
 A Comparison of Operators for Solving Time Dependent Traveling
Salesman Problems Using Genetic Algorithms

Leonard J. Testa

Dept. of Comp. Science
North Carolina A&T State

University
Greensboro, NC 27411

Albert C. Esterline

Dept. of Comp. Science
North Carolina A&T State

University
Greensboro, NC 27411

Gerry V. Dozier

Dept. of Comp. Science
and Software Engineering

Auburn University
Auburn, AL 36849

Abdollah Homaifar

Electrical Engineering
Dept.

North Carolina A&T State
University

Greensboro, NC 27411

Abstract

This paper describes which genetic operators can
best solve time dependent traveling salesman
problems (TDTSPs) containing up to 50 cities.
We first provide an overview of the TDTSP and
illustrate its relation to other scheduling and
routing problems. Next we describe a genetic
algorithm that implements eight common genetic
operators, plus Julstrom’s adaptive operator
probability and Goldberg’s population re-
initialization mechanisms. We present the
results of 280 experiments and show that one
combination of these operators and mechanisms
outperforms a well-known dynamic
programming heuristic. An analysis of the test
results indicates that hybrid solutions
incorporating solution techniques for both
scheduling and the traveling salesman problems
may generate better results than either technique
alone.

1 INTRODUCTION

The time dependent traveling salesman problem (TDTSP)
is a variation of the classic traveling salesman problem
(TSP) in which the amount of time it takes the salesman
to travel from one city to another fluctuates depending on
the time of day the salesman travels. By allowing the
travel time between cities to vary, the TDTSP can better
model real world conditions such as heavy traffic, road
repair, and automobile accidents than can the traditional
TSP[1]. Because it incorporates time dependent costs, the
TDTSP can also be used to model several well known,
fundamental problems in job-shop scheduling and vehicle
routing [2][3]. Previous research [4] has shown, however,
that genetic operators that work well on the traditional
TSP do not work well on tasks such as schedule

optimization. Since the TDTSP displays characteristics of
both the TSP and scheduling problems, it is unclear which
operators would be most effective in generating good
solutions to this class of problem.

This paper describes a genetic algorithm (GA) for solving
the TDTSP which implements eight well-known genetic
operators, plus adaptive operator probabilities and
population re-initialization mechanisms, to determine
which combination of operators and mechanisms
produces the best solutions to a randomly generated
TDTSP containing 50 cities. The rest of this paper is as
follows. Section 2 provides an overview of the TDTSP,
including its relation to job-shop and vehicle routing
problems as well as previous research. Section 3 defines
the GA in detail, including the operators and mechanisms
used. In Section 4 we present the test data and describe
how the operators and mechanisms were evaluated.
Section 5 discusses the test results and compares the best
solutions produced by the GA to that produced by a well-
known dynamic programming heuristic. Section 6
presents our conclusions.

2 AN OVERVIEW OF THE TDTSP

The traditional TSP begins with a set of n cities numbered
{0, 1, . . . , n-1 } and an n × n cost matrix D in which the
value Dij is the distance from city i to city j [5]. The goal
of the TSP is to find the minimal cost tour of the cities in
which the salesman visits each city exactly once and
returns to the starting city at the end of the tour [6][7].
The TDTSP is a variant of the TSP in which the salesman
must still visit each city, but the cost of traveling from
city i to city j depends on both the distance matrix D and
the time of day the travel takes place [1]. The cost
associated with the time of day can be computed by first
dividing the day into discrete timeslices of fixed duration,
then constructing a cost matrix W, where Wijt is the delay
experienced when traveling from city i to city j at time t.
Also, when solving the TDTSP, some node (usually node

0) is typically designated the “depot” node, where the
salesman begins and ends his tour.

Many real-world instances of the TDTSP are concerned
with scheduling time-dependent tasks. Picard and
Queryanne [2] described the process of scheduling
manufacturing jobs on a machine with time-dependent
setup costs. Fox [8] and Fox, Gavish and Graves [9]
discussed several single machine scheduling problems as
instances of the TDTSP. Another special instance of the
TDTSP, known as the deliveryman problem (DMP), was
used by Simchi-Levi and Berman [3] to route guided
vehicles through a manufacturing system. Other
applications of the TDTSP include routing data through a
network [10], creating timetables for university exams
[11], and scheduling vehicles and crews [12]. Testa,
Esterline and Dozier [13] used the TDTSP to model the
riding of amusement park attractions where the time spent
waiting in line at each attraction varied with the time of
day.

As one would expect because the TSP is NP-hard, the
TDTSP is also NP-hard [5]. Research indicates, however,
that the TDTSP is a more difficult problem. Exact
solutions to TSPs involving several thousand cities have
been reported [14], but exact solutions to TDTSPs have
only been published for problems with a few dozen cities
[15]. Typically, these exact solutions also involve
restrictions on the kinds of problems solved, such as
requiring the travel between cities to be completed in a
single time period [5][15]. Several explanations for the
relative difficulty of the TDTSP have been put forward,
most completely by Malandraki and Daskin [1]. In
particular, they note that well-known TSP heuristics, such
as the Lin-Kernighan k-opt exchange, are not easily
adapted to the TDTSP. When links between nodes are
exchanged in the TDTSP, the travel times of many other
nodes later in the tour may be affected, and recomputing
these travel times can be prohibitively expensive.
Malandraki and Daskin also show that certain properties
of the optimal solutions to Euclidean TSPs do not extend
to the TDTSP. Specifically, they show that the convex
hull property present in optimal Euclidean TSP solutions
does not hold for the TDTSP. Thus, different heuristics
are needed to generate solutions to general TDTSPs with
more than a few dozen cities [1].

3 A GENETIC ALGORITHM FOR THE
TDTSP

In this section, we describe the construction of the GA in
detail. Section 3.1 is an overview of the important
features of the algorithm. Section 3.2 describes the
various operators that were tested, and Section 3.3
describes the use of adaptive operator probabilities and
population reinitialization.

3.1 OVERVIEW

Previous research [7] has shown that GAs alone do not
perform as well as those incorporating some sort of local
search heuristic. Thus, our GA started by creating an
initial solution using a dynamic programming (DP)
heuristic first described by Malandraki and Dial in [16].
This effective heuristic avoids the exponential CPU and
memory requirements of an exact DP algorithm by
retaining in memory only a user-defined number of partial
solutions. Retaining more partial solutions generally
results in better overall solutions, and storage of tens of
thousands of partial solutions to generate good results is
not uncommon. In our GA, the DP heuristic was allowed
to retain 10 partial solutions in memory at each stage.
The result was about 17% greater than the best known
path for our test data. This initial solution was added to
our GA population, where the chromosomes are
permutations of the n-1 integers representing the path of
cities to be visited. The remaining members of the
population were initialized with random paths.

Binary tournament selection [17] was used to select
members of the population for reproduction. Either one
or two parents were chosen, depending on the operator
selected for that generation. Operator selection was
performed randomly where the likelihood of an operator
being selected was determined by its associated
probability.

During each generation, the decision of whether to retain
a new individual o in the population is made using a
(P+1) reproduction approach [18]. Specifically, let q be
the member of the population with the highest cost tour.
The costs of o and q are compared, and if o has a lower
cost than q, then q is deleted from the population and o
retained.

3.2 OPERATORS

Many operators have been proposed for the TSP and
scheduling problems [19]. Several studies [20][4] have
indicated that operators that perform well on one of these
problems tend not to perform well on the other. The
operators chosen for our GA, therefore, have shown to be
effective on either the TSP or vehicle routing problems
similar to the TDTSP. We also implemented a variety of
mutation and local search operators. A brief description
of each of the operators used follows.

� Edge Recombination (ER): First proposed in
[21] for the TSP, edge recombination has also
been shown to be effective on certain kinds of
scheduling problems [19]. Edge recombination
produces a single offspring from two parent
paths. The motivating belief behind edge
recombination is that the key feature of the TSP
is the connections (edges) between cities rather
than the positions of the cities in the path, since

it is the connections between cities that represent
the cost of travel [22].

Edge recombination works by first building a list
of edges present in each parent, then transferring
edges found in both parents to the offspring. For
each city k, the edge list contains the list of cities
connected to city k in either of the parents.

After the edge list has been constructed, the
offspring is constructed by first examining the
initial city in each parent path. The initial city
that has the smallest number of edges is chosen
as the initial city in the offspring. Next, the
edge lists of the cities connected to the initial city
are examined, and the city with the lowest
number of edges is selected as the second city.
Subsequent cities are chosen the same way until
all cities are present in the path. If at any time
the number of edges in two or more cities is
equal, one of those cities is chosen at random as
the next city to visit. Similarly, if the current
city contains no edges, the next city to visit is
chosen at random from the remaining unvisited
cities.

Our GA implements a modified version of edge
recombination in which a greedy heuristic, rather
than random selection, is used to resolve ties
when recombination becomes blocked. The
greedy heuristic estimates the cost of visiting
each of the remaining unvisited cities from the
current city. The remaining city with the lowest
cost becomes the next city to be visited, and edge
recombination resumes.

� Merge Crossover (MX): Originally proposed in
[23] for vehicle routing problems, merge
crossover seeks to preserve in one offspring any
global precedence of cities found in the
offspring’s two parents. That is, for any two
cities i and j, if city i appears before city j in both
parents, then city i must appear before city j in
the offspring. Some implementations [24]
receive global precedence information from an
external source (e.g., a global precedence table).
Our implementation, however, seeks to discover
global precedents in the parents instead of using
an external table. For example, given two parents
p1 = (0 2 1 6 7 3 5 4 8 9) and p2 = (0 2 1 3 6 5 7
4 8 9), the merge crossover operator first
constructs an after set for each city in p1. For
each city i in p1, the after set of city i contains all
the cities that appear after i in p1. The after set
for city 2 in p1 contains the elements { 1, 6, 7, 3,
5, 4, 8, 9 }, the after set for city 1 contains the
elements { 6, 7, 3, 5, 4, 8, 9 }, and so on.

When the construction of the after set for each
city in p1 is complete, the after set for each city
in p2 is created. For each city, the intersection of
both after sets is then computed, resulting in a
global after set for that city. The global after set
for each city is shown below (recall that city 0,
the depot node, is always the first node in any
path. City 0 is omitted for clarity):

Table 1: Global After Set

CITY AFTER SET

1 { 6 7 3 5 4 8 9 }

2 { 1 6 7 3 5 4 8 9 }

3 { 5 4 8 9 }

4 { 8 9 }

5 { 4 8 9 }

6 { 7 5 4 8 9 }

7 { 4 8 9 }

8 { 9 }

9 ∅

Once the global after set has been constructed, a
weight is computed for each city. A city’s
weight is calculated by counting the number of
times the city appears in the after set of any other
city. For example, city 5 appears in the after set
of four cities (1, 2, 3, and 6), so the weight of
city 5 is 4. The weights of all the cities in our
example are shown in the following table:

Table 2: City Weights

CITY 1 2 3 4 5 6 7 8 9

WEIGHT 1 0 2 6 4 2 3 7 8

The cities are placed in the offspring in
ascending order according to their weight with
ties broken randomly. Thus, our offspring o
contains the path (0 2 1 3 6 7 5 4 8 9).

� Cycle Crossover (CX): Described in [25] for the
TSP, cycle crossover produces a single offspring
from two parent paths. Cycle crossover is
designed to preserve in the offspring the absolute
position of each city in the parents. Thus, any
city k in position m in the offspring must also
appear in position m in one of the parents.

� Scramble Sublist Mutation (SSM): First
published in [26] and applied to the TSP,
scramble sublist mutation produces one offspring
from one parent by randomly selecting a sublist
of cities from the parent and randomly
repositioning the cities within the sublist of the
offspring. For example, given a parent p = (0 2
1 | 6 7 3 5 | 4 8 9), and sublist (6 7 3 5)
delimited by the symbol |, we rearrange the cities
in the sublist at random, then place the scrambled
sublist in the same position in the offspring o = (
0 2 1 | 3 6 5 7 | 4 8 9). For our implementation
the length of the sublist was selected randomly
from the range [2, 5].

� Uniform Order-based Mutation (UOM):
Many GAs for solving the TSP and scheduling
problems implement some version of this basic
mutation operator [26]. Uniform order-based
mutation is a unary operator that works by
exchanging in the offspring the positions of two
randomly selected cities in the parent. For
example, given parent p = (0 2 1 6 7 3 5 4 8 9),
we randomly choose cities 6 and 4 to be
swapped. This produces the offspring o = (0 2 1
4 7 3 5 6 8 9). Since all valid tours must start at
city 0 (the depot), city 0 cannot participate in any
of the genetic operators.

� Non-Uniform Order-based Mutation (NOM):
Similar to uniform order-based mutation, the
non-uniform variant also produces one offspring
from one parent. In the non-uniform version,
however, the average difference between the
positions of the two cities to be swapped
decreases as the number of generations
processed increases. The implementation in our
GA began by selecting one city at random. The
position of the second city to be swapped was
calculated using the following function adapted
from [27]:

 Distance from city 1 = b

T

t
ry)1(−⋅

where y = n – 1, r is a random number in [0,1], T
is the maximal generation number, t is the
current generation number, and b is a user-
defined parameter used to control the degree of
nonuniformity. We set the value of b to 1.4 for
our implementation.

� Uniform Local Search (ULS): The idea for the
uniform local search operator is based on the
scramble sublist mutation operator. While
scramble sublist randomizes the positions of
cities within a sublist of the offspring’s path, the
uniform local search operator computes the cost
of every permutation of the cities in a parent’s

sublist, then assigns to the offspring the one
sublist permutation which minimizes the overall
cost of the tour. For example, given a parent

p = (0 2 1 | 6 7 3 5 | 4 8 9), and sublist (6 7 3 5)
of length 4, the uniform local search operator
computes the cost of the entire path using each of
the 4! permutations of the cities in the sublist. In
our example, if the lowest cost overall path is
obtained with the permutation (3 5 7 6), then the
offspring o would be set to (0 2 1 3 5 7 6 4 8 9).

While the uniform local search operator is
guaranteed to find the lowest cost permutation,
the processing time of the operator grows
factorially as the length of the sublist grows
linearly. Our GA, therefore, used a sublist of
length 6, and thus evaluated a total of 720
permutations each time the uniform local search
operator was called.

� Non-Uniform Local Search (NLS): Unlike
uniform local search, the cities selected by the
non-uniform local search operator are chosen
randomly from the entire path. For example,
given a parent p = (0 2 1 6 7 3 5 4 8 9), we
select four cities at random, say (2 6 5 8), and
mark their positions in the parent with the
symbol _ to get p = (0 _ 1 _ 7 3 _ 4 _ 9). Each
time a permutation of (2 6 5 8) is computed, we
replace one _ symbol in p with one element of
the permutation in a left-to-right manner. Thus,
if we create the permutation (5 8 6 2), then o
would contain the path (0 5 1 8 7 3 6 4 2 9). In
this manner, each permutation of the selected
cities is created and the corresponding path cost
is calculated. The offspring is assigned the path
corresponding to the permutation of the selected
cities that minimizes the overall cost of the tour.
As with the uniform local search operator, non-
uniform local search works with just 6 cities to
keep the CPU time required by this operator at a
reasonable level.

3.3 MECHANISMS USED

In addition to the operators described above, our GA
implemented two special-purpose mechanisms to test
their effectiveness on the TDTSP: adaptive operator
probabilities and population reinitialization. Rather
than assigning static probabilities to each genetic
operator before runtime, using adaptive operator
probabilities allows the GA to adjust the relative
probabilities of each operator according to how much
relative improvement that operator has contributed to
the current population. Several researchers have
proposed adaptive operator mechanisms for steady
state or generational GAs. Our GA implements the
ADOPP (adaptive operator probabilities) mechanism

found in [28]. A brief discussion of how ADOPP
adjusts each operator’s probabilities follows.

For each offspring created that has a cost lower than
the median cost of the current population, ADOPP
assigns credit to each operator that helped build that
offspring, where the amount of credit assigned is a
user-defined constant. The operator that directly
creates the improved offspring, known as the
immediate operator, gets the maximum amount of
credit, while the operators that generated the
offspring’s parents get some reduced amount of
credit. Credit can be assigned to several generations
of ancestors, where the number of ancestor
generations and rate of credit decay are user-defined.

Since ADOPP must assign credit to each operator
that contributes to a fit offspring, ADOPP keeps track
of an operator tree for each member of the current
population. This operator tree records the operators
that generated the individual and its ancestors for a
fixed number of prior generations. When a binary
operator is applied, for example, ADOPP copies the
operator trees of each parent into the left and right
subtrees of the offspring’s operator tree, discarding
each parent’s leaf nodes. The current operator
becomes the new root. Our GA recorded a maximum
of four generations of ancestor operators for each
offspring.

In addition to operator trees, ADOPP also maintains a
queue that keeps track of each operator’s
contributions to the population for some user-defined
number of most recent previous generations. Let
QLEN be the length of this queue. For each operator
op in the GA, the queue contains Cr(op), the total
amount of credit assigned to op over the last QLEN
generations and N (op), the number of individuals in
the last QLEN generations whose immediate operator
was op. The contributions of the oldest operator on
the queue are removed to make room when a new
operator’s contributions are added to the queue. The
value of QLEN was set to 100 for our GA.

After a new individual is added to the population,
ADOPP recomputes the probability of selection of
each of the m operators in the next generation
according to the following formula:

 Probability of operator op = ∑
=

m

i iN

iCr

opN

opCr

1][

][
/

][

][

To ensure that all operators continued to participate
in the GA, the minimum probability of any operator
was set to 5%.

In addition to adaptive operator probabilities, our GA
also implemented the “population reinitialization”

mechanism described in [29]. Population
reinitialization is a method of introducing diversity
into a population that may have converged
prematurely. Reinitialization works by creating a
new population where only a few of the best
individuals from the old population are copied to the
new, and the rest of the new population is created at
random. This mechanism has been shown to give
good results on problems that use small population
sizes [29]. Our implementation of reinitialization
copies only the individual with the lowest overall
cost from the old population into the new.
Reinitialization takes place once 2,500 generations
have passed without a new member having been
added to the population.

4 TEST DATA AND METHODOLOGY

This section is divided into two parts. Section 4.1
describes how the random test data was generated,
and section 4.2 describes the testing methodology.

4.1 TEST DATA

The test data for our 50 city TDTSP was generated
randomly and designed to reflect a variety of urban,
suburban, and rural driving conditions. The test data
consisted of three distinct parts: driving distances
between cities, time-dependent traveling costs
between cities, and a “service time” at each city.
Copies of the test data are available by emailing the
corresponding author.

The driving distance between each pair of cities was
computed by first placing each city at a unique,
random position on an imaginary 50 by 50 plane,
then computing the Manhattan distance between each
of the cities. Thus, the maximum driving distance
between any two cities was 100, and the minimum
driving distance was 1. Similarly, each city was
assigned a random service time in the range [1,20],
with the service time at the depot node set to 0.

The time-dependent traveling costs were also
generated randomly within the range [1,50].
Approximately 55% of the traveling costs between
cities were designed to model what we believe are
typical urban driving conditions. Under these
conditions, we assumed that travel delays typically
peak three times per day. The first peak occurs
during the morning “rush hour”, when most
commuters are driving to work. The second, smaller
peak occurs around noon, when many people go out
for lunch. The third peak starts during late afternoon
and continues into early evening as commuters drive
home. Our urban traveling costs were generated to
reflect these peaks.

Approximately 35% of the traveling costs between
cities were designed to model typical suburban
driving conditions. These costs, while more volatile
than rural travel costs, do not experience the
fluctuations that their urban counterparts do. We
therefore restricted the maximum change between
time periods in suburban travel costs to the range [-
10,10]. The remaining 10% of the travel costs
between cities were considered rural, and held
constant throughout the day.

4.2 TESTING METHODOLOGY

We chose to test the eight operators in groups of four.
There are 70 unique combinations of four operators
chosen from a field of 8. The initial probability of
each operator in the 70 combinations was chosen
randomly in the range [5,95] so that the sum of all
four operators equaled 100%. As demonstrated by
the results below, the variation in probabilities of
each of the operators had little effect on the success
of the tests. Further, each combination was tested
with and without adaptive operator probabilities, and
with and without population reinitialization, for a
total of 280 test combinations. Each test combination
was run against the test data 30 times on a 400 MHz.
dual Celeron PC with 192 MB of memory and
Windows NT Workstation 4.

To compare the quality of solutions generated, we
compared each test combination against the solution
generated by the Malandraki/Dial dynamic
programming heuristic described in section 3.1. The
heuristic was allowed to retain 7,500 partial paths and
took an average of 65 seconds over 30 runs to
generate a solution to the 50-city test problem. The
maximum CPU time of the GA was then set to 65
seconds, after which the GA returned the member of
the population with the lowest cost. The population
size for each test was set to 10.

5 TEST RESULTS AND DISCUSSION

Each test configuration was ranked according to its
average best path cost over the 30 trials. The
following table shows the three best, three median
and three worst test configurations. The mnemonic
abbreviations for each operator are listed in section
3.1:

Table 3: Test Results

GA

Rank

Operators Used

(Initial
Probability/Final

Probability)

Used
Adaptive

Prob.?

Used
Population

Reinit.?

Avg.

Cost of
Best
Path

Std

Dev.

1

UOM(48/48),
ER(8/8),
NOM(36/36),
CX(8/8)

No Yes 1833.1 36.9

DYNAMIC
PROGRAMMING
HEURISTIC

1834.0

2

UOM(19/9),
ER(7/63),
NOM(10/11),
CX(64/17)

Yes Yes 1852.9 44.3

3

ER(16/16),
NLS(11/11),
NOM(63/63),
CX(10/10)

No Yes 1858.5 26.7

139

ULS(31/48),
MX(15/21),
NLS(27/24),
CX(27/6)

Yes No 1900.4 27.2

140

UOM(22/6),
ULS(23/56),
NLS(33/32),
NOM(22/6)

Yes No 1900.8 26.3

141

ULS(24/48),
NLS(23/24),
NOM(40/5),
CX(13/23)

Yes No 1901.3 27.3

278

ULS(39/45),
SSM(30/13),
ER(18/20),
CX(13/22)

Yes No 1994.7 36.4

279

SSM(16/32),
ER(49/25),
MX(24/21),
CX(11/22)

Yes No 2033.9 3.4

280

SSM(17/17),
ER(36/36),
MX(23/23),
CX(24/24)

No No 2034.5 4.4

The three best test combinations all include edge
recombination, cycle crossover, and at least one of the
mutation operators. Notably, the best test configuration
was able to generate solutions consistently better than that

of the dynamic programming heuristic. In fact, edge
recombination was present in each of the twenty best-
performing test configurations, with cycle crossover
appearing in 60% and each mutation operator appearing
in 55%. One of the two forms of mutation appeared in
70% of the twenty best test configurations.

The median test combinations appear to use non-uniform
local search in place of edge recombination and cycle
crossover, but still retain mutation. Non-uniform local
search is present in 90% of the median twenty test
combinations. The operator that appears next most
frequently (65%) in the median is uniform local search,
followed by scramble sublist mutation (60%). Edge
recombination (30%) and cycle crossover (20%) are the
least represented operators.

It is also significant that all three of the worst test
combinations make use of both edge recombination and
cycle crossover but use neither mutation nor local search.
The absence of mutation, rather than the presence of other
operators is the striking feature of the worst-performing
test combinations. In fact, both mutation operators are
absent from 95% of the twenty worst test combinations,
although uniform local search (85%), merge crossover
(85%), cycle crossover (80%), and edge recombination
(70%) are all well-represented.

That the three best test combinations all make use of edge
recombination, cycle crossover, and at least one of the
mutation operators confirms the findings in [4] on the
relative effectiveness of edge recombination over other
kinds of crossover for certain kinds of scheduling
problems. This research also noted that cycle crossover
performed moderately well on the TSP. Our results
extend these previous findings by illustrating the
symbiotic relationship between these operators and
relatively high levels of mutation. Where mutation and
edge recombination are not present in a test configuration
the GA is able to compensate somewhat by the use of
local search operators, although solution quality is
diminished. Where edge recombination and cycle
crossover are not accompanied by mutation, solution
quality is poor.

The second observation that can be made from our results
is the importance of population reinitialization when the
GA has converged. Seventeen of the twenty best test
configurations (85%) used population reinitialization.
Population reinitialization, therefore, may be considered a
requirement for the TDTSP. Conversely, only 7 of the top
20 results used adaptive operator probabilities (35%).
While we maintain our belief in the general effectiveness
of adaptive operator probabilities, more research needs to
be done to utilize it effectively in this class of problem.

 The final observation made is that the TDTSP seems to
respond well to a mixture of scheduling and TSP

techniques. This is demonstrated by the effectiveness of
both the edge recombination and cycle crossover
operators. Where edge recombination has been shown to
perform well on scheduling problems, cycle crossover has
performed poorly [4]. This study, however, showed cycle
crossover to be moderately effective on the TSP.
Researchers investigating TDTSP-like problems might be
better off adopting hybrid techniques used successfully in
other kinds of scheduling problems and the TSP.

6 CONCLUSIONS

This paper began by describing the time dependent
traveling salesman problem and its relation to several
problems in the areas of scheduling and vehicle routing.
We then described a genetic algorithm for the TDTSP that
used eight well-known genetic operators plus adaptive
operator probabilities and population reinitialization. Our
results indicate that edge recombination, cycle crossover,
and relatively high levels of mutation are likely to
generate solutions with good results. In particular, we
showed that one such combination of these operators,
along with population reinitialization, generated higher
quality solutions than a previously published dynamic
programming heuristic given the same amount of CPU
time. We then showed that these crossover operators
without mutation performed poorly on our test data,
indicating that mutation, even at relatively high levels, is
an integral part of a GA solution. We concluded that the
application of both scheduling and TSP problem-solving
genetic operators and heuristics show promise for
generating good solutions to the TDTSP and related
problems.

Acknowledgments

The authors wish to thank Jim Kane of the Automation
Technologies department of American Express Travel
Related Services, Greensboro, NC.

References

[1] Malandraki, C., and Daskin, M., “Time Dependent
Vehicle Routing Problems: Formulations, Properties and
Heuristic Algorithms”, Transportation Science, Vol. 26,
No. 3 (1992) 185-200.

[2]Picard, J.C., and Queyranne, M., “The Time-
Dependent Traveling Salesman Problem and its
Application to the Tardiness Problem in One Machine
Scheduling” Operations Research, Vol. 26 (1978), 86-
110.

[3] Simchi-Levi, D., and Berman o., “Minimizing the
Total Flow Time of n Jobs on a Network”, IIE
Transactions 23 (1991), 236-244.

[4] Starkweather, T., McDaniel, S., Mathias, K., Whitley,
C., and Whitley, D., “A Comparison of Genetic

Sequencing Operators” in Proceedings of the Fourth
International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers, San Mateo, CA, (1991), 69-76.

[5] Vander Wiel, R., and Sahinidis, N., “Heuristic Bounds
and Test Problem Generation for the Time-Dependent
Traveling Salesman Problem”, Transportation Science,
Vol. 29, No. 2 (1995), 167-183.

[6] Freisleben, B. and Merz, P., “A Genetic Local Search
Algorithm for Solving Symmetric and Asymmetric
Traveling Salesman Problems”, Proceedings of the 1996
IEEE International Conference on Evolutionary
Computation, (1996), 616-621.

[7] Tamaki, H., Kita, H., Shimizu, N., Maekawa, K., and
Nishikawa, Y, “A Comparison Study of Genetic Codings
for the Traveling Salesman Problem”, IEEE International
Conference on Evolutionary Computing, 1994, 2-3.

[8] Fox, K., “Production Scheduling on Parallel Lines
with Dependencies”, Ph.D. Thesis, Johns Hopkins
University, Baltimore, MD, 1973.

[9] Fox, K., Gavish, B., and Graves, S., “The Time
Dependent Traveling Salesman Problem and Extensions”,
Working paper No. 7904, Graduate School of
Management, University of Rochester, NY, 1979.

[10] Orda, A., and Rom, R., “Shortest-path and minimum-
delay algorithms in networks with time-dependent edge-
length”, Journal of the ACM 37 (1990), 607-625.

[11] Balakrishnan, N., Lucena, A., and Wong, R.T.,
“Scheduling Examinations to Reduce Second-Order
Conflicts”, Computers in Operations Research, Vol. 19
(1992), 353-361.

[12] Bodin, L., Golden, B., Assad A., and Ball, M., “The
State of the Art in the Routing and Scheduling of Vehicles
and Crews”, Office of Policy Research, Urban Mass
Transportation Administration, U.S. Department of
Transportation, Report UTMA/BMGT/MSS#81-001,
Washington DC., 1981.

[13] Testa, L., Esterline, A., and Dozier, G., “Evolving
Efficient Theme Park Tours”, Journal of Computing and
Information Technology, Vol. 7, No. 1 (1999), 77-92.

[14] Ruland, K., “Polyhedral Solution to the Pickup and
Delivery Problem”, Ph.D. Thesis, Washington University,
Saint Louis, MO, 1995.

[15] Vander Wiel R., and Sahinidis, N., “An Exact
Solution Approach for the Time-Dependent Traveling
Salesman Problem”, Naval Research Logistics, Vol. 43
(1996), 797-820.

[16] Malandraki, C., and Dial, R.B., “A restricted
dynamic programming heuristic algorithm for the time
dependent traveling salesman problem”, European
Journal of Operational Research 90 (1996), 45-55.

[17] Goldberg, D. E., and Deb, K., “A Comparative
Analysis of Selection Schemes Used in Genetic
Algorithms”, Foundations of Genetic Algorithms (FOGA-
1), Morgan Kaufman, 1991, 69-93.

[18] Baeck, T., Hoffmeister, F., and Schwefel, H.P., “A
Survey of Evolution Strategies”, Proceedings of the
Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann, 1991, 2-9.

[19] Michalewicz, Z., “Genetic Algorithms + Data
Structures = Evolution Programs”, 3rd Edition, Springer
Verlag, 1996, 242-243.

[20] Syswerda, G., “Schedule Optimization Using
Genetic Algorithms”, Handbook of Genetic Algorithms,
Van Nostrand Reinhold, 1991, 332-349.

[21] Whitley, D., Starkweather, T., and Fuqya, D’A.,
“Scheduling Problem and Traveling Salesman: The
Genetic Edge Recombination Operator”, Proceedings of
the Third International Conference on Genetic
Algorithms, Morgan Kaufmann, 1989, 133-140.

[22] Homaifar, A., and Guan, S., “A New Approach on
the Traveling Salesman Problem by Genetic Algorithm”,
Technical Report, North Carolina A&T State University,
1991.

[23] Blanton (Jr), J.L., and Wainwright, R.L., “Multiple
vehicle routing with time and capacity constraints using
genetic algorithms”, Proceedings of the Fourth
International Conference on Genetic Algorithms, Morgan
Kaufmann, 452-459.

[24] Louis, S., Yin, X., and Yuan, Z., “Multiple Vehicle
Routing With Time Windows Using Genetic Algorithm”,
Proceedings of the 1999 Congress on Evolutionary
Computing, 1804-1808.

[25] Oliver, I.M., Smith, D.J., and Holland, J.R.C., “A
Study of Permutation Crossover Operators on the
Traveling Salesman Problem”, Proceedings of the Second
International Conference on Genetic Algorithms,
Lawrence Erlbaum Associates, 1987, 224-230.

[26] Davis, L., (Editor), Handbook of Genetic
Algorithms, Von Nostrand Reinhold, 1991.

[27] Eiber, A.E., Hinterding, R., and Michalewicz, Z.,
“Parameter Control in Evolutionary Algorithms”, IEEE
Transactions on Evolutionary Computation, Vol. 3, No. 2,
1999, 124-141.

[28] Julstrom, B., “What Have You Done For Me Lately?
Adapting Operator Probabilities in a Steady-State Genetic
Algorithm”, In Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA'95) (Larry J.
Eshelman, Ed.). San Mateo, CA: Morgan Kaufmann
Publishers, 81-87.

[29] Michalewicz, Z., “Genetic Algorithms + Data
Structures = Evolution Programs”, 3rd Edition, Springer
Verlag, 1996, 174.

