Job-Shop Scheduling with Genetic Programming

Kazuo Miyashita
Electrotechnical Laboratory (ETL)
1-1-4, Umezono, Tsukuba,
Ibaraki 305-8568, JAPAN
(e-mail) miyasita@etl.go.jp
(tel & fax) +81-298-61-5963

Abstract

In order to solve a real-time scheduling
problem, a computationally intensive search-
based optimization method is not practical,
but the efficient dispatching rule that is well-
customized for the specific problem at hand
can be an effective problem solving method.
A dispatching rule is scheduling heuristics
that decide the sequence of operations to
be executed at each resource in the schedul-
ing problem. However, developing a cus-
tomized dispatching rule for specific schedul-
ing problems is an arduous task even for do-
main experts or researchers in the scheduling
problem. In this research, the author views
scheduling problems as multi-agent problem
solving and proposes an approach for synthe-
sizing the dispatching rule by means of Ge-
netic Programming (GP). In the preliminary
experiments, the author got the results show-
ing that GP-based multi-agent dispatching
scheduler outperformed the well-known dis-
patching rules.

1 INTRODUCTION

In the research of production scheduling problems,
plenty of search-based methodologies (e.g., constraint-
based scheduling) have been developed and deployed
in the real operational environment as well as in
the research (Zweben & Fox 1994). Those meth-
ods search for an optimal or semi-optimal schedule in
terms of multiple objectives, such as minimum tar-
diness or maximum machine utilization, while sat-
isfying several constraints imposed on jobs and re-
sources in a problem, such as temporal precedences
and limited capacity. Since the scheduling problems
tend to be large and complex, the efficiency of search
process always becomes the biggest burden for those
methods to be applied. The author has been apply-
ing machine learning technologies such as case-based

reasoning and reinforcement learning to elicit search
control knowledge from iterative schedule optimiza-
tion process and shown that quality and efficiency
of scheduling can be largely improved by exploiting
the acquired knowledge (Miyashita & Sycara 1995a;
1995b).

In addition to building an optimal (or semi-optimal)
schedule, there is another important requirement to
the scheduling system: reaction to the unpredictive-
ness (Smith et al. 1990). The scheduling system must
be able to control a complex production floor timely
in response to the unpredictable events in manufactur-
ing process such as machine breakdowns and material
delays. To avoid interrupting continuous production
in the face of those events, production schedule must
be modified or re-built from scratch as quickly as pos-
sible. This is a strong demand especially in the semi-
conductor fabrication process because the interruption
of production always causes a severe loss of product’s
quality and drasticly decreases its yield.

In such a dynamic and uncertain environment, search-
based scheduling techniques are not practical because
of their computational cost, but scheduling with simple
but powerful rules that take advantage of a specific
structure of the target problem are suitable and highly
effective. For example, it is well known that in the one-
machine problem such a simple rule that dispatches
the jobs in the ascendant order of their processing time
makes the optimal schedule in terms of the average
lead time of the jobs.

Unfortunately simple rules such as the one described
above are not always optimal to the more complicated
real-world scheduling problems. Hence, in the realistic
scheduling problems, more elaborated heuristic rules
have been developed by domain experts or researchers
in the field. However, developing the good rules that
are well customized to the target problem is an ardu-
ous task and takes long time and huge efforts.

In this research, the author views the scheduling prob-
lem as a model of multi-agent problem solving and
proposes a method for automated generation of each

agent’s scheduling heuristics. There have been several
research activities on inducing heuristics for schedul-
ing, but those heuristics are the rules to classify a
predefined set of simpler rules to the scheduling sit-
uations in which they are effective (Shaw 1989). The
approach in this research is different from the previous
research in that it synthesizes the scheduling heuristics
from scratch using Genetic Programming (GP). In the
next section, the author describes how GP is applied
to the scheduling problems in this research. Then,
multi-agent scheduling architecture is introduced for
improving effectiveness of heuristic scheduling and sev-
eral multi-agent models are proposed for experiments.
Lastly, the results of those preliminary experiments
are presented and analyzed.

2 APPLYING GP TO
SCHEDULING PROBLEMS

In this research, the type of scheduling problems to
be solved is job-shop scheduling that deals with alloca-
tion of a limited set of resources to a number of opera-
tions associated with a set of jobs (French 1982). The
dominant constraints in job-shop scheduling are tem-
poral operation precedence and resource capacity con-
straints. The operation precedence constraints along
with a job’s release time and due date restrict the set
of acceptable start times for each operation. The ca-
pacity constraints restrict the number of operations
that can use a resource at any particular point in time
and create conflicts among operations that are com-
peting for the use of the same resource at overlapping
time intervals. Therefore, to proceed scheduling, the
resource needs to select an operation for next execu-
tion among competing operations when the resource
becomes available after finishing its current operation.

A rule for selecting the next operation to be processed
at the resource is called as a dispatching rule. Basically
the dispatching rule simply selects the operation with
the highest priority. Hence, it is important to decide
the priority of operations reasonably so that a good
schedule is created. Several sophisticated dispatching
rules have been developed for a variety of scheduling
problems with different problem structures and objec-
tives. But developing a good dispatching rule is very
difficult even for domain experts because of complexity
of scheduling problems. In this research, the heuristics
to calculate the operation’s priority are generated by
Genetic Programming (GP) (Koza 1992).

GP extends the representation scheme of Genetic Al-
gorithm (GA) into general, hierarchical computer pro-
grams of dynamically changing size and shape. In
GP, the process of solving problems is reformulated
as search for a highly fit individual computer program
in the space of the possible computer program. Fit-
ness of the program is determined based on quality
and efficiency of the program in solving a target prob-

lem. In this research, fitness of the generated program
is quality of a resultant schedule which is the biased
combination of weighted tardiness and WIP !.

2.1 Terminals and Functions

In GP, the search space is the space of all possible
computer programs composed of functions and termi-
nals appropriate to the problem domain. Therefore,
when applying GP to the specific target problem, one
needs to define carefully the function set and the ter-
minal set that are useful for solving the problem. Es-
pecially, terminals should represent the idiosyncratic
attributes of the problem to extract useful information
for problem solving. In the complicated problems such
as scheduling, the number of problem attributes —
possible candidates of terminals — is extremely large :
every detail of the schedule (i.e., any temporal relation
among operations and resources) can be a useful ter-
minal in some situation. Hence choosing the sufficient
and smallest attribute set is important for reducing the
search space and improving efficiency of GP. The ter-
minals and functions used in this research are selected
based upon the author’s past work on scheduling and
shown in Table 1.

Table 1: Terminals and Functions

| Name | Description

DueDate Due date of the job

CurrentTime Current time

ProcessTime Processing time of
the operation

Remainingl.eadTime || Remaining processing time
till completion of the job

RemainingProcess Remaining number of
operations in the job

TimeSeverirty Tardiness penalty of the
job

Waiting Time Waiting time of the
operation

+ Addition

- Subtraction

* Multiplication

% Division

ifite If the first argument is less
than or equal to the second
argument, execute the third
argument, else execute the
fourth argument

In GP-based dispatching, whenever a resource be-

'WIP is an abbreviation of Work-In-Process inven-
tory, which means inventory of materials and semi-finished
products.

comes available for next operation, the priority of op-
erations waiting for the resource is re-calculated using
the GP-generated program and the operation with the
highest priority is chosen for next execution on the re-
source. The priority of operation is not fixed over time
but can change dynamically as scheduling proceeds.
Among the terminals in Table 1, CurrentT'ime repre-
sents simulation time of scheduling process and is used
to calculate the change of operation priority as time
elapses (for example, slack time of a job to the due date
changes as time passes away). And, WaitingTime
stands for the elapsed time since the previous opera-
tion in the job is processed. This terminal might be
effectively exploited for coordinating the interactions
among resources that are in charge of adjacent opera-
tions in the job and reducing unnecessary waiting time
intervals among operations.

Once effective heuristics for dispatching are generated
by GP, they can be used for the following purposes in
scheduling:

¢ Real-time scheduler: since heuristics are gen-
erated off-line in advance, they can be applied in
real-time scheduling.

e Initial scheduler: since GP generated heuristics
are expected to be able to produce a schedule of
high quality, it can be used to make an initial
schedule for succeeding iterative optimization and
make the optimization process more efficient.

3 MULTI-AGENT DISPATCHING

In general, a dispatching rule can generate a schedule
efficiently, but in most cases quality of the produced
schedule is poor except in the very simple idealistic
problems such as one-machine scheduling problems.
To remedy the defect and deal with the complicated
job-shop scheduling problems, multi-agent dispatching
architecture is proposed as shown in Fig. 1.

In multi-agent dispatching, each resource or a group of
resources can behave as an individual agent that has
its own dispatching rule. The dispatching rule needs
to be customized for each agent’s specific requirement
to produce an optimal schedule for each agent. Each
dispatching rule makes a schedule for each agent (i.e.,
a resource) and schedules of the whole agents are in-
tegrated into a single schedule. But in the scheduling
problem, combination of locally optimal sub-schedules
does not always constitute a globally optimal sched-
ule. To achieve a common goal (i.e., maximizing a
global profit), agents are sometimes asked to sacrifice
their own local goal and cooperate each other. In other
words, dispatching rules also need to be coordinated
among other agents. To pursue a consistent objec-
tive of scheduling such as minimizing WIP, agents are
required to respond to the diverse situations without
interfering other agents’ behavior. Even in a small

(;neration ,l,

GP

]

Dispatching rule||Dispatching rule| |Dispatching rule]

¥
Schdeule

Evaluation

Figure 1: Multi-agent Dispatching

scheduling problem, the rule to generate such a coor-
dinated action of agents easily gets too complicated to
be hand-coded a priori by human-experts.

The author tries to solve this problem by learning a
dispatching rule of each agent with GP. A group of
dispatching rules that behave in a coordinated manner
are expected to emerge through evolution of multiple
agents. Local interactions of agents’ dispatching rules
create a whole schedule, whose objective value acts as
an external constraint on agents’ action and adjusts
behavior (i.e., dispatching rules) of agents into more
coordinated one. Through the cycle of these bottom-
up and top-down interactions among agents and cre-
ated schedules, more sophisticated dispatching rules
for agents are developed and a better schedule can be
generated.

3.1 Multi-Agent Learning by GP

In the past research on GP, several researchers applied
GP to multi-agent learning problems: robot naviga-
tion problem (Iba 1997; 1998), RoboCup soccer prob-
lem (Luke 1998) and pursuit problem (Haynes & Sen
1997). In their research as well as this research, each
agent uses GP to learn a program to control its be-
havior by exchanging some information among other
agents and giving feedback to its GP process. In these
problems, there are following difficulties to be solved:

¢ Close cooperation among heterogeneous
agents

Agents need to cooperate with other agents to
produce a consistent result as a team. And at the
same time, each agent’s behavior should be cus-
tomized to reflect the individual capability given
as a problem specification and adapt dynamically
to the situation around the agent. In scheduling
problems, agent’s idiosyncrasy comes from the the
following facts: (1) each agent (i.e., a resource)

can process only specific types of operations, and
(2) a load of each agent varies dynamically ac-
cording to the jobs released in the job-shop and
operation rate of other agents.

e Incomplete information sharing

Each agent does not know much about the real-
time situation of other agents due to the limited
communication capacity among agents. Hence,
the agent should reason other agents’ behavior
and adjust its own behavior to make a rational
decision in uncertain situations. In scheduling
problems, each resource does not know in advance
what sort of operations are coming and when they
are coming, since it depends on the behavior of
other resources. Therefore the resource should al-
ways be able to respond to the unpredicted oper-
ations.

Learning the agent’s control program that solves the
above difficulties is itself very hard even in the sim-
ple toy problems in the past research. The scheduling
problem differs from other problems in that it should
realize more complete coordination among agents in
order to obtain a rational result (i.e., a good sched-
ule) since disharmony of any single agent’s behavior
(e.g., dispatching the last-in operation first while the
other agents dispatch the most urgent operation first)
drasticly damages the quality of a resultant schedule.

3.2 Models of Multi-Agent Structure

In this research, each individual tree evolved by GP
acts as a program to give a priority to operations wait-
ing for a resource (i.e., an agent). Because of tight
interactions among agents in multi-agent dispatching,
an action of any agent can make significant effects on a
resultant schedule. Therefore, it is difficult to ascribe
the achieved quality of the schedule to the behaviors
of each agent. In this research, to avoid the prob-
lem of credit assignment, quality of an entire sched-
ule, which is composed of each agent’s sub-schedule,
is fed back to each agent to evaluate the performance
of its GP-generated dispatching rule. Evaluation of
each agent’s behavior with a global result promotes
cooperation among agents.

In order to investigate effectiveness of multi-agent dis-
patching in job-shop scheduling problems, the author
sets up 3 models of multi-agent structure.

e Homogeneous agent model (left in Fig. 2)

Every resource utilizes the same heuristics evolved
by a single GP process to calculate the prior-
ity of operations. The author assumes that in
this model, coordination among agents (such as
consistently giving a higher priority to an opera-
tion with earlier due date) can be easily realized
since all agents take actions based on the identi-
cal heuristics. On the other hand, since every re-

source shares the same dispatching rule, the rule
needs to become very complicated to deal with
the idiosyncrasies among resources and produce a
globally good schedule. Evolving such a rule with
GP may take long time.

¢ Distinct agent model (center in Fig. 2)

Each resource acts as a unique agent and learns
distinct heuristics to evaluate the priority of oper-
ations on its queue. Each agent has its own pop-
ulation of individuals to evolve with GP. There
is no immigration of individuals and crossover of
individuals among populations in different agents.
In the model, each agent can improve quality of its
sub-schedules by customizing its behavior to its
situated environment and optimize its through-
put. But coordination among resources becomes
difficult in this model.
e Mixed agent model (right in Fig. 2)

In the scheduling problem, it is well known that
the quality of overall schedule can be largely im-
proved by optimizing the sub-schedules of bottle-
neck resources (Adams, Balas, & Zawack 1988).
A bottleneck resource is a resource that has high
demands from many operations. Hence, exploit-
ing the bottleneck resource effectively is critical
for producing a good schedule. In this model,
2 types of agents — bottleneck agent and non-
bottleneck agent — learn independent heuristics
for operation priority evaluation. Each agent has
its own population of individuals to evolve with
GP. There is no immigration of individuals and
crossover of individuals among populations in dif-
ferent agents. This model is intermediate of the
above two models and is expected to be effective in
avoiding over-fitting and over-generalization prob-
lems in the above models and also successful in
improving efficiency of evolution process by GP.

In realistic scheduling environment, the bottleneck re-
sources are not fixed but may change dynamically
while scheduling proceeds. Therefore, in the mixed
agent model it is not practically valid idea that re-
sources are classified into bottleneck or non-bottleneck
in advance and cannot change their class during
scheduling. But, the author’s intention in this pa-
per is to investigate empirically whether bottleneck
can be dominant information to model the structure of
scheduling agents. The dynamic structuring of agents
is future research concern.

4 SCHEDULING PROBLEMS

The author evaluated the approach on a benchmark
suite of job shop scheduling problems where parame-
ters, such as the number of bottlenecks and the range
of due dates and operation durations, were varied to
cover a broad range of job shop scheduling problem in-
stances. In particular, the benchmark problems have

agentl | agent2 |

non-bot t | eneck

| agent3 |

bottl eneck

Figure 2: Three Types of Multi-agent Model

R00 00 00 1400 00

resourcel

resourcel

resourced

resourced |

resourceb

resourcel

resourcel

resource?

resourced

resourced

Figure 4: Two Bottlenecks Problem

the following structure: each problem has 10 jobs of 5
operations each. Each job has a linear process routing
specifying a sequence where each job must visit bot-
tleneck resources after a fixed number of operations,
so as to increase resource contention and make the
problem tighter. 2 parameters were used to cover dif-
ferent scheduling conditions: a range parameter con-
trolled the distribution of job due dates and release
dates, and a bottleneck parameter controlled the num-
ber of bottleneck resources. To ensure that knowledge
of the problem had not been unintentionally hard-
wired into the solution strategies, the author used a
problem generator function that embodied the over-
all problem structure described above to generate job
shop scheduling instances where the problem param-
eters were varied in controlled ways. In particular,
6 classes of 10 problems each — in all, 60 problems
— were randomly generated by considering 3 different
values of the range parameter (static, moderate, dy-
namic), and 2 values of the bottleneck configuration

(one and two bottleneck problems, see Figs. 3,4). The
slack was adjusted as a function of the range and bot-
tleneck parameters to keep demand for bottleneck re-
sources close to a hundred percent over the major part
of each problem. Durations for operations were also
randomly generated. And the objective of scheduling
in the experiments is minimizing the biased combina-
tion of weighted tardiness and WIP.

To evaluate the performance of GP-evolved heuristics,
a 2-fold cross-validation method was used. Each prob-
lem set of one and two bottleneck problems was di-
vided into 2 groups with the same size (i.e., each group
has 15 problems). All problems in one group were used
as a training set to evolve scheduling heuristics by GP.
And the best individual of evolved heuristics were ap-
plied to the problems in the other group for validation.
This process is repeated by swapping a training set and
a validation set, and the average results are reported.

Table 2: Results by Typical Dispatching Rules
‘ [1-BN problem | 2-BN problem |

EDD 8838.7 8569.3
SPT 8446.7 8677.3
MORTON 8372.3 8648.7

And also to compare the multi-agent dispatching re-
sults of various models with the typical dispatching
rules, 3 types of the well-known dispatching rules
(i.e., EDD (Earliest Due Date first), SPT (Shortest
Processing Time first) and MORTON?(Morton & Pen-
tico 1993)) were applied to the problems. These rules
are widely used in research and practice.

Table 2 shows the performance of 3 dispatching rules,
which is the average result of 30 instances on one bot-
tleneck problems and two bottlenecks problems. In
the table, EDD is the worst dispatching rule for one

*MORTON dispatching rule is mixture of EDD and
SPT: it dispatches the operation which belongs to the job
with close due date and has short processing time on the
resource.

bottleneck problems, while it is the best rule for two
bottlenecks problems. From the result, it turns out
that performance of the dispatching rule is heavily de-
pendent on the structure of scheduling problems. In
the realistic scheduling situations, the problem struc-
ture is not stable but flexible due to variance of the
environment such as fluctuation of demands and un-
predictive machine breakdown. Hence, it is desirable
that one can always adapt scheduling heuristics to the
current problem to produce a good schedule consis-
tently.

5 EXPERIMENTAL RESULTS

The GP system used in the experiment was developed
based on SGPC (Simple Genetic Programming in C)
version 1.1 (Tackett & Carmi 1994). In the exper-
iments, each agent breeds 1024 individuals and evo-
lution process was continued until 200th generations.
The details of SGPC parameters used in the experi-
ments are shown in Table 3.

To examine relation between problem difficulty and
types of multi-agent model in terms of problem solv-
ing performance (i.e., quality of resultant schedules
in this experiment), the experiments were done using
one-bottleneck problems and two-bottleneck problems
separately. In general, problems with more bottleneck
resources are more difficult to schedule than ones with
less bottleneck resources because more bottleneck re-
sources increase contention among operations and re-
quire more coordination among resources and opera-
tions for producing a good schedule.

5.1 One Bottleneck Problems

8100

Distinct =====
Mixed =

i
H

8000 # -
d

7900 M4

7800

cost

7700

7600

7500

7400 L L L

generations

Figure 5: Result of Best Individual (1-BN problems)

These problems are designed so that the 4th resource
becomes a bottleneck resource as shown in Fig. 3.

8300

Distinct =====
Mixed =

8200 B
H
8100

8000

cost

7900

7800

7700

7600 L L L
o 50 100 150 200
generations

Figure 6: Validation Result (1-BN problems)

Fig. 5 is the graph showing the results of the best in-
dividual in the training set for 3 types of the agent
model. The graph shows that in earlier generations
the results of the homogeneous agent model is as good
as the mixed agent model, but as the generation pro-
ceeds the results of the distinct and mixed agent mod-
els outperform the homogeneous agent model.

But as results of 2-fold cross validation Fig. 6 shows
that the results of the distinct agent model are worse
than the results of the homogeneous and mixed agent
models in later generations. This explains that in the
simple problems of one bottleneck resource, the flexi-
bility of the distinct agent model causes over-fitting to
the training data. Among 3 agent models, the mixed
agent model succeeded to produce the best results
both in training and validation sets. Around 200th
generations the result of validation by the mixed agent
model was better than the best dispatching rule in Ta-
ble 2 by about 670.

5.2 Two Bottlenecks Problems

These problems are designed so that both 3rd and 5th
resources become bottleneck resources in the schedule
as shown in Fig. 4.

Fig. 7 is the graph showing the results of the best in-
dividual in the training set for 3 types of the agent
model. The graph shows that in the two bottlenecks
problems, the homogeneous agent model was not able
to produce the effective scheduling heuristics because
in these problems a scheduler needs to consider the
complicated interactions among bottleneck resources
to make a good schedule. And in the experiments, the
mixed agent model could learn good heuristics faster
than the distinct agent model. This is because more
information of the problem structure (i.e., which re-

Table 3: GP Parameters

| | Homogeneous model | Distinct model |

Mixed model |

No. of agents 1 5 2

No. of sub_populations 6120 1024 3060
No. of populations 6120 6120 6120
No. of Terminals 7 7 7

No. of Functions 5 5)
max_depth_for_new_trees 4 4 4
max_depth_after_crossover 10 10 10
max_mutant_depth 2 2 2
grow_method RAMPED RAMPED RAMPED
selection_method OVERSELECT OVERSELECT | OVERSELECT
crossover_fuct_pt_fraction 0.15 0.15 0.15
crossover_any_pt_fraction 0.65 0.65 0.65
fitness_prop_repro_fraction 0.1 0.1 0.1

8150

Distinct
Mixed =——

8100 —
8050

8000

cost

7950

7900

7850

7800
o

. .
50 100 150 200
generations

Figure 7: Result of Best Individual (2-BN problems)

sources are bottleneck and which resources are not) is
embedded in the mixed agent model than in the dis-
tinct agent model.

The results of 2-fold cross validation Fig. 8 shows in-
adequacy of the homogeneous agent model for the two
bottlenecks problems. On the other hand, in the mixed
and distinct agent models the scheduling results were
improved along generations. Around 200th genera-
tions the results of the mixed and distinct agent mod-
els were better than the typical dispatching rules in
Table 2 by about 460.

6 CONCLUSION

This paper discussed the evolutionary synthesis of job-
shop scheduling heuristics with Genetic Programming.
In the paper the author empirically showed that the

8350

Distinct =====
Mixed =——

8300 -
H

8250

8200

cost

8150 |-

8100

8050

8000 . .
o 50 100 150 200
generations

Figure 8: Result of Validation (2-BN problems)

effective scheduling heuristics can be evolved by GP.
The author proposed the multi-agent dispatching sys-
tem where each agent dispatches the operations on the
resources under its control. The rules for dispatch-
ing used by the agents are evolved by GP and a good
schedule emerges as a result of their cooperation. 3
types of multi-agent models were proposed to exam-
ine the relation between problem difficulty and multi-
agent structure in terms of problem solving capability.
In th preliminary experiments, the scheduling heuris-
tics evolved by GP in the mixed agent model outper-
formed the other agent models and the typical well-
known dispatching rules. This shows that for better
performance the multi-agent scheduling model should
reflect problem specific information in its structure.
With the appropriate model of multi-agent structure,
GP can evolve good heuristics that produce a good
result in difficult scheduling problems.

In general, finding an appropriate structure of multi-
agent model for solving a given problem at hand is
difficult without deep knowledge of the problem. In
the scheduling problem, where each resource acts as
an agent, the experiment results in this paper have
shown that bottleneckness is a good metric to cate-
gorize resources into different groups of agents. How-
ever it is preferable to be able to make a structure of
agent groups dynamically without prior knowledge of
the problem. There are some research activities tack-
ling to this problem (Hara & Nagao 1999). In the
future research, the author is going to study such au-
tomatic agent group formation in the scheduling prob-
lem and compare the results with the findings in this
research.

REFERENCES

Adams, J.; Balas, E.; and Zawack, D. 1988. The
shifting bottleneck procedure for job shop scheduling.
Management Science 34(3):391-401.

French, S. 1982. Sequencing and Scheduling: An In-
troduction to the Mathematics of the Job-Shop. Lon-
don: Ellis Horwood.

Hara, A., and Nagao, T. 1999. Emergence of coop-
erative behavior using ADG; Automatically Defined
Groups. In Proceedings of the Genetic and Evolution-
ary Computation Conference, 1039-1046.

Haynes, T., and Sen, S. 1997. Crossover operators
for evolving a team. In Genetic Programming 1997,
162-167.

Iba, H. 1997. Multiple-agent learning for a robot
navigation task by genetic programming. In Genetic
Programming 1997, 195-200.

Iba, H. 1998. Multi-agent reinforcement learning with
genetic programming. In Genetic Programming 1998,
167-172.

Koza, J. R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural Se-
lection. Cambridge, MA: MIT Press.

Luke, S. 1998. Genetic programming produced com-
petitive soccer softbot teams for robocup97. In Ge-
netic Programming 1998, 214-222.

Miyashita, K., and Sycara, K. 1995a. CABINS: A
framework of knowledge acquisition and iterative re-
vision for schedule improvement and reactive repair.
Artificial Intelligence 76(1-2):377-426.

Miyashita, K., and Sycara, K. 1995b. Improving
system performance in case-based iterative optimiza-
tion through knowledge filtering. In Proceedings of
the 14th International Joint Conference on Artificial
Intelligence, 371-376.

Morton, T. E., and Pentico, D. W. 1993. Heuristic
Scheduling Systems: With Application to Production
Systems and Product Management. New York, NY:
John Wiley and Sons Inc.

Shaw, M. J. 1989. A pattern-directed approach to
flexible manufacturing: A framework for intelligent

scheduling, learning and control. International Jour-
nal of Flexible Manufacturing System 2:121-144.
Smith, S. F.; Ow, P. S.; Muscettola, N.; Potvin, J.-Y ;
and Matthys, D. C. 1990. An integrated framework
for generating and revising factory schedules. Journal
of the Operational Research Society.

Tackett, W. A., and Carmi, A. 1994. The donut
problem: Scalability and generalization in genetic
programming. In Kenneth E. Kinnear, J., ed., Ad-
vances in Genetic Programming. Cambridge, MA:
MIT Press. 143-176.

Zweben, M., and Fox, M., eds. 1994. Intelligent
Scheduling. San Mateo, CA: Morgan Kaufmann Pub-
lishers, Inc.

