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Abstract

This paper analyzes convergence properties of the

Bayesian optimization algorithm (BOA). It settles

the BOA into the framework of problem decom-

position used frequently in order to model and

understand the behavior of simple genetic algo-

rithms. The growth of the population size and

the number of generations until convergence with

respect to the size of a problem are theoretically

analyzed. The theoretical results are supported

by a number of experiments.

1 INTRODUCTION

Recently, the Bayesian optimization algorithm (BOA)

has proven to optimize problems of bounded di�culty

quickly, reliably, and accurately. The number of func-

tion evaluations until convergence was investigated on

a number of problems. However, the questions of (1)

how to choose an adequate population size in order

to solve a given problem with a certain degree of ac-

curacy and reliability, and (2) how many generations

it will take until the algorithm converges, remained

unanswered.

This paper makes an important step toward under-

standing the mechanics of the BOA. It approximates

the growth of the required population size and the

number of generations until convergence with respect

to the size of a problem by using recent results of

the genetic algorithms population-sizing and conver-

gence theory. The theoretical results are supported by

a number of experiments.

The paper starts with a brief introduction to the prob-

abilistic model-building genetic algorithms|the evo-

lutionary methods based on building and using prob-

abilistic models of promising solutions in order to

guide the further search. Additionally, the motivation

and most important results of the population sizing

and convergence theory of genetic algorithms are pre-

sented. The relationship between the population size

and the size of a problem is analyzed in Section 3. The

number of generations with respect to the problem size

is discussed in Section 4. The paper is summarized and

concluded in Section 5.

2 BACKGROUND

This section provides background on the algorithms

based on probabilistic modeling of promising solutions

and on recent theoretical results of population sizing

and time to convergence of simple genetic algorithms.

2.1 PROBABILISTIC MODEL-BUILDING

GENETIC ALGORITHMS

Probabilistic model-building genetic algorithms (PM-

BGAs), also called estimation of distribution algo-

rithms (M�uhlenbein & Paa�, 1996), replace the genetic

recombination of genetic algorithms (GAs) (Holland,

1975; Goldberg, 1989) by building an explicit model of

promising solutions and using the constructed model

to guide the further search. As models, probability

distributions are used. For an overview of recent work

on PMBGAs, see Pelikan, Goldberg, and Lobo (2000).

The Bayesian optimization algorithm (BOA) (Pelikan,

Goldberg, & Cant�u-Paz, 1998) uses Bayesian networks

to model promising solutions and subsequently guide

the further search. In the BOA, the �rst population of

strings is generated at random. From the current pop-

ulation, the better strings are selected. Any selection

method can be used. A Bayesian network that �ts the

selected set of strings is constructed. Any metric as

a measure of quality of networks and any search algo-

rithm can be used to search over the networks in order

to maximize/minimize the value of the used metric.

Besides the set of good solutions, prior information



about the problem can be used in order to enhance

the estimation and subsequently improve convergence.

New strings are generated according to the joint distri-

bution encoded by the constructed network. The new

strings are added into the old population, replacing

some of the old ones.

A Bayesian network is a directed acyclic graph with

the nodes corresponding to the variables in the mod-

eled data set (in our case, to the positions in the so-

lution strings). Mathematically, a Bayesian network

encodes a joint probability distribution given by

p(X) =

n�1Y
i=0

p(Xij�Xi
); (1)

where X = (X0; : : : ; Xn�1) is a vector of all the vari-

ables in the problem, �Xi
is the set of parents of Xi

in the network (the set of nodes from which there ex-

ists an edge to Xi) and p(Xij�Xi
) is the conditional

probability of Xi conditioned on the variables �Xi
. A

directed edge relates the variables so that in the en-

coded distribution, the variable corresponding to the

terminal node will be conditioned on the variable cor-

responding to the initial node. More incoming edges

into a node result in a conditional probability of the

corresponding variable with conjunctional condition

containing all its parents.

Various methods can be used to construct the net-

work given the set of selected solutions. All of these

methods have two basic components: a scoring metric

which discriminates the networks according to their

quality and the search algorithm which searches over

the networks to �nd the one with the best scoring

metric value. The BOA can use any scoring metric

and any search algorithm. In our recent experiments,

we have used the Bayesian-Dirichlet metric (Hecker-

man, Geiger, & Chickering, 1994). The complexity of

the considered models was bounded by the maximum

number of incoming edges into any node denoted by

k. To search the space of networks, a simple greedy

algorithm was used due to its e�ciency. For further

details, see Pelikan, Goldberg, and Cant�u-Paz (1999).

2.2 PROBLEM DECOMPOSITION

In order to understand and model GAs, the undoubtly

complex behavior of GAs has been decomposed into

more tractable sub-problems (Goldberg, Deb, & Clark,

1992):

1. Know what the GA is processing: building

blocks (BBs).

2. Solve problems tractable by BBs.

3. Supply enough BBs in the initial population.

4. Ensure the growth of necessary BBs.

5. Mix the BBs properly.

6. Decide well among competing BBs.

Even though the BOA uses an explicit model of

promising solutions instead of an implicit model

brought about by genetic recombination operators in

GAs, the goal and mechanics of both algorithms are

the same. In fact, the BOA tries to resolve the prob-

lems that the GAs have a di�culty of dealing with.

Our previous work on the BOA addressed two of the

above-listed points that are di�cult for conventional

GAs: it resulted in the algorithm that ensures a proper

growth and mixing of building blocks on problems

tractable by BBs. In this paper we address two ad-

ditional points from the above list: an initial supply

of BBs and good decision-making among competing

BBs. Our study results in the relationship between an

adequate population size and the size of a problem.

Additionally, we apply the results of recent work on

the time to convergence to the BOA and argue that

these theoretical results can be applied directly with

little or no modi�cation.

2.3 POPULATION SIZING

Previous estimates of adequate population sizes can be

classi�ed into two major categories: (1) models con-

cerned with an initial supply of building blocks (BBs)

and (2) models that involve decision-making between

competing BBs (Goldberg et al., 1992; Harik et al.,

1999).

2.3.1 Having an Adequate Initial Supply of

BBs

In order to guarantee a proper reproduction and jux-

taposition of BBs, both the GAs and the BOA must

have an adequate initial supply of BBs. The more good

BBs there are in the initial population, the higher the

chance of getting the global solution. Assuming that

the initial population of solutions is generated with

uniform distribution and the solutions are represented

by binary strings, the expected number of a particular

BB of order k in the initial population is given by

m(BBk) =
n

2k
� (2)

The �rst supply model simply considers this estimate

and suggests that the population size grows at least

exponentially with the size of BBs.

Another study relates the population size and the ex-

pected performance of the GA by estimating a num-

ber of schemata contained in the population. Holland



(1975) estimates the number of schemata in a ran-

domly generated population of N solutions by O(N3).

This estimate was later rederived by Goldberg (1989)

by computing the number of schemata in one string

and multiplying this by the population size.

2.3.2 Deciding Well Between Competing BBs

Besides having an adequate initial supply of BBs, an-

other important factor that determines the success of

GAs is the one of deciding well between competing

BBs. Naturally, the better building blocks should get

more copies in the o�spring than the worse ones. How-

ever, as it was soon recognized by De Jong (1975),

the decision-making for a particular BB is strongly af-

fected by noise from the �tness contributions of the

remaining building blocks.

The idea of estimating the population size by focus-

ing on one BB and considering the noise from the �t-

ness contributions of the remaining parts of the string

solutions resulted in the �rst population-sizing model

introduced by Goldberg, Deb, and Clark (1992). The

proposed model reduced decision-making to the two

best BBs in a particular partition. It estimated the

required population size so that the best BB wins over

the second best BB in the same partition. It is nat-

ural to expect the best BB to win over other BBs in

the same partition as well. This model was a little pes-

simistic; it required the best BB to win in the �rst gen-

eration. Assuming that the BBs are separable and uni-

formly scaled, the resulting population size estimate is

then given by

N = 2c(�)2km0

�
2

bb

d2
; (3)

where c(�) is the square of the ordinate of a unit nor-

mal distribution where the probability equals to �; � is

the probability of failure; k is the order of the consid-

ered BB; m0 is one less than the number m of BBs in

a string (i.e. m0 = m� 1); �2
bb
is the root mean square

(RMS) �tness variance of the considered BB; and d is

the di�erence between the �tness contributions of the

best and the second best BBs.

Harik, Cant�u-Paz, Goldberg, and Miller (1999) weak-

ened the assumptions and used the gambler's ruin

model in one dimension to model the behavior of the

GA so that the best BB could also win in the sub-

sequent generations. Assuming perfect mixing, the

population size su�cient to get a solution of certain

quality was reduced to

N = �2k�1 ln(�)�bb
p
�m0

d
; (4)

The empirical results with tightly-encoded deceptive

building blocks match the theory very well. Thus, with

perfect mixing, the required population size in genetic

algorithms grows proportionally to the square root of

the number of BBs in a problem.

2.4 TIME TO CONVERGENCE

Once we have an adequate population size to get solu-

tions of a required quality, another important question

is how many generations it will take the algorithm to

converge. M�uhlenbein and Schlierkamp-Voosen (1993)

estimated the number of generations until convergence

for the one-max (also called bit-counting) problem, as-

suming an in�nite population size and perfect mixing,

by

tconv =
�
�

2
� arcsin (2p� 1)

� p
n

I
; (5)

where p is the initial proportion of ones on each posi-

tion, n is the problem size, and I is the selection in-

tensity. The selection intensity in generation t is given

by

I(t) =
f(t+ 1)� f(t)

�(t)
; (6)

where f(t + 1) is the average �tness of the popula-

tion in generation t + 1; f(t) is the average �tness in

generation t; and �(t) is the standard deviation of the

�tness values in generation t. For many commonly

used selection schemes (e.g. tournament, truncation,

ranking, and (�; �) selection) the selection intensity is

a constant (M�uhlenbein & Schlierkamp-Voosen, 1993).

This holds even for �tness functions a�ected by an ex-

ternal source of normally-distributed noise (Miller &

Goldberg, 1996).

The above result suggests that with a population large

enough, the number of generations until convergence

is proportional to the square root of a problem size

and inversely proportional to the selection intensity.

The convergence model was later rederived and ex-

tended by Miller and Goldberg (1996) to take into

account additional normally distributed noise in the

�tness function.

In the following text, the solutions are represented by

binary strings of �xed length. However, the described

techniques can be extended to strings over any �nite

alphabet. Each position in a string corresponds to

a random variable. A particular solution is the cor-

responding instance of all variables, and a particular

population of solutions is the set of instances of all

variables.



3 POPULATION SIZING

In order to �nd solutions of a required quality, the

BOA must both (1) �nd the model necessary to con-

verge to such solutions and (2) have an adequate popu-

lation size in order to have a su�cient initial supply of

BBs and to decide well among competing BBs. Initial

supply and decision-making was discussed in Section 2

and, assuming that the model is accurate enough, this

theory can be directly applied to the BOA. In the fol-

lowing section, we will concentrate on the accuracy of

the model building for additively decomposable prob-

lems in the BOA. Only the problems that contain in-

teracting variables are considered, since for the class

of linear problems where the model does not contain

any interactions the gambler's ruin population-sizing

model can be directly used.

3.1 PREDICTING THE GROWTH OF

THE POPULATION SIZE

When the proportions of schemata in the �rst genera-

tion are not accurate enough for a model to be correct

and accurately capture the dependencies in a prob-

lem, the proportions of these schemata in the follow-

ing generations will deceive the model-building even

more. This is caused by the fact that the information

that deceived the model-building will be emphasized

by the built model which is used to generate the next

population of solutions.

Therefore, we expect that it is important to make good

decisions in the �rst generations. This requirement re-

sembles the �rst population-sizing model of Goldberg,

Deb, and Clark (1992) which required the genetic al-

gorithm to make good decisions already in the begin-

ning. The initial population-sizing model was later

re�ned by weakening the assumptions resulting in the

claim that the population size should grow proportion-

ally to the square root of the problem size. This sug-

gests that the population-sizing bound derived below

for the BOA may be too pessimistic and the reality

could be much better. The empirical results presented

later in the paper match our theoretical analysis and

thus con�rm our intuition. We are currently investi-

gating whether the use of incremental model building

alleviates the requirement of deciding correctly early

in the run.

On input, the network-construction algorithm used in

the BOA gets the values of the scoring metric for vari-

ous networks. By observing the changes of the value of

the metric while modifying the network by elementary

graph operations, the network is incrementally con-

structed. The resulting network is thus determined

by the values of the metric1. Assuming that we use

the BD metric without pressure toward simpler mod-

els and a proper bound on the complexity of the con-

sidered models represented by k, the problem is to

distinguish correct relationships from fake ones.

As the population size approaches in�nity, the BD

metric would get perfect information on how the mod-

els di�er since the probabilities that are on input to

the metric (any conditional probabilities of order at

most k + 1) and the corresponding probabilities with

an in�nitely large population would be the same. The

information would be su�cient to make correct inde-

pendence assumptions and, assuming that the selec-

tion pressure is strong enough to identify the depen-

dencies among the bits within some BB, all pairs of bits

within any BB would seem dependent on each other.

Assuming a su�cient k, the model would be perfect

and the assumptions of the gambler's ruin population-

sizing model would be satis�ed.

However, the problem of insu�ciently accurate infor-

mation in the selected set of solutions emerges with

�nite population sizes. With �nite populations, the

noise from �tness contributions of the remaining BBs

a�ects the accuracy of the frequencies of schemata

within a particular BB because the structure of the

set of selected solutions is determined by the values of

the �tness function.

For very small populations, the e�ect of the noise is

very large and the information is insu�cient to winnow

dependent and independent variables. As the popula-

tion enlarges the information becomes more and more

accurate. In order to quantify the amount by which

we have to enlarge the population as the problem size

increases, we will look at how the noise in the popula-

tion changes. For simplicity, only binary tournament

selection with replacement will be considered. The

approach can be generalized in a straightforward man-

ner. Once we have this result, we will argue that this

should be a reasonable estimate due to the nature of

the problem. Our results will be supported by a num-

ber of experiments with a deceptive function of order

three and a trap function of order �ve.

Let us look at the schema H that is �xed on some

positions within one building block. Furthermore, let

us denote the expected �tness of the schema H (the

average �tness of the schema in an in�nite popula-

tion) by f(H). Assuming that the �tness is composed

of m independent (separable) uniformly scaled sub-

functions with normally distributed �tness, the vari-

ance coming from a number of subfunctions is simply

1In this study we do not consider stochastic network-
construction algorithms.



the sum of their individual variances. Assuming that

the �xed positions in H are in the same subfunction

(building block), the variance of the �tness of H can

be lower-bounded by (m � 1)�2
bb

and upper-bounded

by the overall variance of the �tness m�
2

bb
, where �2

bb

is the variance of one sub-function (building block).

Therefore, for m not too small, m�
2

bb
represents quite

accurate approximation of the variance of the �tness

of H (which is within at most 1=m of its real variance).

The �tness of schema H is normally distributed, i.e.

f(H) � N(f(H);m�
2

bb
):

The probability of H winning over any of its competi-

tors H 0 (the schemata with di�erent �xed alleles in

the same partition and the don't-care symbols in the

remaining locations) in a binary tournament is given

by p(f(H) > f(H 0)), which can be rewritten (Harik

et al., 1999) as

p(f(H)� f(H 0) > 0):

The �tness of H 0 is also normally distributed and its

variance can be, analogically as for H , approximated

by m�
2

bb
, i.e.

f(H 0) � N(f(H 0);m�
2

bb
):

Since both f(H) and f(H 0) are normally distributed,

their di�erence is also normally distributed with the

mean equal to the di�erence between the means of

the �tness distributions of H and H 0 and the variance

equal to the sum of the variances of the two distribu-

tions:

f(H)� f(H 0) � N(f(H)� f(H 0); 2m�
2

bb
):

The probability p(f(H)�f(H 0) > 0) together with the

probabilities of H winning over its competitors deter-

mine the frequency of the schema H in the population

of selected solutions. It is the frequencies of di�er-

ent schemata that are used to determine the score for

each network and thus guide the construction of the

model. Therefore, for a model to be of certain qual-

ity, it is natural to expect that these probabilities be

within a certain threshold from its expected value, in-

dependently of the problem size. For the probability

p(f(H)� f(H 0) > 0) to be within a certain threshold,

the sample mean and variance must be close to their

expected values. The mean of f(H)� f(H 0) after do-

ing N tournaments with replacement is within

z(�)

p
2m�bbp
N

from its expected value (Sachs, 1984; Goldberg & Rud-

nick, 1991), where � is the con�dence level and z(�) is

the critical value of a one-sided normal test of signif-

icance at level �. Thus, to get the mean within some

accuracy threshold �1, the following inequality must

hold:

z(�)

p
2m�bbp
N

� �1

By solving the above inequality for the population size

N , we get

N � 2m

�
z(�)�bb

�1

�2
(7)

Estimating the variance requires approxi-

mately (Sachs, 1984)

1 + 0:5

�
z(�)

�

�2

samples, where � is a relative error of the estimated

standard deviation from its expected value normalized

by the expected value of the variance (i.e. � = (s �
�)=�). For the variance of f(H)� f(H 0) to be within

�2 from its expected value, we get � = �2=(
p
2m�bb).

An adequate sample size is thus given by

1 +m

�
z(�)�bb

�2

�
:

Therefore, the population size in order for the model

to be of required quality grows at least linearly with

the number of building blocks in a problem. This

boundary takes over both the boundary in order to

have an adequate initial supply of the BBs as well as

the gambler's ruin model and becomes dominant as

the problem size increases. The above functional rela-

tionship can be analogically obtained by taking any

schema spanning through two di�erent BBs. With

such schemata, the m from the above estimates would

be reduced tom0 = m�1 due to the di�erent bounds of
the �tness variance of the schema. Nevertheless, this

would not change the functional form of our estimate.

3.2 EMPIRICAL RESULTS

Experiments presented in this section are performed

on two deceptive functions. A deceptive function of

order 3 is composed of separable building blocks of

order 3, each with a �tness contribution of

f3deceptive(u) =

8>><
>>:

0:9 if u = 0

0:8 if u = 1

0 if u = 2

1 otherwise

; (8)
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Figure 1: Proportion of correct BBs found by the BOA

with the deceptive function of order three of four dif-

ferent sizes.

where u is the number of ones in the building block.

The overall �tness is computed by summing the contri-

butions of individual BBs. The trap function of order

5 is de�ned as the sum of contributions of n=5 distinct

building blocks, each of which is given by

ftrap5(u) =

�
4� u if u < 5

5 otherwise
; (9)

where u is the number of ones in the building block.

Both functions have one global optimum in 111 : : :1

and a deceptive attractor in 000 : : :0.

In all experiments, the truncation selection with a

threshold � = 50% was used (the best half of the pop-

ulation is selected). O�spring replace the worst half

of the population. Each run is terminated after the

proportion of some bit on each position reaches 95%.

Figure 1 shows the proportion of correct building

blocks on a deceptive function of order three found

with various population sizes averaged over 100 in-

dependent runs. Four problems of sizes n1 = 99,

n2 = 198, n3 = 297, and n4 = 396 bits were tested

(the size of the problem must be divisible by 3). The

number of BBs in the test problems grows linearly

(m1 = 33, m2 = 66, m3 = 99, and m4 = 132). There-

fore, as the theory suggests, the di�erence between the

population sizes in order to get a solution of a certain

quality should be the same between the two smaller

and two larger problems. Similar results were obtained

on the trap function of order �ve (see Figure 2). The

results con�rm that (1) the population size does not

grow faster than linearly and (2) our estimate is not

overly pessimistic.

Interesting behavior can be observed with larger prob-
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Figure 2: Proportion of correct BBs found by the BOA

with the trap function of order �ve of three di�erent

sizes.

lems. For n3 = 297, for instance, the proportion of

correct BBs grows initially for very small populations

(N < 60), then decreases to its lowest value with popu-

lation size N = 500, and then monotonously increases,

decreasing the error as the gambler's ruin model sug-

gests for the simple GA with perfect mixing. In fact,

from a certain point, the functional form of the gam-

bler's ruin population sizing model matches the empir-

ical results very accurately. In the next paragraph we

will discuss the possible reasons for this rather anoma-

lous behavior, since one would expect that with in-

creasing population size the proportion of correct BBs

should increase.

For very small populations, the noise is very high and

the frequencies, as a result of highly distorted �tness

values, are very inaccurate. That is why in each gener-

ation the model is more or less random and the results

are similar to what we would get by randomly generat-

ing solutions until the population converges due to the

elitism. As the di�erence between expected and real

schemata frequencies are reduced, the model becomes

more and more stable. However, the information is

still insu�ciently accurate in order for the model to

be correct and the algorithm is deceived to the local

optima, leaving only a small proportion of the BBs

correct. Even some of the BBs that are correct in the

initial population are disrupted and the algorithm is

deceived. This behavior can be observed in the algo-

rithms that assume that the variables are independent

(e.g. simple GA with uniform crossover and univariate

marginal distribution algorithm) whose �nal solution

gets worse with increasing population size. Finally,

the model gets more and more accurate, and the pro-

portion of correct BBs grows monotonously with the
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4 NUMBER OF GENERATIONS

UNTIL CONVERGENCE

To estimate the number of generations until conver-

gence, we will assume that (1) the population is large

enough for the model to accurately represent all the

dependencies and independence relations and (2) a

selection scheme with a constant selection intensity

(e.g. truncation selection, tournament selection, rank-

ing selection, etc.) is used. Under these assump-

tions, the convergence model derived by M�uhlenbein

and Schlierkamp-Voosen (1993) can be used for the

onemax as well as for deceptive problems as it was de-

scribed in Miller and Goldberg (1996), since in both

classes of problems the relationship between the vari-

ance and bit-wise frequencies is very similar. Thus,

even though the size of building blocks varies, the over-

all behavior can be quite accurately modeled by a bit-

wise convergence model with the initial proportion of

each bit to p = 0:5.

To compare the prediction with the actual empirical

values, the two deceptive functions described above

were used along with one additional �tness function.

The onemax function simply counts the number of

ones in the input string.

Figure 3 shows the number of generations until the

population has converged and the prediction accord-

ing to Equation 5 for the three problems. In the ex-

periments, the population is said to have converged

when the proportion of some value on each posi-

tion converges to a single value. Very large popula-

tions are used in order to simulate the behavior of

the BOA with in�nite populations (Nlow = 100 to

Nhigh = 60; 000). Truncation selection with � = 50%

was used for which the selection intensity is known

to be I = 0:798 (M�uhlenbein & Schlierkamp-Voosen,

1993) and the o�spring replaced the entire parent pop-

ulation. The initial population is generated at random

and therefore the initial proportion of ones on each

position is set to p0 = 0:5. We expect that a similar

relationship between the problem size and the time to

convergence holds for functions whose �tness variance

dynamics di�ers from the one of the simple one-max

function.

5 SUMMARY AND CONCLUSIONS

The paper makes an important step toward under-

standing the mechanics of the BOA. It approximates

the growth of the population size and the number of

generations until convergence with respect to the size

of a problem. The results suggest that in the BOA

the population size grows linearly with the problem

size and that the number of generations grows pro-

portionally to the square root of the problem size and

inversely proportionally to the selection pressure. The

theoretical results are supported by a number of ex-

periments.

The good news is that the overall performance of the

BOA for uniformly-scaled separable problems is sub-

quadratic. Moreover, the above result should hold for

problems with additional noise by simply adding the

additional noise to the noise from the �tness function.

The bad news is that the population size is larger than

the one required by the genetic algorithm with perfect

mixing due to increased requirements of the model-

building part of the algorithm.

We are currently investigating how exponential scaling

of building blocks a�ects the convergence. We expect

that the approximation of an adequate population size

should not increase signi�cantly and that the number

of generations should be proportional to the problem

size like in the simpler algorithms that do not cover

mutual interactions of the variables in a problem on

the binary integer problem. The genetic drift and the

selection pressure are likely be the major factors de-

termining a necessary population size.
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