEM

This section will outline a system concept com-
bining the R-C mapping, a production system based

on cortical templates, and the theory of adaptation
due to Holland.

A visual world mapped as in Figures 1 and 2
suggests a natural polarity between center and pe-
riphery. The same centered object, as it grows big-
ger, expands toward the periphery, and its cortical
image, as noted, shifts as a unit from the left side
of the “cortex” toward the right side. The implica-
tion is strong that processing, in the cortex, should
consist of a column-by-column scan |12 from left to
right. The pattern ol an object, whatever its degree
of shift from the left, will be encountered “sooner
or later” and thus be available for matching against
templates.

Further reflection suggests that rather than work-
ing with two-dimensional templates, it might be
simpler to use one-dimensional column templates—
the identification of a pattern consisting of succes-
sive matching of the appropriate column templates.
Storage would be saved because a given column tem-
plate would often be a contributor in more than one
two-dimensional match.

An appropriate structure for performing the cor-
relation of successively matching column templates
is a form of production system in which (1} the con-
dition of each production includes a column tem-
plate pattern and one or more internal message pat-
terns, and (2) the action is an internal message to
be placed on the common message list. (These in-
ternal messages are distinct from the MSU output
messages. To avoid confusion, the internal messages
will be called i-messages.)

In addition, a separate set of “effector” produc-
tions, whose conditions consisted only of i-message
patterns, would monitor the i-message list. When
an appropriate i-message appeared on the list, the
effector would fire. Its “action” would be (1) an ex-
ternal action such as moving the center of vision, or
(2) an “internal” action also modifying the system’s

frame of reference but not directly observable from
the outside (more on this later), or (3) a signal to
the outside world denoling a patiern name.

Many details need Lo be filled in 1o make this an
operating system. However, enough has been given
Lo suggest a process in which starting at the left end
of the cortex, columns would be scanned and pro-
ductions would fire in dependent sequence (the de-
pendency based on i-messages as well as the column
infermation being matched), resulting ultimately in
an effector firing whose signal named the object in
view.

Production systems have not usually been con-
sidered in connection with pattern recognition be-
cause production conditions typically deal with *nor-
malized” or logical variables and, given the grain
problem, patterns in linear vision are anything but
normalized. In cortical space, however, patierns are
normalized so that there the power of productions
can potentially be exploited.

But we can go farther. One part of the adaptive
theory due to Holland is concerned with “cognitive
systems” based on sets of productions called “clas-
sifiers”. The form of a classifier is, most generally, a
string whose condition part consists of a fixed length
“environmental detector pattern”™ together with one
or more i-message patterns, and whose action part
is an output i-message or effector action. The im-
portant point for us is that the “environmental de-
tector pattern” has exactly the form of the column
templates we have been considering, so that clas-
sifier systems and the adaptive theory may be di-
rectly applicable to “cortical” pattern recognition.
It has been demonstrated [13-16| that given an ap-
propriate external reward regime a classifier system
can evolve a sel of classifiers that is adapted to, or
“fit”, in its environment. This means in particular
that the conditions of the classifiers recognize what
matters, and the 1-messages and actions are appro-
priate. Much further research must be done, but by
combining classifiers with R-C vision, a new path
would appear to be open to the objective of a self-
organizing visual pattern recognition system.

If the adaptive properties of the Holland sys-
tem be assumed, we can suggest how the produc-
tion structure given earlier might deal with non-
centered objects. They look different from their cen-
tered forms: this is the mapping’s translation non-
invariance. The problem would be solved if classi-
fiers existed which would react to the off-center form
and lead to an effector which would move the center
of vision so as to center the object (at which point
“standard” classifiers could recognize it).

At first sight, the evolution of this kind of se-
quence seems implausible: you would need classifiers
for every object in every peripheral position. How-

191

ever, Lthe mapping helps by reducing the detail secn
in an object, as it recedes toward the pertphery; in
the Binit, every object becomes just a “blob™. This
suggests that only a relatively small number of dis-
tinct classifiers would be needed to “acquire” any
object for standard (centered) inspection.

There remains the problem, not of the isolated
object, but of the more-or-less centered one— such as
a face—which is still not contered quite well enough
to fire its standard classifiers. How can an appro-
priate centering movement come about? For this
question, and related ones, we need to consider the
“internal effeciors™ mentioned earlier,

Three are important in the present discussion:
Object-Resolution {OBRES}, Azimuth (AZIM), and
Brightness Gain {BGAIN). OBRES is an effector {or
set. of them} which, given appropriate I-messages,
will alter the system’s object-resclution (in effect
changing the number of data fields per ring in Fig-
ure 1). This permits secing an object {regardless,
of course. of its apparent size) in detail, or more
coarsely, depending on the i-message list circum-
stances. The cevolution of OBRES effectors ap-
propriate to different circumstances would oceur
through the adaptive mechanisms.

If we now recall the problem of the slightly off-
center face, it seems plausible that, given some re-
duced level of object-resolution, most different faces
with that degree of decentering could be matched
by a relatively small {and thus practical) set of clas-
sifiers. These would lead to a2 movement command
bringing the face to the center, where it would be
recognized in detail (after, perhaps, restoration by
OBRES of a higher R;).

The AZIM internal effectors set the direction
the system regards as “up”. In cortical space, Lhis
amounts to shifting the input column vector along
its length by a definite amount before matching clas-
sifier template patterns against it. The purpose of
AZIM is, of course, to allow a given set of classi-
fiers to be effective for recognition even if the object
is not in standard orientation. But how will the
right azimuth be set in such a case? We again have
recourse to the evolution of relatively coarse classi-
fiers which, given reduced object-resolution through
OBRES, will recognize the presence of a nonspe-
cific (“oblong”, say) object at a certain orientation.
These would lead to the right AZIM acting, and spe-
cific recognition could then occur.

Finelly, BGAIN is a set of internal effectors to
deal with the persistent problem of setting the right
brightness level for template matching. The intent
1s that the appropriate gain will be determined (via
the i-message list) by what is seen, and that the
evolution of an appropriate set of BGAIN effectors
will again be under adaptive control in the Holland

192

S€nse.

The various internal effectors, and the external
one resulting in movement, are concerned with the
system's “point of view” on its visual input, that
15, with systematic transformations which will allow
the system’s form detector set—the classifiers—to
function efliciently.

SUMMARY

We began this paper with the retino-cortical
mapping and showed how it “saw” centered objects
with a resolution independent of the object’s size,
Constant object-resolution led to a renewed prospect
for template matching in general pattern recogni-
tion. Fixed size templates permitted the power ol
production systems to be brought to bear. Finally,
the applicability of Holland’s adaptive theory to pro-
duction systems allowed us to suggesi that a recog-
nition system based on the mapping might be made
sclf-organizing, in the process overcoming the map-
ping’s “problem” of translation non-invariance.

REFERENCES
[1] Weiman, C.F.R. & Chaikin, G. Logarithmic
spiral grids for image processing and display.

Computer Graphics and Image Processing, 11,
197-226. 1979.

2] Schwartz, E.L. Spatial mapping in the primate
sensory projection. Biological Cybernetics, 25,
181-194, 1977.

i3} Wilson, S.W. On the retino-cortical niapping.
Int. J. Man-Machine Studies, 18, 361-389,
1983.

4] Harmon, L.D. Line-drawing pattern recognizer.
Electronies, 39-43, Sept. 2, 1960.

|5] Singer, J.R. Electronic recognition.
U.S. 3,255,437, Jan. 7, 1986,
Burckhardt, C.B., et al. Pattern recognition
apparatus utilizing complex spatial filtering.
U.S. 3,435,244, March 25, 1969.
McLaughlin, J.A., et al. Pattern recognition ap-
paratus and methods invariant to translation,
scale change, and rotation.
U.5. 3,614,736, October 19, 1971.

6] Hubel D.H. & Wiesel, T.N. Uniformity of mon-

key striate cortex: a parallel relationship be-
tween field size, scatter, and magnification fac-
tor. J. Comp. Neurology, 158(3), 295-305.
1974,

Sandini, G. & Tagliasco, V. An anthropomaor-
phic retina-like structure for scene analysis. Com-
puter Graphics and Image Processing, 14, 385-
372, 1980.

18] Marr, D. Early processing of visual information.

e S ——— |

Philosophical Transactions of the Royal Society (13| Holland, J.H., & Reitman, J.5. Cognitive sys-
of London B, 275, 483-524, 1976. tem based on adaptive algorithms. In Pattern-

g . Directed Inference Systems, Waterman, D.A. &
(9] Marr, D., & Hildreth, E. Theory of edge detec- : ' Y .
tion. Proe. Royal Soeiety of London B, 207, Hayes-Roth, F. (eds.). New York: Academic

187-219, 1980. Press, 1978.

[10] Davis, L.S. & Rosenfeld, A. Cooperating pro-

cesses for low-level vision: a survey. Artificial . R .
Intelligence, 17, 245-263, 1981, tion {Computer and Communication Sciences).

! The University of Michigan, 1982.
11} Holland, J.H. Adaptation irn Natural and Ar- . L
it tificial Systems. Ann Arbor: U. of Michigan |15} Goldberg, D.E. Computer-aided gas pipeline
Press. 1975 operation using genetic algorithms and rule learn-

) ing. Ph.D. Dissertation {Civil Engineering),
[12] Evidence and a model for scanning in humans The University of Michigan, §983.
is presented in Wilson, S.W., Strobe imagery:
a scanning model. Submitted for publication.

|14]| Booker, L. Intelligent behavior as an adapta-
tion to the task environment. Ph.D. Disseria-

|16, Wilson, 5.\W. Knowledge growth in an artificial
animal. These Proceedings.

193

Fig. 5

MACHINE LEARNING OF VISUAL RECOGNITION USING GENETIC ALGORITHMS

Arncld C. Englander
Itran Corporation, Manchester, N.H.

ABSTRACT

This paper briefly describes
preliminary work with an
application of genetic algo-
rithms. Genetic algorithms
are used as the mechanism by
which a wvision recognition
system learns to classify dis-
torted examples of different
but similar classes of image
patterns. The system develops
increasingly effective collec-
tions of class specific
feature detectors producing
increasingly unambiguous,
hence reliable, recognition
performance. Algorithms and
early simulation results are
described.

Genetic algorithms are applied
to a special case of a diffi-
cult optimization problem
which is emerging in several
forms in computational vision
research. The general optimi-
zation problem has a
performance measure that is
easily formulated as an algo-
rithm involving the composi-
tion of both functionals and
logical operations. However,
the performance measure is not
itself a smooth, much less
convex, functional. This pre-
cludes the application of most
conventional optimization
techniques.

I. INTRODUCTION
A variety of techniques for

the machine recognition of
objects in images exist in the

1 For

a general and thorough

literature and in demonstrated
machine vision technology
[1,2,3}. There is an image
recognition problem which is
difficult for all of these
technigues but which arises in
practical applications. The
problem combines two
troublesome characteristics.
First, pattern classes have
prototypes which correlate
highly with the prototypes of
different pattern c¢lasses.
Second, the pattern examples
(to be classified) are randomly
distorted and occluded.
Practical cases of this prOblem
arise in reading characters
stamped in certain industrial
materials such as rubber and
cast metal. Other examples are
found in robot vision "bin-
picking"” applications involving
certain assortments of parts.
This paper describes the use of
genetic algorithms as the basis
of a machine vision system
which improves its own
performance with such
recoagnition problems by

learning from labeled examples.!

II. THE OPTIMIZATION PROBLEM

Experience in applying
conventional recognition
techniques to difficult

industrial vision problems has
led to this view: Robust
recognition performance relies
on the identification and use

introduction to genetic

algorithms, including general analytical results, see the
pioneering

book by Holland {4].

of a large set of local image

features having two
properties. First, important
local features are those
which, either alone or in
small groups, disambiguate the
recognition process by being
necessary and/or sufficient
("essential") evidence for

classification. Second, such
features and groups of
features must be likely

survivors of the distortion
and occlusion operations under
which image pattern examples
are generated from class
prototypes,

Obviously essential features
are application dependent.
They depend on the class
prototypes and on the
distorting and occluding
processes, The problem's
strong dependence on
application particulars leads
to the requirement that the
recognition system improve its
own performance by associative
learning from labeled
examples.

It is desirable to identify
many small features which are
essential when detected alone
or in a variety of groupings.
This way the features which
contribute to the recognition
Process are likely to survive
the random distortions and
occlusions. The detections of
essential features should be
not only graded and combined
in weighted sums but combined
in ways which allow pieces of
evidence to "veto" the
significance of other pieces
of evidence. Intuitively, the
behavior of algorithms based
on such ideas will be
complicated by implicit non-

198

linear, "competitive"™ and
"cooperative"™ interactions
between the evidence derived
from the detections of
essential features.

II. USE OF GENETIC ALGORITHMS

Applying these views to machine
learning of visual recognition
leads to an optimization
problem over a space of
populations of 2-D detector
arrays where each array is a
composite of templates for the
detection of essential image
features. The overall
population of detector arrays
is divided into class specific
sub-populations each of which
is optimized to respond
maximally to examples of a
particular image pattern class.
The recognition algorithm
classifies unidentified images
by assigning them to the
detector array sub-population
producing the highest sum of
individual recognition
responses, The recognition
response of an individual
detector is the product of a
match between the detector and
the input image, and a term
called "strength",. The
strength of a detector array is
indicative of the detector
array's past performance in
disambiguating recognition
decisions,

Optimization of a sub-
population of class specific
detector arrays means finding
detectors which strongly match
input image examples of the
specified class, but which only
weakly match input image
examples of other classes. This

is difficult because the
different image pattern
classes have prototypes which
are alike in the sense of
being highly cross-correlated.
This optimization problem
reflects the desired strategy
and intuitively seems simple.
However, it is not easy to
solve. The problem's per-
formance measure on individual
detector arryas is composed of
functionals and logical
operations, It is not itself
a smooth, much less convex,
functional. Such optimization
problems are unsolvable by
most conventional methods.
Because genetic algorithms
impose unusually few con-
straints on the formulation of
optimization problems they are
applicable to this problem.

The match between detectors
and input images involves a
"matchscore”™ which is common
to most genetic algorithms.
The strength of detectors
develops iteratively. During
the associative learning phase
of the system, the strength of
each detector is increased
each time the detector's
response is above the average
response of all detectors and
the class origin of the input
image and the <class
specificity assignment of the
detector are the same. The
strength of a detector is
decreased each time it
produces an above average
response to an input image

——————3

originating from a class other
than the class to which the
detector's sub-population is
being optimized to recognize,

Here, an image pattern is a 2-D
array of binary valued picture
elements, or "pixels". (This
corresponds to a 2-D map of the
zero crossings in a digital
image processed by convolution
with a difference of gaussians
(DOG) operator for the
detection of edges. The
resulting zero crossings are
useful in portraying the
boundaries of objects in the
scene.) The image patterns are
randomly distorted and occluded
examples of prototypes from one
of several distinct, but
similar, image pattern classes.

A detector array is a 2-D array
of pixels of the same size as
the image patterns., Here each
pixel takes one of three
symbols, {0,1,#} where {0,1}
indicate values taken by pixels
in image patterns and ¢#
indicates the "don't care"
condition in the usual genetic
algorithm matchscore. A
standard matchscore is used in
mating image patterns to
detectors arrays by simply "un-
winding” the image patterns and
detector as taxa type character
strings {over {0,1} for image
patterns and over {0,1,#} for
detectors).

Genetic algorithms optimize the
class specific sub-populations
of detector arrays, indirectly,

2 Other cases of such optimation problems are emerging in

computational vision research [5].

One case involves the

goal of combining the information of various visual

processes (stereopsis, motion,

and "shape from-shading" for

example) into a single interpretation (of 3-D or "2-1/2-D" for
example), which is optimal under a performance measure which

combines functionals and logic.

Genetic algorithms may be

applicable to such problems as well,

e L R—— e -

by operating on the individual

detector arrays in each
separate, class-specific sub-
population, Restricting
"mating" and "replacement"
operations to taxa within the
same sub-population, two
"parents® are selected (in
each sub-population, at the
completion of each recognition

trial invelving 1labeled
examples, hence changes in
strengths). The "parent"™ taxa

are selected according to the
detectors returning the two
highest recognition responses
(the product of the match with

the current input image
example and the detector
strength) or with

probabilities proportional to
the recognition responses.
The two "parents" generate two
"offspring™ under genetic
operators and the "offspring”
each replace an "individual"
judged to be "weak" for having
one of the two lowest
strengths of the taxa in the
sub-population. The
"offspring"” enter the sub-
population with strengths
which are a fraction of the
average strength of the two
"parents" and the strengths of
the "parents" are reduced to
match that of +their
"offspring”.

These selection rules reflect
heuristic arguments and
experimentation. "Parents"
are selected as to recognition
responses to ensure that they
are "strong”™ for having con-
tributed to disambiguation in
the past, and that they are
well matched to the current
input example. "Weak® indivi-
duals are "un-selected" by low
"strength™ alone, rather than

200

by the current match-"strength"
product, to avoid losing
detector arrays which tend to
be useful but match poorly with
the current input example
(which is randomly distorted
and occluded).

Early simulations involved
standard operators of genetic
algorithms: "cloning", "cross-
over”, "inversion", and "muta-
tion", chosen according to pro-
babilities which are fixed for
each experiment. As 1is
commonly believed, it is most
useful to assign "crossover"”
the highest usage probability.
Experiments were also performed
using Wilson's "imprinting" and
"ternary intersection™ opera-
tors, with low usage probabili-
ties. Wilson's operators seem
relevant and useful to this
problem [6].

ITI. EARLY SIMULATION RESULTS

Early simulation results are
promising in that self-optimi-
zation by genetic algorithms is
obvious. The recognition
system, operating in training
mode, clearly improves its
cumulative average of correct
recognitions from very low
initial percentages ¢to
moderately high percentages
over a few hundred trials. 1In
simulations involving 4 pattern
classes of 2 prototypes each, 4
sub-populations of detector
arrays having 32 detector .
arrays each, and image and
detector arrays of 32 by 32
pixels, the system averaged
correct recognitions 25% of the
time for the first 100 or so
trials, rising exponentially to
78% correct recognitions after

1000 trials. In such simula-
tions the detectors were
initialized with pixels con-
taining 0,1,%, with egual pro-
bability and Wilson's genetic
operators were used randomly
with small probabilities. 1In
some simulations the system
improved its recognition per-
formance over c¢orrelation
based pattern recognition
techniques in a few thousand
training iterations.

As expected, over time, the
system evolves strong detector
arrays which partly resemble
the prototypes of the pattern
classes to which the detectors
are assigned. But the
resemblance is never complete
because detectors must match
features present in examples
of their assigned pattern
class but ignore features
which are also characteristic

of other c¢classes. The
evolution of such detectors is
apparent in the simulations.

Iv. CONCLUSION

Preliminary work with an
application of genetic
algorithms has been described.
Genetic algorithms are the
mechanism by which a vision
recognition system learns to
classify distorted examples of
different but similar classes
of image patterns. This work
addresses an unconventional
optimization problem which
arises naturally from an
intuitive model of visual
learning. Early simulation
results indicate that the
proposed model can lead to the
design of an effective machine
vision system.

REFERENCES

1. R. Duda, P. Hart:
Wiley, New York, 1973.

2. E. Ball:
Academic, New York, 1979.

3. J. Tou and R. Gonzalez:

! 3 ficati 1 S Analvsi

Addison-Wesley, Reading, MA, 1974.

4, J. Holland:

University of Michigan, Ann Arbor, 1975.

5. D, Terzopoulos:

"Multilevel Reconstruction of Visual

Surfaces: Variational Principles and Finite-Element

Representations®, in

Multiresolution Image Processing
; ed. A. Rosenfeld, Springer, New York, 1984

(see page 283).

6. 5. Wilson:

"Knowledge Growth in an Artifical Animal®,

in Proc. Fourth Yale Workshop on Applications of Adaptive
Systems Theory, New Haven, Conn., 1985.

Bin Packing With Adoptive Search
Derek Smith
Texas Instruments

1.0 INTRODUCTION

He have locked at the probiem of bin packing arbitrarily dimensioned
rectangular boxes into a single orthogonal bin. Figure 1 shows a good bin
packing, the sort we are aiming for. Figure 2 shows a poor bin packing.

The problem s NP-hard in the strong sense, so there is littie hope
of finding a polynomial time optimisation algorithm for it (1).
Reascnable approximation algorithms exist which can be guaranteed to be
within 224 of optimal [(1).

Our approach has been to use a wrinkle on genetic algerithms (3),
developed in the Texas Instruments Computer Science Laboratory (2).

2.0 ADAPTIVE SEARCH

The epistatic domain of bin packing has traditionally not been
amenable fo adaptive search techniques. This is because it is difficult
to represent a bin packing on which we can do crossover and mutation and
retain either a reasonable packing or a legal packing.

Consider a flip mutation (rotate through 90 degrees) of box 18 in

figure 1. The flip will either cause a illegal bin packing duve to boxes
overlapping each other, or if we fraocture the packing by moving the
neighbouring boxes away +to make the flip legal, will produce a poor bin
packing.

Our solution is to represent the bin packing us a list of the boxes
plus an algorithm for decoding the list into a bin packing. The list is
readily mutatable (flipping boxes), and is amenable to a modified form of
crossover. The decoding algorithm takes any list of boxes and forms a
legal packing. Hence we attempt to produce good bin packings using
Genetic Algorithns.

2.1 The Representation

As explained above our representation is a list with an associated
algorithm to apply to the list to produce a bin packing. For effective
search the algorithm must produce legal packings from any operation on the
list. Here we describe two such decoding algorithms.

The <{irst algorithm we call SLIDE PACK. He take each box, in order,

from the |list, place it in one corner of the bin, and let it fall to the
farthest corner awoy, as if under a gravity that only allowed it to move

202

orthogonally. The effect is that a box will zigzag into a stable position
in the opposite corner from which it was placed. Box 2 in figure 3 shous
the SLIDE PACK algorithm.

SLIDE PACK is fast as there is no backtracking, and is simple fo
compute. Its time complexity is O(nk¥2), where n is the number of boxes.
There are n! possible orderings of our list of n boxes. If we associate
a flipped state with each box, this gives us nlZKkn members in the set of
all encoded representations. Although we can contrive packings that SLIDE
PACK can never do, we believe that in general we can reach all of the
search space by opercting on the list of boxes.

The second algorithm we call SKYLINE PACK. For each box in the list,
in order, we try the box in all stable positions, and in all its
orientations on the partially packed bin. A stable position is where the
box is tucked into a corner, or cave formed by other previously packed
boxes. The algorithm takes its name from the fact that it tours the
skyline formed by the previously packed boxes to find the position it fits
best. Figure 4 shows some of the places that box 2 is being considered
for by the SKYLINE PACKer.

Again we have nl possible orderings of the list. However each time
a we pack a box we try that box in many positions - we are covering more
of the search space than in the SLIDE PACKing of a box. It is cieor fhat
we can no longer generate all possible bin packings, as a poor placement
of a box will be ignored in favour of a better placement somewhere else on
the skyline. A more practical question is whether we can represent all
good bin packings. He believe so (again informally) but wWith less
conviction than with the SLIDE PACK. SKYLINE PACK has fime complexity
O(nkX4) .

WHith o randomly generated list SKYLINE PACK will fend to generate a
significantly denser packing than SLIDE PACK, however, it takes longer to
run. Figure 2 is o typical SLIDE PACKing of o randomly generated list,
whilst figure 5 is o typical SKYLINE PACKing. SLIDE PACK can produce good
packings as shown in figure 1 when we apply tThe adaptive search
techniques. The trade off is whether to run the adaptive search with
larger populations and for more generations using SLIDE PACK, or in the
same amount of time vuse SKYLINE PACK for fewer generations. Our
experiments have shown that SKYLINE PACK is more favorable, however With a
better tuning of the adaptive search SLIDE PACK may produce better
results.

2.2 The Genetic Operators

Dur representation of a packing, as described, is the order of the
boxes presented to the packing algorithm. Traditional crossover cannot
operate on such a list. Consider a crossover of list (1 2 3 4 5) with (5
4 3 2 1) the crossover point being after the second element to produce (1
2 321). The list now has boxes 1 and 2 duplicated and boxes 4 and §
missing.

203

Hence we use a MODIFIED CROSSOVER which takes the order of the boxes
before the splice from the first list, and the order of the boxes which
remain to be packed from the second list after the splice point. In the
above example we would generate the |ist (1254 3).

Hollands theorems (3) regarding the effectivness of crossover no
longer hold. He have not yet investigated the theoretical aspect of the
modified crossover. However we have experimented with its use;, we have
run random search versus our genetic operators, and have found the genetic
operators to produce consistently better results.

One of the mutations we have experimented with is SCRAMBLE, that is
randomiy reordering some portion of the list. A+ the beginning of the
adaptive search process we can concentrate on SCRAMBLing the beginning
portions of the list to evolve a good basis for the packing. As the
evolution proceeds we can move our area of interest father up the Iist.

A FLIP mutation +to try different orientations of the boxes is
necessary if the decoding algorithm does not try the box it is packing in
all its orientations. FLIP is applied discretely to boxes in the |jst.

2.3 The Evaluation

Because we require our evaluation procedure to score dense packings
highly, a straightforward evaluation eriteria is the ratio of the area of
the boxes packed to the area of the bin. This works well as an evaluation
of a packing.

It is less clear how to evaeluate partial packings which are required
in such decoding algorithms as the SKYLINE PACKer where we need an
evaluation of the packing for each position of the box along the skyline,
to choose where to settie it. We have +ried numerous wWays to measure
partial bin packings. One of the most intriguing is to take the inverse
square of the separation of the box being packed to all the other boxes.
This favors boxes filling in caves, especially if they fit snugly into the
cave, There is some analogy here to gravitational effects, and indeed
such an evaluation aliows us o pack in space (as opposed to in a
containing bin) as the boxes are attracted to each other.

Graph 1 shows how the density of a partial bin packing falls as the
nunber of boxes packed increases. This is due to the forming of more and
targer caves by the later boxes. As the evolution continues we form less
caves, and we can see from the graph that by generation 20 we have kept to
about 857 density.

3.0 RESULTS
He have benchmarked our results against a recentiy developed

deterministic bin packing program wWithin our group. This program uses
some heuristics and dynamic programming techniques. Our preogram can

204

produce the same packing density 300 times faster. Alsoc if a greater
density is required then we can simply allow our program to run for
tonger, or run it agaoin. Similarly if a less dense packing is required we
rup for only a short time. Graph 2Z shoWws how the density increases as the
evolution proceeds. This is a tremendous practical advantage of this
approach. A practical disaodvantoge is that each time we run the process
we Will end up Wwith a different packing.

4.0 FUTURE RESEARCH

There is work to be done in the mating of the decoding algorithm and
the genetic operators. In particular, finding woys to operate a portion
of a bin packing without having repercussions on the whole bin packing.

Hork is also in progress in making the genetic operators robust to
quantity of data, variation in dimensions of boxes, and variations in the
aspect ratio of the bin.

We are alsoc considering a process which monitors the adaptive search
whilst it runs. Such a process could vary the importance of the mutations
as the search proceeds. It could bring in mutations to produce diversity
of the search if it were trapped at a local maxima. It could also alter
the size of the population at various stages in the evolution. Currently
such variations are set up at the start of a run, it would be more
effective to have the process continvally monitoring and adapting itself.

In order fo learn how to implement the monitor process we need to
study how the search space is being explored. Seeing our bin packing
algorithms run by the use of graphics has been very useful in this work to
date. Graph 3 shows the sort of display which we would like in order +to
watch the evolution, Ilearn obout +the process, and write the self
monitoring system we have mentioned. HNumbers 1 through 4 are four of the
members of the initial population. The trees sprouting from them
represent the performance of their offspring. 1 was a poor initial
packing and socon died owWay. 4 wWos a good packing and we can see it
spawned many children in exploring its portion of the search space. Note
afiso that 2 and 3 are ollowed to evolve to maintain diversity in the
search.

Graph 4 is the same concept as graph 3 in o search space that we have
completley mapped out and in which wWe cen draw the local maxima,
represented by hills in the graph. He could then test new levels of
operators, and different population sizes in a controlled and visible
search space. Graph four shows only two dimensions of such a space, which
for n boxes is n-dimensional.

5.0 ACKNOWLEDGEMENTS

This work is only possible because of the enthusiasm, research work,
and utilities for adaptive search all provided by co-worker Lawrence
Davis.

He thank the referees for their valuable comments.

6.0 REFERENCES
1. Garey and Johnson, Computers and Intractability, 1378, H. H.
Freeman.

2. Lawrence Davis, Applying Adaptive Algorithms to Epistatic
Domains, To appear proc. IJCAI-85.

3. John H. Holland, Adaptation in Natural and Artificial Systems,
University of HMichegan Press, 1975.

206

|
4|

e,
Faga JG.
g Ty
woll ~
\ :
amy S

4

Qe 5
\ [
[

el
- PN

Bl o~
'
Bovax Frzeesn

Graph 1 Density a bin packing proceeds

looz
PACI.l-lg,
DeutiT

wol

GENELaTiong

Graph 2 Density as search proceeds

Prcrste

wl, (_,— o

Graph 4 Exploring the scarch space

Directed Trees Method for Fitting a Potential Function

Craig G. Shaefer

Rowland Institute for Science, Cambridge MA 02142

Abstraet

The Directed Trees Method is employed to find interpolating functions for potential energy sur-
faces. The mathematical algorithm underlying this fitting procedure is described along with example
calculations performed using a genetic adaptive algorithm for fitting the Ay unfolding families to 1-
and 2-dimensional surfaces. The properties and advantages of the usage of genetic adaptive algorithms
in conjunction with the Directed Trees method are ilustrated in these examples.

Section: 1. Introduction

How does one choose a mathematical model to describe a particular physical phenomenon?f

To help in answering this question, we have developed a method called the Directed Trees (DT) method!
for describing the possible structures available to a particular special type of model: the gradient dynamical
systems. The gradient dynamical systems are, however, quite general and flexible and hold a ubiquitous
presence in the physical sciences. In the next section we illustrate where this special type of model ‘fits’ into a
very broad class of mathematical models. The DT method employs a relatively young branch of mathematics
calted differential topology: “topological® in order to furm categories of solutions for gradient dynamical
systems to reduce the problem to the study of a finite number of different categories, and “differential”
in order to allow for quantitative calculations within these models. For the purposes of this paper, it is
sufficient to say that in the numerical applications of the Directed Trees method, systems of nonlinear
equations arise for which we require solutions. Although classical numerical methods could be employed for
the solution of these nonlinear systems, we find that genetic adaptive algorithms (GAs) are especially suited
for this purpose and have certain advantages. In order to introduce our application of GAs to the solution of
nonlinear systems of equations and be able to discuss the advantages which G As offer over the more classical
numerical methods, the third section of this paper provides a brief exposition on the topological concepts
inherent to the Directed Trees method and describes the equations that arise in its quantitative applications.
Section 4 contains examples of the usage of genetic adaptive algorithms for solution of these systems.

Section: 2. General Mathematical Models

In this paper, we are seeking not so much a procedure for calculating the specific solution to the
mathematical model of a physical system, but rather the development of 8 model for which we may classify its
solutions into behavioral categories so that one particular solution from each category serves as a paradigm
for all solutions belonging to its category. Obviously. this will greatly simplify the study of the general
solution of a model. In order to do this, however, we first need to restrict the type of mathematical model
to which our classification scheme is applicable. To understand where our restricted class of models fits
into the general class of mathematical models, below we will describe the simplifications inherent to our
restricted class. The following iable contains a list of possible variables whose interrelationships we seek.
These variables include items such as the spatial and time coordinates, and parameters such as the masses
of particles, the refractive indices of mediums, densities, temperatures, etc. In addition, our model might

207

§1:2
General Mathematical Models
Variable General Term Comments
T e Rm Ty (11—rm) m spatial coordinates
te R L time coordinate
Fc® i (11—s) & parameters [mass, refractive index,..)
] BUZ, Ait) (s 1—e0) SOLUTIONS (trajectories,...)
Dfé djg—‘ {i31—ec) time derivatives
Dio a,:t?k%';g{n {ar -am b spattal derivatives
[T(©)dt fT(O:...)dt (T functionals time integrals of functionals
[K{®)dz [K(©.:..)dz, (K functionalit spatial integrals of Tunctionals
i felF6,6,5,..)F (£1--n) integrodifferential functionals
t = functionals may depend on any of the variables located above them in this table

Table 1 Table containing possible variables, parameters, and functional dependencies for a general mathe-
matical model of a physical system.

also depend on the derivatives with respect to the time and spatial coordinates as well as integrals whose
integrands are functions of the other variables or solutions,

Suppose we have a physical system for which we have a set of n arbitrary rules that specify the in-
teractions of the variables from Table }. This leads to the following system of n equations, called an
Integrodifferential System, whose solutions describe the behaviors of the physical system:

f=0 . {1)

Since we have n equations, let us suppose that there are n solutions, thus we take & = (©1,...,04,) in
what follows. Let us remark that this system forms a very general and fexible mathematical model for
studying physical phenomena. It encompasses almost all mathematical models that are currently employed
in the sciences. This system of integrodifferential equations is. however, much too difficult to solve in all
of its generality — only in very specific cases are solutions even known. And virtually nothing is known
about how these solutions vary as the parameters are changed. We must make a few simplifications in these
equations before anything can be said about their general solutions. These simplifications are very typical
though, for many models in the “hard” sciences have as their fundamental premises the assumptions that
we describe below.

To begin, we assume that § does not explicitly depend upon %, DI6 for j > 1, D;é, fT(é}dt_.
nor fh(é)df Then the system has the form: [= f{;7¢;D,8) = §, for which more can be said
concerning its solutions. Instead of studying this system, though, we continue with a further simplification
concerning the dependency of f on the time derivatives, and, in particular, we consider those f of the form.

208

Directed Trees Method for Fitting a Polential Function §1:3

J=D6- f;(é;ﬁ;t) = 0. Note that the function f' appears to be similar to a force vector. In effect,
the above system of equations describes the situation in which the rates of change of the solutions are
proportional Lo a vector that depend upon the solutions themselves. This type of system arises in classical
mechanics and is usually called a Dynamical System. If the further restriction that the forces do not explicitly
depend on the time, then we have the following system of equations, which form an Autonemous Dynamical
System: f = D,0 — f/(6;5) = 0. A few useful statements can be made about the solutions of this type of
system of equalions and their behaviors as the parameters 7 are varied. We, however, will again continue to
make one further simplifying assumption on the form of the ﬁ. We noted above that the vector function,
f;, is of a form similar to the forces in kinematics and electrodynamics. If, in fact, f} is a true force, then it
can be taken to be the negative gradient of some scalar potential ¢: [/ = —Dc:)qb(é;,ﬁ'). Then we have the
system

- -

f=D6 +Ds¢(6;)=0 (2)

which is termed a Gradient Dynamical Systern. Many very powerful statements can be made about the ©
and their behaviors as functions of g lor this system. Oftentimes, we are concerned with the “stationary”®
solutions of (2), i.c., solutions which are time-independent. These stationary solutions require the forces to
vamish, in other words, we require Déqﬁ(@;,ﬁ] = 0. This equation determines what arc called vhe equilibria,

©.. of the gradient system. The most powerful and gencral statements can be made about equilibria and
how they depend upen their parameters.

The solutions, O, of the above systems are merely generalized coordinates for the physical sysiems, and
thus, following the standard nomenclature, we replace ® by Z. For example, these solutions, T, might be
the positions of equilibria as functions of time, the Fourier coefficients of a time series, or even laboratory

measurements.

We have thus shaved the general mathematical model, (1), of a physical process to the specific case of
examining the behaviors of scalar potential functions, ¢(Z;p). It is for these special cases that differential
topology yields the most useful results.

In the next section we examine the primary results of singularity theory which allows any arbitrary
potential to be classified into a finite number of different category types. It is this classification that greatly
simplifies the study of gradient dynamical sysiems.? Since we are interested in the particular potential
functions stemming from the solution of the Schroedinger equation, under the Born-Oppenheimer approxi-
mation. for a chemical reaction, we apply the classification scheme specifically to potential enerpy surfaces
(PESs). Keep in mind that the same classifications and calculations are applicable, however, Lo any gradient
dynamical system. The classification scheme that we have developed for PESs, as we have mentioned, is
called the Directed Trees method and contains both a qualitative diagramatic procedure for implementing
the classification as well as a quantitative computational procedure for calculation of specific behaviors and
characteristics of the model.

Section: 3. The Topology of Potentials

Why should we concern ourselves with an alternate classification scheme based upon differential topology
for potential energy surfaces? The reason for doing so is that this new Directed Trees classification has two
special properties: structural stability and genericity.® The concept of structural stability plays an important
role in the mathematical theory of singularities. There are several reasons for this importance. First of all,
usually the problem of classifying objects 1s extremely difficult; it becomes much simpler if the objects one
is classifying are stable. Secondly. in many cases, the class of all stable objects forms what is loosely called
a generic set. This means that the set of all stable objects is both open and dense, in the mathematical
sense, in the set of all objects. In other words, almost every object is a stable object and every object
is “near” a stable object. Thus every object can be represenied arbitrarily closely by a combination of
stable objects. For instance, the Implicit Function Theorem of calculus and Sard’s Theorem of differential

209

§1:3

topology imply that almost all points are regular points (points whose gradients are nonzero) for stable
functions and thus are not ecritical points. Stated differently, regular points are generic, i.c., they form an
open and dense subset of the set of all points for stable functions. (Stable functions are functions which
can be perturbed and still maintain their same topological properties.) Even though almost all points of
a function are regular points, nondegenerate isolated critical points do oceur and have a generic property:
they are not removed by perturbations. The importance of nondegenerate critical points extends beyond
their mere existence, for they “organize” the overall shape of the function. This can be seen in the following
one-dimensional example. Consider a smooth function of a single dimension, f(z}, which has three critical
points between z = 0 and z = 1. If the curvature at the critical point with the smallest = coordinate in
this interval is negative, then the curvatures for the middle and highest critical points must be positive and
negative, respectively, for no other combination can lead to a smooth function connecting these three critical
points. In addition, the functional values at the smallest critical point and the largest critical point must
be greater than the value of the function at the middle critical point. A simple graph of f satisfying the
above conditions will show that if these statements were not in fact true, then additional critical points
would be required between these three crinjeal peinee Just as nondegenerate critical points organize the
shape of a one-dimensional function. degenerate crivical pornts “erganize” families of funetions having specific
arrangements of nondegenerate critical poinis These depencrate critical points are nongeneric in the sense
that small perturbations either split the degenerate critical Powts mto nondegenerate points or annihilate
the degenerate point completely leaving behind only regular poims. It imight therefore seem that we should
not concern ourselves with degencrate critical points since they are mathematically “rare”™ occurrences on
a surface and can be removed by small perturbations. The manner in which degencrate points “organize”
functions into classes, however, leads 1o a generie classilication of families of Tunctions that is stable 10
perturbations and hence will be very useful in our study of PESs. A third reason for the importance of
stability stems from the applications of singularity theory to the experimental sciences. It is customary to
insist on the repeatability of experiments. Thus similar results are expected under similar conditions, but
since the conditions under which an experiment takes place can never be reproduced exactly, the resulis
must be invariant under small perturbations and hence must be stable to those perturbations. Thus we see
1t is reasonable to require that the mathematical model of a physical process have the property of structural
stability. In order to define this concept of stability, we first need a notion of the equivalence between objects.
This is usually given by defining two objects to be equivalent if one can be wransformed into the other by
diffecomorphisms of the underlying space in which the objects are defined. For the specific case when the
objects are PESs, these diffeomorphisms are coordinate transformations and will be required 10 be smooth,
that is, differentiable to all orders. and invertible. This invertibility is a requirement of the Directed Trees
method and forms an important reason for employing G As in the numerical applications of the DT method.

The mathematical branch of differential topology called catastrophe theory forms the foundation for
the DT method. In its usval form, catastrophe theory 15 merely a classification of degencrate singularities
of mappings, the techniques of which use singularity theory and unfolding theory extensively along with a
very important simplifying observation made by Thom which has come to be called the Splitting Theocrem.
In this paper, we wish only to emphasize the fundamental concepts behind the Classification Theorem thus
providing a heuristic justification for its use in the study of PESs. In the process we describe the functional
relationships between the PES and its canonical form, which we call the Directed Trees Surface (DTS). We
do not provide rigorous statements nor proofs of any of the theorems of differential topology, but, more
importantly, we hope to provide an intuitive description of the fundamental concepts behind these theorems.
In order to describe these results. we employ the terminology of differential topology, and thus below we
provide the basic definitions necessary for comprehension and discussion of the DT method. A glossary of
topological terms and notation used. sometimes without comment, in this paper is provided in the Appendix.
Since our main interest in this paper is the local properties of potential energy functions, we begin by recalling
some preliminary definitions of local properties. If two functions agree on some neighborhood of a point,
then all of their derivatives at that point are the same. Thus, if we are interested in trying to deduce the
local behavior of & function from information about its derivatives at a point, we do not need to be concerned
with the nature of the function away from that point but may only be concerned with the function on some
neighborhood at this point. This leads to the concept of a germ of a function. Let L be the set of all

o e—
B~ S |

Directed Trees Method for Filling a Potentral Function §1:3

continuous functions frem the Euclidean space R" to R defined in a neighborhood of the origin. We say
that two such functions, f, g € L determine the same germ if they agree in some neighborhood of the origin,
so that a germ of a function is an equivalence class of functions. Since this theory is entirely local, we may
speak of the values of a germ f and we write f(z) for £ € ®", although it would be more correct to choose
a representative f from the equivalence class f. A germ f at x is smooth if it has a representative which
1s smooth in the neighborhood of z. Because germs and functions behave similarly, we often use f and
[interchangeably to represent a germ. Only where confusion may result will we distinguish a germ from
one of its representatives. We may also talk of germs at points of R™ different from the origin. A germ is
thus defined by a local mapping from some point of origin. If two smooth functions have the same germ
al a point, then their Taylor expansions at that point are identical. We may, without loss of generality,
take the origin of a germ to be the origin of R". The set of all germs from R™ to R forms an algebra.4
This convenient fact allows us to study the germs of maps with powerful algebraic techniques that ultimately
lead to algebraic algorithms for the topological study of arbitrary PESs.5

Fundamental to many appheanons of applied mathematics 1s the technigue of representing a function by
a fimite punber of terms s Tavlor expansion. For qnantitative caleulations, it 1s necessary 10 make some
cstimate for the size of the rernainder 1term afier truncation of the series. Sometimes we are not interested
s much i the size of the remamder term as 1m whether, by a suitable change in coordinates near z, the
remainder 1erm can be removed completely. In this case. the function is. in a very precise sense, equal to
Hs truncated Taylor series in the new coordinates. The ability of transforming away the higher-order terms
of a Taylor series expansion 1= [ormalized wm the notion of deferminacy. Before deflining determinacy, we
first introduce some additional nomenclature. The Taylor series of f at = which is truncated afier terms
of degree p is referred to as the p-jet of f at z, denoted by y?f(z). We now define what we mean by
the local equivalence of germs. Two germs, f,g9 with f(z) = g(z), are equivalent if there exists local C=°-
diffcomorphisms ¢: R™ — R" and ¢: R — R such that g = ¢(f(¥(z))). Thus, by suitable C* changes of
local coordinates, the germ f can be transformed into the germ g. We now note why the coordinate changes
must be invertible. Neglecting a constant, the two functions are equal on some neighborhood of a point,
and we have expressed f as a function of z, that is, f{¥(z)). In addition, we would like to be able to
express g as a function of the coordinates for f, that is, g{z{#)). This requires us 1o invert the v’ coordinate
transformation: z = z(w). As we stated earlier, this invertibility criterion becomes an important reason for
choosing GAs to solve the systems of nonlinear equations that arise from the DT method. With this, we
may now formulate the definition of determinacy. The p-jet ¢ at r is p-determined if any vwo germs at
having ¢ a= their p-jet are equivalent.

If we are studying a C*-function f, we may understand its local behavior by expanding f in a truncated
Taylor series, ignoring all of the higher-order terms of degree greater than p. We can be sure that nothing
essential has been thrown away if we know that f is p-determined. Stated more precisely, we may study the
topological behavior of a p-determined germ f by studying its p-jet j?f. One might think at first that no
germs are p-determined for finite p. As an example of this, consider the germ of f at the origin of R* given
by f(z,y) = z*. This is not p-determined for any p, since the following function, which has the same p-jet. as
[, glz,y) = 2%+ y?P, is 0 at the origin and positive elsewhere, whereas f is also 0 along the y-axis. However,
if / were a function of z alone, f{z) = 22, then f would be 2-determined. We thus see that the determinacy
of f depends not only on its form but also on the domain over which it acts. Since we have noted that if
a function is p-determined, its topological behavior may be understood by studying its p-jet, then we may
now ask the following question: Are there methods for deciding whether or not a given p-jet is determined?
We answer this question in the affirmative, and in a later paper we describe an algorithm based on work by
Mather for calculating the determinacy of p-jets.® In Section 4 of this paper, which describes the fitting of
DTSs 10 PESs, we provide examples for (i) the DTS behavior for cases in which the proper p-jet is chosen
for f, {ii} the behavior for cases in which the chosen p-jet has p less than the determinacy of f, and {iii) the
behavior of 37 f in which p is greater than the determinacy of f.

Below we summarize the four basic and interrelated concepts of singularity theory: (i} stability, (ii)
genericity, {iii) reduction, and {iv) unfolding of singularities. To describe what is meant by stability, consider
the map f: R —+ R given by f(z)} = zZ. This map is stable, since we may perturb the graph of this map

211

§1:3 Differential Topology of the Directed Tree Method

shghtly and the topological picture of its graph remains the same. That is, consider the perturbed map
gR R, g(z) = 22 + ex with ¢ # 0. This perturbed function, g, still has a single critical point just as f
does, and can be shown to be just a reparametrization of f. Thus we hope to characterize and classify stable
maps since il we perturb these, we can still predict their topologicel behavior.

Since our goal is to provide a mathematical model for classifying and caleulating PESs, one might ask
whether there are enough stable maps to be worthwhile in this endeavor. That is, can any arbitrary PES
be approximated by a stable map? This is the question of the genericity of stable maps, i.e., whether the
set of all stable maps is open and dense in the set of all maps. If it is, then any map 1s arbitrarily “close”
to a stable map and may be represented by combinations of stable maps. It thus makes sense to study the
properties of stable maps since these properties will then be pertinent Lo any arbitrary PES,

Reduction refers to the often employed technigue of splitting a problem into two components: one
component whose behavior is simple and known, and a second component whose behavior is unknown
and hence more interesting and whose behavior we would like to study. This is typical in most physical
models 1n which there are many variables whose functional behavior is assumed to be simple, for example,
harmonic. These variables are usually “factored out” of the overall model for the physical phenomenon since
the behavior of the system over these variables is known. The Splitting Theorem provides a justification for
1his reductianism.

René Thom introduced the basic notion of the unfolding of an unstable map in order to provide stabilicy
for a family of maps. To see what this means, let us consider the following example to which we will often
return for illustrating new topological concepts. Let f: R — R be given by f{z} = . This map is unstable
at zero. since if we perturb f by ez, where ¢ is small, the perturbed map 9(z}) = 1% + ex assumes different
critical behaviors for ¢ < 0 and € > 0. There are two critical points, a minimum and a maximum, ib a small
neighborhood of zero when ¢ < 0, but for ¢ > 0 there are no critical points. The family of maps F'(z,¢) = g(z)
is, however, stable. Thus F includes not only f, but also all possible ways of perturbing f. The map F
1s said to be an universal unfolding of f. It is very important that the unfolding # includes all possible
ways of perturbing f. To be more specific, consider perturbing f by the term 6z°, where § is arbitrarily
small but not zero. The map h(z) = z® + §2? assumes the same critical behavior for all § # 0, that is, hiz)
has one maximum and one mmimum. Thus for € = 0, g(z) has the same critical behavior as h(z), and it
can be shown that g and k are “equivalent” for ¢ < ¢ and 6 # 0. (The precise meaning of “equivalent” is
described in the Glossary.) On the other hand, there is no & for which h{z) lacks critical points, thus h(z)
is not equivalent to g(x) when € > 0. Therefore h is not capable of describing all possible perturbations of
/, since it is unable to provide g with € = 0. The unfolding g is, however, capable of describing all possible
perturbations of f. Our discussion so far does not indicate how we know this fact; it is a rather deep result
of singularity theory stemming from results based on the early insights of Thom. The crux of singularity
theory is how to unfold the “interesting” component of a given model into a stable mapping with the least
number of parameters, such as the ¢ fram above.

3.1. Theorems from Topology

Several principal theorems of differential topology concern the effects that critical points have on the
geometrical shape of manifolds. Since cach has been carefully proven and thoroughly investigated in the
literature, we only include here an informal statement of these theorems and a few of the results derivable
from them. We emphasize that these theorems are closely related to each other: their differences entail the
stepwise removal of some of the assumptions upon which the first theorein is based.

The first of these theorems is borrowed from elementary calculus: the Implicit Function Theorem.$
This theorem controls the behavior of a surface at regular points, that is, at points which are not critical
points. Excluding the overall translational and rotational coordinates of a molecule, the critical points of
potential energy surfaces are isolated.” Thus almost all points of a PES are regular points and hence the
implicit function theorem describes the local behavior of almost all of a PES. Qualitatively speaking, the
Implicit Function Theorem states that at a noncritical point of a potential function, the coordinate axes may

Directed Trees Method for Fiiting a Polentral Funciion §1:3.2

be rotated so that one of the axes aligns with the gradient of the potential at that point. Then the function
is represented as J(&') = z, where £ are the new coordinates. This is intuitively obvious by considering the
gradient to be a “force vector”, then the coordinate axes may be rotated so that one axis is colinear with
the force, which may then be described as a linear function of this one ccordinate. In analogy to our one-
dimensional example of the conirol which critical points have on the possible shape of a function, we find that
the overall shape of a PES depends upan the positioning and type of its critical points. The Morse Theorem,
which is sometimes called the Morse Lemma in the literature,® and its corollaries describe how nondegenerate
critical points both control the shape of a surface and determine the relationship between an approximately
measured function and the stable mathematical model which is used to descibe that physical process. In
particular, through the elimination of the assumption that the gradient is nonzero at a point, we find around
nondegenerate critical points, a new coordinate system so that a potential may be represented as the sum of
squared terms of the coordinates with no higher-order terms. no linear terms, and no quadratic cross terms,
Thus the function has the form f = ¥ z'7 and is termed a Morse function. Corollaries of the Morse Theorem
say that Morse functions are stable and this stability is a generic property. Lastly, we discuss degenerate
critical points and their influence on the possible configurations of nondegenerate points. By eliminating the
assumption of the nonsingular Hessian matrix at a critical point of the surface, the Gromell-Meyer Sphtting
Theorem says that the function may be split into two components, one is a Morse function. Fas, and the
other is non-Morse function, Fa ys. The non-Morse component cannot be represented as quadratic terms and
does not involveany of the coordinates of the Morse component! The Arnol’d-Thom Classification Theorem?
categorizes all of these non-Morse funciions into families. provides canonical forms for them, and describes
the interrelations among the various families.

The ramifications of the Arnol’d-Thom theorem cannot be overestimated. I a function, F{7: 7], havinga
non-Morse critical point at (Z.; 5.} is perturbed. The perturbed function, F’(Z;), through diffeomorphisms
X and 7, is obtained from F by perturbing the Morse part and the non-Morse part separately. Perturbation
of the former does not change its qualitative critical behavior, while perturbation of the later does. Thus
one can “forget” about the coordinates involved in the Morse function, while concentrating on the subspace
spanned by the variables of Fyps. The theorem classifies all possible types of perturbed functions in this
subspace. Corollaries also establish the stability and genericity of the universal unfoldings of the Classification
Theorem.

3.2. Potential Functions and their Canonical Forms

In this section we want not only to discuss the connection between arbitrary potential functions and their
canonical forins provided in a separate paper,! but also to demonstrate the quantitative relationships that
exist between the critical points, gradients, and curvatures of the potential function with the corresponding
expressions that exist for the canonical forms. In order to define the extent of the applications of these
canonical forms we begin with a brief exposition of Thom's method® for modeling a physical system.

First, suppose the physical system we wish to model has n distinct properties to which n definite real
values may be assigned. We define an n-dimensional Euclidean space, R", which parametrizes these various
physical variables. Each point in R" represents a particular state for the physical system. If £, £ € R”, is such
a point, then the coordinates of . (z;,...,z,), are called the state variables. Let X < B be the set of all
possible states of the physical system. The particular state, ¥ € I, which describes the system, is determined
by a rule which usually depends on a multidimensional parameter represented by g, g = {(p1,..-.0x) € RE.
For most physical systems this.rule is often specified as a flow associated with a smooth vector field, say, Y.
This flow, or trajectory. on U usvally determines the attractor set of Y. Sometimes the rule is specified so
the flow “chooses” a particular attractor on ¥ with the “largest” basin. At other times the rule may only
specify that the attractor be a stable one. Since very little is known mathematically about the attractors of
arbitrary vector fields, catastrophe theory has little to say about this general model. If, however, the vector
field is further restricted to be one generated by the gradient of a given smoath function, say V, then Thom’s
theory becomes very useful in the study of the physical model. In other words, if ¥ = - DV (z; p) where V
is considered a family of potential functions on ®" @ R*, the attractors of Y are just the local minima of

213

§1:3.2 Correspondence between Potential Functions and their Unfoldings

V(Z;). In terms of a potential function, the rule § again may have several forms. For instance, § may
choose the globel minimum of V', or it may require only that the state of the system corresond to one of
the local minima of V. The specific details of the method which § uses to move Z to the attractors of Y
determines the dynamics of the trajectory of T in X. Various choices for § may correspond to tunneling
through barriers on V, to steepest descent paths on V, or to “bouncing” over small barriers by means of
thermodynamic fluctuations.

3.3. Reclationships between Polential Functions and their Unfoldings

In order to examine a specific example, let us suppose that Y is a gradient vector field: ¥ = —-DV (%; 5},
where V(Z; 7): R" ® ¥ — R is a smooth potential function of the state variables, Z, and depends upon
a parameter 5. The attractor set of ¥ is then specified as a set of stable minima of V. The critical
points of V, defined by DV = §, form a manifold, Xy, where Xy C R***, which includes the stable
minima. Choosing a point, (fo: gy) « R***, of X\, Thom’s classification theorem tells us that in some
neighborhood of (Zp; Ao}, V is equal to the sum of a universal unfolding, U;, of one of the germ functions,
Gi, and a quadratic form Q, Q - ¥ . zi fork < 6andj = 1or 2.9 More formally, of N, ¢ R™
is a neighborhood of Zg and N, ¢ RN* is a neighborhood of J, then V:N: @ N, — R 1s equivalent to
FiZ,p) = Gil£1,;) + PlZ1,5:) + QlTj41,n) = UilZ1 5: 8) + Q@(£j41,n) for some finite ¢ with ; ; denoting
the first j coordinates of ¥ while z,.,,,, denotes the last n — j coordinates. This means that there exist
diffeomorphisms X: N; & N, — N, and a: N, — R such that, for any (Z;) € Nz ® Np, we have

V(E#) = RR(ENSAN +ald) (8)

This equation allows us to quantitatively relate the critical points, gradients, and curvatures of V and F,.
Application of the chain rule for derivatives of vector fields Lo equation (3) provides an expression for the
gradient of V:

DV (£, 5) = DF.(X;))DX(Z;) (4)

where D denotes the partial derivative operator with respect to the coordinates of the {unction or operator
which follows it. In order to determine the Hessian of V, HV, we carefully reapply the chain rule to (4) to
yield:

HY (£) = D'%() » HF,(¥) » DX() + Z": D, F; (X)Hxi(2) (5)
k=1

where D! is the transpose of D. We now have expressions equating not only V and F;, (3}, but also their
gradients, (4), and Hessians, (5). Through these systems of nonlinear equations the unfolding parameters
and diffeomorphisms may be calculated.

As Connor!! has pointed out in a different context, the diffeomorphism and parameters of an unfolding
may be calculated via the solution of the nonlinear system of equations which arises from the correspondence
between the critical points of the unfolding and those of the experimental function. For PESs, however, the
critical points are usually not known a priori, and thus this is not a viable procedure. Extensions of this
method are reesonable though. For instance, the DTS and PES must correspond within a neighborhood of
any point. Thus, a similar system of nonlinear equations may be derived, for points within some neighborhood
of a particular point, whose solution yields the parameters and diffeomorphism. Alternatively, at a single
point the function and all of its derivatives must coincide with those of the DTS. Therefore, since ab initio
quantum calculations now provide analytic first and second derivatives, it is reasonable to employ this
information to help calculate the DTS parameters and diffeomorphism. Thus, the calculation of a single
point on the PES with its first and second derivatives may be employed to determine a first approximation to

Ihrected Trees Method for Filting a Polentral Funclion §1:4

the parameters and diffeomorphism. Thus, from a single point, we may be able to specify to which unfolding
within a given family the particular PES belongs. Since there are canonical forms for the DTS, we also have
canonical forms for its critical points, in particular, its saddle points.!? Thercfore, one might next move
over to the DTS saddle point and perform another quantum mechanical calculation there. Of course, this
point will not correspond to the PES saddle point, but since locally the diffeomorphism is approximately
the identity function, it will be close to the PES saddle point. The additional information obtained at this
new point may then be used to calculate a second approximation for the parameters and diffcomorphism.
Thus, with each new point, better paramelers are calculated so that the DTS better fits the PES. In the
next section, we perform sample calculations on the one-dimensional unfolding families, the A, families.

Section: 4. DT Method for fitting a PES via the Genetic Algorithm

As we discussed in the last section, the problem of fitting a DTS to a PES is one of finding a solution to
a nonlinear system of equations, The DT method allows for a flexible choice Tor the form of the optimization
Munction. We have considered both weighed least squares as well as absolute value evaluation functions. In
particular, in the follwoing examples we have employed the experimmental and evaluation Minctions provided
below:

Ml -
3822, a= -0.05

Expertmental function: fz)=azf+r
Az Unfolding: F(X)=X*+ p1X + po

Diffeomorphism: X(z) = co + €17 + ca2?

Evaluation functions: R =35 wlF(x;) - f(z;)

. {8)
Ry =3 u a—}%%(ﬂ“%l

i

F2Fi X1 8%
Ry = T, wi| SF100 — Sz

R3 =rff -+ flli,.l -+ rg.Rg

where {r.r1,ra,uy} are weighting factors.

The standard numerical methods for solving nonlinear systems often involve algorithms of the Newton-
Raphson type.!3 As we mentioned earlier, the coordinate transformation must be a diffeamorphism, and
hence. invertible. Empirically, we found that when employing a Newton-Raphson algorithm for solving these
nonlinear systems, the calculated coordinate transformations often did not satisfy the invertibility criterion.
Therefore we resorted to constrained optimization techniques. Several methods, including the Box complex
algorithm,’ and standard least squares procedures,’® have been successfully used to solve these nonlinear
equations. Typically, the constained methods were very slow to converge to a minimum and thus required a
significant increase in computational time. Since the evaluation functions involved the differences between
values for the experimental PES and its DTS, they were froth with shallow local minima. Thus, for some
problems, these methods did not converge to the global minimum of the evaluation functions. In addition,
the constrained optimizations often tended to remain close to their constraint boundaries, resulting in the
optimizations becoming stuck in Jocal minima. These considerations led us to try other function optimizers.
Besides these classical techniques, genetic adaptive algorithms (G As) also may be employed to solve these
systems. G As arc based on an observation originally made by Holland!® that living organisms are very
efficient at adapting to their environs. Implicit in a genetic adaptive search is an immense amount of parallel
calculation, and empirical studies indicate that GAs will ofien outperform the usual numerical techniques.1?
We do not discuss the working of GAs here, but rather refer the reader to literature references.18

Several features illustrated in the following fitting examples are of importance and we mention them
here: (i) We show that the coordinate transformation employed by the DT Method is required to be a

215

gl:4 Correspondence between Potential Functions and their Unfoldings

diffeomorphism. If the coordinate transformation calculated via the DT method is not a diffeomorphism,
then the chosen determinacy of the PES is too low and a higher-order unfolding family is needed in order to
accurately fit the PES. (11) Also illustrated 15 the fact that the diffeomorphism may include terms which have
asymplotic behavior, for example, exponential terms. In this case, the asymptotic behavior ol the surface
may be reproduced by including comparable behavior in the diffeomorphism. (iii} “Bumps” or “shoulders®
on surfaces that do not Torm critical points stili reflect the fact that they stem from the annihilation of critical
points of a germ function. Thus any bump or shoulder on a surface means that a higher order unfolding
family will be required in order to accurately reproduce them. {iv) Also depicted in these examples is the DT
Method for fitting a 2-dimensional potential energy surface. OQur example 2-D surfaces have one “interesting”
coordinate, that is, one coordinate which is not harmonic, and one coordinate which is harmonic.

Ao DTS Fit for R and R,

L] 1 L] L] L L] ¥ I L]

20. A ' B ™\ q-0.

10. . (8 10.
~— _—— 7/ . . o =
o]
=2 0 AR . . 0. &
—10. '.. 10.
— Experiment Experiment
~20. — — Ry +++-+R — —@g -----R +-20.
’ » Dafa point ’ * Data points
et
/ /

20. F C / T D 20.
10. f / T A 10
— -~ . o © pud
oo b vt R

= .. .
—10. | R 10
E— Experimen.l' ' Experiment
—20. — = Ry *+-+°R — = Ry ‘++++'R 20.
* Data points ’ * Datia points
__§ '] ‘ 1 1 '] _) 4 1 1]
-3.-2.—-1. 0. 1. 2. 3. -2.-1.0. 1. 2. 3.
X X

Figure 1 A2 TYTS fits employing B and Rs to an Ay experimental function at 1, 2, and 3 data points.

In Figure 1. we illustrate the Directed Trees huting procedure by employing the genetic algorithm for
fitting the Az unfolding family to an experimental function belonging to the Ag family, We choose this
experimental function to exemplify several features of the IDT method. In particular, the value of the
coeflicient of the % term was chosen in order to generate a third critical point on the experimental surface
within the coordinate interval -3 < z <= 3. We choose this interval so that the local nature of the fitting
procedure for the 4> unfolding may be demonstrated. In conjunction with this local aspect of the A; DTS

Dhrected Trees Mcthod for Fitting a Potential Funclion §1:4

on the -3,3 interval, however, we would like to point out that all three eritical points, and hence the
experimental function itself, may be accurately represented with the 4, unfolding family. Even though the
highest-order term of the Az germ function is fourth-order, its unfoldings may have three critical points
and thus the three critical points of this A5 PES may be accurately reproduced on the interval [~3,3]. We
have successfully fit an Ay DTS to all three singularities of this A5 PES (The A} unfolding family does
not have the proper local topology and consequently it cannot accurately reproduce this PES. When an A;
DTS fit is aitempted, either the fitting is very poor or the calculated coordinate transformation is not a
diffeomorphism.) This example also demonstrates the usage of the DTS to help choose new positions for
further calculations and the employment of the first and second derivatives in addtion to the functional
values at the data points

As DTS Fit to Noisy Data

W T T

=0l T 20.
A J. B ;
: .

10. . 7 di0.
—_ — / o ! 3
. ~ se] B
] A - A ad

o.fF .1 T ooh N ° 0.

.', L "Expariment." .l . ‘?Expeﬂment"
-t0.fd T TR L 10.

o Noisy Data
o [:y_ 3 g

-2, —-1. 0. 1. 2. -2. -1. 0. 1. 2.
X X

o Noisy Data

Figure 2 A5 DTS it to noisy data points.

In this figure, the experimental function is drawn as narrow solid lines. For clarity. the data points,
which are represented as “solid” squares, are drawn at a constant 'y’ coerdinate and not at their proper
functional values. Their proper functional values are located on the narrow solid curve. The dotted lines are
the 42 DTS fits employing R as the fitting criterion. Thus, these R curves attempt only to fit the functional
value of the experimental function at each of the data points. The thick dashed lines are the 42 DTS fits
employing the Rz evaluation fiunction, thus these dashed curves fit not only the functional value but also the
values of the first and second derivatives at each point. In Part A of Figure 2 we have attempted the DTS
fit employing only a single experimental point. Note that in this case, the R fit does not have the proper
local topology. There is not enough information available to determine the local shape of the experimental
function. and it is only fortuitious that the R unfolding has about the same value of its first derivative as
the experimental function, On the other hand, the f5 DTS fit does have the proper local topology but its
critival points are far removed from the corresponding experimental minimum and maximum. In Paris B
and C of this figure. we employ 1wo experimental data points for fitting the DTSs. In Part B, the chosen
data points include the single point from Part A plus an additicnal point at the minimum of the DTS surface
calculated in Part A. We thus have used the approximate DTS surface of Part A 1o choose where the next
calculation should be performed. The new information from the second datum point is then used to refine
the DTS. In Part C, we use the same datum point as in Part A as well as the maximum point of the DTS in
A. These refined DTS curves in Parts B and C now provide a more accurate estimales of the minimum and
maximum of the experimental function. We use three data points for Part D, the original point from A as

217

§1:4 Correspondence between Potential Functions and their Unfoldings

well as Part A's DTS’ minimum and maximum points. Note that the 2 DTS ft to the threc points does not
have the proper topology of the experimental function. The R3 DTS, however, is a very accurate fit within
the neighborhoods surrounding the maximum and minimum of the experimental function. Note, however,
that the As DTS is unable to fit the second, rightmost, maximum of the experimental function. This is
because this third critical point generated by the sixth-order term in the experimental function cannot be
represented within the A2 unfolding family, which has, at most, iwo critical points. A higher-order family
would have to be chosen in order to fit this maximum value. In particular, the Ay family would be capable
of fitting both of the maxima and the minimum on this experimental function. One does not have to use an
As unfolding for this experimental function even though it contains a sixth-order term.

Ao DTS Fits to an Ag function

Experiment
== == R DTS
= Data Points

+ + + » - Experiment
== e= RDTS
8 Data pointe

-6, -4. -2. 0. 2. -6. -4. -2. 0. 2.
x X

Figure § As DTS fit to the minimum and shoulder of an A experimental function.

In the previous figure, the experimental function was assumed to be known exactly, This is usually
not the case. Typically, there are random errors in the potential energy at each datum point on a PES.
These random fluctuations stem from round-off errors in calculations, approximate wave functions, numerical
integration inaccuracies, or experimental random fluctuations. Also, as previously noted, the eveluation
functions have many local minima which often appear to be similar to random fluctuations. To.show that the
DT method in conjunction with the G A optimizer does not require exact data, we return to the experimental
function of Figure 2 in the next figure and add rather severe random fluctuations to the functional of values

IDhrected Trees Method for Fitling a Potential Funclion §1:4

as well as its first and second derivatives. The GA optimizer is very cfficient at avoiding local minima and
consequently works well for noisy PESs, Part A of this figure has six data points to which noise has been
added. (The “open” squares representing the data points in this figure now reside at their proper functional
values.) Note that the best Ax DTS fit employing R3 to these data does not accurately repeat the “exact”
experimental function. that is, the function without the random fluctuations which is drawn as a dashed
line. In fact, it might appear as if the DTS does not even accurately fit the two data points at z = —1.
It must be realized that the functional value of the data points iz all that 1s being plotted in this diagram.
Fhe Rz evaluation function. however, includes the first and second derivatives as criteria for a fit. Thus for
a small number of data points, the random fluctuations in the first and second derivatives need not cancel
and thus the DTS need not accurately fit the two functional values at ¢ = —1. In Part B, we have added
additional data points. Here, the DTS fairly accurately fits the “exact” experimental function. This figure

llustrates that the Directed Trees method coupled with the genetic algorithm are easily applied to fitting
DTSs to noisy PESs.

Ag DTS Model Fit

L

L

Experiment
— =~ A5 DTS
‘0 8 e R
* Data points

0. iy ooy wyeanyaeiys

—-6. -4. -2. 0. 2. —-6.-4.-2. 0. Z2.
X X

Figure § Az DTS fit to the A3 experimental function.

One particular advantage of employing the genetic algorithm for fitting DTSs to PESs 1s that it is
easy to require that the calculated coordinate change remain a diffeomorphism. In the next figure, we see
not only a new experimental function as well as its DTS fits, but in addition, plots of the corresponding
diffeomorphisms, X(z}, for the DTSs. Note that in Part A, we have chosen data points surrounding the
minimum of the experimental funcrion at r = 0. This experimental function has only a single minimum, but
it does have a shoulder at around =z = -3, Even though this shoulder s not a new critical point, it stems
from the annililation of a saddle and a minimum of the 43 family of functions Hence our 42 DTS cannot
fit this experimental function exactly. It is capable of hitting either the minimum as illustrated 1n Part A
or the shoulder as illustrated in Part B. In addition. Part A also illustrates the possibility of asymptotic
behavior being included in the diffecmerphism, then the DTS is capable of fitting the asymptotic behavior
on a PES. In flact, instead of expanding the diffeomorphism as a Taylor series, as we have done here, it
could easily be expanded as a suin of exponential terms whose asymptotic behaviors are then imparted to
the DTS. Note that, as the diffeomorphism levels off for z < -3, the DTS also becomes asymptotically
level. Part B of this diagram contains a warning, however. The function ¥{z) 1s not a diffeomorphism over
the entire interval, =7 < z < 3, and hence, the assumptions necessary for application of the Arnol’d-Thom

219

§1:4 Correspondence between Potential Functions and their Unfoldings

Classification Theorem are not satified over this interval. In fact, the critical point of X(z) leads to an
additional critical of the DTS at about 0. This critical point of X(z) was induced by atlempting to fit the
Az unfolding family to “three” critical points: the one actual minimum of the surface and the annihilated
saddle and minimum which generates the shoulder region. If the datum point at * = 1 is removed, then
X(z) remains a diffeomorphism and the DTS accurately fits the shoulder of the experimental function. This
example reveals an advantage of the genetic algorithm over many of the nonlinear Newton-like oplimization
schemes. Unlike the Newton methods which require an initial guess and can become “stuck” in local minima,
the genetic algorithm only requires starting intervals for its parameter values. This, by the way, allows one
to assure that the coordinate transformation X remains a diffeomorphism by means of controlling the ranges
over which the parameter values may vary. In addition to the fact that parameter intervals are a much less
restrictive initial condition than having to guess a starting parameter solution, one may also easily specify the
resolution at which each individual parameter is calculated. Thus individual parameters may all be optimized
at differing resolutions. If X 1s not a diffeomorphism after fitting a DTS to a PES, then this is a tipoffl that
the chosen ficting family is too small and does not contain enough critical points necessary for fitting the
surface. Thus one shanld choose a higher-order famdy for ficine this surface. b particular, the next figure,
Figure 4. illustrates that af we choose the As unlo ding Tanuly 1o fiv thi- expertmental function, then both
the shoulder and the minimum may L aceurately fic. Sinee this experimental funcrion is 3-determined and
we are employing the A, unfalding family. the diffeamorphism i a linear fanction wich no critical points.

We nex1 consider the Directed Trees method apphed to an experimental function which has more than
one dimension. We choase an experimental function which has one nonharmonic coordinate and one harmonic
coordinate. This PES is representative of isomerization reactions, Il = an important trial case because
of the recent interest in quasi-periodic versus chaotic trajectories on similar two-dimensional surfaces.19
Also a similar surface was also chosen by Fukui2®to illustrate the intrinsic reaction coordinate methed.
Contour levels of this function are drawn in Parts A and C of the following figure. There are several things
to note about the experimental function. First of all, there are two minima and one saddle point. Neither
of the minima are located at special points, such as the origin. Also, a line drawn between the two minima
is not parallel to either of the coordinate axes. The DT method, though, is capable of “rotating” the DTS
coordinate axes so that it can accurately represent the experimental surface. In Part B of uhis figure, we
have chosen the As family for fitting this function. Note that the corresponding contour levels in all Parts
of this diagram are drawn employing the same type of line, whether (hat be solid, dashed. dash-dotted, or
dotted. The “stars” (*} in Parts A and C locate the data points used in the calculations for Parts B and D.
respectively. The Az DTS of Part B very accurately fits the experimental funclion.

You might ask what would happen if one were to choose a family which can display more critical points
than the experimental function contains. This is illustrated in Part D of this Figure. In this case, the
Ay unfolding family was chosen to fit the same experimental function as provided in Part A. Note than in
Part D, the DTS accurately fit both minima and the saddle point of the experimental function. In addition,
however, there is a new saddle point appearing around the point (2.1,0.2). This new saddle point stems from
the fact that the 4, family can display four critical points. It is worth noting, however, that in the region
surrounding the data points, the Ay DTS accurately fits the experimental function. The new, extraneous,
saddle point of the DTS lies outside the local neighborhood of the data points employed to fit this PES. This
example of employing the A4 unfolding mightlead one to consider always employing a high-order unfolding
lamily to fit all PESs. One finds, however, from the practical viewpoint of calculating the fitting parameters,
that a properly chosen unfolding family {one whose determinacy and local topology is the same as the
experimental PES} will greatly reduce the amount of calculation and hence provide an easily calculated fit
to the PES. This is because the DTS has the proper number of critical points to reproduce the topology
of the surface: data is not required to suppress extraneous critical points of the unfolding. Thus there is
an optimum unfolding family, from a calculation standpoint, for each PES. It is true that the higher-order
family, assuming it contains the lower-order family as a subfamily, will provide an unfolding which repeats
the topology of its lower-order subfamily. It is this subfamily, however, that should be chosen as the unfolding
family for the original fitting procedure.

As our last example of a 2-dimensional fitting to 2 2-dimensional PES, we choose the same “exact”

Directed Trees Method for Fitting a Potential Function §1:4

Experimental PES Fitted DTS

-6. —4. -2. 0. 2.
X

Figure 5 Ag and Ay 2-dimensional DTSs fit to an experimental function. Contour lines are drawn at cnergies
of 15, 10, 8, 7, 4, and 1 in all parts of this figure.

experimenial function, but add in random fluctuations to the experimental values and its first and second
derivatives. For this example, we also employ the Ry evaluation function in determining the unfolding
and diffeomorphism parameters. Note that in Figure 6 the Az DTS has the same critical behavior as the
exerimental PES, however, it is not as accurate of a fit as that shown in Figure 5. This is because the noise
included in our functional values is rather extensive. Since it is not possible to see these random fuctuations
on a contour plot of the PES, we have drawn a 3-D stereo projection of the experimental PES along with
the noisy data points chosen. In this view, the bold circles are the experimental points chosen on the surface
while the Jight crosses are the "exact” experimental values corresponding to the noisy data points.

221

§1:4 Corresponderice between Potential Functions and their Unfoldings

Noisy PES

Fagure 6 Ay DTS fit 1o a noisy Az experunental 2-D function,

\\
-
- e
_|o-
=
= = Py
oo
=
o

Figure 7T Sterco view of the noisy data points of the Ay experimental 2-D function. The beld circles are the
noisy data points while the thin “+7 signs are the corresponding “exart” values.

Section: 5. References

T

1] Sec the associated paper: “The Directed Trees Method 1: Classification of Potential Energy Surfaces”
(submitted for publication).

i
i

e

et

Directed Trees Method for Fiting a Potential Funetion §1:5

For typical examples of the simplifications that may arise solely from a classification scheme, see “The
Differential Topelogy of the Directed Trees Method V: Symmetry Invariant Potential Energy Surfaces.”

These concepts have already played important parts in the story of classical mechanics and dynamics,
for example, see Arnol’d, V. |. “Mathematical Methods of Classical Mcchanics™; Springer-Verlag: New
York. 1978, and Arnol’d. V. 1.; Avez, A. “Ergotic Problems of Classical Mechanics®; Benjamin: New
York. 1968; Ch 1, 3-4.

See the Glossary for the definition of an algebra,

See the accompanying paper “The Differential Topology of the Directed Trees Method III: Determinacy
and Unfolding Algorithms.”

Rudin, W, “Principles of Mathematical Analysis”; 3rd Ed.; McGraw-Hill: New York, 1976; p 224.
Mezey, P. G. Theoret. Chim. Acta (Berl.)] 1981, 58, 309.

Morse. M. Trans. Amer. Math. Soc. 1931. 33. 72

Miinor, J. “Morse Theory™ . Princeron Univ, Press) Princeton, New Jersey, 1963, No. 51.
Arnob’d, V. 1. Russian Math. Surveys 1974, 24 10,

Thom. R. “Siructural Stability and Morphozenesis™: Benjamin: Reading. MA, 1975,

Connor. J. N. L. Mol Phvs 1976, 31 55

See the accompanying paper “The Differential Topology of the Directed Trees Method 1l: Potential
Energy Surfaces and Canomical Forms.”

Fletcher, R. “Practical Methods of Optimization, Vol. 1 Unconstained Optimization™; Wiley: New
York; 1980; Ch 6

Richardson, J A. Commun. ACM 1973, 16, 487.

International Mathematical & Statistical Libraries, Inc. Subroutines ZXS5Q, 25POW, and ZXCNT
from *IMSL Library of Fortran Subroutines”; 9th ed.; IMSL, Inc.: Houston, TX: 1981.

Holland, J.H. “Adaptation in Natural and Artificial Systems™. Univ. of Michigan Press: Ann Arbor,
1975.

De Jong, K.A. “Analysis of the Behavior of a Class of Genetic Adaptive Systems”. PhD dissertation,
Umv. of Michigan, August, 1975,

Bethke, A.D. “Genetic Algorithms as Function Optimizers”; PhD dissertation; Univ, of Michigan,
January, 1981,

Brindle, A. “Genetic Algorithms for Function Optimization™; C.5. Department Report TR81-2 (PhD
dissertation); Univ. of Alberta, 1981,

De Jong, K.A. IEEE Trans.: Systems, Man, and Cybernetics 1980, 10, 9.

Holland, J.H. In Prog. in Theor. Biol., 1976, 4, 263. Rosen, R.; Snell, F.M., eds.; Academic Press: New
York; 1976,

Holland, J.H. “Adaptation in Natural and Artificial Systems”; Univ. of Michigan Press: Ann Arbor;-
1975.

DelLeon, N.: Berne, B.J. J. Chemn. Phys. 1981, 75. 3495,

Kariotis, R.; Suhl, H.; Eckmann, 1-P. Phys. Rev. Lett. 1985, 34, 11006

Tachibana, A.; Fukui, K. Theor, Chim, Acta 1978, 49, 521,

Tachibana, A.; Fukui, K. Theor. Chim, Acta 1979, 51, 189,

223

Section: 6. Glossary

The following furnishes brief definitions of a few of the terms from differential topology that we employ

in the text of this paper.

(1)

{2)
(3)

(1)

(6)
(7)
(8)
(9}
(10)

(11)

(12)

C=.Diffeomorphism: If ¥ is a C™-diffeomorphism, then it satisfies the following three criteria:
(i} ¥ is m times differentiable,
(ii) ¥ has an inverse, ':R™ — R", such that ¥ ¢ v ! =¢ toy =1, and
(iti) ¥~! is m times differentiable,
where m is either finite, oo, or w.
Equivalence class: If A is a set and il ~ is an equivalence relation on A, then the equivalence class of
a € Aisthe set {z € Ala ~ z}.
Equivalent: Two functions, f: R" — ® and g: R" — R, are equivalent at. 0 if there exists a diffeomorphism
¥:®" — R" and a constant a such that

g(z) = J(X(7)) - o (7)

in a neighborhood of 0. Eguivalence of two functions implies that they have the same geometric “shape”
and ecritical behavior. They have corresponding critical points which are of the same type.

Genericity: A generic property is a property possessed by an open densc subset of the system. This
means that a generic property 1= “typical” for the system, and a complementary subset for which the
property does not held has measure 0. Thus it is “mathematically rare” for a generic property not to
hold. Since a generic property holds on a dense subset of the system, then any member of the system,
including those not having the generic property, may be approximated arbitrarily closely by elements
having the generic property. An example of this is that a function having a degenerate critical point
may be approximated by functions having only Morse critical points.

Germ, Germ-equivalent: Let T be a topological space and S be any set. Let f:U — § and g:V —)
be maps with domains U, V open sets in T, and suppose z lies in UNV. Then f and g are said to be
germ-equivalent at 7 if there exists some open neighborhood W of z lying inside U 7V such that f =g
on W. This is an equivalence relation on the set of all maps defined on neighborhoods of z in T and
with values in S. and the equivalence classes are called germs of maps at . If § is a topological space
also, then we can consider germs of continuous maps. If § and T are normed linear spaces, we can
consider germs at r of €7 maps. If two C™ maps are gerni-equivalent at z, then all their derivatives at
z are Lthe same.

k-determined: Let f = R and let k be a non- negative integer. Then [1s right-determined {right-left
determined) if, for cvery g € " such that j%(f) = j*(g), then [~r g (f ~.,).

Jet, k-jet: The k-jet of a function f. denoted by 7%(f), 1s the Taylor series expansion of f at z and
truncated after the order k terms.

Neighborhood N: Given a topological space, (T, 7), a subset ¥ © T 1s a neighborhood of a point t € T
is there is a member S of v witht &€ § © N.

Regular point: A point, z, is a regular point if z is in the domain of 2 function, f:R" — R, and the
gradient of the function at z is not zero.

Smooth or C=: A function f, f:R™ — R™, is called smooth at a point, z, if all of its derivitives exist
and are continuous at .

Stability: Properties of a mapping which are invariant to perturbations of the map are called stable
properties, and the collection of maps which possess a particular stable property may be referred to as
a stable class of maps. In particular, a property is stable provided that whenever fy: X' — Y possesses
a property and f: X — Y is a homotopy of fg, then, for some ¢ = 0, each f, with t < ¢ also possesses
the property.

Structural Stability: For the single function case, let f:R" -~ R be a function and P:R" & RE — R
be an arbitrary small perturbation. Then f is stable at a point in Z; if there exists a diffeomorphism
X = X(Z) such that the perturbed function, g = f + p, in the new coordinate system is equivalent to the
unperturbed function, f(£) = g(X) + a.

224

- _"I e ”."S

. Py

(13)

(14)

Direcled Trees Method for Filling a Polential Function §1:6

Topology, Topological Space, Open Sets: Let T be a set; a topology 7 on T is a collection 7 of subsets
on T which satisfy the following criteria: a family r of subsets on T is & topology on T if

(i) if T © 7, then UT € 1,

(i} ff T < 7 and T is finite, then 1T € 1,
(in) derand T e 7.
then (T,) is a topological space, T is its underlying set, and the members 7 are called the open or r-open
sets of (T 7) of T
Unfolding, Versal and Universal: An unfolding of a function, f(Z), is a parametrized smooth family
of functions, F(Z;p), where g = {p,....,p;), whose members are possible perturbations of f(Z). The
dimension of 7, 7, is called the codimension of the unfolding. Usually unfelding also refers to a particular
member of the family, F(Z;5). An unfolding, G. is a versal unfolding if any other unfolding of f may

be obtained from G via a diffeomorphism. An unfolding, H, is a universal unfolding if it is Loth versal
and is of minimum codimension.

225

