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Abstract

The history of natural evolution displays an
inseparable coupling of organic bodies and
the nervous systems that control them. In
contrast to this almost all research in Evolu-
tionary Robotics to date begins with a robot
body whose features are fixed and proceeds
to evolve a control structure for this body.
Our research program is focused on explor-
ing the coupled evolution of both the body
and the control structure in real robots. In
this paper we take early steps toward this
goal by exploring the space of sensor and ef-
fector selection and positioning coupled with
a neural network linking them within a sim-
ulated environment. This space is explored
using evolved grammars for generating both
the body and neural network. Results from
several problem worlds are presented and an-
alyzed.

1 INTRODUCTION

Evolutionary Robotics is a very new field dating back
only to the early 1990’s. The vast majority of work in
this field has explored evolving control structures for
fixed robotic platforms. Taking this approach is jus-
tified when the purpose of the research is to explore
learning algorithms solely, in which case the body can
be considered to be part of the environment/task that
is to be learned. This approach is also understandable
when the availability of off the shelf robots with em-
bedded controllers is contrasted with the difficulty of
constructing multiple unique robots.

The research described below investigates the interac-
tion between co-evolved body and control structures.
Elsewhere we describe our model in more detail [13].
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We have also began to apply these techniques to real
robots [14].

In general, our approach uses Genetic Algorithms to
evolve grammars which simultaneously define both the
body plan and Neural Network (NNet) control struc-
ture of our agents. Grammars provide a framework
in which structures can be easily encoded and reused
as building blocks of larger, more complex structures.
Grammars also offer a parallel to biological develop-
ment in which start symbols equate to gametes; the
execution of rules corresponds to cell divisions; and
a derived string of the grammar matches a developed
body. We represent and evolve these grammars using
Kammeyer’s methods [7].

Many aspects of this research have been investigated in
isolation by others. Examples of evolved robots that
have implemented NNet controllers include [17], [9],
[5], [6], and [1]. Researchers who have investigated
applying grammatical models to the construction of
feed-forward NNets include [8], [17] and [11].

Very little prior work in evolving morphology exists.
[15] investigated the nature of sensor usage by provid-
ing their agents with an evolvable NNet connected to
sensors and effectors. [12] explored eye types and po-
sitioning. [16] demonstrated a simulation where the
complete morphology of the individuals was involved.
Sims created an artificial world in which each agent
was grown from a genome that defined both the phys-
ical structure and the control structure. [4] has devel-
oped an evolutionary system that simulates the growth
of a body based on differential gene expression. [3] and
[10] have also worked on evolving both control struc-
tures and body plans.

Our work most closely resembles [10] in its exploration
of body and control space. However our work differs
in two significant ways. First of all, Lee use indepen-
dent evolutionary pathways for the body (GA) and
the control structure (GP). Our approach uses a com-
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Figure 1: Development Process. Initially each cell be-
gins as a gamete which is labeled with the starting
non-terminal symbol of the grammar. Cell differen-
tiation proceeds by selecting and applying the rules
of the grammar. For each cell labeled with a non-
terminal, a rule is found whose left side matches the
non-terminal. The cell is then replaced with the one
or two cells specified by the right side of the rule. Each
cell is either labeled with a non-terminal symbol or is
a terminal cell. The process continues replacing non-
terminals with terminals and non-terminals until there
are only terminals left. If there is no matching rule or
the number of divisions exceed 6, the cell is replaced
with a terminal cell with no weights or edges.

mon mechanism to explore the body space and con-
trol space as a unified whole. Secondly their bodies
and control structures are directly specified by their
genetic representation while our approach evolves an
intermediate representation, the grammar.

2 Developmental Model

The grammar for an agent consists of a set of rules
for rewriting non-terminal cells into terminal and non-
terminal cells. Each agent starts as a single undifferen-
tiated non-terminal cell and through repeated applica-
tion of grammar rules is transformed into a body and
NNet consisting only of several, tiled terminal cells. A
derivation that takes four generations is shown in Fig-
ure 1. In this example the gamete is labeled with the
starting symbol, A. The production rule A—B|t; in-
dicates that the non-terminal A is converted into two
cells. The first cell, a non-terminal B, is to be placed
to the left of the second which is the terminal cell, t;.

A production rule of the grammar specifies how to re-
place a non-terminal cell with one or two terminal and
non-terminal cells. The production rule also contains
the orientation of the cell (i.e. whether it is to be
horizontally or vertically flipped or left in its normal
orientation) and it specifies whether the non-terminal

Figure 2: Terminal Cell Example

produces one or two cells, and if two, the relative po-
sition (i.e. above, below, to the left of, or to the right
of) of each. In general we indicate non-terminal cells
by labeling them with the capital letters A-Z.

A terminal cell is a set of directed, weighted edges from
the sides of the cell to other sides. A typical terminal
cell is shown in Figure 2. There are sixteen potential
edge weights for each terminal cell: eight edges from
a side to an adjacent side, four edges from each side
to the opposite side and four bias weights that can be
associated with each side. Each weight can be one of

512 values (-8 to 751 in 5 increments). The number

32
of unique terminal cells is therefore 51216 = 2144,

2.1 NEURAL NETWORK
INTERPRETATION

Once the cell division is complete, the body consists of
a set of cells that have within them directed, weighted
edges. The cells and edges are interpreted as sen-
sors, effectors and the neural networks that connect
them. Edges of a terminal cell are transformed into
NNet edges through simple rules. These rules merge
edges that point to the same terminal cell sides into
a common NNet node that sums and squashes (using
the tanh function) their output activation. When two
cells abut one another, the nodes formed by the edges
in one cell provide the input activation to the neigh-
boring cells.!

Any directed edge that originates from the perimeter
of the body becomes a sensor or input node. Sensor
nodes detect signals of the environment. They provide
the input that is propagated through the NNet of the
body. Their activation is proportional to % where d
is the distance to the signal source.

Any directed edge that terminates on the perimeter
of the body becomes an effector or output node. Ef-
fectors provide propulsion to the agent’s body. The

!This connectivity permits many NNet architectures
including recurrent connections which are handled by
stochastic updating methods.
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Figure 3: Conversion of Effector Outputs to Rotation
and Translation. Effector outputs f; are broken into
two force components. Translational forces ( f?’) pass
through the center of the agent and are vector-summed
to produce a new location of the agent. Rotational
forces ( f:t), perpendicular to the translational forces
are multiplied by their distance to the center and then
summed to produce a new angular orientation for the
agent.

force of this propulsion is proportional to their output
activation. The direction of propulsion of the agent is
described in Figure 3.

3 Experimental Environments

Our experiments consisted of evolving agents in sev-
eral simulated environments. Each evolution consisted
of 1000 generations of populations of 200 individuals.
Each agent is assigned a fitness score based on its per-
formance in an environment. Those agents with higher
score are preferentially selected via a random process
for inclusion in the next population. The agents are
generated from a grammar which is represented by a
string of characters. Prior to evaluation of the pop-
ulation the character strings encoding the grammars
are crossed with one another with a probability of 0.8
and each character is randomly mutated with a prob-
ability of 0.001. The environments consisted of either
toroidal or walled worlds of dimension 500x500 units.
The agents size within the world are 20 units on an
edge.

The agents are placed at random locations in the world
and allowed to wander freely (or to just sit in the case
of many agents) for up to 30 time steps after which
they are moved to a new location. All agents in a given
generation are started from the same set of locations.
The set of locations are changed at each generation.
Each agent is evaluated for a total of 300 time steps.

3.1 A SIMPLE CENTER-SOURCE
ENVIRONMENT

Our first experiments evolved agents that would ap-
proach a source of reward placed in the center of
a toroidal world. The center was detectable by the
agents’ sensors whose input values fell off as the
inverse-square of the distance from the sensor to the
center of the world.

The fitness, f;, at time step ¢ is 45 for d > 28 and 1 for
d < 28 where d is the distance from the agent’s mouth
to the center of the world. In this environment, if an
agent’s mouth gets within 28 units of the center of the
world then it is given a fitness of 1 for that time step
and immediately moved to a new location.

A perfect agent would turn it’s mouth toward the cen-
ter of the world and approach the center in as few time
steps as possible.

3.1.1 EVOLUTION FROM

BRAITENBERG AGENTS

A classic design in the field of robotic control is the
Braitenberg Vehicle 2b described in [2]. This agent has
two sensors on the front and two effectors on the back.
The agent’s body is bi-laterally symmetric with each
sensor connected via a positive weight to the effector
on the opposite side. The effect of this connectivity is
to steer the agent to the side with the stronger sensor.
The effectiveness of this design has been demonstrated
in a number of robots.

A simple grammar that generates a complete Braiten-
berg body is shown in Figure 4. The grammar consists
of two rules. The first rule rewrites the undifferenti-
ated cell body (start symbol A) into two nonterminal
B cells one of which is horizontally flipped relative to
the other. The second rule converts a B nonterminal
cells into a terminal cell with two edges defined. The
parsimonious nature of the grammar that generates
the Braitenberg Vehicle under our system shows the
representational adequacy of the grammar system.

Ten runs of populations seeded with an initial popu-
lation of Braitenberg agents were performed. Figure
5 shows the body of the best agent in the last gen-
eration of the best run. Next to the body is shown
the NNet and a trace of its behavior starting from five
random positions. Compared with the original Brait-
enberg ancestors, we see that effectors were added to
the front and sides of the body and sensors were added
to the rear. The crossed pathways from the front sen-
sors to the opposite side rear effectors were replaced
with direct pathways from front to rear on the same
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Figure 4: Grammar for Generating Braitenberg Vehi-
cle

sides. The new front effectors are controlled by neg-
ative connections from the front and rear sensors on
the opposite sides and by a positive weight from the
rear sensor on the same side. The side effectors are
controlled by a positive weight from the front sensor
and a negative weight on the rear sensor of the same
sides. Bias weights on the rear effectors provide con-
stant propulsion which are negated by the front effec-
tors as the agent approaches the center of the world.

Behavioral traces of this agent starting from five ran-
dom positions and orientations are shown in the last
figure. (The two long jumps shown are artifacts of the
toroidal world). Note the accuracy of the final jumps
into the center of the world. The trace beginning mid-
way up on the left side actually falls short on its second
jump but then takes a very small step to fall within
the center ring.

Examining the best individuals of the final generation
of each run we discovered the following;:

- In all runs the original bi-lateral symmetry was
retained.

- Four of the ten runs divided horizontally into two
cells following the initial vertical division.

- Two of the ten runs lost the crossed pathways that
characterized the original Braitenberg, replacing
them with straight paths. Of the remaining eight
runs that retained crossed pathways, none resem-
bled the original pathways of the Braitenberg.

3.1.2 EVOLUTION FROM RANDOM
GENOMES

We next initialized a population with completely ran-
dom genomes as opposed to seeding the popula-
tion with Braitenberg agents as above. The results
achieved in ten runs are much less consistent than
those achieved with the Braitenberg progenitors. Each
run produced a solution however these solutions var-
ied wildly in their implementations and quality of so-
lution.

- Only two of the ten runs produced bi-laterally
symmetric agents.

- Of the ten runs performed, nine of them produced
agents that were inferior to those produced by the
previous experiment,.

- The tenth run produced a bilaterally symmetric
agent that outperformed all of the Braitenberg
descendants. This agent is shown in Figure 6.

This successful agent combined negative bias weights
on the front with positive bias weights on the rear
effectors to produce a strong jump. In addition the
two effectors on the sides towards the front of the agent
provided an accurate steering mechanism for pointing
the front of the agent at the center of the world.

3.2 CENTER-SOURCE ENVIRONMENT
WITH A VARIATION

The same fitness environment described above was
modified slightly to speed up processing. In making
this change a small opportunity for receiving excep-
tionally high fitness was allowed. This could only hap-
pen if an agent stopped at the edge of the reward ring
(d = 28) with its mouth outside of the ring and then
rotated its body without moving it so that its mouth
fell within the reward ring. Ten runs of the Braiten-
berg seeded population were run in this environment.
Seven out of the ten runs were able to discover the
strategy for receiving high reward. This was surpris-
ing to us because we were not aware of the opportunity
for receiving this high reward until the agents fitness
began to skyrocket.

The best agent of the final generation of one of the
best runs is shown in Figure 7. Note the behavioral
trace in this figure. Note the two paths in the bottom
left corner of the behavioral trace. Despite the fact
that the second to the last step is nearly twice as far
away in one trace than in the other the final jump
takes the agent right to the edge of the ring in both
cases. This demonstrates the extreme control that has
evolved in the agent in order to exploit the opportunity
for high reward when landing at the edge. Compare
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Figure 5: Center-Source Environment: Best Agent Evolved From Braitenberg. Inward facing semi-circles are
sensors, outward facing semi-circles are effectors. T’s indicate bias weights at edge. Darker edges are positive

weights, lighter edges negative.
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Figure 6: Simple Environment: Best Agent Evolved From Random

the location of all of the final jumps to the previous
environments where the agents ended up very close to
the center of the reward ring and far from its edges.

When the population was seeded with random agents
rather than Braitenberg only one experimental run was
able to discover and exploit the ring effect. The agent
that displayed the behavior was similar to the one
shown in Figure 7 in that it had positive bias weights
at the bottom that serve to push it forward and pos-
itive weights from the bottom to the top that inhibit
the bias weights when the agent approaches the center
of the world. There were also weights that went from
sensors on one side to effectors on the other but they
were not bi-laterally symmetric like those found above.

3.3 DUAL-SOURCE ENVIRONMENTS

We next developed two more sophisticated environ-
ments. The purpose of these environments are twofold:
first, to learn how our techniques scaled up with in-

creased complexity; and secondly to explore evolution
when multiple sensor types are available.

The new worlds are characterized by two sources of
reward and two sensor types. One source of reward
produces positive fitness while the other produces neg-
ative. Each source generates a fitness that is inversely
proportional to the square of the distance. The total
fitness is then the sum of the two component fitnesses.
If the sum of all the fitnesses awarded over this period
is less than 0, then the fitness for the agent is set to 0.

In the first world the sources are positioned in the
center of opposite quadrants of the world as shown in
Figure 8. Similarly to the earlier environment, if the
agent moves itself within the rings shown by dashed
lines, it receives a fitness of +1.0 for the upper left
ring and -1.0 for the lower right ring. The agent is then
immediately repositioned to a new starting point.

The two types of sensors available to the grammar are
each capable of detecting exactly one of the sources of
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Figure 7: Environment with Edge Bonus: Best Agent that Evolved from Braitenberg

reward. The level of detection is proportional to the
inverse square of the distance from the center of the
rings.

In the single source worlds described above the source
of sensor stimulation and reward was located in the
center of the world. This centering meant that an
agent was always closer to the reward point by go-
ing directly towards it rather than by crossing over
the toroidal walls. This is not the case in the dual
source worlds where it would be quicker to cross the
boundary than to chart a course that avoids the nega-
tive reward source. We chose to disallow this strategy
and removed the toroidal nature from the dual-source
worlds. Agents who attempt to wander off the edge
are stopped at the boundary.

Our expectations were that an ideal agent would follow
a path to the positive source while avoiding the neg-
ative source. For this to occur the ideal agent must
make use of both types of sensors. Agents that have
only sensors that detect the positive source of reward
would regularly achieve positive fitness scores but will
occasionally receive negative fitness because they can-
not detect the negative source and will occasionally
stumble into the negative ring. Agents that detect
only the negative source and avoid it will also score
higher than an agent with random behavior. Such
agents will occasionally accidentally pass through the
positive ring although it is just as likely that they will
be driven into a wall and receive very little reward
for a given trial. As in prior experiments our agents
surprised us.

All experimental runs were seeded with random
genomes. Of the ten runs in this environment only
one produced bi-lateral symmetry (Figure 8) and again
the bi-laterally symmetric agent again performed the
best of all runs. As can be seen from the behavioral

trace this agent occasionally wandered into the nega-
tive ring. Only one run produced agents with sensors
for both the positive and negative sources and that run
performed the worst of all runs. All other runs pro-
duced agents that used positive reward sensors only.

It was clear from these results that there was not
enough negative pressure to cause the agents to evolve
behaviors that steered them away from the negative
ring. In order to correct this we tripled the diameter
of the negative ring and placed it in the center of the
world (Figure 9).

Ten runs in this new environment produced the fol-
lowing results.

- Of the ten runs in this new environment three
produced agents that had only negative source de-
tecting sensors.

- Three runs produced agents that had only positive
source detecting sensors.

- The remaining four runs produced agents that
had both positive and negative source sensors.

The best agent of the last generation of the best run
is shown in Figure 9. This agent was the only agent to
exhibit bi-lateral symmetry. In addition it is one of the
four that used both positive and negative sensors. The
behavioral traces show that it is at first attracted to
the positive ring but as it comes close to the negative
ring it is diverted from its original path in order to
avoid the negative ring.

In contrast to this predicted solution another interest-
ing solution to the problem using only negative source
sensors is shown in Figure 10. This solution was dis-
covered by all three runs that produced only negative
source sensors. In this solution the agent is drawn into
a path that circles the negative source at a very pre-
cise fixed distance. This distance is the exact distance
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Figure 8: Dual-Source Environment: Best Agent. Points within upper left circle provides reward of +1.0, within

lower left circle provides reward of -1.0, all other points provide reward of diz —
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Figure 9: More Challenging Dual-Source Environment: Best Agent. Darker colored inward facing semi-circles
are positive detecting sensors, lighter colored ones are negative detecting sensors.

Figure 10: More Challenging Dual-Source Environ-
ment: Agent with Negative Sensors Only

from the center of the negative source to the center of
the positive source. The effect thus causes the agent
to fall into the positive source as it proceeds around
the negative source.

4 CONCLUSION

We explored evolving grammars to generate strongly-
coupled body plans and control structures. We applied
this technique in several environments with varying
levels of complexity.

We found that the strongest performers in each experi-
ment demonstrated bi-lateral symmetry. In some cases
the initial population was seeded with bi-laterally sym-
metric ancestors, but even in those experiments where
this was not the case bi-lateral symmetry was occa-
sionally discovered through the evolutionary process.
We find this to be significant in its parallels with the
course of biological evolution and intend to explore
such bi-lateral symmetries further.

These experiments demonstrate the power and versa-
tility of an evolved grammar to generate coupled body
plans and control structures. Our current research is
applying these techniques to real robots. We are do-



ing this by mapping the existing sensors of a khepera
robot to preset body positions in our agents. Follow-
ing these experiments we will apply the grammars to
evolving LEGO robots where both the physical body
and control structure will be formed by our grammars.
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