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Abstract

DOME (Distributed Object-based Modeling
Environment) is a software framework for product
design system modeling where designers are distributed
geographically and make use of different software tools.
Designers develop their own local software components,
and distributed object technology is used to integrate
their services via the Internet to form an overall system
model. Designers can then explore alternatives by
making changes to local models or remote services while
observing how the entire model responds.

This exploration is amenable to automated search, which
involves both continuous parameters (changing the value
of services) and discrete changes (selecting different
objects to substitute entire local models). A genetic
optimization object and appropriate direct
representation genomes and operators were developed
for this purpose. The effectiveness of several genetic
algorithms was compared and a new variation of
restricted tournament selection (RTS) was developed.
The RTS variation, called the Struggle GA, most reliably
located the global optima and the most local optima.
Other crowding algorithms reliably located the global
optima but were less successful identifying multiple local

solutions. The global algorithms (simple and steady
state) did not reliably locate the global optima in mixed
variable problems. Finally, a realistic beverage container
design example is presented.

Keywords: object-based design modeling, catalog-based
design, genetic algorithms

1. Introduction
1.1. Design scenario

This work builds upon a distributed object-based modeling
formalism (Pahng, Senin et al. 1998). A beverage container
design example will be used order to introduce key
concepts. This scenario is illustrated in figure 1. In-house,
the design configuration engineers select the main design
parameters (materials, container type, dimensions) and
perform the final evaluation of each design alternative
(trading off cost, safety, capacity, and environmental
impact). Geometric modeling and related computations are
out sourced to an industrial design firm, while
environmental impact assessment and life cycle modeling is
provided by a consultant. Each design participant uses
different software tools, models, and data, ranging from
solid modelers to spreadsheets.

.

Figure 1.  Design scenario – Participants in the bottle design team are distributed geographically.  Each presents their
own viewpoint and software tools, but an integrated understanding of the complete product is needed.
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In developing new beverage containers, design options must
be explored, trading off cost, styling, safety, material, and
environmental considerations—all of which are highly
interrelated but addressed by different participants.  In
current practice obtaining such an integrated view for just a
single alternative is at best very time consuming, typically
requiring months to coordinate and resolve. At worst,
obtaining an integrated system view for making global
tradeoffs is deemed intractable and decisions are left to
intuition.

1.2. DOME formalism

DOME (Distributed Object-based Modeling Environment)
is a software framework developed in the MIT CADLab to
aid designers involved in distributed design modeling.
DOME facilitates the creation of integrated models by
allowing each design participant to embed their own
software tools or models into modules. Modules are
distributed objects, with their services mapped to the
functionality of the software applications they encapsulate
(Figure 2).

Figure 2. (a) DOME modules and services. (b) The bottle
strength analysis module computes hoop stress, but it
needs to call services from other modules to obtain
appropriate bottle parameters.

These modules are CORBA compliant, and are made
publicly available over the Internet to the other design
participants. Thus each module works as a standalone
software component, declaring in its public interface what
services it can provide and what services must be provided
to it. Designers build distributed models by locally defining
mathematical relationships between services of different
modules, thereby creating complex service exchange
networks between DOME modules. Solving mechanisms
ensure that local state changes propagate to all the other
modules via service calls over the Internet, keeping the
complete distributed model consistent with local design
changes. In order to facilitate the service mapping process,
basic engineering data types (probability distributions,
intervals, functions, etc.) and mathematical relationship
modeling are provided within the system.

The object-based modeling framework also provides tools
for catalog-based design, allowing designers to store
components or pieces of software (i.e., modules) in catalogs,
from which they can be selected for use in a problem model.
For example, in the bottle design problem the bottle
geometric model, fluid contents, and different procedures
for life-cycle assessment can be changed through catalog
selections.
Further, decision-making support is provided by means of
specialized evaluation modules (e.g. based on utility theory
(Keeney and Raiffa 1976), or acceptability (Kim and
Wallace 1997)).

1.3. Mixed variable search problem

Once a distributed object model has been created, each
design participant can change the design variables (services)
to which they have access: either real numbers or discrete
catalog selections. Upon making a change, they can observe
how it propagates to affect the model and the design’s
performance.  For large problem models, many independent
variables are under the control of many designers and
finding combinations that correspond to acceptable
performance may become a challenging task. When
automated search techniques are applied to facilitate
exploration, this becomes a mixed variable search problem
involving both continuous parameters and discrete catalog
selections.

1.4. Genetic Algorithm optimization module

The focus of this paper is to describe a genetic optimization
object or module designed to operate on DOME models.
However, the concepts are generally extensible to object-
models. The services of the optimization module can be
added to any DOME model. The optimization gains control
over the distributed problem model by using services to
manipulate design search variables, and using the services of
decision support modules for objective formulation.
Genome encoding schemes and a proper set of genetic
operators is developed for continuous variables and catalog
selections in the object-based modeling representation.
Several types of global and speciating algorithms are tested
with the representation and a new crowding variation is
developed.

2. Previous Work

Design problems can be modeled using a number of
approaches. Heuristics or knowledge-based methodologies
can be used (Borup and Parkinson 1992; Budaychevsky,
Chertakov et al. 1993), or systems of equations representing
relationships and constraints between design variables can
be analytically solved (e.g. Design Sheet -Reddy, 1996).
Extensions of traditional interval calculus can also be used
to reduce the solution space by progressively eliminating
infeasible solutions (Chen and Ward 1992; Lin and Ward
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1992; Ward and Seering 1993; Ward and Seering 1993).
Communicating object-based representations are amenable
to large distributed model applications. GAs have been
applied to many design applications where object-based
models have been used, including catalog selection
problems (Brown and Hwang 1993, Carlson, 1993 #19;
Carlson and Pegg 1995; Carlson 1996). However, genome
representations are typically developed on a problem
specific basis rather than for the underlying object
formalism.

Crowding (DeJong 1995) and Fitness Sharing (Goldberg
and Richardson 1987) are two approaches for preserving
diversity and maintaining multiple solutions in a population.
In Fitness Sharing the population is forced to spread over
the search space by de-rating the fitness of groups with a
high concentration of similar individuals (i.e. overpopulated
areas of the search space). Crowding techniques use the
concept of competition only between offspring and similar
individuals in the existing population. This paper focuses on
different crowding techniques:  Deterministic Crowding
(DC) (Mahfoud 1995), a variation of De Jong’s Crowding
(DeJong 1995) where the offspring competes for survival
with one the two parents; Restricted Tournament Selection
(RTS) (Harik 1995), where the offspring competes for
survival with the most similar individual from a subset
which was randomly picked from the population; and
Struggle GA (Grueninger and Wallace 1997), a variation of
RTS.

3. Genetic Search Engine
Implementation

3.1. Genome representation, operators, and
similarity measure

Solutions for a DOME model are defined by a list of values
for the independent search variables. Search variables are
either real numbers defined over continuous intervals,
integers, or discrete selections of modules from catalogs.
If binary encoding schemes are used the search variables are
translated into a sequence of bits on the genome. A decoding
process then translates each new offspring into the proper
sequence of values to be fed to the problem model.
However, direct encoding is used in this work. There is no
conversion as the genome is a direct representation of the
search variables. Thus, the genome is a hybrid mixture of
real numbers (for continuous variables) and references to
modules (for catalog selections).

Similarity measures are developed for use with crowding
GAs and the genetic operators. Similarity is defined as the
dimensionless ratio of the distance between two individuals
and their maximum possible distance, defined by the
boundaries of the search space. Assessing the distance
between alternatives generically is often very difficult and
subject to semantic interpretation. For binary encoding

similarity can be evaluated by a pairwise comparison of bits
(e.g., normalized Hamming distance) but the hybrid nature
of a direct-coded genome requires a different similarity
measure for each section of the genome. For real number
pairs, the Euclidean distance was adopted (Figure 3-a),
while for catalog selections, a distance measure based on the
relative position of the two alternatives in the catalog was
developed (Figure 3-b). The meaningfulness of module
order in a catalog is judged by the designer. Ordered
catalogs use this distance measurement while unordered
catalogs treat all contents as equidistant.  A similar approach
is used for hierarchical catalogs, which are semantically
interpreted as family trees.

Figure 3. Similarity measurements between two
variables. (a) For real numbers the similarity is the
absolute of the difference of the two values mapped in
the interval 0-1. (b) For ordered catalogs (where relative
position of the selections is meaningful) the similarity is
the difference in the position of the two selections
(distance) over the maximum distance. In the example, A
and B occupy respectively the 8th and 20th position in a
catalog of 28 modules.

The similarity of each allele pair is aggregated through a
weighted sum; the weights can be used by the designer to
control the speciation process and emphasize differences in
particular design variables. For example, in the bottle design
problem the weights can be used to define bottle material
and shape to be more significant similarity indicators than
variables such as wall thickness.

With the distance and similarity measures defined, genetic
operators are defined to manipulate the direct representation.
For real number alleles, BLX crossover (Eshelman and
Schaffer 1992) is applied to each pair of continuous
variables (figure 4-a). The same operator is mapped to a
discrete space for interpreting between two modules selected
from catalogs (figure 4-b). This catalog crossover operator
was also extended to hierarchical catalog trees.
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Figure 4. (a) BLX operator for continuous variables, and
its counterpart (b) for catalog selections. The same
crossover mechanism is applied to a real interval for the
pair of real numbers, and to the catalog discrete space,
for a pair of catalog selections. The result of the
crossover between A and B is randomly selected from a
uniform (or Gaussian) distribution centered at the mean
point M.

3.2. Struggle GA

In addition to published algorithms, a variation of Restricted
Tournament Selection (RTS), called the Struggle GA (STR),
was developed in this work (Grueninger and Wallace 1997).
In RTS, the offspring competes for survival with the most
similar individual selected from a random subset (window)
of the original population. Since the window does not
encompass the whole population, there is the possibility that
the new individual may not be competing with the most
similar individual in the entire population. We have found
that this replacement error can lead to loss of population
diversity and reduce search reliability. The Struggle GA
eliminates the population window—new solutions are
compared to the most similar individual in the complete
population as outlined below.

Randomly seed population of genomes
Repeat

Select parents P1 and P2
Cross P1 and P2 yielding offspring C
Apply mutation with a probability p

mut

on C, yielding C’
Find the individual R that is most
similar to C' in the entire population
If fitnessScore(C’)>fitnessScore(R)
replace R with C’

Until Stop Criterion

The Struggle GA (STR) uses uniform/random selection of

parents. Chan (Chan 1997) developed a method for selecting
parents where they are either uniformly chosen or the two
most similar individuals are selected with a small
probability (e.g. 0.2). This selection method (Struggle2 or
Str2) accelerates convergence with negligible loss in search
reliability or speciation.

4. Implementation Results

In order to test the optimization module representation,
several problem models were developed. Some of these
problem models were standard test problems and other
problems were real world engineering problems.
Results for a well known test problem (Scheckel’s
Foxholes) and the bottle design application from the
scenario are included in this paper. Both problems used the
same GA settings: a crossover probability of 1.0 and a
mutation rate of 0.03 were used for both continuous
variables and catalog selections. Unless otherwise noted the
population size was 20, as small populations are a must for
computationally intensive real-world design applications.
The window size for Restricted Tournament Selection was
half of the population (10). The Pmateclosest parameter for
the Str2 GA was 0.2. Runs were terminated after 300
generations (6000 design alternative evaluations) and all
results are averaged over ten runs. The comparisons were
run for Simple (S) GA, Stead-state (SS), Deterministic
Crowding  (DC), Restricted Tournament Selection (RTS),
Struggle (Str), and Struggle2 (Str2).  Fitness sharing
algorithms are not presented as, even though they distributed
the population, they were ineffective in converging on
optima for both problems. Direct genome encoding with the
proper set of genetic operators and distance measurement
was used, unless otherwise specified.

4.1. Scheckel’s Foxholes results

Sheckel’s Foxholes is a continuous variable function from
DeJong’s dissertation (DeJong 1995). The function is
defined in Figure 5.

z(x , y) =
1

1

50
+ 1

1 + i + (x − ai)
6 + (y − bi)

6i =1

25∑
bi =16 i ÷ 5( )− 2[ ]
ai = 16 i mod5( )− 2[ ]
 Figure 5. Sheckel’s Foxholes definition and surface plot.
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The foxholes function was modeled in DOME as a design
problem where x and y are the continuous design
parameters, and the function value is the objective. The
object model is described in appendix A.
Figure 6 illustrates that  all of the algorithms except the
simple GA consistently locate the global optimum. Figure 7
illustrates the rate of convergence for the different
algorithms.

Figure 6. Reliability finding Sheckels foxholes global
optimum. Probability of converging within 99.99% of
the known global optimum in 300 generations (averaged
over 10 runs,  popsize=20)

Figure 7.  Average number of generations to find Shekels
foxholes global optimum (within 99.99% of known
global optimum).

Figure 8 provides an illustration of why the direct genome
representation developed for the DOME formalism is
preferred over a binary representation—success in locating
the optima is very dependent upon the number of bits used
in the binary representation.

Figure 8. Reliability finding Sheckels foxholes global
optimum using direct or binary genome representations.
Probability of converging within 99.99% of the known
global optimum in 300 generations (Struggle GA,
averaged over 10 runs,  popsize=20)

Additionally, the direct encoding required less than half of
the evaluations needed for the high-bit binary representation

to converge. A detailed explanation of these observations is
provided in work by Gruninger and Wallace (Grueninger
and Wallace 1997).

In addition to locating the global optimimum, effectiveness
locating local optima was benchmarked in Figure 9.
Variations of the struggle and restricted-tournament
selection algorithms appear to be more effective than
deterministic crowding—both algorithms reduce diversity
loss through fewer replacement errors.

Figure 9. Average number of Sheckels local optima
found (within 99.99% of local peak). Averaged over 10
runs (popsize=20, number of local optima = 25)

Figure 10 shows that with a population of 50 and after 500
generations all 25 local optima are identified and maintained
using the struggle GA. None of the other algorithms were
able to locate all optima in a single search.

Figure 10. Number of individuals on each local optima
after 500 generations (within 99.99% of local peak) using
struggle GA. Optima are ordered from best to worst.
(population size = 50).

4.2. Bottle design problem results

The bottle problem model is shown in Figure 11 from the
engineering design configuration viewpoint GUI. The
genetic Optimization module GUI is shown in Figure 12,
during an optimization. There are three continuous search
variables involved (container diameter, height, thickness),
and one catalog selection (type of container—plastic bottle,
aluminum can, and glass bottle). The overall problem model
is distributed over four platforms and embeds three
commercial applications (a CAD system, a spreadsheet, and
an environmental impact assessment package). Evaluations
on functionality, safety and environmental impact are
computed within the model and contribute to the objective
score.
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Figure 11. The beverage model seen from the GUI for the engineering configuration module. The services from life-
cycle assessment, strength analysis and industrial design are accessed through remote modules, which embed
commercial applications. The aluminum can design configuration is being selected from a catalog

Figure 12.  Optimization results. Three locally optimal families of solutions correspond to the different bottle types.
The plastic bottle performed best based upon the design goals.

The bottom-center graph in Figure 12 shows the generation
history of the optimization (best, average, and worst of
generation). At the bottom left search results are listed, rank
ordered by objective measure. Three major families of
solutions were found each corresponding to a different bottle
type.

5. Conclusions and Future Work

The DOME software framework provides an object-based
modeling formalism and means to integrate commercial
applications, in-house software and design-tailored tools for

problem modeling and decision support into a single system.
Large, distributed models of real-world engineering
problems can be modeled and design variations can be
explored.

A genetic optimization module was developed to aid
designers in locating acceptable design configurations and to
gain insight on the search space. Appropriate similarity
measures and genome representations were developed and
tested with several types of genetic algorithms.  Tests on a
standard search problem and on a real-world design problem
showed that GAs which tend to maintain population
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diversity can be used to locate many alternative acceptable
solutions in a search and also are more reliable in locating
the global optima. In particular, the Struggle GA variation of
RTS showed superior performance in terms of reliability
and number of converged local optima.

Future work includes the study of collaborative
optimization, where different optimization modules have
control on subsets of the search variables and adapt their
search strategy on the basis of the information exchanged
between optimizations.
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Appendix A  Object model representation of the Shekels Foxholes problem

Module
name

Module
type

Services
Provided

Services
Required

Comments Optimization
Setup

Foxholes Container Contains the
foxholes relation
and all other
modules in the
problem

X Real Value Independent
variable

Optimize

Y Real Value Independent
variable

Optimize

Z Real Value X.Value
Y.Value

Z=foxholes(X,Y)

P Preference
function

Preference
function values

Designer’s
preference
structure on Z
(requirement)

D Criterion
(single
attribute
decision)

Zacceptability Z.Value
Preference
function values

Assessment based
on acceptability
decision model

Objective
function

Figure A1: a) Function visualization, b) Object model visualization in DOME GUI


