Cooperative and Competitive Behavior Acquisition for Mobile
Robots through Co-evolution

Eiji Uchibe Masateru

Nakamura

Minoru Asada

Graduate School of Eng., Dept. of Adaptive Machine Systems, Osaka University
2-1 Yamadaoka, Suita, Osaka, 565-0871, JAPAN

{uchibe,riteru}@er.ams.eng.osaka-u.ac.jp

asada@ams.eng.osaka-u.ac.jp

Tel.: 481 (6) 68797349

Abstract

This paper discusses how multiple robots can
emerge cooperative and competitive behav-
iors through co-evolutionary processes. A
genetic programming method is applied to
individual population corresponding to each
robot so as to obtain cooperative and com-
petitive behaviors. The complexity of the
problem can be explained twofold: co-
evolution for cooperative behaviors needs
exact synchronization of mutual evolutions,
and three robot co-evolution requires well-
complicated environment setups that may
gradually change from simpler to more com-
plicated situations. As an example task, sev-
eral simplified soccer games are selected to
show the validity of the proposed methods.
Simulation results with fixed and varying fit-
ness functions are shown, and a discussion is
given.

1 Introduction

Multiagent simultaneous learning is one of the major
challenges facing Robotics and AI. As benchmark for
this problem, Robotic soccer (RoboCup) has been
increasingly attracting many researchers [1, 5]. They
have been attacking a wide range of research issues.
Among them, behavior learning in a multiagent envi-
ronment has been attacked based on reinforcement
learning (ex., [9, 10]).

However, it seems difficult to apply conventional learn-
ing algorithms such as reinforcement learning to co-
evolution of cooperative agents since the environ-
ment including other agents may cause unpredictable
changes in state transitions for learning agents. We
have shown reinforcement learning supported by Lo-
cal Prediction Models and learning schedule [10]. This
method estimated the relationships between learner’s
behaviors and other robot ones through interactions.

In this method, only one robot may learn and other
robots had to fix their policies for successful learning.

As one alternative to realize multiagent simultaneous
learning, co-evolution seems promising [8, 11]. In the
realm of nature, we can see various aspects of behav-
iors emerged in multiagent environments, not only
competition but also cooperation, ignorance, and so
on. That means there could be artificial co-evolution
for other than competition.

In our previous work [11], we have shown the prelim-
inary results to obtain cooperative behaviors through
co-evolutionary processes. This paper discusses how
multiple robots can obtain cooperative behaviors with
the fixed and varying fitness functions. As a task
example, a simplified soccer game with three learning
robots is chosen and a Genetic Programming (hereafter
GP) method [6, 7] is applied so as to experimentally
evaluate obtained behaviors in the context of cooper-
ative and competitive tasks. Each robot has its own
individual population, and attempts to acquire desired
behaviors through interactions with its environment
that is ever changing in the co-evolutionary process.
The complexity of the problem can be explained two-

fold:

1. Co-evolution for cooperative behaviors needs
exact synchronization of mutual evolutions.

2. Co-evolution requires well-complicated environ-
ment setups that may contribute to providing a
wide variety of searching area from simpler to
more complicated situations in which they seek
for better strategies so that they can emerge coop-
erative and competitive behaviors simultaneously.

First, we describe our views on co-evolution in the con-
text of cooperative and competitive tasks. Next, we
explain our task example, a simplified soccer game in
which cooperative and competitive tasks are involved.
Then, we give a brief implementation of GP and two
fitness functions: one is fixed and the other varying.
Finally, the results of computer simulation are shown,
and a discussion is given.

2 Co-Evolution in Cooperative Tasks

Generally, we have the following three difficult prob-
lems in multiagent simultaneous learning:

1. Unknown Policy
Learning agents do not know other agents’ pol-
icies in advance, therefore they need to estimate
them through observations and actions. What’s
the worse is that the agent policies may change
through a learning process.

2. Synchronized Learning
Mutual learning robots have to improve their
learned policies simultaneously. If the oppo-
nent learning converged much earlier than itself,
one robot could not improve its strategy against
the difficult environment that its opponent has
already fixed.

3. Credit Assignment
Credit assignment to learning robots for cooper-
ation seems difficult. If the credit involves group
evaluation only, one robot may accomplish a given
task by itself and others do just actions irrelevant
to the task as they do not seem to interfere the
one robot’s actions. Else, if only individual evalu-
ation is involved, robots may compete each other.

This trade-off should be carefully dealt.

Co-evolution is one of potential solutions for the first
problem by seeking for better strategies in a wide range
of searching area in parallel. The second and third
ones might be solved by careful designs of environmen-
tal setups and fitness functions. Emerging patterns by
co-evolution can be categorized into three.

1. Cycles of switching fixed strategies
This pattern can be often observed in a case of
a prey and predator which often shift their strat-
egies drastically to escape from or to catch the
opponent. The same strategies iterate many times
and no improvements on both sides seem to hap-
pen.

2. Trap to local maxima
This corresponds to the second problem stated
above. Since one side overwhelmed its opponents,
both sides reached to one of stable but low skill
levels, and therefore no change happens after this
settlement.

3. Mutual skill development
In certain conditions, every one can improve its
strategy against ever-changing environments ow-
ing to improved strategies by other agents. This
is real co-evolution by which all agents evolve ef-
fectively.

As a typical co-evolution example, a competitive task
such as prey and predator has been often argued [2, 4]

where heterogeneous agents often change their strat-
egies to cope with the current opponent. That is, the
first pattern was observed. In a case of homogeneous
agents, Luke et al. [8] co-evolved teams consisting of
eleven soccer players among which cooperative behav-
ior could be observed. However, co-evolving coopera-
tive agents has not been addressed as a design issue
on fitness function for individual players since they
applied co-evolving technique to teams.

We believe that between one-to-one individual com-
petition and team competition, there could be other
kinds of multiagent behaviors by co-evolutions than
competition. Here, we challenge to evaluate how the
task complexity and fitness function affect co-evolution
processes in a case of multiagent simultaneous learn-
ing for not only competitive but also cooperative tasks
through a series of systematic experiments. First, we
show the experiments for a cooperative task, that is,
shooting supported by passing between two robots in
Section 4.1 where unexpected cooperative behavior re-
garded as the second pattern was emerged. Next, we
introduce a stationary obstacle in front of the goal
area into the first experimental set up in Section 4.2
where the complexity is higher and an expected behav-
ior was observed after longer generation changes than
the previous one. Finally, we exchange an active learn-
ing opponent with the stationary obstacle to evaluate
how both cooperative and competitive behaviors are
emerged in Section 4.3. We have tried several fitness
functions, and we may conclude that the same level fit-
ness functions among them seems better to co-evolve
cooperative and competitive agents, and different ones
tend to evolve only one side, that is the second pattern.

3 Task and Assumptions

3.1 Environment and Robots

Before explanation of the proposed method, we show
a concrete task for reader’s understanding of the
method. We have chosen a simplified soccer game con-
sisting of two or three robots as a testbed for the prob-
lem because both competitive and cooperative tasks
are involved as stated in RoboCup Initiative [5]. The
environment consists of a ball and two goals, and a
wall is placed around the field except the two goals.
The sizes of the ball, the goals and the field are the
same as those of the middle-size real robot league of
RoboCup Initiative. Figure 1 (a) shows the size of the
environment and the robot.

Figure 1 (b) shows the real robot used for modeling.
The robots have the same body (power wheeled steer-
ing system) and the same sensor (on-board TV cam-
era), that is, homogeneous agents. In this simula-
tor, the robot can not obtain the complete informa-
tion because of limitation of its sensing capability and
occlusion of the objects.

goal goal
Y/ 8.22m
&ro i-]
ﬁ\r £3r éig
RN

o) \ X

defender ball teammates

(a) The size of an environ-
ment and three robots

(b) A real robot

Figure 1: An environment and three robots

Table 1: Function sets
a || ball, goal, other robot 0, other robot 1, ---

b || left, middle, right, small, medium, large, lost

3.2 Function and Terminal Sets

It is essential to design the well-defined function and
terminal sets for appropriate evolution processes. This
can be regarded as the same problem to construct the
well-defined state space.

As sets of functions, we prepare a simple conditional
branching function “IF_a_is.b” that executes its first
branch if the condition “a is b” is true, otherwise ex-
ecutes its second branch, where a is a kind of image
features, and b is its category. Table 1 shows these
features and their categories.

Terminals in our task are actions that have effects on
the environment. A terminal set consists of the follow-
ing four behaviors based on the visual information:

1. shoot : the robot shoots a ball into the opponent

goal.
2. pass : the robot kicks a ball to one teammate.
3. avoid : the robot avoids collisions with other
robots.

4. search : the robot searches the ball by turning
to left or right.

These primitive behaviors have been obtained by the
reinforcement learning algorithms [10] in the real envi-
ronment.

3.3 Fitness Measure

Another issue to apply an evolutionary algorithm is
the design of fitness function which leads robots to ap-
propriate behaviors. It is so-called “credit assignment
problem” [3] in the field of the reinforcement learning:

when a trial is complete, which agents get more credit
(reward) for its success or failure?

We utilize the standardized fitness representation, that
has a positive value. The smaller is the better (0.0 is
the best). We first consider the following parameters
to evaluate team behaviors such as cooperation be-
tween teammates and competition with opponents:

e G(i) : the total number of achieved goals for the
team to which robot ¢ belongs,

e L(i) : the total number of lost goals for the team
to which robot 7 belongs.

With these parameters only, most robots tend to be
idle (passive cooperation) except one that attempts
at achieving the goal for itself, and therefore no ac-
tive cooperation has been seen. Then, we introduce
the following more individual evaluation to encourage
robots to interact with each other while minimizing
the number of collisions:

° K(l) :

Z,

the total number of ball-kicking by robot

e C(i) : the total number of collisions between robot
¢ and others.

In addition to the above, the following is involved to
make robots achieve the goal earlier.

e steps : the total number of steps until all trials'
end, where a step is defined as a time period for
one action execution corresponding to the sensory
input of a robot (1/30 [msec]).

Next, we combine these fitness measures to evaluate in-
dividuals. We examine the following two fitness func-
tion in the following experiments.

Fixed Fitness Function

The simplest fitness function is calculated by a lin-
ear combination of these parameters. In this method,
the weights of the fitness function are fixed over the
all generations. The fitness value which the robot 2
receives is given by:
@) = al - h(G(i), Twax) + o - L(3)

—|—oz£ “h(K (i), 87) + ol -C(i) 4+ af - steps,
and h(z,y) is a threshold function,

h(way)Z{ e

where Tihax, o ~ af, and B° denote the maximum
number of trials, and constants. We set ozg = 1.0,
of =05, 0l =1.0x107%, af =50x107°
1.0 x 10~* and 3 = 4000, respectively.

if x <,
otherwise,

f =
7as_

'One trial is terminated if one of the robots shoots a
ball into the goal or the pre-specified time interval expires.

Table 2: Other parameters used in GP

the size of each population 80
the number of generations for which 60
the evolutionary process should run

the maximum depths during the creation 10
the maximum depths by crossing two trees 25
the crossover probability 935 %
the reproduction probability 5%
the mutation probability 10 %

Varying Fitness Function

In a case of a fixed fitness function, we do not consider
the change of each measure. Ideally, the individual
factor (K') and the penalty (C and steps) are kept high
and low, respectively, at the beginning of the evolution
by GP in order to reduce the search area.

As the evolution proceeds, the individual factor de-
creases gradually with the generation index while the
penalty factors increase. Near the end of the run, the
individual factors reach appropriately small values. As
one of such fitness function, a linearly varying fitness
function can be expressed as

G 9 (K (), 87) (1)

G
—l—%(a’cj -C(1) + -ay - steps),

|

where g and G are the generation index and the max-
imum number of generations, respectively. We set
al =1.0,a) =10, 0] =1.0x 1072, a =1.0 x 1072,
af =1.0 x 1072 and 8 = 4000, respectively. If two or
more individuals have the same fitness value, we prefer
to one with more compact tree depth.

3.4 The GP Implementation

Other parameters used in GP are shown in Table 2.
The best performing tree in the current generation
will survive in the next generation. In order to se-
lect parents for crossover, we use tournament selection
with size 10. After each population selects one indi-
vidual separately, the selected individuals participate
in the game. We perform 20 games to evaluate them.
As a result, it needs 1600 trials to alter a new gener-
ation. The hardware used for the simulation is DEC
VT-Alpha 600, which takes about 16 hours to evaluate
one experiment whole generations.

4 Experimental Results

4.1 Two Learners

At first, we demonstrate the experiments to acquire co-
operative behaviors between two robots. Both robots
belong to the same team, and they obtain the score
if they succeed in shooting a ball into the goal. The
number of function sets is 28 (= 7 (ball) +2 x 7 (two
goals) +7 (teammate)).

The tree depths and the numbers of nodes in cases of
the fixed and varying fitness functions are shown in
Table 3 (a). The tree of the best r0 (expected to be a
passer) is deeper than that of the best r1 (expected to
be a shooter) in the fixed fitness functions, but the av-
erage depth and the number of nodes of r0 are smaller
than those of r1 in both fitness functions. Actually,
the acquired behavior of rl is purposive while r0 does
not move appropriately from a viewpoint of the de-
signer.

One of the successful behaviors based on the fixed fit-
ness function are shown in Figure 2. In this case, r0
does not kick the ball by itself but shakes its body by
repeating the behaviors search and avoid. On the
other hand, r1 approaches the ball and passes the ball
to r0. After r0O receives the ball, it executes a shoot
behavior. However, r1 approaches the ball faster than
r0. As a result, r1 shoots the ball into the goal while
r0 avoids collisions with r0. We checked the case of
the varying fitness functions, and found that the re-
sultant behaviors were similar to the behavior by the
fixed case. In this task, the best r0 does not kick the
ball toward r1 at the end of the generations.

We suppose that the reasons why they acquire such
behaviors are as follows:

e In order for r0 to survive by passing the ball to
rl, rl has to shoot the ball which is passed back
from r0. This means that the development of
both robots needs to be exactly synchronized. It
seems very difficult for such a synchronization to

be found.

e rl may shoot the ball by itself whichever r0 kicks
the ball or not. In other words, r1 does not need
the help by r0.

In this task, r0 and r1 do not have even complexities
of the tasks. As a result, the behavior of r1 dominates
this task while r0 cannot not improve its own behavior.
This is the second pattern explained in Section 2.

4.2 Two Learners and One Stationary Robot

Next, we add one robot as a stationary obstacle to the
environment described in Section 4.1. The number of
function sets is 35 (= 7 (ball) +2x 7 (two goals) +2x 7
(teammate and opponent)).

Table 3: The average tree depths and the number of

nodes
(a) two learners experiments

| fitness | depths | # of nodes |

fixed (21.3,15.0) (335.5,900.4)

varying (17.5,14.7) (594.5,821.4)
(b) two learners and one obstacle

fixed (15.4,17.7) (1126.9,239.7)

varying (14.7,18.3) (1328.3,1394.2)
(c) three learners experiments

fixed | (23.7,16.1,20.0) | (1373.2, 1081.8,772.5)

varying | (27.3,17.3,19.8) | (1635.7, 1184.2, 1083.5)

N 2 1@]@
rl
4 ¢
4
4
T;o 4\. ». »'
® J® @ |1’]
0 rl
¢ ¢ u l
& - S \L

Figure 2: Two robots (r0 and r1) succeed in shooting
a ball into the goal

Table 3 (b) shows the tree depth and the number of
nodes which are obtained by the fixed and varying
fitness functions. The GP trees which r1 acquires are
more complicated than those of r0. The reason seems
that r1 has to consider both of the shooting behavior
and avoiding collisions with r2. On the other hand,
the resultant behavior of r0 is only to push the ball to
rl. At the end of generations, the number of scores is
not different between both fitness functions. However,
there are difference with respect to the variety of the
final population.

Although both learning robots are placed in the same
way as in the previous experiments, the acquired co-
operative behaviors are quite different. We found the
following three patterns in a case of the fixed fitness
function:

1. First pattern (ball rolling and accidental goal)
Because r0 is placed near the ball, rO pushes the
ball more frequently than r1. Most of individuals
of r0 kick the ball towards rl owing to the ini-

©] 1@ 1@]
rl
¥ ¢ .
r\f) ¢
T-n.frz \.n '.n ~'n.
® 1 |® o
rl
u . s “‘?rZ
b .\. . \: i \/rO

Figure 3: r0 shoots the ball into the goal
@ 1@ 1@ 1@]

rl
¢ ¢
4
0) o
|.) » »
Ta— 2| | [[

r0 r2
- \
rl
> ' > 2
: []
[] [] Ql

Figure 4: r1 shoots the ball into the goal along the
wall at generation 15

tial placement. However, some individuals push
the ball towards r2 in the neighborhood of r0.
Consequently, the ball rolls towards the goal by
accident (See Figure 3).

2. Second pattern (goal after dribbling along the
wall)
Although both r0 and r1 kick the ball until gen-
eration 4, r0 begins to pass the ball towards rl.
However, r1 can not shoot the ball from r0 di-
rectly because r0 cannot pass the ball to r1 pre-
cisely. Therefore, rl kicks the ball to the wall and
continues to kick the ball to the opponent’s goal
along the wall until generation 15 (See Figure 4).
After that, the rank of this pattern dropped down.

3. Third pattern (mutual skill development)
After a number of generations, both robots im-
prove their own behaviors and acquire coopera-
tive behaviors at the end of generations, where r0
kicks the ball to the front of r1, then r1 shoots

© 1@ 16 1@]
271
¢
r{) ¢ .0
T 12| | % -:l "
® e @ o
r0
¥ . rz\rl
r r -l M
[[['l

Figure 5: After rO pushes the ball toward the front of
rl, r1 shoots the ball into the goal avoiding collision
with r2

the ball into the opponent’s goal shown in Figure
5. As a result, both robots improve the cooper-
ative behaviors synchronously. This is a kind of
the mutual development described in Section 2.

The individual of the third pattern obtained the high
evaluation because it takes much shorter time to shoot
the ball than the first and second patterns. Figure 6
shows the results of evolutionary processes where a
good synchronization between the best individuals of
r0 and rl can be seen. Since it becomes more diffi-
cult for rl to shoot the ball for itself because of the
existence of r2, rl has to evolve behaviors with r0
synchronously. In other words, the complexity of the
task for rl increased around the same level of r0.

On the other hand, when we use the varying fitness
function, most of the individuals that are obtained at
the end of generations is the third pattern shown in
Figure 5. We can not find the first and the second
patterns based on the varying fitness function. The
reason seems that the varying fitness function does not
permit a wider variety of individuals. As we can see
from Figure 6, the total number of collisions decreases
gradually because the corresponding terms (the fourth
and fifth terms in Eq.(1)) become effective through
evolutionary process. This leads to the extermination
of the first and second patterns.

4.3 Three Learners

Finally, we test the co-evolution among three robots.
That is, r2 added in Section 4.2 evolves its behavior
with r0 and r1 simultaneously. The difference from
Sections 4.1 and 4.2 is involvement of competition be-
tween r2 and a team of rO and rl. The number of
function sets is the same as the case of Section 4.2.

core ——— (o) ——
C{r1) e

scores
5
the number of collisions
2
]
8
|

0 10 20 30 40 50 60 0 10 20 30 40 50 60
generation generation

(a) G(i) and L(4) (b) C(3)

score

st score M 1200

C(r0)
C(r1)

scores

the number of collisions

0 10 20 30 40 50 60 0 10 20 30
generation generation

(¢) G(4) and L(i) (d) C(3)

Figure 6: Experimental results in a case of two learners
and one stationary agent (a, b:fixed, ¢, d:varying)

Table 3 (c) shows the tree depths and the numbers
of the nodes. The acquired GP tree of rl tends to
be simple as compared with the cases of r0 and r2.
Furthermore, the results based on the varying fitness
function is more complicated than those of the fixed
one. However, the varying fitness function leads the
GP agents to the local solutions as follows.

The results are shown in Figure 7. As compared with
the only cooperative tasks in Section 4.2, fitness values
rather oscillate than converge stably. Although C(3)
and steps decrease gradually through the evolution in
a case of the varying fitness function, this game is dom-
inated by r2 at the 18th generation. This phenomenon
is observed when we use the fixed fitness function, but
the acquired performances of r0 and rl are a little bit
better than the a case of the varying fitness function.

We can see two typical settlements in this three-robot
soccer game. One is the same behaviors described in
Section 4.2 : r0 kicks the ball toward rl, then rl
shoots the ball into the goal avoiding collisions with
r2 (See Figure 8). The other one is that r2 intercepts
the ball and shoots the ball into the goal (See Figure
9). The ratio between the former and the latter is
about 25 % : 75 %. It depends on whether r0 or r2
achieves its goal. However, r2 can observe the ball
and the opponent’s goal at the same time and it may
shoot the ball by itself while r0 needs to pass the ball
torl. We suppose that the predominance of r2 may be
caused by the different complexity of the given tasks,
that is, task complexities for rO and r1 is higher than
that for r2.

Finally, we analyze the results of the acquired trees.
As we have no space to represent the whole tree, we
show a part of the tree in Figure 10 (the box and the
ellipse represent a conditional branching function and
a terminal, respectively). As you can see from these

score_of_rb_and_rl o) ——

C(r1) e

‘ / c2)

scores
5

0 10 20 30 40 50 60 0 10 20 30 40 50 60
generation generation

(a) G(i) and L(4) (b) C(3)

_and_rL
re_of_r2

scores
.
5

—

0 10 20 30 40 50 60 0 10 20 30
generation generation

(¢) G(4) and L(i) (d) C(3)

Figure 7: Experimental results in a case of three learn-
ers (a, b:fixed, ¢, d:varying)

@ o | @ 1@ @
rl
& P v .
0 pall . ¢
l/ r2 .,‘ A
/ s
L
® 1® 1@ 1® |
r2
r0
& \
> \QU e \“rl
° ” ”
—

Figure 8: Two robots (r0 and r1) succeed in shooting
a ball into the goal against the defender (r2)

figures,

e r2 : When r2 won the game, offensive behavior
(Figure 10(c)) was executed in many situations.
We suppose that the reason why this simple tree
can realize purpose behaviors is that the primitive
behaviors such as shoot and avoid are obtained
in similar situations 2. It helped the GP to acquire
the appropriate tree in a compact style.

e r0 : pass behavior was selected in Figure 10 (a)
when r0 succeeded in passing a ball to r1. In ad-
dition, r0 searched the ball and selected a shoot
behavior if r0 could not observe r1. The reason is
that pass behavior are also acquired in a similar

2 As described before, the terminals are obtained by the
reinforcement learning. For more detailed settings, see [10].

@ o[1@ @B]
rl
% = e e
r0 ball °
X_/ 2 . A re
Ta— ol Ias
® 1 1@ 1®.
. .‘\r2
]
= § = = 0 ¢,
" > ! 1S rl

Figure 9: The defender (r2) succeeds in shooting a
ball into the goal against the two robots (r0 and r1)

situation®.

However, the tree which r1 acquired is ineffective. In
other words, the primitive behaviors was not appro-
priate for rl to utilize. In order to acquire compact
representation, we have to modify the primitive behav-
iors based on the tree structure.

5 Discussion and Future Works

This paper showed how co-evolution technique could
emerge not only competitive behaviors but also coop-
erative ones through a series of experiments in which
two or three robots play a simplified soccer game. In
order to co-evolve cooperative agents, it should be
noted that robots must synchronize their evolutionary
processes. Otherwise, there are many traps to local
maxima (suboptimal strategies) as we can see in Sec-
tion 4.1.

In a case of the most complicated situation (three
agents and both cooperation and competition are in-
volved), the task complexity should be equal to all
agents so as to co-evolve cooperative and competi-
tive agents simultaneously. This also suggests that
the environment itself should co-evolve from simpler
to more complicated situations to assist the develop-
ment of desired skills of cooperations and competi-
tions. Otherwise, co-evolution is prone to be settled
into suboptimal strategies as shown in Section 4.3.

In the current system, state quantization and terminal
actions were fixed in advance. Through the evolution
process, the agent obtains its decision tree which tells
how visual features are organized and connected to one
terminal action. A different application of GP can be

3In [10], rO learns to pass the ball to r1 in Figure 2
based on the reinforcement learning.

frequently selected
terminal

no

offensive
behavior

(c) r2’s tree

Figure 10: A part of the acquired tree

considered to extract motor outputs by a feature tree
in which sensory inputs are combined and calculated.
Design issues of environments including agents, tasks,
and fitness functions are our future work. Also, we are
planning to implement real experiments.

Acknowledgments

This research was supported by the Japan Society for
the Promotion of Science, in Research for the Fu-
ture Program titled Cooperative Distributed Vision
for Dynamic Three Dimensional Scene Understanding
(JSPS-RFTF96P00501).

References

[1] http://www.robocup.org/.

[2] D. Cliff and G. F. Miller. Co-evolution of Pursuit and
Evasion II : Simulation Methods and Results. In Proc.
of the jth International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 4., pp-
506—-515, 1996.

[3] J. H. Connel and S. Mahadevan. Robot Learning.
Kluwer Academic Publishers, 1993.

[4] D. Floreano and S. Nolfi. Adaptive Behavior in Com-
peteing Co-Evolving Species. In Fourth FEuropean
Conference on Artificial Life (ECAL97), pp. 378387,
1997.

[5] H. Kitano, ed. RoboCup-97 : Robot Soccer World Cup
I. Springer Verlag, 1997.

[6] J.R.Koza. Genetic Programming I : On the Program-
ming of Computers by Means of Natural Selection.
MIT Press, 1992.

[7] J. R. Koza. Genetic Programming II : Automatic Dis-
covery of Reusable SubPrograms. MIT Press, 1994.

[8] S. Luke, C. Hohn, J. Farris, G. Jackson, and
J. Hendler. Co-Evolving Soccer Softbot Team Coor-
dination with Genetic Programming. In Proc. of the
RoboCup-97 Workshop at the 15th International Joint
Conference on Artificial Intelligence (IJCAI97), pp.
115-118, 1997.

[9] P. Stone and M. Veloso. Team-Partitioned, Opaque-
Transition Reinforcement Learning. In M. Asada ed.,
Proceedings of the second RoboCup Workshop, pp.
221-235, 1998.

[10] E. Uchibe, M. Asada, and K. Hosoda. State Space
Construction for Behavior Acquisition in Multi Agent
Environments with Vision and Action. In Proc. of In-
ternational Conference on Computer Vision, pp. 870—
875, 1998.

[11] E. Uchibe, M. Nakamura, and M. Asada. Co-evolution
for Cooperative Behavior Acquisition in a Multiple
Mobile Robot Environment. In Proc. of the 1998
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 425—-430, 1998.

