Cellular Genetic Local Search for Multi-Objective Optimization

Tadahiko Murata
Department of Industrial and
Information Systems Engineering,
Ashikaga Institute of Technology
Ashikaga, Tochigi 326-8558, Japan
murata@ashitech.ac.jp
+81-284-62-0605

Abstract

In this paper, we show how cellular structures
can be combined with multi-objective genetic
local search (MOGLS) algorithms for improving

their search ability to find Pareto-optimal
solutions of multi-objective optimization
problems. We propose two ideas for

implementing a cellular MOGLS algorithm:
assignment of a different local search direction to
each cell, and relocation of individuals based on
their objective values. In our cellular MOGLS
algorithm, every individual in each population
exists in a cell of a spatially structured space (e.g.,
two-dimensional grid-world) where each cell has
a different local search direction. Such a local
search direction corresponds to weights in a
scalar fitness function defined by the weighted
sum of multiple objectives. The selection of
parents for generating a new individual in a cell
is performed within the neighborhood of that cell
based on its local search direction. A local search
procedure is applied to new individuals generated
by genetic operations for maximizing the fitness
function. It should be noted that each cell has its
own local search direction, which is used in the
selection as well as in the local search. Newly
generated individuals are relocated into cells
according to their locations in the
multi-dimensional objective space.

1 INTRODUCTION

Genetic algorithms have been successfully applied to
various optimization problems (Goldberg 1989). The
extension of GAs to multi-objective optimization was
proposed in several manners (Schaffer 1985, Kursawe
1991, Horn et al. 1994, Fonseca & Fleming 1995, Murata
& Ishibuchi 1995, Zitzler & Thiele 1999). The aim of
these algorithms is to find a set of Pareto-optimal

Hisao Ishibuchi
Department of Industrial Engineering
College of Engineering
Osaka Prefecture University
Sakai, Osaka 599-8531, Japan
hisaoi@ie.osakafu-u.ac.jp
+81-722-54-9350

Mitsuo Gen
Department of Industrial and
Information Systems Engineering,
Ashikaga Institute of Technology
Ashikaga, Tochigi 326-8558, Japan
gen@ashitech.ac.jp
+81-284-62-0605

solutions of a multi-objective optimization problem.
Another issue in multi-objective optimization is to select a
single final solution from Pareto-optimal solutions. Many
studies on multi-objective GAs did not address this issue
because the selection totally depends on the decision
maker’s preference. In this paper, we also concentrate our
attention on the search for finding a set of Pareto-optimal
solutions.

Many hybrid algorithms of GAs and neighborhood search
(e.g., local search, simulated annealing, and tabu search)
were proposed for single-objective optimization problems
to improve the search ability of GAs, and their high
performance was reported in the literature. While we can
expect significant improvement of the performance of
multi-objective GAs by such hybridization,
multi-objective hybrid GAs had not been proposed until
Ishibuchi & Murata (1998) hybridized their
multi-objective genetic algorithm (MOGA: Murata &
Ishibuchi 1995) with a local search procedure. Main
issues in such hybridization for multi-objective
optimization problems are the specification of local search
directions and the balance between the genetic global
search and the local search. In the multi-objective genetic
local search (MOGLS) algorithm of Ishibuchi & Murata
(1998), the weighted sum of multiple objectives is used as
a fitness function. The fitness function is used in the local
search as well as in the selection. For the search of various
Pareto-optimal solutions in large areas of the objective
space, a different weight vector is randomly specified
whenever a pair of parent solutions is selected for
generating a new solution. The randomly specified weight
vector is also used as the local search direction for the
new solution. A local search procedure is applied to the
new solution for iteratively improving its fitness value (i.e.,
the weighted sum of multiple objectives). This means that
each new solution has its own local search direction that is
randomly specified for the selection of their parents. A
more sophisticated specification method was proposed in
Murata et al.(1999) where the local search direction of
each new solution was defined according to its location in

the multi-dimensional objective space. In these MOGLS
algorithms, the balance between the genetic global search
and the local search can be controlled by restricting the
number of solutions examined in a single iteration of the
local search procedure. That is, all the neighboring
solutions are not examined in the local search procedure
for preventing it from spending almost all the available
computation time. In this paper, we combine these
MOGLS algorithms with cellular structures.

The concept of cellular genetic algorithms was proposed
by Whitley (1993). In cellular genetic algorithms, each
individual (i.e. a chromosome) resides in a cell of a
spatially structured space. Genetic operations for
generating new individuals are locally performed in the
neighborhood of each cell. While the term “cellular
genetic algorithm” was proposed by Whitley, such
algorithms had already been proposed by Manderik and
Spiessens (1989). A similar concept was also studied in
evolutionary ecology in the framework of “structured
demes” (Wilson 1977, Dugatkin and M.
Mesterton-Gibbons 1996). The effect of spatial structures
on the evolution of cooperative behavior has also been
examined in many studies (e.g., Nowak & May 1992,
Wilson et al. 1992, Oliphant 1994, Grim 1996, and
Ishibuchi et al. 2000) where each individual was located
in a cell of single-dimensional or two-dimensional
grid-worlds.

In this paper, we extend our MOGA (Murata & Ishibuchi,
1995) and MOGLS (Ishibuchi & Murata, 1998) as shown
in Figure 1 by combining these algorithms with cellular
structures and immigration procedures. First we extend
these algorithms by assigning every individual in each
population to a cell in a spatially structured space (e.g.,
two-dimensional grid-world). We add the abbreviation
“C-" to show “Cellular-” for the extended algorithms.
Furthermore we extend the cellular algorithms by
introducing a relocation procedure (i.e., a kind of
immigration). Each individual is relocated to a cell at
every generation based on the values of multiple
objectives (i.e., the location in the multi-dimensional
objective space). The extended algorithms, which are
based on the cellular structure and the immigration
procedure, are referred to as Cellular Immigrative (“CI-")
algorithms in this paper.

2 MULTI-OBJECTIVE OPTIMIZATION

Let us consider the following multi-objective optimization
problem with n objectives:

N1(x), f2(x), s fn(X), ey
where fi(), f>(), ... fn() are n objectives. When

the following inequalities hold between two solutions x
and y, the solution y is said to dominate the solution x:

Maximize

Local Search

[F06A] —» [061s]

Cellular structure * *

¢ v
[CIMOGA] —

CI-MOGLS
Figure 1: Extensions of the MOGA and the MOGLS in
this paper by introducing cellular structures and
immigration procedures.

v

Immigration

Viifi(x)< fi(y) and F:f;()<f;(». (D)

If a solution is not dominated by any other solutions of the
multi-objective optimization problem, that solution is said
to be a Pareto-optimal solution. The task of
multi-objective algorithms in this paper is not to select a
single final solution but to find all Pareto-optimal
solutions of the multi-objective optimization problem in
(1). When we use heuristic search algorithms such as
taboo search, simulated annealing, and genetic algorithms
for finding Pareto-optimal solutions, we usually can not
confirm the optimality of obtained solutions. We only
know that each of the obtained solutions is not dominated
by any other solutions examined during the execution of
those algorithms. Therefore obtained solutions by
heuristic algorithms are referred to as “nondominated”
solutions. For a large-scale multi-objective optimization
problem, it is impossible to find all Pareto-optimal
solutions. Thus our task is to find many near-optimal
nondominated solutions in a practically acceptable
computational time. The performance of different
multi-objective algorithms is compared based on several
quality measures of obtained nondominated solutions.

3 MOGA AND MOGLS

In this section, we explain our MOGA and MOGLS,
which will be extended in later sections of this paper.
Since the MOGA can be viewed as a special case of the
MOGLS (i.e., MOGLS with no local search procedure),
we only show the MOGLS algorithm in detail.

In the MOGLS algorithm of Ishibuchi & Murata (1998), a
local search procedure is applied to each of new solutions
(i.e., new individuals) generated by genetic operations for
iteratively improving their fitness values. The weighted
sum of the n objectives is used as a fitness function:

J(X)=wifi()+wa f2(x) +...+wpfu(x), (3)

where wp,...,w, are nonnegative weights for the »

objectives, which satisfy the following relations:

w; 20 for i=1,2,...,n, 4)
wp+wy 44w, =1. ®)

This fitness function is utilized when a pair of parent
solutions are selected for generating a new solution by
crossover and mutation. A local search procedure is
applied to the newly generated solution to maximize its
fitness value. One characteristic feature of our MOGLS
algorithm is to randomly specify weight values whenever
a pair of parent solutions are selected. That is, each
selection (i.e., the selection of two parents) is performed
based on a different weight vector. This means that each
of newly generated solutions by the genetic operations has
its own weight vector. Another characteristic feature of
the MOGLS algorithm is not to examine all neighborhood
solutions of a current solution in the local search. Only a
small number of neighborhood solutions are examined to
prevent the local search procedure from spending almost
all the available computation time in the MOGLS
algorithm. The neighborhood structure for the local search
is defined in the solution space. The neighboring solutions
of a current solution are defined by its small modifications
(e.g., exchange of two jobs in a schedule corresponding to
the current solution).

3.1 SELECTION OPERATION

When a pair of parent solutions are to be selected from a
current population for generating an offspring by genetic
operations, first the n weight values (wy,w,, ...,w,) are

randomly specified as follows:

w; = random; /(random +---+ random,,) ,
i=12,...,n, (6)

where random; are nonnegative random real numbers.

For example, when N pairs of parent solutions are selected
for generating a new population, N different weight
vectors are specified by (6). This means that N search
directions are utilized in a single generation. In other
words, each selection (i.e., the selection of two parents) is
governed by a different fitness function.

3.2 LOCAL SEARCH PROCEDURE

As we have already mentioned, a local search procedure is
applied to each new solution generated by the genetic
operations (i.e., selection, crossover, and mutation) for
maximizing its fitness function f(x) in (3). Our
MOGLS algorithm employs the following local search
procedure with the limited examination of neighborhood
solutions for iteratively improving the fitness function
f(x) ofasolution x in a current population:

Step 1) Letx be the initial solution of the local search.
Step 2) Randomly select a neighborhood solution y of the
current solution x.

Step 3) If f(x)< f(y),i.e., ifyis a better solution than
x, replace the current solution x with y and return
to Step 2.

Step 4) If randomly selected k neighborhood solutions of
the current solution x have been already
examined (i.e., if there is no better solution
among the examined k neighborhood solutions),
stop the local search procedure for the current
solution x. Otherwise, return to Step 2.

This procedure is terminated when no better solution is

found among k neighborhood solutions that are randomly

selected from the neighborhood of the current solution.

We can adjust the balance between the genetic global

search and the local search through the value of k. If we

specify k as k =0, our MOGLS algorithm is identical to
the MOGA because no local search is executed in our

MOGLS algorithm.

3.3 ELITIST STRATEGY

Our MOGLS algorithm separately stores two different sets
of solutions: a current population and a tentative set of
nondominated solutions. After the local search procedure
is applied to each solution, the current population is
replaced with the improved solutions by the local search
procedure. The tentative set of nondominated solutions is
also updated by the improved solutions. That is, if a
solution obtained by the local search procedure is not
dominated by any other solutions in the improved current
population and the tentative set of nondominated solutions,
this solution is added to the tentative set. Then all
solutions dominated by the added one are removed from
the tentative set. In this manner, the tentative set of
nondominated solutions is updated at every generation in
our MOGLS algorithm.

From the tentative set of nondominated solutions, a few
solutions are randomly selected and added to the current
population before the local search procedure is applied
(see Figure 2). That is, the local search procedure is
applied to the selected nondominated solutions as well as
the generated solutions by the genetic operations. The
direction of the local search (i.e., weight values) for each
nondominated solution is determined by the fitness
function used in the selection of its parent solutions. The
randomly selected nondominated solutions may be viewed
as elite solutions because they are added to the current
population with no genetic operations.

3.4 MOGLS ALGORITHM

Let us denote the population size by Np,,. We also
denote the number of nondominated solutions added to the
current population by Ngjjte (i.€., Nelite 1S the number

of elite solutions, see Figure 2). Using these notations, our
MOGLS algorithm can be written as follows.

Non-dominated

Next
population

Current
population

Local
search

Genetic
operations,

Elite
solutions

Non-dominated

solutions solutions

Figure 2: Illustration of our MOGLS algorithm.

Step 0)

Step 1)

Step 2)

Step 3)

Step 4)

Step 5)

Initialization: Randomly generate an initial
population of N, solutions.
Evaluation: Calculate the values of the n

objectives for each solution in the current
population. Then update the tentative set of
nondominated solutions.

Selection: Repeat the following procedures to
select (NV pop — Nelite) pairs of parent solutions.

a) Randomly specify the weight values wy,
Ws,...,w, inthe fitness function (3) by (6).
b) According to the following selection
probability P(x), select a pair of parent
solutions from the current population ¥ .
2AS ()= fimin (P}
xe¥

where fimin(F)

value in the current population ¥ .
Crossover and Mutation: Apply a crossover
operator to each of the selected (N pop — Nelite)
pairs of parent solutions. A new solution is
generated from each pair of parent solutions.
Then apply a mutation operator to the generated
new solutions.
Elitist ~ Strategy: Randomly Nelite
solutions from the tentative set of nondominated
solutions, and add the selected Ngjjie solutions
to the (Npop — Nelite) solutions generated in
Step 3 to construct a population of Ny,
solutions.
Local Search: Apply the local search procedure
in Section 3.2 to each of the N, solutions in

is the minimum fitness

select

the current population. The local search direction

for each solution is specified by the weight values
used in the selection of its parent solutions. The
current population is replaced with the Npqp

solutions improved by the local search procedure.
Termination Test: If a prespecified stopping
condition is satisfied, end the algorithm.
Otherwise, return to Step 1.

Step 6)

4 CELLULAR ALGORITHMS

4.1 CELLS WITH WEIGHT VECTORS

In cellular algorithms, each individual resides in a cell in a
spatially structured space (e.g., two-dimensional
grid-world). For utilizing a cellular structure in our
MOGLS algorithm, we assign a different weight vector to
each cell. That is, each cell has its own weight vector,
which is used for generating a new individual for that cell
in the selection and the local search. For our n-objective
optimization problem, cells are structured in an
n-dimensional weight space. Figure 3 shows an example
of structured cells for a two-dimensional optimization
problem where the fitness function f(x) is defined by

two weights wy and Wy as

J(x)=wy f1(x)+wy f>(x). In this figure, the population
size is ten because an individual exists in each cell. As
shown in Figure 3, the location of each cell corresponds to
its weight vector. Weight vectors are uniformly specified
according to the population size. For example, weight
vectors for 11 individuals (i.e., for 11 cells) are (1.0, 0.0),
(0.9, 0.1), ..., (0.0, 1.0).

w2

1.0

0 1.0 Wi

Figure 3: Location of each cell in the weight space.

4.2 DEFINITION OF NEIGHBORHOOD

We can intuitively define the neighborhood structure
among cells. That is, we can utilize any distance between
cells in the n-dimensional space in which cells are
structured. For example, the Euclid distance can be used
for measuring the distance between cells. In this paper, the
neighborhood of each cell is defined by its nearest

kneighbor cells (including that cell with zero distance).

4.3 SELECTION AND LOCAL SEARCH

In our MOGLS algorithm described in Section 3, each
solution has its own weight vector, which was used for
selecting its parent solutions. In our cellular
multi-objective genetic local search (C-MOGLS)
algorithms proposed in this paper, however, each cell has
its own weight vector. As shown in Figure 3, the weight
vector assigned to each cell corresponds to its location.
For generating a new individual for a cell by the genetic
operations, we use its weight vector in the fitness function.
The same weight vector (i.e., the same fitness function) is
also used for improving the newly generated individual by
the local search procedure. The local search is applied to
the individual generated by the genetic operation in the
same manner as in our MOGLS algorithm in Section 3.
The improved individual is the resident in the same cell at
the next generation.

Two parents for generating a new individual in a cell are

selected from its Aneighbor neighbors (including that cell).

The fitness value of each neighbor is recalculated based
on the weight vector assigned to the cell for which a new
individual is generated. That is, each individual is
differently evaluated by this recalculation procedure of the
fitness function in the selection for each cell.

S IMMIGRATION PROCEDURE

Furthermore we extend the C-MOGLS algorithm to a
cellular immigrative multi-objective genetic local search
(CI-MOGL) algorithm by relocating newly generated
individuals based on their locations in the
multi-dimensional objective space. That is, we immigrate
each individual to an appropriate cell according to its
multiple objective values. This procedure is applied to
individuals in the current population before the local
search. This is to assign an appropriate local search
direction to each individual generated by the genetic
operations.

Let us illustrate the necessity of this immigration
procedure using Figure 4. Let us assume that two
individuals indicated large open circles in this figure are
selected for generating a new individual for a cell with the
depicted weight vector: w = (0.1, 0.9). This weight vector
is also used as the local search direction for a new
individual generated by the genetic operations from these
parents. When a new individual is generated around the
parents (e.g., A in Figure 4), the weight vector w = (0.1,
0.9) is appropriate as the local search direction for the
new individual. On the contrary, when a new individual is
far from the parents (e.g., B in Figure 4), the weight
vector w = (0.1, 0.9) is not appropriate as the local search
direction. As we can see from Figure 4, an appropriate

local search direction may be related to the location of the
initial solution for the local search procedure in the
multi-dimensional objective space. For example, a weight
vector w=(0.9, 0.1) seems to be much more appropriate
for the solution B than w = (0.1, 0.9) in Figure 4.

Based on the above discussion, we can relocate each
individual generated by the genetic operations to an
appropriate cell. This relocation procedure is based on the
location of each individual in the objective space. For
relocating all individuals in the current population before
the local search procedure, we number each individual
according to its location in the objective space. For the
simplicity of explanation of the immigration procedure,
we assume that our multi-objective optimization problem
has two objectives fij(x) and f>(x). The following

procedure is used for numbering the solutions.

|[Numbering Procedure]

Let P, be the location of the solution x in the
two-dimensional objective space, ie.,
Py = (fi(x), f>(x)). Calculate the angle O(x) between
the fj(x) axis of the objective space and the line OP,

where O is the origin of the objective space. The angle
6(x) is obtained from the following relation:

fo(x)
fi®)

As shown in the left figure in Figure 5, we number the
individuals in the current population from 1 to Npy, in
an increasing order of 6(x) where Ny, is the
population size. Each individual is immigrated to the cell
with the same number (compare Figure 5 with Figure 3).
It should be noted that each cell has its own number

tan6(x) = ®)

assigned in a similar mechanism as shown in Figure 3.

B : Generated new solutions

@ : Selected parent solutions

f2(x)
4 _-"77~~_ Desired search area
I
\ , for A
A 4
A .
© ® o Desired search
o o ©® area for B
° o PR
o ° [] I, \\
e o \ !
Weight vector B\
>
fi(x)

Figure 4: Search Direction.

f2(x)

A

0 fi(x)

Figure 5: Specification of an appropriate local search direction for each individual.

6 COMPUTER SIMULATIONS
6.1 TEST PROBLEMS

We applied the proposed CI-MOGLS algorithm and its
variants to flowshop scheduling problems. Flowshop
scheduling is one of the most well-known scheduling
problems. Since Johnson’s work (1954), various
scheduling criteria have been considered. Among them are
makespan, maximum tardiness, total tardiness, and total
flowtime. Several researchers extended single-objective
flowshop scheduling problems to multi-objective
problems (see, for example, Daniels & Chambers 1990).

In this paper, we use the makespan and the total tardiness
as two scheduling criteria in our flowshop scheduling
problems. The makespan is the maximum completion time
of all jobs to be processed. The total tardiness is the total
overdue of all jobs. Let gi(x) and gr(x) be the

makespan and the total tardiness. Since these scheduling
criteria are to be minimized, we specify the two objectives
fi(x) and f>(x) of our flowshop scheduling as

S = —gi1(x) and f>(x)=-g2(x).

Since flowshop scheduling is to find a job permutation
that optimizes the given objectives, A sequence of jobs is
handled as an individual (i.e., as a string) in our algorithm.

As test problems, we generated ten 20-job and
10-machine flowshop scheduling problems. The
processing time of each job on each machine was
specified as a random integer in the interval [1, 99], and
the duedate of each job was defined randomly. Our task is
to find a set of Pareto-optimal solutions of each test
problem. In our computer simulations, each solution x was
represented by a permutation of 20 jobs.

6.2 QUALITY MEASURES OF SOLUTION SETS

Since multi-objective algorithms find a set of

nondominated solutions with respect to multiple
objectives (not a single final solution with respect to a
single objective), the comparison between different
multi-objective algorithms is not easy. For this purpose,
we use the following measures for evaluating the quality
of a solution set obtained by each algorithm.

1) The number of obtained nondominated solutions
The number of nondominated solutions obtained by
each algorithm is a measure to evaluate the variety of
the solution set.

2) The number of solutions that are not dominated by
other solution sets
For comparing different solution sets with one another,
we examine whether each solution is dominated by any
other solutions in other sets. If a solution is dominated
by another solution, we remove that solution. In this
manner, we remove solutions dominated by other
solution sets. The number of remaining solutions in
each solution set is a measure for evaluating its relative
quality with respect to the other solution sets.

3) Set quality measure proposed by Esbensen (1996)
Esbensen (1996) proposed an evaluation method of the
quality of a solution set. Let us denote a solution set by
€2 . The best solution x* for a given weight vector
w=(w;, wr) can be chosen from (2 for the
two-objective optimization problem as follows:

S(x*) = wi fr(x®) + wa f2(x)
= max{w; fi(x) +wy f2(x)|xe 2}. (10)

Esbensen (1996) proposed an idea of measuring the
quality of the solution set (2 by calculating the
expected value of f(x*) over possible weight
vectors. In this paper, we calculate the expected value
of f(x*) by randomly generating 10,000 weight
vectors by (6). That is, the quality of the solution set
€ is calculated as follows:

1 10000 ‘ .
q(2) = —— Y max{w{ f1(x) +w) f2(x) | xe 2},
10000 5

an
where ¢(€2) is the quality of the solution set 2 and

i=1,2,...,10000 are

specified weight vectors.

wi = (wi,wh) , randomly

4) Maximum distance between two solutions
The maximum distance between two solutions in the
solution set shows its variety (i.e., the spread of
solutions in the multi-dimensional objective space).
This is defined for a solution set €2 as

i=l

D(Q)=ma><{\/i(ff(x)—fi(y))2 | x, ye -Q}- (12)

6.3 SIMULATION RESULTS

In our computer simulations, we employed the following
parameter specifications in each algorithm:

Population size: Np,, =100 (i.e., 100 cells),

Crossover: Two-point order crossover
(crossover rate: 0.8),

Mutation: Shift mutation (mutation rate: 0.3),

Number of elite solutions: Ngjjte =3,

Neighborhood structure for the local search: Shift,

The stopping condition for the local search in Section 3.2:
k=10,

The number of neighboring cells:
kneigh =6, 10, 14, 20, 40

Stopping condition: Examination of 50,000 solutions.

We used the above stopping condition in order to compare
different algorithms under the same computation load. In a
single trial of each algorithm, 50,000 solutions were
examined. Since the population size was 100, we used 100
cells. The weight vectors of these cells were specified as
w = (w;, wp) =(1.00, 0.00), (0.99, 0.01), ..., (0.00, 1.00).

We examined effects of several elements of the proposed
algorithms on the quality of solutions in the following:

(1) Effect of the cellular structure

We examined the effect of the introduction of the cellular
structure (i.e., the locally restricted genetic operations).
We compared the obtained set of nondominated solutions
by the MOGA with that by the C-MOGA with

kneighbor =10.

In Table 1, we summarize the average results over 100
trials for each algorithm (i.e. 10 trials for each of 10 test
problems). In this table, “A” is the number of
nondominated solutions obtained by each algorithm, and
“B” is the number of solutions that are not dominated by

other solutions obtained by the other algorithm. The ratio
of these two numbers is shown in the column of B/A.
“Quality” is the set quality measure of Esbensen, “SD of
Q” shows the standard deviation of the value of Quality,
and “D” is the maximum Euclid distance between two
solutions in the obtained solution set by each algorithm.
As for the calculation of “SD of Q”, we average the
standard deviation for each of ten test problems.

From Table 1, we can see that most solutions obtained by
the MOGA are dominated by solutions obtained by the
C-MOGA. Thus we can conclude that the C-MOGA
outperformed the MOGA, and the standard deviation of
Quality value for the C-MOGA is much less than that for
the MOGA. This shows that the introduction of the
cellular structure in the MOGA improves the performance
of the MOGA. Table 2 shows the average results over 100
trials for each specification of Apeighbor in the C-MOGA.
From this table, we can see that the performance of the
C-MOGA is not sensitive to the specification of Aneighbor -
We specified kneighbor 85 Kneighbor =10 in the
following experiments for the cellular genetic algorithms.

(2) Effect of the local search procedure

We examined the effect of the hybridization with the local
search procedure. We applied the MOGA, the MOGLS,
the C-MOGA, and the C-MOGLS to the test problems in
the same manner as in the previous experiments.
Simulation results are shown in Table 3. We can see that
the introduction of the local search procedure improved
the quality measure of Esbensen (“Quality” and “SD of
Q” in Table 3). Nevertheless the best survival rate (i.e.
B/A) was obtained by the C-MOGA. This may be because
the local search procedure mainly worked for expanding
the range of solution sets as suggested by the last column
of Table 3.

Table 1: Comparison of MOGA with C-MOGA.

A B B/A Quality SDofQ D
MOGA 146 42 0296 -10652 660 15124
C-MOGA 159 13.6 0857 -990.0 36.1 13422

A: The number of nondominated solutions of the method.

B: The number of nondominated solutions that are not dominated by the
other solutions obtained by the other method.

Quality: Set quality measure of Esbensen.

SD of Q: Standard deviation of Quality.

D: Euclid distance between two extreme solutions of the method.

Table 2: Effect of the choice of kneighbor in C-MOGA.

6 10 14 20 40
-1004.4 -990.0 -986.8 -985.8 -986.9

Quality

Table 3: Effect of the local search.

A B B/A Quality SDofQ D
MOGA 146 29 0211 -1065.2 66.0 1512.4
MOGLS 140 3.4 0257 -971.5 324 1829.4
C-MOGA 159 84 0.540 -990.0 36.1 13422
C-MOGLS 17.1 7.0 0.427 -964.0 29.4 1854.5

Table 4: Effect of immigration.

A B B/A Quality SDofQ D
C-MOGA 159 4.4 0290 -990.0 36.1 13422
C-MOGLS 17.1 3.7 0226 -964.0 294 1854.5
CI-MOGA 175 106 0.613 -967.5 30.7 1269.2
CI-MOGLS 19.0 6.1 0.328 -962.0 29.9 2094.9

(3) Effect of the immigration procedure.

We examined the performance of C-MOGA, C-MOGLS,
CI-MOGA, and CI-MOGLS using the same test problems.
Simulation results are summarized in Table 4. We can see
that the immigration procedure is effective because the
overall performance of the CI-MOGA and CI-MOGLS
are better than those of the C-MOGA and C-MOGLS,
respectively. The best quality value and the best distance
value were obtained by the CI-MOGLS while the best
survival rate (i.e. B/A) was obtained by the CI-MOGA.

7 CONCLUSION

In this paper, we proposed a cellular multi-objective
genetic local search (C-MOGLS) algorithm, which is an
extension of a multi-objective genetic local search
(MOGLS) algorithm in our former study (Ishibuchi &
Murata 1998). In the proposed C-MOGLS algorithm, each
individual is located in a cell with a different weight
vector. This weight vector governs the selection operation
and the local search procedure at that cell. The selection is
performed in the neighborhood of each cell. We also
extended the proposed C-MOGLS algorithm by
introducing a relocation procedure for assigning an
appropriate local search direction to each solution. The
effectiveness of the proposed algorithms was
demonstrated by computer simulations on two-objective
flowshop scheduling problems. The implementation of the
proposed algorithms for optimization problems with three
or more objectives is left for future work.

References

R.L.Daniels and R.J.Chambers (1990). Multiobjective flow-shop
scheduling. Naval Research Logistics 37: 981-995.

L. A. Dugatkin and M. Mesterton-Gibbons (1996). Cooperation
among unrelated individuals: Reciprocal altruism, by-product
mutualism and group selection in fishes. BioSystems, 37: 19-30.
H.Esbensen (1996). Defining solution set quality. Memorandum
(No.UCB/ERL M96/1, Electric Research Laboratory, College of
Engineering, University of California, Berkeley, USA, January,

1996).

C. M. Fonseca and P. J. Fleming (1995). An overview of
evolutionary algorithms in multiobjective optimization,
Evolutionary Computation 3: 1-16.

D.E.Goldberg (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading, MA: Addison-Wesley.

P. Grim (1996). Spatialization and greater generosity in the
stochastic Prisoner’s Dilemma. BioSystems, 37: 3-17.

J.Horn, N.Nafpliotis and D.E.Goldberg (1994). A niched Pareto
genetic algorithm for multi-objective optimization. Proc. of Ist
IEEE International Conference on Evolutionary Computation:
82-87.

H.Ishibuchi and T.Murata (1998). A multi-objective genetic local
search algorithms and its application to flowshop scheduling. /EEE
Trans. on System, Man, and Cybernetics, Part C, 28 (3): 392-403.

H. Ishibuchi, T. Nakari, and T. Nakashima (2000). Evolution of
Strategies in Spatial IPD Games with Structured Demes, Proc. of
GECCO-2000 (in this proceedings).

S.M.Johnson (1954). Optimal two- and three-stage production
schedules with setup times included. Naval Research Logistics
Quarterly 1 (1): 61-68.

F Kursawe (1991). A variant of evolution strategies for vector
optimization. In H.-P.Schwefel and R.Minner (Eds.), Parallel
Problem Solving from Nature. 193-197. Berlin: Springer-Verlag.

B.Manderick and P.Spiessens (1989). Fine-grained parallel genetic
algorithms. Proc. of 3rd International Conference on Genetic
Algorithms: 428-433.

T.Murata and H.Ishibuchi (1995). MOGA: Multi-objective genetic
algorithms. Proc. of 2nd IEEE International Conference on
Evolutionary Computing: 289-294.

T.Murata, H.Ishibuchi, and M.Gen (1999). Specification of local
search directions in genetic local search algorithms for
multi-objective optimization problems. Proc. of the Genetic and
Evolutionary Computation Conference 1999: 441-448.

M. A. Nowak and M. May (1992). Evolutionary games and spatial
chaos. Nature, 359: 826-859.

J.D.Schaffer (1985). Multi-objective optimization with vector
evaluated genetic algorithms. Proc. of Ist International Conference
on Genetic Algorithms: 93-100.

M. Oliphant (1994). Evolving cooperation in the non-iterated
Prisoner’s Dilemma: The importance of spatial organization. in R.
A. Brooks and P. Maes (eds.), Artificial Life 1V (MIT Press,
Cambridge): 349-352.

D. Whitley (1993). Cellular Genetic Algorithms. Proc. of 5Sth
International Conference on Genetic Algorithms: 658.

D. S. Wilson (1977). Structured demes and the evolution of
group-advantageous traits. The American Naturalist, 111 (977):
157-185.

D. S. Wilson, G. B. Pollock, and L. A. Dugatkin (1992). Can
altruism evolve in purely viscous populations? Evolutionary
Ecology, 6: 331-341.

E. Zitzler and L. Thiele (1999). Multiobjective evolutionary
algorithms: A comparative case study and the strength Pareto
Approach. [EEE Trans. on Evolutionary Computation 3: 257-271.

