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Abstract

Structural information theory (SIT) deals

with the perceptual organization, often called

the `gestalt' structure, of visual patterns.

Based on a set of empirically validated struc-

tural regularities, the perceived organization

of a visual pattern is claimed to be the most

regular (simplest) structure of the pattern.

The problem of �nding the perceptual orga-

nization of visual patterns has relevant ap-

plications in multi-media systems, robotics

and automatic data visualization. This pa-

per shows that genetic programming (GP) is

a suitable approach for solving this problem.

1 Introduction

In principle, a visual pattern can be described in

many di�erent ways; however, in most cases it will

be perceived as having a certain description. For

example, the visual pattern illustrated in Figure

1-A may have, among others, two descriptions as

they are illustrated in Figure 1-B and 1-C. Hu-

man perceivers prefer usually the description that

is illustrated in Figure 1-B. An empirically sup-

ported theory of visual perception is the Structural

Information Theory (SIT) [Leeuwenberg, 1971,

Van der Helm and Leeuwenberg, 1991,

Van der Helm, 1994]. SIT proposes a set of empiri-

cally validated and perceptually relevant structural

regularities and claims that the preferred description

of a visual pattern is based on the structure that

covers most regularities in that pattern. Using the

formalization of the notions of perceptually relevant

structure and simplicity given by SIT, the problem

of �nding the simplest structure of a visual pattern

(SPS problem) can be formulated mathematically as

a constrained optimization problem.

A

B C

Figure 1: Visual pattern A has two potential structures

B and C.

The SPS problem has relevant applications. For ex-

ample, multimedia systems and image databases need

to analyze, classify, and describe images in terms of

constitutive objects that human users perceives in

those images [Zhu, 1999]. Furthermore, autonomous

robots need to analyze their visual inputs and con-

struct hypotheses about possibly present objects in

their environments [Kang and Ikeuchi, 1993]. Also, in

the �elds of information visualization the goal is to

generate images that represent information such that

human viewers extract that information by looking

at the images [Bertin, 1981]. In all these applica-

tions, a model of gestalt perception is indispensable

[Mackinlay, 1986, Marks and Reiter, 1990]. We focus

on a simple domain of visual patterns and claim that

an appropriate model of gestalt perception for this do-

main is an essential step towards a model of gestalt

perception for more complex visual patterns that are

used in the above mentioned real-world applications

[Dastani, 1998].

Since the search space of possible structures grows

exponentially with the complexity of the visual pat-

tern, heuristic algorithms have to be used for solv-

ing the SPS problem eÆciently. The only algo-

rithm for SPS we are aware of is developed by

[Van der Helm and Leeuwenberg, 1986]. This algo-

3GENETIC PROGRAMMING



rithm ignores the important source of computational

complexity of the problem and covers only a subclass

of perceptually relevant structures. The central part of

this partial algorithm consists of translating the search

for a simplest structure into a shortest route problem.

The algorithm is shown to have O(N4) computational

complexity, where N denotes the length of the input

pattern. To cover all perceptually relevant structures

for not only the domain of visual line patterns, but

also for more complex domains of visual patterns, it

is argued in [Dastani, 1998] that the computational

complexity grows exponentially with the length of the

input patterns.

This paper shows that genetic programming

[Koza, 1992] provides a natural paradigm for solving

the SPS problem using SIT. A novel evolutionary

algorithm is introduced whose main features are the

use of SIT operators for generating the initial popula-

tion of candidate structures, and the use of knowledge

based genetic operators in the evolutionary process.

The use of GP is motivated by the SIT formalization:

structures can be easily described using the standard

GP-tree representation. However, the GP search

is constrained by the fact that structures have to

characterize the same input pattern. In order to

satisfy this constraint, knowledge based operators are

used in the evolutionary process.

The paper is organized as follows. In the next section,

we briey discuss the problem of visual perception and

explain how SIT predicts the perceived structure of vi-

sual line patterns. In Section 3, SIT is used to give a

formalization of the SPS problem for visual line pat-

terns. Section 4 describes how the formalization can be

used in an automatic procedure for generating struc-

tures. Section 5 introduces the GP algorithm for SPS.

Section 6 describes implementation aspects of the al-

gorithm and reports some results of experiments. The

paper concludes with a summary of the contributions

and future research directions.

2 SIT: A Theory of Visual Perception

According to the structural information theory, the

human perceptual system is sensitive to certain

kinds of structural regularities within sensory pat-

terns. They are called perceptually relevant struc-

tural regularities, which are speci�ed by means of

ISA operators: Iteration, Symmetry and Alternations

[Van der Helm and Leeuwenberg, 1991]. Examples of

string patterns that can be speci�ed by these operators

are abab, abcba, and abgabpz, respectively. A visual

pattern can be described in di�erent ways by applying

di�erent ISA operators. In order to disambiguate the

set of descriptions and to decide on the perceived or-

ganization of the pattern, a simplicity measure, called

information load, is introduced. The information load

measures the amount of perceptually relevant regu-

larities covered by pattern descriptions. It is claimed

that the description of a visual pattern with the mini-

mum information load reects its perceived organiza-

tion [Van der Helm, 1994].

In this paper, we focus on the domain of linear line pat-

terns which are turtle-graphics, like line drawings for

which the turtle starts somewhere and moves in such

a way that the line segments are connected and do not

cross each other. A linear line pattern is encoded as

a letter string for which it can be shown that its sim-

plest description represents the perceived organization

of the encoded linear line pattern [Leeuwenberg, 1971].

The encoding process consists of two steps. In the �rst

step, the successive line segments and their relative an-

gles in the pattern are traced from the starting point

of the pattern and identical letter symbols are assigned

to identical line segments (equal length) as well as to

identical angles (relative to the trace movement). In

the second step, the letter symbols that are assigned

to line segments and angles are concatenated in the or-

der they have been visited during the trace of the �rst

step. This results in a letter string that represents the

pattern. An example of such an encoding is illustrated

in Figure 2.

x

x x

y y

a a
b b b b

axaybxbybxb

Figure 2: Encoding of a line pattern into a string.

Note that letter strings are themselves perceptual pat-

terns that can be described in many di�erent ways,

one of which is usually the perceived description. The

determination of the perceived description of string

patterns is the essential focus of Hofstadter's Copycat

project [Hofstadter, 1984].

3 The SPS Problem

In this section, we formally de�ne the class of string de-

scriptions that represent possible perceptually relevant

organizations of linear line patterns. Also, a complex-

ity function is de�ned that measures the information

load of those descriptions. In this way, we can en-
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code a linear line pattern into a string, generate the

perceptually relevant descriptions of the string, and

determine the perceived organization of the line pat-

tern by choosing the string description which has the

minimum information load.

The class of descriptions that represent possible per-

ceptual organizations for Linear Line Patterns LLP is

de�ned over the set E = fa; : : : ; zg as follows.

1. For all t 2 E; t 2 LLP

2. If t 2 LLP and n is a natural number, then

iter(t; n) 2 LLP

3. If t 2 LLP , then symeven(t) 2 LLP

4. If t1; t2 2 LLP , then symodd(t1; t2) 2 LLP

5. If t; t1; : : : ; tn 2 LLP , then

altleft(t; < t1; : : : ; tn >) 2 LLP and

altright(t; < t1; : : : ; tn >) 2 LLP

6. If t1; : : : ; tn 2 LLP , then con(t1; : : : ; tn) 2 LLP

The meaning of LLP expressions can be de�ned by the

denotational semantics j[ j], which involves string con-

catenation (�) and string reection (reflect(abcde) =

edcba) operators.

1. If t 2 E, then j[tj] = t

2. j[iter(t; n)j] = j[tj] � : : : � j[tj] (n times)

3. j[symeven(t)j] = j[tj] � reflect(j[tj])

4. j[symodd(t1; t2)j] = j[t1j] � j[t2j] � reflect(j[t1j])

5. j[altleft(t; < t1; : : : ; tn >)j] =

j[tj] � j[t1j] � : : : � j[tj] � j[tnj]

6. j[altright(t; < t1; : : : ; tn >)j] =

j[t1j] � j[tj] � : : : � j[tnj] � j[tj]

7. j[con(t1; : : : ; tn)j] = j[t1j] � : : : � j[tnj]

The complexity function C on LLP expressions,

measures the complexity of an expression as the

number of individual letters t occurring in it, i.e.

C(t) = 1

C(f(T1; : : : ; Tn)) =
P

n

i=1
C(Ti)

During the last 20 years, Leeuwenberg and his

co-workers have reported on a number of exper-

iments that tested predictions based on the sim-

plicity principle. These experiments were con-

cerned with the disambiguation of ambiguous pat-

terns. The predictions of the simplicity princi-

ple were, on the whole, con�rmed by these experi-

ments [Bu�art et al., 1981, Van Leeuwen et al., 1988,

Boselie and Wouterlood, 1989].

The following LLP expressions describe, among oth-

ers, four di�erent perceptual organizations of the pat-

tern axaybxbybxb:

- con(a; x; a; y; b; x; b; y; b; x; b),

- con(symodd(a; x); y; symodd(b; x); y; symodd(b; x))

- con(symodd(a; x); iter(con(y; b; x; b); 2))

- con(symodd(a; x); iter(altright(b;< y; x >); 2))

Note that these descriptions reect four di�erent per-

ceptual organizations of the line pattern that is illus-

trated in Figure 2. The information load of these four

descriptions are 11; 8; 6; and 5, respectively. This im-

plies that the last description reects the perceived

organization of the line pattern illustrated in Figure 2.

The SPS problem can now be de�ned as follows. Given

a pattern p, �nd a LLP expression t such that

� j[tj] = p and

� C(t) = minfC(s) j s 2 LLP and j[sj] = pg:

As mentioned in the introduction, the only (partial)

algorithm for solving SPS problem is proposed by Van

der Helm [Van der Helm and Leeuwenberg, 1986].

This algorithm �nds only a subclass of perceptually

relevant structures of string patterns by �rst con-

structing a directed acyclic graph for the given string

pattern. If we place an index after each element in

the string pattern, starting from the leftmost element,

then each node in the graph would correspond to an

index, and each link in the graph from node i to j

corresponds to a gestalt for the subpattern starting

at position i and ending at position j. Given this

graph, the SPS problem is translated to a shortest

route problem. Note that this algorithm is designed

for one-dimensional string patterns and it is not clear

how this algorithm can be applied to other domains

of perceptual patterns. Instead, our formalization

of the SPS problem can be easily applied to more

complex visual patterns by extending the LLP

with domain dependent operators such as Euclidean

transformations for two-dimensional visual patterns

[Dastani, 1998].
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4 Generating LLP Expressions

In order to solve the SPS problem using genetic pro-

gramming, a probabilistic procedure for generating

LLP expressions, called BUILD-STRUCT, is used.

This procedure takes as input a string, and generates

a (tree structure of a) LLP expression for that string.

The procedure is based on a set of probabilistic pro-

duction rules.

The production rules are derived from the SIT

de�nition of expressions, and are of the form

� t1 : : : tn � �! � P (t1 : : : tn) �

where � and � are (possibly empty) LLP expressions,

t1; : : : ; tn are LLP expressions, and P is an ISA oper-

ator (of arity n). The triple (�; t1 : : : tn; �) is called

splitting of the sequence.

A snapshot of the set of production rules used in

BUILD-STRUCT is given below.

� t t � �! � iter(t; 2) �

� t iter(t; n) � �! � iter(t; n+ 1) �

� iter(t; n) t � �! � iter(t; n+ 1) �

� t1 t2 � �! � con(t1; t2) �

� con(t1; ::; tn) t � �! � con(t1; ::; tn; t) �

� t con(t1; ::; tn) � �! � con(t; t1; ::; tn) �

A production rule transforms a sequence of LLP ex-

pressions into a shorter one. In this way, the repeated

application of production rules terminates after a �-

nite number of steps and produces one LLP expres-

sion. There are two forms of non-determinism in the

algorithm:

1. the choice of which rule to apply when more than

one production rule is applicable,

2. the choice of a splitting of the sequence when more

splittings are possible.

In BUILD-STRUCT both choices are performed ran-

domly. BUILD-STRUCT employs a speci�c data

structure which results in a more eÆcient implemen-

tation of the above described non-determinism. The

BUILD-STRUCT procedure is used in the initializa-

tion of the genetic algorithm and in the mutation op-

erator.

We conclude this section with an example illustrating

the application of the production rules system. The

LLP expression iter(con(a; b; a); 2) can be obtained

using the above production rules starting from the

pattern abaaba as follows, where an underlined sub-

string indicates that an ISA operator will be applied

to that substring:

aba aba �! con(a; b; a)aba

con(a; b; a) aba �! con(a; b; a)con(a; b; a)

con(a; b; a)con(a; b; a) �! iter(con(a; b; a); 2)

Note in this example that the iter operator is

applied to two structurally identical LLP expressions

(i.e. con(a; b; a)con(a; b; a) �! iter(con(a; b; a); 2)).

In general, the ISA operators are not applied on the

basis of structural identity of LLP expressions, but

on the basis of their semantics, i.e. on the basis of the

patterns that are denoted by the LLP expressions (i.e.

symodd(a; b)con(a; b; a) �! iter(symodd(a; b); 2)).

5 A GP for the SPS Problem

This section introduces a novel evolutionary algorithm

for the SPS problem, called GPSPS (Genetic Pro-

gramming for the SPS problem), which applies GP

to SIT. A population of LLP expressions is evolved,

using knowledge based mutation and crossover op-

erators to generate new expressions, and using the

SIT complexity measure as �tness function. GPSPS

is an instance of the generational scheme, cf. e.g.

[Michalewicz, 1996], illustrated below, where P (t) de-

notes the population at iteration t and jP (t)j its size.

PROCEDURE GPSPS

t <- 0

initialize P(t)

evaluate P(t)

WHILE (NOT termination condition) DO

BEGIN

t <- t+1

WHILE (|P(t)|<|P(t-1)|) DO

BEGIN

select two elements from P(t-1)

apply crossover

apply mutation

insert in P(t)

END

END

END

We have used the Roulettewheel mechanism to select

the elements for the next generation. Therefore the

chance that an element of the original pool is selected

is proportional to its �tness. Since we apply our sys-

tem to a minimization problem, the �tness function

has to be transformed. This is done with the function

newF (element) = maxF (pool) � F (element). This

ensures that the element with the lowest �tness will
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have the highest probability of being selected. We

have also made our GP elitist to guarantee that the

best element found so far will be in the actual popu-

lation.

The main features of GPSPS are described in the rest

of this section.

5.1 Representation and Fitness

GPSPS acts on LLP expressions describing the same

string. A LLP expression is represented by means of a

tree in the style used in Genetic Programming, where

leaves are primitive elements while internal nodes are

ISA operators. The �tness function is the complexity

measure C as it is introduced in Section 3.

Thus, the goal of GPSPS is to �nd a chromosome

(representing a structure of the a given string) which

minimizes C. Given a string, a speci�c procedure is

used to ensure that the initial population contains only

chromosomes describing the same pattern. Moreover,

novel genetic operators are designed which preserve

the semantics of chromosomes.

5.2 Initialization

Given a string, chromosomes of the intial population

are generated using the procedure BUILD-STRUCT.

In this way, the initial population contains randomly

selected (representations of) LLP expressions of the

pattern.

5.3 Mutation

When the mutation operator is applied to a chromo-

some T , an internal node n of T is randomly selected

and the procedure BUILD-STRUCT is applied to the

(string represented by the) subtree of T starting at n.

Figure 3 illustrates an application of the mutation op-

erator to an internal node. Observe that each node

(except the terminals) has the same chance of being

selected. In this way smaller subtrees have a larger

chance of being modi�ed.

It is interesting to investigate the e�ectiveness of the

heuristic implemented in BUILD-STRUCT when in-

corporated into an iterated local search algorithm.

Therefore we have implemented an algorithm that mu-

tates one single element for a large number of iterations

and returns the best element that has been found over

all iterations. Although some regularities are discov-

ered by this algorithm, its performance is rather scarce

if compared with GPSPS, even when the number of it-

erations is set to be bigger than the size of the popula-

tion times the number of generations used by GPSPS.

a b

2a

iter
(aa)

con

a b

(ab) 2a

iter
(aa)

2

iter
(abab)

con
(ababaa)

symodd
(aba) b

con
(abab)

(ababaa)
con

mutation

Figure 3: Example of the mutation-operator.

5.4 Crossover

The crossover operator cannot simply swap subtrees

between two parents, like in standard GP, due to the

semantic constraint on chromosomes (e.g. chromo-

somes have to denote the same string). Therefore, the

crossover is designed in such a way that it swaps only

subtrees that denote the same string. This is realized

by associating with each internal node of the tree the

string that is denoted by the subtree starting at that

internal node. Then, two nodes of the parents with

equal associated strings are randomly selected and the

corresponding subtrees are swapped. An example of

crossover is illustrated in Figure 4.

b b aa

con
(abba)

con

a b

(ab)

symeven
(abba)

ba b ca

(abbac)
con

abba

con
(abba)

con
(abbacabba)

(abba)
symodd

(bb)
con

bb

symeven
(abba)

(ab)
con

ba

symodd
(abbacabba)

a

c

con

bb

(bb)

ba b a c

con
(abbac)

con
(abbacabba)

symodd
(abba)

a

c

symodd
(abbacabba)

crossover

Figure 4: Example of the crossover-operator.
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When a crossover-pair can not be found, no crossover

takes place. Fortunately this happens only for a small

portion of the crossovers. Usually there are more than

one pair to choose from. This issue is further discussed

in the next section.

5.5 Optimization

As discussed above, the mutation and crossover oper-

ators transform subtrees. When these operators are

applied, the resulting subtrees may exhibit structures

of a form suitable for optimization. For instance, sup-

pose a subtree of the form con(iter(b; 2); a; con(b; b))

is transformed by one of the operators in the sub-

tree con(iter(b; 2); a; iter(b; 2)). This improves the

complexity of the subtree. Unfortunately, based

on this new subtree the expected LLP expression

symodd(iter(b; 2); a) cannot be obtained.

The crossover operator is only helpful for this problem

if there is already a subtree that encodes that speci�c

substring with an symodd structure. This problem

could in fact be solved by applying the mutation op-

erator to the con structure. However, the probability

that the application of the mutation operator will gen-

erate the symodd structure is small.

In order to solve this problem, a simple optimization

procedure is called after each application of the mu-

tation and crossover operators. This procedure uses

simple heuristics to optimize the con structure. First,

the procedure checks if the (entire) con structure is

symmetrical and changes it into a symodd or symeven

structure if possible. If this is not the case, the pro-

cedure checks if neighboring structures that are sim-

ilar can be combined. For example, a structure of

the form con(c; iter(b; 2); iter(b; 3)) can be optimized

to con(c; iter(b; 5)). This kind of optimization is also

applied to altleft and altright structures.

6 Experiments

In this section we discuss some preliminary experi-

ments. The example strings we consider are short and

are designed to illustrate what type of structures are

interesting for this domain. The choice of the values of

the GP parameters used in the experiments is deter-

mined by the considered type of strings. Because the

strings are short, a small pool size of 50 individuals

is used. Making the size of the pool very large would

make the GP perform better, but when the pool is ini-

tialized, it would probably already contain the most

preferred structure. The number of iterations is also

small to avoid generating all possible structures and is

therefore set to 150. This allows us to draw prelimi-

nary conclusions about the performance of the GP.

Two important parameters of the GP are the mutation

and crossover rates. We have done a few test runs to

�nd a setting that produced good results. We have

set the mutation-rate on 0.6 and the crossover-rate to

0.4. The mutation is deliberately set to a higher rate,

because this operator is the most important for dis-

covering structures. The crossover operator is used to

swap substructures between good chromosomes.

We have chosen six di�erent short strings that con-

tain structures that are of interest to our search prob-

lem. Moreover, two longer strings are considered. For

the two long strings the mutation and crossover rates

above speci�ed are used, but the poolsize and the num-

ber of generations are both set to 300. The eight

strings are the code for the linear line patterns illus-

trated in Figure 5.

A

a

a

A

a

a

A

a

a

BB B

a a

A A

A A

bbbb

a a

B B Ba

a a

a

a

a

a

A

AA

A

A
A

a

a

a

a

a aA

B

C

D

E
bbb

Y

XX

b

a

Y

X
5

a

7

c c
Z

YYY

b
X

aX

Y

X X

b b

aa a

b

X

bb

Y Y Y Y

X

X

X
b

aa a a

b

SS X X8

TTE Y

X

Z UY

X bc c c c
aa

b b b
a a

dv

A

3

1 2

a
a

a
a

XX

Y Z
b

c

c

c

A

B B

4

6

Figure 5: Line drawings used in experiments.

The algorithm is run on each string a number of times

using di�erent random seeds. The resulting structures

are given in Figure 7, where the structure and �tnesses

of the two best elements of the �nal population are re-

ported. For each string GPSPS is able to �nd the opti-

mal structure. The results of runs with di�erent seeds

are very similar, indicating the (expected) robustness

of the algorithm on these strings.

Figure 6 illustrates how the best �tness and the mean

�tness of the population vary in a typical run of GP-
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Figure 6: Best and Mean Fitness.

SPS on the line pattern number 7 of Figure 5. On this

pattern, the algorithm is able to �nd a near optimum

of rather good quality after about 50 generations, and

it spends the other 250 generations to �nd the slighly

improved structure. In this experiment about 12% of

the crossovers failed. On average there were about

2.59 possible 'crossover-pairs' possible (with a stan-

dard deviation of 1.38) when the crossover operator

was applicable.

The structures that are found are the most preferred

structures as predicted by the SIT theory. The system

is thus capable of �nding the perceived organizations

for these line drawings patterns.

7 Conclusion and Future Research

This paper discussed the problem of human visual per-

ception and introduced a formalization of a theory of

visual perception, called SIT. The claim of SIT is to

predict the perceived organization of visual patterns

on the basis of the simplicity principle. It is argued

that a full computational model for SIT is compu-

tationally intractable and that heuristic methods are

needed to compute the perceived organization of visual

patterns.

We have applied genetic programming techniques to

this formal theory of visual perception in order to com-

pute the perceived organization of visual line patterns.

Based on perceptually relevant operators from SIT, a

pool of alternative organizations of an input pattern is

generated. Motivated by SIT, mutation and crossover

operations are de�ned that can be applied to these or-

ganizations to generate new organizations for the in-

put pattern. Finally, a �tness function is de�ned that

determines the appropriateness of generated organiza-

tions. This �tness function is directly derived from

SIT and measures the simplicity of organizations.

In this paper, we have focused on a small domain of

visual linear line patterns. The next step is to extend

our system to compute the perceived organization of

more complex visual patterns like two-dimensional vi-

sual patterns, which are de�ned in terms of a variety of

visual attributes such as color, size, position, texture,

shape.

Finally, we intend to investigate whether the class of

structural regularities proposed by SIT is also relevant

for �nding meaningful organizations within patterns

from biological experiments, like DNA sequences. For

this task, we will need to modify GPSPS in order to

allow a group of letters to be treated as a primitive

element.
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1 string:

aAaAaAaAaAaAaA

structure:

a) iter(con(a,A),7)

b) con(iter(con(a,A),2),iter(con(a,A),5))

complexity

a) 2

b) 4

2 string:

aAaBbAbBbAbBaAa

structure:

a) symodd(altleft(a,<A,con(B,symodd(b,A))>),B)

b) symodd(con(symodd(a,A),altright(b,<B,A>)),B)

complexity

a) 6

b) 6

3 string:

aAaBaAaBaAaB

structure:

a) iter(altleft(a,<A,B>),3)

b) iter(con(symodd(a,A),B), 3)

complexity

a) 3

b) 3

4 string:

aXaYaXaZbAcBcBc

structure:

a) altleft(symodd(a,X),<Y,altright(c,<con(Z,b,A),B,B>))

b) altleft(symodd(a,X),<Y,

altright(c,<con(Z,b,A),symodd(B,c)>))

c) altleft(symodd(a,X),<Y,con(Z,b,A,c,iter(con(B,c),2))>)

scomplexity:

a) 9

b) 9

c) 9

5 string:

aXaYbXbYbXb

structure:

a) altleft(a,<X,iter(con(Y,symodd(b,X)),2)>)

b) altleft(a,<X,iter(altright(b,<Y,X>),2)>)

complexity:

a) 5

b) 5

6 string:

aAaBaCaDaEa

structure:

a) altright(a,<altleft(a,<A,B>),C,D,E>)

b) altleft(a,<A,B,C,D,con(E,a)>)

complexity:

a) 7

b) 7

7 string:

axaybxbyaxaybxbyczcybxbyaxaybxbyaxa

structure:

a) symodd(con(iter(con(symodd(a,x),

symodd(y,symodd(b,x))),2),c),z)

b) symodd(con(iter(con(symodd(a,x),

symodd(con(y,b),x)),2),c),z)

complexity:

a) 7

b) 7

8 string:

vecsctcsctaxaybxbyzbxbyaxaud

structure:

a) con(v,altright(c,<e,s>),con(symodd(con(t,c),s),

symodd(con(symodd(a,x),y,symodd(b,x)),z),u,d))

b) con(v,e,iter(altleft(c,<s,t>),2),

symodd(con(symodd(a,x),y,symodd(b,x)),z),u,d)

complexity:

a) 13

b) 13

Figure 7: Results of experiments
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Abstract

Two important problems in genetic program-

ming (GP) are its tendency to �nd unnec-

essarily large trees (bloat), and the general

evolutionary algorithms problem that diver-

sity in the population can be lost prema-

turely. The prevention of these problems

is frequently an implicit goal of basic GP.

We explore the potential of techniques from

multi-objective optimization to aid GP by

adding explicit objectives to avoid bloat and

promote diversity. The even 3, 4, and 5-

parity problems were solved eÆciently com-

pared to basic GP results from the litera-

ture. Even though only non-dominated in-

dividuals were selected and populations thus

remained extremely small, appropriate diver-

sity was maintained. The size of individuals

visited during search consistently remained

small, and solutions of what we believe to be

the minimum size were found for the 3, 4,

and 5-parity problems.

Keywords: genetic programming, code growth,

bloat, introns, diversity maintenance, evolutionary

multi-objective optimization, Pareto optimality

1 INTRODUCTION

A well-known problem in genetic programming (GP),

is the tendency to �nd larger and larger programs over

time (Tackett, 1993; Blickle & Thiele, 1994; Nordin &

Banzhaf, 1995; McPhee & Miller, 1995; Soule & Fos-

ter, 1999), called bloat or code growth. This is harm-

ful since it results in larger solutions than necessary.

Moreover, it increasingly slows down the rate at which

new individuals can be evaluated. Thus, keeping the

size of trees that are visited small is generally an im-

plicit objective of GP.

Another important issue in GP and in other methods

of evolutionary computation is that of how diversity

of the population can be achieved and maintained. A

population that is spread out over promising parts of

the search space has more chance of �nding a solution

than one that is concentrated on a single �tness peak.

Since members of a diverse population solve parts of

the problem in di�erent ways, it may also be more

likely to discover partial solutions that can be utilized

through crossover. Diversity is not an objective in the

conventional sense; it applies to the populations visited

during the search, not to �nal solutions. A less obvious

idea then is to view the contribution of individuals to

population diversity as an objective.

Multi-objective techniques are speci�cally designed for

problems in which knowledge about multiple objec-

tives is available, see e.g. Fonseca and Fleming (1995)

for an overview. The main idea of this paper is to

use multi-objective techniques to add the objectives of

size and diversity in addition to the usual objective of

a problem-speci�c �tness measure. A multi-objective

approach to bloat appears promising and has been

used before (Langdon, 1996; Rodriguez-Vazquez, Fon-

seca, & Fleming, 1997), but has not become standard

practice. The reason may be that basic multi-objective

methods, when used with small tree size as an objec-

tive, can result in premature convergence to small in-

dividuals (Langdon & Nordin, 2000; Ekart, 2001). We

therefore investigate the use of a size objective in com-

bination with explicit diversity maintenance.

The remaining sections discuss the n-parity problem

(2), bloat (3), multi-objective methods (4), diversity

maintenance(5), ideas behind the approach, called FO-

CUS, (6), algorithmic details (7), results (8), and con-

clusions (9).

2 THE N-PARITY PROBLEM

The test problems that will be used in this paper are

even n-parity problems, with n ranging from 3 to 5.

A correct solution to this problem takes a binary se-

quence of length n as input and returns true (one) if
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X0 X1 X0 X1

NORAND

OR

Figure 1: A correct solution to the 2-parity problem

the number of ones in the sequence is even, and false

(zero) if it is odd. It is named even to avoid confusion

with the related odd parity problem, which gives the

inverse answer. Trees may use the following boolean

operators as internal nodes: AND, OR, NAND, and

NOR. Each leaf speci�es an element of the sequence.

The �tness is the fraction of all possible length n bi-

nary sequences for which the program returns the cor-

rect answer. Figure 1 shows an example.

The n-parity problem has been selected because it is a

diÆcult problem that has been used by a number of re-

searchers. With increasing order, the problem quickly

becomes more diÆcult. One way to understand its

hardness is that for any setting of the bits, ipping

any bit inverts the outcome of the parity function.

Equivalently, its Karnaugh map (Zissos, 1972) equals

a checkerboard function, and thus has no adjacencies.

2.1 SIZE OF THE SMALLEST

SOLUTIONS TO N-PARITY

We believe that the correct solutions to n-parity con-

structed as follows are of minimal size, but are not able

to prove this. The principle is to recursively divide the

bit sequence in half and, take the parity of each halve,

and feed these two into a parity function. For subse-

quences of size one, i.e. single bits, the bit itself is used

instead of its parity. When this occurs for one of the

two arguments, the outcome would be inverted, and

thus the odd 2-parity function is used to obtain the

even 2-parity of the bits.

Let S be a binary sequence of length jSj = n � 2.

S is divided in half yielding two subsequences L and

R with, for even n, length n

2
or, for odd n, lengths

n�1

2
and n+1

2
. Then the following recursively de�ned

function P(S) gives a correct expression for the even-

parity of S for jSj � 2 in terms of the above operators:

P (S) =

8<
:
S if jSj = 1
ODD(P (L); P (R)) if jSj > 1 ^ g(L;R)
EVEN(P (L); P (R)) otherwise

where
ODD(A, B) = NOR(AND(A, B), NOR(A, B)),
EVEN(A, B) = OR(AND(A, B), NOR(A, B)), and

g(A;B) =

�
TRUE if (jAj = 1) XOR (jBj = 1)
FALSE else

Table 1: Length of the shortest solution to n-parity

using the operators AND, OR, NAND, and NOR.

n 1 2 3 4 5 6 7

Length 3 7 19 31 55 79 103

The length jP (S)j of the expression P (S) satis�es:

jP (S)j =

�
1 for jSj = 1

3 + 2jP (L)j + 2jP (R)j for jSj > 1

For n = 2i; i > 0, this expression can be shown to

equal 2n2 � 1. Table 1 gives the lengths of the ex-

pressions for the �rst seven even-n-parity problems.

For jSj = 1, the shortest expression is NOR(S, S); for

jSj > 1, the length is given by the above expression.

The rapid growth with increasing order stems from the

repeated doubling of the required inputs.

3 THE PROBLEM OF BLOAT

A well-known problem, known as bloat or code growth,

is that the trees considered during a GP run grow

in size and become larger than is necessary to rep-

resent good solutions. This is undesirable because it

slows down the search by increasing evaluation and

manipulation time and, if the growth consists largely

of non-functional code, by decreasing the probability

that crossover or mutation will change the operational

part of the tree. Also, compact trees have been linked

to improved generalization (Rosca, 1996).

Several causes of bloat have been suggested. First,

under certain restrictions (Soule, 1998), crossover fa-

vors smaller than average subtrees in removal but

not in replacement. Second, larger trees are more

likely to produce �t (and large) o�spring because

non-functional code can play a protective role against

crossover (Nordin & Banzhaf, 1995) and, if the prob-

ability of mutating a node decreases with increasing

tree size, against mutation. Third, the search space

contains more large than small individuals (Langdon

& Poli, 1998).

Nordin and Banzhaf (1995) observed that the length

of the e�ective part of programs decreases over time.

However, the total length of the programs in the ex-

periments also increased rapidly, and hence it may be

concluded that in those experiments bloat was mainly

due to growth of ine�ective code (introns).

Finally, it is conceivable that in some circumstances

non-functional code may be useful. It has been sug-

gested that introns may be useful for retaining code

that is not used in the current individual but is a

helpful building block that may be used later (Nordin,

Francone, & Banzhaf, 1996).
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Table 2: Properties of the basic GP method used.

Problem 3-Parity
Fitness Fraction of correct answers
Operators AND, OR, NAND, and NOR
Stop criterion 500,000 evaluations or solution
Initial tree size Uniform [1..20] internal nodes
Cycle generational
Population Size 1000
Parent selection Boltzmann with T = 0.1
Replacement Complete
Uniqueness check Individuals occur at most once
P(crossover) 0.9
P(mutation) 0.1
Mutation method Mutate node with P = 1
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Figure 2: Average tree sizes of ten di�erent runs (solid

lines) using basic GP on the 3-parity program.

3.1 OBSERVATION OF BLOAT USING

BASIC GP

To con�rm that bloat does indeed occur in the test

problem of n-parity using basic GP, thirty runs where

performed for the 3-parity problem. The parameters

of the run are shown in Table 2. A run ends when

a correct solution has been found. Figure 2 shows

that average tree sizes increase rapidly in each run. If

a solution is not found at an early point in the run,

bloating rapidly increases the sizes of the trees in the

population, thus increasingly slowing down the search.

A single run of 111,054 evaluations already took more

than 15 hours on a current PC running Linux due to

the increasing amount of processing required per tree

as a result of bloat. The population of size-unlimited

trees that occurred in the single 4-parity run that

was tried (with trees containing up to 6,000 nodes)

�lled virtually the entire swap space and caused per-

formance to degrade to impractical levels. Clearly, the

problem of bloat must be addressed in order to solve

these and higher order versions of the problem in an

eÆcient manner.
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Figure 3: Average tree sizes and fraction of successful

runs in the 3-parity problem using basic GP with a tree

size limit of 200. Tree sizes are successfully limited, of

course, but the approach is not ideal (see text).

3.2 USING A FIXED TREE SIZE LIMIT

Probably the most common way to avoid bloat is to

simply limit the allowed tree size or depth (Langdon &

Poli, 1998; Koza, 1992), although the latter has been

found to lead to loss of diversity near the root node

when used with crossover (Gathercole & Ross, 1996).

Figure 3 shows the e�ect of using a limit of 200 on 3-

parity. This limit is well above the minimum size of a

correct solution, but not too high either since several

larger solutions were found in the unrestricted run.

The average tree size is around 140 nodes.

On the 4-parity problem (with a tree size limit of 200),

the average tree size varied around 150. However,

whereas on 3-parity 90% of the runs found a solution

within 100,000 evaluations, on 4-parity only 33% of

the runs found a solution within 500,000 evaluations,

testifying to the increased diÆculty of this order of

the parity problem. For 5-parity, basic GP found no

solutions within 1,000,000 evaluations for any of the

30 runs. Thus, our version of GP with �xed tree size

limit does not scale up well. Furthermore, a funda-

mental problem with this method of preventing bloat

is that the maximum tree size has to be selected before

the search, when it is often unknown.

3.3 WEIGHTED SUM OF FITNESS AND

SIZE

Instead of choosing a �xed tree size limit in advance

one would rather like to have the algorithm search for

trees that can be as large as they need to be, but not

much larger. A popular approach that goes some way

towards this goal is to include a component in the �t-

ness that rewards small trees or programs. This is

mostly done by adding a component to the �tness,

thus making �tness a linear combination of a perfor-

mance measure and a parsimony measure (Koza, 1992;

Soule, Foster, & Dickinson, 1996). However, this ap-

proach is not without its own problems (Soule & Fos-
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O
bjective 1

Objective 2

Non-dominated 

Highest isocline of weighted
sum that crosses an individual

Direction in which weighted 
sum increases

individuals

Figure 4: Schematic rendition of a concave tradeo�

surface. This occurs when better performance in one

objective means worse performance in the other, vice

versa. The lines mark the maximum �tness individu-

als for three example weightings (see vectors) using a

linear weighting of the objectives. No linear weight-

ing exists that �nds the in-between individuals, with

reasonable performance in both objectives.

ter, 1999). First, the weight of the parsimony measure

must be determined beforehand, and so a choice con-

cerning the tradeo� between size and performance is

already made before the search. Furthermore, if the

tradeo� surface between the two �tness components

is concave1 (see Fig. 4), a linear weighting of the two

components favors individuals that do well in one of

the objectives, but excludes individuals that perform

reasonably in both respects (Fleming & Pashkevich,

1985).

Soule and Foster (1999) have investigated why a linear

weighting of �tness and size has yielded mixed results.

It was found that a weight value that adequately bal-

ances �tness and size is diÆcult to �nd. However, if

the required balance is di�erent for di�erent regions

in objective space, then adequate parsimony pressure

cannot be speci�ed using a single weight. If this is

the case, then methods should be used that do not at-

tempt to �nd such a single balance. This idea forms

the basis of multi-objective optimization.

4 MULTI-OBJECTIVE METHODS

After several early papers describing the idea of opti-

mizing for multiple objectives in evolutionary compu-

tation (Scha�er, 1985; Goldberg, 1989), the approach

has recently received increasing attention (Fonseca &

Fleming, 1995; Van Veldhuizen, 1999). The basic idea

is to search for multiple solutions, each of which satisfy

the di�erent objectives to di�erent degrees. Thus, the

selection of the �nal solution with a particular com-

bination of objective values is postponed until a time

when it is known what combinations exist.

A key concept in multi-objective optimization is that

of dominance. Let individual x
A
have values A

i
for the

n objectives, and individual x
B
have objective values

1Since �tness is to be maximized, the tradeo� curve
shown is concave.

B
i
. Then A dominates B if

8i 2 [1::n] : A
i
� B

i
^ 9i : A

i
> B

i

Multi-objective optimization methods typically strive

for Pareto optimal solutions, i.e. individuals that are

not dominated by any other individuals.

5 DIVERSITY MAINTENANCE

A key di�erence between classic search methods and

evolutionary approaches is that in the latter a popu-

lation of individuals is maintained. The idea behind

this is that by maintaining individuals in several re-

gions of the search space that look promising (diver-

sity maintenance), there is a higher chance of �nding

useful material from which to construct solutions.

In order to maintain the existing diversity of a pop-

ulation, evolutionary methods typically keep some or

many of the individuals that happen to have been gen-

erated and have relatively high �tness, but lower than

that found so far. In the same way, evolutionary multi-

objective methods usually keep some dominated indi-

viduals in addition to the non-dominated individuals

(Fonseca & Fleming, 1993). However, this appears to

be a somewhat arbitrary way of maintaining diversity.

In the following section, we present a more directed

method. The relation to other diversity maintenance

methods is discussed.

6 THE FOCUS METHOD

We propose to do diversity maintenance by using a

basic multi-objective algorithm and including an ob-

jective that actively promotes diversity. To the best

of our knowledge, this idea has not been used in other

work, including multi-objective research. If it works

well, the need for keeping arbitrary dominated indi-

viduals may be avoided. To test this, we use the di-

versity objective in combination with a multi-objective

method that only keeps non-dominated individuals, as

reported in section 8.

The approach strongly directs the attention of the

search towards the explicitly speci�ed objectives. We

therefore name this method FOCUS, which stands for

Find Only and Complete Undominated Sets, reecting

the fact that populations only contain non-dominated

individuals, and contain all such individuals encoun-

tered so far. Focusing on non-dominated individuals

combines naturally with the idea that the objectives

are responsible for exploration, and this combination

de�nes the FOCUS method.

The concept of diversity applies to populations, mean-

ing that they are dispersed. To translate this aim into

an objective for individuals, a metric has to be de�ned

that, when optimized by individuals, leads to diverse

populations. The metric used here is that of average

14 GENETIC PROGRAMMING



squared distance to the other members of the popu-

lation. When this measure is maximized, individuals

are driven away from each other.

Interestingly, the average distance metric strongly de-

pends on the current population. If the population

were centered around a single central peak in the �t-

ness landscape, then individuals that moved away from

that peak could survive by satisfying the diversity ob-

jective better than the individuals around the �tness

peak. It might be expected that this would cause

large parts of the population to occupy regions that

are merely far away from other individuals but are not

relevant to the problem. However, if there are any

di�erences in �tness in the newly explored region of

the search space, then the �tter individuals will come

to replace individuals that merely performed well on

diversity. When more individuals are created in the

same region, the potential for scoring highly on diver-

sity for those individuals diminishes, and other areas

will be explored. The dynamics thus created are a new

way to maintain diversity.

Other techniques that aim to promote diversity in a di-

rected way exist, and include �tness sharing (Goldberg

& Richardson, 1987; Deb & Goldberg, 1989), deter-

ministic crowding (Mahfoud, 1995), and �tness derat-

ing (Beasley, Bull, & Martin, 1993). A distinguishing

feature of the method proposed here is that in choos-

ing the diversity objective, problem-based criteria can

be used to determine which individuals should be kept

for exploration purposes.

7 ALGORITHM DETAILS

The algorithm selects individuals if and only if they are

not dominated by other individuals in the population.

The population is initialized with 300 randomly cre-

ated individuals of 1 to 20 internal nodes. A cycle

proceeds as follows. A chosen number n of new indi-

viduals (300) is generated based on the current popu-

lation using crossover (90%) and mutation (10%). If

the individual already exists in the population, it is

mutated. If the result also exists, it is discarded. Oth-

erwise it is added to the population. All individuals

are then evaluated if necessary. After evaluation, all

population members are checked against other popu-

lation members, and removed if dominated by any of

them.

A slightly stricter criterion than Pareto's is used: A

dominates B if 8i 2 [1::n] : A
i
� B

i
. Of multiple indi-

viduals occupying the same point on the tradeo� sur-

face, precisely one will remain, since the removal cri-

terion is applied sequentially. This criterion was used

because the Pareto criterion caused a proliferation of

individuals occupying the same point on the trade-o�

surface when no diversity objective was used2.

2In later experiments including the diversity objec-
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Figure 5: Average tree size and fraction of successful

runs for the [�tness, size, diversity] objective vector on

the 3-parity problem. The trees are much smaller than

for basic GP, and solutions are found faster.

The following distance measure is used in the diversity

objective. The distance between two corresponding

nodes is zero if they are identical and one if they are

not. The distance between two trees is the sum of the

distances of the corresponding nodes, i.e. nodes that

overlap when the two trees are overlaid, starting from

the root. The distance between two trees is normalized

by dividing by the size of the smaller tree of the two.

8 EXPERIMENTAL RESULTS

In the following experiments we use �tness, size, and

diversity as objectives. The implementation of the ob-

jectives is as follows. Fitness is the fraction of all 2n

input combinations handled correctly. For size, we use

1 over the number of nodes in the tree as the objective

value. The diversity objective is the average squared

distance to the other population members.

8.1 USING FITNESS, SIZE, AND

DIVERSITY AS OBJECTIVES

Fig. 5 shows the graph of Fig. 3 for the method of

using �tness, size, and diversity as objectives. The av-

erage tree size remains extremely small. In addition,

a glance at the graphs indicates that correct solutions

are found more quickly. To determine whether this

is indeed the case, we compute the computational ef-

fort, i.e. the expected number of evaluations required

to yield a correct solution with a 99% probability, as

described in detail by Koza (1994).

The impression that correct solutions to 3-parity are

found more quickly for the multi-objective approach

(see Figure 6) is con�rmed by considering the com-

putational e�ort E; whereas GP with the tree size

limit requires 72,044 evaluations, the multi-objective

approach requires 42,965 evaluations. For the 4-

parity problem, the di�erence is larger; basic GP needs

tive, this proliferation was not observed, and the standard
Pareto criterion also worked satisfactorily.
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Figure 6: Probability of �nding a solution and com-

putational e�ort for 3-parity using basic GP and the

multi-objective method.
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Figure 7: Probability of �nding a solution and compu-

tational e�ort for 4-parity for basic GP and the multi-

objective method. The performance of the multi-

objective method is considerably superior.

5,410,550 evaluations, whereas the multi-objective ap-

proach requires only 238,856. This is a dramatic im-

provement, and demonstrates that our method can be

very e�ective.

Finally, experiments have been performed using the

even more diÆcult 5-parity problem. For this prob-

lem, basic GP did not �nd any correct solutions within

a million evaluations. The multi-objective method did

�nd solutions, and did so reasonably eÆciently, requir-

ing a computational e�ort of 1,140,000 evaluations.

Table 3 summarizes the results of the experiments.

Considering the average size of correct solutions on

3-parity, the multi-objective method outperforms all

methods that have been compared, as the �rst solution

it �nds has 30.4 nodes on average. What's more, the

multi-objective method also requires a smaller num-

ber of evaluations to do so than the other methods.

Finally, perhaps most surprisingly, it �nds correct so-

lutions using extremely small populations, typically

containing less than 10 individuals. For example, the

average population size over the whole experiment for

3-parity was 6.4, and 8.5 at the end of the experiment,

Table 3: Results of the experiments (GP and Multi-

Objective rows). For comparison, results of Koza's

(1994) set of experiments (population size 16,000) and

the best results with other con�gurations (population

size 4,000) found there. E: computational e�ort, S:

average tree size of �rst solution, Pop: average popu-

lation size.

3-parity E S Pop
GP 72,044 93.67 1000
Multi-objective 42,965 30.4 6.4
Koza GP 96,000 44.6 16,000
Koza GP-ADF 64,000 48.2 16,000
4-parity E S Pop
GP 5,410,550 154 1000
Multi-objective 238,856 68.5 15.8
Koza GP 384,000 112.6 16,000
Koza GP-ADF 176,000 60.1 16,000
5-parity E S Pop
GP 11 n.a. n.a
Multi-objective 1,140,000 218.7 49.7
Koza GP 6,528,000 299.9 16,000
Koza GP 1,632,000 299.9 4,000
Koza GP-ADF 464,000 156.8 16,000
Koza GP-ADF 272,000 99.5 4,000

1No solutions were found for 5-parity using basic GP.

and the highest population size encountered in all 30

runs was 18. This suggests that the diversity main-

tenance achieved by using this greedy multi-objective

method in combination with an explicit diversity ob-

jective is e�ective, since even extremely small popula-

tions did not result in premature convergence.

Considering 4 and 5-parity, the GP extended with the

size and diversity objectives outperforms both basic

GP methods used by Koza (1994) and the basic GP

method tested here, both in terms of computational

e�ort and tree size. The Automatically De�ned Func-

tion (ADF) experiments performed by Koza for these

and larger problem sizes perform better. These prob-

ably bene�t from the inductive bias of ADFs, which

favors a modular structure. Therefore, a natural di-

rection for future experiments is to also extend ADFs

with size and diversity objectives.

For comparison, we also implemented an evolutionary

multi-objective technique that does keep some domi-

nated individuals. It used the number of individuals by

which an individual is dominated as a rank, similar to

the method described by Fonseca and Fleming (1993).

The results were similar in terms of evaluations, but

the method keeping strictly non-dominated individuals

worked faster, probably due to the calculation of the

distance measure. Since this is quadratic in the pop-

ulation size, the small populations of multi-objective

save much time (about a factor 7 for 5-parity), which

made it preferable.
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As a control experiment, we also investigated whether

the diversity objective is really required by using

only �tness and size as objectives using the algorithm

that was described. The individuals found are small

(around 10 nodes), but the �tness of the individuals

found was well below basic GP, and hence the diver-

sity objective was indeed performing a useful function

in the experiments.

8.2 OBTAINING STILL SMALLER

SOLUTIONS

Finally, we investigate whether the algorithm is able

to �nd smaller solutions, after �nding the �rst. Af-

ter the �rst correct solution is found, we monitor the

smallest correct solution. Although the �rst solution

size of 30 was already low compared to other methods,

the algorithm rapidly �nds smaller correct solutions.

The average size drops to 22 within 4,000 additional

evaluations, and converges to around 20. The smallest

tree (found in 12 out of 30 runs) was 19, i.e. equalling

the presumed minimum size. On 4-parity, solutions

dropped in size from the initial 68.5 to 50 in about

10,000 evaluations, and to 41 on average when runs

were continued longer (85,000 evaluations). In 12 of

the 30 runs, minimum size solutions (31 nodes) were

found. Using the same method, a minimum size solu-

tion to 5-parity (55 nodes) was also found.

The quick convergence to smaller tree sizes shows that

at least for the problem at hand, the method is e�ec-

tive at �nding small solutions when it is continued run-

ning after the �rst correct solutions have been found,

in line with the seeding experiments by Langdon and

Nordin (2000).

9 CONCLUSIONS

The paper has discussed using multi-objective meth-

ods as a general approach to avoiding bloat in GP

and to promoting diversity, which is relevant to evo-

lutionary algorithms in general. Since both of these

issues are often implicit goals, a straightforward idea

is to make them explicit by adding corresponding ob-

jectives. In the experiments that are reported, a size

objective rewards smaller trees, and a diversity objec-

tive rewards trees that are di�erent from other individ-

uals in the population, as calculated using a distance

measure.

Strongly positive results are reported regarding both

size control and diversity maintenance. The method

is successful in keeping the trees that are visited small

without requiring a size limit or a relative weighting of

�tness and size. It impressively outperforms basic GP

on the 3, 4, and 5-parity problem both with respect

to computational e�ort and tree size. Furthermore,

correct solutions of what we believe to be the minimum

size have been found for all problem sizes examined,

i.e. the even 3, 4, and 5-parity problems.

The e�ectiveness of the new way of promoting diver-

sity proposed here can be assessed from the follow-

ing, which concerns the even 3, 4, and 5-parity prob-

lems. The multi-objective algorithm that was used

only maintains individuals that are not dominated by

other individuals found so far, and maintains all such

individuals (except those with identical objective vec-

tors). Thus, only non-dominated individuals are se-

lected after each generation, and populations (hence)

remained extremely small (6, 16, and 50 on average,

respectively). In de�ance of this uncommon degree of

greediness or elitism, suÆcient diversity was achieved

to solve these problems eÆciently in comparison with

basic GP method results both as obtained here and as

found in the literature. Control experiments in which

the diversity objective was removed (leaving the �t-

ness and size objectives) failed to maintain suÆcient

diversity, as would be expected.

The approach that was pursued here is to make de-

sired characteristics of search into explicit objectives

using multi-objective methods. This method is simple

and straightforward and performed well on the prob-

lem sizes reported, in that it improved the performance

of basic GP on 3 and 4-parity. It solved 5-parity rea-

sonably eÆciently, even though basic GP found no so-

lutions on 5-parity. For problem sizes of 6 and larger,

basic GP is no longer feasible, and more sophisticated

methods must be invoked that make use of modular-

ity, such as Koza's Automatically De�ned Functions

(1994) or Angeline's GLiB (1992). We expect that the

multi-objective approach with size and diversity as ob-

jectives that was followed here could also be of value

when used in combination with these or other existing

methods in evolutionary computation.
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Abstract

Reinforced Genetic Programming (RGP) en-

hances standard tree-based genetic program-

ming (GP) [7] with reinforcement learning

(RL)[11]. Essentially, leaf nodes of GP trees

become monitored action-selection points,

while the internal nodes form a decision tree

for classifying the current state of the prob-

lem solver. Reinforcements returned by the

problem solver govern both �tness evaluation

and intra-generation learning of the proper

actions to take at the selection points. In

theory, the hybrid RGP system hints of mu-

tual bene�ts to RL and GP in controller-

design applications, by, respectively, provid-

ing proper abstraction spaces for RL search,

and accelerating evolutionary progress via

Baldwinian or Lamarckian mechanisms. In

practice, we demonstrate RGP's improve-

ments over standard GP search on maze-

search tasks

1 Introduction

The bene�ts of combining evolution and learning,

while largely theoretical in the biological sciences,

have found solid empirical veri�cation in the �eld

of evolutionary computation (EC). When evolution-

ary algorithms (EAs) are supplemented with learning

techniques, general adaptivity improves such that the

learning EA �nds solutions faster than the standard

EA [3, 16]. These enhancements can stem from bi-

ologically plausible mechanisms such as the Baldwin

E�ect [2, 14], or from disproven phenomena such as

Lamarckianism [8, 4].

In most learning EAs, the data structure or program

in which learning occurs is divorced from the structure

that evolves. For example, a common learning EA is a

hybrid genetic-algorithm (GA) - arti�cial neural net-

work (ANN) system in which the GA encodes a basic

ANN topology (plus possibly some initial arc weights),

and the ANN then uses backpropagation or hebbian

learning to gradually modify those weights [17, 10, 6].

A Baldwin E�ect is often evident in the fact that the

GA-encoded weights improve over time, thus reduc-

ing the need for learning [1]. Lamarckianism can be

added by reversing the morphogenic process and back-

encoding the ANN's learned weights into the GA chro-

mosome prior to reproduction [12].

Our primary objective is to realize Baldwinian and

Lamarckian adaptivity within standard tree-based ge-

netic programs [7], without the need for a complex

morphogenic conversion to a separate learning struc-

ture. Hence, as the GP program runs, the tree nodes

can adapt, thereby altering (and hopefully improving)

subsequent runs of the same program. Thus, the typi-

cal problem domain is one in which each GP tree exe-

cutes many times during �tness evaluation, for exam-

ple, in control tasks.

2 RGP Overview

Reinforced Genetic Programming combines reinforce-

ment learning [11] with conventional tree-based genetic

programming [7]. This produces GP trees with rein-

forced action-choice leaf nodes, such that successive

runs of the same tree exhibit improved performance on

the �tness task. These improvements may or may not

be reverse-encoded into the genomic form of the tree,

thus facilitating tests of both Baldwinian and Lamar-

ckian enhancements to GP.

The basic idea is most easily explained by exam-

ple. Consider a small control program for a maze-

wandering agent:
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(if (between 0 x 5)

(if (between 0 y 5)

(choice (move-west) (move-north)) R1

(choice (move-east) (move-south))) R2

(if (between 6 x 8)

(choice (move-west) (move-east)) R3

(choice (move-north) (move-south)))) R4

Figure 1 illustrates the relationship between this pro-

gram and the 10x10 maze. Variables x and y specify

the agents current maze coordinates, while the choice

nodes are monitored action decisions. The between

predicate simply tests if the middle argument is within

the closed range speci�ed by the �rst and third argu-

ments, while the move functions are discrete one-cell

jumps. So if the agent's current location falls within

the southwest region, R1, speci�ed by the (between 0

x 5) and (between 0 y 5) predicates of the decision

tree, then the agent can choose between a westward

and a northward move; whereas the eastern edge gives

a north-south option.

During �tness testing, the agent will execute its tree

code on each timestep and perform the recommended

action in the maze, which then returns a reinforcement

signal. For example, hitting a wall may invoke a small

negative signal, while reaching a goal state would gar-

ner a large positive payback.

Initially, the choice nodes select randomly among their

possible actions, but as the �tness test proceeds, each

node accumulates reinforcement statistics as to the rel-

ative utility of each action (in the context of the par-

ticular location of the choice node in the decision tree,

which reects the location of the agent in the maze).

After a �xed number of random free trials, which is

a standard parameter in reinforcement-learning sys-

tems (RLSs), the node begins making stochastic action

choices based on the reinforcement statistics. Hence,

the node's initial exploration gives way to exploitation.

Along with determining the tree's internal decisions,

the evolving genome sets the range for RL exploration

by specifying the possible actions to the choice nodes;

the RLS then �ne-tunes the search. By including al-

ternate forms of choice nodes in GP's primitive set,

such as choice-4, choice-2, choice-1 (direct action),

where the integer denotes the number of action argu-

ments, the RGP's learning e�ort comes under evolu-

tionary control. Over many evolutionary generations,

the genomes provide more appropriate decision trees

and more restricted (yet more relevant) action options

to the RLS.

In the maze domain, learning has an implicit cost due

to the nature of the �tness function, which is based on

X

Y
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R3

R4

0

9
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?

?

?

?

Start
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If (between 0 x 5)
Y N

Y NY N

N

Figure 1: The genetic program determines a partition-

ing of the reinforcement-learning problem space.

the average reinforcement per timestep of the agent.

So an agent that moves directly to a goal location (or

follows a wall without any explorative "bumps" into it)

will have higher average reinforcement than one that

investigates areas o� the optimal path. Initially, ex-

plorative learning helps the agent �nd the goal, but

then evolution further hones the controllers to follow

shorter paths to the goal, with little or no opportu-

nity for stochastic action choices. Hence, the average

reinforcement (i.e. �tness) steadily increases, �rst as

a result of learning (phase I of the Baldwin E�ect)

and then as a result of genomic hard-wiring (phase II)

encouraged by the implicit learning cost [9].

To exploit Lamarckianism, RGP can replace any

choice node in the genomic tree with a direct action

function for the action that was deemed best for that

node. Hence, if the choice node for R1 in Figure 1

learns that north is the best move from this region

(while choices for R2 and R3 �nd eastward moves most

pro�table, and R4 learns the advantage of southward

moves), then prior to reproduction, the genome can be

specialized to:

(if (between 0 x 5)

(if (between 0 y 5) (move-north) (move-east))

(if (between 6 x 8) (move-east) (move-south)

This represents an optimal control strategy for the ex-

ample, with no time squandered on exploration.
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3 Reinforcement Learning in RGP

Reinforcement Learning comes in many shapes and

forms, and the basic design of RGP supports many of

these variations. However, the examples in this paper

use Q-learning [15] with eligibility traces.

Q-learning is an o�-policy temporal di�erencing form

of RL. In conventional RL terminology, Q(s,a) denotes

the value of choosing action a while in state s. Tempo-

ral di�erencing implies that to update Q(s,a) for the

current state, st, and most recent action, at, utilize

the di�erence between the current value of Q(st; at),

and the sum of a) the reward, rt+1, received after exe-

cuting action a in state s, and b) the discounted value

of the new state that results from performing a in s.

For the new state, st+1, its value, V (st+1) is based on

the best possible action that can be taken from st+1,

or maxaQ(st+1; a). Hence, the complete update equa-

tion is:

Q(st; at) Q(st; at)+

�[rt+1 + maxaQ(st+1; a)�Q(st; at)] (1)

Here,  is the discount rate and � is the step size

or learning rate. The expression in brackets is the

temporal-di�erence error, Æt. Thus, if performing a in

s leads to positive (negative) rewards and good (bad)

next states, then Q(s; a) will increase (decrease), with

the degree of change governed by � and .

To implement these Q(s,a) updates (the core activity

of Q-learning) within GP trees, RGP employs qstate

objects, one per choice node. Each qstate houses a list

of state-action pairs (SAPs), where the value slot of

each SAP corresponds to Q(s,a). For each GP tree, a

qtable object is generated. It keeps track of all qstates

in the tree, as well as those most recently visited and

the the latest reinforcement signal.

In conventional RL, all possible states, �, are deter-

mined prior to any learning, with each state typically a

point in a space whose dimensions are the relevant en-

vironmental factors and internal state variables of the

agent. So for a maze-wandering robot, the dimensions

might be discretized x and y coordinates along with

the robot's energy level. Conversely, in RGP, each in-

dividual GP trees determines its own � in a manner

that generally partitions a standard RL state space

into coarser regions. Whereas a basic Q-learner would

divide an NxM maze into NM cell states and then try

to learn optimal actions to perform in each cell, an

RGP individual divides the same maze into a number

(normally much less than NM) of region states and

uses RL to learn a mutual proper action for every cell

in each region. Thus, evolution proposes state-space

partitions and possible actions for each partition, while

learning �nds the most appropriate of those actions.

In RGP, the trail through a program tree from the

root to a choice node embodies an RL state. In other

words, the Q-learning state of the agent-environment

duo can only be found by running the tree in the

current context and registering the choice node that

gets activated. The program thus serves as a state-

classi�cation tree with action options at the leaves.

Hence, during Q-learning, the temporal-di�erence up-

date of Q(st; at) must wait until the succeeding run of

the tree, since only then is st+1 known.

This basic scheme will then support a wide array

of reinforcement-learning mechanisms, which typically

di�er in their methods of estimating V (st+1) and then

updating V (st) or Q(st; at) [11]. Furthermore, a few

simple additions to the SAP objects enable eligibility

tracing and full backups, both of which greatly speed

the convergence of Q-learning to an optimal control

strategy.

Figure 3 graphically illustrates this basic process,

wherein the GP tree sends a move command to the

simulator/problem-solver, which makes the move and

returns a reinforcement to the RLS qtable, which

stores it and waits until the next run of the GP tree to

determine the abstract state, st+1 = R3 of the problem

solver. The RLS then computes the temporal di�er-

ence error and sends it to the most recently activated

SAP, (R2, North), which relays a decayed (via the el-

igibility trace) version to its predecessor, and so on

back through the sequence of active SAPs.

The pseudocode of Figure 2 gives a rough sketch of

the combination of RL and GP in RGP.

3.1 Maze Search Examples

Maze searching is a popular task in the RL literature,

partly due to the clear mapping from states and ac-

tions to 2d graphic representations of optimal strate-

gies (i.e., grids with arrows). Despite this graphic sim-

plicity, the underlying search problem is quite com-

plex, since the agent lacks any remote sensing capabil-

ities, let alone a birds-eye view of the maze. So trial

and error is the only feasible approach, and learning

from these errors is essential for success.

Figure 4 shows a 10x10 maze with a start point in

the southwest and goal site on the eastern edge. The

maze includes a few subgoals along the optimal path,

so agents have opportunities for gaining partial credit.

Reinforcements are 10 for the main goal, 2 for each
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For generation = 1 to max-generations

8a 2 agent-population

steps = 0

For episode = 1 to max-episodes

SAPold = ;, rewardold = ;

ps-state(a) = start

Repeat

SAPnew = run-GP-tree(a)

[rewardnew , ps-state(a)] = do-action(SAPnew)

do-temp-di�(SAPold ,rewardold ,SAPnew)

predecessor(SAPnew) = SAPold; for elig trace

SAPold = SAPnew, rewardold = rewardnew

steps = steps + 1

Until ps-state(a) = goal or timeout

Fitness(a) = total-reward(a) / steps

Figure 2: Pseudocode overview of RGP

subgoal, -1 for hitting a wall, and 0 for all other moves.

Agents are also penalized -1 for repeating any cell that

occured within the past 20 moves (i.e., minimum loop

= 21). The optimal path has 20 steps, with a total

payo� of 18 (1 goal plus 4 subgoals). Thus, any agent

who takes the shortest path will have an average re-

inforcement per timestep, �R, of 0.9. Agent �tness is

computed as e
�R, so maximum �tness is 2.46 in this

maze.

The RGP functions (with number of arguments in

parentheses) are: 1) Logical functions: and(2), or(2),

not(1), in-region(4); 2) Conditionals: if(3); 3) Moni-

tored Actions: mve(0), mvw(0), mvn(0), mvs(0); and

4) Monitored Choices: pickmove(0)

The in-region predicate, in-region(x1,x2,y1,y2), re-

turns true i� the x coordinate of the agent's location

is in the closed range [x1, x2] and the y coordinate

is within [y1, y2]. The 4 move actions are for mov-

ing east, west, north and south, respectively. These

actions expand into single-action choice nodes so that

the resulting reinforcement signals can be propagated

through the reinforcement learning system to the other

choice nodes. Pickmove is the only true trial-and-error

learning function. It expands into a choice node with

all 4 action possibilities. The if, and, or and not func-

tions are standard. Terminals for an NxN maze are the

integers 0 through N-1; all maze indexing is 0-based.

Strong typing of the RGP trees insures that action

and choice nodes occur only at the leaves. The GP

uses two-individual-tournament selection with single-

individual elitism.

During �tness testing, each agent gets 3 attempts

SAP
  R1
West

SAP
  R1
North

t SAP

North
  R2

t t

t

N

t+1r

Reinforcement Learning 
             System

Wait

"R3"

Proceed

R1

R2

R3

GP

Maze Problem Solver

"North"
"N"

Figure 3: The basic control ow in RGP: The GP tree

sends a movement command to the problem solver,

which carries it out and returns the reinforcement to

the RLS. After waiting to receive the next state from

the GP, the RLS computes the temporal di�erence, Æt
and passes it down the chain of recently-active SAPs.

The SAPs are separated from the GP tree only for

illustrative purposes.

Objective: Find optimal strategy for traversing the maze

from start to goal.

Terminal set: 0...N-1 (for an NxN maze)

Function set: and, or, not, in-region, if,

mve, mvw, mvn, mvs, pickmove

Standard �tness: e
�R

GP Parameters: population = 500, generations = 400,

minimum loop = 21, pmut = 0:5, pcross = 0:7

RL Parameters: � = 0:1 ,  = 0:9, � = 0:9 , episodes = 3,

max-steps = 50, free trials = 16, penalty = -1,

goal reward = 10, subgoal reward = 2

Table 1: Tableau for RGP used for the 10x10 maze-

search problem

at the maze, i.e., 3 reinforcement-learning episodes,

with a maximum of 50 steps per attempt (i.e., max-

steps=50). Each choice node selects actions randomly

during the �rst 16 visits (i.e., free trials=16), after

which the SAP with highest value gets priority. The

discount, , and decay, �, rates for RL are both 0.9,

while � = 0:1 is the learning rate (i.e., step-size param-

eter). Many RL systems use a much higher � value,

but a lower value seems more appropriate for the non-

Markovian situations incurred by RGP's coarse state-

space abstractions: it is dangerous to allow the rein-

forcement of any one move to have excessive inuence

on a Q(s,a) value when it is unclear whether action a in

state s will yield anything close to the same result on

another occasion. Table 1 summarizes these details.
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Figure 4 shows the maze along with the �ttest strategy

for the �nal generation, as depicted by arrows. Figure

7 displays a logically-simpli�ed, intron-free version of

the code for this strategy; the original contained ap-

proximately 150 internal nodes. Figures 5 and 6 show

a �tness graph and a plot of the average learning ef-

fort per generation. The latter is simply the average

number of decisions made at all of the active choice

nodes in the population, where \active" means that

control comes to the node at least once during �tness

evaluation. An average near 4 reveals a majority of

pickmove nodes, while values closer to 1 indicate the

dominance of single-action choice nodes.

Note the very slow progress in the �rst 100 genera-

tions, followed by a rapid increase from generation

100 to 175. Since the GP uses elitism, the rugged

maximum-�tness plots in these transient periods re-

ect stochastic behavior, which has only one source:

pickmove. Hence, the agents use learning to evolution-

ary advantage, as is characteristic of the �rst stage of

the Baldwin E�ect. But then, near generation 175, an

optimally hard-wired agent emerges and �tness shoots

up to the maximum value. The stability of the maxi-

mum curve after this ascent entails a total absence of

active learning nodes in the highest-�tness individuals.

The learning graph of Figure 6 shows the classic Bald-

winian progression, with an initial increase in learning

rate followed by a gradual decline as learned strat-

egy components become hard-wired. The learning

drop correlates with the �tness increase, with the �-

nal plunge occuring during convergence: the lack of

exploratory moves on the path to the goal facilitates

a maximum average reward.

3.1.1 Performance Comparison

We compare the performance of four Evolutionary Al-

gorithms: 1) a standard GP, 2) a standard GP with

one extra function-set member: randmove(0), 3) an

RGP, and, 4) an RGP with 20% Lamarckianism.

As shown in Table 2, the RGP employs the same func-

tion set as in the previous example, while the standard

GP lacks a pickmove equivalent, plus its four move

functions are not monitored. For the second EA, rand-

move is a function that randomly selects a move in

one of the 4 directions. It does not keep track of rein-

forcements nor send information to previously-called

randmove nodes. Hence, it represents the stochastic

exploration of the early stages of RL, but without the

credit assignment and adaptivity.

In Lamarckian RGP, reverse encoding of learned moves

into the genome is on a per-individual basis, so 20% of

Start

Goal

*

* *

*

Figure 4: The 10x10 test maze. Asterisks denote sub-

goal cells.
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Figure 5: Fitness progression in a standard run of RGP

on the 10x10 maze of Figure 4

the maze walkers have all of their active multiple-move

choice nodes converted into single-action nodes (for the

action that gave the best results for that choice node

during the run) immediately prior to reproduction.

The four EAs were tested on three 5x5 mazes, the most

diÆcult of which appears in Figure 8. The perfor-

mance metric is the average of the best-of-generation

�tnesses for 100 runs of 50 individuals over 50 genera-

tions. On the two easier mazes (not shown), Lamarck-

ian RGP �nds optimal solutions much faster on aver-

age than the other 3 EAs, with basic RGP outperform-

ing the two GP variants. However, in the most diÆ-

cult test, RGP overtakes Lamarckian RGP, as shown

in Figure 9, while the two GP variants lose ground to

the RGP versions. In general, the three comparisons
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Figure 6: Progression of population-averaged learning

e�ort in an RGP run on the 10x10 maze of Figure 4

(if (in-region 1 3 0 4)

(if (in-region 1 1 5 5)

(if (not (in-region 1 8 1 2))

(if (in-region 5 9 8 8) (pickmove) (mve))

(mvw))

(if (in-region 2 3 0 1) (mvw) (mvn)))

(if (in-region 6 6 7 8)

(if (in-region 0 2 9 9) (mve) (mvw))

(if (or (in-region 4 8 2 2) (in-region 1 5 0 6))

(mve)

(if (in-region 1 7 2 8) (mvs) (mvn)))))

Figure 7: Logically-simpli�ed, intron-free Lisp code for

the strategy of the most �t individual of generation 400

of the 10x10 maze search.

Start

Goal

* *

*

Figure 8: The most diÆcult of the three 5x5 mazes

used in the EA comparison tests. Asterisks denote

subgoal locations.

reveal a signi�cant advantage to the reinforced GPs

with respect to total evolutionary e�ort (i.e., �tness

gain per individual tested), whether via Baldwinian or

Lamarckian processes.

Objective: Find optimal strategy for traversing

the maze from start to goal.

Terminal set: 0...4

Function set: and, or, not, in-region, if,

mve, mvw, mvn, mvs, pickmove

Evol. Algs.: GP, GP + Random Nodes,

RGP, Lamarckian RGP

Standard �tness: e
�R

Runs: 100 per algorithm per maze

GP Parameters: population = 50, generations = 50,

minimum loop = 11, pmut = 0:5,

pcross = 0:7 plamarck = 0:2

RL Parameters: � = 0:1 ,  = 0:9, � = 0:9 , episodes = 10,

max-steps = 15 or 20, free trials = 8,

goal reward = 10, subgoal reward = 2,

penalty = -1

Table 2: Tableau for Evolutionary Algorithms used in

the comparative runs of the 5x5 maze in Figure 8

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Generation

A
vg

−
M

ax
−

F
itn

es
s

GP
GP+Random−Nodes
RGP
Lamarckian−RGP

Figure 9: Comparative average �tness progressions of

100 runs each of the 4 EAs on the maze of Figure 8.

However, the addition of RL increases the compu-

tational e�ort of �tness testing by about 50% for a

single-episode learning test. But for multiple-episode

learning, the e�ort/episode ratio decreases substan-

tially, since a) the cost of generating the RL data struc-

tures is paid only for the �rst episode, and b) as learn-

ing progresses, fewer actions are chosen stochastically,

more eÆcient solutions are discovered, and hence fewer

episode time-outs occur. In other tests, RGP permit-

ted monitored choices at internal nodes of the GP tree.

The results were similar to the best curves of Figure

9, but the computational e�ort was an order of mag-

nitude worse than RGP. In general, further testing on

a variety of problems is necessary to assess the com-

putational tradeo�s of RGP versus standard GP.

4 Related Work

To date, the only direct combination of tree-based GP

and RL is Iba's QGP system [5]. It uses GP to generate
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a structured search space for Q-Learning. Given a set

of possible state variables (e.g. w,x,y,z), QGP evolves

Q-tables with variable combinations as the dimensions.

For example, the genotype (TAB (* x y) (+ z 5)) spec-

i�es a 2-d table with xy as one dimension and z+5 as

the other. The individual states in this table have

the same level of abstraction and scope: each circum-

scribes the same volume in the underlying continuous

state space. In several multi-agent maze-navigation

tasks, QGP generates useful Q-tables to simplify RL,

and in situations with many possible state variables,

QGP outperforms standard RL, which ounders in an

exponential search space.

In contrast to QGP, which applies GP to improve RL,

RGP uses RL to enhance GP. While Iba constrains his

GP trees to a small set of functions and terminals to

generate well-formed Q-tables, RGP sanctions the evo-

lution of amorphous decision trees that embody het-

erogeneous abstractions of the RL search space. One

qstate in RGP may represent a single maze cell, while

another, in the same GP tree, can encompass several

rows and columns or even a concave region or a set of

disjoint regions. This reects the philosophy that the

proper abstractions are not necessarily homogeneous

partitions of a select quadrant of the search space.

Unfortunately, our approach incurs a much larger evo-

lutionary search cost than Iba's, making the present

RGP an unlikely aid to standard RL. But for improv-

ing standard GP, RGP holds some promise, since it

endows GP trees with behavioral exibility.

Whereas QGP strongly couples GP and RL, RGP

allows evolution to determine the degree of learning

needed for a particular problem, thus facilitating the

standard Baldwininan transition from early plasticity

to later hard-wiring in static problem domains.

In the other previous GP/RL hybrid, Teller's use of

credit assignment in neural programming [13] more

closely matches the goals of our RGP research: to

supplement genetic programming with internal rein-

forcements in order to increase search eÆciency. How-

ever, the di�erences between RGP trees and neural

programs are quite extreme, as are the associated re-

inforcement mechanisms. While RGP trees are typi-

cally control-ow structures, neural programs involve

data ow between distributed neural processors. Inter-

nal reinforcement of neural programs (IRNP) closely

ressembles supervised learning in conventional arti�-

cial neural networks: discrepancies between desired

and actual system outputs over a training set govern

internal updates. Conversely, RGP is designed for re-

inforcement learning in the standard machine-learning

sense [11]: situations where the environmental feed-

back signals constitute rewards or punishments but do

not explicitly indicate the correct problem-solver ac-

tion. The two key characteristics of RL: trial-and-error

search and (potentially) delayed rewards, are intrinsic

to RGP. This makes it amenable to a host of control

tasks, whereas IRNP appears more tailored for classi-

�cation problems.

The collective results of QGP, RGP and IRNP indicate

that combinations of GP and credit-assignment harbor

potential bene�ts for the whole spectra of adaptive

systems, from supervised and reinforced learners to

evolutionary algorithms.

5 Discussion

RGP supplements evolutionary search with reinforce-

ment learning, providing a hybrid approach for situa-

tions in which each GP tree runs several times during

�tness evaluation, e.g., control tasks. Ideally, RGP

should bene�t both GP and RL. As shown above, the

added plasticity that RL gives to GP trees can speed

evolutionary convergence to good solutions via Bald-

winian and/or Lamarckian mechanisms. Conversely,

using GP to determine proper state abstractions for

RL may yield a huge savings for RL systems that get

bogged down in immense �ne-grained search spaces.

Of course, the hybrid bears added computational

costs. The learning GP trees require more space and

time to execute than standard GP trees, and although

a single RL session in the abstracted state space often

runs much faster than in the detailed state space, the

evolutionary e�ort to �nd the proper abstraction can

dominate total run-time complexity. This does not

preclude the possibility of mutual improvements for

both RL and GP, but the potential for such is clearly

problem speci�c and probably only empirically ascer-

tained.

Essentially, RGP inverts the typical control ow of a

tree-based genetic program. For example, Koza [7] at-

tacks the broom-balancing-on-a-moving-cart problem

with a set of primitives whose composite programs re-

turn an action value from the top of the tree. How-

ever, the corresponding RGP solution involves primi-

tives that attempt to classify the current problem state

(in terms of the cart's velocity, the broom's angle, etc.)

and thereby funnel control to a leaf node, which houses

a cart command or a monitored, reinforced choice of

such commands. Thus, RGP enforces a di�erent mod-

elling scheme, one which typically requires strong typ-

ing of the primitive functions. As with standard GP,

designing function sets is more of an art than a sci-

ence in RGP, but the task is no more complicated,
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and quite possibly more natural, when viewed from

RGP's classify-and-act perspective.
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`bQRP2NGQRK0paiYVaW�STVaQR]gVaU«WqVaP#N1c\K�f@]g^�K��+Z\]_^2Z«xs`bKn`©QRZsK�]uU\WqVaPRy
S�NGQ[]uVdU�WqP[VaSÓ��V�QRZ	V�WFQ[Z\K©MOVI`b]uQR]gVaUO`:ZsN£f@]gU\p���K�K0U	f@]_`b]uQRKnc
STVd`bQ�PRKn^�K0UdQ[oui�Ä ÆnÉ v9l�Z\]_`�`bQRP2NGQ[K�pai	`bZsNaouom�OK7VdMzQR]gS�N�oF]gU1N

`RK�Us`RK�QRZsN�Q�N©S�NG¤z]gS�x\SçV�W·Ð�`RZ\Vax\o_c��OKLPRKnNa^2Z\Knc	ÄÅ`bKn^�VdUsc
NacsczK�Usc�]uU�ÄÅÚ ÉbÉ N�Usc7P[K�Q2N�]gU\K0c#x\M#Q[V�Q[Z\K:�OUsN�o@`jQ[K�M��Ä×�sP2`bQ
NacsczK�Usc�]gU³ÄÅÚ ÉRÉ v Ò ]uUs^�K©QRZ\K0PRK7]_`+N�QRP2Nac\K�V�ÃY��K�Qj��K�K0UpaK�U\y
K�P2N�ogogi	P[K�Q2N�]gU\]uUsp�QRZsK�o_Na`bQLfGN�ogx\K û ü WqVaxsUsc�NaUscY`RK0N�P2^2Z\]gU\p
WqVaP7��K�QRQRK0P7f£NaouxsK0`©V�W�Ð���KTZsN£faK�]uUIQ[PRVzczxs^�K0c�N^�VaUO`jQ2N�UIQ

��� ë�]gUdQ[V�c\K��sU\]uQR]gVaU�ÄÅÚ É �+Z\]_^2ZAQ[x\U\K0`�Q[Z\K	P[K0`RM�K0^¡Q[]ufdK��K�]gpaZIQ+V�WmQ[Z\K7VaM\QR]gS�]g¬0N�QR]gVaU1^�P[]uQRK�P[]_N\v
l�Z\K7WqxsUs^¡Q[]uVdU���Ä � �  É �+]uogo��OK#xO`bKncYNa`�Q[Z\K#�sQRU\Kn`R`�Wqx\Us^¡y
QR]gVaU1]gUQRZsK���K�U\K�QR]_^#�¯P[VapdP[NaSTS�]gU\pT`bK�QbQ[]uU\pOv�l�ZsK�czK0`R]gpaU
V�WLQRZ\KY^�VaUIQRP[VaogogK�P2`�ª¯]¦v Kav�QRZsKY`bK�Q�WqP[VaS§�+Z\]g^2Z � ^�N�UÑ��K
^2Z\VI`bK0UFªz�+]uogoF��K#`bM�K0^�]h�OK0c	U\K�¤@Q0v
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Î�U@i�^�VaUIQ[PRVdouogK�P���K�]gU\p�K�fdVaogfaK0ck�+Z\]_^2Z�xO`bKn`+N�^�K�PRQ[Na]uU�x\Mzy
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^�VdUIQRP[Vao�taK0PRUsK�o¦ª�N�(�ó�ú)(�ð"*�+dó�÷nö>ô2ó��+Z\]g^2Z³S�NaMs`7Va�\ jK0^¡Q[]ufdK
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�sU\]uQRK�`jQ2NGQ[K�S�Na^2Z\]gU\KdªON�UOcYN�U��dô�õ{ð"*,+aó�÷0ö>ô2óT�+Z\]_^2ZQRxsPRUs`
QRZsK��sU\]uQRK�`jQ2NGQRK�S�Nd^2Z\]uUsKaÊ `7VaxzQ[M\xzQ�]uUIQRVYNd^¡Q[]uVdUFv�Ô9`R`RK�U\y
QR]_N�ogogiQRZ\Kn`bK�Na^¡Q[]uVdUs`�N�P[K�STVGfaK0S�K0UIQ[`�VaW¯QRZsK�czK0f@]g^�K�VaU�N
Qj��V�y{cz]uSTK0Us`b]gVaUON�o�paP[]gcFv�l�Z\K�MsPR]gUs^�]gMsNao�Q[Na`RtYVaW9VaxsP#^�VaU\y
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å�]updx\PRK Æ æKJLfdK�P2N�ogoML9VaUIQRP[VaogouK0P+J�Kn`b]gpaU

QRP[VaogogK�P2`�^�VaUO`b]_`jQ2`�V�Ww�\x\]go_cz]uUsp#x\M�N�QRP2NG jKn^¡Q[VaP[]ui#]gUkè�v�l�Z\]g`
]_`+czVaU\K7]gU�QRZ\K©WqVdouogVG�+]gU\p���N£iav
l�Z\KkNd^¡Q[VaP#czK0fI]_^�K	N�og��N£iz`7^�VdUIQ[N�]gUs`7fGNaoux\Kn` û ü NaUsc û ü	�Ëþ
czK��sU\]gU\pÕ]uQ[`«^�x\PRP[K�UIQ³N�Usc®M\P[K�f@]uVdxs`�MOVI`b]uQR]gVaUs`0ª�PRKn`bM�K0^�y
QR]gfaK0ouidªËVaU�N	paP[]_c1VGfaK0P�QRZsK�Vd�z jK0^�QR]gfaK�Wqx\Us^¡Q[]uVdUFÊ `�c\VaS�N�]gU
è�v9ÎLc\cz]uQR]gVaUsNaouogiaªO]hQLZ\Vao_c\`�N�^�x\PRP[K�UIQ�cz]gP[K0^¡Q[]uVdU	fdK0^�QRVaPON ü
VaU«Q[Z\]_`#paP[]_cËª·�+Zs]g^2Z³`RMsN�Us`�VaU\K�VdP#STVaP[K�STK0`RZ³ouK0U\p�Q[Zs`�v
P¯N�ogx\Kn`�WqVdP û ídª ûwþ N�UOcQN þ N�P[K#pd]ufdK�U�Nd`�]gU\]uQR]_N�o�f£NaouxsK0`LV�W
QRZsK�czi@UsN�ST]_^�`Riz`jQ[K�Sv�J�K0MOK0Uscz]gU\p1VaU�QRZsK�VaxzQ[M\xzQ�^�VdS�y
]gU\p�WqP[VaS'QRZsK�X1KnN�ogiNaxzQRVdS�NGQRVdUFªOQRZ\KTNa^�QRVaP�czK�f@]_^�K�STN£i
`bQ[N£iYNGQ�QRZsK�^�x\P[PRK0UIQLM�Vd`R]hQ[]uVdU û ü VaP©STVGfaK�]uU�VaUsK�VaW:QRZsK
WqVaxsP�VdPbQ[Z\VapdVaUsNao�c\]uP[K0^�QR]gVaUs`�VaU�QRZ\KTpdPR]_cY]gU�VdP[c\K�PLQRV1NGQRy
Q[Na]uU û üqý·þ v�l�Z\KT`bQRK�M�`b]g¬�K�S�N£iaªË]gU�Ndc\cz]uQR]gVaUYQ[VkQ[ZsNGQnªF��K
czVdx\�\ogK0c#VdP·�s]g`RK0^�QRK0c�czVG�+U#Q[V�NLST]uUs]uS�x\Sª�]Åv Kav·QRZsK9pdPR]_cËÊ `
STK0`RZouK0U\p�Q[ZFv¯��Vd`[`b]g�\ogKLSTVGfdK0`�N�P[K�`Ri@S���Vaog]u¬0K0c��@i

R ÿTS D �;U�� � �;VQ� WK� X D �ZY[ D]\_^
l�Z\K0i�ZON£faKaªd]uU�QRZ\K�`RNaS�KLVaP2czK�Pnª�Q[Z\K�WqVdouogVG�+]gU\p#STK0NaU\]uUspd`0æ
STVGfaK�VaUsK�`jQ[K�M&N ü WqVdPR��N�P2cËª��sNd^2t@��NaP[cËªGogK�W×Q�VaP�P[]updZIQ0ªd`bQ[N£i
NGQ9QRZ\K©^�xsPRP[K�UIQ:M�Vd`R]hQ[]uVdUFª@VaP9S�VGfdK+WqVaP[��N�P2c��+]uQRZ�czVaxs�\ouKnc
VaP+�s]g`RK0^�QRK0c�`bQRK�MogK�U\paQRZFv
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l�Z\K�`bK0Us`bVdPkczK0fI]_^�K�]uU±Q[x\P[U%paK�Q[`�Qj��VAVd�z jK0^�QR]gfaK1fGN�ogx\K0`
Ð�Ä û ü	�Ëþ É N�UscYÐ�Ä û ü É NaUsc�STNaMs`�QRZsK�SÌQRVTQRZsK7�sU\]uQRK7]gU\M\xzQ
N�ogM\ZsNa�OK�Q«ÄÅczK�UsV�QRKnc��@ia` É V�W�QRZ\K«X1K0Naoui±S�Nd^2Z\]uUsK�b�v
l·VapaK�QRZ\K0P·�+]uQRZ�Q[Z\K�QRZ\K�X1K0Naoui�N�xzQ[VaS�NGQ[VaUFªnQRZs]g`�S�N�MsM\]uUsp
c æ�ë�ï³éd`3�+]uogo9xsUsczK�P[paVYQRZ\K��K�U\K�QR]_^k�¯P[VapdP[NaSTS�]gU\p
M\P[Vz^�K0`[`0v
L�N�UsVaU\]_^�Naouogi�N�XYK0N�ogi�S�Na^2Zs]uU\Kebê]g`+czK��sU\Knck]gU�QRK�P[S�`�V�W
]uQ[`�]gU\M\xzQkNaUscÑVaxzQ[M\xzQkNaouM\ZON���K�Q[`f` NaUscgRkª�NaU�]uU\]uQR]_N�o
]gUdQ[K�P[UsN�o¯`bQ[N�QRK�h þ WqP[VaS�Q[Z\Kk`RK�Q�i�ª�N�Usc��sUON�ogoui�]hQ2`#`jQ2NGQ[K
QRP2N�UO`b]uQR]gVaU�Wqx\Us^�QR]gVaU&j�æ=`lkmi«éni�N�Usc�Vax\QRM\xzQ:Wqx\Us^¡Q[]uVdU
o æ�`�kpi«éqR�v�Ô:Nd^2Z�VaWzQRZ\K�`bK�Q[`m]g`F�sU\]uQRKav�Î�`mSTK�UIQR]gVaU\Knc
N���VGfaKdª o Na^�QRxsNaouogi#czK0^�]gc\K0`�VGfaK0P��+Z\]g^2ZTNa^�QR]gVaU�]g`�Q2N�tdK�U��@i
QRZsK#Na^¡Q[VaP+czK0fI]_^�Kdv
Î�Q+ogNd`jQnª � WqP[VaS´Ä ÆnÉ ]g`�t@U\Vz^2tdK0ckc\VG�+Uk]gUdQ[V�QRZ\K7Na^�QR]gVaU	V�W
QRZsKLQ[Z\P[K�K©czK�f@]_^�K0`:WqP[VaS��spdx\PRK Æ v�¶±Z\]gogKLQ[Z\K�STNaM\M\]gU\p�V�W
RÕ]uUIQRV©Na^�QR]gVaUs`0ªG]¦v KdvFQRZsK�Nd^¡Q[VaP�czK�f@]_^�KaªG]_`�czK��OU\K0c�NGy�M\P[]uVdPR]¦ª
QRZsK©`RK�UO`bVdP9S�N�MsM\]uUsp c Na`��9K0ouoËNd`:Q[Z\K�Wqx\Us^�QR]gVaUs`rj#NaUsc o
�+]gouoF��K#`Rx\�z jK0^�Q+QRV�QRZsK���K�U\K�QR]_^7�¯P[VapaP2N�STST]gU\p�M\P[Vz^�Kn`R`0v
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¶�K#QRP[i�Q[Vk`RVaogfaK©QRZsK�M\P[Va�\ogK�S WqPRVdS'`RK0^�QR]gVaU�ÚT�@i�STK0N�UO`
V�W:��K0U\K�Q[]g^��¯P[VapaP2N�STST]gU\psÖ\��K#^2Z\V@Vd`RK7Q[Vk^�VzczK#��V�Q[Z1QRZsK
Wqx\Us^�QR]gVaU c VaWmQRZsK©`RK�UO`bVdP�czK0f@]g^�K�NaUsc�Q[Z\K�QRP2N�Us`R]hQ[]uVdU	NaUsc
Vax\QRM\xzQ+WqxsUs^¡Q[]uVdU	VaW·Q[Z\K7X1K0Naoui�S�Nd^2Z\]uUsKL]gU1N�`R]gU\paogKLMsPRVay
paP2N�S!Q[PRK0Kav%l�Z\K1UsV@c\K0`T]gU�Q[Z\]_`TQRP[K�KVa��K�iAQRZ\KY`Ri@UdQ2Na^�y
QR]_^7P[x\ogK0`�czK��sU\]gU\p�N�^�VdUIQRK�¤@QRyÅWqP[K�K7pdP[NaS�S�NaP�c\]g`RM\o_N£iaK0c�]gU
Ù�Na^2t@xs`by	�LN�x\PRy¦WqVaP[Sç]gU	Q[N��souK Æ æ
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l�N��souK Æ æ Ò i@UIQ[Nd^¡Q[]g^7°+xsouKn`�WqVaP�QRZsK#�¯P[VapaP2N�SÓl·PRK0K0`

l�Z\KM\P[VapdP[NaS Q[PRK0K0`TN�P[K�MsN�P2N�STK�Q[PR]g¬�KncA�@i³WqVdPRS�N�o�fGN�P[]uy
N��souKn`�³'NaUsc~´´�+Z\]_^2Z�NaPRKdª@c\x\PR]gU\p�K�fGN�ogxsN�QR]gVaUFª@P[K�M\o_Na^�K0c
�@i�Na^�QRxsNao\fGN�ogx\K0`�WqP[VaS�Ð�Ä ûsü É NaUsc�Ð�Ä ûOü	�Ëþ É ªaP[K0`RM�K0^¡Q[]ufdK�ogiwÖ
µ P[K�M\P[K0`RK�UIQ[`©P[K0Naohy�fGN�ogx\K0c«^�VaUs`bQ[NaUdQ2`�vl�Z\K�P[V@V�Q#U\VzczKkV�W
K�fdK�P[iTM\PRVdpaP2N�SêQRP[K�K��9K©^�VdUs`R]gczK0P�^�VaUIQ[Na]uUO`9N�^�VdUscz]uQR]gVaUsNao
K�¤zM\P[K0`[`R]uVdU�`RiIS��OVdou]g¬�KncA�@i&¶¸·zÖ�czK0MOK0Uscz]gU\p«VaUÑ�+Z\K�Q[Z\K�P
QRZsK�K�S��OVzcz]gK0c�NaPR]uQRZ\STK�QR]_^�K�¤zM\P[K0`[`b]gVaU�]g`¯paP[K0NGQ[K�P�VdP¯K0ÂIxsNao
QRVu¹1VaP�U\V�Qnª�K0]hQ[Z\K�P�QRZ\Kk�sP2`jQ�VdP#Q[Z\K	`RK0^�VaUsc�P[x\ouK	ou]_`bQ�]g`
K�fGNaouxsN�QRKncËv7Î�U@i1`bxs^2Z�PRx\ogK�ou]_`jQ©S�N£i�NapdNa]uU�^�VaUIQ[Na]uU�^�VaU\y
cz]uQR]gVaUsNao#K�¤zM\P[K0`[`R]uVdUs`�ª©�\x\Q�]uQ�N�o_`bV±^�VaUIQ[Na]uUs`YVaxzQ[M\xzQ�Nd`
��K�ogo#Na``jQ2NGQ[K�Q[P[NaUs`R]hQ[]uVdUÕ`RMOKn^�]u�O^�N�QR]gVaUs`�+P2N�M\M�K0c�]uU»º
N�UOcg¼K�¤zM\P[K0`[`b]gVaUs`0v Ò Q[N�QRK0`�WqP[VaS½i®N�UscVaxzQ[M\xzQ[`�WqP[VaS
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å�]gpax\P[K#Úzæ Ò NaS�MsouK#�:PRVdpaP2N�SÓlmP[K�K

R§NaPRK�QRP[K0N�QRK0c�Na`kQRK�P[ST]uUON�o©`bi@S���Vao_`0vçÎ�PR]uQRZ\STK�QR]_^�K�¤@y
M\P[K0`[`b]gVaUO`�N�P[K+�\x\]gohQ¯WqP[VaS�`bQ[N�UOc\N�P2c�NaPR]uQRZsS�K�QR]_^+VaM�K�P2NGQ[VaP2`
^�VdSTS�VdU�]gU±��K�U\K�QR]_^��:PRVdpaP2N�STST]uUsp�Ä>^�Wjv�Äzê©Vd¬0N\ª Æ0ÇdÇ Ú É ª
Ä>XY]g^2ZsNaouK0�+]g^�¬aª Æ0ÇdÇaØIÉ ªËÄ>Á·N�U\pIczVaUFª Æ0ÇdÇaÈIÉbÉ v�Î�`R]uSTM\ogKLMsPRVay
paP2N�SêQRP[K�KL�\x\]gohQ+]gUk^�VdUs^�VdP[csN�Us^�K��+]hQ[Z�Q[Z\KLxsM\MOK0P9P[x\ogK0`9]g`
`RZ\VG�+U]uU�spdx\P[K�Úzv�å\VaP�QRZ\K#KnNa`RK7V�W�M\P[K0`RK�UIQ[N�QR]gVaU�]hQ: jxs`jQ
ZsNd`+`jQ2NGQRK�Q[P[NaUs`b]uQR]gVaUO`�ªz]¦v Kdv_¼@y{`bM�K0^�]h��^�NGQ[]uVdUs`0v
Î�`9`bV@VdUTNd`¯N#`RMOKn^�]u�O^+M\P[VapdP[NaS�QRP[K�K�ZONa`���K�K0U�K�fGN�ogxsNGQ[K0cËª
QRZsK�P[K�]_`7N	`RK�Q©V�W�`jQ2NGQ[K�Q[P[NaUs`b]uQR]gVaUO`LNaUsc�VdxzQRMsxzQ7]uUs`bQRP[xs^�y
QR]gVaUO`m�+Z\]_^2Z�NaPRK:]uU�QRx\P[U#xs`RK0c#WqVaP·QRZ\K�Na^¡Q[]uVdU#V�WsQRZ\K�X1K0Naoui
S�Na^2Z\]gU\Kdv Ò ]gUs^�K#��K�NaPRK#c\K0N�og]gU\p��+]uQRZ1�sUs]hQ[K�Q[PRK0K0`0ª\QRZsK�P[K
N�P[K�VdU\oui��sUs]hQ[KLS�N�U@iT^�Nd`bKn`¯�+Z\]_^2Z	^0N�U���K�cz]_`bQR]gU\pax\]_`RZ\K0cËª
QRZONGQ©]g`0ª�QRZ\K0PRK�N�P[K�VaUsoui��sU\]uQRK�S�N�U@i1`bK�Q[`LV�W¯VdxzQRM\x\Q©NaUsc
`bQ[NGQ[K©QRP2N�Us`R]uQR]gVaU]uUO`jQ[PRxs^�QR]gVaUs`0v���W���K#Na`[`RV@^�]gN�QRK7N�^�K�PRQ[N�]gU
]gU\M\xzQ�`RiIS��OVdo��+]hQ[Z�KnNa^2ZAVaW�QRZ\Kn`bK`RK�Q[`0ª:��KN�P[Kk]gUsczK�Knc
czKnN�og]uU\p��+]uQRZY�sU\]uQRK�`bQ[N�QRK#S�Na^2Zs]uU\Kn`+�+Z\VI`bK7]gU\M\xzQ©N�ogM\ZsN�y
��K�Q0Ê `�`R]u¬0K7^2ZsN�U\pdK0`+czxsPR]gU\p�QRZ\K7K0faVdouxzQ[]uVdUsN�P[iTM\P[V@^�K0`[`�v
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QR]gVaU±�+]uQRZ±STK�QRZ\Vzc\`kV�W#��K�U\K�QR]_^Y�¯P[VapdP[NaS�ST]gU\psv%l�ZsK0`RK
STK�Q[Z\Vzc\`�ZON£faK#M\P[Vzczxs^�K0c1`RVaSTK#]gouogxs`bQRP2NGQR]gfaK�K�¤\N�STM\ogK0`�V�W
`bQRP2NGQRK0pa]gK0`7�+Zs]g^2Z³��K�P[K�PRVd�\xs`bQ�N�pIN�]gUs`bQ�^2ZsN�U\pdK0`©P[K�pIN�P2c@y
]gU\p]gU\]uQR]_N�o�MOVI`b]uQR]gVaUs`�Na`k�9K0ouo©Na`	P[K�pdNaP[c\]uU\p«Q[Z\K�VGfdK�P2N�ogo
Va�\ jK0^¡Q[]ufdK+Wqx\Us^�QR]gVaU�Q[V���K�S�NG¤z]gST]u¬0K0cËÖ@N#M�V�Q[K�UIQR]_N�oOpaogVa�sNao
VaM\QR]gS�]g¬0N�QR]gVaU`jQ[P[N�QRK0pai���Na`9WqVaxsUscËªzQ[VIVOv
JLK�og]u��K�P2NGQ[K�ogi�QRZ\K�K�¤zM�K�P[]uSTK�UIQ2`�ZON£faK%��K�K0UÌM�K�PRWqVaP[STK0c
�+]uQRZYog]uST]uQRKnc1K�ÃwVaPRQ�P[K�pdNaP[c\]uU\pTQ[Z\K�^�VaUIQRP[VaogogK�P2`�Ê\^0N�MsNa�\]uog]uy
QR]gK0`©Nd`L��K�ogo�Na`�QRZ\K�^�VaSTM\xzQ2NGQR]gVaUON�o�K�ÃwVaPRQTÄÅNa`©^�VdS�MON�P[K0c
QRV	V�Q[Z\K�P7��K�U\K�QR]_^��:PRVdpaP2N�STST]uUsp�K�ÃwVaPRQ[` É `R]uUs^�K�Q[Z\KT^�VaU\y
QRP[VaogogK�P2`·Kn`jQ2N��\og]_`bZ� jxs`bQ¯VaU\K+MON�PRQ�VaWwN�STVaP[K�K�¤@QRK0Us`R]ufdK�Kn^�Vay
ogVapa]_^�NaoFSTVzczK�o¦v+Î+W×QRK0PLNaouo¦ªs��K#Va�O`bK0PRfdK0c�N�ouKnN�P[U\]gU\p�K�ÃwK0^�Q
V�WËQ[Z\KL^�VaUIQRP[VaogogK�P2`�^�VaUO^�K�P[U\]gU\p#`RMOKn^�]_N�oOWqK0NGQ[x\P[K0`¯VaWwQRZ\KL]uUzy
faVdoufdK0cWqxsUs^¡Q[]uVdUsN�o_`7Na`���K�ogo¯Na`©^�VdUs^�K0PRU\]gU\p	VaMzQ[]uST]g¬0NGQ[]uVdU
`bQRP2NGQRK0pa]gK0`0v�å\x\PRQRZ\K0P©QRKn`jQ[]uU\pI`7V�W9QRZ\K�c\K0`R]updUFª·NaUsc�N1`Rxs^�y
^�Kn`R`R]gfaK�P[K��OU\K�STK�UIQ7V�W9]hQ2`7^�N�MON��\]gou]uQR]gK0`©NaUsc�N	�OK�QbQ[K�P7x\Uzy
czK0P[`bQ[NaUscz]gU\pV�W:Q[Z\KTQRZsK�VaP[K�Q[]g^0N�o��sNd^2t@paP[Vax\UscYV�W���K�U\K�QR]_^
�¯P[VapdP[NaSTS�]gU\p�]uU�QRZ\K1Kn^�VdouVdpa]_^�N�o�`R]uS�x\ogN�QR]gVaU�^�VdUdQ[K�¤@Q�]g`
`Rx\�z jK0^�Q+QRV�^�xsPRP[K�UIQ+PRKn`bKnN�P2^2ZFv
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P[K��sU\]gU\p�QRZs]g`+MON�M�K�Pnv

¼����h� � ��� � � �
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L9Z\K0ouo_N�M\]gogogNsª êTvONaUsc1å\VdpaK0oÅª�J�v�Ä ÆnÇaÇf�aÉ v+l���V�U\K��¢S�xzQ[N�y
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��ogVG�+]uUs`Rt@]ÅªI°7v@N�Usc�ÁmK0l�N�ogouKn^�ªd��v�Ä ÆnÇaÈaÇIÉ v��Lù1��%�ó�úsõ{ó;+��x�*��=*��Gú���öz��úT��ú�+Ñð:�sóE*���õ�ð�*m�	(���! ö×õ¦õÅö×ú��g%Tó�õ�'sð�+"(1ö×ú�ú�ð�úF�
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*HQHWLF 3URJUDPPLQJ VROXWLRQ RI WKH FRQYHFWLRQ�GLmXVLRQ HTXDWLRQ

'DQLHO +RZDUG DQG 6LPRQ &� 5REHUWV
6RIWZDUH (YROXWLRQ &HQWUH�

6\VWHPV DQG 6RIWZDUH (QJLQHHULQJ &HQWUH�
'HIHQFH (YDOXDWLRQ DQG 5HVHDUFK $JHQF\�
0DOYHUQ� :25&6 :5�� �36� 8.�

GKRZDUG#GHUD�JRY�XN� 7HO���� ���� ������

$EVWUDFW

$ YHUVLRQ RI *HQHWLF 3URJUDPPLQJ �*3� LV
SURSRVHG IRU WKH VROXWLRQ RI WKH VWHDG\�VWDWH
FRQYHFWLRQ�GLmXVLRQ HTXDWLRQ ZKLFK QHLWKHU
UHTXLUHV VDPSOLQJ SRLQWV WR HYDOXDWH nWQHVV
QRU DSSOLFDWLRQ RI WKH FKDLQ UXOH WR *3 WUHHV
IRU REWDLQLQJ WKH GHULYDWLYHV� 7KH PHWKRG
LV VXFFHVVIXOO\ DSSOLHG WR WKH HTXDWLRQ LQ RQH
VSDFH GLPHQVLRQ�

� ,QWURGXFWLRQ

7KLV SDSHU SURSRVHV D ZD\ WR XVH *HQHWLF 3URJUDP�
PLQJ �*3� WR PRGHO WKH LQWHUDFWLRQ EHWZHHQ FRQYHF�
WLYH DQG GLmXVLYH SURFHVVHV� 0RGHOOLQJ WKLV LQWHUDFWLRQ
LV YLWDO WR WKH nHOGV RI +HDW 7UDQVIHU� )OXLG '\QDPLFV�
DQG &RPEXVWLRQ� DQG UHPDLQV RQH RI WKH PRVW FKDO�
OHQJLQJ WDVNV LQ WKH QXPHULFDO DSSUR[LPDWLRQ RI GLmHU�
HQWLDO HTXDWLRQV�

7KH QHZ PHWKRG LV DSSOLHG WR WKH VLPSOHVW PRGHO
SUREOHP� WKH VWHDG\�VWDWH YHUVLRQ RI WKH FRQYHFWLRQ�
GLmXVLRQ HTXDWLRQ LQ RQH VSDFH GLPHQVLRQ� 7KLV OLQHDU
GLmHUHQWLDO HTXDWLRQ KDV WZR 'LULFKOHW ERXQGDU\ FRQ�
GLWLRQV DW WKH HQG SRLQWV RI WKH LQWHUYDO � � [ � ��

G�7

G[�
b 3H

G7

G[
 � ���

7 ���  �

7 ���  �

,W LQYROYHV GHULYDWLYHV RI WKH WHPSHUDWXUH �7 � DQG WKH
3HFOHW QXPEHU �3H�� ZKLFK LV D PHDVXUH RU UDWLR RI FRQ�
YHFWLRQ WR GLmXVLRQ DQG D SDUDPHWHU ZKLFK GHWHUPLQHV
WKH VKDUSQHVV RI WKH ERXQGDU\ OD\HU DW [  ��

,Q ����� .R]D �.R]D� ����� GHVFULEHG D *3 PHWKRG WR
nQG WKH VROXWLRQ RI D GLmHUHQWLDO HTXDWLRQ� ,W HYROYHG
D *3 WUHH RU VROXWLRQ WR WKH HTXDWLRQ� DQG DSSOLHG

WKH FKDLQ UXOH WR WKH *3 WUHH WR REWDLQ LWV GHULYDWLYHV�
7KH nWQHVV PHDVXUH XVHG D ZHLJKW IDFWRU WR EDODQFH WKH
DELOLW\ RI WKH IXQFWLRQ WR VDWLVI\ WKH LQLWLDO FRQGLWLRQ
ZLWK WKH DELOLW\ RI WKH GHULYDWLYHV RI WKH IXQFWLRQ WR
VDWLVI\ WKH GLmHUHQWLDO HTXDWLRQ DW D QXPEHU RI VDPSOHG
SRLQWV� 7KH WHFKQLTXH ZDV LOOXVWUDWHG ZLWK UHIHUHQFH WR
LQLWLDO�YDOXH SUREOHPV�

,Q FRPPRQ ZLWK DOO RWKHU QXPHULFDO PHWKRGV� D
VWUDLJKWIRUZDUG DSSOLFDWLRQ RI WKLV PHWKRG WR VHDUFK
IRU WKH QXPHULFDO DSSUR[LPDWLRQ WR WKH VROXWLRQ RI WKH
FRQYHFWLRQ�GLmXVLRQ HTXDWLRQ � A7 �� VXmHUV ZLWK QXPHU�
LFDO GLpFXOWLHV� 9HU\ HDUO\ LQ WKH UXQ� WKH GLYLVLRQ
RSHUDWRU SURGXFHV VWHHS JUDGLHQWV DQG DSSUR[LPDWLRQV
ZLWK KLJK nWQHVV RI WKH IRUP�

A7  �b [

[� q

HPHUJH ZKLFK IRU DUELWUDULO\ VPDOO q ! � UHVXOW LQ D
WHPSHUDWXUH WKDW EHFRPHV ]HUR DOPRVW HYHU\ZKHUH DQG
ZKLFK DOVR H[DFWO\ VDWLVnHV WKH ERXQGDU\ FRQGLWLRQV�
6XFK VROXWLRQV GRPLQDWH DQG LW EHFRPHV H[WUHPHO\ GLI�
nFXOW WR DGMXVW WKH ZHLJKW IDFWRU WR DFFHQWXDWH WKH
ODUJH HUURU LQ WKH VDWLVIDFWLRQ RI WKH GLmHUHQWLDO HTXD�
WLRQ DW [  � �+RZDUG� ������

$OWKRXJK DSSUR[LPDWLRQV WR WKH WUXH VROXWLRQ� UDWKHU
WKDQ WR WKLV NLQG RI WULYLDO VROXWLRQ� ZHUH DFKLHYHG E\
UHPRYLQJ WKH SURWHFWHG GLYLVLRQ� OHDYLQJ �� b� DQG e
LQ WKH IXQFWLRQ VHW� WKH PHWKRG ZDV VORZ WR FRQYHUJH
DQG FKDLQ UXOH HYDOXDWLRQ RI GHULYDWLYHV RI *3 WUHHV
ZDV DQ H[SHQVLYH VWHS�

� 3URSRVHG DSSURDFK

7KH DQDO\WLFDO VROXWLRQ RI HTXDWLRQ ��� LV�

7  
H[S�[3H�b H[S�3H�

�b H[S�3H�
���

7KH WDVN LV WR nQG A7 � DQ DSSUR[LPDWLRQ WR 7 � $ SRO\�
QRPLDO S LV HYROYHG� DQG E\ SRO\QRPLDO GLYLVLRQ LW FDQ
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EH WUDQVIRUPHG VXFK WKDW WKH UHVXOWLQJ H[SUHVVLRQ IRU
A7 DOZD\V VDWLVnHV WKH ERXQGDU\ FRQGLWLRQV H[DFWO\� H�J�

A7  [��b [�S� ��b [� ���

DQG E\ WKH 5HPDLQGHU 7KHRUHP DOO SRO\QRPLDOV DUH
JXDUDQWHHG� 7KH GHULYDWLYHV RI A7 DUH JLYHQ E\�

G A7

G[
 [��b [�

GS

G[
� ��b �[�Sb �

G� A7

G[�
 [��b [�

G�S

G[�
� ���b �[�GS

G[
b �S

DQG D *3 PHWKRG FDQ WDNH WKH QHJDWLYH RI WKH VTXDUH
LQWHJUDO RI WKH OHIW KDQG VLGH RI WKH GLmHUHQWLDO HTXDWLRQ
DV LWV 'DUZLQLDQ nWQHVV ) �

)  b
= t

G� A7

G[�
b 3H

G A7

G[

u�

G[ ���

ZKLFK LV D OHDVW VTXDUHV PHDVXUH RI WKH HUURU RI DSSUR[�
LPDWLRQ� 7KH LQWHJUDO H[SUHVVLRQ IRU WKH nWQHVV ) FDQ
EH REWDLQHG DQDO\WLFDOO\ EHFDXVH A7 LV SRO\QRPLDO DQG
WKLV LV D SRLQW RI GLmHUHQFH ZLWK WKH PHWKRG LQ �.R]D�
����� ZKLFK XVHG D QXPEHU RI SRLQWV LQ WKH GRPDLQ WR
VDPSOH WKH nWQHVV�

$OWKRXJK IURP D WKHRUHWLFDO VWDQGSRLQW WKH XQLIRUP
QRUP RU LQnQLW\ QRUP�

ooooG
� A7

G[�
b 3H

G A7

G[

oooo
�
 

[�>���@
PD[

nnnnG
� A7

G[�
b 3H

G A7

G[

nnnn
LV SUHIHUDEOH LQ ) EHFDXVH LW FDQ ZDUQ RI p OLNH VSLNHV�
LW UHTXLUHV D VHSDUDWH RSWLPLVDWLRQ SURFHGXUH WR nQG
WKH PD[LPXP� 1XPHULFDO H[SHULPHQWV� KRZHYHU� ZHUH
VXFFHVVIXO ZLWK ) DV GHnQHG LQ HTXDWLRQ ��

� 5HSUHVHQWDWLRQ

&RQVLGHULQJ HTXDWLRQ �� D *3 PHWKRG FDQ FRPELQH
HSKHPHUDO UDQGRP FRQVWDQWV WR HYROYH WKH FRHpFLHQWV

>D�� D�� D�� ���@ ���

WR REWDLQ WKH XQLYDULDWH SRO\QRPLDO S

S  D� � D�[� D�[
� � D�[

����� ���

WKDW FDQ EH VXEVWLWXWHG LQWR HTXDWLRQ �� (YDOXDWLRQ RI
WKH LQWHJUDO LQ HTXDWLRQ � UHTXLUHV H[SUHVVLRQV IRU�

=
G A7

G[

G A7

G[
G[�

=
G� A7

G[�

G� A7

G[�
G[ DQG

=
G A7

G[

G� A7

G[�
G[

DOO RI ZKLFK FDQ EH REWDLQHG E\ VKLIWLQJ DQG PRGLI\LQJ
WKH FRHpFLHQWV LQ HTXDWLRQ � DQG E\ PXOWLSOLFDWLRQ RI

7DEOH �� *3 WHUPLQDOV� IXQFWLRQV DQG YDULDEOHV

SDUDPHWHU VHWWLQJ
IXQFWLRQV �� �� � � �[ �  ���

$''� %$&.� :5,7(�
:P�� :P�� 5P�� 5P�

WHUPLQDOV 6&

JOREDOV YDULDEOH OHQJWK VROXWLRQ YHFWRU
SRLQWHUV / DQG &
PHPRULHV P� DQG P�

PD[ WUHH VL]H ���� QRGHV

WKHVH VPDOO YHFWRUV� 7KH OLPLWV RI LQWHJUDWLRQ DUH DW
[  � DQG DW [  � ZKLFK PHDQV WKDW WKHUH LV QR ORVV
RI DFFXUDF\ LQYROYHG LQ FRPSXWLQJ WKH LQWHJUDO HYHQ LI
S LV D SRO\QRPLDO RI KLJK RUGHU�

$OWKRXJK DW nUVW JODQFH WKH *HQHWLF $OJRULWKP VHHPHG
D JRRG FKRLFH� WKH UHTXLUHPHQW WR JHQHUDWH D YDULDEOH
OHQJWK YHFWRU RI YHU\ SUHFLVH FRHpFLHQWV IDYRXUHG WKH
*HQHWLF 3URJUDPPLQJ PHWKRG�

7KH *3 IRUPXODWLRQ RI WDEOH � ZDV GHYLVHG� ,Q WKLV IRU�
PXODWLRQ� WKH *3 WUHH JHQHUDWHV WKH UHTXLUHG YDULDEOH
OHQJWK YHFWRU DV LW LV EHLQJ HYDOXDWHG E\ FRPELQLQJ
HSKHPHUDO FRQVWDQWV WR SURGXFH YHU\ DFFXUDWH FRHp�
FLHQWV� IXUWKHUPRUH� WKH UHWXUQ YDOXH RI WKH *3 WUHH KDV
QR PHDQLQJ� 'XULQJ HYDOXDWLRQ� IXQFWLRQV LQ WKH *3
WUHH PDQLSXODWH D YHFWRU RI FRHpFLHQWV �HTXDWLRQ �� LQ
JOREDO PHPRU\� 7KH IXQFWLRQV� DV GHVFULEHG LQ WKH QH[W
SDUDJUDSK� PDQLSXODWH / DQG &� WZR JOREDO SRLQWHUV
WR WKH HOHPHQW RU SRVLWLRQ LQ WKH YHFWRU RI FRHpFLHQWV�
3RLQWHU / VWDQGV IRU ?ODVW LQGH[� RU WDLO SRVLWLRQ� DQG
SRLQWHU & VWDQGV IRU ?FXUUHQW� SRVLWLRQ� 3ULRU WR WKH
HYDOXDWLRQ RI WKH *3 WUHH� / DQG & DUH ERWK VHW WR
]HUR�

)XQFWLRQV $''� %$&. DQG :5,7( DUH IXQFWLRQV RI
WZR DUJXPHQWV� 7KH\ UHWXUQ RQH RI WKH DUJXPHQWV� H�J�
$'' UHWXUQV LWV VHFRQG� %$&. LWV nUVW DQG :5,7(
LWV VHFRQG DUJXPHQW� WKH FKRLFH LV DUELWUDU\� )XQFWLRQ
$'' ZULWHV LWV nUVW DUJXPHQW WR WKH YHFWRU HOHPHQW
SRLQWHG E\ /� ,W LQFUHPHQWV / SURYLGHG / � /0$;

DQG HQIRUFHV &  /� )XQFWLRQ %$&. GHFUHPHQWV
SRLQWHU & SURYLGHG & ! �� )XQFWLRQ :5,7( RYHU�
ZULWHV WKH YHFWRU HOHPHQW DW & ZLWK LWV nUVW DUJXPHQW�
$OVR� LI & � /0$; LW LQFUHPHQWV WKLV SRLQWHU DQG LI
& ! / LW LQFUHPHQWV SRLQWHU /�

7KH IXQFWLRQ VHW LV HQKDQFHG ZLWK WZR PHPRULHV P�

DQG P� PDQLSXODWHG E\ IXQFWLRQV DJDLQ RI WZR DUJX�
PHQWV� )XQFWLRQV :P, UHWXUQ WKHLU nUVW DUJXPHQW
DQG RYHU ZULWH WKHLU VHFRQG DUJXPHQW WR PHPRU\ OR�
FDWLRQ P, � )XQFWLRQV 5P, VLPSO\ UHWXUQ WKH YDOXH RI
WKH PHPRU\ DWP, DQG LJQRUH ERWK RI WKHLU DUJXPHQWV�
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7DEOH �� *3 UXQ SDUDPHWHUV

SDUDPHWHU VHWWLQJ
SRSXODWLRQ ����
NLOO WRXUQDPHQW VL]H � IRU VWHDG\�VWDWH *3
EUHHG WRXUQDPHQW VL]H � IRU VWHDG\�VWDWH *3
UHJHQHUDWLRQ ��� [�RYHU� ��� FORQH�

nWQHVV PHDVXUH b 5
�G

� A7
G[� b 3H G A7

G[ �
�G[

7DEOH �� ,QIRUPDWLRQ DERXW KLJKO\ VXFFHVVIXO *3 UXQV

3H SRS JHQV EHVW ) DYJ WUHH PLQV
� ���� �� ��������� �� �����
�� ���� �� ��������� ��� �����
�� ���� �� ��������� ��� ������
��� ���� ��� ��������� ��� ������

$Q HSKHPHUDO UDQGRP FRQVWDQW &6 LV VWRUHG DV RQH
E\WH DQG FDQ UHSUHVHQW XS WR ��� YDOXHV� 7KHVH DUH
HTXDOO\ VSDFHG DQG REWDLQHG E\ GLYLGLQJ WKH QXPEHUV
� WR ��� E\ ���� WR REWDLQ YDOXHV LQ WKH UDQJH >�� �@�

� 0RGHUDWH 3HFOHW 1XPEHUV

3DUDOOHO LQGHSHQGHQW UXQV RI VWHDG\�VWDWH *HQHWLF 3UR�
JUDPPLQJ REWDLQ VROXWLRQV IRU D 3HFOHW QXPEHU ZLWK
SDUDPHWHUV DV LQ 7DEOH �� 7KH VHDUFK EHFRPHV SURJUHV�
VLYHO\ GLpFXOW ZLWK 3HFOHW QXPEHU EHFDXVH WKH GHVLUHG
SRO\QRPLDO LV RI KLJKHU DQG KLJKHU RUGHU� ,QIRUPDWLRQ
IRU VRPH RI WKH PRUH VXFFHVVIXO UXQV FDUULHG RXW RQ DQ
���0+] 3HQWLXP ,,, 3& LV SURYLGHG LQ WDEOH ��

7KHUH LV D VWHDG\ LQFUHDVH LQ WKH DYHUDJH VL]H RI WUHH
ZLWK 3H DV ZHOO DV VWHDG\ LQFUHDVH LQ WLPH UHTXLUHG WR
REWDLQ DQ DFFHSWDEOH VROXWLRQ� 7KHUH LV DQ LQFUHDVH LQ
WKH QXPEHU RI FRHpFLHQWV DOVR� $W 3H  � RQO\ VHYHQ
FRHpFLHQWV DUH REWDLQHG� VHH WDEOH �� ZKLOH IRU 3H  ��
WZHQW\ VL[ FRHpFLHQWV DUH SURGXFHG� VHH WDEOH ��

7KH QDWXUH RI WKH DSSUR[LPDWLRQ LV UHoHFWHG LQ )LJ�
XUH �� L�H� DQ DSSUR[LPDWLRQ GULYHQ E\ D OHDVW VTXDUHV
SURFHVV� $V LV W\SLFDO� WKH DSSUR[LPDWLRQ LV FKDUDF�
WHULVHG E\ PLQXWH RVFLOODWLRQV �DSSDUHQW LQ WKH PDJ�
QLnHG JUDSK DW WKH ERWWRP RI WKH nJXUH�� +RZHYHU�
WKDW LV nQH DV WKH VFKHPH LV GHYHORSHG IRU TXDQWLWDWLYH
DFFXUDF\� QRW IRU TXDOLWDWLYH VKDSH� DQG DLPV WR ORFDWH
WKH ERXQGDU\ OD\HU DW WKH H[SHQVH RI PDLQWDLQLQJ D
SURSHUW\ VXFK DV PRQRWRQLFLW\� IRU H[DPSOH� ,I D GH�
VLUHG VKDSH SURSHUW\ ZHUH WR EH UHTXLUHG� WKLV PLJKW EH
DFFRPSOLVKHG E\ PRGLnFDWLRQ RI WKH nWQHVV PHDVXUH�
RU E\ HYROXWLRQ RI WKH FRHpFLHQWV WR D PRUH FRPSOH[
W\SH RI EDVH IXQFWLRQ ZKLFK HQMR\V DQG HQIRUFHV WKH
GHVLUHG SURSHUW\�

7DEOH �� 3H  �� WDEOH �� HYROYHG � FRHpFLHQWV�

, D,�� D,�� D,�� D,��

D� �������� �������� �������� ��������
D� �������� �������� ��������

7DEOH �� 3H  ��� WDEOH �� HYROYHG �� FRHpFLHQWV�

, D,�� D,�� D,�� D,��

D� �������� �������� ������� ��������
D� �������� ������� �������� ��������
D� �������� �������� ������� ��������
D�� �������� �������� �������� �������
D�� ������� �������� �������� ��������
D�� �������� �������� ��������� ��������
D�� ��������� ���������

)LJXUH �� $SSUR[LPDWLRQ DW 3H  ���
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'LmHUHQW FRPELQDWLRQV RI HSKHPHUDO UDQGRP FRQVWDQWV
ZHUH WHVWHG EXW QR FOHDUO\ VXSHULRU FKRLFH HPHUJHG�
)RU H[DPSOH� ZKHQ FRQVWDQWV ZHUH YDULHG IURP ��� WR
����� WKH UHVXOWLQJ FRHpFLHQWV ZHUH PXFK VPDOOHU WKDQ
ZKHQ FRQVWDQWV ZHUH YDULHG IURP �� WR �� EXW ZLWKRXW
DSSUHFLDEOH GLmHUHQFH LQ DFFXUDF\ RU HmRUW UHTXLUHG WR
REWDLQ D VROXWLRQ�

� )XUWKHU ZRUN

7KH UHPDLQGHU RI WKLV SDSHU SUHVHQWV LGHDV DQG PRWL�
YDWLRQV IRU GHYHORSLQJ WKLV DSSURDFK IXUWKHU�

��� +LJK 3HFOHW 1XPEHUV

)RU KLJK 3HFOHW QXPEHU� H�J� 3H ! ��� DQ DGHTXDWH
DSSUR[LPDWLRQ WR WKH VROXWLRQ RU HTXDWLRQ � LV�

7  �b [3H

ZKLFK FRUUHVSRQGV WR WKH IROORZLQJ SRO\QRPLDO IRU S�

S  � � [� [� � [� � ���� [3Hb�

)RU WKH YHU\ ODUJH 3H� VXFK DV 3H  ����� WKH JOREDO
nWQHVV PD[LPXP UHVLGHV ZKHUH WKH YHFWRU LQ HTXDWLRQ �
KDV FLUFD ���� FRHpFLHQWV� $W KLJK 3H D ORFDO PD[L�
PXP DW S  �� L�H� DW 7  � b [ DWWUDFWV WKH VHDUFK�
3RO\QRPLDOV ZLWK IDU IHZHU QXPEHU RI FRHpFLHQWV WKDQ
���� DUH DWWUDFWHG WR WKLV ORFDO PD[LPD� 7KXV� XQVXF�
FHVVIXO DSSUR[LPDWLRQV IRU KLJK 3HFOHW QXPEHU WU\ WR
LPSURYH RQ 7  �b [ WKURXJK D UHODWLYHO\ VPDOO QXP�
EHU RI FRHpFLHQWV� 7KH\ XVH 7  �b V[ �WKH VORSH V LV
QHDU RQH� RYHU D VLJQLnFDQW SRUWLRQ RI WKH GRPDLQ DQG
H[KLELW D VPDOO ERXQGDU\ OD\HU EHKDYLRXU QHDU [  �
IRU H[DPSOH�

)RU YHU\ ODUJH 3H� WKH SUHVHQW VFKHPH LV QRW SURGXFLQJ
HQRXJK JHQHWLF PDWHULDO WR JHQHUDWH D VXpFLHQW QXP�
EHU RI FRHpFLHQWV �HTXDWLRQ �� WR HQDEOH WKH HYROXWLRQ�
DU\ SURFHVV WR VHH WKH JOREDO PLQLPXP� 7KH IROORZLQJ
WDFWLFV PD\ KHOS RYHUFRPH WKLV� ZLWK WKH PRWLYDWLRQ RI
VROYLQJ SUDFWLFDO HQJLQHHULQJ SUREOHPV�

�� 7KH FRQYHFWLRQ�GLmXVLRQ SUREOHP DW D 3HFOHW
QXPEHU ORZHU WKDQ UHTXLUHG LV VROYHG� DQG WKH
UHVXOWLQJ SRSXODWLRQ LV XVHG DV D VWDUWLQJ SRLQW
WR HYROYH WKH VROXWLRQ WR WKH GHVLUHG 3HFOHW QXP�
EHU� 7KLV LV FDOOHG FRQWLQXDWLRQ DQG FDQ EH LPSOH�
PHQWHG LQ D YDULHW\ RI ZD\V�

�� %XLOG LQGLYLGXDOV LQ WKH LQLWLDO SRSXODWLRQ ZLWK
VXpFLHQW JHQHWLF PDWHULDO WR DOORZ WKHP WR JHQHU�
DWH YHFWRUV �HTXDWLRQ �� ZLWK FORVH WR WKH UHTXLUHG
QXPEHU RI WHUPV IRU WKH UHTXLUHG 3HFOHW QXPEHU�

�� 8VH RI HYROXWLRQDU\ WHFKQLTXHV ZKLFK PDLQWDLQ JH�
QHWLF GLYHUVLW\ DQG SUHYHQW VLPLODULW\ RI VROXWLRQV�
6SHFLDO PXWDWLRQ RSHUDWLRQV FRXOG FRS\ PDWHULDO
WR LQFUHDVH WKH UHVXOWLQJ QXPEHU RI FRHpFLHQWV�

�� &KDQJLQJ WKH ODQGVFDSH� 7KH nWQHVV PHDVXUH
FRXOG EH UHSODFHG E\ WKH ORJDULWKP RI HTXDWLRQ �
WR GLPLQLVK WKH HmHFW RI WKH ULGJH RU KXPS LQ WKH
nWQHVV ODQGVFDSH� +RZHYHU� VXFK D FKRLFH ZRXOG
QRW KDYH HmHFW ZLWK WRXUQDPHQW VHOHFWLRQ IRU LQ�
VWDQFH EHFDXVH LW FDQQRW DOWHU VHOHFWLRQ ZKLFK LV
EDVHG RQ UDQNLQJ�

$ *3 IRUPXODWLRQ ZLWK $')V ZDV H[SHULPHQWHG ZLWK
EXW GLG QRW VLJQLnFDQWO\ LPSURYH SHUIRUPDQFH�

��� 2WKHU SRO\QRPLDOV

6LPSOH SRO\QRPLDOV DUH QRW WKH RQO\ RSWLRQ� &KHE\�
VKHY DQG /HJHQGUH SRO\QRPLDOV DUH SRSXODU IRU KLJK
RUGHU UHJUHVVLRQ DQG FRXOG VHUYH DV WKH EDVLV IXQFWLRQV
� IRU WKH VFKHPH ZKHUH S  DL�L� DQG FDQ HDVLO\ EH
DQDO\WLFDOO\ GLmHUHQWLDWHG DQG LQWHJUDWHG�

��� ,PSURYHG IXQFWLRQV

7KH *3 IXQFWLRQV $''� %$&. DQG :5,7( FRXOG
EH HQKDQFHG ZLWK PRUH SRZHUIXO GDWD PDQLSXODWLRQ
IXQFWLRQV WKDW FRXOG LQWURGXFH RU PRGLI\ PRUH WKDQ
RQH FRHpFLHQW DW D WLPH RU DSSO\ DQ RSHUDWRU� H�J� WR
VRUW JURXSV RI FRHpFLHQWV� 7KH OLVW RI SRLQWHUV / DQG
& FRXOG EH HQKDQFHG ZLWK PRUH FRPSOH[ SRLQWHUV�

��� (YROXWLRQ RI WKH SKHQRW\SH

7KH FRHpFLHQWV �HTXDWLRQ �� FDQ EH FRQVLGHUHG WKH
SKHQRW\SH� DQG WKH *3 WUHHV WKH JHQRW\SH� $Q HYROX�
WLRQDU\ DOJRULWKP FRXOG EH DSSOLHG GLUHFWO\ WR LPSURYH
XSRQ D JURXS RI VXFFHVVIXO SKHQRW\SH� 7KLV DV D nQDO
SRVW�SURFHVVRU EHFDXVH WKHUH LV QR ZD\ WR LQFRUSRUDWH
WKH LPSURYHPHQW EDFN LQWR WKH JHQRW\SH� L�H� WKH HYR�
OXWLRQDU\ SURFHVV LV QRW /DPDUFNLDQ�

��� 3DUWLDO GLmHUHQWLDO HTXDWLRQV �3'(V�

([WHQVLRQ RI WKH PHWKRG WR VROYH WKH VWHDG\�VWDWH
FRQYHFWLRQ�GLmXVLRQ PHWKRG LQ WZR VSDFH YDULDEOHV
ZRXOG RSHQ WKH URDG IRU DSSOLFDWLRQ WR WKH VWHDG\�VWDWH
+HDW 7UDQVSRUW DQG 1DYLHU�6WRNHV HTXDWLRQV� 7KLV
VHFWLRQ VXJJHVWV D ZD\ WR DFKLHYH WKLV IRU SUREOHPV
ZKLFK SRVVHVV D UHJXODU JHRPHWU\�

7KH VWHDG\�VWDWH FRQYHFWLRQ�GLmXVLRQ HTXDWLRQ LQ WZR
VSDFH YDULDEOHV FDQ EH KDQGOHG LQ D VLPLODU ZD\ WR
WKH HTXDWLRQ LQ RQH VSDFH YDULDEOH� )RU LOOXVWUDWLRQ�
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FRQVLGHU D VTXDUH KHDWHG RQ RQH RI LWV VLGHV�

#�7

#[�
�

#�7

#\�
b 3H�#7

#[
�

#7

#\
�  �

7 �[  ��  ���

7 �[  ��  ���

7 �\  ��  ���

7 �\  ��  ���

$ 'LULFKOHW ERXQGDU\ FRQGLWLRQ RQ D OLQH RU FXUYH GH�
nQHG E\ WKH IXQFWLRQ J�[� \� FDQ EH HQIRUFHG ZLWK DQ
H[SRQHQWLDO WHUP VXFK DV H[S�bbJ��� ZKHUH b LV D ODUJH
FRQVWDQW� 7KH IROORZLQJ H[SUHVVLRQ IRU A7 ZRXOG WKHQ
VHHP DSSURSULDWH�

A7  [\��b [���b \�S� H[S�bb[��

ZKHUH SHUKDSV b ! ���� VXFK WKDW WKH WHUP WR ZKLFK
LW EHORQJV LV HmHFWLYHO\ ]HUR H[FHSW IRU [  � ZKHQ
LW EHFRPHV XQLW\� 3RO\QRPLDO S LV LQ [L\M ZLWK *3
HYROXWLRQ RI DLM LWV FRHpFLHQWV� +RZHYHU� HYDOXDWLRQ
RI ) LQYROYHV FURVV PXOWLSOLFDWLRQ RI [L\M WHUPV ZLWK
WKH H[SRQHQWLDO WHUP LQ 7 � DQG UHTXLUHV DQ DQDO\WLFDO
H[SUHVVLRQ IRU WKH IROORZLQJ LQWHJUDO�

,Q  

=
[Q H[S�bb[��G[ ���

,W FDQ EH DSSUR[LPDWHO\ LQWHJUDWHG E\ H[SORLWLQJ D UH�
FXUVLYH UHODWLRQVKLS KHQFH WKH ODEHO ,Q� )RU Q  � DQG
Q  � WKH LQWHJUDO ,� FDQ EH FRPSXWHG ZLWK WKH HU�
URU IXQFWLRQ HUI�[�� DQG WKH LQWHJUDO IRU ,� LV VWUDLJKW
IRUZDUG�

,�  

=
H[S�bb[��G[  

�

b

=
b H[S�bb[��G[

 b

=
H[S�bX��GX  

b
S
{

�
HUI�����

,�  

=
[ H[S�bb[��G[  bH[S�bb[

��

�b

WKH HUURU IXQFWLRQ� HUI �[ �� FDQ EH FDOFXODWHG DSSUR[L�
PDWHO\ E\ FDUU\LQJ WKH VHULHV WR DQ DSSURSULDWH QXPEHU
RI WHUPV�

HUI�[�  
�S
{

r
[b [�

� c �� �
[�

� c �� b
[�

� c �� � ���
s

7KH UHFXUVLYH UHODWLRQVKLS WR FRPSXWH ,Q LV

�b,Q  b[Qb� H[S�bb[�� � �Qb ��,Qb�

$OWHUQDWLYHO\� DQ H[SUHVVLRQ IRU A7 WKDW LV YDOLG RQO\ IRU
[ w � DQG ZKLFK VHHPV DSSURSULDWH LV

A7  [\��b [���b \�S� H[S�bb[�

) QRZ UHTXLUHV WKH DQDO\WLFDO VROXWLRQ �$EUDPRZLW]
DQG 6WHJXQ� ����� WR WKH IROORZLQJ LQWHJUDO

=
[Q H[S�bb[�G[  

H[S�bb[�
bQ��

K
�b[�Q b Q�b[�Qb� � Q�Qb ���b[�Qb�

����� �b��Qb�Q�b[� � �b��QQ
L

6XFK DOJHEUDLF H[SUHVVLRQV DUH WHGLRXV WR LPSOHPHQW
�VHH $SSHQGL[� EXW RQFH FRGHG UHVXOW LQ DQ HmHFWLYH
DOJRULWKP� 0RUH ZRUN LV DOVR UHTXLUHG WR KDQGOH SURE�
OHPV ZLWK PL[HG ERXQGDU\ FRQGLWLRQV DQG FRPSOH[ JH�
RPHWU\�

� :K\ *3"

7KH UHDGHU PD\ DVN KLPVHOI� ?ZK\ LQYHVWLJDWH *3
VROXWLRQ RI GLmHUHQWLDO HTXDWLRQV ZKHQ PDQ\ SRSXODU
FRPPHUFLDO SDFNDJHV DOUHDG\ H[LVW WR VROYH WKHVH HTXD�
WLRQV"�

6XFK SDFNDJHV XVH WKH ZHLJKWHG UHVLGXDOV PHWKRG
�:50�� 3RSXODU :50V DUH WKH nQLWH GLmHUHQFHV
PHWKRG �)'0�� WKH nQLWH YROXPH PHWKRG �)90�� WKH
nQLWH HOHPHQW PHWKRG �)(0�� DQG WKH %RXQGDU\ (OH�
PHQW 0HWKRG �%(0��

7KH RQO\ PRWLYDWLRQ IRU LQYHVWLJDWLQJ DQ HYROXWLRQ�
DU\ PHWKRG LV IRU DSSUR[LPDWLQJ WKH VROXWLRQ WR QRQ�
VHOI�DGMRLQW PXOWL�GLPHQVLRQDO HTXDWLRQV� H�J� 1DYLHU�
6WRNHV HTXDWLRQV� EHFDXVH WKH :50 FDQQRW DOZD\V
FRQFOXVLYHO\ VROYH WKHVH SUREOHPV� 7KH UHPDLQLQJ VHF�
WLRQV RXWOLQH SRWHQWLDO DGYDQWDJHV RI WKH HYROXWLRQDU\
PHWKRG ZLWK UHVSHFW WR WKH :50�

��� 0DWKHPDWLFV

1XPHULFDO VROXWLRQ RI VHOI�DGMRLQW GLmHUHQWLDO HTXDWLRQV
�H�J� HOOLSWLF HTXDWLRQV ZLWK HYHQ RUGHU GHULYDWLYHV�
YLD :50� �H�J� *DOHUNLQ )(0� FHOO FHQWHUHG )90
PHWKRG� FHQWUDO GLmHUHQFH )'0� LV ?RSWLPDO�� 7KLV
PHDQV WKDW VFKHPHV FRQYHUJH WR WKH DQDO\WLFDO VROX�
WLRQ XQLIRUPO\ DV WKH PHVK LV UHnQHG� DQG�RU DV WKH
RUGHU RI DSSUR[LPDWLRQ RI WKH IXQFWLRQV LQ WKH :50
LV LQFUHDVHG� $SSOLFDWLRQV UHODWH WR HQJLQHHULQJ GHVLJQ
RI HGLnFHV� VWUXFWXUHV DQG EULGJHV ZLWK WKH :50� DQG
LQ SDUWLFXODU ZLWK WKH *DOHUNLQ )(0�

7KH :50� KRZHYHU� ORRVHV LWV ?RSWLPDO� EHKDYLRXU
ZKHQ DSSOLHG WR QRQ�VHOI�DGMRLQW ERXQGDU\ YDOXH GLI�
IHUHQWLDO HTXDWLRQV HVVHQWLDO WR +HDW 7UDQVIHU� )OXLG
'\QDPLFV� DQG &RPEXVWLRQ DQG UHVXOWV LQ XQVWDEOH
VROXWLRQV FRQWDLQLQJ ?ZLJJOHV� �*UHVKR� ������ 7KH
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QXPHULFDO GLpFXOW\ LV OLQHDU LQ QDWXUH DQG FDQQRW UH�
DOO\ EH DQDO\VHG IRU QRQ�OLQHDU 3'(V� H�J� WKH 1DYLHU�
6WRNHV HTXDWLRQV�

%RWK HQJLQHHUV DQG PDWKHPDWLFLDQV KDYH SRVWXODWHG
VSHFLDO PHWKRGV IRU GHDOLQJ ZLWK WKHVH HTXDWLRQV LQ
WKH :50 IUDPHZRUN� 1RWDEOH H[DPSOHV DUH 3HWURY�
*DOHUNLQ )(0� FHOO YHUWH[ )90� DQG XSZLQG GLmHU�
HQFLQJ )'0� 7KHVH PHWKRGV DUH RQO\ RSWLPDO IRU WKH
OLQHDU HTXDWLRQ LQ RQH VSDFH YDULDEOH �0RUWRQ� ������
$SSOLFDWLRQ WR 3'(V� RQO\ LQ WKH PRVW VSHFLDOLVHG EXW
WULYLDO RI FDVHV LV RSWLPDO� H�J� LI WKH VFKHPH FRLQFLGHV
ZLWK D FOHDU GLUHFWLRQDO FKDUDFWHULVWLF RI WKH VROXWLRQ�

8VLQJ VXFK VSHFLDO PHWKRGV LQ PRUH WKDQ RQH VSDFH
YDULDEOH� L�H� RQ 3'(V� nQGV VROXWLRQ EXW WR D PRUH
GLmXVH 3'( WKDQ WKDW LQWHQGHG� $SSUR[LPDWLRQV
FDQ ORRN GHFHSWLYHO\ VPRRWK� &RQVHTXHQWO\� D SK\V�
LFDO H[SHULPHQW LV UHTXLUHG WR FDOLEUDWH WKH QXPHULFDO
PHWKRG� ZKHQ WKH RULJLQDO REMHFWLYH ZDV IRU WKH QX�
PHULFDO PHWKRG WR SUHGLFW WKH RXWFRPH RI WKH HTXLYD�
OHQW SK\VLFDO H[SHULPHQW�

,W LV YHU\ LPSRUWDQW WR UHDOL]H WKDW WKH *3 DSSUR[LPD�
WLRQ LV IUHH IURP WKLV IXQGDPHQWDO PDWKHPDWLFDO GUDZ�
EDFN RI :50� $FFXUDF\ LV DQ LPSRUWDQW PRWLYDWLRQ
WR LQYHVWLJDWH QHZ VROXWLRQ DSSUR[LPDWLRQ PHWKRGV�

��� 0HPRU\

(YHU\ :50 UHTXLUHV HLWKHU D PHVK FRPSRVHG RI D
QXPEHU RI PHVK SRLQWV� RU WKH SUHVHQFH RI LQWHUQDO
SRLQWV �LQ WKH FDVH RI WKH %RXQGDU\ (OHPHQW 0HWKRG�
WR VROYH WKH QRQ�VHOI�DGMRLQW ERXQGDU\ YDOXH SUREOHP�
7KH ODUJHU WKH QXPEHU RI SRLQWV WKH PRUH DFFXUDWH ZLOO
EH WKH UHVXOW�

7KH PHVK DQG SRLQWV LQWURGXFH FRPSXWDWLRQDO FRP�
SOH[LWLHV DQG WUDGH�RmV� FHOO DVSHFW UDWLR GLVWRUWLRQ�
LQGLUHFW PHPRU\ DGGUHVVLQJ� UDSLG JURZWK LQ WKH QXP�
EHU RI RSHUDWLRQV UHTXLUHG WR VROYH WKH PDWUL[ V\VWHP�
FRQGLWLRQLQJ RI WKH PDWUL[ LQ WKH FDVH RI LWHUDWLYH PD�
WUL[ VROXWLRQ PHWKRGV� HWF� )LQDOO\� DGDSWLYH PHWKRGV
IRU PHVK UHnQHPHQW PXVW EH GHYLVHG WR WUDFN D VROX�
WLRQ E\ FRUUHFWLQJ WKH PHVK PRVW HFRQRPLFDOO\�

7KH *3 VFKHPH SUHVHQWHG LQ WKLV SDSHU GRHV QRW XVH
DQ\ VDPSOLQJ SRLQWV DQG GRHV QRW UHTXLUH D PHVK� &RQ�
VHTXHQWO\� FRPSOLFDWHG DOJRULWKPV WR KDQGOH PHPRU\
DGGUHVVLQJ DUH QRW UHTXLUHG�

��� 2UGHU RI DSSUR[LPDWLRQ

+LJK RUGHU :50 �TXDGUDWLF nQLWH HOHPHQWV DQG KLJK
RUGHU nQLWH GLmHUHQFHV� LQFUHDVH WKH EDQGZLGWK RI WKH
UHVXOWLQJ PDWUL[ V\VWHP WR EH VROYHG SUHFOXGLQJ WKHLU
SUDFWLFDO XVH LQ VROXWLRQ RI HTXDWLRQV LQ WKUHH VSDFH

YDULDEOHV ��' SUREOHPV�� ,Q DGGLWLRQ� 3HWURY�*DOHUNLQ
PHWKRGV DQG PXOWL�JULG PHWKRGV DUH QH[W WR LPSRVVL�
EOH WR FRQVWUXFW LQ �' ZLWK KLJKHU RUGHU )(0V�

7KH OHDVW VTXDUHV )(0 HVVHQWLDOO\ VTXDUHV WKH HTXD�
WLRQV WR UHVWRUH HOOLSWLFLW\� LV D FUHGLEOH DOWHUQDWLYH WR D
3HWURY�*DOHUNLQ PHWKRG� DQG KDQGOHV KLJKHU RUGHU HO�
HPHQWV LQ D VWUDLJKW IRUZDUG PDQQHU �%RFKHY� ������
+RZHYHU� VTXDULQJ WKH 3'( PXVW FDXVH D YHU\ VLJQLn�
FDQW LQFUHDVH LQ WKH PDWUL[ EDQGZLGWK�

&RQVHTXHQWO\� DQG IRU �' SUREOHPV� :50 XVXDOO\ UH�
TXLUHV PLOOLRQV RI PHVK SRLQWV ZLWK WKH ORZ RUGHU OLQHDU
DSSUR[LPDWLRQ�

,I H[SRQHQWLDO IXQFWLRQV� RU HTXLYDOHQW KLJK RUGHU SRO\�
QRPLDOV� FRXOG EH SUHFLVHO\ ORFDWHG LQ ERXQGDU\ OD\�
HUV WKHQ YHU\ IHZ PHVK SRLQWV ZRXOG EH UHTXLUHG � D
SDQDFHD IRU :50 SUDFWLWLRQHUV�

7KH *3 PHWKRG SURSRVHG LQ WKLV SDSHU� VKDUHV ZLWK
WKH PHWKRG SURSRVHG E\ .R]D �.R]D� ������ DQ DELOLW\
WR GLVFRYHU DQG WR FRQVWUXFW IRU LWVHOI ZKDWHYHU RUGHU
RI DSSUR[LPDWLRQ LV UHTXLUHG WR VROYH WKH SUREOHP WKDW
LV SUHVHQWHG WR LW�

��� 3DUDOOHO FRPSXWLQJ

3DUDOOHOL]DWLRQ RI WKH :50 LV SUREOHPDWLF� DQG QRU�
PDOO\ DFKLHYHG ZLWK GRPDLQ GHFRPSRVLWLRQ PHWKRGV
ZKLFK PXVW FDUHIXOO\ EDODQFH SURFHVVRU FRPPXQLFD�
WLRQ� SURFHVV VWDUWXS WLPH� DQG ZRUN ORDG�

,Q FRQWUDVW� *HQHWLF 3URJUDPPLQJ HDVLO\ OHQGV LWVHOI
WR HpFLHQW SDUDOOHO LPSOHPHQWDWLRQ �.R]D� ����� DQG
ZKHQ FRPELQHG ZLWK WKH PHWKRG LQ �1RUGLQ� ����� FDQ
DFKLHYH VLJQLnFDQW SHUIRUPDQFH JDLQV�

� &RQFOXVLRQV

$ QRYHO *3 PHWKRG LV GHYHORSHG WR PRGHO FRQYHFWLRQ�
GLmXVLRQ SUREOHPV� ZKLFK HYROYHV D YDULDEOH OHQJWK
YHFWRU RI SRO\QRPLDO FRHpFLHQWV� ,WV nWQHVV XVHV WKH
LQWHJUDO RI VTXDUHG HUURU� ZKLFK KDV WKH DGYDQWDJH
RI QRW UHTXLULQJ VDPSOLQJ SRLQWV QRU GHULYDWLYHV RI
*3 WUHHV� ([SHULPHQWV VROYH WKH VWHDG\ FRQYHFWLRQ�
GLmXVLRQ HTXDWLRQ LQ RQH VSDFH YDULDEOH� 7KLV FRSHV
HDVLO\ IURP 3H  � WR 3H  ��� EXW HQFRXQWHUV FRPSX�
WDWLRQDO GLpFXOW\ IRU KLJKHU 3H� (YHQ VR� SRWHQWLDOO\�
WKH PHWKRG KDV DGYDQWDJHV RYHU SRSXODU :50V�

7KLV PHWKRG FDQQRW EH UHFRPPHQGHG DV D VHULRXV DO�
WHUQDWLYH IRU VROYLQJ WKHVH SUREOHPV XQWLO VFKHPHV DUH
IRXQG WR REWDLQ UHVXOWV DW KLJKHU 3H� WR GHYHORS WHFK�
QLTXHV IRU VROXWLRQ RQ FRPSOH[ JHRPHWULHV LQ WZR DQG
WKUHH VSDFH YDULDEOHV �,URQV� ������ DQG WR KDQGOH ERWK
1HXPDQQ DQG 'LULFKOHW ERXQGDU\ FRQGLWLRQV�
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$FNQRZOHGJPHQWV

7KLV SDSHU KDV EHQHnWHG IURP WKH FRPPHQWV DQG VXJ�
JHVWLRQV RI 5REHUW :KLWWDNHU� 5LFKDUG %UDQNLQ� %LOO
/DQJGRQ� DQG -RVHSK .ROLEDO�

5HIHUHQFHV

0� $EUDPRZLW] DQG ,� $� 6WHJXQ ������� +DQGERRN
RI 0DWKHPDWLFDO )XQFWLRQV� 'RYHU 3XEOLFDWLRQV ,QF��
1HZ <RUN�

3� %RFKHY DQG 0� *XQ]EXUJHU ������� )LQLWH (OHPHQW
PHWKRGV RI OHDVW VTXDUHV W\SH� 6,$0 5HYLHZ ��� ����
����

3� *UHVKR DQG 5� /� /HH ������� 'RQ
W 6XSSUHVV WKH
:LJJOHV� 7KH\ DUH WHOOLQJ \RX VRPHWKLQJ� &RPSXW� 	
)OXLGV� �� ��������

'� +RZDUG ������� /DWH %UHDNLQJ 3DSHUV RI WKH *3
�� FRQIHUHQFH� 0DGLVRQ� :LVFRQVLQ�

%� 0� ,URQV ������� (QJLQHHULQJ $SSOLFDWLRQ RI 1X�
PHULFDO ,QWHJUDWLRQ LQ 6WLmQHVV 0HWKRG� -RXUQDO RI WKH
$PHULFDQ ,QVWLWXWH RI $HURQDXWLFV DQG $VWURQDXWLFV�
��� ����������

-� 5� .R]D ������� *HQHWLF 3URJUDPPLQJ� RQ WKH SUR�
JUDPPLQJ RI FRPSXWHUV E\ PHDQV RI QDWXUDO VHOHFWLRQ�
0,7 3UHVV�

.� :� 0RUWRQ ������� 1XPHULFDO 6ROXWLRQ RI &RQ�
YHFWLRQ 'LmXVLRQ 3UREOHPV� $SSOLHG 0DWKHPDWLFV DQG
&RPSXWDWLRQ ��� &KDSPDQ DQG +DOO�

3� 1RUGLQ ������� $ &RPSLOLQJ *HQHWLF 3URJUDPPLQJ
6\VWHP WKDW 'LUHFWO\ 0DQLSXODWHV WKH 0DFKLQH &RGH�
$GYDQFHV LQ *HQHWLF 3URJUDPPLQJ� HG� .HQQHWK .LQ�
QHDU -U�� 0,7 3UHVV�

$SSHQGL[

7KLV DSSHQGL[ SHUWDLQV WR VHFWLRQ ��� DQG WKH SRVVLELO�
LW\ RI H[WHQGLQJ WKH PHWKRG WR 3'(V�

7KH FDOFXODWLRQ RI ) IRU WKH VWHDG\�VWDWH FRQYHFWLRQ�
GLmXVLRQ HTXDWLRQ LQ WZR VSDFH YDULDEOHV �VTXDUH ER[
KHDWHG RQ RQH RI LWV VLGHV� UHTXLUHV DOJHEUDLF PDQLSX�
ODWLRQ� $ FKDQJH RI QRWDWLRQ PDNHV IRU D OHVV FOXWWHUHG
SUHVHQWDWLRQ� L�H� WKH SRO\QRPLDO FRHpFLHQWV DLM DUH
UHSUHVHQWHG DV D%$ �
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Abstract

A new hybrid of Evolutionary Automatic

Programming which employs logic programs

is presented. In contrast with tree-based

methods, it employs a simple GA on vari-

able length strings containing integers. The

strings represent sequences of choices used in

the derivation of non-deterministic logic pro-

grams. A family of Adaptive Logic Program-

ming systems (ALPs) are proposed and from

those, two promising members are examined.

A proof of principle of this approach is given

by running the system on three problems of

increasing grammatical diÆculty. Although

the initialization routine might need improve-

ment, the system as presented here provides

a feasible approach to the induction of so-

lutions in grammatically and logically con-

strained languages.

1 Introduction

Logic Programming [3] makes a rigorous distinction

between the declarative aspect of a computer program

and the procedural part. The declarative part de�nes

everything that is 'true' in the speci�c domain, while

the procedural part derives instances of these 'truths'.

The programming language Prolog [16] �lls in the pro-

cedural aspect by employing a strict depth-�rst search-

strategy through the rules (clauses) de�ned by a logic

program. In this paper an alternative search strategy

is examined. This employs a variable length genetic

algorithm that speci�es the choice to make at each

choice-point in the derivation of a query. The search

strategy operates on logic programs that de�ne sim-

ple to more constrained languages. This hybrid of a

variable length genetic algorithm operating on logic

programs is given the name Adaptive Logic Program-

ming.

The paper is organized by �rst giving a short introduc-

tion of logic programming and Prolog, followed by a

description of the non-deterministic modi�cations we

propose. A section with related work of applying ge-

netic programming to logic programs follows in sec-

tion 4. The system thus described is tested on three

problems with increasingly more involved grammati-

cal constraints. A discussion and conclusion �nish the

paper.

2 Logic Programming

A logic program consists of clauses consisting of a head

and a body. In Prolog notation, identi�ers starting

with an uppercase character are considered to be logic

variables, while lowercase characters are atoms or func-

tion symbols. The logic program

sym(x).

sym(y).

sym(X + Y) :- sym(X), sym(Y).

sym(X * Y) :- sym(X), sym(Y).

de�nes a single predicate sym. The derivation symbol

:-/2 should be read as an inverse implication sign. In

predicate logic the third clause can then be interpreted

as

8X;Y : sym(X) ^ sym(Y ) ! sym(X + Y )

The query

?- sym(X).
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can be interpreted as the inquiry 9X : sym(X)1 and

produces in Prolog the following sequence of solutions:

X = x;

X = y;

X = x + x;

X = x + y;

X = x + (x + x);

X = x + (x + y);

X = x + (x + (x + x));

...

Extrapolating this sequence it is easy to see that with-

out bounds on the depth or size of the derivation, the

depth-�rst clause selection with backtracking strategy

employed in Prolog will never generate an expression

that contains the multiplication character. Therefore,

while the depth-�rst selection of clauses may be sound,

it is not complete w.r.t. an arbitrary logic program2.

Logic programming is a convenient paradigm for spec-

ifying languages and constraints. A predicate can have

several attributes and these attributes can be used to

constrain the search space. For example, the logic pro-

gram and query

sym(x,1).

sym(y,1).

sym(X+Y,S) :-

sym(X,S1), sym(Y,S2), S is S1+S2+1.

sym(X*Y,S) :-

sym(X,S1), sym(Y,S2), S is S1+S2+1.

?-sym(X, S), S<10.

speci�es all expressions of size smaller than 10. With

such terse yet powerful descriptiveness, it is therefore

no surprise that attribute logic and constraint logic

programming are more often than not implemented in

Prolog. It is this convenient representation of data or

program structures together with constraints that we

are trying to exploit in this paper.

Formally, a Logic Programming system is de�ned by

Selected Literal De�nite clause resolution (or SLD-

resolution for short), and an oracle function that se-

lects the next clause or the next literal3. This oracle

function is in Prolog implemented as:

� Select �rst clause
1Formally the negation of this formula is disproven, thus

proving this formula.
2A depth-�rst strategy is however far more eÆcient than

the breadth-�rst alternative
3A literal is a single predicate call in the body of a clause

or query. In the query above, sym(X;S) and S < 10 are
literals.

� Select �rst literal

� Backtrack on failure

3 Grammatical Evolution and Logic

Programming

Grammatical Evolution [13] aims at inducing arbitrary

computer programs based on a context-free speci�ca-

tion of the language. It employs a variable length inte-

ger representation that speci�es a sequence of choices

made in the context-free grammar to generate an ex-

pression. Due to the speci�c representation of a se-

quence of choices, no type information needs to be

maintained in the evolving strings, and no custom mu-

tation and crossover operators need to be designed.

The variable length one-point crossover employed in

GE was shown to have an elegant interpretation in

closed grammars in [7].

In this paper we similarly use a sequence of choices as

the base representation, but rather than choosing be-

tween the production rules of a context-free grammar,

they are used to make a choice between clauses in a

logic program. The sequence of choices thus represents

one part of the selection function operating together

with SLD-resolution on the logic program. Further-

more, backtracking is implemented in the system to-

gether with an alternative strategy on failure: restart-

ing the original query.

As an example of the mapping process, consider the

grammar de�ned above in Section 2, and an evolu-

tionary induced sequence of choices [2; 1; 3; 0; 1]. The

derivation of an instance then proceeds as follows:

?- sym(X).

?- sym(X1), sym(X2). [(X1 + X2)/X] 2

?- sym(y), sym(X2). [y/X1] 1

?- sym(X3), sym(X4). [(X3 * X4)/X2] 3

?- sym(x), sym(X4). [x/X3] 0

?- sym(y). [y/X4] 1

Applying all bindings made, this produces the sym-

bolic expression: y + x � y. The values from the se-

quence of choices are in this example conveniently cho-

sen to lie between 0 and 3 inclusive; in practice a num-

ber encountered in the genotype can be higher than

the number of choices present. The choice will then

be taken modulo the number of available choices.

In this example, the depth-�rst clause selection of Pro-

log is replaced by a guided selection where choices are

drawn from the genotype. The �rst unresolved literal

is still chosen to be the �rst to derive. It is possible to

replace this with guided selection as well, be it in the
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x      y    t y+xy

E =sum (t − (x+xy))^2

Fitness Evaluation

2 4 1 ....

3 8 2 3 1 ....

.

genotypefitness

2 1 3 0 1 .....

DerivationGenetic Algorithm

sym(x).
sym(y).
sym(X + Y) :− sym(X), sym(Y).
sym(X * Y) :− sym(X), sym(Y).

eval(E) :− sym(X), c_eval(X, E).

Figure 1: Overview of the ALP system: the sequence

of choices is used in the derivation process to derive

a speci�c instance for sym(X), this instance is passed

to the evaluation function. The calculated �tness is

returned to the genetic algorithm.

same string or in a seperate string. Together with a

choice whether to do backtracking or not, this leads to

Table 1 which gives an overview of the parts of the Pro-

log engine that can be replaced. Table 1 thus de�nes

a family of adaptive logic programming systems. Enu-

merating them, ALP-0 will correspond with a Prolog

system, while ALP-1 (modi�ed clause selection) and

ALP-4 (modi�ed clause selection without backtrack-

ing) correspond with the systems examined here.

Selection Prolog Modi�cation

Clause First Found From Genotype

Literal First Found From Genotype

On Failure Backtrack Restart

Table 1: The possible modi�cations to the selection

function.

We've chosen to focus on ALP-1 and ALP-4 as there

are some practical problems associated with replacing

literal selection. In many applications, a logic pro-

gram consists of a mix of non-deterministic predicates

(such as the sym/1 and sym/2 predicates above) and

deterministic predicates (such as the assignment func-

tion is/2 ). The deterministic predicates often assume

some variables to be bound to ground terms, evaluat-

ing them out of order would then lead to runtime ex-

ceptions. Section 6 will show that for languages with a

nontrivial set of constraints, backtracking is necessary

to obtain solutions reliably.

A logic program is thus used as a formal speci�cation

of the language, the sequence of choices is used to steer

the resolution process and a small external program is

used to evaluate the expressions generated. See Fig-

ure 1 for the typical ow of information. The scope

of the system are then logic programs where there is

an abundance of solutions that satisfy the constraints,

which are subsequently evaluated for performance on

a problem domain.

3.1 Backtracking

In ALP-1, at every step in the derivation process, a list

is maintained of clauses that are not tried yet. When

a query fails at a certain point, the selection function

will be asked to pick a new choice out of the remain-

ing clauses. This choice is removed and when all are

exhausted, the branch reports failure to the previous

level where this procedure starts again.

ALP-4 does not use backtracking; on failure it will

restart the original, top-level, query, while the reading

continues from where it left of.

If the sequence runs out of choices, i.e., the end of the

genotype is reached, the derivation is cut o� and the

individual gets the worst performance value available.

This will be labelled a failure.

3.2 Initialization

Initialization is performed by doing a random walk

through the grammar, maintaining the choices made,

backtracking on failure (ALP-1) or restarting (ALP-

4). After a successful derivation is found, the short-

est, non-backtracking path to the complete derivation

is calculated. An occurence check is performed and

if the path is not present in the current population,

a new individual is initialized with this shortest non-

backtracking path. Individuals in the initial popula-

tion will thus consist solely of non-backtracking deriva-

tions to sentences.

Typically a depth limit is employed.

3.3 Performance Evaluation

Performance is typically evaluated in a special mod-

ule, written in a compiled language such as C. This

program walks through the tree structure and eval-

uates each node. This is however not necessary if

the �tness can be readily evaluated in the logic pro-

gram itself. The query investigated typically has the

form: �nd that derivation for sentence(X), such that

fitness eval(X;F ) returns the maximal or minimal F .
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Figure 2: An individual in the form of a derivation

tree. Vacant sites are �lled by sub-trees from the other

parent.

3.4 Variational Operators

Crossover is implemented as a simple variable length

string crossover. Two independent random points are

chosen in the strings and strings starting at those

points are swapped. The two points are chosen within

the expressed code of a string | code that is used in

the derivation.

The e�ects of the crossover in this case is quite dif-

ferent from that of subtree crossover. This is because

the derivation tree is created in a pre-order fashion,

i.e., the left-most literal of a goal is always mapped to

completion before the rest of the goal is processed.

Crossover operates on the linear structure, and single

point crossover thus divides an individual into a par-

tially mapped tree, and a stack of choices. In general,

all subtrees to the right of the crossover site are re-

moved, as in Figure 2, leaving multiple vacant sites on

the derivation tree. These sites are said to ripple up

from the crossover site.

An integer in the genome is said to be intrinsically

polymorphic, meaning that it can be interpreted (or re-

interpreted) by any node in a derivation tree in what-

ever context. By adding codons from the other parent

to the incomplete derivation tree in Figure 2, the sites

vacated by the crossover event are again �lled with

new subtrees of the appropriate type.

In contrast with subtree crossover, the percentage of

genetic material exchanged is on average 50% and it

has been shown that this crossover is quite e�ective in

exploring the search space of possible programs as it

is less susceptible to premature convergence [7].

Although many mutations can be de�ned on a string of

integers, the one used here simply replaces a randomly

selected integer from the string with a randomly drawn

integer lower than 216.

3.5 Special Predicates

All Prolog built-in clauses such as assignment (is/2 )

are evaluated in Prolog directly. This is done as often

such clauses are deterministic and depend on the Pro-

log depth-�rst search strategy. Also calls to libraries

etc., are evaluated directly.

A special predicate ext int/2 is employed that, when

encountered in the derivation, binds the �rst argu-

ment with an integer drawn from the genotype mod-

ulo the second argument (which therefore needs to be

grounded). Using this technique, oating point con-

stants can be speci�ed as part of the logic program.

The oating point grammar used in this paper is:

fp_unsigned(X) :-

ext_int(Num,256),

ext_int(Denom,256),

X is Num / (Denom + 1).

fp_unsigned(X) :-

fp_unsigned(First),

fp_unsigned(Second),

X is First * Second.

fp(X) :-

ext_int(S,2),

Sign is (S-0.5) * 2,

fp_unsigned(Y),

X is Sign * Y.

There is nothing particularly innovative or clever

about this program. Although it speci�es up to ma-

chine precision oating points, it can only model ra-

tional numbers for which the numerator and denomi-

nator are factors of primes smaller than 256. It does

show however, how intricate calculations can be made

a part of the language. A call to fp/1 will bind the

argument to a oating point value instead of an ex-

pression. Future versions of ALPs will undoubtedly

support oating point numbers that evolve together

with the list of choices, so that specialized mutation

operators can be used.

4 Related Work

Wong and Leung [17] hybridized inductive logic pro-

gramming and genetic programming in their system

LOGENPRO. The representation that is being manip-

ulated by the genetic operators consist of derivation

trees. LOGENPRO �rst applies a preprocessing step

that transforms a logic grammar (a De�nite Clause

Grammar) into a logic program. Apart from expres-

sions in the speci�ed language, this logic program also
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produces a symbolic representation of the derivation

tree. This derivation tree is subsequently manipu-

lated by the genetic operators. Some fairly intricate

crossover and mutation operators are used which, to-

gether with semantic validation, ensure that the re-

sulting derivation tree speci�es a valid instantiation of

the logic grammar. Because the logic program is able

to parse derivation trees, semantic veri�cation reduces

to checking whether Prolog accepts the derivation tree.

Ross [15] describes a similar system that uses De�nite

Clause Translation Grammars. This representation is

also translated into a logic program that is able to

parse and generate derivation trees in the language

de�ned by the grammar. The crossover described in

[15] seems to only use type information contained in

the predicate names and arity at the heads of the

clauses and swaps derivation subtrees that contain the

same head. A semantic veri�cation (running the Pro-

log program on the derivation tree), is subsequently

performed.

Even for typed crossovers, semantic validation is neces-

sary as the body of a clause can introduces additional

constraints, not related to the type but to the actual

values found in the derivation. An additional problem

for strongly typed crossover occurs when the number of

distinct types grows. As the operator will only swap

subtrees that have the same type, every type needs

to be present multiple times with di�erent derivations

in the population to make the operator swap some-

thing other than identical trees. If a speci�c type dis-

appears from a population, or only has a single dis-

tinct instance, the system has to rely on mutation to

re-introduce instances. Every additional type or con-

straint thus partitions the search space further and

thereby restricts the crossover.

Yet another problem with subtree crossover is that it

will process an increasingly smaller percentage of ge-

netic material as the size of the individuals grows [1],

while the crossover employed here will always swap on

average half of the genetic material [7].

In contrast with the systems described above, the

ALP systems do not use an explicit representation of

the derivation tree, thus being time and memory ef-

�cient. In the systems described above, every step

in the derivation process is recorded in a node to-

gether with the bindings that are made, e�ectively

doubling the size of an expression tree. In ALPs, no

pre-processing step is necessary, it works on logic pro-

grams directly. Also no bookkeeping is necessary when

trying crossovers and mutations. The downside of this

is that the ALPs can generate invalid individuals, i.e.,

strings of choices that have no valid derivation. How-

ever, such a failed derivation is equivalent with a failed

semantic validation in the systems described above.

The rate at which this happens is ultimately bound to

the language and constraints used.

5 Proof of Principle

The system outlined above was implemented using

SWI-Prolog4, mainly because of the two-way C API

that it implements. A steady-state genetic algorithm

using a tournament size of 5 was implemented using

the evolutionary objects library5. Crossover and mu-

tation were applied with rates 0.9 and 0.1 respectively.

What follows are three experiments with grammars of

increasing degrees of complexity. The purpose of these

experiments is to present a proof of the principle that a

variable length GA can indeed be used to successfully

induce sentences in both easy and diÆcult languages.

The experiments were run for 100 generations using

both ALP-1 and ALP-4. For the symbolic regression

and Santa Fe trail problem, 100 runs were performed,

the results on the sediment transportation experiments

are reported on the basis of 500 runs. As a baseline

test, for each problem, 10 million random individuals

were generated using the initialization procedure from

ALP-1 (denoted by ALP-1R). Also 10 million individ-

uals were generated by Prolog (ALP-0). As Prolog was

not able to produce a single correct individual for any

of the problems, these results are further omitted. For

all methods, the same depth limit was set.

5.1 Symbolic Regression: 0:3xsin(2�x)

From this function 100 equally spaced points in the

interval [-1,1] were generated. This problem has been

studied in [6] with data in the range [0,1]. For the

experiments a population size of 1000 was used. A

success was determined to be a root mean squared er-

ror less than 0.01.

5.2 An Arti�cial Ant on the Santa Fe Trail

The arti�cial ant problem has been studied intensively

in [10] for a closed grammar. Here a context free gram-

mar is employed like in [7].

A population of size 500 was used. The best perfor-

mance achievable was 89 food pellets eaten.

4http://www.swi.psy.uva.nl/projects/SWI-Prolog
5http://www.sourceforge.net/projects/eodev
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5.3 Units of Measurement: Sediment

Transport

The units of measurement problem used here has been

studied previously in [2]. In contrast with [2] the

system is constrained to generate only dimensionally

correct equations. Another approach for this class of

problems is studied in [14] where a context free gram-

mar is generated that models a subset of the language

of units of measurement.

The desired output for this problem is a dimensionless

quantity, a concentration. Two experiments were per-

formed, one where the desired output is given and one

experiment where no desired output is given. These

are denoted in Table 2 as Sed1 and Sed2 respectively.

The second experiment thus seeks for a dimensionally

consistent formulation stated in any units. It is quite

common for empirical equations to multiply the result-

ing equation with a constant stated in some units to

obtain an equation stated in the desired units of mea-

surement6, this is usually a residual coeÆcient that

tries to describe some unmodelled phenomena.

The parameters were set at the same values as the

symbolic regression problem above. A successful run

was determined by comparing the error produced to

that of a benchmark model, which was an equation

induced by a scientist [5]. Because success rates were

low, 500 runs were performed for this problem.

6 Results

For all problems, solutions were found, Table 2 sum-

marizes the results. Although the di�erences between

ALP-1 and ALP-4 are not signi�cant (� = 0:05) on the

symbolic regression problem7 and the Sante-Fe prob-

lem, the failure of ALP-4 to �nd any solutions on any

of the sediment transport problems clearly shows the

need for backtracking. The sediment transport prob-

lem involves non-trivial constraints, and inspection of

the expressions produced by ALP-4 showed that it got

very quickly trapped into derivations of shallow depth,

often converging on a single constant. It is hypothe-

sized that the use of backtracking allows the genotype

to specify a particular start of the derivation process,

relying on backtracking as a local search operator to

�nd feasible solutions.

Con�dence intervals were calculated around the 99%

6A famous example is Chezy's roughness coeÆcient,

stated in the unit m1=2
=s.

7A control run using a strongly typed subtree crossover
on the symbolic regression problem resulted in a success
rate of 4%, lower than either ALP-1 or ALP-4.

ALP-1 ALP-4 ALP-1R

S. R. 4253(9%) 5508(6%) inf(0%)

[2351; 11642] [2924; 16868]

S. F. 185(37%) 284(28%) 1279(3:6e� 4%)

[124; 305] [172; 584] [852; 2302]

Sed1 10997(1:6%) inf(0%) inf(0%)

[3629; inf]

Sed2 1610(26%) inf(0%) inf(0%)

[1300; 2054]

Table 2: Computational E�ort divided by 1000 for

solving the three problems. Overall success rate in

round brackets. Numbers in square brackets denote

95% con�dence intervals around the e�ort statistic

calculated above. Con�dence intervals are calculated

with resampling statistics, using a bootstrap sample

of 10000. The success rates are calculated on the �nal

(100th) generation.

computational e�ort statistic proposed by Koza ([8] p.

194). The �rst �fty percent of the runs were used to

�nd the generation that maximized the e�ort statis-

tic, the results reported were subsequently calculated

on the latter (independent) half of the runs. As the

con�dence interval calculated for the sediment trans-

portation problem included a 0% success rate, the up-

per bound of the con�dence interval is in�nite. This

is to be expected, as the success predicate demanded

that the system should improve upon an equation pro-

posed by an expert in the �eld of sediment transport.

Interestingly enough, for the second sediment trans-

portation problem (that allows dimensionally consis-

tent equations that do not produce the desired di-

mensionless output), the success rate is signi�cantly

higher. This illustrates the dangers of providing too

much bias to a weak search algorithm such as ALPs.

The con�dence intervals were calculated in response

to a question posed by Miller [11] on the value of this

statistic on experiments with a low success rate. Ta-

ble 2 shows that indeed, for a low success rate such as

1.6%, the statistic can only give a lower (highly opti-

mistic) bound on the number of individuals to process.

It also shows that the statistic is highly volatile even

for moderate success rates. For the Santa-Fe prob-

lem that has an overall success rate of 37%, the width

of the con�dence interval (i.e., the uncertainty around

the statistic) is nearly as large as the value of the com-

putational e�ort itself. The con�dence intervals clearly

show that a straightforward comparison of computa-

tional e�ort, even di�ering in an order of magnitude,

is not possible.

Figure 3 shows the average fail ratio for ALP-1. As
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Figure 3: Failed derivations over the total number of

derivations per generation for ALP-1, averaged over

the number of runs.

the initial generation includes only valid individuals,

the ratio is zero. It is clear from the �gure that this

initial population is not well adapted to produce valid

individuals. For the less constraint problems, the per-

centage of failed derivations quickly drops to low val-

ues. For the problems involving units of measure-

ment, the level of failed derivations does not drop that

quickly: even after 100 generations, more than one in

�ve crossover and/or mutation events results in a failed

derivation.

Although it might seem that the crossover and mu-

tation employed here are very destructive, and might

even lead to the hasty conclusion that a strongly typed

crossover is necessary, this is in our opinion not war-

ranted. The high fail rates are a symptom of the

highly constrained nature of this search space. A

strongly typed crossover would have this same prob-

lem, it would either obscure it by only swapping iden-

tical subtrees, or by a high failure rate in the semantic

validation. Figure 4 shows that despite this high fail-

ure rate, the system is still able to perform signi�cant

optimization. It would however be instructive to see

how well a strongly typed system would fair on this

problem.

7 Discussion

The system presented here is the �rst prototype for

evolving sentences in languages with constraints. It

has proven to be able to optimize all the problems

described here, including a diÆcult language such as

the units of measurement grammar.
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Figure 4: Average performance of ALP-1 on the sed-

iment transport problem Sed1. Although the failure

rate is high (see Figure 3), improvements keep on be-

ing found. Notice that the performance has not leveled

o� yet at 100 generations.

The initialization procedure as is described here does

not provide an optimal starting point for the ALP sys-

tems. The initialization procedure consists of non-

backtracking points to derivations, with no unex-

pressed code. It is an avenue of future research to

�nd a better initialization procedure. However, the

highly explorative nature of the crossover used here,

enables the system to overcome this and even with a

non-optimal starting point, it is able to �nd competi-

tive solutions to the problems presented to it.

The main bene�t of the ALPs system in contrast

with strongly typed genetic programming systems is

that the variational operators do not depend as heav-

ily on the grammar that is used. A strongly typed

crossover is constrained to search in the space of avail-

able types in the population, thus having a strong

macro-mutation avor [1]. The ALP systems, borrow-

ing the mapping process from Grammatical Evolution,

is in principle not thus constrained. New instances of

types can be created during the run.

Although this paper has focussed on expression in-

duction, due to the general nature of logic programs,

we also expect to be able to perform optimization on

transformational problems [12], as well as on construc-

tional (embryonic) problems [4, 9].

8 Conclusion

An implementation and proof of principle is given for

an adaptive logic programming system called ALPs.
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It modi�es the standard Prolog clause selection to a

selection strategy that is guided by a variable length

genotype. The system was tested on three di�erent

problems of increasing diÆculty and was able to pro-

duce solutions to these problems.

Although backtracking did not seem necessary for the

simpler grammars, it made a signi�cant di�erence in

the diÆcult grammar of units of measurement.
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Abstract

In most Genetic Programming (GP) ap-

proaches, the space of genotypes, that is the

search space, is identical to the space of phe-

notypes, that is the solution space. Develop-

mental approaches, like Developmental Ge-

netic Programming (DGP), distinguish be-

tween genotypes and phenotypes and use a

genotype-phenotype mapping prior to �tness

evaluation of a phenotype. To perform this

mapping, DGP uses a genetic code, that

is, a mapping from genotype components

to phenotype components. The genotype-

phenotype mapping is critical for the perfor-

mance of the underlying search process which

is why adapting the mapping to a given prob-

lem is of interest. Previous work shows, on

an easy synthetic problem, the feasibility of

code evolution to the e�ect of a problem-

speci�c self-adaptation of the mapping.The

present empirical work delivers a demonstra-

tion of this e�ect on a hard synthetic prob-

lem, showing the real-world potential of code

evolution which increases the occurrence of

relevant phenotypic components and reduces

the occurrence of components that represent

noise.

1 INTRODUCTION AND

OBJECTIVE

Genetic programming (Koza 1992, Banzhaf et al. 1998)

is an evolutionary algorithm that, for the purpose of

�tness evaluation, represents an evolved individual as

algorithm. Most GP approaches do not distinguish

between a genotype, that is, a point in search space,

and its phenotype, that is, a point in solution space.

Developmental approaches, however, like (Keller and

Banzhaf 1996, O'Neill and Ryan 2000, Spector and

Sto�el 1996), make a distinction between the search

space and the solution space. Thus, they employ a

genotype-to-phenotype mapping (GPM) since the be-

havior of the phenotype de�nes its �tness which is used

for selection of the corresponding genotype. This map-

ping is critical to the performance of the search pro-

cess: the larger the fraction of the search space that

a GPM maps onto good phenotypes, the better the

performance. In this sense, a mapping is said to be

\good" if it maps a \large" fraction of search space

onto good phenotypes. This is captured in the formal

measure of \code �tness" which is de�ned in (Keller

and Banzhaf 1999). That work shows, on an easy syn-

thetic problem, the e�ect of code evolution: genetic

codes, i.e., information that controls the genotype-

phenotype mapping and that is carried by individu-

als, get adapted such that problem-relevant symbols

are increasingly being used for the assembly of phe-

notypes, while irrelevant symbols are less often used.

This implies that the approach can adapt the map-

ping to the problem, which eliminates the necessity

of having a user de�ne a problem-speci�c mapping.

This in itself would often be impossible when facing a

new problem, since the user does not yet understand

the problem well enough. From an abstract point of

view, code evolution adapts �tness landscapes, since a

certain mapping de�nes that landscape. (Keller and

Banzhaf 1999) also shows that, during evolution, it is

mostly better individuals who carry better codes, and

it is mostly better codes that are carried by better in-

dividuals. However, the computation of code �tness is

only feasible for small search spaces, that is, easy prob-

lems, why it is of interest to test whether the e�ect

of code evolution also takes place on a hard problem,

which is the objective of this work.

First, developmental genetic programming (DGP)

(Keller and Banzhaf 1996, Keller and Banzhaf 1999)
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is introduced as far as needed in the context of this ar-

ticle, and the concept of a genetic code as an essential

part of a mapping is de�ned. Second, the principle

of the evolution of mappings as an extension to de-

velopmental approaches is presented in the context of

DGP. Here, the genetic code is subjected to evolution

which implies the evolution of the mapping. Third, the

objective mentioned above is being followed by investi-

gating the progression of phenotypic-symbol frequen-

cies in codes during evolution. Finally, conclusions and

objectives of further work are discussed.

2 DEVELOPMENTAL GENETIC

PROGRAMMING

All subsequently described random selections of an ob-

ject from a set of objects occur under equal probability

unless mentioned otherwise.

2.1 ALGORITHM

A DGP variant uses a common generational evolu-

tionary algorithm, extended by a genotype-phenotype

mapping prior to the �tness evaluation of the individ-

uals of a generation.

2.2 GENOTYPE, PHENOTYPE, GENETIC

CODE

The output of a GP system is an algorithm in a certain

representation. This representation often is a com-

puter program, that is, a word from a formal lan-

guage. The representation complies with structural

constraints which, in the context of a programming

language, are the syntax of that language. DGP pro-

duces output compliant with the syntax de�ned by

an arbitrary context-free LALR(1) (look-ahead-left-

recursive, look ahead one symbol) grammar. Such

grammars de�ne the syntax of real-world program-

ming languages like ISO-C. A phenotype is repre-

sented by a syntactically legal symbol sequence with

every symbol being an element of either a function set

F or a terminal set T that both underlie a genetic-

programming approach. Thus, the solution space is

the set of all legal symbol sequences.

A codon is a contiguous bit sequence of b > 0 bits

length which encodes a symbol. In order to provide

for the encoding of all symbols, b must be chosen

such that for each symbol there is at least one codon

which encodes this and only this symbol. For instance,

with b = 3, the codon 010 may encode the symbol a,

and 23 symbols at most can be encoded. A genotype

is a �xed-size codon sequence of n > 0 codons, like

011 010 000 111 with size n = 4. By de�nition, the

leftmost codon is codon 0, followed by codon 1 up to

codon n� 1.

A genetic code is a codon-symbol mapping, that is,

it de�nes the encoding of a symbol by one or more

codons. An example is given below with codon size 3.

000 001 010 011 100 101 110 111

a b c d + * - /

The \symbol frequency" of a symbol in a code is the

number m of occurrences of the symbol in the code,

which means that m di�erent codons are mapped onto

this symbol.

2.3 GENOTYPE-PHENOTYPE MAPPING

In order to map a genotype onto a phenotype, the ge-

notype gets transcribed into a raw sequence of symbols,

using a genetic code. Transcription scans a genotype,

starting at codon 0, ending at codon n � 1. The ge-

notype 101 101 000 111, for instance, is mapped onto

\� � a=" by use of the above sample code.

For the following examples, consider the syntax of

arithmetic expressions. A symbol that represents a

syntax error at a given position in a given symbol

sequence is called illegal, else legal. A genotype is

mapped either onto a legal or, in the case of \� � a=",

illegal raw symbol sequence. An illegal raw sequence

gets repaired according to the syntax, thus yielding

a legal symbol sequence. To that end, several repair

algorithms are conceivable. A comparatively simple

mechanism is introduced here, called \deleting repair".

Intron splicing (Watson et al. 1992), that is the re-

moval of genetic information which is not used for the

production of proteins, is the biological metaphor be-

hind this repair mechanism. Deleting repair scans a

raw sequence and deletes each illegal symbol, which is

a symbol that cannot be used for the production of

a phenotype, until it reaches the sequence end. If a

syntactic unit is left incomplete, like \a�", it deletes

backwards until the unit is complete. For instance, the

above sample raw sequence gets repaired as follows:

\� � a= ! � a= ! a=", then a is scanned as a legal

�rst symbol, followed by = which is also legal. Next,

the end of the sequence is scanned, so that \a=" is

recognized as an incomplete syntactic unit. Backward

deleting sets in and deletes =, yielding the sequence

a, which is legal, and the repair algorithm terminates.

Note that deleting repair works for arbitrarily long and

complex words from any LALR(1) language.

If the entire sequence has been deleted by the repair

mechanism, like it would happen with the phenotype

\++++", the worst possible �tness value is assigned
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to the genotype. This is appropriate from both a bio-

logical and a technical point of view. In nature, a

phenotype not interacting with its environment does

not have reproductive success, the latter being crudely

modeled by the concept of \�tness" in evolutionary al-

gorithms. In a �xed-generation-size EA, like the DGP

variant used for the empirical investigation described

here, an individual with no meaning is worthless but

may not be discarded due to the �xed generation size.

It could be replaced, for instance, by a meaningful ran-

dom phenotype. This step, however, can be saved by

assigning worst possible �tness so it is likely to be re-

placed by another individual during subsequent selec-

tion and reproduction.

The produced legal symbol sequence represents the

phenotype of the genotype which has been the in-

put to the repair algorithm. Therefore, theoretically,

the GPM ends with the termination of the repair

phase. Practically, however, the legal sequence must

be mapped onto a phenotype representation that can

be executed on the hardware underlying a GP system

in order to evaluate the �tness of the represented phe-

notype. This representation change is performed by

the following phases.

Following repair, editing turns the legal symbol se-

quence into an edited symbol sequence by adding stan-

dard information, e.g., a main program frame enclos-

ing the legal sequence. Finally, the last phase of the

mapping, which can be compilation of the edited sym-

bol sequence, transforms this sequence into a machine-

language program processable by the underlying hard-

ware. This program is executed in order to evaluate

the �tness of the corresponding phenotype. Alterna-

tively, interpretation of the edited symbol sequence can

be used for �tness evaluation.

2.4 CREATION, VARIATION,

REPRODUCTION, FITNESS AND

SELECTION

Creation builds a �xed-size genotype as a sequence of

n codons random-selected from the codon set. Varia-

tion is implemented by point genotype mutation where

a randomly selected bit of a genotype is inverted. The

resulting mutant is copied to the next generation. Re-

production is performed by copying a genotype to the

next generation. An execution probability p of a re-

production or variation operator designates that the

operator is randomly selected from the set of variation

and reproduction operators with probability p. An ex-

ecution probability is also called a rate. Fitness-based

tournament selection with tournament size two is used

in order to select an individual for subsequent repro-

duction or variation. Adjusted �tness (Koza 1992) is

used as �tness measure. Thus, all possible �tness val-

ues exist in [0; 1], and a perfect individual has �tness

value 1.

3 CODE EVOLUTION

3.1 BIOLOGICAL MOTIVATION

The mapping employed by DGP is a crude metaphor of

protein synthesis that produces proteins (phenotype)

from DNA (genotype). In molecular biology, a codon

is a triplet of nucleic acids which uniquely encodes one

amino acid, at most. An amino acid is a part of a

protein and thus corresponds to a symbol. Like natural

genotypes have evolved, the genetic code has evolved,

too, and it has been argued that selection pressure

works on code properties necessary for the evolution of

organisms (Maeshiro 1997). Since arti�cial evolution

gleaned from nature works for genotypes, the central

hypothesis investigated here is that arti�cial evolution

works for genetic codes, too, producing such codes that

support the evolution of good genotypes.

3.2 TECHNICAL MOTIVATION

In DGP, the semantics of a phenotype is de�ned by

its genotype, the speci�c code, repair mechanism and

semantics of the employed programming language. Es-

pecially, di�erent codes mean di�erent genotypic rep-

resentations of a phenotype and therefore di�erent �t-

ness landscapes for a given problem. Finally, certain

landscapes di�er extremely in how far they foster an

evolutionary search. Thus, it is of interest to evolve ge-

netic codes during a run such that the individuals car-

rying these codes �nd themselves in a bene�cial land-

scape. This situation would improve the convergence

properties of the search process. A related aspect is the

identi�cation of problem-relevant symbols in the F and

T sets. In order to investigate and analyze the e�ects

of code evolution, an extension to DGP has been de-

�ned and implemented, which will be described next.

3.3 INDIVIDUAL GENETIC CODE

DGP may employ a global code, that is, all genotypes

are mapped onto phenotypes by use of the same code.

This corresponds to the current situation in organic

evolution, where one code, the standard genetic code,

is the basis for the protein synthesis of practically all

organisms with very few exceptions like mitochondrial

protein synthesis.

(Keller and Banzhaf 1999) introduces the algorithm of

genetic-code evolution. If evolution is expected to oc-
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cur on the code level, the necessary conditions for the

evolution of any structure must be met. Thus, there

must exist a structure population, reproduction and

variation of the individuals, a �tness measure, and a

�tness-based selection of individuals. A code popula-

tion can be de�ned by replacing the global genetic code

by an individual code, that is, each individual carries

its own genetic code along with its genotype. During

creation, each individual receives a random code. An

instance random code is shown:

000 001 010 011 100 101 110 111

* / * a a d + a

Note that a code, since it is de�ned as an arbitrary

codon-symbol mapping, is allowed to be redundant

with respect to certain symbols., i.e., it may map more

than one codon onto the same symbol. This is not

in contradiction to the role of a code, since also a

redundant code can be used for the production of a

phenotype. Actually, redundancy is important, as the

empirical results will show.

3.4 VARIATION, REPRODUCTION,

CODE FITNESS AND SELECTION

A point code mutation of a code is de�ned as ran-

domly selecting a symbol of the code and replacing it

by a di�erent symbol random-selected from the sym-

bol set. Point code mutation has a certain execution

probability. Reproduction of a code happens by repro-

ducing the individual that carries the code. The same

goes for selection.

4 EMPIRICAL ANALYSIS

The announced major objective of the present work is

to empirically test whether the e�ect of code evolution

takes place on a hard problem, i.e., whether the codes

are adapted in a problem-speci�c way that is bene�-

cial to the search process. To this end, a run series

is performed on a hard synthetic problem. Evolution

means a directed change of the structures of interest,

which are, in the present case, the genetic codes of the

individuals. In the context of the present work, the

phenomenon of interest is the change of the symbol

frequencies of the target symbols. If the e�ect of code

evolution takes place on a hard problem, this must

show as a shift of symbol frequencies such that the re-

sulting codes map codons on relevant symbols rather

than on other symbols.

According with the objective of the present work, a

hard problem has to be designed, and problem-relevant

as well as irrelevant symbols, which represent noise,

have to be contained in the symbol set. Note that the

objective is not to solve the problem but to observe

code evolution during the DGP runs on the problem.

There are several conditions for a problem that is hard

for an evolutionary algorithm, and one of the most

prominent ones is that the search space is by many

orders of magnitude larger than the set of individuals

generated by the algorithm during its entire run time.

The problem to be considered is a symbolic function

regression of an arithmetic random-generated function

on a real-valued parameter space.

All function parameters come from [0; 1], and the real-

valued problem function is given by

f(A;B; a; b; ::; y; z) = j+x+d+j �o+e�r�t�a+h�

k�u+a�k�s�o�i�h�v�i�i�s+l�u�n+l+r�j�

j�o�v�j+i+f �c+x�v+n�n�v�a�q�i�h+d�i�

t+s+l�a�j�g�v�i�p�q�u�x+e+m�k�r+k�l�

u�x�d�r�a+t�e�x�v�p�c�o�o�u�c�h+x+e�

a�u+c�l�r�x�t�n�d+p�x�w�v�j�n�a�e�b+a.

Accordingly, the terminal set used by the system for

all of its runs is given as fA;B; a; b; ::; y; zg, and the

four parameters A;B; y; z do not occur in the expres-

sion that de�nes the problem function, that is, they

represent noise in the problem context. In order to

provide for noise in the context of the function set,

too, this set shall be given as f+;�; �; =g. As the divi-

sion function = does not occur in the expression that

de�nes the problem function, it represents noise. As

only 5 symbols, { i.e., about 15% {, of all 32 symbols

represent noise, identifying those by chance is unlikely.

Due to the resulting real-valued 28-dimensional pa-

rameter space, a �tness case consists of 28 real-valued

input values and one real output value. Let the train-

ing set consist of 100 random-generated �tness cases.

A population size of 1,000 individuals is chosen for all

runs, and 30 runs shall be performed, each lasting for

exactly 200 generations. That is, there is no run ter-

mination when a perfect individual is found so that

phenomena of interest can be measured further until

a time-out occurs after the evolution of the 200th gen-

eration.

As there are 32 target symbols, the size of the codons

must be set to �ve, at least, in order to have codes

that can accomodate all symbols, and for the run se-

ries, the size is �xed at �ve. As 25 = 32, the space

of all possible genetic codes contains 3232 elements, or

approximately 1:5 � 1048 codes, including 32! or about

2:6 � 1035 codes with no redundancy. Genotype size

400 is chosen, i.e., 400 codons make up an individ-

ual genotype, while the length of the problem func-
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tion, measured in target symbols, is about 200. This

over-sizing of the genotype size strongly enlarges the

search space, making the problem at hand very hard.

As the codon size equals �ve and the genotype size

equals 400, the search space contains 2400�5 individu-

als, or 10602, and as the single-bit-ip operator is the

only genotypic variation operator, this corresponds to

a 2000-dimensional search space. According to the ex-

perimental parameters, 6 � 106 individuals are evalu-

ated during the run series, so that the problem search

space as well as the space of all codes are signi�cantly

larger than the set of search trials, that is, individuals,

generated by the approach.

The execution probabilities are 0.85 for genotype re-

production, 0.12 for point genotype mutation, and 0.03

for point code mutation. Note that the point code mu-

tation rate is only 25 percent of the genotype point

mutation rate. This has been set to allow the ap-

proach to evolve the slower changing codes by use of

several di�erent individuals that carry the same code,

like genotypes are evolved by use of several di�erent,

usually static, �tness cases. We hypothesize that these

di�ering time scales are needed by the approach to dis-

tinguish between genotypes and codes.

The codes of the individuals of an initial generation

are randomly created, so that each of the 32 symbol

frequencies is about one in generation 0.

5 RESULTS AND DISCUSSION

Subsequently, \mean" refers to a value averaged over

all runs, while \average" designates a value averaged

over all individuals of a given generation.

Top down, �gure 1 shows the progression of the mean

best �tness and the mean average �tness.

Both curves rise, indicating convergence of the search

process, which is relevant to the hypothesized principle

of code evolution that is given below.

The following four �gures together illustrate the pro-

gression of the mean symbol frequencies for all 32 sym-

bols, while each �gure, for reasons of legibility, displays

information for eight symbols only.

As for the interpretation of �gures 2 to 5, the fre-

quency value F for a symbol S in generation G says

that, over all runs, S occurs, on average, F times in

a genetic code of an individual from G. As there are

32 positions in each code, F theoretically comes from

[0; ::; 32], while practically the extreme values of the

range will not be reached due to point code mutation.

A value below one indicates the rareness of S in most

codes of the generation, while a value above one sig-
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Figure 1: Top down, the curves show the progression

of the mean best �tness and mean average �tness.
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Figure 2: Progression of the mean symbol frequency

in the code population.

nals redundancy of S, that is, on average, more than

one codon of a genotype gets mapped onto S, or, put

di�erently, S gets more often used for the build-up of

a phenotype. Note that, due to the random creation

of the codes for generation 0, all curves in all �gures

approximately begin in (0; 1), since there are 32 codes

and 32 positions in each code.

A general impression to be gained from all �gures is

that, after an initial phase of strong oscillation of the

frequencies, the frequency distribution stabilizes. This

phenomenon is typical for learning processes in the

�eld of evolutionary algorithms, where after an initial

exploratory phase a phase of exploitation sets in. It

can be observed for �tness progressions, where well-

performing individuals are of interest, and it can also

be oberved for the presented symbol-frequency distri-
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in the code population.
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Figure 4: Progression of the mean symbol frequency

in the code population.

butions, where a bene�cial genotype-phenotype map-

ping is of interest.

Speci�cally, the �gures show a classi�cation of the

symbols with respect to their relevance for the solving

of the problem, as will be argued next. Due to ini-

tial oscillation, more reliable results are to be gained

from late generations, which is why the frequencies of

the �nal 200th generation shall be considered. In or-

der to accomodate for variance of the mean average

frequency values, symbols with a frequency of 0:8 or

lower shall be designated as clearly under-represented

in number in the genetic codes. As levels of statistical

signi�cance mostly come from [0:9; ::; 0:99], 0:8 repre-

sents a safe upper threshold for insigni�cance.

These symbols are A;B; b; c; f; g; h; j; n; q; s; w; y; =,

which implies that four of �ve, that is, 80%, of
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Figure 5: Progression of the mean symbol frequency

in the code population. Note that the arithmetic-

operator frequencies stabilize very fast and stay very

stable. This is not an artefact.

the noise-representing symbols A;B; y; z; = are under-

represented, while 63% of the problem-relevant sym-

bols, that is, 17 of 27 symbols, are represented with a

frequency of one and higher.

The frequency of a symbol in a code heavily inuences

the frequency of the occurrence of the symbol in the

phenotype onto which a genotype carrying the code

is mapped. Thus, if non-noise symbols do and noise

symbols do not become elements of the phenotype, this

situation increases the likelihood that the phenotype

has an above-average �tness. Therefore, the presented

result represents the objective of the present work, as

it veri�es that the e�ect of code evolution also takes

place on a hard problem in a way bene�cial to the

search process.

As for the principle of code evolution, we hypothesize

that, for a certain problem, some individual code W,

through a point code mutation, becomes better than

another individual code L. Thus, W has a higher prob-

ability than L that its carrying individual has a geno-

type together with which W yields a good phenotype.

Therefore, since selection on individuals is selection

on codes, W has a higher probability than L of being

propagated over time by reproduction and being sub-

jected to code mutation. If such a mutation results

in even higher code �tness, then the argument that

worked for W works for W's mutant, and so forth.
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6 CONCLUSIONS

It has been shown empirically that the e�ect of code

evolution works on a hard problem, that is, genetic

codes carried by individuals get adapted such that,

during run time, problem-relevant phenotypic symbols

are increasingly being used while irrelevant symbols

are less often used.

7 FUTURE RESEARCH

Several hypotheses must be investigated, among them

the claim that DGP with code evolution outperforms

non-developmental approaches on hard problems. We

argue especially that there is a high potential in code

evolution for the application to data-mining problems,

since, in this domain, a \good" composition of a sym-

bol set is typically unknown since the functional re-

lations between the variables are unknown due to the

very nature of data-mining problems. We hypothesize

that code evolution, through generation of redundant

codes, enhances the learning of signi�cant functional

relations by biasing for problem-speci�c key data and

�ltering out of noise. Last not least, the hypothesized

principle of code evolution, that is, the co-operative

co-evolution of individuals and codes, shall be investi-

gated.
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Abstract

Genetic programming (GP) can automat-

ically fuse given classi�ers to produce a

combined classi�er whose Receiver Operat-

ing Characteristics (ROC) are better than

[Scott et al., 1998b]'s \Maximum Realisable

Receiver Operating Characteristics" (MR-

ROC). I.e. better than their convex hull.

This is demonstrated on arti�cial, medical

and satellite image processing bench marks.

1 INTRODUCTION

[Scott et al., 1998b] has previously suggested the

\Maximum Realisable Receiver Operating Character-

istics" for a combination of classi�ers is the convex

hull of their individual ROCs. However the convex

hull is not always optimal [Yuso� et al., 1998]. We

show, on the problems used by [Scott et al., 1998b],

that genetic programming can evolve a combination

of classi�ers whose ROC are better than the convex

hull of the supplied classi�er's ROCs.

The next section gives the back ground to data fusion,

Section 3 summarises Scott's work, his three bench

marks are described in Section 4. The genetic pro-

gramming system and its results are given in Sections 5

and 6. Finally we �nish in Sections 7 and 8 with a dis-

cussion and conclusions.

2 BACKGROUND

There is considerable interest in automatic means of

making large volumes of data intelligible to people.

Arguably traditional sciences such as Astronomy, Bi-

ology and Chemistry and branches of Industry and

Commerce can now generate data so cheaply that it

far outstrips human resources to make sense of it. In-

creasingly scientists and Industry are turning to their

computers not only to generate data but to try and

make sense of it. Indeed the new science of Bioin-

formatics has arisen from the need for computer sci-

entists and biologists to work together on tough data

rich problems such as rendering protein sequence data

useful. Of particular interest are the Pharmaceutical

(drug discovery) and food preparation industries.

The terms Data Mining and Knowledge Discovery are

commonly used for the problem of getting informa-

tion out of data. There are two common aims: 1) to

produce a summary of all or an interesting part of

the available data 2) to �nd interesting subsets of the

data buried within it. Of course these may overlap.

In addition to traditional techniques, a large range of

\intelligent" or \soft computing" techniques, such as

arti�cial neural networks, decision tables, fuzzy logic,

radial basis functions, inductive logic programming,

support vector machines, are being increasingly used.

Many of these techniques have been used in connec-

tion with evolutionary computation techniques such

as genetic algorithms and genetic programming.

We investigate ways of combining these and other clas-

si�ers with a view to producing one classi�er which is

better than each. Firstly we need to decide how we

will measure the performance of a classi�er. In prac-

tise when using any classi�er a balance has to be cho-

sen between missing positive examples and generating

too many spurious alarms. Such a balancing act is not

easy. Especially in the medical �eld where failing to

detect a disease, such as cancer, has obvious conse-

quences but raising false alarms (false positives) also

has implications for patient well being. Receiver Op-

erating Characteristics (ROC) curves allow us to show

graphically the trade o� each classi�er makes between

its \false positive rate" (false alarms) and its \true

positive rate" [Swets et al., 2000]. (The true positive

rate is the fraction of all positive cases correctly clas-

si�ed. While the false positive rate is the fraction of

negative cases incorrectly classi�ed as positive). Ex-
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ample ROC curves are shown in Figures 1 and 3. We

treat each classi�er as though it has a sensitivity pa-

rameter (e.g a threshold) which allows the classi�er

to be tuned. At the lowest sensitivity level the clas-

si�er produces no false alarms but detects no positive

cases, i.e. the origin of the ROC. As the sensitivity

is increased, the classi�er detects more positive exam-

ples but may also start generating false alarms (false

positives). Eventually the sensitivity may become so

high that the classi�er always claims each case is pos-

itive. This corresponds to both true positive and false

positive rates being unity, i.e. the top right hand cor-

ner of the ROC. On average a classi�er which simply

makes random guesses will have an operating point

somewhere on the line between the origin and 1,1 (see

dotted line in Figure 3).

Naturally we want our classi�ers to have ROC curves

that come as close to a true positive rate of one and

simultaneously a false positive rate of zero. In Sec-

tion 5 we score each classi�er by the area under its

ROC curve. An ideal classi�er has an area of one. We

also require the given classi�ers, not only to indicate

which class they think a data point belongs to, but

also how con�dent they are of this. Values near zero

indicate the classi�er is not sure, possible because the

data point lies near the classi�er's decision boundary.

Arguably \Boosting" techniques combine classi�ers

[Freund and Schapire, 1996]. However Boosting is nor-

mally applied to only one classi�er and produces im-

provements by iteratively retraining it. Here we will

assume the classi�ers we have are �xed, i.e. we do

not wish to retrain them. Similarly Boosting is nor-

mally applied by assuming the classi�er is operated at

a single sensitivity (e.g a single threshold value). This

means on each retraining it produces a single pair of

false positive and true positive rates. Which is a single

point on the ROC rather than the curve we require.

3 \MAXIMUM REALISABLE" ROC

[Scott et al., 1998b] describes a procedure which will

create from two existing classi�ers a new one whose

performance (in terms of its ROC) lies on a line con-

necting the performance of its two components. This

is done by choosing one or other of the classi�ers at

random and using its result. E.g. if we need a classi�er

whose false positive rate vs. its true positive rate lies

on a line half way between the ROC points of classi-

�ers A and B, then the Scott's composite classi�er will

randomly give the answer given by A half the time and

that given by B the other half, see Figure 1. (Of course

persuading patients to accept such a random diagnose

may not be straightforward).

A

C

B
MRROC

0
0

1False Positives

T
ru

e 
Po

si
tiv

es

1

Figure 1: Classi�er C is created by choosing equally

between the output of classi�er A and classi�er B. Any

point in the shaded area can be created. The \Maxi-

mum Realisable ROC" is its convex hull (solid line).

The performance of the composite can be readily set

to any point along the line simply by varying the ratio

between the number of times one classi�er is used rel-

ative to the other. Indeed this can be readily extended

to any number of classi�ers to �ll the space between

them. The better classi�ers are those closer to the zero

false positive axis or with a higher true positive rate.

In other words the classi�ers lying on the convex hull.

Often classi�ers have some variable threshold or tuning

parameter whereby their trade o� between false posi-

tives and true positives can be adjusted. This means

their Receiver Operating Characteristics (ROC) are

now a curve rather than a single point. Scott applied

his random combination method to each set of points

along the curve. So the \maximum realisable" ROC is

the convex hull of the classi�er's ROC. Indeed, if the

ROC curve is not convex, an improved classi�er can

easily be created from it [Scott et al., 1998b] (see Fig-

ure 4). The nice thing about the MRROC, is that it

is always possible. But as we show it may be possible

to do better automatically.

4 DEMONSTRATION PROBLEMS

[Scott et al., 1998b] contains three benchmarks. Three

of the following sections (4.2, 4.3 and 4.5) describe

the preparation of the datasets. Sections 4.1 and 4.4

describe the two classi�ers Scott used.

4.1 LINEAR CLASSIFIERS

In the �rst two examples (Sections 4.2 and 4.3) we use

a tunable linear classi�er for each data attribute (di-

mension). This classi�er has a single decision value

(a threshold). If examples of the class lie mostly at

high values then, if a data point is above the thresh-

old, the classi�er says the data point is in the class.

Otherwise it says it isn't. To produce a ROC curve
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the threshold is varied from the lowest possible value

of the associated attribute to the highest.

To use a classi�er in GP we adopt the convention that

non-negative values indicate the data is in the class.

We also require the classi�er to indicate its \con�-

dence" in its answer. In our GP, it does this by the

magnitude of the value it returns.

(The use of the complex plane would allow extension

of this signalling to more than two classes. Absolute

magnitude would continue to indicate the classi�ers

con�dence. While the complex plane could be divided

into (possibly unequal) angular segments, one for each

class. An alternative would be to allocate each class

a point in the complex plane. The designated class

would be the one closest in the complex plane. But if

two class origins were a similar distance from the value

returned by GP this would indicate the classi�er was

not sure which of the two classes to choose).

The linear classi�er splits the training set at the

threshold. When predicting, it uses only those exam-

ples which are the same side of the threshold as the

point to be classi�ed and chooses the class to which

most of them belong. Its \con�dence" is the di�er-

ence between the number of training examples below

the threshold in each class divided by their sum. Note

the value returned to GP lies in the range �1 : : :+ 1.

4.2 OVERLAPPING GAUSSIAN

Following [Scott et al., 1998b, Section 3.1 and Figure 3]

we created a training and a veri�cation dataset, each

containing 5000 randomly chosen data points. The

points are either in class 1 or class 2. 1250 values were

created using Gaussian distributions each with a stan-

dard deviation of 0.5. Those of class 1 had means of

3 and 7. While those used to generate class 2 data

had means of 5 and 9. Note this gives rise to inter-

locking regions with some degree of overlap at their

boundaries, see Figure 2.

Clearly a linear classi�er (LC) with only a single deci-

sion point can not do well on this problem. Figure 3

shows its performance in terms of the trade o� between

false positives and true positives.

4.3 THYROID

The data preparation for the Thyroid problem follows

Scott's. The data was down loaded from the UCI ma-

chine learning repository
1
. ann.trainwas used for the

training set and ann.train2 for the veri�cation set.

1ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/thyroid-disease
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Figure 2: Example of a two class multi-modal data de-

signed to be di�cult for a linear classi�er (Section 4.1).
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data.
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(Both contain 3800 records). Originally it is a three

class problem, the two classes for abnormal thyroids

(79 and 199 records each in ann.train) were combined

into one class. The GP is limited to using the two

attributes (out of a total of 21) that Scott used. (Us-

ing all the attributes makes the problem much easier).

Following strange oating point behaviour, both at-

tributes were rescaled by multiplying by 1000. Rescal-

ing means most numbers are integers between 1 and

200 (cf. Figure 10). Scott does not report rescaling.

Two linear classi�ers (LC18 and LC19) were trained,

one on each attribute (D18 and D19) using the training

set.

4.4 NAIVE BAYES CLASSIFIERS

The Bayes [Ripley, 1996; Mitchell, 1997] approach at-

tempts to estimate, from the training data, the prob-

ability of data being in each class. Its prediction is

the class with the highest estimated probability. We

extend it 1) to include a tuning parameter to bias its

choice of class and 2) to make it return a con�dence

based upon the di�erence between the two probabili-

ties.

Naive Bayes classi�ers are based on the assumption

that the data attributes are independent. I.e. the prob-

abilities associated with a data point are calculated by

multiplying the estimates of the probabilities associ-

ated with each of its attributes.

The probabilities estimates of each class are based

upon counting the number of instances in the train-

ing set for each attribute (dimension) that match both

the point to be classi�ed and the class, and dividing by

the total number of instances which match regardless

of the class. The estimates for each attribute are then

multiplied together to give the probability of the data

point being in a particular class.

The functions P0;a and P1;a use to estimate the prob-

abilities for classes from training set attributes a

P
c;a
(E) = Pr(class = c)

Y

j2a

Pr(X
j
= v

j
jclass = c)

As an example, consider the data point E =

(6; 7; 8; 9; 10; 11; 12; 13) and a classi�er using the set

of attributes a = f2; 3; 5g. Then the probability E is

in class 0, P0;a(E), is estimated to be, the probabil-

ity of class 0 times, the probability that attribute 2

is 7 given the data is in class zero times, the proba-

bility attribute 3 is 8 (given the class is zero) times,

the probability attribute 5 is 10 (given the class is

zero). The calculation is repeated for the other classes

(i.e. for class 1). The classi�er predicts that E be-

longs to the class with the highest probability estimate.

I.e. if P0;a(E) < P1;a(E) then the Naive Bayes classi-

�er (working on the set a of attributes) will predict

the example data point E is in class 1, otherwise 0.

If there is no training data for a given class/attribute

value combination, we follow [Kohavi and Sommer-

�eld, 1996, page 11] and estimate the probability

based on assuming there was actually a count of 0.5.

([Mitchell, 1997] suggests a slightly di�erent way of

calculating the estimates).

Since the denominators in P
c;a

are the same for all

classes we can remove them and instead work with B

B
c;a
(E) =

Number(class = c)

Y

j2a

Number(X
j
= v

j
\ class = c)

A threshold T (0 � T � 1), allows us to introduce

a bias. I.e. if (1 � T ) � B0;a(E) < T � B1;a(E) then

our Bayes classi�er will predicts E is in class 1, oth-

erwise 0. Finally we de�ne the classi�ers \con�dence"

to be
jB0;a(E)�B1;a(E)j

(B0;a(E)+B1;a(E))
.

4.5 GREY LANDSAT

Despite some care we have not been able to repro-

duce exactly the graphical results pictured in [Scott et

al., 1998a] and [Scott et al., 1998b]. The Naive Bayes

classi�ers on the data we have appear to perform some

what better. This makes the problem more challeng-

ing since there is less scope for improvement. [Scott et

al., 1998a] and [Scott et al., 1998b] show considerable

crossings in the ROC curves of the �ve classi�ers they

use. The absence of this in our data may also make it

harder (see Figure 11).

The Landsat data comes from the Stalog project via

the UCI machine learning repository
2
. The data is

spilt into training (sat.trn 4425 records) and test

(sat.tst 2000). Each record has 36 continuous at-

tributes (8 bit integer values nominally in the range

0{255) and 6 way classi�cation. (Classes 1, 2, 3, 4, 5

and 7). Following Scott; classes 3, 4 and 7 were com-

bined into one (positive, grey) while 1, 2 and 5 became

the negative examples (not-grey). sat.tst was kept

for the holdout set.

The 36 data values represent intensity values for nine

neighbouring pixels and four spectral bands (see Fig-

ure 5). While the classi�cation refers to just the cen-

tral pixel. Since each pixel has eight neighbours and

2ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/statlog/satimage
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Figure 5: Each record contains data from nine ad-

jacent Landsat pixels. Scott's �ve classi�ers (nb16,

nb16,23 nb16,23,24 nb23,24 and nb8,23,24) together

use four attributes, Three (8, 16, 24) use spectral

band 0 and the other (23) uses band 3. Notice how

they straddle the central pixel in a diagonal con�gura-

tion. However nb23,24 (which straddles both the area

and the spectrum) has the best performance of Scott's

Naive Bayes classi�ers.

each may be in the dataset, data values appear multi-

ple times in the data set. But when they do, they are

presented as being di�erent attributes each time. The

data come from a rectangular area approximately �ve

miles wide.

After reducing to two classes, the continuous values

in sat.trn were partitioned into bins before it was

used by the Naive Bayes classi�er. Following [Scott et

al., 1998a, page 8], we used entropy based discretisa-

tion [Kohavi and Sommer�eld, 1996], implemented in

MLC++ discretize.exe
3
, with default parameters.

(Giving between 4 and 7 bins per attribute). To avoid

introducing bias, the holdout data (sat.tst) was par-

titioned using the same bin boundaries.

sat.trn was randomly split into training (2956

records) and veri�cation (1479) sets. The Bayes clas-

si�ers use the discrete data. In some experiments, the

GP system was able to read data attributes values di-

rectly. In which case it used the continuous (oating

point) value, rather than the attribute bin number.

5 GP CONFIGURATION

The GP is set up to signal its prediction of the class

of each data value in the same was as the classi�ers it

can use. I.e. by return a oating point value, whose

sign indicates the class and whose magnitude indicates

the \con�dence". (Note con�dence is not constrained

to lie in a particular range).

Following earlier work [Jacobs et al., 1991; Soule, 1999;

Langdon, 1998] each GP individual is composed of �ve

3http://www.sgi.com/Technology/mlc

trees. Each of which is capable of acting as a classi�er.

The use of signed numbers makes it natural to combine

classi�ers by adding them. I.e. the classi�cation of the

\ensemble" is the sum of the answers given by the �ve

trees. Should a single classi�er be very con�dent about

its answer this allows it to \out vote" the all others.

We have not systematically experimented with the

number of trees or alternative methods of combining

them. The simplest problem can be solved with only

one. Also in many individuals one or more of the trees

appear to have little or a very basic function, such as

always returning the same value or biasing the result

by the threshold parameter.

5.1 FUNCTION AND TERMINAL SETS

The function set includes the four binary oating

arithmetic operators (+, �, � and protected division),

maximum and minimum and absolute maximum and

minimum. The latter two return the (signed) value

of the largest, (or smallest) in absolute terms, of their

inputs. IFLTE takes four arguments. If the �rst is less

than or equal to the second, IFLTE returns the value

of its third argument. Otherwise it returns the value

of its fourth argument. INT returns the integer part

of its argument, while FRAC(e) returns e - INT(e).

The classi�ers are represented as oating point func-

tions. Their threshold is supplied as their single argu-

ment. As described in Sections 4.1 and 4.4.

The terminal T yields the current value of the thresh-

old being applied to the classi�er being evolved by

GP. In some experiments the terminals Dn were used.

These contain the value of attribute n. Finally the

GP population was initially constructed from a num-

ber of oating point values. These constants do not

change as the population evolves. However crossover

and mutation do change which constants are used and

in which parts of the program. GPQUICK limits the

number of constants to about 200.

5.2 FITNESS FUNCTION

Each new individual is tested on each training exam-

ple with the threshold parameter (T) taking values

from 0 to 1 every 0.1 (i.e. 11 values). So, depend-

ing upon the problem, it is run 55000, 41800 or 32516

times. For each threshold value the true positive rate

is calculated. (The number of correct positive cases

divided by the total number of positive cases). If a

oating point exception occurs its answer is assumed

to be wrong. Similarly its false positive rate is given by

the no. of negative cases it gets wrong divided by the

total no. of negative cases. It is possible to do worse
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than random guessing. When this happens, i.e. the

true positive rate is less than the false positive rate,

the sign of the output is reversed. This is common

practise in classi�ers.

Since a classi�er can always achieve both a zero success

rate and 100% false positive rate, the points (0,0) and

(1,1) are always included. These plus the eleven true

positive and false positive rates are plotted and the

area under the convex hull is calculated. The area

is the �tness of the individual GP program. Note the

GP individual is not only rewarded for getting answers

right but also for using the threshold parameter to get

a range of high scores. Cf. Table 1.

6 RESULTS

6.1 OVERLAPPING GAUSSIAN

In the �rst run the best �tness score (on the train-

ing data) was 0.981556. The �rst individual with this

score was found in generation 21 and was treated as

the output of the GP. Its total size (remember it has

�ve trees) is 92. On another 5000 random data points

its �tness was 0.981607. Its ROC are shown in Fig-

ure 6. (The linear classi�er's convex hull area is 0.85).

Since we know the under lying distribution in this (ar-

ti�cial) example, we can calculate the optimal ROC

curve, see Figure 6. The optimal classi�er requires

three decision boundaries, which correspond to the

overlap between the four interlocking Gaussians. Fig-

ure 6 shows this GP individual has near optimal be-

haviour. Its output for one threshold setting (0.3) is

given in Figure 7. Figure 7 shows GP has been able

to use the output of the linear classi�er to create three

decision points (remember the linear classi�er has just

one) and these lie at the correct points.

Figure 8 shows, in each of the problems, little change

in program size occurs after the �rst �ve generations

or so. This is despite little or no improvement in the

best �tness. This may be due to \size fair crossover"

[Langdon, 2000].

6.2 THYROID

In one run the best �tness rose steadily to a peak of

0.838019 at generation 50. The program with this �t-

ness has a total size of 60. On the veri�cation set it has

a �tness of 0.860040. Its ROC are shown in Figure 9.

Its bulk behaviour is to combine the two given (sin-

gle attribute, single threshold) classi�ers to yield a

rectangular area near the origin. As the threshold is

increased, the rectangle grows to include more data
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Figure 6: The ROC of GP (generation 21) classi�er

on interlocking Gaussians. Note it has near optimal

performance.

points. Thus increasing the number of true positives,

albeit at the expense of also increasing the number of

false positive. Eventually with a threshold of 1, the

rectangle covers all thyroid disease cases. Figure 10

shows the decision boundary for a threshold of 0.5.

The superior performance of the GP classi�er arises,

at least in part, because it has learnt to recognise reg-

ularities in the training data. In particular it has spot-

ted columns of data which are predominantly either all

negative or positive and adjusted its decision boundary

to cover these.

6.3 GREY LANDSAT

In the �rst GP run �tness rose quickly in the �rst

six generations but much slower after that. The best

training �tness was 0.981855 which was �rst discov-

ered in generation 49. The ROC of this individual are

shown in Figure 11. The area of its convex hull is big-

ger than all of those of its constituent classi�ers. On

the holdout set, its ROC are better than all of them,

except for one threshold value where it has 3 false neg-

atives v. 1 for the best of the Naive Bayes classi�ers.

7 DISCUSSION

So far we have used simple classi�ers with few param-

eters that are learnt. This appears to make them ro-

bust to over �tting. In contrast one often needs to

be careful when using GP to avoid over �tting. In

these experiments we have seen little evidence of over

�tting. This may be related to the problems them-

selves or the choice of multiple tree programs or the

absence of \bloat". The absence of bloat may be due
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Table 1: GP Parameters (Variations between problems given in brackets or on separate lines)

Objective: Evolve a function with Maximum Convex Hull Area

Function set: INT FRAC Max Min MaxA MinA MUL ADD DIV SUB IFLTE

common plus Gaussians LC

Thyroid LC17 LC18

Grey Landsat nb16 nb16,23 nb16,23,24 nb23,24 nb8,23,24

Terminal set: Gaussians T, 0, 1, 200 unique constants randomly chosen in �1 : : :+ 1

Thyroid T, D17, D18, 0, 0.1, 1, 212 unique constants randomly chosen from the test set.

Grey Landsat T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fitness: Area under convex hull of 11 ROC points. (5000, 3800, 2956) randomly chosen test points

Selection: generational (non elitist), tournament size 7

Wrapper: � 0) positive, negative otherwise

Pop Size: 500

No size or depth limits

Initial pop: ramped half-and-half (2:6) (half terminals are constants)

Parameters: 50% size fair crossover [Langdon, 2000], 50%mutation (point 22.5%, constants 22.5%, shrink 2.5%

subtree 2.5%)

Termination: generation 50
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Figure 7: Value returned by evolved classi�er (thresh-

old=0.3) evolved on the interlocking Gaussians prob-

lem. High �tness comes from GP being able to use

given classi�er to distinguish each of the Gaussians.

Note zero crossings align with Gaussians, Figure 2.

to our choice of size fair crossover and a high mutation

rate. Our intention is to evaluate this GP approach on

more sophisticated classi�ers and on harder problems.

Here we expect it will be essential to ensure the clas-

si�ers GP uses do not over �t, however this may not

be enough to ensure the GP does not.

8 CONCLUSIONS

[Scott et al., 1998b] has proved one can always com-

bine classi�ers with variable thresholds to yield a com-

posite with the \Maximum Realisable Receiver Op-
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Figure 8: Evolution of total program size in one GP

run of each the three problems.

erating Characteristics" (MRROC). Scott's MRROC

is the convex hull of the Receiver Operating Charac-

teristics of the individual classi�ers. Previously we

showed [Langdon and Buxton, 2001] genetic program-

ming can in principle do better automatically. Here we

have shown, using Scott's own bench marks, that GP

o�ers a systematic approach to combining classi�ers

which may exceed Scott's MRROC. (Using [Scott et

al., 1998b]'s proof, we can ensure GP does no worse

than the MRROC).

Mutation and size fair crossover [Langdon, 2000] mean

there is little bloat.
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Abstract

What will yield the best results: doing one run
n generations long or doingm runsn/m genera-
tions long each? This paper presents a technique-
independent analysis which answers this ques-
tion, and has direct applicability to scheduling
and restart theory in evolutionary computation
and other stochastic methods. The paper then ap-
plies this technique to three problem domains in
genetic programming. It discovers that in two of
these domains there is a maximal number of gen-
erations beyond which it is irrational to plan a
run; instead it makes more sense to do multiple
shorter runs.

1 INTRODUCTION

Research in stochastic search has long struggled to deter-
mine how best to allocate precious resources to find the
best possible solution. This issue has not gone away with
increases in computer power: rather, the difficulty of our
optimization problems has more than kept up with our new
computational muscle. And the rise of massive parallelism
has added an additional constraint to how we may divvy up
our total evaluations.

Studies in resource allocation have attacked different as-
pects of the problem. One popular area of study in genetic
algorithms isonline restart determination. This area asks:
while in the midst of a stochastic run and with noa pri-
ori knowledge, should I restart now and try again? This
used to be a critical issue for GAs because of the spectre of
premature convergence. Detecting the approach of prema-
ture convergence during a run saved valuable cycles other-
wise wasted. There has been much work in this area; for a
few examples, see [Goldberg, 1989, Collins and Jefferson,
1991, Eshelman and Schaffer, 1991]. This work usually
assumes certain heuristics about convergence which may

or may not be appropriate. Commonly the work relies on
variance within a population or analysis of change in per-
formance over time. These techniques are ad-hoc, but more
problematic, they are often domain-specific. For example,
they would not work in general on genetic programming.

In some sense, detecting premature convergence is an anal-
ysis of time-to-failure. A more cheerful focus in evolution-
ary computation,convergence velocity, is not directly in-
volved in resource allocation but has many important ties.
Evolutionary strategies analysis can demonstrate the rates
at which specific techniques are expected to move towards
the optimum, either in solution space or in fitness space
[Bäck, 1996]. Since different population sizes can be con-
sidered different techniques, this analysis can shed light on
resource allocation issues.

One area which directly tackles resource allocation is
scheduling[Fukunaga, 1997]. A schedule is a plan to per-
form n runs eachl generations long. The idea is to come
up with a schedule which best utilizes available resources,
based on past knowledge about the algorithm built up in
a database. Typically this knowledge is derived from pre-
vious applications of the algorithm to various problem do-
mains different from the present application. [Fukunaga,
1997] argues that previous problem domains are a valid
predictor of performance curves in new domains, for ge-
netic algorithms at least.

Outside of evolutionary computation, there is considerable
interest inrestart methodsfor global optimization. For dif-
ficult problems where one expects to perform many runs
before obtaining a satisfactory solution, one popular restart
method is to perform random restarts [Hu et al., 1997,
Ghannadian and Alford, 1996]. If the probability density
function of probability of convergence at timet is known
then it is also possible to derive theoptimum restart time
such that, as the number of evaluations approaches infinity,
the algorithm converges with the most rapid possible rate
[Magdon-Ismail and Atiya, 2000].

Lastly, much genetic programming work has assumed that
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the optimum can be discovered. A common metric of
time-to-optimal-discovery is calledcumulative probability
of success[Koza, 1992]. However, this metric does not di-
rectly say anything about the rate of success nor whether or
not shorter runs might yield better results.

The analysis presented in this paper takes a slightly differ-
ent tack. It attempts to answer the question: is it rational
to try a single runn generations long? Would it be smarter
to instead trym runs eachn

m generations long? As it turns
out, this question can be answered with a relatively simple
procedure derived from a manipulation of order statistics.
The procedure is entirely problem-independent; in fact it
can be easily applied to any stochastic search method.

Unlike some of the previous methods, this analysis does
not attempt to determine how long it takes to discover the
optimum, nor the probability of discovering it, nor how fast
the system converges either globally or prematurely. It is
simply interested in knowing whether one schedule is likely
to produce better net results than another schedule.

This paper will first present this analysis and prove it.
It will then apply the analysis to three problems in ge-
netic programming, an evolutionary computation approach
which is notorious for requiring large populations and short
runlengths. It then discusses the results.

2 PRELIMINARIES

We begin with some theorems based on order statistics,
which are used to prove the claims in Section 3. These the-
orems tell us what the expected value is of the highest qual-
ity (fitness) found among of somen samples picked with
replacement from a population. The first theorem gives the
continuous case (where the population is infinite in size).
The second theorem gives the discrete case.

Theorem 1 LetX1, ..., Xn ben independent random vari-
ables representingn selections from a population whose
density function isf(x) and whose cumulative density
function isF (x). LetXmax be the random variable repre-
senting the maximum of theXi. Then the expected value of
Xmax is given by the formula

∫∞
−∞ xnf(x)(F (x))n−1dx.

Proof Note that for any givenx, Xmax ≤ x if and only
if for all i, Xi ≤ x. Then the cumulative density func-
tion FXmax (x) of the random variableXmax is as follows:
FXmax (x) = P (Xmax ≤ x) = P (X1 ≤ x)P (X2 ≤
x)...P (Xn ≤ x) = F (x)F (x)...F (x) = (F (x))n. The
density functionfXmax (x) for Xmax is the derivative of
this, sofXmax (x) = nf(x)(F (x))n−1. The expected value
of any density functionG(x) is defined as

∫∞
−∞ xG(x)dx,

so the expected maximum value of then random variables
is equal to

∫∞
−∞ xfXmax dx =

∫∞
−∞ xnf(x)(F (x))n−1dx.

Lemma 1 Given n selections with replacement from the
set of numbers{1, ..., m}, the probability thatr is the max-
imum number selected is given by the formularn−(r−1)n

mn .
The sum of probabilities for all suchr is 1.

Proof Consider the setSr of all possible events for which,
among then numbers selected with replacement,r is the
maxiumum number. These events share the two following
criteria. First, for each selectionx among then selections,
x ≤ r. Second, there exists a selectiony among then
for whichy ≥ r. The complement to this second criterion
is that for each selectionx among then selections,x ≤
(r − 1). Since this complement is a strict subset of the
first criterion, thenSr is the set difference between the first
criterion and the complement, thus the probability ofPr

of an event inSr occuring is the difference between the
probability of the first criterion and the probability of the
complement, that is,Pr = P (∀x : x≤r)−P (∀x : x≤(r−
1)).

For a single selection with replacement from the set of
numbers{1, ..., m}, the probability that the selection is
less than or equal to some valueq is simply q

m . Thus
for n independent such selections, the probability that all
are≤ q is qn

mn . Substituting into the solution above, we

get Pr = rn

mn − (r−1)n

mn = rn−(r−1)n

mn . Further, the

sum of such probabilities for allr is
∑m

r=1
rn−(r−1)n

mn =
1n−0n

mn + 2n−1n

mn + · · ·+ mn−(m−1)n

mn = mn−0n

mn = 1

Theorem 2 Consider a discrete distribution ofm trials,
with each trialr having a qualityQ(r), sorted byQ so that
trial 1 has the lowest quality and trialm has the highest
quality. If we pickn trials with replacement from this distri-
bution, the expected value of the maximum quality among
thesen trials will be

m∑
r=1

Q(r)
rn − (r − 1)n

mn

Proof The rank of a trial is its position1, ..., m in the
sorted order of them trials. The expected value of the max-
imum quality among then selected trials is simply the sum,
over each rankr, of the probability thatr will be the highest
rank among the selected trials, times the quality ofr. This
probability is given by Lemma 1. Hence the summation is∑m

r=1 Q(r) rn−(r−1)n

mn .

3 SCHEDULES

These order statistics results make possible the creation of
tools that determine which of two techniquesA andB is
expected to yield the best results. This paper discusses a
specific subset of this, namely, determining whether evo-
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lutionary techniqueA run m1 generationsn1 times (com-
monly 1 time) is superior the same techniqueA run m2

generationsn2 times, wheren1m1 = n2m2. We begin
with some definitions.

Definition 1 A scheduleS is a tuple〈nS, lS〉, representing
the intent to donS independent runs of lengthlS each.

Definition 2 Let S, T be two schedules. ThenS reaches
T if nS runs of lengthlS are expected to yield as good
as or higher quality thannT runs of lengthlT . Define the
predicate operatorS � T to be true if and only ifS reaches
T .

The following two theorems assume that higher quality is
represented by higher values. In fact, for the genetic pro-
gramming examples discussed later, the graphs shown have
lower fitness as higher quality; this is rectified simply by
inverting the fitness values.

Theorem 3 Let pt(x) be the probability density function
and Pt(x) the cumulative probability density function of
the population of all possible runs, reflecting their quality
at timet (assume higher values mean higher quality). Then
S � T if and only if:

∫ ∞

−∞
xnSplS (x)(PlS (x))nS−1dx

≥
∫ ∞

−∞
xnT plT (x)(PlT (x))nT−1dx

Proof Both sides of this inequality are direct results of
Theorem 1.

The continuous case above is not that useful in reality, since
we rarely will have an infinite number of runs to draw from!
However, if we perform many runs of a given runlength,
we can estimate the expected return from doingn runs at
that runlength, and use this to determine if some sched-
ule outperforms another schedule. The estimate makes the
assumption that the runs we performed (our sample) isex-
actly representativeof the full population of runs of that
runlength.

Theorem 4 Given a scheduleS = 〈nS , lS〉, consider a
random sample, with replacement, ofmS runs from all
possible runs of runlengthlS . Let these runs be sorted by
quality and assigned ranks1, ..., mS , where a run’s rank
represents its order in the sort, and rank1 is the lowest
quality. Further, letQS(r) be the quality of the run from
the sample whose rank isr; QS(r) should return higher
values for higher quality. For another scheduleT , simi-
larly definemT andQT (r). Then an estimate of reaching
is as follows.S � T if and only if:

mS∑
r=1

QS(r)
rnS − (r − 1)nS

mS
nS

≥
mT∑
r=1

QT (r)
rnT − (r − 1)nT

mT
nT

Proof Both sides of this inequality are direct results of
Theorem 2.

These theorems give tools for determining whether one
schedule reaches another. We can use this to estimate what
schedule is best for a given technique. If we wanted to ex-
amine a technique and determine its best schedule, we have
two obvious options:

1. Perform runs out to our maximum runlength, and use
run-data throughout the runs as estimates of perfor-
mance at any given timet. The weakness in this ap-
proach is that these estimates are not statistically in-
dependent.

2. Perform runs out to a variety of runlengths. The weak-
ness in this approach is that it requiresO(n2) evalua-
tions.

A simple compromise adopted in this paper is to do runs
out to 1 generation, a separate set of runs out to2 gener-
ations, another set of runs out to4 generations, etc., up to
some maximal number of generations. This isO(n), yet
still permits runlength comparisons between statisticatlly
independent data sets.

Two statistical problems remain. First, these comparisons
do not come with a difference-of-means test (like a t-test or
ANOVA). The author is not aware of the existence of any
such test which operates over order statistics appropriate to
this kind of analysis, but hopes to develop (or discover!)
one as future work. This is alleviated somewhat by the fact
that the result of interest in this paper is often not the hy-
pothesis but the null hypothesis. Second, the same run data
for a schedule is repeatedly compared against a variety of
other schedules; this increases the alpha error. To elimi-
nate this problem would necessitateO(n3) evaluations (!)
which is outside the bounds of the computational power
available at this time.

4 ANALYSIS OF THREE GENETIC
PROGRAMMING DOMAINS

Genetic Programming is an evolutionary computation field
with traditionally short runlengths and large population
sizes. Some of this may be due to research following in
the footsteps of [Koza, 1992, 1994] which used large pop-
ulations (500 to 1000 individuals) and short runlengths (51
generations). Are such short runlengths appropriate? To
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Figure 1: Runlength vs. Fitness, Symbolic Regression Do-
main (Including Detail)

consider this, I analyzed three GP problem domains: Sym-
bolic Regression, Artificial Ant, and Even 10-Parity. These
three domains have very different dynamics.

In all three domains, I performed 50 independent runs for
runlengths of2i generations ranging from20 to some2max.
Because these domains differ in evaluation time,max var-
ied from domain to domain. For Symbolic Regression,
2max = 8192. For Artificial Ant, 2max = 2048. For Even
10-Parity,2max = 1024. For all three domains, lower fit-
ness scores represent better results. The GP system used
was ECJ [Luke, 2000].

The analysis graphs presented in this paper compare
single-run schedules with multiple-run schedules of shorter
length. However additional analysis comparingn-run
schedules withnm-run schedules of shorter length has
yielded very similar results.

4.1 Symbolic Regression

The goal of the Symbolic Regression problem is to find a
symbolic expression which best matches a set of randomly-
chosen target points from a predefined function. Ideally,
Symbolic Regression discovers the function itself. I used
the traditional settings for Symbolic Regression as defined
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Figure 2: Runlength Analysis of Symbolic Regression Do-
main. Areas are black where X is a superior strategy to Y
and white where Y is as good or better than X. Gray regions
are out of bounds.

in [Koza, 1992], with a population size of 500 and tourna-
ment selection with a tournament of size 7. The function to
be fitted wasx4 + x3 + x2 + x.

Unlike the other two problems, Symbolic Regression oper-
ates over a continuous fitness space; if cannot find the opti-
mal solution, it will continue to find incrementally smaller
improvements. Although Symbolic Regression very occa-
sionally will discover the optimum, usually it tends towards
incrementalism. As such, Symbolic Regression fitness val-
ues can closely approach 0 without reaching it, so Figure
1 shows both zoomed-out and zoomed-in versions of the
same data. Grey dots represent individual best-of-run re-
sults for each run; black dots represent means of 50 runs of
that runlength.

As can be seen, the mean continues to improve all the way
to runlengths of 8192. But is it rational to plan to do a run
out to 8192 generations? Figure 2 suggests otherwise.

The runlength analysis graphs can be confusing. On the
graph, the point(X, Y ), X > Y indicates the result of
comparing a scheduleA = 〈1, X〉 with the scheduleB =
〈X

Y , Y 〉, which has the same total number of evaluations.
The graph is white ifB � A, black otherwise. This is a
lower-right matrix: gray areas are out-of-domain regions.

Figure 2 shows that the expected quality of a single run
of length≥32 is reached by doing somen runs of length
16 which total the same number of evaluations. Another
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Figure 3: Runlength vs. Fitness, Artificial Ant Domain

interesting feature is that there is a minimum acceptable
runlength: under no circumstances could multiple runs less
than 8 generations reach a single run of larger size.

What about comparing a scheduleA = 〈c, X〉 with sched-
ulesB = 〈 cX

Y , Y 〉? Even with values ofc = 2, 4, 8, the
resultant runlength analysis graphs were almost identical.

4.2 Artificial Ant

Artificial Ant moves an ant across a toroidal world, at-
tempting to follow a trail of food pellets and eat as much
food as possible in 400 moves. I used the traditional Artifi-
cial Ant settings with the Santa Fe trail as defined in [Koza,
1992], with a population size of 500 and tournament selec-
tion using a tournament of size 7.

As shown in Figure 3, the mean Artificial Ant best-of-run
fitness improved monotonically and steadily with longer
runlengths clear out to 2048 generations. But this did not
mean that it was rational to plan to do a run out that far.
Figure 4 suggests that single runs of runlengths beyond64
generations were reached by multiple runs with shorter run-
lengths but the same number of total evaluations.

This is very similar to the Symbolic Regression results.
Also similar was the existence of a minimum acceptable
runlength: runs less than 4 could not reach a single run of
larger size. Lastly, runlength analysis graphs with values of
c = 2, 4, or 8 were very similar.

4.3 Even-10 Parity

The last problem analyzed was Even-10 Parity, a very dif-
ficult problem for Genetic Programming. Even-10 Par-
ity evolves a symbolic boolean expression which correctly
identifies whether or not, in a vector of 10 bits, an even
number of them are 1. This is a large and complex func-
tion and necessitates a large GP tree. To make the problem
even harder, I used a small population (200), but otherwise
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Figure 4: Runlength Analysis of Artificial Ant Domain.
Areas are black where X is a superior strategy to Y and
white where Y is as good or better than X. Gray regions are
out of bounds.

followed the specifications for the Parity problem family as
outlined in [Koza, 1992].

Figure 5 shows just how difficult it is for Genetic Program-
ming to solve the Even-10 Parity problem. Even after 1024
generations, no run has reached the optimum; the mean
best-of-run fitness has improved by only 25% over random
solutions. The curve does not resemble the logistic curve
of the other two GP domains.

One might suppose that in a domain where 1024 genera-
tions improves little over 1 generation, runlength analysis
would argue for the futility of long runs. Yet the results
were surprising: a single run of any length was always
consistently superior to multiple runs of shorter lengths.
Even though Even-10 Parity is very difficult for Genetic
Programming to solve, it continues to plug away at it. It is
conceivable that, were we to run out far enough, we might
see a maximal rational runlength in the Even-10 Parity do-
main. Nonetheless, it is surprising that even at 1024 gener-
ations, Even-10 Parity is still going strong.

5 DISCUSSION

As the Symbolic Regression and Artificial Ant domains
have shown, there can be a runlength beyond which it
seems irrational to plan to do runs, because more runs of
shorter length will do just as well if not better. I call this
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runlength acritical point. The location of the critical point
suggests interesting things about the ability of the tech-
nique to solve the problem at hand. As the critical point
approaches 1, the technique becomes less and less of an
improvement over blind random search.

Symbolic Regression only occasionally finds the optimum,
but if it is lost, around generation 64 it seems to begin to
search for incrementally smaller values. One is tempted to
suggest that this is why it is irrational to continue beyond
about generation 32 or so. However, while the curve flat-
tens out, as the detail shows, it still makes improvements
in fitness. The critical feature is that thevarianceamong
the runs stays high even though the mean improves only
slowly. This is what makes it better to do 2 runs of length
32 (or 8 of 8) than 1 run of length 64, for example.

Artificial Ant demonstrates a similar effect. Even though
the mean improves steadily, the variance after generation
32 stays approximately the same. As a result, 4 runs of
32 will handily beat out 1 run of 128 despite a significant
improvement in the mean between 32 and 128 generations.

The interesting domain is Even 10-Parity. In this domain
the mean improves and the variance also continues to in-
crease. As it turns out, the mean improves just enough to
counteract the widening variance. Thus even though this is
a very difficult problem for genetic programming to solve,
it never makes sense to do multiple short runs rather than
one long run!

Symbolic Regression and Artificial Ant also suggest that
there can exist aminimumrunlength such that any num-
ber of runs with fewer generations are inferior to a single
run of this runlength. In some sense it is also irrational
to do multiple runs with fewer generations than this mini-
mum runlength instead of (at least) one run at the minimum
runlength. Thus there is a window between the minimum
and maximum rational runlengths. If one has enough eval-
uations, it appears to makes most sense to spend them on
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Figure 6: Runlength Analysis of Even-10 Parity Domain.
Areas are black where X is a superior strategy to Y and
white where Y is as good or better than X. Gray regions are
out of bounds.

runs within this window of rationality.

One last item that should be considered isevaluation time,
which for genetic programming is strongly influenced by
the phenomenon ofcode bloat. As a genetic programming
run continues, the size of its individuals grows dramati-
cally, and so does the amount of time necessary to breed
and particularly to evaluate them. So far we have compared
schedules in terms of total number of evaluations; but in the
case of genetic programming it might make more sense to
compare them in terms oftotal runtime. The likely effect of
this would be to make the maximally rational runtime even
shorter. In the future the author hopes to further explore
this interesting issue.

6 CONCLUSION

Genetic programming has traditionally not done runs
longer than 50 generations or so, at least for the common
cannonical problems. Instead it prefers larger population
sizes. The results of this analysis suggest one reason why
this might be: beyond a very small runlength (16 for Sym-
bolic Regression, about 32 or 64 for Artificial Ant) the
diminishing returns are such that it makes more sense to
divvy up the total evaluations into multiple smaller runs.

But “rapidly diminishing returns” is not the same thing as
“difficult problem”. In a hard problem like Even-10 Parity,
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it still makes sense on average to press forward rather than
do many shorter runs.

This paper presented a formal, heuristic-free, domain-
independent analysis technique for determining the ex-
pected quality of a given schedule, and applied it to three
domains in genetic programming, with interesting results.
But this analysis is applicable to a wide range of stochastic
techniques beyond just GP, and the author hopes to apply it
to other techniques in the future.
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Abstract

This paper discusses and compares five major
tree-generation algorithms for genetic program-
ming, and their effects on fitness:RAMPED
HALF-AND-HALF, PTC1, PTC2, RANDOM-
BRANCH, and UNIFORM. The paper compares
the performance of these algorithms on three ge-
netic programming problems (11-Boolean Multi-
plexer, Artificial Ant, and Symbolic Regression),
and discovers that the algorithms do not have a
significant impact on fitness. Additional experi-
mentation shows that tree size does have an im-
portant impact on fitness, and further that the
ideal initial tree size is very different from that
used in traditional GP.

1 INTRODUCTION

The issue of population initialization has received surpris-
ingly little attention in the genetic programming literature.
[Koza, 1992] established theGROW, FULL, andRAMPED
HALF-AND-HALFalgorithms, only a few papers have ap-
peared on the subject, and the community by and large still
uses the original Koza algorithms.

Some early work was concerned with algorithms simi-
lar to GROWbut which operated on derivation grammars.
[Whigham, 1995a,b, 1996] analyzed biases due to popula-
tion initialization, among other factors, in grammatically-
based genetic programming. [Geyer-Schulz, 1995] also de-
vised similar techniques for dealing with tree grammars.

The first approximately uniform tree generation algorithm
was RAND-TREE[Iba, 1996], which used Dyck words
to choose uniformly from all possible tree structures of a
given arity set and tree size. Afterwards the tree structure
would be populated with nodes. [Bohm and Geyer-Schulz,
1996] then presented an exact uniform algorithm for choos-
ing among all possible trees of a given function set.

Recent tree generation algorithms have focused on speed.
[Chellapilla, 1997] devisedRANDOMBRANCH, a simple al-
gorithm which generated trees approximating a requested
tree size. After demonstrating problems with theGROWal-
gorithm, [Luke, 2000b] modifedGROWto producePTC1
which guaranteed that generated trees would appear around
an expected tree size. [Luke, 2000b] also presentedPTC2
which randomly expanded the tree horizon to produce trees
of approximately the requested size. All three of these al-
gorithms are linear in tree size.

Both [Iba, 1996] and [Bohm and Geyer-Schulz, 1996] ar-
gued for the superiority of their algorithms over the Koza
standard algorithms. [Whigham, 1995b] showed that bias-
ing a grammar-based tree-generation algorithm could dra-
matically improve (or hurt) the success rate of genetic pro-
gramming at solving a given domain, though such bias
must be hand-tuned for the domain in question.

In contrast, this paper examines several algorithms to see if
any of the existing algorithms appears to make much of a
difference, or if tree size and other factors might be more
significant.

2 THE ALGORITHMS

This paper compares five tree generation algorithms from
the literature. These algorithms were chosen for their
widely differing approaches to tree creation. The chief al-
gorithm not in this comparison isRAND-TREE[Iba, 1996].
This algorithm has been to some degree subsumed by a
more recent algorithm [Bohm and Geyer-Schulz, 1996],
which generates trees from a truly uniform distribution (the
original unachieved goal ofRAND-TREE).

The algorithms discussed in this paper are:

2.1 Ramped Half-And-Half and Related Algorithms

RAMPED HALF-AND-HALFis the traditional tree gener-
ation algorithm for genetic programming, popularized by
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[Koza, 1992]. RAMPED HALF-AND-HALFtakes a tree
depth range (commonly 2 to 6 – for this and future refer-
ences, we define “depth” in terms of number of nodes, not
number of edges). In other respects, the user has no control
over the size or shape of the trees generated.

RAMPED HALF-AND-HALFfirst picks a random value
within the depth range. Then with 1/2 probability it uses
theGROWalgorithm to generate the tree, passing it the cho-
sen depth; otherwise it uses theFULL algorithm with the
chosen depth.

GROWis very simple:

GROW(depthd, max depthD )
Returns:a tree of depth≤D − d
If d = D , return a random terminal
Else

� Choose a random function or terminalf
If f is a terminal, returnf
Else

For each argumenta of f ,
Fill a with GROW(d + 1,D )

Returnf with filled arguments

GROWis started by passing in 0 ford, and the requested
depth for D . FULL differs from GROWonly in the line
marked with a�. On this line,FULL chooses a nonter-
minal function only, never a terminal. ThusFULL only
creates full trees, and always of the requested depth.

Unlike other algorithms, because it does not have a size pa-
rameter,RAMPED HALF-AND-HALFdoes not have well-
defined computational complexity in terms of size.FULL
always generates trees up to the depth bound provided. As
[Luke, 2000b] has shown,GROWwithout a depth bound
may, depending on the function set, have an expected tree
size of infinity.

2.2 PTC1

PTC1 [Luke, 2000b] is a modification of theGROWalgo-
rithm which is guaranteed to produce trees around a finite
expected tree size. A simple version of PTC1 is described
here. PTC1 takes a requested expected tree size and a max-
imum legal depth. PTC1 begins by computingp, the prob-
ability of choosing a nonterminal over a terminal in order
to maintain the expected tree sizeE as:

p =
1 − 1

E∑

n2N

1
jN j bn

whereN is the set of all nonterminals andbn is the arity of
nonterminaln. This computation can be done once offline.
Then the algorithm proceeds to create the tree:

PTC1(precomputed probabilityp, depthd, max depthD )
Returns:a tree of depth≤D − d
If d = D , return a random terminal
Else if a coin-toss of probabilityp is true,

Choose a random nonterminaln
For each argumenta of n,

Fill a with PTC1(p,d + 1,D )
Returnn with filled arguments

Else return a random terminal

PTC1 is started by passing inp, 0 for d, and the maximum
depth forD . PTC1’s computational complexity is linear or
nearly linear in expected tree size.

2.3 PTC2

PTC2 [Luke, 2000b] receives a requested tree size, and
guarantees that it will return a tree no larger than that tree
size, and no smaller than the size minus the maximum arity
of any function in the function set. This algorithm works
by increasing the tree horizon at randomly chosen points
until it is sufficiently large.PTC2in pseudocode is big, but
a simple version of the algorithm can be easily described.

PTC2 takes a requested tree sizeS. If S = 1, it returns a
random terminal. Otherwise it picks a random nonterminal
as the root of the tree and decreasesS by 1. PTC2 then
puts each unfilled child slot of the nonterminal into a setH ,
representing the “horizon” of unfilled slots. It then enters
the following loop:

1. If S≤jH j, break from the loop.

2. Else remove a random slot fromH . Fill the slot with
a randomly chosen nonterminal. DecreaseS by 1.
Add to H every unfilled child slot of that nontermi-
nal. Goto #1.

At this point, the total number of nonterminals in the tree,
plus the number of slots inH , equals or barely exceeds
the user-requested tree size.PTC2finishes up by removing
slots fromH one by one and filling them with randomly
chosen terminals, untilH is exhausted.PTC2 then returns
the tree.

PTC2’s computational complexity is linear or nearly linear
in the requested tree size.

2.4 RandomBranch

RANDOMBRANCH[Chellapilla, 1997] is another interesting
tree-generation algorithm, which takes a requested tree size
and guarantees a tree of that size or “somewhat smaller”.
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Problem Domain Algorithm Parameter Avg. Tree Size

11-Boolean Multiplexer RAMPED HALF-AND-HALF (No Parameter) 21.2
11-Boolean Multiplexer RANDOMBRANCH Max Size: 45 20.0
11-Boolean Multiplexer PTC1 Expected Size: 9 20.9
11-Boolean Multiplexer PTC2 Max Size: 40 21.4
11-Boolean Multiplexer UNIFORM-even Max Size: 42 21.8
11-Boolean Multiplexer UNIFORM-true Max Size: 21 20.9
Artificial Ant RAMPED HALF-AND-HALF (No Parameter) 36.9
Artificial Ant RANDOMBRANCH Max Size: 90 33.7
Artificial Ant PTC1 Expected Size: 12 38.5
Artificial Ant PTC2 Max Size: 67 35.3
Artificial Ant UNIFORM-even Max Size: 65 33.9
Artificial Ant UNIFORM-true Max Size: 37 36.8
Symbolic Regression RAMPED HALF-AND-HALF (No Parameter) 11.6
Symbolic Regression RANDOMBRANCH Max Size: 21 11.4
Symbolic Regression PTC1 Expected Size: 4 10.9
Symbolic Regression PTC2 Max Size: 18 11.1
Symbolic Regression UNIFORM-even Max Size: 19 11.2
Symbolic Regression UNIFORM-true Max Size: 11 10.8

Table 1: Tree Generation Parameters and Resultant Sizes

RANDOMBRANCH(requested sizes )
Returns:a tree of size≤s
If a nonterminal with arity≤s does not exist

Return a random terminal
Else

Choose a random nonterminaln of arity≤s
Let bn be the arity ofn
For each argumenta of n,

Fill a with RANDOMBRANCH(b s
b n
c)

Returnn with filled arguments

BecauseRANDOMBRANCHevenly dividess up among the
subtrees of a parent nonterminal, there are many trees that
RANDOMBRANCHsimply cannot produce by its very na-
ture. This makesRANDOMBRANCHthe most restrictive of
the algorithms described here.RANDOMBRANCH’s com-
putational complexity is linear or nearly linear in the re-
quested tree size.

2.5 Uniform

UNIFORMis the name we give to the exact uniform tree
generation algorithm given in [Bohm and Geyer-Schulz,
1996], who did not name it themselves.UNIFORMtakes
a single requested tree size, and guarantees that it will cre-
ate a tree chosenuniformly from the full set of all possible
trees of that size, given the function set.UNIFORMis too
complex an algorithm to describe here except in general
terms.

During tree-generation time,UNIFORM’s computational
complexity is nearly linear in tree size. However,UNI-
FORMmust first compute various tables offline, including a
table of numbers of trees for all sizes up to some maximum
feasibly requested tree sizes. Fortunately this daunting task
can be done reasonably quickly with the help of dynamic
programming.

During tree-generation time,UNIFORMpicks a node se-
lected from a distribution derived from its tables. If the
node is a nonterminal,UNIFORMthen assigns tree sizes to
each child of the nonterminal. These sizes are also picked
from distributions derived from its tables.UNIFORMthen
calls itself recursively for each child.

UNIFORMis a very large but otherwise elegant algorithm;
but it comes at the cost of offline table-generation. Even
with the help of dynamic programming,UNIFORM’s com-
putational complexity is superlinear but polynomial.

3 FIRST EXPERIMENT

[Bohm and Geyer-Schulz, 1996] claimed thatUNIFORM
dramatically outperformedRAMPED HALF-AND-HALF,
and argued that the reason for this wasRAMPED HALF-
AND-HALF’s highly non-uniform sampling of the initial
program space. Does uniform sampling actually make
a significant difference in the final outcome? To test
this, the first experiment compares the fitness ofRAMPED
HALF-AND-HALF, PTC1, PTC2, RANDOMBRANCH, and
two different versions ofUNIFORM(UNIFORM-true and
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UNIFORM-even, described later). It is our opinion that
the “uniformity” of sampling among the five algorithms
presented is approximately in the following order (from
most uniform to least):UNIFORM(of course),PTC2,
RAMPED HALF-AND-HALF, PTC1, RANDOMBRANCH.

The comparisons were done over three canonical genetic
programming problem domains, 11-Boolean Multiplexer,
Artificial Ant, and Symbolic Regression. Except for the
tree generation algorithm used, these domains followed the
parameters defined in [Koza, 1992], using tournament se-
lection of size 7. The goal of 11-Boolean Multiplexer is
to evolve a boolean function on eleven inputs which per-
forms multiplexing on eight of those inputs with regard to
the other three. The goal of the Artificial Ant problem is to
evolve a simple robot ant algorithm which follows a trail of
pellets, eating as many pellets as possible before time runs
out. Symbolic Regression tries to evolve a symbolic math-
ematical expression which best fits a training set of data
points.

To perform this experiment, we did 50 independent runs for
each domain using theRAMPED HALF-AND-HALFalgo-
rithm to generate initial trees. From there we measured the
mean initial tree size and calibrated the other algorithms
to generate trees of approximately that size. This calibra-
tion is not as simple as it would seem at first. For example,
PTC1 can be simply set to the mean value, and it should
produce trees around that mean. However, an additional
complicating factor is involved: duplicate rejection. Usu-
ally genetic programming rejects duplicate copies of the
same individual, in order to guarantee that every initial in-
dividual is unique. Since there are fewer small trees than
large ones, the likelihood of a small tree being a duplicate
is correspondingly much larger. As a result, these algo-
rithms will tend to produce significantly larger trees than
would appear at first glance if, as was the case in this exper-
iment, duplicate rejection is part of the mix. Hence some
trial and error was necessary to establish the parameters re-
quired to produce individuals of approximately the same
mean size asRAMPED HALF-AND-HALF. Those param-
eters are shown in Table 1.

In the PTC1 algorithm, the parameter of consequence is
the expected mean tree size. For the other algorithms, the
parameter is the “maximum tree size”. ForPTC2, RAN-
DOMBRANCH, andUNIFORM-even, a tree is created by
first selecting an integer from the range 1 to the maximum
tree size inclusive. This integer is selected uniformly from
this range. InUNIFORM-true however, the integer is se-
lected according to a probability distribution defined by the
number of trees of each size in the range. Since there are
far more trees of size 10 than of 1 for example, 10 is chosen
much more often than 1. For each remaining algorithm, 50
independent runs were performed with both problem do-

Fisher LSD Algorithm Tukey
PTC2
PTC1

RAMPED HALF-AND-HALF
UNIFORM-true
UNIFORM-even
RANDOMBRANCH

Table 2: ANOVA Results for Symbolic Regression. Al-
gorithms are in decreasing order by average over 50 runs
of best fitness per run. Vertical lines indicate classes with
statistically insignificant differences.

mains. ECJ [Luke, 2000a] was the genetic programming
system used.

Figures 1 through 6 show the results for the various al-
gorithms applied to 11-Boolean Multiplexer. Figures 8
through 13 show the results for the algorithms applied to
Artificial Ant. As can be seen, the algorithms produce sur-
prisingly similar results. ANOVAs at 0.05 performed on
the algorithms for both the 11-Boolean Multiplexer prob-
lem and the Artificial Ant problem indicate that there is
no statistically significant difference among any of them.
For Symbolic Regression, an ANOVA indicated statisti-
cally significant differences. The post-hoc Fisher LSD and
Tukey tests, shown in Figure 2, reveal thatUNIFORMfares
worse than all algorithms exceptRANDOMBRANCH!

4 SECOND EXPERIMENT

If uniformity provides no statistically significant advan-
tage, what then accounts for the authors’ claims of im-
provements in fitness? One critical issue might be average
tree size. If reports in the literature were not careful to nor-
malize for size differences (very easy given thatRAMPED
HALF-AND-HALF has no size parameters, and duplicate
rejection causes unforseen effects) it is entirely possible
that significant differences can arise.

The goal of the second experiment was to determine how
much size matters. UsingUNIFORM-even, we performed
30 independent runs each for the following maximum-size
values: 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30,
40, 50, 60, 80, 100. The test problem domains were again
11-Boolean Multiplexer, Artificial Ant, and Symbolic Re-
gression with two features modified. First, the population
size was reduced from 500 (the standard in [Koza, 1992]) to
200, to speed up runtime. Second, the runs were only done
for eight generations, rather than 50 (standard for [Koza,
1992]). The reasoning behind this is that after eight gen-
erations or so the evolutionary system has generally settled
down after initial “bootstrapping” effects due to the tree-
generation algorithm chosen.
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Figures 7, 14, and 21 show the results of this experiment.
The light gray dots represent each run. The dark gray dots
represent the means of the 30 runs for each maximum-size
value. Because of duplicate rejection, runs typically have
mean initial tree sizes somewhat different from the values
predicted by the provided maximum-size. Also note the ap-
parent horizontal lines in the 11-Boolean Multiplexer data:
this problem domain has the feature that certain discrete fit-
ness values (multiples of 32) are much more common than
others.

These graphs suggest that the optimal initial tree size for
UNIFORM-even for both domains is somewhere around
10. Compare this to the standard tree sizes which occur
due toRAMPED HALF-AND-HALF: 21.2 for 11-Boolean
Multiplexer and 36.9 for Artificial Ant!

5 CONCLUSION

The tree generation algorithms presented provide a variety
of advantages for GP researchers. But the evidence in this
paper suggests that improved fitness results is probably not
one of those advantages. Why then pick an algorithm over
RAMPED HALF-AND-HALFthen? There are several rea-
sons. First, most new algorithms permit the user tospecify
the size desired. For certain applications, this may be a cru-
cial feature, not the least because it allows the user to cre-
ate a size distribution more likely to generate good initial
individuals. Fighting bloat in subtree mutation also makes
size-specification a desirable trait.

Second, some algorithms have special features which may
be useful in different circumstances. For example,PTC1
and PTC2 have additional probabilistic features not de-
scribed in the simplified forms in this paper. Both algo-
rithms permit users to hand-tune exactly the likelihood of
appearance of a given function in the population, for exam-
ple.

The results in this paper were surprising. Uniformity ap-
pears to have little consequence in improving fitness. Cer-
tainly this area deserves more attention to see what addi-
tional features, besides mean tree size,do give evolution
that extra push during the initialization phase. Lastly, while
this paper discussed effects onfitness, it did not delve into
the effects of these algorithms ontree growth, another crit-
ical element in the GP puzzle, and a worthwhile study in its
own right.
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Figure 1: Generation vs. Fitness,RAMPED HALF-AND-
HALF, 11-Boolean Multiplexer Domain
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Figure 2: Generation vs. Fitness,PTC1, 11-Boolean Mul-
tiplexer Domain
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Figure 3: Generation vs. Fitness,PTC2, 11-Boolean Mul-
tiplexer Domain

0 10 20 30 40 50
Generation

200

400

600

800

1000

F
itn

es
s

Figure 4: Generation vs. Fitness,RANDOMBRANCH, 11-
Boolean Multiplexer Domain
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Figure 5: Generation vs. Fitness,UNIFORM-even, 11-
Boolean Multiplexer Domain
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Figure 6: Generation vs. Fitness,UNIFORM-true , 11-
Boolean Multiplexer Domain
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Figure 7: Mean Initial Tree Size vs. Fitness at Generation
8, 11-Boolean Multiplexer Domain
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Figure 8: Generation vs. Fitness,RAMPED HALF-AND-
HALF, Artificial Ant Domain
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Figure 9: Generation vs. Fitness,PTC1, Artificial Ant Do-
main
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Figure 10: Generation vs. Fitness,PTC2, Artificial Ant
Domain
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Figure 11: Generation vs. Fitness,RANDOMBRANCH, Arti-
ficial Ant Domain
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Figure 12: Generation vs. Fitness,UNIFORM-even, Arti-
ficial Ant Domain
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Figure 13: Generation vs. Fitness,UNIFORM-true , Arti-
ficial Ant Domain
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Figure 14: Mean Initial Tree Size vs. Fitness at Generation
8, Artificial Ant Domain
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Figure 15: Generation vs. Fitness,RAMPED HALF-AND-
HALF, Symbolic Regression Domain
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Figure 16: Generation vs. Fitness,PTC1, Symbolic Re-
gression Domain
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Figure 17: Generation vs. Fitness,PTC2, Symbolic Re-
gression Domain
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Figure 18: Generation vs. Fitness,RANDOMBRANCH,
Symbolic Regression Domain
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Figure 19: Generation vs. Fitness,UNIFORM-even,
Symbolic Regression Domain
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Figure 20: Generation vs. Fitness,UNIFORM-true ,
Symbolic Regression Domain
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Figure 21: Mean Initial Tree Size vs. Fitness at Generation
8, Symbolic Regression Domain
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Ghsw1 ri Pdwk1 dqg Frpsxwlqj Vflhqfhv

Jrogvplwkv Froohjh/ Xqlyhuvlw| ri Orqgrq
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qlnrodhyCpfv1jrog1df1xn

Klwrvkl Led

Ghsw1 ri Lqi1 dqg Frpp1 Hqjlqhhulqj

Vfkrro ri Hqjlqhhulqj/ Wkh Xqlyhuvlw| ri Wrn|r
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Wklv sdshu sursrvhv d wuhh0vwuxfwxuhg uhs0

uhvhqwdwlrq iru jhqhwlf surjudpplqj +JS,

xvlqj Fkhelvkhy sro|qrpldov dv exloglqj

eorfnv1 Wkh| duh lqfrusrudwhg lq wkh ohdyhv

ri wuhh0vwuxfwxuhg sro|qrpldo prghov1 Wkhvh

wuhhv duh xvhg lq d yhuvlrq ri wkh JS v|vwhp

VWURJDQRII wr dyrlg ryhu�wwlqj zlwk wkh

gdwd zkhq vhdufklqj iru sro|qrpldov1 Vhdufk

frqwuro lv rujdql}hg zlwk d vwdwlvwlfdo �w0

qhvv ixqfwlrq wkdw idyrxuv dffxudwh/ suhglf0

wlyh/ dqg sduvlprqlrxv sro|qrpldov1 Wkh lp0

suryhphqw ri wkh hyroxwlrqdu| vhdufk shu0

irupdqfh lv vwxglhg e| sulqflsdo frpsrqhqw

dqdo|vlv ri wkh huuru yduldwlrqv ri wkh holwh

lqglylgxdov lq wkh srsxodwlrq1 Hpslulfdo uh0

vxowv vkrz wkdw wkh qryho yhuvlrq rxwshuirupv

VWURJDQRII/ dqg wkh wudglwlrqdo Nr}d0

vw|oh JS rq surfhvvlqj ehqfkpdun dqg uhdo0

zruog wlph vhulhv1

� ������������

Sro|qrpldov duh riwhq suhihuuhg iru ixqfwlrq prgholqj

gxh wr wkhlu uholdeoh dssur{lpdwlrq surshuwlhv1 Vxf0

fhvvixo uhvxowv zlwk hyroxwlrqdu| frpsxwdwlrq v|vwhpv

wkdw vhdufk iru sro|qrpldov kdyh ehhq uhsruwhg1 Wkh|

frqvlghu sro|qrpldov pdgh dv �{hg0ohqjwk vwuxfwxuhv

+Ndujxswd dqg Vplwk/ 4<<4,/ +Qlvvhq dqg Nrlylvwr/

4<<9,/ +Jrph}0Udpluh} hw do1/ 4<<<,/ +Vkhwd dqg Deho0

Zdkde/ 4<<<,/ dqg yduldeoh0ohqjwk wuhh0olnh vwuxfwxuhv

+Led hw do1/ 4<<9,/ +Urguljxh}0Yd}txh} hw do1/ 4<<:,/ ru

vljpd0sl qhxudo qhwzrunv +]kdqj hw do1/ 4<<:,1 Lpsru0

wdqw ghvljq lvvxhv iru vxfk v|vwhpv duh= 4, hoderudwlrq

ri vhdufk frqwuro phfkdqlvpv wkdw pd| khos wr dfklhyh

frqyhujhqfh wr rswlpdo prghov> dqg/ 5, hoderudwlrq ri

�h{leoh ixqfwlrqdo prgho uhsuhvhqwdwlrqv wkdw pd| hq0

deoh �qglqj ri suhglfwlyh vroxwlrqv1

Wkhvh lvvxhv duh dgguhvvhg khuh zlwk hqkdqfhphqw ri

wkh uhsuhvhqwdwlrq ri wkh JS v|vwhp VWURJDQRII

+Led hw do1/ 4<<9,/ +Qlnrodhy dqg Led/ 5334, wkdw ohduqv

sro|qrpldov1 VWURJDQRII pdqlsxodwhv wuhh0olnh

prghov ri edvlv sro|qrpldov lq wkhlu ohdyhv1 Lw xvhv wkh

JS sdudgljp wr ohduq wkh prgho vwuxfwxuh iurp wkh

gdwd/ wkdw lv wr glvfryhu zklfk edvlv sro|qrpldov duh

frpsrqhqwv ri wkh xqnqrzq ixqfwlrq1 Rqh sureohp ri

wkhvh wuhh0olnh sro|qrpldov lv wkdw wkh| whqg wr ryhu�w

wkh gdwd dv wkhlu sduhqw JPGK qhwzrunv +Lydnkqhqnr/

4<:4,1 Ryhu�wwlqj rffxuv pdlqo| ehfdxvh wkh prghov

frqwdlq yhu| kljk rughu whupv wkdw h{klelw orz uhvlgxdo

huuruv1 Rqh dssurdfk wr frpedw hyroylqj prghov zlwk

yhu| orz �wwlqj huuruv lv wr xvh vwdwlvwlfdo �wqhvv ixqf0

wlrqv wkdw hvwlpdwh qrw rqo| wkh uhvlgxdo huuru/ exw dovr

wkh frh�flhqwv dpsolwxghv dqg wkh prgho frpsoh{lw|1

Dqrwkhu lpsuryhphqw ri JS iru ryhu�wwlqj dyrlgdqfh

lv sursrvhg khuh xvlqj Fkhelvkhy sro|qrpldov dv exlog0

lqj eorfnv iru wuhh0vwuxfwxuhg sro|qrpldov1 Wkh gh0

yhorsphqw ri d Fkhelvkhy sro|qrpldo JS +fsJS, v|v0

whp kdv irxu remhfwlyhv= 4, wr hqfdsvxodwh vwuxfwxudo

lqirupdwlrq lq wkh sro|qrpldov vr wkdw wkh| ehfrph

pruh vsduvh/ frpsduhg wr wkh vdph sro|qrpldov zlwk0

rxw exloglqj eorfnv/ iru lqfuhdvlqj ri wkh jhqhudol}d0

wlrq> 5, wr ghfuhdvh wkh vhdufk vsdfh vl}h gxh wr wkh

ghfuhdvh ri wkh wuhh vl}h> 6, wr ghvfuleh ehwwhu rvfloodw0

lqj surshuwlhv ri wkh gdwd dqg wr pdnh wkh sro|qrpldov

hvshfldoo| vxlwdeoh iru wlph0vhulhv prgholqj> dqg/ 7, wr

dffhohudwh wkh vhdufk frqyhujhqfh wr jrrg vroxwlrqv1

Vlqfh wkh edvlf lghd lv wr fdswxuh frpprq lqirupdwlrq

lq wkh gdwd/ wklv lghd lv vlplodu wr wkh dxwrpdwlfdoo|

gh�qhg ixqfwlrqv +DGI, ri +Nr}d/ 4<<7,/ wkh prgxohv

+PD, ri +Dqjholqh/ 4<<7,/ dqg wkh dgdswlyh uhsuhvhq0

wdwlrqv +DU, ri +Urvfd dqg Edodug/ 4<<8,1

Wkh hyroxwlrqdu| vhdufk shuirupdqfh lv vwxglhg e|

sulqflsdo frpsrqhqw dqdo|vlv +SFD, ri wkh huuru ydul0

dqfh ri wkh holwh sro|qrpldov lq wkh srsxodwlrq1 Pruh

suhflvho|/ dsso|lqj SFD doorzv wr revhuyh wkh huuru

wudmhfwru| gxulqj wkh jhqhudwlrqv e| sorwwlqj lw lq
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wkuhh glphqvlrqv1 Xvlqj vxfk huuru wudmhfwru| sorwv

zh ghprqvwudwh wkdw wkh Fkhelvkhy exloglqj eorfnv

frqwulexwh wr lpsuryh wkh vhdufk dqg wr glvfryhu

sro|qrpldov zlwk ehwwhu jhqhudol}dwlrq/ frpsduhg wr

VWURJDQRII xvlqj wkh vdph �wqhvv ixqfwlrq1 Lq

wklv vhqvh/ wkh �wqhvv ixqfwlrq dorqh lv qrw vx�flhqw wr

jxdudqwhh �qglqj jrrg sro|qrpldov wkdw dyrlg ryhu�w0

wlqj wkh gdwd1 Wklv fodlp lv frq�uphg diwhu h{shul0

phqwv rq wlph vhulhv suhglfwlrq xvlqj wzr ehqfkpdun

dqg rqh �qdqfldo h{fkdqjh udwhv vhulhv1 Wkh uhvxowv

lqglfdwh wkdw fsJS rxwshuirupv VWURJDQRII dqg

wkh wudglwlrqdo JS +Nr}d/ 4<<5, rq wkhvh wdvnv1

Wklv sdshu rxwolqhv wkh wuhh0vwuxfwxuhg uhsuhvhqwdwlrq

xvlqj Fkhelvkhy sro|qrpldov iru ixqfwlrq dssur{lpd0

wlrq lq vhfwlrq wzr1 Vhfwlrq wkuhh r�huv wkh uhjxodu0

l}hg �wqhvv ixqfwlrq dqg wkh fsJS phfkdqlvpv1 Wkh

shuirupdqfh vwxglhv xvlqj SFD duh lq vhfwlrq irxu1

Vhfwlrq �yh surylghv h{shulphqwdo uhvxowv1 Ilqdoo| d

glvfxvvlrq lv pdgh dqg frqfoxvlrqv duh ghulyhg1

� ��� ��!���

�����"�!�����

Wkh ixqfwlrq dssur{lpdwlrq sureohp lv= jlyhq d vhulhv

G @ i+{l> |l,j
Q
l@4 ri srlqwv {l 5 U/ dqg fruuhvsrqglqj

ydoxhv |l 5 U/ �qg wkh ehvw ixqfwlrq | @ i+{,/ i 5 O
5
1

Rxu suhihuuhg ixqfwlrqv duh wkh kljk0rughu pxowlyduldwh

sro|qrpldov/ fdoohg Nroprjrury0Jderu sro|qrpldov=

S +{, @ d
3
.

P[

l@4

dl

v\

m@4

*m+{,
um +4,

zkhuh dl duh whup frh�flhqwv/ l lwhudwhv ryhu wkh whupv

P = l �P / { lv wkh lqghshqghqw yduldeoh yhfwru ri gl0

phqvlrq v/ *m+{, duh vlpsoh ixqfwlrqv ri �uvw/ vhfrqg/

wklug/ hwf1 rughu +ghjuhh,/ dqg um @ 3> 4> === duh wkh

srzhuv ri wkh m0wk ixqfwlrq *m+{, lq wkh l0wk whup1

Wkh Nroprjrury0Jderu sro|qrpldov duh xqlyhuvdo

prghoolqj ixqfwlrqv zlwk zklfk dq| frqwlqxrxv pds0

slqj pd| eh dssur{lpdwhg xs wr dq duelwudu| suhfl0

vlrq/ li wkhuh duh vx�flhqwo| odujh qxpehu ri whupv1

514 WUHH0VWUXFWXUHG SRO\QRPLDOV

Wkh JS v|vwhp VWURJDQRII +Led hw do1/ 4<<9, sl0

rqhhuhg wkh hpsor|phqw ri elqdu| wuhh vwuxfwxuhv iru

uhsuhvhqwlqj sro|qrpldov1 Wkh whuplqdo ohdyhv lq wkh

wuhh surylgh wkh lqghshqghqw yduldeohv1 Lq hdfk lq0

whuqdo ixqfwlrqdo wuhh qrgh wkhuh duh doorfdwhg edvlv

sro|qrpldov zkrvh rxwsxwv duh ihg lq wkh edvlv sro|0

qrpldov dw qh{w od|hu kljkhu lq wkh wuhh dv yduldeohv1

Wkxv/ kljk0rughu prghov duh frpsrvhg klhudufklfdoo|

ohdglqj wr srzhu vhulhv +4, dw wkh wuhh urrw1

11
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T
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1
) T
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T
1
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  Function Node
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T
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T1(x2)=x2

T1(x7)=x7T4(x1)=8.x1
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6�}�hi �� � |hii�t|h�U|�hi_ TL*)?L4�@* �ti_ �? UTB�

Wklv wuhh0olnh sro|qrpldo frqvwuxfwlrq/ krzhyhu/ dggv

yhu| kljk0rughu whupv wr wkh prgho vlqfh wkh klhudufk|

udslgo| lqfuhdvhv wkh prgho rughu1 Wkh whupv ri yhu|

kljk0rughu duh qrw qhfhvvdulo| zhoo vwuxfwxudoo| uhodwhg

wr wkh lqirupdwlrq lq wkh gdwd1

Rqh uhphg| iru vxfk gl�fxowlhv duh wkh uhdg| wr xvh

prgho frpsrqhqwv wkdw fdswxuh frpprq lqirupdwlrq

lq wkh gdwd nqrzq dv exloglqj eorfnv1 Wkh dvvxpswlrq

lv wkdw wkh xqnqrzq ixqfwlrq lv uhvroydeoh lq exloglqj

eorfn frpsrqhqwv/ dqg zh pd| ohduq vxfk frpsrqhqwv

e| hyroxwlrqdu| vhdufk1 D uhdvrqdeoh fkrlfh ri vxfk

frpsrqhqwv iru dssur{lpdwlrq wdvnv duh wkh Fkhelvkhy

sro|qrpldov zklfk jlyh plqlpd{ �w ri wkh gdwd1

515 FKHELVKHY WHUPLQDOV

Fkhelvkhy sro|qrpldov pd| eh frqvlghuhg dv exloglqj

eorfnv iru jhqhwlf surjudpplqj zlwk JPGK0olnh sro|0

qrpldov1 Wkh lghd lv wr wdnh Fkhelvkhy sro|qrpldov lq

rughu wr fdswxuh wkh hvvhqwldo sduwldo lqirupdwlrq lq

wkh gdwd1 Wkxv/ uhdg| sduwldo exloglqj eorfnv ri wkh

xqnqrzq wuxh ixqfwlrq pd| eh lghqwl�hg dqg sursd0

jdwhg gxulqj wkh vhdufk surfhvv1

Zh sursrvh wr sdvv Fkhelvkhy sro|qrpldov dv whupl0

qdov wr hqwhu wkh wuhh0vwuxfwxuhg prghov +Iljxuh 4,=

*m+{, � Wn+{, +5,

zkhuh { @ +{
4
> {

5
> ===> {v, lv wkh lqsxw yduldeoh yhf0

wru/ dqg Wn+{, duh Fkhelvkhy sro|qrpldov dssolhg zlwk

vrph { 5 {1 Dq lpsruwdqw uhtxluhphqw iru sudfwlfdo

dssolfdwlrq ri wkh Fkhelvkhy sro|qrpldov Wn+{, lv wr

wudqvirup lq dgydqfh wkh ydoxhv ri wkh lqsxw yhfwruv=

�4 � {l � 4/ iru hdfk {l/ 4 � l � v/ wkdw lv wr vfdoh doo

wkh lqsxw ydoxhv lq wkh lqwhuydo ^�4> 4`=
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Wkh Fkhelvkhy sro|qrpldov duh ghulyhg zlwk wkh uh0
fxuuhqw irupxod ^Odqf}rv/ 4<8:`=

Wn+{, @ 5{Wn�4+{,� Wn�5+{, +6,

zkhuh n lv wkh sro|qrpldo rughu/ dqg wkh vwduwlqj sro|0
qrpldo lv= W4+{, @ {1

Xvlqj Fkhelvkhy sro|qrpldov lpsolhv wkdw fsJS zloo
ihdwxuh wkh iroorzlqj fkdudfwhulvwlfv= 4, wkh sro|qr0
pldov ehfrph pruh vsduvh gxh wr wkh xvh ri exloglqj
eorfnv/ frpsduhg wr wkh vdph prghov zlwkrxw wkhp1
Wkh vsduvhqhvv lpsolhv wkdw wkh sro|qrpldov pd| eh
h{shfwhg wr ryhu�w ohvv wkh gdwd> 5, wkh wuhh0vwuxfwxuhv
ehfrph vpdoohu dqg/ wkxv/ wkh vhdufk vsdfh vl}h gh0
fuhdvhv1 Wkh h�hfw ri wklv lv d srvvleoh dffhohudwlrq ri
wkh frqyhujhqfh wr jrrg vroxwlrqv> 6, rvfloodwlqj whupv
duh lqmhfwhg lqwr wkh prgho zklfk khosv wr ghvfuleh
ehwwhu wkh iuhtxhqf| uhodwlrqvklsv ehwzhhq wkh gdwd1
Hpslulfdo hylghqfh iru dfklhylqj wkhvh fkdudfwhulvwlfv
lv surylghg lq vxevhfwlrqv 814/ 815 dqg 816 ehorz1

# !$�%���&!& �' ����

Wkh ghyhorshg fsJS v|vwhp xvhv �wqhvv sursruwlrqdo

vhohfwlrq zlwk vwrfkdvwlf xqlyhuvdo vdpsolqj/ dqg shu0
irupv vwhdg|0vwdwh uhsurgxfwlrq ri wkh srsxodwlrq1 D
vwdwlvwlfdo �wqhvv ixqfwlrq lv r�huhg/ dqg wzr jhqhwlf
ohduqlqj rshudwruv= furvvryhu dqg pxwdwlrq1

614 VWDWLVWLFDO ILWQHVV IXQFWLRQ

Wkh �wqhvv ixqfwlrq vkrxog frqwuro wkh hyroxwlrqdu|
vhdufk vr dv wr lghqwli| sro|qrpldov wkdw duh dffxudwh/
suhglfwlyh/ dqg ri vkruw vl}h1 Zh ghvljq d vwdwlvwlfdo

�wqhvv ixqfwlrq zlwk wkuhh lqjuhglhqwv wkdw wrjhwkhu
frxqwhudfw wkh ryhu�wwlqj zlwk wkh gdwd= 4, d phdq0
vtxduhg0huuru phdvxuhphqw wkdw idyruv kljko| �w prg0
hov> 5, d uhjxodul}dwlrq idfwru wkdw wrohudwhv vprrwkhu
pdsslqjv zlwk kljkhu jhqhudol}dwlrq> dqg/ 6, d frp0
soh{lw| shqdow| wkdw suhihuv vkruw vl}h sro|qrpldov1

61414 Uhjxodul}hg Dyhudjh Huuru

Wkh �wwlqj ri wkh gdwd lv hydoxdwhg zlwk d uhjxodul}hg

dyhudjh huuru +UDH, +Qlnrodhy dqg Led/ 5334,=

UDH @
4

Q

3
C

Q[
w@4

+|w � S +{w,,
5 . n

D[
m@4

d

5

m

4
D +7,

zkhuh n lv d uhjxodul}dwlrq sdudphwhu/ D lv wkh qxpehu
ri doo frh�flhqwv dm lq wkh zkroh prgho S +{, +4,/ dqg
Q lv wkh qxpehu ri wkh gdwd1 Wkh �uvw whup vkrzv
wkh lpsuryhphqw lq phdq vtxduh huuru vhqvh1 Wkh vhf0
rqg whup lv d uhjxodul}hu wkdw wrohudwhv prghov zlwk
frh�flhqwv kdylqj vpdoo pdjqlwxghv1
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61415 Frh�flhqwv Hvwlpdwlrq

Wkh fsJS v|vwhp xvhv d vpdoo vhw islj
44

l@4 ri frp0

sohwh dqg lqfrpsohwh elyduldwh sro|qrpldov +Wdeoh 4,1

Wkhlu whupv duh ghulyhg zlwk wkh ixqfwlrqv= k3+{, @ 4/

k4+{, @ {4/ k5+{, @ {5/ k6+{, @ {4{5/ k7+{, @ {
5

4
/

dqg k8+{, @ {
5

5
1 Wkh frh�flhqwv dl duh hvwlpdwhg e|

uhjxodul}hg ruglqdu| ohdvw vtxduhv +UROV, �wwlqj=

d @ +KWK.nL,�4KW| +8,

zkhuh d lv +v . 4, � 4 yhfwru ri frh�flhqwv/ K lv

Q � +v . 4, ghvljq pdwul{ ri urz yhfwruv k+{l, @

+k3+{l,> k4+{l,> ===> kv+{l,,/ l @ 4==Q / | lv wkh Q � 4

rxwsxw yhfwru/ dqg n lv d uhjxodul}dwlrq sdudphwhu1

61416 Frpsoh{lw| Shqdow|

D vwdwlvwlfdo �wqhvv ixqfwlrq wkdw phdvxuhv wkh �qdo

suhglfwlrq huuru +ISH, lv v|qwkhvl}hg wr idyru vkruw

vl}h sro|qrpldov +Dndlnh/ 4<9<,=

ISH @
+Q .D,

+Q �D,
UDH +9,

zkhuh UDH lv wkh uhjxodul}hg huuru +7,/ D duh frh�0

flhqwv/ dqg Q duh wkh h{dpsohv1

615 JHQHWLF RSHUDWRUV

Wkh furvvryhu rshudwru fkrrvhv udqgrpo| d fxw srlqw

qrgh lq hdfk wuhh/ dqg vzdsv wkh vxewuhhv urrwhg lq

wkh fxw0srlqw qrghv1 Wkh pxwdwlrq rshudwru vhohfwv

udqgrpo| d wuhh qrgh/ dqg shuirupv rqh ri wkh iroorz0

lqj wuhh wudqvirupdwlrqv= 4, lqvhuwlrq ri d udqgrpo|

fkrvhq qrgh ehiruh wkh vhohfwhg rqh/ vr wkdw wkh vh0

ohfwhg ehfrphv dq lpphgldwh fklog ri wkh qhz rqh/

dqg wkh rwkhu fklog lv d udqgrp whuplqdo> 5, ghohwlrq

ri wkh vhohfwhg qrgh/ dqg uhsodflqj lw e| rqh ri lwv fklo0

guhq qrghv> dqg 6, uhsodfhphqw ri wkh vhohfwhg qrgh

e| dqrwkhu udqgrpo| fkrvhq qrgh1
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Zh fduu| rxw d sulqflsdo frpsrqhqw dqdo|vlv +Mro0

ol�h/ 4<;9, wr h{dplqh wkh huuru yduldwlrqv ri wkh holwh

sro|qrpldov lq wkh srsxodwlrq1 Wklv doorzv wr sorw

wkh huuru wudmhfwru| zklfk surylghv dq looxvwudwlrq ri

wkh vhdufk sureohpv hqfrxqwhuhg gxulqj hyroxwlrqdu|

ohduqlqj1

Wkh SFD dssolfdwlrq pd| eh h{sodlqhg dv iroorzv1

Wkh phdq vtxduh huuruv hj ri wkh holwh prghov duh

uhfrughg dw hdfk jhqhudwlrq j/ dqg huuru yhfwruv duh

iruphg= hj @ +h4j> h
5

j> ===> h
q
j ,/ zkhuh h

q
j lv wkh huuru ri

wkh q0wk prgho dqg q lv wkh vl}h ri wkh srsxodwlrq holwh1

Xvxdoo| holwh duh wkh ehvw 58(1 Wkh SFD lv wdnhq wr

surmhfw wkh huuru fkdqjhv lq wkuhh glphqvlrqv/ wkdw lv

wr hqdeoh sorwwlqj ri wkh huuru fkdqjhv lq wkuhh glphq0

vlrqv lq rughu wr lqyhvwljdwh wkh hyroxwlrqdu| vhdufk

gl�fxowlhv1 Ehfdxvh wkhvh huuruv uh�hfw wkh ghjuhh ri

dffxudwh ohduqlqj ri wkh prgho frh�flhqwv1

Ohw hdfk holwh huuru h eh d srlqw lq wkh q0glphqvlrqdo

huuru vsdfh1 Wkhuhiruh/ zh pd| zulwh= h @
Sq

l@4 hlxl/

zkhuh xl duh xqlw ruwkrqrupdo edvlv yhfwruv vxfk wkdw=

xWl xm @ �lm / dqg �lm lv wkh Nurqhnhu ghowd1 Wkh lqgl0

ylgxdo prgho huuruv duh= hl @ xWl h1 Wkh SFD khosv

wr fkdqjh wkh frruglqdwh v|vwhp dqg wr surmhfw wkhvh

srlqwv rq wkh glphqvlrqv lq zklfk wkh| h{klelw odujhvw

yduldqfh1 Wkh edvlv yhfwruv xl duh fkdqjhg zlwk qhz

edvlv yhfwruv yl vr wkdw lq wkh qhz frruglqdwh v|vwhp=

h @
Sq

l@4 }lyl1 Wklv fdq eh pdgh e| h{wudfwlqj yl dv

hljhqyhfwruv ri wkh fryduldqfh pdwul{ 	 ri wkh huuru

wudmhfwru| uhfrughg gxulqj d qxpehu ri jhqhudwlrqv J=

	yl @ �lyl +:,

zkhuh �l lv wkh l0wk hljhqydoxh ri wkh fryduldqfh pdwul{

	 gh�qhg dv iroorzv=

	 @
JS

j@4

+hj� h,W +hj� h, +;,

dqg wkh phdq huuru lv h@ 4

J

SJ

j@4 hj1

Wkh wkhruhwlfdo vwxglhv vxjjhvw wkdw wkh �uvw wzr sulq0

flsdo frpsrqhqwv +SFv, fdswxuh wkh prvw hvvhqwldo

yduldwlrqv lq wkh huuruv1 Wkh h{whqw wr zklfk wkh l0wk

sulqflsdo frpsrqhqw fdswxuhv wkh huuru yduldqfh fdq

eh phdvxuhg dv iroorzv= Hsf @ �
5

l @
S

l �
5

l 1

Zh uhodwh wkh �uvw dqg wkh vhfrqg SFv ri wkh huuruv

sf @
S5

l@4 }lyl/ sf @ +sf4> sf5,/ wr wkh dyhudjh phdq

vtxduh huuru +PVH, ri wkh srsxodwlrq holwh lq rughu wr

ylvxdol}h wkh JS shuirupdqfh1 WkhvhPVH wudmhfwru|

sorwv djdlqvw wkh �uvw wzr sulqflsdo frpsrqhqwv sf4
dqg sf5 pd| eh frqvlghuhg slfwxuhv ri wkh frh�flhqwv

ohduqlqj surfhvv gxulqj hyroxwlrqdu| vhdufk1
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EuhL4 @ TLT�*@|�L? Lu t�3i 433� i�L*�i_ ��|� |�i B� t)t�

|i4 5A+�B���66 @TT*�i_ |L |�i 5�?tTL|t _@|@ ��|� |�i

ISH ES� t|@|�t|�U@* �|?itt u�?U|�L? �t�?} & ' f�ff�D�
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EuhL4 @ TLT�*@|�L? Lu t�3i 433� i�L*�i_ ��|� UTB� @TT*�i_

|L |�i 5�?tTL|t _@|@ ��|� |�i ISH ES� t|@|�t|�U@* �|?itt

u�?U|�L? �t�?} n @ 3=3348�

Iljxuhv 5 dqg 6 ghslfw wkh huuru wudmhfwrulhv frp0

sxwhg diwhu uxqv ri VWURJDQRII dqg fsJS rq wkh

Vxqvsrw gdwd vhulhv +Zhljhqg hw do1/ 4<<5,1 Wkhvh

duh wkh uhsuhvhqwdwlyh uxqv wkdw dfklhyhg wkh ehvw uh0

vxowv +jlyhq lq Wdeoh 5,1 Rqh fdq vhh lq Iljxuh 5

wkdw wkh huuru wudmhfwru| ri VWURJDQRII grhv qrw

jr grzq vprrwko|1 Wkh yduldwlrq ri wkh holwh srs0

xodwlrq huuru vorshv grzq zlwk d }lj0}dj pryhphqw

zklfk fdq eh vhhq iurp wkh voljkwo| fkdqjlqj huuru gl0

uhfwlrqv diwhu PVH @ 3=3366 +sf4 @ 3=3335:4/ dqg

sf5 @ �3=3333795,/ PVH @ 3=33658 +sf4 @ 3=33346;/

dqg sf5 @ �3=3333568,/ dqg PVH @ 3=3365 +sf4 @

3=33344/ dqg sf5 @ �3=3333497,1 Wklv phdqv wkdw

wkh srsxodwlrq holwh idfhv vhdufk gl�fxowlhv dqg fdq

qrw rulhqw suhflvho| rq wkh vhdufk odqgvfdsh wrzdug

wkh rswlpdo vroxwlrq1 Zh duh lqfolqhg wr wklqn wkdw
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wkh odqgvfdsh ri VWURJDQRII lv pruh uxjjhg/ dqg

pruh gl�fxow wr vhdufk1 Wkdw lv zk|/ wkh srsxodwlrq

hyroyhg e| VWURJDQRII pryhv lq fxuyhg gluhfwlrqv

rq wkh vhdufk odqgvfdsh dqg lq vrph vhqvh mxpsv iurp

rqh edvlq wr dqrwkhu edvlq ri dwwudfwlrq zlwkrxw fduh0

ixo h{sorudwlrq ri wkh odqgvfdsh qhljkerukrrg1

Wkh fsJS huuru wudmhfwru| lq Iljxuh 6 vkrzv wkdw wkh

hyroxwlrqdu| vhdufk surjuhvvhv gluhfwo|/ iroorzlqj do0

prvw d vwudljkw olqh gluhfwlrq ri huuru ghfuhdvh/ wrzdug

lwv ehvw uhvxow1 Lq wklv vhqvh/ lwv srsxodwlrq h{sorlwv

phwlfxorxvo| wkh orfdo vhdufk qhljkerukrrg dqg rul0

hqwv zhoo rq wkh vhdufk odqgvfdsh1 Vlqfh wkh wzr JS

duh frqwuroohg e| wkh vdph ISH �wqhvv ixqfwlrq/ lw

vhhpv wkdw wkh vhdufk lpsuryhphqw fdq eh gxh pdlqo|

wr wkh xvh ri Fkhelvkhy sro|qrpldov dv exloglqj eorfnv1

Wkh sorwv lq Iljxuhv 5 dqg 6 duh phdqlqjixo ehfdxvh

wkhvh SFv fdswxuh uhvshfwlyho|= sf4 <<=648( dqg sf5
3=9;8( ri wkh yduldqfh ri doo holwh huuruv/ dqg wkhuhiruh

wkh| pdnh xv fhuwdlq derxw wkh vhdufk ehkdylrxu1

* ��!$ &$��$& !��$����

Wkuhh JS v|vwhpv zhuh lpsohphqwhg dqg whvwhg

rq wlph vhulhv suhglfwlrq sureohpv= wkh ruljlqdo

VWURJDQRII +Led hw do1/ 4<<9,/ +Qlnrodhy dqg Led/

5334,/ wkh fsJS v|vwhp/ dqg d wudglwlrqdo Nr}d0vw|oh

JS +Nr}d/ 4<<5,1 Doo wkh v|vwhpv xvh wkh ISH �wqhvv

ixqfwlrq +9,/ dqg sdudphwhuv= SrsxodwlrqVl}h @ 433/

dqg Pd{QxpehuRiJhqhudwlrqv @ 5831 Wkh uhj0

xodul}dwlrq sdudphwhu lv ghwhuplqhg lq dgydqfh iru

hdfk wdvn e| d vwdwlvwlfdo whfkqltxh +P|huv/ 4<<3,1

Wkh fsJS v|vwhp xvhv �yh Fkhelvkhy sro|qrpl0

dov= W4+{,/W5+{w�4,/W6+{w�4,/W7+{w�4, dqg W8+{w�4,1

Wkxv/ whq yduldeohv duh sdvvhg dv whuplqdov= { @

+{w�4> {w�5> ===> {w�8> {w�9> W5> ===> W8,1 Wkh Nr}d0vw|oh

JS lv pdgh xvlqj vlq dqg frv lq rughu wr surgxfh ixqf0

wlrqv zlwk vlplodu uhsuhvhqwdwlrq srzhu1 Wkh txhvwlrq

wkdw zh ulvh lv zkhwkhu ru qrw wkh fsJS v|vwhp fdq

rxwshuirup VWURJDQRII dqg wudglwlrqdo JSB

814 SURFHVVLQJ WKH VXQVSRWV GDWD

Wkh Vxqvsrwv vhulhv +Zhljhqg hw do1/ 4<<5, frqwdlqv

5;3 gdwd srlqwv glylghg lqwr rqh wudlqlqj dqg wzr whvw0

lqj vxevhwv1

Wdeoh 5 ghprqvwudwhv wkdw xvlqj Fkhelvkhy sro|qrpl0

dov khosv wr dfklhyh lpsuryhg uhvxowv frpsduhg wr wkh

fdvh zlwkrxw vxfk exloglqj eorfnv1 Rqh fdq vhh lq Wd0

eoh 5 wkdw wkh prghov ohduqhg e| VWURJDQRII dqg

wkh qryho yhuvlrq fsJS h{klelw kljkhu dffxudf| rq wkh

wudlqlqj vhulhv dv zhoo dv kljkhu jhqhudol}dwlrq rq wkh

whvwlqj vhulhv wkdq wudglwlrqdo JS1
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6�}�hi e� �TThL �4@|i_ ti}4i?| uhL4 |�i 5�?tTL|t U�h�i

M) |�i Mit| TL*)?L4�@* �@h4L?�U ?i|�Lh! i�L*�i_ ��|�

UTB� �? Df h�?t �t�?} & ' f�ff�D�

A@M*i 2� +it�*|t L? |�i 5�?tTL|t tih�it LM|@�?i_ �?

Df h�?t ��|� i@U� B� �t�?}G �@%Aoee(eR|� ' e �?

5A+�B���66 @?_ UTB�c �@%Aoee(eR|� ' �f �? |h@�

_�|�L?@* kL3@�t|)*i B�c @?_ T@h@4i|ih & ' f�ff�D1

�UU�h@U) E�-T � Bi?ih@*�3@|�L? E�-T �

�.ff��b2f �.ff��bDD �.ff��b.b

B� 3=45;7:9 3=45<9;8 3=46588:

5A+�B� 3=447:59 3=44;58: 3=45<:64

UTB� 3=436:87 3=3<<48< 3=437598

Wkh fsJS v|vwhp rxwshuirupv doo wkh rwkhu v|vwhpv

vkrzlqj d ehwwhu dffxudf| DUY4:33�4<53 @ 3=436:87>

ehwwhu vkruw iruhfdvwlqj= DUY4:33�4<88 @ 3=3<<48< lq

wkh ixwxuh shulrg 4:33 � 4<88 / dqg ehwwhu orqj whup

iruhfdvwlqj DUY4:33�4<:< @ 3=437598 lq 4:33 � 4<:< 1

Wkh lpsruwdqw revhuydwlrq lq Wdeoh 5 lv wkdw wkh fsJS

sro|qrpldo ihdwxuhv d frqvlghudeo| lpsuryhg jhqhudo0

l}dwlrq hvshfldoo| lq wkh wzr ixwxuh shulrgv1 Wkhuh0

iruh/ wkh xvh ri rvfloodwlqj exloglqj eorfnv uhdoo| fdq

lqfuhdvh wkh suhglfwdelolw| ri wkh dftxluhg uhvxowv1 Lw

vkrxog eh qrwhg wkdw wkh Pd{WuhhGhswk sdudphwhu

lv xvhg lq rughu wr frqvwudlq wkh pd{lpdo prgho gh0

juhh iru idlu frpsdulvrqv1 Wkh frpsoh{lwlhv ri wkh ehvw

uhvxowv irxqg e| wkh v|vwhpv duh= 5; frh�flhqwv lq

VWURJDQRII/ 58 frh�flhqwv lq fsJS1

Dq dssur{lpdwhg vhjphqw ri wkh Vxqvsrwv vhulhv e|

wkh ehvw ohduqhg qhwzrun iurp fsJS lv sorwwhg lq Ilj0

xuh 71 Wkh dftxluhg qxphulfdo uhvxowv lq Wdeoh 5 frq0

�up wkh wkhruhwlfdo h{shfwdwlrq wkdw xvlqj rvfloodwlqj

exloglqj eorfn frpsrqhqwv lq wkh uhsuhvhqwdwlrq fdq

khos wr prgho zhoo vslnhv lq wkh vhulhv dv wkhvh lq Ilj0

xuh 71 Lw lv olnho| wkdw zkhq wkh wlph vhulhv frqwdlqv

vslnhv/ d vxshulru JS shuirupdqfh pd| eh h{shfwhg

xvlqj wkh qryho uhsuhvhqwdwlrq1
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��|� UTB� �? Df h�?t �t�?} & ' f�fff��

A@M*i �� +it�*|t L? |�i �@U!i)�B*@tt tih�it }i?ih@|i_

��|�G @ ' f�2c K ' f��c { ' �.c LM|@�?i_ �? Df h�?t �t�

�?}G �@%Aoee(eR|� ' � �? 5A+�B���66 @?_ UTB�c

�@%Aoee(eR|� ' H �? |h@_�|�L?@* B�c @?_ & ' f�fff��

�UU�h@U) E�-T � Bi?ih@*�3@|�L? E�-T �

f��ff f�2ff f�eff

B� 3=33875< 3=3369<4 3=335:<7

5A+�B� 3=337:84 3=336836 3=3358<4

UTB� 3=3366<3 3=335<85 3=3357;6

815 SURFHVVLQJ WKH PDFNH\0JODVV

VHULHV

D wudmhfwru| ri 733 srlqwv iurp wkh ehqfkpdun

Pdfnh|0Jodvv vhulhv +Pdfnh| dqg Jodvv/ 4<::, lv

ghulyhg1 Wkh �uvw 433 srlqwv duh xvhg iru wudlq0

lqj/ dqg wkh uhpdlqlqj iru whvwlqj1 Djdlq wkh �uvw

�yh Fkhelvkhy sro|qrpldov duh frqvlghuhg= { @

+{w�4> {w�5> ===> {w�8> {w�9> W5> ===> W8,= Wkh v|vwhpv duh

wxqhg wr hyroyh prghov ri xs wr d suhgh�qhg pd{lpdo

ghjuhh wr pdnh idlu frpsdulvrqv1 Wkh frpsoh{lwlhv ri

wkh ehvw uhvxowv duh= 58 frh�flhqwv lq VWURJDQRII/

dqg 55 frh�flhqwv lq fsJS1 Wkh fsJS v|vwhp orfdwhv

voljkwo| pruh sduvlprqlrxv prghov qrw rqo| ehfdxvh

wkh �wqhvv ixqfwlrq idyrxuv vlpsohu prghov/ vlqfh wklv

�wqhvv lv dovr xvhg e| wkh rwkhu JS/ exw dovr ehfdxvh

wkh Fkhelvkhy exloglqj eorfnv frqwulexwh gluhfwo| qrq0

olqhdulwlhv wr wkh uhsuhvhqwdwlrq1

Vhyhudo revhuydwlrqv fdq eh pdgh iurp wkh uhvxowv

lq Wdeoh 6= 4, wkh VWURJDQRII dqg fsJS v|v0

whpv rxwshuirup wkh wudglwlrqdo JS rq wklv wdvn>

5, wkh qryho fsJS lv ehvw rq dffxudf| +3 � 433,

zlwk DUY3�433 @ 3=3366<3> h{fhoohqw rq vkruw whup

+3 � 533, suhglfwlrq zlwk DUY3�533 @ 3=335<85/ dqg

dovr ehvw rq orqj whup +3 � 733, suhglfwlrq zlwk

DUY3�733 @ 3=3357;61 Wkh voljkw gl�huhqfhv lq wkh

uhvxowv jlyhq lq Wdeoh 6 duh gxh wr wkh idfw wkdw wkh

vprrwk fxuydwxuh ri wkh Pdfnh|0Jodvv vhulhv lv dssur{0

lpdwhg e| prghov ri uhodwlyho| kljk ghjuhh1

816 SURFHVVLQJ ILQDQFLDO GDWD

H{shulphqwv zlwk JS duh shuiruphg dwwhpswlqj wr

lghqwli| qrq0olqhdu wuhqgv lq fxuuhqf| h{fkdqjh udwhv

wdnhq iurp wkh �qdqfldo pdunhw1 Zh uhsruw uhvxowv

ghulyhg zlwk d uhdo �qdqfldo vhulhv ri 47> 333 gdwd uh0

odwlqj wkh fkdqjhv ehwzhhq wkh groodu +XVG, dqg wkh

Mdsdqhvh |hq +MS\, rewdlqhg rq ghpdqg e| d �qdqfldo

frpsdq| gxulqj d fhuwdlq shulrg ri wlph1

Wkh jlyhq �qdqfldo gdwd vhulhv lv suh0surfhvvhg e| d

gl�huhqwldo whfkqltxh lq rughu wr holplqdwh revfxulqj

lqirupdwlrq lq wkh gdwd/ dqg wr hpskdvl}h wkh udwhv

ri gluhfwlrqdo fkdqjhv lq wkh vhulhv dv iroorzv +Led dqg

Qlnrodhy/ 5333,=

{g @ {w � {w�4 +<,

zkhuh {w lv wkh gdwd srlqw dw wlph w1 Wkxv/ gh0

od| yhfwruv duh iruphg= { @ +{g�4> ===> {g�9> W5> ===> W8,

dqg sdvvhg iru wkh JS v|vwhpv wr ohduq wkh uhjxodu0

lwlhv dprqj wkhp1 Wkh wuhh olplw sdudphwhuv ri wkh

vwxglhg JS v|vwhpv duh= Pd{WuhhGhswk @ 58 lq

VWURJDQRII dqg fsJS/ dqgPd{WuhhGhswk @ 83

lq wudglwlrqdo JS1 Dq dssur{lpdwhg vhjphqw e| wkh

ehvw uhvxow iurp fsJS lv sorwwhg lq Iljxuh 91

Wkh fkdudfwhulvwlfv ri wkh ehvw hyroyhg uhvxowv duh phd0

vxuhg zlwk wkh phdq vtxduh huuru +PVH, dqg zlwk wkh

klw shufhqwdjh hvwlpdwh +Wdeoh 7,1 Wkh klw shufhqwdjh

+KLW, vkrzv krz dffxudwho| wkh wuhqg gluhfwlrqv kdyh

ehhq wudfnhg e| wkh prgho ^Led dqg Qlnrodhy/ 5333`=

KLW @
Qxs xs .Qgrzq grzq

Q
+43,

zkhuh Qxs xs phdqv qxpehu ri wlphv zkhq wkh prgho
rxwfrph dqg wkh jlyhq rxwfrph h{klelw erwk xszdug
udlvlqj whqghqf|/ dqg Qgrzq grzq phdqv qxpehu ri
wlphv zkhq wkh prgho rxwfrph dqg wkh jlyhq rxwfrph
h{klelw erwk idoolqj whqghqf|1

Rqh fdq vhh lq Wdeoh 7 wkdw VWURJDQRII lv qrw
ehwwhu wkdq wudglwlrqdo Nr}d0vw|oh JS lq wkh vhqvh ri
hfrqrplf KLWv dfklhyhphqwv1 Wkh jrrg uhvxow iurp
wudglwlrqdo JS fdq eh h{sodlqhg zlwk lwv kljk PVH

zklfk phdqv wkdw lw grhv qrw ryhu�w wkh gdwd1 Lw kdv
ehhq douhdg| vwxglhg wkdw VWURJDQRII whqgv wr
hyroyh ryhu�wwlqj sro|qrpldov zklfk kdyh dozd|v wr
eh frqwuroohg e| dsso|lqj wkh uhjxodul}dwlrq whfkqltxh
+Qlnrodhy dqg Led/ 5334,1
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B� 3=334465< 83=76(
5A+�B� 3=333:854 7<=35(
UTB� 3=3333567 :;=59(

Wkh fsJS v|vwhp vkrzv orzhvw phdq vtxduh huuru
PVH @ 3=3333567 rq wkh wudlqlqj vhulhv/ dqg ghprq0
vwudwhv vxshulru suhglfwdelolw| KLWv @ :;=59( rq wklv
wdvn1 Ghvslwh h{klelwlqj orzhvw huuru fsJS grhv qrw
vhhp wr ryhu�w wkh wudlqlqj gdwd1 Wkh ghulyhg ehvw
sro|qrpldo ghvfulehv zhoo wkh gluhfwlrqdo fkdqjhv lq
wkh vhulhv xs ru grzq +Iljxuh 9,/ zklfk lv d surplvlqj
ihdwxuh iru wkh sudfwlfdo dssolfdwlrq ri fsJS1

+ ��&��&&���

Rvfloodwlqj Exloglqj Eorfnv1 Wkh hpsor|phqw ri
Fkhelvkhy sro|qrpldov iru lqwurgxflqj uhdg| qrqolq0
hdu exloglqj eorfnv lq ixqfwlrq uhsuhvhqwdwlrqv/ xvhg
lq JS v|vwhpv euhhglqj sro|qrpldov/ vkrzhg vxffhvv0
ixo uhvxowv rq vhyhudo wlph vhulhv suhglfwlrq wdvnv1 Wkh
ehqh�w iurp vxfk exloglqj eorfnv lv olnho| wr eh wkh
glvfryhu| ri sro|qrpldo prghov zlwk lpsuryhg jhqhu0
dol}dwlrq rq ixwxuh xqvhhq gdwd1 Rxu �qglqjv frqfhuq
h{solflwo| wkh fdvh zkhq wkh vhdufk frqwuro ri JS lv
pdgh zlwk �wqhvv ixqfwlrqv wkdw frqwdlq erwk d vl}h
ghshqghqw frpsrqhqw dqg d frh�flhqwv dpsolwxgh gh0
shqghqw frpsrqhqw1 Li vrph ri wkhvh wzr frpsrqhqwv
duh plvvlqj lq wkh �wqhvv ixqfwlrq wkh h�hfw iurp wkh
qryho uhsuhvhqwdwlrq pd| qrw eh wkh vdph1

Rwkhu dowhuqdwlyhv iru lqfoxglqj qrqolqhdu rvfloodwlqj
frpsrqhqwv lq wkh sro|qrpldo uhsuhvhqwdwlrq duh dovr
srvvleoh1 Iru h{dpsoh/ fxuuhqwo| xqghu lqyhvwljdwlrq
lv d whfkqltxh zlwk kduprqlf frpsrqhqwv zlwk qrq0
pxowlsoh iuhtxhqflhv ghulyhg dqdo|wlfdoo| xvlqj wkh glv0
fuhwh Irxulhu wudqvirup1

Wkh Huuru Wudmhfwru|1 Wkh suhvhqwhg sorwv ri
wkh holwh huuru wudmhfwru| vxjjhvw wkdw dowkrxjk nhhs0
lqj ri wkh elqdu| wuhh vwuxfwxuhv/ wkh hpsor|phqw
ri Fkhelvkhy sro|qrpldov dv exloglqj eorfnv fdxvhv
wkh fsJS wr �rz rq gl�huhqw vhdufk odqgvfdshv wkdq
VWURJDQRII1 Wkh rvfloodwru| exloglqj eorfnv lp0
sdfw wkh odqgvfdsh fkdudfwhulvwlfv/ l1h1 pdnh lw pruh
ru ohvv gl�fxow wr vhdufk/ wkurxjk wkh �wqhvv ixqfwlrq1
Wkh qryho sro|qrpldov ihdwxuh gl�huhqw �wqhvvhv eh0
fdxvh wkh lqfrusrudwhg Fkhelvkhy whuplqdov frqwulexwh
gl�huhqw qrqolqhdulwlhv lq wkh prgho/ dqg/ wkxv/ wkh
Fkhelvkhy whuplqdov lpso| gl�huhqw huuruv ri �w1 Wkh
ghyhorshg fsJS uhsuhvhqwdwlrq vhhpv wr pdnh wkh �w0
qhvv odqgvfdsh hdvlhu wr vhdufk ghvslwh wkh xvh ri wkh
vdph �wqhvv ixqfwlrq lq erwk JSv1 Wklv fdq eh vhhq
iurp wkh wudmhfwru| sorwv lq Iljxuhv 5 dqg 61

D forvh phwkrgrorj| xvlqj SFD wr h{dplqh wkh frhi0
�flhqwv2zhljkw fkdqjhv kdv ehhq sursrvhg iru qhxudo
qhwzrun ohduqlqj +Jdoodjkhu dqg Grzqv/ 4<<:,1 Wkh
suhvhqwhg khuh SFD ri wkh holwh srsxodwlrq huuru lv
pruh jhqhudo dv e| h{sodlqlqj wkh huuru yduldqfh lw
h{sodlqv wkh frh�flhqwv dqg whup ohduqlqj surfhvvhv1
Wklv lv ehfdxvh wkh sro|qrpldo huuru phdvxuhphqwv
dfwxdoo| uh�hfw wkh dffxudf| ri lghqwl�fdwlrq ri wkh
prgho frh�flhqwv dqg wkh lghqwl�fdwlrq ri surshu
prgho whupv1 Pruhryhu/ lq JS wkh frh�flhqwv fdq
qrw eh frqvlghuhg gluhfwo| iru SFD vlqfh wkh hyroyhg
sro|qrpldov kdyh gl�huhqw qxpehu ri frh�flhqwv1

Lw lv qrw yhu| fohdu |hw zkhwkhu fsJS lv frqvlghudeo|
ehwwhu rq shulrglf vhulhv/ rq dshulrglf vhulhv ru rq
erwk/ iru h{dpsoh rq wkh Vxqvsrwv vhulhv fsJS vkrzv
forvh shuirupdqfh wr wklv ri wkh Nr}d0vw|oh JS exw rq
wkh �qdqfldo gdwd vhulhv fsJS lv frqvlghudeo| ehwwhu1

, ������&���

Wklv sdshu frqwulexwhv wr wkh uhvhdufk lqwr lqfuhdvlqj
wkh h{suhvvlyh srzhu ri wkh wuhh0vwuxfwxuhg JS uhsuh0
vhqwdwlrqv hvshfldoo| iru ixqfwlrq dssur{lpdwlrq wdvnv1
Lqlwldo uhvxowv iurp wkh ghyhorsphqw ri d JS v|vwhp xv0
lqj sro|qrpldov lq wkh ixqfwlrqdo qrghv dqg Fkhelvkhy
sro|qrpldov sdvvhg dv whuplqdov kdyh ehhq uhsruwhg1
Wkh Fkhelvkhy sro|qrpldov vhuyh dv rvfloodwru| exlog0
lqj eorfnv zklfk fdswxuh zhoo wkh qrqolqhdu surshuwlhv
ri wkh jlyhq wudlqlqj gdwd/ dqg wkhuh lv d qhhg wr vhdufk
iru wkhvh exloglqj eorfnv wkdw vkrxog hqwhu wkh prgho dv
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wkhlu ghvfulswlyh vljql�fdqfh lv qrw nqrzq lq dgydqfh1
Lw zdv vkrzq wkdw wklv wuhh0vwuxfwxuhg sro|qrpldo uhs0
uhvhqwdwlrq kdv hqdeohg wr glvfryhu vxshulru uhvxowv rq
vhyhudo ehqfkpdun dqg uhdo0zruog wlph0vhulhv suhglf0
wlrq sureohpv1

Zh vxssrvh wkdw wkh qryho sro|qrpldo uhsuhvhqwd0
wlrq vfkhph frxog eh ri sudfwlfdo lpsruwdqfh dqg lw
fdq eh xvhg vxffhvvixoo| iru dgguhvvlqj qrqsdudphwulf
dssur{lpdwlrq wdvnv ehfdxvh ri wkh iroorzlqj dgydq0
wdjhv= 4, lw jhqhudwhv h{solflw dqdo|wlfdo prghov lq wkh
irup ri pxowlyduldwh kljk0rughu sro|qrpldo ixqfwlrqv
dphqdeoh wr kxpdq xqghuvwdqglqj> dqg 5, lw pdnhv
wkh sro|qrpldov zhoo0frqglwlrqhg/ wkxv frpsxwdwlrq0
doo| vwdeoh dqg vxlwdeoh iru sudfwlfdo sxusrvhv1

Uhihuhqfhv

K1 Dndlnh +4<9<,1 %Srzhu Vshfwuxp Hvwlpdwlrq
wkurxjk Dxwruhjuhvvlrq Prgho Ilwwlqj%1 Dqqdov Lqvw1

Vwdw1 Pdwk1 54=73:074<1

S1M1 Dqjholqh +4<<7,1 %Jhqhwlf Surjudpplqj dqg
Hphujlqj Lqwhooljhqfh%1 Lq H1Nlqqhdu Mu1 +Hg1,/ Dg0
ydqfhv lq Jhqhwlf Surjudpplqj1 Fdpeulgjh/ PD= Wkh
PLW Suhvv/ ss1:80<;1

P1 Jdoodjkhu dqg W1 Grzqv +4<<:,1 %Zhljkw Vsdfh
Ohduqlqj Wudmhfwru| Yl}xdol}dwlrq%1 Lq P1Gdoh +Hg1,/
Surf1 Hljkwk Dxvwudoldq Frqihuhqfh rq Qhxudo Qhw0

zrunv/ DFQQ0<;/ ss18808<1

H1 Jrph}0Udpluh}/ D1Sr}q|dn/ D1Jrq}doh}0\xqhv

dqgP1 Dylod0Doyduh} +4<<<,1 %Dgdswlyh Dufklfwhfwxuh

ri Sro|qrpldo Duwl�fldo Qhxudo Qhwzrun wr Iruhfdvw

Qrqolqhdu Wlph Vhulhv%1 Lq Surf1 ri 4<<< Frqjuhvv rq

Hyroxwlrqdu| Frpsxwdwlrq/ FHF04<<<1 LHHH Suhvv/

yro14/ ss164:06571

K1 Led/ K1 ghJdulv/ dqg W1 Vdwr +4<<9,1 %Qxphulfdo

Dssurdfk wr Jhqhwlf Surjudpplqj iru V|vwhp Lghqwl0

�fdwlrq%1 Hyroxwlrqdu| Frpsxwdwlrq 6+7,1

K1 Led dqg Q1 Qlnrodhy +5333,1 %Jhqhwlf Surjudpplqj

Sro|qrpldo Prghov ri Ilqdqfldo Gdwd Vhulhv%1 Lq Surf1

ri 5333 Frqjuhvv rq Hyroxwlrqdu| Frpsxwdwlrq/ FHF0

53331 LHHH Suhvv/ ss1478<047991

D1J1 Lydnkqhqnr +4<:4,1 %Sro|qrpldo Wkhru| ri Frp0

soh{ V|vwhpv%/ LHHH Wudqv1 rq V|vwhpv/ Pdq/ dqg

F|ehuqhwlfv 4+7,=69706:;1

L1W1 Mrool�h +4<;9,1 Sulqflsdo Frpsrqhqw Dqdo|vlv1

Qhz \run/ Q\= Vsulqjhu0Yhuodj1

K1 Ndujxswd/ dqg U1H1 Vplwk +4<<4,1 %V|vwhp Lghq0

wl�fdwlrq zlwk Hyroylqj Sro|qrpldo Qhwzrunv1 Lq

U1N1Ehohz dqg O1E1Errnhu +Hgv1,/ Surf1 7wk Lqw1

Frqi1 Jhqhwlf Dojrulwkpv1 Vdq Pdwhr/ FD= Prujdq

Ndxipdqq/ ss16:306:91

M1U1 Nr}d +4<<5,1 Jhqhwlf Surjudpplqj= Rq wkh Sur0

judpplqj ri Frpsxwhuv e| Phdqv ri Qdwxudo Vhohf0

wlrq1 Fdpeulgjh/ PD= Wkh PLW Suhvv1

M1U1 Nr}d +4<<7,1 Jhqhwlf Surjudpplqj LL= Dxwr0

pdwlf Glvfryhu| ri Uhxvdeoh Surjudpv1 Fdpeulgjh/

PD= Wkh PLW Suhvv1

F1 Odqf}rv +4<8:,1 Dssolhg Dqdo|vlv1 Orqgrq/ XN=

Suhqwlfh0Kdoo1

U1K1 P|huv +4<<3,1 Fodvvlfdo dqg Prghuq Uhjuhv0

vlrq zlwk Dssolfdwlrqv1 Fdpeulgjh/ FD= SZV0NHQW

Sxeo1/ Gx{exu| Suhvv1

D1V1 Qlvvhq dqg K1 Nrlylvwr +4<<9,1 %Lghqwl�fdwlrq ri

Pxowlyduldwh Yrowhuud Vhulhv xvlqj Jhqhwlf Dojrulwkp%/

Lq M1Dodqghu +Hg1,/ Surf1 Vhfrqg Qruglf Zrunvkrs rq

Jhqhwlf Dojrulwkpv dqg wkhlu Dssolfdwlrqv1 Ilqodqg=

Xqlyhuvlw| ri Yddvd Suhvv/ ss148404941

P1F1 Pdfnh| dqg O1 Jodvv +4<::,1 %Rvfloodwlrq dqg

Fkdrv lq Sk|vlrorjlfdo Frqwuro V|vwhpv%1 Vflhqfh

4<:=5;:05;<1

Q1 Qlnrodhy dqg K1 Led +5334,1 %Uhjxodul}dwlrq Ds0

surdfk wr Lqgxfwlyh Jhqhwlf Surjudpplqj%1 LHHH

Wudqv1 rq Hyroxwlrqdu| Frpsxwdwlrq +lq suhvv,1

N1 Urguljxh}0 Yd}txh}/ F1P1 Irqvhfd dqg S1M1 Iohp0

lqj +4<<:,1 %Dq Hyroxwlrqdu| Dssurdfk wr Qrq0Olqhdu

Sro|qrpldo V|vwhp Lghqwl�fdwlrq%1 Lq Surf1 44wk

LIDF V|psrvlxp rq V|vwhp Lghqwl�fdwlrq/ ss156<80

57331

M1 Urvfd dqg G1K1 Edoodug +4<<8,1 %Glvfryhu| ri Vxe0

urxwlqhv lq Jhqhwlf Surjudpplqj%/ Lq S1Dqjholqh dqg

N1Nlqqhdu Mu1 +Hgv1,/ Dgydqfhv lq Jhqhwlf Surjudp0

plqj LL1 Fdpeulgjh/ PD= Wkh PLW Suhvv/ ss14::05351

D1I1 Vkhwd dqg D1K1 Deho0Zdkde +4<<<,1 Lq Surf1 ri

4<<< Frqjuhvv rq Hyroxwlrqdu| Frpsxwdwlrq/ FHF0

4<<<1 LHHH Suhvv/ yro14/ ss155<05681

D1V1 Zhljhqg dqg Q1D1 Jhuvkhqihog +Hgv1, +4<<7,1

Wlph Vhulhv Suhglfwlrq1 Uhdglqj/ PD= Dgglvrq0

Zhvoh|1

E10W1 ]kdqj/ S1 Rkp/ dqg K1 P�xkohqehlq +4<<:,

%Hyroxwlrqdu| Lqgxfwlrq ri Vsduvh Qhxudo Wuhhv%/ Hyr0

oxwlrqdu| Frpsxwdwlrq 8+5,=54605691

96 GENETIC PROGRAMMING



Grammar Defined Introns: An Investigation Into Grammars, Introns, and Bias in
Grammatical Evolution.

Michael O’Neill Conor Ryan Miguel Nicolau
Dept. Of Computer Science & Information Systems

University of Limerick
Ireland.

fMichael.ONeilljConor.RyanjMiguel.Nicolaug@ul.ie

Abstract

We describe an investigation into the design of dif-
ferent grammars on Grammatical Evolution. As
part of this investigation we introduce introns us-
ing the grammar as a mechanism by which they
may be incorporated into Grammatical Evolution.
We establish that a bias exists towards certain pro-
duction rules for each non-terminal in the grammar,
and propose alternative mechanisms by which this
bias may be altered either through the use of in-
trons, or by changing the degeneracy of the genetic
code. The benefits of introns for Grammatical Evo-
lution are demonstrated experimentally.

1 Introduction

Grammatical Evolution (GE) is an evolution-
ary algorithm that can evolve code in any lan-
guage, using linear genomes [O’Neill & Ryan 2001]
[Ryan C., Collins J.J. & O’Neill M. 1998]. We have previ-
ously presented results relating to an analysis of some of
GE’s distinctive features, such as its degenerate genetic code,
wrapping operator and crossover [O’Neill & Ryan 1999b]
[O’Neill & Ryan 1999a]. We now present the first results
from an investigation into the role of the grammar in GE.
Specifically, we introduce a mechanism by which introns can
be incorporated into the genotypic representation through
the grammar, and conduct an analysis on the effects of these
grammar defined introns on the performance of GE. We also
establish the existence of a bias towards the use of certain
production rules for each non-terminal, dependent upon their
ordering in the grammar, and propose a mechanism by which
this bias can be altered as desired through the use of grammar
defined introns.

We begin with a brief overview of GE, for a more complete
description we refer the reader to [O’Neill & Ryan 2001].

Grammar defined introns are then introduced, followed by a
description of the experimental approach adopted to test the
effects of introns, before a discussion on bias and introns.

2 Grammatical Evolution

Unlike standard GP [Koza 1992], GE uses a variable length
binary string to represent programs. Each individual con-
tains in its codons (groups of 8 bits) the information to select
production rules from a Backus Naur Form (BNF) grammar.
BNF is a notation that represents a language in the form of
production rules. It is comprised of a set of non-terminals
that can be mapped to either elements of the set of terminals,
or to elements of the set of non-terminals, according to the
production rules. An excerpt from a BNF grammar is given
below. These productions state that S can be replaced with
any one of expr, if-stmt, or loop.

S ::= expr (0)
| if-stmt (1)
| loop (2)

In order to select a rule in GE, the next codon value on the
genome is generated and placed in the following formula:

Rule = \Codon Integer V alue00

MOD

\Number of Rules for this non� terminal00

If the next codon integer value was 4, given that we have
3 rules to select from as in the above example, we get
4 MOD 3 = 1. S will therefore be replaced with the
non-terminal if-stmt.

Beginning from the left hand side of the genome, codon in-
teger values are generated and used to select rules from the
BNF grammar, until one of the following situations arise:
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1. A complete program is generated. This occurs when all
the non-terminals in the expression being mapped are
transformed into elements from the terminal set of the
BNF grammar.

2. The end of the genome is reached, in which case the
wrapping operator is invoked. This results in the re-
turn of the genome reading frame to the left hand side
of the genome once again. The reading of codons will
then continue, unless an upper threshold representing the
maximum number of wrapping events has occurred dur-
ing this individual’s mapping process.

3. In the event that a threshold on the number of wrap-
ping events has occurred and the individual is still in-
completely mapped, the mapping process is halted, and
the individual is assigned the lowest possible fitness val-
ue.

GE uses a steady state replacement mechanism, such that two
parents produce two children, the best of which replaces the
worst individual in the current population if the child has a
greater fitness. The standard genetic operators of point mu-
tation, and crossover (one point) are adopted. It also em-
ploys a duplication operator that duplicates a random number
of codons and inserts these into the penultimate codon posi-
tion on the genome. A full description of GE can be found
in [O’Neill & Ryan 2001].

3 Grammar Defined Introns

The benefit, or otherwise, of introns in evolutionary computa-
tion have been hotly debated for some time [Levenick 1991]
[Altenberg 1994] [Angeline 1994] [Nordin & Banzhaf 1995]
[Nordin, Francone & Banzhaf 1995] [Wu & Lindsay 1995]
[Andre & Teller 1996] [Wineberg & Oppacher 1996]
[Haynes 1996] [Wu & Lindsay 1996] [Lobo et al. 1998]
[Smith & Harries 1998] [Luke 2000]. In the standard im-
plementation of GE, introns can only occur at the end of a
chromosome due to the nature of the mapping process. The
role of an intron in the preservation of building blocks due
to destructive crossover events is therefore minimised in GE.
We wish to investigate the effects introns might have on the
performance of GE and, as such, have devised a mechanism
by which they may be incorporated into the system. We
call this mechanism Grammar Defined Introns, whereby the
grammar is used to incorporate introns into the genome. This
is achieved by allowing codons to be skipped over during
the mapping process, by using introns as a choice(s) for
non-terminals.

For example, the following non-terminal uses an intron as a
rule:

<line> :: = <if-statement> (A)
|<op> (B)

|intron (C)

When a codon evaluates to the intron rule being selected
we simply skip over this codon, and the code undergoing the
mapping is unchanged. In this case the non-terminal<line>
would remain as <line> if the intron rule is selected, and
the next codon is read.

4 Bias in Grammatical Evolution

When choosing a production rule to be applied to a non-
terminal during the mapping process, there is a bias towards
certain choices. The amount of bias depends on the number
of choices that are to be made, and on the number of genet-
ic codes that are used to represent each choice. Taking the
example of the non-terminal <op>:

<op> :: = left() (A)
| right() (B)
| move() (C)

there are 3 possible mappings for <op> that can be made in
this case. Given a 2-bit codon, there are 4 possible genetic
codes representing these choices. This results in a strong bias
towards the first choice with a probability of selection of 0.5
as opposed to 0.25 for both of the other rules, see Table 1.

Genetic Code Choice
00 A
01 B
10 C
11 A

Choice Probability
A 2/4
B 1/4
C 1/4

Table 1: Probabilities of selecting a production rule using 2-
bit codons.

However, given an 3-bit codon the bias due to the probability
of using any one rule is reduced, see Table 2.

Taking the case of an 8-bit codon as adopted in the standard
GE implementation this bias is minimised even further, see
Table 3.

In the case of there being two choices as in

(1) <code> :: = <line> (A)
|<code><line> (B)

there is no bias to either choice no matter how many codes
exist.

One approach to alleviate the problem of bias was that used
by [Paterson & Livesley], who duplicated certain rules. Un-
fortunately, that system was difficult to control, and not very
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Genetic Code Choice
000 A
001 B
010 C
011 A
100 B
101 C
110 A
111 B

Choice Probability
A 3/8 (.375)
B 3/8 (.375)
C 2/8 (.25)

Table 2: Probabilities of selecting a production rule using 3-
bit codons.

Choice Probability
A 86/256 (.336)
B 85/256 (.332)
C 85/256 (.332)

Table 3: Probabilities of selecting a production rule using 8-
bit codons.

successful at removing the bias. Another approach that GE
can employ is to minimise the bias towards any one rule by
increasing the size of the codon.

This paper will consider both the possibility of introducing
and removing bias through the incorporation of introns.

5 Experimental Approach

The aim of this paper is to examine bias in the grammar and
see if using introns and increasing codon size can be used to
alter any bias effects that might be observed. We also wish to
establish if introns may be useful to GE.

We conduct our experimentation on the Santa Fe ant trail
problem. A tableau describing this problem and parameters
can be seen in Table 4. The default grammar used for this
problem is outlined below.

N = fcode; line; if � statement; opg

T = fleft(); right();move(); food ahead();

else; if; f; g; (; )g

S =< code >

And P can be represented as:

(A) <code> :: = <line> (0)
|<code><line> (1)

(B) <line> :: = <if-statement> (0)
|<op> (1)

(C) <if-statement> :: = if(food_ahead()){
<line>

}
else{ <line> }

(D) <op> :: = left() (0)
| right() (1)
| move() (2)

To determine the effect of introns on the performance of GE,
grammar defined introns were placed at various points in the
grammar, and the cumulative frequency of success measured
on the target problem.

For example, 100 runs were conducted where an intron was
placed at position zero of Rule (A) as follows:

(A) <code> :: = intron (0)
|<line> (1)
|<code><line> (2)

100 runs were then conducted with the intron placed at the
other two remaining positions:

(A) <code> :: = <line> (0)
|intron (1)
|<code><line> (2)

and,

(A) <code> :: = <line> (0)
|<code><line> (1)
|intron (2)

The same approach was taken for the other two non-terminals
involving a choice (i.e. Rules B and D).

To take into account the bias that might result from using a
smaller codon size, we repeat the above experiments using a
2-bit codon instead of the 8-bits used normally.

6 Results

Cumulative frequencies of success for each of the experi-
ments outlined in the previous section are given in Figures
1, 2, 3 and 4.

Figure 1 shows results for the insertion of an intron at the var-
ious positions of rule A. With the intron in position zero, a
success rate superior to standard GE is achieved in the case of
both 8-bit and 2-bit codons, with little difference between the
8-bit and 2-bit results. In the cases of positions one and two,
it can be seen that the presence of the intron has the similar
effect of improving success over standard GE. With the addi-
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Objective : Find a computer program to control an artificial ant
so that it can find all 89 pieces of food located on
the Santa Fe Trail.

Terminal Operators: left(), right(), move(), food ahead()
Fitness cases One fitness case
Raw Fitness Number of pieces of food before the

ant times out with 615 operations.
Standardised Fitness Total number of pieces of

food less the raw fitness.
Hits Same as raw fitness.
Wrapper Standard productions to generate C functions
Parameters Population = 500, Generations = 50

pmut = 0.01, pcross = 0:9

Table 4: Grammatical Evolution Tableau for the Santa Fe Trail

tion of an intron to Rule A, we change the number of choices
from two to three, thus biasing the rule in position zero.

In the case that the intron is in position zero and therefore
biased towards (stronger bias in the case of a 2-bit codon) we
see a superior performance to standard GE, particularly in the
case of a 2-bit codon.

These results would suggest that by inserting bias towards
the choice of an intron we achieve an improved performance,
comparing to what would otherwise be an unbiased rule
choice. When 8-bit codons are adopted (reduction in bias
towards the rule at position zero), the improvement in per-
formance by placing an intron at position zero is less evident
than in the case of 2-bit codons.

In the case of inserting an intron in positions 1 or 2, we
are creating a bias towards the rule in position 0, i.e.
< code >::=< line >. This also gave us superior perfor-
mance comparing to standard GE. This seems to suggest by
forcibly inserting a bias towards certain rules, we can guide
the system to make its choices, thus improving the overall
performance.

Similar results are observed for rule B, see Figure 2. The
presence of introns generally enhances the performance over
standard GE, with positive effects due to the insertion of bias
either towards introns, or towards existing rules.

Insertion of an intron into rule D has the opposite effect to in-
sertion into rules A and B, i.e. change from an uneven number
of choices (3) to an even number (4), see Figure 3 and 4. With
the addition of an intron, the bias towards any one of the pro-
duction rules is removed. The results demonstrate that with
the intron placed at all the positions other than position ze-
ro, a reduction in performance over standard GE with 8-bit
codons is observed. The change in success rate when placed
in position zero appears to be less evident in the case of 8-bit
codons, but much larger for 2-bit codons.

6.1 Discussion

These results suggest that it is quite possible for a grammar to
implicitly contain bias. This, in turn, can have severe impli-
cations for the type and quality of individuals explored by the
system.

Previous results [O’Neill & Ryan 1999a] have shown that
when degeneracy was removed from the system, the perfor-
mance dropped dramatically. Indeed, Figures 2 to 4 illustrate
just how poorly the 2 bit representation (minimal degeneracy)
fares.

While it wasn’t clear from earlier work exactly why a degen-
erate encoding was better, these results suggest that degener-
acy acts to remove bias from the search. The performance of
the 2 bit representation with bias removed approaches that of
the 8 bit representation, but on no occasion does it outperform
the 8 bit with bias removed. This suggests that degeneracy is
doing more than counteracting bias.

Finally, it is clear from the results that sometimes the removal
of bias towards a grammar production rule will not improve
performance. This in turn suggests that bias in grammars can
guide the system to better choices, thus improving the search
for a solution.

These findings are, however, limited to the problem domain
examined, and as such, further investigations will be required
to determine their generality.

7 Conclusions & Future Work

A technique called Grammar Defined Introns is introduced
to incorporate introns into GE. Following a discussion on the
bias that exists towards certain production rules of the BNF
grammar, we demonstrate that the creation of bias has posi-
tive effects in the case of the problem domain and grammar
examined here. In particular, bias towards introns has been
shown to have beneficial effects, thus suggesting that introns
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Figure 1: The effects of inserting introns for each choice on the first non-terminal code

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

Cu
m

ula
tiv

e 
Fr

eq
. O

f S
uc

ce
ss

Generation

Grammatical Evolution - Santa Fe Trail

STD 8bit
STD 2bit

Rule 1, Pos. 0 8bit
Rule 1, Pos. 0 2bit

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

Cu
m

ula
tiv

e 
Fr

eq
. O

f S
uc

ce
ss

Generation

Grammatical Evolution - Santa Fe Trail

STD 8bit
STD 2bit

Rule 1, Pos. 1 8bit
Rule 1, Pos. 1 2bit

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

Cu
m

ula
tiv

e 
Fr

eq
. O

f S
uc

ce
ss

Generation

Grammatical Evolution - Santa Fe Trail

STD 8bit
STD 2bit

Rule 1, Pos. 2 8bit
Rule 1, Pos. 2 2bit

Figure 2: The effects of inserting introns for each choice on the second non-terminal line

have a useful role to play in their own right, i.e. in addition to
their ability to alter bias towards other production rules.

We show that degeneracy can remove the effect of bias, and
that, in many cases, using a degenerate code can outperform a
tweaked insertion of introns. In certain cases, a combination
of Grammar Defined Introns and degenerate code produces
the best performance.

The effect of counteracting bias can be dramatic, and this
suggests that much care should be taken in the design of a
grammar. Future work will consider the possibility of ideal
numbers of productions, and also examine the effects of re-
moving/introducing bias on other problems.
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Abstract

In this paper we present a new exact schema the-
ory for genetic programming and variable-length
genetic algorithms which is applicable to the
general class of homologous crossovers. These
are a group of operators, including GP one-point
crossover and GP uniform crossover, where the
offspring are created preserving the position of
the genetic material taken from the parents. The
theory is based on the concepts of GP crossover
masks and GP recombination distributions (both
introduced here for the first time), as well as the
notions of hyperschema and node reference sys-
tems introduced in other recent research. This
theory generalises and refines previous work in
GP and GA theory.

1 Introduction

Genetic programming theory has had a difficult child-
hood. After some excellent early efforts leading to dif-
ferent approximate schema theorems [1, 2, 3, 4, 5, 6, 7],
only very recently have schema theories become available
which give exact formulations (rather than lower bounds)
for the expected number of instances of a schema at the
next generation. These exact theories are applicable to
GP with one-point crossover [8, 9, 10], standard crossover
and other subtree-swapping crossovers [11, 12, 13], and
different types of subtree mutation and headless chicken
crossover [14, 15].

Here we extend this work by presenting a new exact
schema theory for genetic programming which is applica-
ble to a very important and general class of operators which
we call homologous crossovers. This group of opera-
tors generalises most common GA crossovers and includes
GP one-point crossover and GP uniform crossover [16].
These operators differ from the standard subtree swapping

crossover [1] in that they require that the offspring being
created preserve the position of the genetic material taken
from the parents.

The paper is organised as follows. Firstly, we provide a re-
view of earlier relevant work on GP schemata and cover the
key definitions and terms in Section 2. Then, in Section 3
we show how these ideas can be used to define the class
of homologous crossover operators and build probabilis-
tic models for them. In Section 4 we use these to derive
schema theory results and an exact definition of effective
fitness for GP with homologous crossover. In Section 5 we
give an example that shows how the theory can be applied.
Some conclusions are drawn in Section 6.

2 Background

Schemata are sets of points of the search space sharing
some syntactic feature. For example, in the context of GAs
operating on binary strings, the syntactic representation of
a schema is usually a string of symbols from the alphabet
f0,1,*g, where the character * is interpreted as a “don’t
care” symbol. Typically schema theorems are descriptions
of how the number of members of the population belonging
to a schema vary over time. Let �(H; t) denote the proba-
bility at time t that a newly created individual samples (or
matches) the schema H , which we term the total transmis-
sion probability of H . Then an exact schema theorem for a
generational system is simply [17]

E[m(H; t+ 1)] =M�(H; t); (1)

where M is the population size, m(H; t+1) is the number
of individuals samplingH at generation t+1 andE[�] is the
expectation operator. Holland’s [18] and other worst-case-
scenario schema theories normally provide a lower bound
for �(H; t) or, equivalently, for E[m(H; t+ 1)].

One of the difficulties in obtaining theoretical results on
GP using the idea of schema is that finding a workable def-
inition of a schema is much less straightforward than for
GAs. Several alternative definitions have been proposed in
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the literature [1, 2, 3, 4, 6, 7, 5]. For brevity here we will
describe only the definition introduced in [6, 7], since this
is what is used in the rest of this paper. We will refer to this
kind of schemata as fixed-size-and-shape schemata.

Syntactically a GP fixed-size-and-shape schema
is a tree composed of functions from the set
F [f=g and terminals from the set T [f=g, where F and
T are the function and terminal sets used in a GP run. The
primitive = is a “don’t care” symbol which stands for a sin-
gle terminal or function. A schema H represents the set of
all programs having the same shape as H and the same la-
bels for the non-= nodes. For example, if F=f+, *g and
T =fx, yg the schema (+ x (= y =)) represents the
four programs (+ x (+ y x)), (+ x (+ y y)),
(+ x (* y x)) and (+ x (* y y)).

In [6, 7] a worst-case-scenario schema theorem was derived
for GP with point mutation and one-point crossover; as dis-
cussed in [8], this theorem is a generalisation of the ver-
sion of Holland’s schema theorem [18] presented in [19]
to variable size structures. One-point crossover works by
using the same crossover point in both parent programs,
and then swapping the corresponding subtrees like standard
crossover. To account for the possible structural diversity
of the two parents, the selection of the crossover point is
restricted to the common region, the largest rooted region
where the two parent trees have the same topology. The
common region will be defined formally in Section 3.

One-point crossover can be considered to be an instance
of a much broader class of operators that can be defined
through the notion of the common region. For example,
in [16] we defined and studied a GP operator, called uni-
form crossover (based on uniform crossover in GAs), in
which the offspring is created by independently swapping
the nodes in the common region with a uniform proba-
bility. If a node belongs to the boundary of the common
region and is a function then also the nodes below it are
swapped, otherwise only the node label is swapped. Many
other operators of this kind are possible. We will call them
homologous crossovers, noting that our definition is more
restrictive than that in [20]. A formal description of these
operators will be given in Section 3.

The approximate schema theorem in [6, 7] was improved
in [9, 10], where an exact schema theory for GP with one-
point crossover was derived which was based on the no-
tion of hyperschema. A GP hyperschema is a rooted tree
composed of internal nodes from F [ f=g and leaves
from T [ f=;#g. Again, = is a “don’t care” symbols
which stands for exactly one node, while # stands for any
valid subtree. For example, the hyperschema (* # (= x
=)) represents all the programs with the following char-
acteristics: a) the root node is a product, b) the first argu-
ment of the root node is any valid subtree, c) the second
argument of the root node is any function of arity two, d)

the first argument of this function is the variable x, e) the
second argument of the function is any valid node in the
terminal set. One of the results obtained in [10] is

�(H; t) = (1� pxo)p(H; t) + pxo�xo(H; t) (2)

where

�xo(H; t) =
X
k;l

1

NC(Gk; Gl)
(3)

�
X

i2C(Gk;Gl)

p(U(H; i) \Gk; t)p(L(H; i) \Gl; t)

and: pxo is the crossover probability; p(H; t) is the selection
probability of the schema H ;1 G1, G2, � � � are an enumer-
ation of all the possible program shapes, i.e. all the possi-
ble fixed-size-and-shape schemata containing = signs only;
NC(Gk; Gl) is the number of nodes in the common re-
gion between shape Gk and shape Gl; C(Gk ; Gl) is the
set of indices of the crossover points in such a common
region; L(H; i) is the hyperschema obtained by replacing
all the nodes on the path between crossover point i and
the root node with = nodes, and all the subtrees connected
to those nodes with # nodes; U(H; i) is the hyperschema
obtained by replacing the subtree below crossover point i
with a # node; if a crossover point i is in the common re-
gion between two programs but it is outside the schema
H , then L(H; i) and U(H; i) are defined to be the empty
set. The hyperschemata L(H; i) and U(H; i) are impor-
tant because, if one crosses over at point i any individual
in L(H; i) with any individual in U(H; i), the resulting
offspring is always an instance of H . The steps involved
in the construction of L(H; i) and U(H; i) for the schema
H =(* = (+ x =)) are illustrated in Figure 1.

As discussed in [8], it is possible to show that, in the ab-
sence of mutation, Equations 2 and 3 generalise and refine
not only the GP schema theorem in [6, 7] but also the ver-
sion of Holland’s schema theorem [18] presented in [19],
as well as more recent GA schema theory [21, 22].

Very recently, this work has been extended in [11] where a
general, exact schema theory for genetic programming with
subtree swapping crossover was presented. The theory is
based on a generalisation of the notion of hyperschema and
on a Cartesian node reference system which makes it pos-
sible to describe programs as functions over the space N2 .

The Cartesian reference system is obtained by considering
the ideal infinite tree consisting entirely of nodes of some
fixed maximum arity amax. This maximal tree would in-
clude 1 node of arity amax at depth 0, amax nodes of arity
amax at depth 1, (amax)

2 nodes of arity amax at depth 2, and
1In fitness proportionate selection p(H; t) =

m(H; t)f(H; t)=(M �f(t)), where m(H; t) is the number of
trees in the schema H at time t, f(H; t) is their mean fitness, and
�f(t) is the mean fitness of the trees in the population.
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Figure 1: Example of a schema and some of its potential hyper-
schema building blocks. The crossover points in H are numbered
as shown in the top left.
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Figure 2: Syntax tree for the program (IF (AND x1 x2)
(OR x1 x3) x1) represented in a tree-independent Cartesian
node reference system for nodes with maximum arity 3. Unused
nodes and links of the maximal tree are drawn with dashed lines.
Only four layers and six columns are shown.

generally (amax)
d nodes at depth d. Then one could imag-

ine organising the nodes in the tree into layers of increasing
depth (see Figure 2) and assigning an index to each node in
a layer. The layer number d and the index i can then be used
to define a Cartesian coordinate system. Clearly, one could
also use this reference system to locate the nodes of non-
maximal trees. This is possible because a non-maximal tree
can always be described using a subset of the nodes and
links in the maximal tree. This is illustrated for the pro-
gram (IF (AND x1 x2) (OR x1 x3) x1) in Fig-
ure 2. So, for example, the IF node would have coordi-
nates (0,0), the AND would have coordinates (1,0), and the
x3 node would have coordinates (2,4). In this reference
system it is always possible to find the route to the root
node from any valid coordinate. Also, if one chooses amax

to be the maximum arity of the functions in the function
set, it is possible to use this reference system to represent
the structure of any program that can be constructed with
that function set.

The theory in [11] is also applicable to standard GP
crossover [1] with and without uniform selection of the
crossover points, one-point crossover [6, 7], size-fair
crossover [20], strongly-typed GP crossover [23], context-
preserving crossover [24], and many others. The theory has
also been recently extended to subtree mutation and head-
less chicken crossover [14, 15]. It does not, however, cur-
rently cover the class of homologous operators and the goal
of this paper is to fill that theoretical gap.

3 Modelling Homologous Crossovers

Given a node reference system it is possible to define func-
tions over it. An example of such functions is the arity
function A(d; i; h) which returns the arity of the node at
coordinates (d; i) in h. For example, for the tree in Fig-
ure 2, A(0; 0; h) = 3, A(1; 0; h) = 2 and A(2; 1; h) = 0.
Similarly, it is possible to define the common region mem-
bership function C(d; i; h1; h2) which returns true when
(d; i) is part of the common region of h1 and h2. Formally,
C(d; i; h1; h2) = true when either (d; i) = (0; 0) or

A (d� 1; i0; h1) = A (d� 1; i0; h2) 6= 0

and C (d� 1; i0; h1; h2) = true;

where i
0 = bi=amaxc and b�c is the integer-part function.

This allows us to formalise the notion of common region:

C(h1; h2) = f(d; i) j C(d; i; h1; h2) = trueg: (4)

This is the notion of common region used in the schema
theorem for one-point crossover in Equation 2. As
indicated before, one-point crossover selects the same
crossover point in both parents by randomly choosing a
node in the common region. An alternative way to inter-
pret the action of one-point crossover is to imagine that
the subset of nodes in C(h1; h2) below such a crossover
point are transferred from parent h2 into an empty coor-
dinate system, while all the remaining nodes in C(h1; h2)
are taken from parent h1. Clearly, nodes representing the
leaves of the common region should be transferred together
with their subtrees, if any. Other homologous crossovers
can simply be defined by selecting subsets of nodes in the
common region differently.

A good way to describe and model the class of homologous
crossovers is to extend the notions of crossover masks and
recombination distributions used in genetics [25] and in the
GA literature [26, 27, 28]. In a GA operating on fixed-
length strings a crossover mask is simply a binary string.
When crossover is executed, the bits of the offspring cor-
responding to the 1’s in the mask will be taken from one
parent, those corresponding to 0’s from the other parent.
For example, if the parents are the strings aaaaaa and
bbbbbb and the crossover mask is 110100, one offspring
would be aababb. For operators returning two offspring it
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is easy to show that the second offspring can be obtained by
simply complementing, bit by bit, the crossover mask. For
example, the complement of the mask 110100, 001011,
gives the offspring bbabaa. If the GA operates on strings
of length N , then 2N different crossover masks are possi-
ble. If, for each mask i, one defines a probability, pi, that
the mask is selected for crossover, then it is easy to see how
different crossover operators can simply be interpreted as
different ways of choosing the probability distribution pi.
For example, for strings of length N = 4 the probability
distribution for one-point crossover would be pi = 1=3 for
the crossover masks i = 1000; 1100; 1110 and pi = 0 oth-
erwise, while for uniform crossover pi = 1=16 for all 16
i’s. The probability distribution pi is called a recombina-
tion distribution.

Let us now extend the notion of recombination distributions
to genetic programming with homologous crossover. For
any given shape and size of the common region we can
define a set of GP crossover masks which correspond to
all possible ways in which a recombination event can take
place within the given common region. Because the nodes
in the common region are always arranged so as to form
a tree, it is possible to represent the common region as a
tree or an equivalent S-expression. So, GP crossover masks
can be thought of as trees constructed using 0’s and 1’s
that have the same size and shape as the common region.
So, for example, if the common region is represented by
the set of node coordinates f(0,0),(1,0),(1,1)g, then there
are eight valid GP crossover masks: (0 0 0), (0 0 1),
(0 1 0), (0 1 1), (1 0 0), (1 0 1), (1 1 0)
and (1 1 1). The complement of a GP crossover mask
is an obvious extension, where the complement �i has the
same structure as mask i but with the 0’s and 1’s swapped.
In the following we will use �c to denote the set of the
2N(c) crossover masks associated with the common region
c, where N(c) is the number of nodes in c. Since we are
typically interested in the common region defined by two
trees, we’ll use �(h1; h2) as a shorthand for �C(h1;h2).

Once �c is defined we can define a fixed-size-and-shape
recombination distribution p

c
i which gives the probability

that crossover mask i 2 �c will be chosen for crossover
between individuals having common region c. Then the
set fpci j 8cg, which we call a GP recombination distribu-
tion, completely defines the behaviour of a GP homologous
crossover operator, different operators being characterised
by different assignments for the pci . For example, the GP
recombination distribution for uniform GP crossover with
50% probability of exchanging nodes is pci = (0:5)N(c).

GP crossover masks and GP recombination distributions
generalise the corresponding GA notions. Indeed, as also
discussed in [8], GAs operating on fixed-length strings are
simply a special case of GP with homologous crossover.
This can be shown by considering the case of function sets

including only unary functions and initialising the popula-
tion with programs of the same length. Since in a linear
GP system with fixed length programs every individual has
exactly the same size and (linear) shape, only one common
region c is possible. Therefore, only one fixed-size-and-
shape recombination distribution p

c
i is required to charac-

terise crossover. In variable length GAs and GP, multiple
fixed-size-and-shape recombination distributions are nec-
essary, one for every possible common region c.

4 Exact GP Schema Theory for Homologous
Crossovers

Using hyperschemata and GP recombination distributions
for homologous crossover, we obtain the following:

Theorem 1. The total transmission probability for a fixed-
size-and-shape GP schemaH under homologous crossover
is given by Equation 2 with

�xo(H; t) = (5)X
h1

X
h2

p(h1; t)p(h2; t)
X

i2�(h1;h2)

p
C(h1;h2)
i �

Æ(h1 2 �(H; i))Æ(h2 2 �(H;�i))

where: the first two summations are over all the individu-
als in the population; C(h1; h2) is the common region be-
tween program h1 and program h2; �(h1; h2) is the set of
crossover masks associated with C(h1; h2); Æ(x) is a func-
tion which returns 1 if x is true, 0 otherwise; �(H; i) is
defined below; �i is the complement of crossover mask i.

�(H; i) is defined to be the empty set if i contains any node
not in H . Otherwise it is the hyperschema obtained by re-
placing certain nodes in H with either = or # nodes:

� If a node in H corresponds to (i.e., has the same coor-
dinates as) a non-leaf node in i that is labelled with a
0, then that node in H is replaced with a =.

� If a node in H corresponds to a leaf node in i that is
labelled with a 0, then it is replaced with a #.

� All other nodes in H are left unchanged.

If, for example, H =(* = (+ x =)), as indicated in
Figure 3(a), then �(H; (0 1 0)) is obtained by first replac-
ing the root node with a = symbol (because the crossover
mask has a function node 0 at coordinates (0,0)) and then
replacing the subtree rooted at coordinates (1,1) with a #
symbol (because the crossover mask has a terminal node
0 at coordinates (1,1)) obtaining (= = #). The schema
�(H; (1 0 1)), which forms a complementary pair with
the previous one, is instead obtained by replacing the sub-
tree rooted at coordinates (1,0) with a # symbol obtaining
(* # (+ x =)), as illustrated in Figure 3(b).
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Figure 3: A complementary pair of hyperschemata �(H; i) for
the schema H =(* = (+ x =)).

The hyperschemata�(H; i) and�(H;�i) are generalisations
of the schemata L(H; i) and U(H; i) used in Equation 2
(compare Figures 1 and 3). In general if one crosses over
using crossover mask i any individual in �(H; i) with any
individual in �(H;�i), the resulting offspring is always an
instance of H .

Once the concept of �(H; i) is available, the theorem can
easily be proven.

Proof. Let p(h1; h2; i; t) be the probability that, at genera-
tion t, the selection-crossover process will choose parents
h1 and h2 and crossover mask i. Then, let us consider the
function

g(h1; h2; i;H) = Æ(h1 2 �(H; i))Æ(h2 2 �(H;�i)):

Given two parent programs, h1 and h2, and a schema of
interest H , this function returns the value 1 if crossing over
h1 and h2 with crossover mask i yields an offspring in H .
It returns 0 otherwise. This function can be considered as
a measurement function (see [27]) that we want to apply to
the probability distribution of parents and crossover masks
at time t, p(h1; h2; i; t). If h1, h2 and i are stochastic vari-
ables with joint probability distribution p(h1; h2; i; t), the
function g(h1; h2; i;H) can be used to define a stochastic
variable  = g(h1; h2; i;H). The expected value of  is:

E[] =
X
h1

X
h2

X
i

g(h1; h2; i;H)p(h1; h2; i; t): (6)

Since  is a binary stochastic variable, its expected value
also represents the proportion of times it takes the value 1.

This corresponds to the proportion of times the offspring of
h1 and h2 are in H .

We can write

p(h1; h2; i; t) = p(ijh1; h2)p(h1; t)p(h2; t);

where p(ijh1; h2) is the conditional probability that
crossover mask i will be selected when the parents are
h1 and h2, while p(h1; t) and p(h2; t) are the selection
probabilities for the parents. In homologous crossover
p(ijh1; h2) = p

C(h1;h2)
i Æ(i 2 �(h1; h2)), so

p(h1; h2; i; t)

= p(h1; t)p(h2; t)p
C(h1;h2)
i Æ(i 2 �(h1; h2)):

Substituting this into Equation 6 with minor simplifications
leads to the expression of �xo in Equation 5. 2

Equations 2 and 5 allow one to compute the exact total
transmission probability of a GP schema in terms of mi-
croscopic quantities. It is possible, however, to transform
this model into the following exact macroscopic model of
schema propagation

Theorem 2. The total transmission probability for a fixed-
size-and-shape GP schemaH under homologous crossover
is given by Equation 2 with

�xo(H; t) =
X
j

X
k

X
i2�(Gj ;Gk)

p
C(Gj;Gk)
i � (7)

p(�(H; i) \Gj ; t)p(�(H;�i) \Gk; t):

Proof. Let us start by considering all the possible program
shapes G1, G2, � � �. These schemata represent disjoint
sets of programs. Their union represents the whole search
space, so X

j

Æ(h1 2 Gj) = 1:

We insert the l.h.s. of this expression and of an analogous
expression for Æ(h2 2 Gk) in Equation 5 and reorder the
terms obtaining:2

�xo(H; t)

=
X

j

X

k

X

h1

X

h2

p(h1; t)p(h2; t)

X

i2�(h1;h2)

p
C(h1;h2)

i Æ(h1 2 �(H; i))Æ(h1 2 Gj)

Æ(h2 2 �(H;�i))Æ(h2 2 Gk)

=
X

j

X

k

X

h12Gj

X

h22Gk

p(h1; t)p(h2; t)

X

i2�(h1;h2)

p
C(h1;h2)

i Æ(h1 2 �(H; i))Æ(h2 2 �(H;�i))

2Note that h1 2 Gj ^ h2 2 Gk ) C(h1; h2) = C(Gj ; Gk).
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=
X

j

X

k

X

h12Gj

X

h22Gk

p(h1; t)p(h2; t)

X

i2�(Gj ;Gk)

p
C(Gj ;Gk)

i Æ(h1 2 �(H; i))Æ(h2 2 �(H;�i))

=
X

j

X

k

X

i2�(Gj ;Gk)

p
C(Gj ;Gk)

i

X

h12Gj

p(h1; t)

Æ(h1 2 �(H; i))
X

h22Gk

p(h2; t)Æ(h2 2 �(H;�i)):

Since
P

h12Gj
p(h1; t)Æ(h1 2 �(H; i)) = p(�(H; i) \

Gj ; t) (and similarly for p(�(H;�i) \ Gk; t)), this equation
completes the proof of the theorem. 2

This theorem is a generalisation of Equations 2 and 3.
These, as indicated in Section 2, are a generalisation of a re-
cent GA schema theorem for one-point crossover [21, 22]
and a refinement (in the absence of mutation) of both the
GP schema theorem in [6] and Goldberg’s version [19] of
Holland’s schema theory [18]. The schema theorems in
this paper also generalise other GA results (such as those
summarised in [29]), as well as the result in [27, appendix],
since they can be applied to linear schemata and even fixed-
length binary strings. So, in the absence of mutation, the
schema theory in this paper generalises and refines not only
earlier GP schema theorems but also old and modern GA
schema theories for one- and multi-point crossover, uni-
form crossover and all other homologous crossovers.

Once the value of �(H; t) is available, it is trivial to ex-
tend (as we did in [10, 11]) the notion of effective fitness
provided in [21, 22] obtaining the following:

Corollary 3. The effective fitness of a fixed-size-and-shape
GP schema H under homologous crossover is

fe�(H; t) =
�(H; t)

p(H; t)
f(H; t)

= f(H; t)
h
1� pxo

�
1�

X
j;k

X
i2�(Gj ;Gk)

p
C(Gj;Gk)
i �

p(�(H; i) \Gj ; t)p(�(H;�i) \Gk; t)

p(H; t)

��
: (8)

5 Example

Since the calculations involved in applying exact GP
schema theorems can become quite lengthy, we will limit
ourselves here to one extremely simple example. For ap-
plications of this and related schema theories see [12, 13,
14, 15, 30]. To make clearer the relationship between
this work and our theory for one-point crossover, we will
use the same example as in [10], this time using general
homologous crossover operators instead of just one-point
crossover.

Let us imagine that we have a function set
fAf ; Bf ; Cf ; Df ; Efg including only unary func-
tions, and the terminal set fAt; Bt; Ct; Dt; Etg. Since,
all functions are unary, we can unambiguously represent
expressions without parenthesis. In addition, since the only
terminal in each expression is the rightmost node, we can
remove the subscripts without generating any ambiguity.
Thus, every member of the search space can be seen as a
variable-length string over the alphabet fA;B;C;D;Eg,
and GP with homologous crossover is really a non-binary
variable-length GA.

Let us now consider the schema AB=. We want to measure
its total transmission probability (with pxo = 1) under fit-
ness proportionate selection and an arbitrary homologous
crossover operator for the following population:

Population Fitness
AB 2
BCD 2
ABC 4
ABCD 6

In order to apply Equation 7 we first need to number all
the possible program shapes G1, G2, etc.. Let G1 be =, G2

be ==, G3 be === and G4 be ====. We do not need to
consider other, larger shapes because the population does
not contain any larger programs. We then need to evaluate
the shape of the common regions to determine �(Gj ; Gk)
for all valid values of j and k. In this case the common
regions can be naturally represented using integers which
represent the length of the common region. Since the
length of the common region is the length of the shorter
parent, we know C(Gj ; Gk) = min(j; k). Then, for each
common region c we need to identify the hyperschemata
�(AB=; i) for all the meaningful crossover masks i 2 �c

and calculate �(AB=; i) \ Gj for all meaningful values
of j. These calculations are shown in Table 1. Using this
table we can apply Equation 7, obtaining, after simplifica-
tion and omitting t and the superscript c from p

c
i for brevity,

�(AB=) = �xo(AB=)

=

4X

j;k=1

X

i2f0;1gmin(j;k)

pip(�(H; i) \Gj)p(�(H;�i) \Gk)

= (p0 + p1)p(AB =)p(=) +

(p00 + p11)p(AB =)p(==) +

(p01 + p10)p(= B =)p(A =) +

(p000 + p111)p(AB =)(p(===)+ p(====)) +

(p001 + p110)p(===)(p(AB =) + p(AB ==)) +

(p010 + p101)p(A ==)(p(= B =) + p(= B ==)) +

(p011 + p100)p(= B =)(p(A ==) + p(A ===)):

This equation is valid for any homologous crossover op-
erator, each of which is defined by the set of pi. It is
easy to specialises it for one-point crossover by using the
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Mask �(AB=; i) �(AB=; i) \Gj

i j = 1 j = 2 j = 3 j = 4
0 # = == === ====
1 AB= ; ; AB= ;

00 =# ; == === ====
01 =B= ; ; =B= ;

10 A# ; A= A== A===
11 AB= ; ; AB= ;

000 ==# ; ; === ====
001 === ; ; === ;

010 =B# ; ; =B= =B==
011 =B= ; ; =B= ;

100 A=# ; ; A== A===
101 A== ; ; A== ;

110 AB# ; ; AB= AB==
111 AB= ; ; AB= ;

0000 ; ; ; ; ;

...
...

...
...

...
...

Table 1: Crossover masks and schemata necessary to calculate
�xo(AB =).

recombination distribution p0 = 1, p00 = p10 = 1=2,
p000 = p100 = p110 = 1=3 and pi = 0 for all other
crossover masks. This leads to the same result as in [10].

It is also easy to specialise the previous equation to uni-
form crossover by using the recombination distribution
pi = (0:5)N(i), where N(i) is the length of crossover
mask i. Doing so in this case yields �(AB=; t) � 0:2806.
For the same example, in [10] we obtained �(AB=; t) �
0:2925 for one-point crossover, which indicates that uni-
form crossover is slightly less “friendly” towards the
schema. We can also use Equation 8 to compute the ef-
fective fitness for the schema AB= for both uniform and
one-point crossover, obtaining values of approximately 3.9
and 4.1, respectively. These values are very close to the
actual average fitness of the schema in the current popula-
tion, 4, suggesting that in this case disruption and creation
effects tend to balance out. This is not always the case,
however, as is shown in [10].

6 Conclusions

Unlike GA theory, which has made considerable progress
in the last ten years or so, GP theory has typically been
scarce, approximate and, as a rule, not terribly useful. This
is not surprising given the youth of GP and the complex-
ities of building theories for variable size structures. In
the last year or so, however, significant breakthroughs have
changed this situation radically. Today not only do we have
exact schema theorems for GP with a variety of operators
including subtree mutation, headless chicken crossover,
standard crossover, one-point crossover, and all other sub-
tree swapping crossovers, but this GP theory also gener-
alises and refines a broad spectrum of GA theory, as indi-
cated in Section 2.

We believe that this paper extends this series of break-
throughs. Here we have presented a new schema the-
ory applicable to genetic programming and both variable-
and fixed-length genetic algorithms with homologous
crossover. The theory is based on the concepts of GP
crossover masks and GP recombination distributions, both
introduced here for the first time. As discussed in Section 4,
this theory also generalises and refines a broad spectrum of
previous work in GP and GA theory.

Clearly this paper is only a first step. We have not yet
made any attempt to use our new schema evolution equa-
tions to understand the dynamics of GP or variable-length
GAs with homologous crossover or to design competent
GP/GA systems. In other recent work, however, we have
specialised and applied the theory for other operators to un-
derstand phenomena such as operator biases and the evolu-
tion of size in variable length GAs [12, 13, 14, 15]. In the
future we hope to be able to do the same and produce ex-
citing new results with the theory presented here.
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Abstract

In this paper we present a Markov chain model
for GP and variable-length GAs with homolo-
gous crossover: a set of GP operators where the
offspring are created preserving the position of
the genetic material taken from the parents. We
obtain this result by using the core of Vose’s
model for GAs in conjunction with a specialisa-
tion of recent GP schema theory for such opera-
tors. The model is then specialised for the case
of GP operating on 0/1 trees: a tree-like general-
isation of the concept of binary string. For these
symmetries exist that can be exploited to obtain
further simplifications. In the absence of muta-
tion, the theory presented here generalises Vose’s
GA model to GP and variable-length GAs.

1 Introduction

After a strong initial interest in schemata [1, 2], the inter-
est of GA theorists has shifted in the last decade towards
microscopic Markov chain models, such as Vose’s model,
possibly with aggregated states [3, 4, 5, 6, 7, 8, 9, 10, 11].

In the last year or so the theory of schemata has made con-
siderable progress, both for GAs and GP. This includes sev-
eral new schema theorems which give exact formulations
(rather than the lower bounds previously presented in the
literature [12, 13, 14, 15, 16, 17, 18]) for the expected num-
ber of instances of a schema at the next generation. These
exact theories model GP with one-point crossover [19, 20,
21], standard and other subtree-swapping crossovers [22,
23, 24], homologous crossover [25], and different types of
subtree mutation and headless chicken crossover [26, 27].
While considerable progress has been made in GP schema
theory, no Markov chain model for GP and variable-length
GAs has ever been proposed.

In this paper we start filling this theoretical gap and present

a Vose-like Markov-chain model for genetic programming
with homologous crossover [25]: a set of operators, in-
cluding GP one-point crossover [16] and GP uniform
crossover [28], where the offspring are created preserving
the position of the genetic material taken from the parents.
We obtain this result by using the core of Vose’s theory in
conjunction with a specialisation of the schema theory for
such operators. This formally links GP schema theory and
Markov chain models, two worlds believed by many people
to be quite separate.

The paper is organised as follows. Given the complexity
of the GP mechanics, exact GP schema theories, such as
the exact schema theory for homologous crossover in [25],
tend to be relatively complicated. Similarly, Vose’s model
for GAs [3] presents significant complexities. In the fol-
lowing section, we will summarise these theories providing
as much detail as reasonable, occasionally referring to [3]
and [25] for more details. Then, in Section 3 we present
the extensions to both theories which allow the construc-
tion of a Markov chain model for GP and variable-length
GAs with homologous crossover. In Section 4 we indi-
cate how the theory can be simplified thanks to symmetries
which exist when we restrict ourselves to 0/1 trees: a tree-
like generalisation of the concept of binary string. In Sec-
tion 5 we give an example. Some conclusions are drawn in
Section 6.

2 Background

2.1 Nix and Vose’s Markov Chain Model of GAs

The description provided here is largely based on [3, 29]
and [4]. See [30] for a gentler introduction to this topic.

Let 
 be the set of all possible strings of length l, i.e.

 = f0; 1gl. Let r = j
j = 2l be the number of ele-
ments of such a space. Let P be a population represented
as a multiset of elements from
, let n = jP j be the popula-
tion size, and let N be the number of possible populations;
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in [3] it was shown that

N =

�
n+ r � 1
r � 1

�
:

Let Z be an r � N matrix whose columns represent the
possible populations of size n. The ith column �i =
hz0;i; : : : ; zr�1;ii

T of Z is the incidence vector for the ith
population Pi. That is zy;i is the number of occurrences
of string y in Pi (where y is unambiguously interpreted as
an integer or as its binary representation depending on the
context).

Once this state representation is available, one can model
a GA with a Markov chain in which the N columns of Z
represent the states of the model. The transition matrix for
the model, Q, is an N �N matrix where the entry Qij rep-
resents the conditional probability that the next generation
will be Pj assuming that the current generation is Pi.

In order to determine the values Qij let us assume that we
know the probability pi(y) of producing individual y in the
next generation given that the current generation is Pi. To
produce populationPj we need to get exactly zy;j copies of
string y for y = 0; : : : ; r � 1. The probability of this joint
event is given by a multinomial distribution with success
probabilities pi(y) for y = 0; : : : ; r � 1, so [31]

Qi;j =
n!

z0;j !z1;j ! : : : zr�1;j !

r�1Y
y=0

(pi(y))
zy;j : (1)

The calculations necessary to compute the probabilities
pi(y) depend crucially on the representation and the opera-
tors chosen. In [4] results for various GA crossover opera-
tors were reported. As noted in [3], it is possible to decom-
pose the calculations using ideas firstly introduced in [29]
as follows.

Assuming that the current generation is Pi, we can write

pi(y) =

r�1X
m;n=0

sm;isn;irm;n(y) (2)

where rm;n(y) is the probability that crossing over strings
m and n yields string y and sx;i is the probability of select-
ing x from Pi. Assuming fitness proportionate selection,

sx;i =
zx;if(x)Pr�1

j=0 zj;if(j)
; (3)

where f(x) is the fitness of string x.

We can map these results into a more recent formulation
of Vose’s model [4] by making use of matrices and oper-
ators. We start by treating the fitness function as a vector
f of components fk = f(k). Then, if x is the incidence

vector representing a particular population, we define an
operator F , called the selection scheme,1 which computes
the selection probabilities sx;i for all the members of 
.
For proportional selection

F(x) = diag(f)x=fTx:

Then we organise the probabilities rm;n(y) into r arrays
My of size r � r, called mixing matrices, the elements of
which are (My)m;n = rm;n(y). We finally define an oper-
ator M, called the mixing scheme,

M(x) = hxTM0x; x
TM1x; : : : ; x

TMr�1xi

which returns a vector whose components are the expected
proportion of individuals of each type assuming that indi-
viduals are selected from the population x randomly (with
replacement) and crossed over.

Finally we introduce the operator G =MÆF , which pro-
vides a compact way of expressing the probabilities pi(y)
since (for fitness proportionate selection)

pi(y) = fG(�i)gy =

�
M

�
diag(f)�i

fT�i

��
y

where the notation f�gy is used to represent the yth compo-
nent of a vector. So, the entries of the transition matrix for
the Markov chain model of a GA can concisely be written
as

Qi;j = n!

r�1Y
y=0

(fG(�i)gy)
zy;j

zy;j !
: (4)

In [29, 3, 4] it is shown how, for fixed-length binary GAs,
the operator M can be calculated as a function of the mix-
ing matrix M0 only. This is done by using a set of per-
mutation operators which permute the components of any
generic vector x 2 Rr :

�jhx0; : : : ; xr�1i
T = hxj�0; : : : ; xj�r�1i

T ; (5)

where � is a bitwise XOR.2 Then one can write

M(x) = h(�0x)
TM0�0x; : : : ; (�r�1x)

TM0�r�1xi
T :

(6)

2.2 Exact GP Schema Theory for Homologous
Crossover

In [25] the following exact schema theorem for GP with
homologous crossover was reported:

1In this paper we have chosen to use the symbolF to represent
both the selection scheme of a GA and the function set used in
GP, since this is the standard notation for both. This produces
no ambiguity since the selection scheme is not used outside this
section, and the function set is not referred to inside it.

2The operators �j can also be interpreted as permutation ma-
trices.
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�(H; t) = (1� pxo)p(H; t)+ (7)

pxo
X
j

X
k

X
l2�C(Gj ;Gk)

p
C(Gj;Gk)

l

p(�(H; l) \Gj ; t)p(�(H; �l) \Gk; t)

where

� H is a GP schema, i.e. a tree composed of functions
from the set F [ f=g and terminals from the set T [
f=g, where F and T are the function and terminals
sets used in our GP system and the primitive = is a
“don’t care” symbol which stands for a single terminal
or function.

� �(H; t) is the probability that a newly created individ-
ual matches the schema H .

� pxo is the crossover probability.

� p(H; t) is the selection probability of the schema H .

� G1, G2, � � � are all the possible program shapes, i.e.
all the possible schemata containing = signs only.

� C(Gj ; Gk) is the common region between programs
of shape Gj and programs of shape Gk. The common
region between two generic trees h1 and h2 is the set

C(h1; h2) = f(d; i)jC(d; i; h1; h2)g;

where (d; i) is a pair of coordinates in a Cartesian
node reference system (see [22, 25] for more de-
tails on the reference system used). The predicate
C(d; i; h1; h2) is true if (d; i) = (0; 0). It also
true if A (d� 1; i0; h1) = A (d� 1; i0; h2) 6= 0 and
C (d� 1; i0; h1; h2) is true, where A(d; i; h) returns
the arity of the node at coordinates (d; i) in h, i0 =
bi=amaxc and b�c is the integer-part function. The
predicate is false otherwise.

� For any given common region c we can define a set
of GP crossover masks, �c, which contains all differ-
ent trees with the same size and shape as the common
region which can be built with nodes labelled 0 and 1.

� The GP recombination distribution pcl gives the prob-
ability that, for a given common region c, crossover
mask l will be chosen from the set �c.

� A GP hyperschema is a rooted tree composed of inter-
nal nodes fromF [f=g and leaves from T [f=;#g.
Again, = is a “don’t care” symbols which stands for
exactly one node, while # stands for any valid subtree.

� �(H; l) is defined to be the empty set if l contains any
node not in H . Otherwise it is the hyperschema ob-
tained by replacing certain nodes in H with either =
or # nodes:

– If a node in H corresponds to (i.e., has the same
coordinates as) a non-leaf node in l that is la-
belled with a 0, then that node in H is replaced
with a =.

– If a node in H corresponds to a leaf node in l that
is labelled with a 0, then it is replaced with a #.

– All other nodes in H are left unchanged.

� �l is the complement of the GP crossover mask l. The
complement of a mask is a tree with the same structure
but with the 0’s and 1’s swapped.

3 Markov Chain Model for GP

In order to extend Vose’s model to GP and variable-length
GAs with homologous crossover we define 
 to be an in-
dexed set of all possible trees of maximum depth ` that
can be constructed with a given function set F and a given
terminal set T . Assuming that the initialisation algorithm
selects programs in 
, GP with homologous crossover can-
not produce programs outside 
, and 
 is therefore a finite
search space. Again, r = j
j is the number of elements in
the search space; this time, however, r is not 2l. All other
quantities defined in Section 2.1 can be redefined by sim-
ply replacing the word “string” with the word “program”,
provided that the elements of 
 are indexed appropriately.
With these extensions, all the equations in that section are
also valid for GP, except Equations 5 and 6.

These are all minor changes. A major change is instead
required to compute the probabilities pi(y) of generating
the yth program in 
 when the population is Pi. For-
tunately, these probabilities can be computed by apply-
ing the schema theory developed in [25] and summarised
in Section 2.2. Since schema equations are applicable to
schemata as well as to individual programs, it is clear that:

pi(y) = �(y; t) (8)

where � is calculated for population Pi. This can be done
by specialising Equation 7. Doing this allows one to instan-
tiate the transition matrix for the model using Equation 1.
However, it is possible to express pi(y) in terms of more
primitive quantities as follows.

Let us specialise Equation 7 for the yth program in 
:

pi(y) = (1� pxo)p(y; t)+

pxo
X
j

X
k

X
l2�C(Gj ;Gk)

p
C(Gj;Gk)

l �

p(�(y; l) \Gj ; t)p(�(y; �l) \Gk; t)
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= (1� pxo)
X
h12


Æ(h1 = y)p(h1; t)�
X
h22


p(h2; t)

| {z }
=1

+pxo
X
j

X
k

X
l2�(Gj ;Gk)

p
C(Gj;Gk)

l �

X
h12


p(h1; t)Æ(h1 2 �(y; l))Æ(h1 2 Gj)�

X
h22


p(h2; t)Æ(h2 2 �(y; �l))Æ(h2 2 Gk)

=
X

h1;h22


p(h1; t)p(h2; t)�

h
(1� pxo)Æ(h1 = y) + pxo

X
l2�C(h1 ;h2)

p
C(h1;h2)

l �

Æ(h1 2 �(y; l))Æ(h2 2 �(y; �l))
i
;

where we used the fact that
P

w Æ(x 2 Gw) = 1.

Assuming the current population is Pi, we have that
p(h; t) = sh(t). So, the last equation can be rewritten in
the same form as Equation 2 provided we set

rm;n(y) =
h
(1� pxo)Æ(m = y)+ (9)

pxo
X

l2�C(m;n)

p
C(m;n)

l Æ(m 2 �(y; l))Æ(n 2 �(y; �l))
i
:

Note that this equation could have been obtained by di-
rect calculation, rather than through the specialisation of
a schema theorem. However, this would still have required
the definition and use of the hyperschema-returning func-
tion � and of the concepts of GP crossover masks and GP
recombination distributions. Also, notice that the set of GP
crossover masks also include masks containing all ones.
These correspond to cloning the first parent. Therefore, by
suitable readjustement of the probabilities pC(m;n)

l , we can
rewrite Equation 9 as

rm;n(y) =
X

l2�C(m;n)

p
C(m;n)

l Æ(m 2 �(y; l))Æ(n 2 �(y; �l)):

(10)
This formula is analogous to the case of crossover defined
by masks for fixed-length binary strings [4].

4 Mixing Matrices for 0/1 Trees

As has already been stated in Section 2.1, for the case of
fixed-length binary strings, the mixing operator M can be
written in terms of a single mixing matrix M0 and a group
of permutation matrices. This works because the permuta-
tion matrices are a representation of a group that acts transi-
tively on the search space. This group action describes the
symmetries that are inherent in the definition of crossover

for fixed-length strings [4]. This idea can be generalised
to other finite search spaces (see [32] for the detailed the-
ory). However, in the case of GP, where the search space is
a set of trees (up to some depth), the amount of symmetry
is more limited and does not seem to give rise to a single
mixing matrix.

In this section we will look at what symmetry does exist
and the simplifications of the mixing operator it produces
when we restrict ourselves to the space of 0/1 trees. These
are trees constructed using primitives from a terminal set
T = f00; 10g and from a function set F =

S
i2�Fi where

Fi = f0i; 1ig, � is a finite subset of N, and the subscripts
0 and i represent the arity of a 0/1 primitive.3 It should
be noted that the semantics of the primitives in 0/1 trees is
unimportant for the theory, and that 0/1 trees are a general-
isation of the notion of binary strings.4

Let 
 be the set of 0/1 trees of depth at most ` (where a pro-
gram containing only a terminal has depth 1). Let L(
) be
the set of full trees of exactly depth ` obtained by using the
primitive set T [Fim where im is the maximum element in
�. We term node-wise XOR the operation which, given two
trees a and b in L(
), returns the 0/1 tree whose nodes are
labelled with the result of the addition (modulo 2) of the
binary labels of the nodes in a and b having corresponding
coordinates; this operator is denoted a� b.

For example, if we represent 0/1 trees in prefix
notation, (1 (1 0 1) (0 0 1)) � (0 (1 0 0) (0 1 1)) =
(1 (0 0 1) (0 1 0)). L(
) is a group under node-wise XOR.

Notice that the definition of � extends naturally to pairs of
trees with identical size and shape.

For each tree k 2 
 we define a truncation function

�k : L(
) �! 


as follows. Given any tree a 2 L(
) we match up the
nodes in k with the nodes in a, recursively:

1. The root nodes are matched.

2. The children of a matched node in k are matched to
children of the corresponding node in a from the left.
Recall that each node in a has the maximum possi-
ble arity, and that a has the maximum possible depth.
Note that the arity of nodes in a will be reduced (if
necessary) to that of the matching nodes in k.

This procedure corresponds to matching by co-ordinates.
The effect of the operator �k on a tree a 2 L(
) is to
throw away all nodes that are not matched against nodes in

3Subscripts will be dropped whenever it is possible to infer the
arity of a primitive from the context.

4The space of 0/1 trees obtained when F = F1 is isomorphic
to the space of binary strings of arbitrary length.
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k. The remaining tree �k(a) will then be of the same size
and shape as k.

For example, suppose the maximum depth is ` = 3
and the maximum arity is also 3. Let a 2 L(
)
be the tree (1 (0 1 1 0) (1 0 1 1) (1 1 1 0)) and let k =
(0 (1 1 0) (0 1)). Then matching nodes and truncating a
produces �k(a) = (1 (0 1 1) (1 0)).

The group L(
) acts on the elements of 
 as follows. Let
a 2 L(
) and k 2 
. Then define

a(k) = �k(a)� k

which means we apply addition modulo 2 on each matched
pair of nodes. We have used the extended definition of �
since �k(a) and k are guaranteed to have the same size and
shape. In our previous example we would have a(k) =
(1 (1 0 1) (1 1)).

We can extend the definition of � further by setting

a� k = a(k)

for any k 2 
 and a 2 L(
). The effect of this is essen-
tially a relabelling of the nodes of the tree k in accordance
with the pattern of ones found in a.

For each a 2 L(
) we define a corresponding r � r per-
mutation matrix �a with

(�a)i;j = Æ((a� i) = j)

Lemma 1. Let m;n; y 2 
 and let a 2 L(
). Then for
homologous crossover

rm;n(y) = ra�m;a�n(a� y)

Proof: Interpreting Equation 9 for 0/1 trees m;n and y, the
following hold:

a�m = a� y () m = y

C(a�m; a� n) = C(m;n)

(a�m) 2 �(a� y; l)() m 2 �(y; l)

and the result follows. The third assertion follows from the
fact that we are relabelling the nodes in tree m according to
the pattern of ones in a, and we relabel the nodes in the hy-
perschema �(y; l) according to exactly the same pattern.2

Let us consider the GP schema G consisting only of “=”
nodes representing the shape of some of the programs in 
.
We denote with 0G the element of 
 obtained by replacing
the = nodes in G with 0 nodes.

Theorem 2. On the space of 0/1 trees with depth at most `
homologous crossover gives rise to a mixing operator

M(x) = hxTM0x; x
TM1x; : : :i

(where we are indexing vectors by the elements of 
). Then
for each fixed shape G of depth not bigger than ` there
exists a mixing matrix

M = M0G

such that if y 2 
 is of shape G then

My = �TaM�a

for some a 2 L(
).

Proof: Let y 2 
 be of shape G as required. Construct a
maximal full tree a of depth not bigger than ` by appending
a sufficient number of 0 nodes to the tree y so that each
internal node in a has im children.5

Now suppose m;n 2 
 are trees which cross together to
form y with probability rm;n(y). Because crossover is as-
sumed to be homologous, the set of the coordinates on the
nodes inmmust be a superset of the set of node coordinates
of G. Likewise for n.

The m;nth component of �TaM�a is

(�TaM�a)m;n =
X
v

(�TaM)m;v(�a)v;n

=
X
v

X
w

(�a)w;mMw;v(�a)v;n

= Ma�1
�m;a�1

�n

= ra�1
�m;a�1

�n(0
G)

= rm;n(a� 0G)

= rm;n(y � 0G)

= rm;n(y)

= (My)m;n

where we have used the lemma to show

ra�1
�m;a�1

�n(0
G) = rm;n(a� 0G)

and a�1 is the inverse of the group element a. For 0/1 trees
a�1 = a since a � a = 0Gm , where Gm is the schema
representing the shape of the trees in L(
). 2

5 A Linear Example

In this section we will demonstrate the application of this
theory to an example. To keep the presentation of the cal-
culations manageable in the space available this example
must perforce be quite simple, but should still be sufficient
to illustrate the key concepts.

For this example we will assume that the function set con-
tains only unary functions, with the possible labels for both

5For example, if ` = 3, im = 3, G is (= = (= = =)) and y =

(1 1 (1 1 1)), then a = (1 (1 0 0 0) (1 1 1 0) (0 0 0 0)).
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functions and terminals being 0 and 1 (i.e.,F = F1 = T =
f0; 1g). As a result we can think of our structures as being
variable length binary strings. We will let ` = 2 (i.e., we
restrict ourselves to strings of length 1 or 2), which means
that r = 6 and


 = f0; 1; 00; 01; 10; 11g:

We will also limit ourselves here to the mixing matrices
for GP one-point crossover and GP uniform crossover; we
could however readily extend this to any other homologous
crossover operator.

5.1 GP one-point crossover

The key to applying this theory is to compute rm;n(y) as
described in Equation 9. In other words, for each y 2 

we need to construct a matrix My = rm;n(y) that contains
the probabilities that GP one-point crossover with parents
m and n will yield y. Since r = j
j = 6, this will yield
six 6 � 6 matrices. In the (fixed-length) GA case it would
only be necessary to specify one mixing matrix, since sym-
metries would allow us to derive the others through per-
mutations of the indices. As indicated in the previous sec-
tion, the symmetries in 0/1 trees case are more complex,
and one can not reduce the situation down to just one case.
In particular we find, as mentioned above, that the set of
mixing matrices for our variable-length GA case splits into
two different subsets, one for y of length 1, and one for y
of length 2, and the necessary permutations are generated
by the group L(
) = f00; 01; 10; 11g.

To make this more concrete, let us consider M0 and M1,
each of which has exactly one non-zero column:6

M0 =

2
666666664

0 1 00 � � �
0 1 0 0 � � �
1 1 0 0 � � �
00 1=2 0 0 � � �
01 1=2 0 0 � � �
10 1=2 0 0 � � �
11 1=2 0 0 � � �

3
777777775

M1 =

2
666666664

0 1 00 � � �
0 0 1 0 � � �
1 0 1 0 � � �
00 0 1=2 0 � � �
01 0 1=2 0 � � �
10 0 1=2 0 � � �
11 0 1=2 0 � � �

3
777777775

6Since these matrices are indexed by variable length binary
strings instead of natural numbers, we have indicated the indices
(0, 1, 00, 01, 10 and 11) along the top and left-hand side of each
matrix. In M0, for example, the value in position (1, 0) is 1 and
(01, 0) is 1=2.

Clearly M1 is very similar to M0. Indeed, Theorem 2
shows that M1 can be obtained by applying a permutation
matrix to M0:

M1 = �T10M0�10;

where

�T10 =

2
666666664

0 1 00 01 10 11

0 0 1 0 0 0 0

1 1 0 0 0 0 0
00 0 0 0 0 1 0
01 0 0 0 0 0 1
10 0 0 1 0 0 0
11 0 0 0 1 0 0

3
777777775
:

The situation is more interesting for the mixing matrices
for y of length 2:

M00 =

2
666666664

0 1 00 01 10 11

0 0 0 1 0 0 0
1 0 0 1 0 0 0

00 0 0 1 0 1=2 0
01 0 0 1 0 1=2 0
10 0 0 1=2 0 0 0
11 0 0 1=2 0 0 0

3
777777775

M01 =

2
666666664

0 1 00 01 10 11

0 0 0 0 1 0 0
1 0 0 0 1 0 0
00 0 0 0 1 0 1=2

01 0 0 0 1 0 1=2
10 0 0 0 1=2 0 0
11 0 0 0 1=2 0 0

3
777777775

M10 =

2
666666664

0 1 00 01 10 11

0 0 0 0 0 1 0
1 0 0 0 0 1 0
00 0 0 0 0 1=2 0
01 0 0 0 0 1=2 0
10 0 0 1=2 0 1 0
11 0 0 1=2 0 1 0

3
777777775

M11 =

2
666666664

0 1 00 01 10 11

0 0 0 0 0 0 1
1 0 0 0 0 0 1
00 0 0 0 0 0 1=2
01 0 0 0 0 0 1=2
10 0 0 0 1=2 0 1

11 0 0 0 1=2 0 1

3
777777775

Here again we can write these mixing matrices as permuta-
tions of M00, i.e.,

Ms = �Ts M00�s

for s 2 f00; 01; 10; 11g. M01, for example, can be written
as

M01 = �T01M00�01

where �01 is as above.
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5.2 GP uniform crossover

Here will just show the mixing matrices M0 andM00 since,
as we have seen, the other four matrices can be readily ob-
tained from these using the permutation matrices �s:

M0 =

2
666666664

0 1 00 01 10 11

0 1 1=2 1=2 1=2 1=2 1=2
1 1=2 0 0 0 0 0
00 1=2 0 0 0 0 0
01 1=2 0 0 0 0 0

10 1=2 0 0 0 0 0
11 1=2 0 0 0 0 0

3
777777775

M00 =

2
666666664

0 1 00 01 10 11

0 0 0 1=2 0 0 0
1 0 0 1=2 0 0 0
00 1=2 1=2 1 1=2 1=2 1=4
01 0 0 1=2 0 1=4 0
10 0 0 1=2 1=4 0 0
11 0 0 1=4 0 0 0

3
777777775

Comparing these matrices to those obtained for one-point
crossover one can see that these are symmetric, where those
for one-point crossover were not, pointing out that uni-
form crossover is symmetric with respect to the parents,
where one-point crossover is not. The matrices for uni-
form crossover also have considerably more non-zero en-
tries than those for one-point crossover, highlighting the
fact that uniform crossover provides more ways to con-
struct any given string.

6 Conclusions

In this paper we have presented the first ever Markov chain
model of GP and variable-length GAs. Obtaining this
model has been possible thanks to very recent develop-
ments in the GP schema theory, which have given us exact
formulas for computing the probability that reproduction
and recombination will create any specific program in the
search space. Our GP Markov chain model is then easily
obtained by plugging this ingredient into a minor exten-
sion of Vose’s model of GAs. This theoretical approach
provides an excellent framework for studying the dynamics
of evolutionary algorithms (in terms of transient and long-
term behaviour). It also makes explicit the relationship be-
tween the local action of genetic operators on individuals
and the global behaviour of the population.

The theory is applicable to GP and variable-length GAs
with homologous crossover [25]: a set of operators where
the offspring are created preserving the position of the ge-
netic material taken from the parents. If one uses only
unary functions and the population is initialised with pro-
grams having a fixed common length, a GP system using

these operators is entirely equivalent to a GA acting on
fixed-length strings. For this reason, in the absence of mu-
tation, our GP Markov chain model is a proper generalisa-
tion Vose’s model of GAs. This is an indication that per-
haps in the future it will be possible to completely unify the
theoretical models of GAs and GP.

In the paper we analysed in detail the case of 0/1 trees
(which include variable length binary strings), where sym-
metries can be exploited to obtain further simplifications in
the model. The similarity with Vose’s GA model is very
clear in this case.

This paper is only a first step. In future research we in-
tend to analyse in more depth the general case of tree-like
structures to try to identify symmetries in the mixing ma-
trices similar to those found for 0/1 trees. Also, we intend
to study the characteristics of the transition matrices for the
GP model, to gain insights into the dynamics of GP.
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Abstract

A probabilistic regular motif language for

protein sequences is evaluated. SRE-DNA is

a stochastic regular expression language that

combines characteristics of regular expres-

sions and stochastic representations such as

Hidden Markov Models. To evaluate its ex-

pressive merits, genetic programming is used

to evolve SRE-DNA motifs for aligned sets

of protein sequences. Di�erent constrained

grammatical forms of SRE-DNA expressions

are applied to aligned protein sequences

from the PROSITE database. Some se-

quences patterns were precisely determined,

while others resulted in good solutions hav-

ing considerably di�erent features from the

PROSITE equivalents. This research es-

tablishes the viability of SRE-DNA as a

new representation language for protein se-

quence identi�cation. The practicality of

using grammatical genetic programming in

stochastic biosequence expression classi�ca-

tion is also demonstrated.

1 INTRODUCTION

The rate of biological sequence acquisition is accelerat-

ing considerably, and this data is freely accessible from

biosequence databases such as PROSITE (Hofmann et

al. 1999). Research in bioinformatics is investigating

more e�ective technology for classifying and analysing

this wealth of new data. One important problem in

this regard is the automated discovery of sequence pat-

terns (Brazma et al. 1998a). A sequence pattern, also

known as a motif or consensus pattern, encodes the

common characteristics of a set of biosequences. From

one point of view, a sequence pattern is a signature

identifying a set of related biosequences, and hence can

be used as a means of database query. Alternatively,

and perhaps more importantly, a motif can also char-

acterizes the salient biological and evolutionary char-

acteristics common to a family of sequences. The use

of computational tools which automatically determine

biologically meaningful patterns from sets of sequences

is of obvious practical importance to the �eld.

The contributions of this research are two-fold. Firstly,

the viability of SRE-DNA, a new motif language, is

investigated. SRE-DNA shares characteristics of de-

terministic regular expressions and stochastic repre-

sentations such as Hidden Markov Models (Krogh et

al. 1994). Since full SRE-DNA is likely too unwieldy

to be practical, this research investigates what restric-

tions to the language are practical for biosequence clas-

si�cation. To do this, genetic programming (GP) is

used to evolve SRE-DNA motifs for aligned sequences.

SRE-DNA's probabilistic basis can be exploited during

�tness evaluation in GP evolution.

A second goal of this research is to test the practi-

cality of logic grammar-based genetic programming

in an application of bioinformatics. The system

used is DCTG-GP, a logic grammar-based GP sys-

tem based on de�nite clause translation grammars

(DCTG) (Ross 2001a). With DCTG-GP, a variety of

constrained grammatical variations of SRE-DNA are

straight-forwardly de�ned and applied towards motif

discovery.

Generally speaking, motif discovery for aligned se-

quences is a simpler problem than for unaligned se-

quences. With aligned sequences, the basic problem

of determining the common subsequences amongst a

set of sequences has been already determined. Never-

theless, a number of fundamental issues regarding the

viability of SRE-DNA are more clearly addressable if

aligned data is studied initially. In the course of these

experiments, it was discovered that motif discovery for

some families of aligned data is very challenging. This
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justi�es studying aligned sequences before commenc-

ing on unaligned data.

Section 2 gives an overview of biosequence identi�-

cation, stochastic regular expressions and DCTG-GP.

Section 3 discusses experiment design and preparation.

Results are reported in Section 4. A discussion con-

cludes the paper in section 5.

2 BACKGROUND

2.1 Biosequence Identi�cation

DNA molecules are double-stranded sequences of the

four base nucleic acids adenine (A), thymine (T), cyto-

sine (C) and guanine (G) (Alberts et al. 1994). The A

and T bases bond together, as do the C and G. Other

molecular forces will cause the strand to bend and con-

volute, creating a 3-dimensional double-bonded struc-

ture essentially unique to the molecule, and critical to

various organic functions. In terms of sequence char-

acterization, one of the strands of bases is adequate

for identi�cation purposes, since the other strand of

bonded base pairs is complementary. A complete

molecule, or a portion of it denoting a particular struc-

ture of interest, is denoted by a sequence of A, T, C

and G bases. A higher level of representation is often

used, in which the 20 unique amino acids created from

triples of nucleic acids are represented. This results in

smaller sequences using a larger alphabet.

The representation and automatic identi�cation of

subsequences in organic molecules has attracted much

research e�ort over the years, and has resulted in

a number of practical applications. New sequences

can be searched for instances of known subsequences

(\aligned"), which can indicate organic properties of

interest, and hence identify their genetic functionality.

Families of sequences can be classi�ed by their distin-

guishing common sequence patterns. Sequence pat-

terns are natural interfaces for biosequence database

access. Sequences are also conducive to mathematical

and computational analyses, which makes them natu-

ral candidates for automated synthesis and search al-

gorithms.

A variety of representation languages have been used

for biosequence identi�cation, including regular lan-

guages (Arikawa et al. 1993, Brazma et al. 1998b),

context{free and other languages (Searls 1993, Searls

1995), and probabilistic representations (Krogh et

al. 1994, Sakakibara et al. 1994, Karplus et al. 1997).

Although languages higher in the Chomsky hierarchy

are more discriminating than lower-level representa-

tions, they may be less e�ciently parsed or synthesized

than than lower{level languages. In many cases, sim-

ple languages such as regular languages are the most

practical representation for biosequence identi�cation

and database access. The PROSITE database, for ex-

ample, uses a constrained regular expression language.

Much work has been done on machine learning tech-

niques for families of biosequences using regular lan-

guages as a representation language (Brazma et al.

1998a, Baldi and Brunak 1998). GP has been used

successfully to evolve regular motifs for unaligned se-

quences (Hu 1998, Koza et al. 1999).

2.2 Stochastic Regular Expressions

Stochastic Regular Expressions (SRE) is a probabilis-

tic regular expression language (Ross 2000). It is es-

sentially a conventional regular expression language

(Hopcroft and Ullman 1979), embellished with prob-

ability �elds. It is similar to a stochastic regular lan-

guage proposed by (Garg et al. 1996), where a number

of mathematical properties of the language are proven.

Let E range over SRE, � range over atomic actions, n

range over integers (n � 1), and p range over proba-

bilities (0 < p < 1). SRE syntax is:

E ::= � j E : E j E�p j E+p

j E1(n1) + :::+Ek(nk)

The terms denote atomic actions, concatenation, iter-

ation (Kleene closure and '+' iteration), and choice.

Plus iteration, E+p, is equivalent to E : E�p. The

probability �elds work as follows. With choice, each

term Ei(ni) is chosen with a probability equivalent to

ni=�j(nj). With Kleene closure, each iteration of E

occurs with a probability p, and the termination of E

occurs with a probability 1� p. Probabilities between

terms propagate in an intuitive way. For example, with

concatenation, the probability of E : F is the proba-

bility of E multiplied by the probability of F . With

choice, the aforementioned probability of a selected

term is multiplied by the probability of its chosen ex-

pression Ei. Each iteration of Kleene iteration also

includes the probability of the iterated expression E.

The overall e�ect of this probability scheme is the def-

inition of a probability distribution of the regular lan-

guage denoted by an expression. Each string s 2 L(E)

has an associated probability, while any s 62 L(E) has

a probability of 0. It can be shown that SRE de�nes

a well-formed probability function (the sum of all the

probabilities for all s 2 L(E) is 1).

An example SRE expression is (a : b�0:7)(2)+ c�0:1(3).

It recognizes string c with Pr = 0:054 (the term with

c can be chosen with Pr = 3

2+3
= 0:6; then that term
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iterates once with Pr = 0:1; �nally the iteration ter-

minates with Pr = 1 � 0:1 = 0:9, giving an overall

probability of 0:6 � 0:1� 0:9 = 0:054). The string bb

is not recognized; its probability is 0.

An SRE interpreter is implemented and available for

GP �tness functions. To test whether a string s is a

member of an SRE expression E, the interpreter at-

tempts to consume s with E. If successful, a proba-

bility p > 0 is produced. Unsuccessful matches will

result in probabilities of 0. The SRE-DNA interpreter

only succeeds if an entire SRE-DNA expression is suc-

cessfully interpreted. For example, in E1 : E2, if E1

consumes part of a string, but E2 does not, then the

interpretation fails and yields a probability of 0.

As with conventional regular expressions (Hopcroft

and Ullman 1979), string recognition for SRE expres-

sions is of polynomial time complexity. Note, however,

that the interpretation of regular expressions can be

exponentially complex with respect to overall expres-

sion size. For example, in ((a+ b)�)�, even though the

expression's language is equivalent to that for (a+b)�,

there is a combinatorial explosion in the number of

ways the nested iterations can be interpreted with re-

spect to one other: a string of size k can be interpreted

2k di�erent ways.

SRE-DNA, a variant of SRE, is used in this paper. A

number of embellishments and constraints are used,

which are practical for biosequence identi�cation. De-

tails are given in Section 3.1.

2.3 DCTG-GP

expr ::= guardedexpr^^A, expr^^B

<:>

(construct( E:F ) ::- A^^construct(E),

B^^construct(F)),

(recognize(S, S2, PrSoFar, Pr) ::-

check_prob(PrSoFar),

A^^recognize(S, S3, PrSoFar, Pr1),

check_prob(Pr1),

B^^recognize(S3, S2, Pr1, Pr)).

Figure 1: DCTG rule for SRE-DNA concatenation

DCTG-GP is a grammatical genetic programming sys-

tem (Ross 2001a). It is inspired by other work in gram-

matical GP (Whigham 1995, Geyer-Shulz 1997, Ryan

et al. 1998), and in particular, the LOGENPRO sys-

tem (Wong and Leung 1997). Like LOGENPRO,

DCTG-GP uses logical grammars for de�ning the tar-

get language for evolved programs. The logic grammar

formalism used is the de�nite clause translation gram-

mar (DCTG) (Abramson and Dahl 1989). A DCTG

is a logical version of a context-free attribute gram-

mar, and it permits the complete syntax and seman-

tics of a language to be de�ned in one uni�ed frame-

work. DCTG-GP is implemented in Sicstus Prolog

3.8.5 (SICS 1995).

In a DCTG-GP application, the syntax and seman-

tics of a target language are de�ned together. Each

DCTG rule contains a syntax �eld and one or more

semantic �elds. The syntax �eld is the grammatical

de�nition of a language component, while the seman-

tic �elds encode interpretation code, tests, and other

language and problem speci�c constraints. The gen-

eral form of a rule is:

H ::= B1; B2; :::; Bj

<:>

S ::� G1; G2; :::; Gk :

The rule labeled with nonterminal H is a grammar

rule. Each term Bi is a reference to a terminal or non-

terminal of the grammar. Embedded Prolog goals may

also be listed among the Bi's. These grammar rules

are used to denote programs in the population, which

are in turn implemented as derivation trees. Hence

DCTG-GP is a tree-based GP system. The rule la-

beled S is a semantic rule associated with nonterminal

H . Its goals Gi may refer to semantic rules associated

with the nonterminal references Bi, or calls to Prolog

predicates.

Figure 1 shows the DCTG-GP rule for SRE-DNA's

concatenation operator. The grammatical rule states

that concatenation consists of a guarded expression

followed by an expression. The A and B variables are

used for referencing parts of the grammar tree for these

nonterminals within the semantic rules. The �rst se-

mantic rule construct builds a text form for the rule,

for printing purposes. The \:" operator denotes con-

catenation. The second semantic rule recognize is

used during SRE-DNA expression interpretation. The

argument S is a string to be consumed, and S2 is the

remainder of the string after consumption. The value

PrSoFar is the overall probability thus far in the in-

terpretation, and Pr is the probability after this ex-

pression's interpretation is completed. The references

to recognize in the semantic rule are recursive calls

which permit the two terms in the concatenation to

recognize portions of the string. Finally, check prob

determines if the current running probability is larger

than the minimal required for interpretation to con-

tinue.
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3 EXPERIMENT DETAILS

3.1 SRE-DNA Variations

1. expr ::= guard j choice j guard :expr

j expr�p j expr+p

choice ::= guard(n) + guard(n)

j guard(n) + choice

guard ::= mask j mask :skip

skip ::= x�p j x+p

2. expr ::= guard j guard :expr j expr+p

guard ::= mask j mask :skip

skip ::= x+p

3. expr ::= guard j guard :expr j expr :guard

j expr�p j expr+p

guard ::= mask j mask :skip

skip ::= x�p j x+p

4. expr ::= guard j choice j expr :expr

j expr�p j expr+p

choice ::= guard(n) + guard(n)

j guard(n) + choice

guard ::= mask j mask :skip

skip ::= x�p j x+p

Figure 2: SRE-DNA Variations

A goal of this research is to explore how language

constraints a�ect the quality of motif solutions. To

this end, four di�erent grammatical variations of SRE-

DNA are de�ned in Figure 2. SRE-DNA embellishes

SRE as follows. Firstly, masks are introduced. The

mask [�1:::�k] denotes a choice of atoms �i each with a

probability 1=k. This is equivalent to �1(1)+:::+�k(1)

in SRE. Secondly, skip terms are de�ned. A skip term

x�p is a Kleene closure over the wild-card element x,

which substitutes for any atom. The skip expression

x+p is equivalent to x :x�p.

A summary of the SRE-DNA variants in Figure 2 is

as follows. Grammar 1 uses constrained concatenation

and choice expressions, in which guards are used. A

guard is a term borrowed from concurrent program-

ming, and speci�es a constrained action. Guards pro-

mote e�cient interpretation, because expressions are

forced to consume string elements whenever a guard

is encountered. It also reduces the appearance of iter-

ation and choice in concatenation expressions, which

helps reduce the scope of the target expressions. An

intention for doing this is to try to make SRE-DNA

have similar characteristics to conventional motif lan-

guages such as PROSITE's. In addition, the grammar

prohibits nested iteration. This prevents some of the

e�ciency problems discussed in Section 2.2. Three

minor variations of grammar 1 are used, each having

di�erent maximum iteration ranges (\i"): 1a (i=0.5);

1b (i=0.1); and 1c (i=0.2).

Grammar 2 is the closest to the PROSITE language.

Choice is not used, and all skip and iterations use \+"

iteration. It is also the only grammar that permits

nested iteration. Grammar 3 is a minor relaxation of

grammar 1, in which guards can be the �rst or second

term in a concatenation. Nested iteration is prohib-

ited. Finally, Grammar 4 is the least restrictive gram-

mar, where concatenation uses general SRE-DNA ex-

pressions in both terms. Choice expressions still use

guards, however, and nested iteration is prohibited.

It should be mentioned that a full version of SRE-

DNA without guards or nested iteration constraints

was initially attempted. Expression interpretation was

very ine�cient in that language, due to the prepon-

derance of nested \*"{iterations, as well as iterations

within choice and concatenation terms. The above

constrained grammars are more e�cient to interpret,

and do not su�er any practical loss of expressiveness,

at least with respect to the problem of motif recogni-

tion tackled here.

3.2 Fitness Evaluation

Fitness evaluation tests an expression's ability to rec-

ognize positive training examples, and to reject nega-

tive examples. Positive examples comprise a set of N

aligned protein sequences. Negative examples are N

randomly generated sequences, each having approxi-

mately the same length as the positive sequences.

Consider the formula:

Fitness = N +NegF it� PosF it

where NegFit and PosFit are the negative and posi-

tive training scores respectively. A �tness of 0 is the

ideal \perfect" score. It is not attainable in practice,

because the probabilities incorporated into PosFit are

typically small.

Positive example scoring is calculated as:

PosF it =
X

ei2Pos

maximum(Fit(e0
i
))

where Pos is the set of positive training examples, and

e0
i
is a su�x of example ei (ie. ei = se0

i
; jsj � 0). For

each example in Pos, a positive test �tness Fit is found

for all its su�xes, and the maximum of these values is

used for the entire example. Fitness evaluation incor-

porates two distinct measurements: the probability of
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recognizing an example, and the amount of the exam-

ple recognized in terms of its length:

Fit(e) =
1

2

�
Pr(smax) +

jsmaxj

jej

�

Here, smax is the longest recognized pre�x of e, jsmaxj

is its length, and Pr(smax) is its probability of recog-

nition. The �rst term accounts for the probability ob-

tained when recognizing substring smax, and the sec-

ond term scores the size of the covered substring rel-

ative to the entire example. The �tness pressure ob-

tained with Fit is to recognize an entire example string

with a high probability. In early generations, the se-

quence cover term dominates the score, which forces

�tness to favour expressions that recognize large por-

tions of examples. The probability �eld comes into

consideration as well, however, and is especially perti-

nent in later generations when expressions recognize a

large proportion of the example set. At that time, the

probability �tness measure favours expressions that

yield high probabilities.

Negative �tness scoring is calculated as:

NegF it = maximum(Fit(ni)) �N

where ni 2 Neg (negative examples). The highest

obtained �tness value for any recognized negative ex-

ample su�x is used for the score. A discriminating

expression will not normally recognize negative exam-

ples, however, and so Fit(ni) = 0 for most ni.

3.3 GP Parameters

Table 1 lists parameters used for GP runs. Although

most parameters are self{explanatory, some require ex-

planation. The initial population is oversampled, and

culled at the beginning of a run. Reproduction may

fail, for example, due to tree size limitations, and so a

maximum of 3 reproduction attempts are undertaken

before the reproduction is discarded. The terminals

are a subset of amino acid codons, determined by the

alphabet used in the positive training examples.

Crossover and mutation use the methods commonly

applied by grammatical GP systems that denote pro-

grams with derivation trees. For example, when a sub-

tree node of nonterminal type t is selected in one par-

ent, then a similar node of type t will be selected in

the other parent, and the two selected subtrees are

swapped. Some SRE speci�c crossover and mutation

operators are used. SRE crossover permits mask el-

ements in two parents to be merged together. SRE

mutation implements a number of numeric and mask

mutations. The SRE mutation range parameter speci-

Table 1: GP Parameters

Parameter Value

GA type generational

Functions SRE-DNA variants

Terminals amino acid codons,

integers, probabilities

Population size (initial) 2000

Population size (culled) 1000

Unique population yes

Maximum generations 150

Maximum runs 10

Tournament size 7

Elite migration size 10

Retries for reproduction 3

Prob. crossover 0.90

Prob. mutation 0.10

Prob. internal crossover 0.90

Prob. terminal mutation 0.75

Prob. SRE crossover 0.25

Prob. SRE mutation 0.30

SRE mutation range 0.1

Max. depth initial popn. 12

Max. depth o�spring 24

Min. grammar prob. 10�12

Max. mask size 5

�es that a numeric �eld is perturbed �10% of its orig-

inal value. Mask mutations include adding, removing,

or changing a single item from a mask.

The minimum grammar probability value speci�es the

minimal probability used by the SRE evaluator before

an expression interpretation is preempted. This im-

proves the e�ciency of expression evaluation by prun-

ing interpretation paths with negligibly small proba-

bilities.

4 RESULTS

The initial test case is the amino acid oxidase fam-

ily of sequences. It is completely de�ned by a rela-

tively small example set (8 unique sequences in the

PROSITE database as of November, 2000). Table 2

shows the training results for the SRE-DNA grammars

in Figure 2. (Having only 8 examples precluded the

ability to perform testing on the results). �Pr is the

sum of recognized probabilities for all the positive ex-

amples. The best �tness and �Pr �elds are given for

the top solution in the 10 runs for each case, while the

average �Pr is an average of all the solutions from the

10 runs. In the 60 solutions obtained in all these runs,

only one expression was unable to recognize the entire
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PROSITE ) [ilmv](2) : h : [ahn] : y : g : x : [ags](2) : x : g : x(5) : g : x : a

Grammar

1a [iglv] : x+:12 : h : x+:12 : y : (g : x+:45 : g : x+:47 : [ghqs] : x+:47 :

(g : x+:47(947) + [fghqs] : x+:14(101) + [chmvy] : x+:14(842)))+:12

1b [ilv] : x+:1 : h : x+:1 : y : g : x+:1 : g : x+:1 : [gq] : x+:1 : [ghis] : x+:1

: g : x+:1 : ([aqst](325) + [afsw] : x�:1(210) + [fhnqs](223))�:1

1c [ilv] : x+:1 : h : x+:1 : y : x�:19 : g : x+:19

: (g : x+:19 : [gtq] : x+:19 : [ghs] : x+:1 : g : x+:1 : a)+:1

2 [ilv] : x+:1 : h : x+:1 : y : x+:1 : [afh] : x+:1 : [gs] : x+:1 : g : x+:19

: [smqt] : x+:19 : [wy] : g : x+:1 : (a+:11)+:1

3 [ilv] : x+:11 : h : x+:1 : y : g : x+:19 : [sg] : x+:19 : g : x+:1 : [aqst]

: x+:1 : [ghs] : x+:13 : g : x+:1 : a

4 ([ligv] : x+:14 : h : x+:11 : y : g : x+:17 : [gs] : x+:18 : g : x+:17)+:11

: [astqi] : x+:15 : ([hgs] : x+:11 : g : x+:19(567) + ([ihswl] : x+:15

: ([hi] : x+:11)+:15 : ([ligv] : x+:11 : h : x+:11 : (y : g : x+:19)+:12

: [gs] : x+:17(567) + (h : x+:14)+:15(4)) : g : x+:17)+:11

: (((y : g : x+:19)+:12 : [gs] : x+:18 : g : x+:19)+:12 : [gs] : x+:17(567)

+g : x+:1)+:15(4)) : g : x+:17 : g : x+:17(4))

Figure 3: Best solutions for various grammars: amino acid oxidase

Table 3: Solution statistics for other families (grammar 2)

Training Testing (best soln)

Family Set size Seq size 100% solns Set size True pos (%) False neg (%)

a) Aspartic acid 44 12 10 452 100 0.2

b) Zinc �nger, C2H2 type 29 23 9 678 93 1

c) Zinc �nger, C3HC4 type 21 10 10 168 100 0

d) Sugar transport 1 18 18 0 190 88 1

e) Sugar transport 2 18 26 2 178 100 12

f) Snake toxin 18 21 10 127 51 0

g) Kazal inhibitor 20 23 10 125 93 0

Table 2: Solution statistics (training) for SRE-DNA

variations: amino acid oxidase. Grammars 1a, 1b, and

1c use maximum iteration limits of 0.5, 0.1, and 0.2

respectively.

Best Best Avg

Grammar Fitness � Pr � Pr

1a 3.999611 0.00078 0.000140

1b 3.999977 0.00005 0.000009

1c 3.999044 0.00191 0.000356

2 3.998157 0.00369 0.000588

3 3.992940 0.01412 0.002502

4 3.999396 0.00121 0.000272

training set. Clearly, version 3 of SRE-DNA (unre-

stricted, but no choice operator) yielded the strongest

solutions.

Figure 3 shows the best solutions obtained for the runs

in Table 2, along with the PROSITE expression used

to obtain the training set. Note that PROSITE mo-

tifs are typically made manually by scientists, and are

error-prone. While similarities are often seen between

the GP solutions and PROSITE expression, there are

also di�erences in the way consensus patterns are han-

dled between them. Note how E+p, S�p, and x�p are

nonexistent in the best overall solution (grammar 3).

It seems to contradict conventional GP wisdom that

this richer grammar containing these superuous op-

erators performs better than grammar 2, which omits

these operators in the �rst place. One hypothesis for

this is that the iterative terms in grammar 3 help con-

serve and transport useful genetic material from early

generations, but disappears later.

The solution motif that least matches the others is the

one from grammar 4 (unrestricted with choice). This

expression su�ers from bloat, in which intron mate-

rial is attached to low-probability choice terms. Even

though such intron material may not contribute to lan-

guage membership, it de�nitely has a negative impact
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a) Aspartic P : c : x : [dn] : x(4) : [fy] : x : c : x : c

S : c : x+:19 : [dn] : x+:19 : [fy] : x+:1 : c : x+:1 : c

b) Zinc C2H2 P : c : x(2; 4) : c : x(3) : [cfilmvwy] : x(8) : h : x(3; 5) : h

S : c : x+:19 : c : x+:19 : [afkr] : x+:19 : [fhqrs] : x+:19 : [ahlrs] : x+:19 : [hlnt] : x+:19

: [hikrv] : x+:19

c) Zinc C3HC4 P : c : x : h : x : [filmvy] : c : x(2) : c : [ailmvy]

S : c : x+:1 : h : x+:19 : c : x+:19 : c : x+:1

d) Sugar 1 P : [agilmstv] : [afgilmsv] : x(2) : [ailmsv] : [de] : x : [afilmvwy] : g : r

: [kr] : x(4; 6) : [agst]

S : [agilm] : x+:32 : [dilr] : x+:32 : g : r : x+:32 : [gilmv] : x+:32

e) Sugar 2 P : [filmv] : x : g : [afilmv] : x(2) : g : x(8) : [fily] : x(2) : [eq] : x(6) : [kr]

S : [filmv] : x+:19 : (g : x+:48 : g : x+:48 : [fgily] : x+:48 : [ailtv] : (x)+:48)+:21

f) Snake P : g : c : x(1; 3) : c : p : x(8; 10) : c : c : x(2) : [denp]

S : g : c : x+:12 : c : x+:49 : [gkrv] : x+:48 : [gl] : x+:48 : c : c : x+:12 : [kt] : x+:1

g) Kazal P : c : x(7) : c : x(6) : y : x(3) : c : x(2; 3) : c

S : c : x+:39 : [cp] : x+:39 : [acdgs] : x+:39 : y : x+:11 : [nsy] : x+:1 : c : x+:38 : c+:11

Figure 4: PROSITE (P) and best solutions (S) for other families (grammar 2)

on the overall probability distribution of a motif.

The solutions generated from a single experiment can

often vary considerably. Consider this alternate solu-

tion from the grammar 1c runs (�Pr = 0:00007):

[ilv] : [iv] : h : x+:1 : y : x+:19 : [ghs] : x+:19 : g

: x+:19 : [ghst] : x+:19 : g : x+:19

Comparing it with the solution for 1c in Figure 3, it

more precisely discriminates the beginning of the se-

quence.

Experiments using other families of sequences were un-

dertaken using grammar 2. Training and testing re-

sults are shown in Table 3. The maximum iteration

limit was changed for di�erent families, in an attempt

to address the relative range of skipping allowed in the

corresponding PROSITE expressions. \100% solns"

indicate the number of solutions from the 10 runs that

recognize the entire set of training examples, \True

pos" is the proportion of true positives (positive ex-

amples correctly identi�ed from the testing set), and

\False neg" is the proportion of the false negatives

(negative examples falsely identi�ed as being member

sequences). The positive and negative testing sets are

the same size.

The testing results suggest that nearly all of the ex-

periments found acceptable solutions. One exception

is the snake toxin case, whose positive testing results

are poor. This is probably due to over-training on an

inadequately small training set. The sugar transport

examples (d and e) were also challenging. Experiment

(d) yielded no expressions which completely recognized

the entire training set. Considering the results of Ta-

ble 2, better results might have arisen if grammar 3

had been used instead of grammar 2. Also note that

a strong overall probability score does not necessar-

ily directly correlate with a high testing score. This

is because a motif might recognize a lower-proportion

of true positives, but with high probabilities. A good

solution will balance the probability distribution and

positive example recognition.

The motif expressions for the best solutions in Table 3

are given in Figure 4. In the aspartic and zinc C3HC4

experiments (a, c), all the runs generated the identi-

cal expression. In the aspartic case, the solution is

nearly a direct match to the PROSITE expression, ex-

cept that SRE-DNA's probabilistic skipping is used.

In the solution for experiment (c), evolution chose

skip expressions instead of the PROSITE [filmvy] and

[ailmvy] terms. The preference of skip terms instead

of masks was not always the case, as is seen in other

solutions in Figure 4.

An interesting characteristic of many of the evolved

motifs using grammar 2 is that the + iteration oper-

ator usually evolved out of �nal expressions. In the

80 grammar 2 motifs evolved for all the protein fam-

ilies studied, only 28 motifs used the iteration opera-

tor. In three families (aspartic acid, zinc �nger 2, and

snake toxin), none of the solution motifs used itera-

tion. When iteration arose, it was often highly nested,

indicating that it was being used as intron code. Even

though iteration is not an important operator for ex-

pressing these motifs, it does seem to be bene�cial for

evolution performance, as was seen earlier in Table 2.

Regular expressions are coarse representations of the

3D structure relevant to a protein's organic functional-

ity. Nevertheless, it is interesting to consider whether

126 GENETIC PROGRAMMING



any of the evolved motifs have captured the essential

biological feature of the given protein. In some cases,

the important features were indeed found. For exam-

ple, in the snake toxin example, the four c's evident

in both the PROSITE and SRE-DNA motifs are in-

volved in disul�de bonds. In the aspartic acid motif,

the hydroxylation site at the d or n codon is correctly

identi�ed. In the sugar 1 example, part of a strong

sub-motif \g : r : [kr]" in the PROSITE source is seen

in the SRE-DNA motif (the \g : r" term was found).

5 CONCLUSION

This research establishes that SRE-DNA is a viable

motif language for protein sequences. SRE-DNA ex-

pressions were successfully evolved using grammatical

GP, as implemented with the DCTG-GP system. A

number of families were tested, and acceptable re-

sults were usually obtained. Like other regular mo-

tif languages, SRE-DNA is most practical for small-

to medium-sized sequences, since larger sequences re-

quire correspondingly large expressions that generate

relatively miniscule probabilities. Variations of SRE-

DNA were tried, and preliminary results show that

the most successful variation is one with unrestricted

non-nested iteration, guards, and no choice operator.

The choice operator is de�nitely detrimental, as it in-

creases the frequency of intron material. Although the

iteration operator was not important in �nal solutions,

using it enhances evolution performance. One hypoth-

esis for this is that iteration acts as a transporter of

genetic material in early generations. Further testing

on more families of sequences should con�rm these re-

sults.

The style of motifs obtained is highly dependent upon

grammatical constraints. Besides the kinds of gram-

mar restrictions tested in the experiments, such factors

as minimum and maximum iteration limits and max-

imum mask sizes are also critical factors in the char-

acter of realized motifs. Mask usage can be increased

by reducing the maximum skip iteration limit, thereby

increasing the likelihood of more guarded terms, and

hence masks. Increasing the maximummask size, how-

ever, does not result in better solutions. Larger masks

tend to generate less discriminating motifs (higher

false negative rates), and also are less e�ciently in-

terpreted. If the maximum iteration limit is set too

large, evolved expressions tend to take the form:

(unique prefix) : (x)+:9 : (unique suffix)

In other words, evolution tends to �nd an expression

that has two discriminating components for the begin-

nings and ends of sequences, while it skips the majority

of the sequence in between. By reducing the iteration

limit, more interesting motifs are obtained.

Multiple runs often �nd varying solutions that iden-

tify di�erent consensus patterns within sequences. It

is worth considering whether there is some means

by which di�erent solutions might be reconciled or

\merged" together. Of course, the best way to judge a

consensus pattern is to allow a biologist to examine it,

in order to determine whether the identi�ed patterns

are biologically meaningful. It is worth remembering

that grammatical motifs are crude approximations of

the real relevant biological factor - the 3D shape of the

protein molecule.

One automatic optimization that is easily applied to

evolved motifs is to simplify mask terms by removing

extraneous elements. This has two e�ects. First, it in-

creases the probability performance of expressions, be-

cause smaller masks have proportionally larger proba-

bilities for selected elements. Secondly, smaller masks

make expressions more discriminating. This is easy to

see, since a mask of one element is the most discrim-

inating, while a skip term is the least (it is akin to a

mask of all elements).

Recently, SRE-DNA has been applied successfully

in synthesizing motifs for unaligned sequences (Ross

2001b). The results in this paper have been indispens-

able for this new work, since it is now known which

versions of SRE-DNA are apt to be most successful.

The knowledge that the choice operator is impractical

and should be ignored is very helpful.

This research is similar in spirit to that by Hu, in which

PROSITE-style motifs were for unaligned protein se-

quences (Hu 1998). Hu used demes and local optimiza-

tion during evolution, unlike this work, which used a

single population and no local optimization. Hu also

seeds the initial population with terms generated from

the example proteins. (Koza et al. 1999) have used

GP to evolve regular motifs for proteins. One solution

performed better than the established motif created

by experts. Their use of ADF's was advantageous for

the proteins analyzed, given the many instances of re-

peated patterns.
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Abstract

A new technique for multi-objective
optimization is presented that al-
lows to include priorities. But in
contrast to previous techniques they
can be included very easily and do
not require much user interaction.
The new approach is studied from
a theoretical and practical point of
view. The main di�erences to ex-
isting methods, like relation domi-
nate and favor, are discussed. An
experimental study of applying pri-
orities in heuristics learning based
on Genetic Programming (GP) is de-
scribed. The experiments con�rm
the advantages presented in compar-
ison to several other techniques.

1 Introduction

When applying optimization techniques, it
should be taken into account that many prob-
lems in real-world applications depend on sev-
eral independent components. This is one of
the reasons why several approaches to multi-
objective optimization have been proposed in
the past (see e.g. [13]). They mainly di�er in
the way the elements are compared and in the
granularity of the ranking. One major draw-
back of most of these methods is that a lot of
user interaction is required. (For a more de-
tailed description of the di�erent models and

a discussion of the main advantages and dis-
advantages see Section 3).

With applications becoming more and more
complex, the user often does not have enough
information and insight to guide the tool. In
[5], a new relation has been introduced that
allows to rank elements with a �ner granular-
ity than [8], keeping the main advantages of
the model. Experimental studies have shown
that this model is superior to the \classi-
cal" approach of relation dominate [9]. Even
though, originally developed for Evolutionary
Algorithms (EAs), recently it has also been ap-
plied in the �eld ofGenetic Programming (GP)
[10]. One of the major drawbacks of the model
of [5] is that the handling of priorities is not
covered.

In this paper we present an extension of [5]
that allows to work with priorities and at the
same time keeps all the advantages of the orig-
inal model. Experimental results in the �eld of
GP-based heuristics learning for minimization
of Binary Decision Diagrams (BDDs) [2] show
that the approach obtains the best result in
comparison to previously published methods.

In the next section we �rst briey review the
application of GP-based heuristics learning.
Multi-objective optimization is discussed in
detail in Section 3, where we put special em-
phasis on handling of priorities. In Section 4
the experimental results are described and dis-
cussed. Finally, the paper is summarized.

129GENETIC PROGRAMMING



2 Basic Concepts

We assume that the reader is familiar with
GA and GP concepts and refer to [4, 10] for
details. A model for heuristics learning with
GAs has been proposed in [7]. Known basic
problem solving strategies are used as heuris-
tics, and ordering and frequency of the strate-
gies is optimized by evolution. Recently, a
generalization to the GP domain has been
reported [6]. The multi-objective optimiza-
tion approach that is presented in this paper
has been used during heuristics learning for
BDD minimization and �rst experiments were
given. Therefore, we give a brief review of
GP -based heuristics learning and the result-
ing BDD minimization method to make the
paper self-contained.

2.1 Heuristics Learning

For learning heuristics in order to �nd good so-
lutions to an optimization problem, it is neces-
sary that several (non-optimal) strategies solv-
ing the problem can be provided. Typically,
for di�erent classes of problem instances there
are also di�erent strategies that perform best.
A strategy that behaves well on one problem
class may return poor results when being ap-
plied to another problem class. Thus, it is
promising to learn how to combine the strate-
gies to heuristics that can be applied success-
fully to most or even all classes of problems.

The learning process by GP and for a better
understanding, some fundamental terms are
introduced by the following

De�nition 1 Given an optimization problem
P and a non-empty set of di�erent non-
optimal strategies B = fb1; : : : ; bmaxg to solve
the problem. Then the elements of B are called
BOMs (Basic Optimization Modules).

Moreover, a heuristics for P is an algorithm
that generates a sequence of BOMs.

During evolution, the strategies are combined
to generate heuristics that are the individuals
in the population. The �tness of an individual

can be evaluated by application of the heuris-
tics to a training set of problem instances. The
target is to �nd heuristics that perform well
according to some given optimization criteria.
Additionally, a good generalization is impor-
tant, i.e. a heuristics that returns good results
for the training set examples should also per-
forms well on unknown instances. Note that
for this, the handling of the di�erent crite-
ria, i.e. the special multi-objective optimiza-
tion approach, plays a critical role for the suc-
cess of the evolutionary process.

2.2 BDD Minimization by Genetic
Programming

Binary Decision Diagrams (BDDs) [2] are a
state-of-the-art data structure often used in
VLSI CAD for eÆcient representation and ma-
nipulation of Boolean functions. BDDs suf-
fer from their size being strongly dependent
on the variable ordering used. In fact, BDD
sizes may vary from linear to exponential for
di�erent orderings. Optimization of variable
orderings for BDDs is diÆcult, but neverthe-
less, successful strategies for BDD minimiza-
tion that are based on dynamic variable order-
ing have been reported, see e.g. sifting [11].

For heuristics learning, the strategies sifting
(Sift), group sifting (Group), symmetric
sifting (Symm), window permutation of size
3 and 4, respectively, (Win3, Win4) are used
as BOMs. For all these techniques there is an
additional BOM that iterates the method un-
til convergence is reached, and the \empty"
operator Noop completes the set of BOMs B.

The individuals of the GP approach for BDD
minimization consist of trees with leaf nodes
labeled with BOMs and inner operator nodes
that belong to di�erent types. During eval-
uation of the heuristics, the tree is traversed
by a depth-�rst-search-based method in order
to generate a at sequence. The types of the
inner nodes decide if

� both subtrees are evaluated subsequently
(Concat),
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� according to the truth value of a given
condition either the left or the right son
is considered (If) or

� evaluation of the sons is iterated until a
truncation condition is ful�lled (While).

For recombination, two crossover operators are
provided. While Cat concatenates the two
parents, the more sophisticated Merge does
the same for subtrees of the parents and by
that, bloating can be prevented. In addition to
this, there are four mutation operators that ex-
change BOMs (BMut), node types (CiMut,
CwMut) and modify conditions of If-nodes
(IfMut), respectively. A probability table de-
termines the frequencies for using the di�erent
operators. (For more details see [6].)

3 Multi-Objective Optimization with
Priorities

In this section, the multi-objective aspect
for solving optimization problems is analyzed.
Without loss of generality we consider only
minimization problems.

For n optimization criteria, an objective vector
(c1; : : : ; cn) 2 R

n

+ of values for these criteria
completely characterizes a solution belonging
to the search space �. Thus, solutions can
be identi�ed with objective vectors and as a
consequence, � � R

n

+
.

In most cases some or all of the ci's are mu-
tually dependent, and often conicts occur,
i.e. an improvement in one objective ci leads to
a deterioration of cj for some j 6= i. This must
be taken into account during the optimization
process. If priorities have to be considered, a
good handling of multi-objective optimization
becomes even more complex.

3.1 Previous Work

In the past, several techniques for ranking so-
lutions according to multiple optimization cri-
teria have been developed. Some approaches
de�ne a �tness function f : Rn

+ 7! R+ that

maps solutions c to one scalar value f(c). The
most commonly used method is linear combi-
nation by Weighted Sum�.

Values for the ci's (1 6 i 6 n) are weighted by
constant coeÆcients Wi, and f(c) is given by

f(c) =

nX

i=1

Wi � ci:

The �tness value is used for comparison with
the �tness of other solutions. Obviously, crite-
ria with large weights have more inuence on
the �tness than those with small coeÆcients.

There are other methods that compare solu-
tions based on one of the relations which are
introduced by

De�nition 2 Let c = (c1; : : : ; cn) and d =
(d1; : : : ; dn) 2 � be two solutions. The rela-
tions �d (dominate) and �f (favor) � ���
are de�ned by

c �d d :, 9i : ci < di ^

8i : ci 6 di (1 6 i 6 n)

c �f d :, jfci < dij1 6 i 6 ngj >

jfci > dij1 6 i 6 ngj

We say that c dominates d if c �d d and c �f d

means that c is favored to d.

�d is a partial ordering on any solution set
S � � and the set P � S that contains all
non-dominated solutions in S is called pareto-
set. In [9], the Dominate approach that ap-
proximates pareto-sets has been proposed.

An interactive technique for multi-objective
optimization that divides � into three sub-
sets containing solutions of di�erent satis�a-
bility classes has been reported in [8]. It was
generalized to the use of a variable number of
satis�ability classes in [5]. The classes can be
represented by the strongly connected compo-
nents in the relation graph of �f and hence
they can be computed by known graph algo-
rithms. By this, it becomes possible to classify

�This is also the name of the method.
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solutions c 2 �. We refer to this technique
(introduced in [5]) as Preferred in the fol-
lowing. If priorities have to be handled, lexi-
cographic sorting is used instead of �f . This
method will be called Lexicographic in fur-
ther sections.

3.2 Drawbacks of Existing Approaches

TheWeighted Sum method is most popular
for multi-objective optimization since it is easy
to implement and allows to scale objectives.
However, there are two major drawbacks:

1. Priorities cannot be handled directly but
only by huge penalty weights. If there
are many di�erent priorities, the �tness
function becomes very complex by that.

2. For adjusting the weights, problem spe-
ci�c knowledge is necessary. Usually,
good settings for the weights are not
known in advance and for �nding and tun-
ing them in experiments much e�ort has
to be spent.

The approach proposed in [8] does not use
weights that have to be adjusted, but it is in-
teractive and therefore additional e�ort by the
user is required, too. Moreover, the granular-
ity of the method is very coarse since the solu-
tions are divided in three di�erent classes only.
Preferred is a generalization of that tech-
nique that overcomes this drawback, i.e. an
arbitrary number of satis�ability classes can
be handled. By that, objectives with nearly
the same importance can be optimized in par-
allel conveniently. However, priorities can not
be considered by preferred and in the ap-
proach presented in [5], Lexicographic is
applied instead of Preferred if di�erent pri-
orities occur. By that, the following disadvan-
tages are implied:

1. Instead of the relation �f , the less pow-
erful lexicographic sorting is applied for
comparison of solutions and hence the re-
sults that can be expected are not as good
as if �f was used.

2. Lexicographic sorting does not permit as-
signing the same priority to more than
one optimization criteria. Thus if there
are two objectives with a similar impact
on the overall quality of solutions, one of
them has to be preferred during Lexico-
graphic in comparison to the other one.
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(c) Priority

Figure 1: Priority schemes for di�erent opti-
mization methods.

Figure 1 (a) and (b) illustrate the priority han-
dling of Preferred and Lexicographic,
respectively. None of the existing methods
can deal with priority schemes like described
in Figure 1 (c), where the same priority is as-
signed to some objectives while some other cri-
teria have lower or higher priorities. In the
next section, an approach is presented that ful-
�lls this requirement.

3.3 Multi-Objective Optimization
with Priority Handling

The Priority multi-objective optimization
method introduced in this section com-
bines properties of Preferred and Lexico-
graphic. Thus it is more powerful and ar-
bitrary priority numbers can be assigned to
each objective. Without loss of generality
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we assume that the priorities 1; 2; : : : ;m are
used in non-descending order for the objectives
1; : : : ; ny.

De�nition 3 Given an optimization problem
with search space � � R

n

+ and a priority vector
p = (p1; : : : ; pm) 2 N

m

+ such that pi determines
for how many objectives the priority i occurs.
According to this, the priority of an objective
can be calculated by the function

pr : f1; : : : ; ng 7! f1; : : : ;mg;

pr(i) = k where

k�1X

j=1

pj 6 i <

kX

j=1

pj

The projection of c 2 � on a priority i is given
by

cji 2 R
pi; cji = (cl; : : : ; ch)

where l =

i�1X

j=1

pj + 1 ^ h =

iX

j=1

pj

Finally, for c; d 2 � the relation �pf � ���
(priority favor) is de�ned by

c �pf d :, 9j 2 f1; : : : ;mg : cjj �f djj ^

(8k < j : cjk 6�f djk ^ djk 6�f cjk)

\c is priority-favored to d" also means c �pf d.

The priority favor relation is used to compare
solutions, but a complete ranking cannot be
generated by �pf as can be seen in the follow-
ing

Example 1 For a problem with n = 4 opti-
mization objectives and m = 2 di�erent prior-
ities, the search space and the priority vector
are given as follows:

�ex = f(2; 8; 8; 8); (5; 6; 0; 8); (5; 7; 5; 1);

(2; 6; 0; 8); (5; 2; 7; 5); (2; 7; 8; 9)g;

p = (1; 3)

yOtherwise the objectives have to be re-ordered.

The relation graph for �pf is illustrated in Fig-
ure 2. There are three solutions with value 2
and as well three solutions with value 5 for the
objective with priority 1. Obviously the solu-
tions with the lower value are priority-favoured
to the other ones due to the value of objective 1
and regardless of the values of the other objec-
tives. Among these priority-favored solutions,
(2,6,0,8) is priority-favored to the others:

(6; 0; 8) �f (8; 8; 8)) (2; 6; 0; 8) �pf (2; 8; 8; 8)
(6; 0; 8) �f (7; 8; 9)) (2; 6; 0; 8) �pf (2; 7; 8; 9)

(2,8,8,8) and (2,7,8,9) can not be compared by
�pf and for the remaining solutions, ranking
is not possible since the graph for �pf contains
a cycle.

2608

2789

2888

5751

5608

5275

Figure 2: Relation graph G = (�ex;�pf)

The reason why cycles can occur is |as can
easily be seen| that �pf is not transitive.
This is not surprising since �pf is based on
�f that is not transitive either [5]. To over-
come this problem, analogously to the Pre-
ferred approach, solutions that belong to a
cycle in the relation graph G = (�;�pf) are
considered to be equal and merged to one sin-
gle meta-node. This is done by generation of
a meta-graph Gm;� by a linear time graph al-
gorithm [3] that �nds the set of strongly con-
nected components SCC in G. We have

Gm;� = (SCC ; E) where
E = f(q1; q2) 2�pf jSCC (q1) 6= SCC (q2)g

Since Gm;� by construction is free of cycles,
there has to be at least one root node with
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indegree 0 and by that, it is possible to rank
the set of solutions according to

De�nition 4 Given a set of solutions � �
R
n

+, the relation graph G = (�;�pf), the meta-
graph Gm;� = (SCC ; E) and the set of its root
nodes G0 = fqjindeg(q) = 0g.

Then the satis�ability class or �tness f(c) of
a solution c 2 � can be determined by

f : � 7! N+;

f(c) = maxfrj9(q1; : : : ; qr) 2 SCC r :
q1 2 G0 ^ c 2 qr ^
81 6 i < r : (qi; qi+1) 2 Eg

The solutions c 2 � can now be ranked accord-
ing to their �tness that by De�nition 4 is the
increment of the length of the longest path in
Gt;� from a root node to c . For computation
of the ranking, well-known graph algorithms
are used.

2608

2789

2888 5751

5608

5275

Figure 3: Meta-graph Gm;�ex

Example 2 Consider again �ex from Exam-
ple 1. Figure 3 includes the meta-graph Gm;�ex

with G0 = f(2; 6; 0; 8)g with nodes represent-
ing SCCs in G. The �tness values for the
solutions can easily be derived from Gm;�ex

,
e.g. f((2; 8; 8; 8)) = 2 and f(5; 6; 0; 8) = 3.

4 Experimental Results

We implemented the Priority multi-
objective optimization approach described
in Section 3 in the programming language
C++ and embedded it in the software for

BDD minimization by GP -based heuristics
learning (see Section 2). In our experimentsz,
examples of Boolean functions that are taken
from LGSynth91 [12] are used. The corre-
sponding BDDs are minimized byWeighted

Sum as well as by relation based methods,
i.e. the techniques Preferred, Lexico-

graphic and Priority. The objectives
are the reduced BDD sizes for the single
benchmarks. Notice that the discussion of the
experiments in our approach can also be seen
in the context of design of experiments (for
more details see [1]).

For setting the weights in Weighted Sum,
several di�erent approaches have been tried
and we report two of them here. In Equal,
weights are adjusted according to the initial
BDD sizes of the benchmarks in a way that
each example has the same impact on the �t-
ness function. The idea behind this method is
to favor the generalization ability of the gener-
ated heuristics to their optimized performance
on the training set. In other words, by us-
ing Equal intuitively heuristics can be ex-
pected that perform better on unknown exam-
ples while slightly weaker results on the train-
ing set are tolerated.

For the technique RedR, the reduction rates
that are obtained when applying the strategy
Sift to the single benchmarks are calculated.
Weights are chosen indirectly proportional to
the reduction rates, i.e. large weights are as-
signed to examples for which a large reduction
is observed. Here, the intuition is that learn-
ing is focussed on benchmarks with a large
potential for reduction in order to generate
heuristics that exploit this potential well on
unknown functions.

It is obvious that for weight setting, much ef-
fort has to be spent on experiments and com-
putation of e.g. the reduction rates for the
training set. In comparison to this, Pre-
ferred needs no preprocessing at all while
for Lexicographic, only the objectives have

zAll experiments have been carried out on
Sun Ultra 1 workstations.
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Table 1: Results for application on the training set

Name of I/O Weighted Sum Relation Based
circuit in out Equal RedR Pref Lexic Prior

bc0 26 11 522 522 522 522 522
ex7 16 5 71 71 71 71 71
frg1 28 3 80 82 80 80 80
ibm 48 17 206 207 206 206 206
in2 19 10 233 233 233 233 233

s1196 32 32 597 597 597 597 597
ts10 22 16 145 145 145 145 145
x6dn 39 5 239 237 239 239 239

average { { 261.6 262.0 261.6 261.6 261.6

to be ordered (in our experiments according
to initial BDD sizes). The same is done for
Priority | the only di�erence is that the
same priority is assigned to benchmarks with
a similar initial BDD size.

For the GP, the same settings as in [6] are
used. The population consists of 20 individu-
als and in each generation 10 o�springs are
generated. The evolutionary process is ter-
minated after 100 generations. For more de-
tails about the experimental setup like e.g. the
method for generating the initial population,
we refer to [6]. In the �nal population, one
of the individuals with the best �tness value
is chosen. The results for minimization of the
training set examples are given in Table 1.

In the �rst three columns, the names and
the input and output sizes, respectively, of
the benchmarks are given. Columns 4 and 5
include the results for the Weighted Sum

methods Equal and RedR while in the
last three columns, �nal BDD sizes of the
heuristics generated by the methods Lexi-

cographic, Preferred and Priority are
given. It can be seen that nearly all methods
perform identically with respect to the behav-
ior of the best individuals on the training set
examples. Only The RedR approach slightly
di�ers for three benchmarks.

The situation changes when the heuristics are
applied to unknown benchmarks. The results

are given in Table 2.

Except for chkn where RedR performs
slightly better, Priority achieves the best
results for all benchmarks. It clearly outper-
forms the other relation based methods as well
as Equal on average while being still slightly
better than RedR. As a result, it can be seen
that setting weights for a �tness function by
intuition is not always successful. Although
the ideas for both approaches Equal and
RedR sound sensible, only the latter achieves
good results. Thus many experiments have to
be conducted for tuning weights if Weighted

Sum is used while this is not needed when ap-
plying Priority.

5 Conclusions

A new technique for handling priorities in
multi-objective optimization has been pre-
sented. Application in GP-based heuristics
learning has clearly demonstrated that the
new approach outperforms existing methods,
while at the same time the user interaction is
reduced.

It is focus of current work to further study
the relation between GA-based and GP-based
heuristics learning using multi-objective opti-
mization techniques.
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Table 2: Application to new benchmarks

Name of Weighted Sum Relation Based
circuit Equal RedR Pref Lexic Prior

apex2 601 349 601 601 320
apex7 291 288 291 291 288
bcd 568 573 568 568 568
chkn 266 261 266 264 264
cps 975 975 975 975 970
in7 76 78 76 76 76
pdc 793 792 793 792 792

s1494 386 386 386 386 386
t1 112 112 112 113 112

vg2 79 79 79 79 79

average 414.7 389.3 414.7 414.5 385.5
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Abstract

This paper describes the use of genetic
programming to automate the discovery of
numerical approximation formulae. The authors
present results involving rediscovery of known
approximations for Harmonic numbers and
discovery of rational polynomial approximations
for functions of one or more variables, the latter
of which are compared to Padé approximations
obtained through a symbolic mathematics
package. For functions of a single variable, it is
shown that evolved solutions can be considered
superior to Padé approximations, which
represent a powerful technique from numerical
analysis, given certain tradeoffs between
approximation cost and accuracy, while for
functions of more than one variable, we are able
to evolve rational polynomial approximations
where no Padé approximation can be computed.
Further, it is shown that evolved approximations
can be refined through the evolution of
approximations to their error function. Based on
these results, we consider genetic programming
to be a powerful and effective technique for the
automated discovery of numerical approximation
formulae.

1 INTRODUCTION

1.1 MOTIVATIONS

Numerical approximation formulae are useful in two
primary areas: firstly, approximation formulae are used in
industrial applications in a wide variety of domains to
reduce the amount of time required to compute a function
to a certain degree of accuracy (Burden and Faires 1997),
and secondly, approximations are used to facilitate the
simplification and transformation of expressions in formal
mathematics. The discovery of approximations used for
the latter purpose generally requires human intuition and
insight, while approximations used for the former purpose
tend to be polynomials or rational polynomials obtained

by a technique from numerical analysis such as Padé
approximants (Baker 1975; Bender and Orszag 1978) or
Taylor series. Genetic programming (Koza 1992)
provides a unified approach to the discovery of
approximation formulae which, in addition to having the
obvious benefit of automation, provides a power and
flexibility that potentially allows for the evolution of
approximations superior to those obtained using existing
techniques from numerical analysis.

1.2 EVALUATING APPROXIMATIONS

In formal mathematics, the utility or value of a particular
approximation formula is difficult to analytically define,
and depends perhaps on its syntactic simplicity, as well as
the commonality or importance of the function it
approximates. In industrial applications, in contrast, the
value of an approximation is uniquely a function of the
computational cost involved in calculating the
approximation and the approximation's associated error.
In the context of a specific domain, one can imagine a
utility function which assigns value to an approximation
based on its error and cost. We define a reasonable utility
function to be one which always assigns lower (better)
scores to an approximation a1 which is unequivocally
superior to an approximation a2, where a1 is defined to be
unequivocally superior to a2 iff. neither its cost nor error
is greater than that of a2, and at least one of these two
quantities is lower than the corresponding quantity of a2.
Given a set of approximations for a given function
(obtained through any number of approximation
techniques), one is potentially interested in any
approximation which is not unequivocally inferior
(defined in the natural way) to any other approximation in
the set. In the terminology of multi-objective
optimization, this subset is referred to as a Pareto front
(Goldberg 1989). Thus, the Pareto front contains the set
of approximations which could be considered to be the
most valuable under some reasonable utility function.

1.3 RELATED WORK

The problem of function approximation is closely related
to the problem of function identification or symbolic
regression, which has been extensively studied by
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numerous sources including (Koza 1992; Andre and Koza
1996; Chellapilla 1997; Luke and Spector 1997; Nordin
1997; Ryan, Collins, and O'Neill 1998). Approximation
of specific functions has been performed by Keane, Koza,
and Rice (1993), who use genetic programming to find an
approximation to the impulse response function for a
linear time-invariant system, and by Blickle and Thiele
(1995), who derive three analytic approximation formulae
for functions concerning performance of various selection
schemes in genetic programming. Regarding general
techniques for the approximation of arbitrary functions,
Moustafa, De Jong, and Wegman (1999) use a genetic
algorithm to evolve locations of mesh points for Lagrange
interpolating polynomials.

2 EVOLVING NUMERICAL
APPROXIMATION FORMULAE
USING GENETIC PROGRAMMING

All experiments reported in this paper make use of the
standard genetic programming paradigm as described by
Koza (1992). Our task is to take a function in symbolic
form (presented to the system as a set of training points)
and return a (possibly singleton) set of expressions in
symbolic form which approximate the function to various
degrees of accuracy. The authors see two essential
methods of applying genetic programming to this task:
either by limiting the available function set in such a way
that the search space contains only approximations to the
target function, rather than exact solutions, or by in some
way incorporating the computational cost of an
expression into the fitness function, so that the
evolutionary process is guided toward simpler expressions
which presumably will only be able to approximate the
data. Only the former approach is considered here.

The system used for the experiments described in this
paper was designed to be functionally equivalent to that
described by Koza (1992) with a few minor
modifications. Firstly, the evolution of approximation
formulae requires the cost of each approximation to be
computed. We accomplish this by assigning a raw cost to
each function in the function set, and taking the cost of an
approximation to be the sum of the functional costs for
each function node in its expression tree whose set of
descendent nodes contains at least one input variable. For
all experiments reported in this paper, the function costs
were somewhat arbitrarily set to 1 for the functions /, *,
and RCP (the reciprocal function), 0.1 for the functions +
and -, and 10 for any more complex function such as
EXP, COS, or RLOG.

Secondly, this system uses a slightly modified version of
the standard adjusted fitness formula 1/(1+[error]) which
attempts to maintain selection pressure when error values
are small. We note that although an approximation which
attains an error of 0.1 is twice as accurate as one with an
error of 0.2, the standard formula will assign it an
adjusted fitness which is just over 9% greater. We
attempt to avoid this problem by introducing an error

multiplier, so that the adjusted fitness formula becomes
1/(1+[error multiplier][error]). For one experiment
described in this paper, the error multiplier was set to
1000. In the given example, this causes the
approximation with an accuracy of 0.1 to have a fitness
which is nearly twice (~1.99 times) that of the
approximation whose accuracy is 0.2, which is more
appropriate.

Finally, rather than simply reporting the best (i.e. most
accurate) approximation evolved in each of a number of
runs, we report the Pareto front for the union of the
population histories of each independent run, computed
iteratively and updated at every generation. Thus, this
system returns the subset of approximations which are
potentially best (under some reasonable utility function)
from the set of all approximations evolved in the course
of all independent runs.

The integrity of the system used in these experiments,
which was written by the authors in C++, was verified by
reproducing the experiment for symbolic regression of
f(x) = x^4 + x^3 + x^2 + x as reported by Koza (1992).

3 REDISCOVERY OF HARMONIC
NUMBER APPROXIMATIONS

One commonly used quantity in mathematics is the
Harmonic number, defined as:

Hn ≡ ∑
i=1

n
1/i

This series can be approximated using the asymptotic
expansion (Gonnet 1984):

Hn = γ + ln(n) + 1/(2n) - 1/(12n2) + 1/(120n4) - . . .

where γ is Euler's constant (γ ≈ 0.57722).

Using the system described in the previous section, and
the function set {+,*,RCP,RLOG,SQRT,COS}, the
authors attempted to rediscover some of the terms of this
asymptotic expansion. Here RLOG is the protected
logarithm function (which returns 0 for a non-positive
argument) and RCP is a protected reciprocal function
which returns the reciprocal of its argument if the
argument is non-zero, or 0 otherwise. SQRT and COS are
included as extraneous functions.

All parameter settings used in this experiment are the
same as those presented as the defaults in John Koza's
first genetic programming book (Koza 1992), including a
population size of 500 and generation limit of 51. The
first 50 Harmonic numbers (i.e. Hn for 1<=n<=50) were
used as training data. 50 independent runs were executed,
producing a single set of candidate approximations. Error
was calculated as the sum of absolute error for each
training instance. The error multiplier set to 1 for this
experiment (e.g. effectively not used).

The set of evolved approximations returned by the genetic
programming system (which represent the Pareto front for
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the population histories of all independent runs) is given
in Table 1. For the purpose of analysis, each
approximation was simplified using the Maple symbolic
mathematics package; for the sake of brevity, only the
simplified expressions (rather than the full LISP
expressions) are given in this table.1

Table 1. Evolved Harmonic Number Approximations.

SIMPLIFIED EXPRESSION

ERROR COST RUN GENERATION

1. ln(x)+.5766598187+1/(sqrt(ln(x)+.5766598187
+1/(1/x+2*x+.6426220121)+x^2)+x)

0.0215204 39.1 22 32

2. ln(x)+.5766598187+1/(2*x+1/(1.219281831 +
ln(1/(ln(x)+.5766598187))+x))

0.0229032 35.8 22 35

3. ln(x)+.5766598187+1/(2*x+1/(1.285244024 +
ln(1.734124639+2*x)))

0.0264468 26.9 22 37

4. ln(x)+.5766598187+1/(2*x+1/(2.584025920 +
ln(x)+1/(3.007188263+x)))

0.0278816 25.9 22 49

5. ln(x)+.5766598187+1/(2*x+1/(.5766598187 +
1/x+x))

0.0286254 15.7 22 36

6. ln(x)+.5766598187+1/(2*x+.3592711879)

0.0293595 13.4 22 37

7. ln(x)+.5766598187+1/(2*x+.3497550998)

0.0297425 11.4 22 42

8. ln(x+.5022291180)+.5779513609

0.0546846 10.3 40 28

9. ln(x+.4890238595)+.5779513609

0.0653603 10.2 40 21

10. 0.5965804779+ln(x)

1.44089 10.1 49 49

11. 3.953265289-4.348430001/ x

20.2786 2.2 3 1

12. 3.815981083

31.0297 0 10 4

1 Note that since the cost and error values given in Table 1 were
calculated by the genetic programming system (using the unsimplified
versions of the approximations), the cost values are not necessarily the
same as those which would be obtained by manually evaluating the
simplified Maple expressions.

An analysis of this set of candidate solutions follows. For
comparison, Table 2 presents the error values associated
with the asymptotic expansion when carried to between 1
and 4 terms.

Table 2. Accuracy of Asymptotic Expansion

TERMS EXPRESSION ERROR

1 0.57722 150.559

2 0.57722 + ln(n) 2.12094

3 0.57722 + ln(n) + 1/(2n) 0.128663

4 0.57722 + ln(n) + 1/(2n) -
1/(12n^2)

0.00683926

Candidate approximation 12, the cheapest approximation
in the set, is simply a constant, while candidate
approximation 11 is a simple rational polynomial.
Candidate approximation 10 represents a variation on the
first two terms of the asymptotic expansion, with a
slightly perturbed version of Euler's constant which gives
greater accuracy on the 50 supplied training instances.
Candidate solutions 8 and 9 represent slightly more costly
variations on the first two terms of the asymptotic
expansion which provide increased accuracy over the
training data. Similarly, candidate solutions 6 and 7 are
slight variations on the first three terms of the asymptotic
expansion, tweaked as it were to give greater accuracy on
the 50 training points. Candidate solutions 2-5 can be
regarded as more complicated variations on the first three
terms of the asymptotic expansion, each giving a slight
increase in accuracy at the cost of a slightly more
complex computation. Candidate solution 1 represents a
unique and unexpected approximation which has the
greatest accuracy of all evolved approximations, though it
is unequivocally inferior to the first four terms of the
asymptotic expansion has presented in Table 2.

Candidate approximations 1-7 all make use of the
constant 0.5766598187 as an approximation to Euler's
constant, which was evolved using the LISP expression:

(RCP(SQRT(* 4.67956 RLOG(1.90146))))

This approximation is accurate to two decimal places.
Candidate approximations 8 and 9 make use of the
slightly less accurate approximation of 0.5779513609,
evolved using the LISP expression:

(COS(LN 2.59758))

Note that in this experiment, pure error-driven evolution
has produced a rich set of candidate approximations
exhibiting various trade-offs between accuracy and cost.
Also note that with the exception of the first candidate
approximation, which uses the SQRT function, the SQRT
and COS functions were used only in the creation of
constants, so that these extraneous functions did not
provide a significant obstacle to the evolution of the
desired approximations. Thus, this experiment represents
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a partial rediscovery of the first three terms of the
asymptotic expansion for Hn.

4 DISCOVERY OF RATIONAL
POLYNOMIAL APPROXIMATIONS
FOR KNOWN FUNCTIONS

4.1 INTRODUCTION

By limiting the set of available functions to the arithmetic
function set {*,+,/,-}, it is possible to evolve rational
polynomial approximations to functions, where a rational
polynomial is defined as the ratio of two polynomial
expressions. Since approximations evolved with the
specified function set use only arithmetic operators, they
can easily be converted to rational polynomial form by
hand, or by using a symbolic mathematics package such
as Maple. Approximations evolved in this manner can be
compared to approximations obtained through other
techniques such as Padé approximations by comparing
their Pareto fronts. In the section, we present the results
of such a comparison for three common mathematical
functions: the natural logarithm ln(x), the square root
sqrt(x), and the hyperbolic arcsine arcsinh(x),
approximated over the intervals [1,100], [0,100], and
[0,100], respectively. The functions were selected to be
common, aperiodic functions whose calculation was
sufficiently complex to warrant the use of approximation.
The intervals were chosen to be relatively large due to the
fact that Padé approximations are weaker over larger
intervals, and we wished to construct examples for which
the genetic technique might be most applicable.

4.2 COMPARISON WITH PADÉ
APPROXIMATIONS

The Padé approximation technique is parameterized by
the value about which the approximation is centered, the
degree of the numerator in the rational polynomial
approximation, and the degree of the denominator. Using
the Maple symbolic mathematics package, we calculated
all Padé approximations whose numerator and
denominator had a degree of 20 or less, determined their
associated error and cost, and calculated their (collective)
Pareto front for each of the three functions being
approximated. The center of approximation was taken as
the leftmost point on the interval for all functions except
the square root, whose center was taken as x=1 since the
necessary derivatives of sqrt(x) are not defined for x=0.
Error was calculated using a Riemann integral with 1000
points. For simplicity, the cost of Padé approximations
was taken only as the minimum number of
multiplications/divisions required to compute the rational
polynomial, as calculated by a separate Maple procedure.

The Maple procedure written to compute the cost of an
approximation operated by first putting the approximation
in continued-fraction form (known to minimize the
number of necessary multiplications/divisions), counting

the number of multiplications/divisions required to
compute the approximation in this form, and then
subtracting for redundant multiplications. As an example
of a redundant multiplication, the function f(x)=x2+x3

when computed literally requires 3 multiplications (1 for
x2, 2 for x3), but need be computed using only 2, since in
the course of computing x3 one naturally computes x2.

For consistency, the candidate approximations evolved
through the genetic programming technique were also
evaluated (subsequent to evolution) using the Reimann
integral and Maple cost procedure, and the Pareto front
for this set of approximations was recomputed using the
new cost and error values. Finally, it should be noted that
a Padé approximation with denominator of degree zero is
identical to the Taylor series whose degree is that of the
numerator, so that the Pareto fronts reported here
effectively represent the potentially best (under some
reasonable utility function) members of a set of 20 Taylor
series and 380 uniquely Padé approximations.

4.3 RESULTS

All experiments involving rational polynomial
approximations were performed using the same settings
as described in the previous section, but with a generation
limit of 101 (we have found that accurate rational
polynomial approximations take a while to evolve). The /
function listed in the function set was defined to be a
protected division operator which returns the value 106 if
division by zero is attempted. In analyzing evolved
approximations via Maple, any approximation which
performed division by zero was discarded. To reduce the
execution time of these experiments, we employed the
technique suggested as a possible optimization by Koza
(1990) of using only a subset of the available training
instances to evaluate individuals at each generation. In
our experiments, the subset is chosen at random for the
initial generation, and selected as the subset of examples
on which the previous best-of-generation individual
performed the worst for all subsequent generations. The
subset is assigned a fixed size for all generations; for all
experiments reported in this section, the subset size was
25. Training data consisted of 100 points, uniformly
spaced over the interval of approximation. Each of the
three experiments reported was completed in
approximately 4-5 hours on a 600 MHz Pentium III
system.

Figures 1-3 present the Pareto fronts for Padé
approximations and for genetically evolved
approximations of the functions ln(x), sqrt(x), and
arcsinh(x), respectively, evaluated over the intervals
[1,100], [0,100], and [0,100], respectively. In each of
these three figures, the dashed line connects points
corresponding to Padé approximations, while the solid
line connects points corresponding to genetically evolved
approximations. All Padé approximations not accounted
for in computing the Pareto front represented by the
dashed line (i.e. all Padé approximation whose numerator
or denominator has a degree larger than 20) must involve
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at least 20 multiplications/divisions, if only to compute
the various powers of x: x, x2, x3, . . . x21. For this reason,
a dashed horizontal line at cost=20 is drawn in each
figure, so that the horizontal line, combined with the
dashed lines representing the Pareto front for Padé
approximations with numerator and denominator of
degree at most 20, represents the best case Pareto front for
all Padé approximations of any degree.

Figure 1: Pareto Fronts for Approximations of ln(x).

For each experiment, we are interested in the genetically
evolved approximations which lie to the interior of the
Pareto fronts for Padé approximations, and thus are
superior to Padé approximations given certain trade-offs
between error and cost. Tables 3-5 list all such
approximations for ln(x), sqrt(x), and arcsinh(x),
respectively, along with their associated cost and error as
calculated by the Maple cost procedure and by a Riemann
integral, respectively. For ln(x), we are able to obtain 5
approximations which lie to the interior of the Pareto
front for Padé approximations, for sqrt(x) we are also able
to obtain 5 such approximations, and for arcsinh( x) we are
able to obtain 7 approximations, all exhibiting various
trade-offs between error and cost. As can be seen from
Figure 3, arcsinh(x) proved to be a particularly difficult
function for Padé approximations to model over the given
interval.

Figure 2: Pareto Fronts for Approximations of sqrt(x). Figure 3: Pareto Fronts for Approximations of arcsinh(x).

Table 3: Evolved Approximations for ln(x).

EXPRESSION COST ERROR

(.0682089-2*x-x/(-.1218591501*x-3.842080570))/(-.385143144*x-4.6585) 6 6.798897089

1.426990291*x/(4.132660+.2760372098*x) 3 7.436110884

(4.205966*x-6.601615)/(x+12.85128201)+.694754 2 8.743267301

4.70397-29.12598131/(x+2.82952) 1 26.93968611

3.91812 0 64.55919780
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Table 4: Evolved Approximations for sqrt(x).

EXPRESSION COST ERROR

x/(x/(4.78576+x/(9.17981+x/(15.39292+.04005697704*x)))+1.48335) 5 2.591348148

(x+.06288503787)/((x-9.04049)/(.05822627334*x+8.30072)+4.32524)+.795465 3 3.123452980

x/(5.5426193+.06559635887*x)+1.48335 2 8.935605674

.07262106112*x+3.172308452 1 32.95322345

7.011926 0 195.5193204

Table 5: Evolved Approximations for arcsinh(x).

EXPRESSION COST ERROR

1.86636*(1.277853316*x/((.3868816181*(-2.90216-x)/(-4.88586-x)+1.02145)*(-
1.122792357-.3868816181*x))-.03522759767*(-1.122792357-.3868816181*x)*(x+
4.86602)*(x-.269326)/(.0840785+x)+4.83551*x)/(9.684284+2.08151*x)

17 3.361399200

1.86636*(.07017092454*x^2/((2*x+4.86602)*(3.111694208+4.83551*x))-
.03539134480*(.2502505059-.3868816181*x)*(x+4.86602)*(x-.269326)/(.0840785+x)+
4.83551*x)/(9.684284+2.08151*x)

15 3.533969225

1.86636*(.0840785-.03522759767*(-1.122792357-.3868816181*x)*(x-.269326)+
4.83551*x)/(9.684284+2.08151*x)

7 3.804858563

2.46147/(.4180284579-4.28068*1/(-2.299172064-.7261005920*x)) 3 6.596080331

4.466119361*x/(18.01575130+x)+1.32282 2 7.581253733

3.30409+.02369172723*x 1 25.83927515

4.600931145 0 68.51916981

5 APPROXIMATING FUNCTIONS OF
MORE THAN ONE VARIABLE

For some functions of more than one variable, it is
possible to obtain a polynomial or rational polynomial
approximations using techniques designed to approximate
functions of a single variable; this can be done by nesting
and combining approximations. For example, to obtain a
rational polynomial approximation for the function
f(x,y)=ln(x)*sin(y), one could compute a Padé
approximation for ln(x) and a Padé approximation for
cos(x) and multiply the two together. To compute a
rational polynomial approximation for a more complex
function such as f(x,y)=cos(ln(x)*sin(y)), one could again
compute two Padé approximations and multiply them
together, assign the result to an intermediate variable z,
and compute a Padé approximation for cos(z). However,
for any function of more than one variable that involves a
non-arithmetic, non-unary operator whose set of operands
contains at least two variables, there is no way to compute
a polynomial or rational polynomial approximation using
techniques designed to compute approximations for
functions of a single variable. For the function f(x)=xy,
for example, there is no way to use Padé approximations
or Taylor series to obtain an approximation, since the
variables x and y are inextricably entwined by the
exponentiation operator. In contrast, the genetic

programming approach can be used on any function for
which data points can be generated. To test the ability of
genetic programming to evolve rational polynomial
approximations for the type of function just described, an
experiment was conducted to evolve approximations of
the function f(x)=xy over the area 0<=x<=1, 0<=y<=1.
Parameter settings were the same as described in the
section on Harmonic numbers, including the generation
limit of 51. Training data consisted of 100 (three
dimensional) points chosen at random from the given
rectangle. As in the previous section, a subset of 25
examples was used to evaluate the individuals of each
generation.

The approximations returned by the genetic programming
system were further evaluated through Maple. As in the
previous section, a Maple procedure was used to calculate
the minimum number of multiplications/divisions
necessary to compute the approximation, while the error
was evaluated using a double Riemann integral with
10000 points. The Pareto front for this set of
approximations was then recomputed using the new cost
and error values. The results of this evaluation are
presented in Table 6.
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Table 6: Evolved Approximations for xy.

EXPRESSION COST ERROR

x/(y^2+x-x*y^3) 4 .03643611691

x/(y^2+x-x*y^2) 3 .04650160477

x/(y+x-x*y) 2 .04745973920

x*y-y+.989868 1 .05509570980

x+.13336555 0 .1401316648

The most accurate approximation evolved as a result of
this experiment was x/(y2+x-xy3). Figures 4 and 5 present
graphs for the target surface f(x)=xy and for this
approximation, respectively. Visually, the evolved
surface is quite similar to the target function.

Figure 4: f(x)=xy
.

Figure 5: x/(y2+x-xy3).

6 REFINING APPROXIMATIONS
It is possible to refine an approximation a(x) by evolving
an approximation (a'(x)) to its error function, then taking
the refined approximation as a(x)+a'(x). To test the
practicality of this idea, we performed refinement of
several evolved approximations to the function sin(x) over
the interval [0,π/2]. Available space prohibits us from

presenting the full results of this experiment. We note,
however, that we are able to obtain 4 approximations in
this manner which improve upon the Pareto front for our
original experiment (prior to refinement), which contains
a total of 7 approximations. The experiment was
conducted using the same settings as in sections 4 and 5,
but with an error multiplier of 1000. Refinement in this
manner could be applied iteratively, to produce
successively more accurate approximations. We have not
investigated this possibility in any detail, but it is clear
from our preliminary findings that the technique of
refining approximations in this manner is indeed capable
of producing significantly more accurate approximations.

In addition to refining evolved approximations using
genetic programming, it is also possible to refine
approximations generated through some other technique
(such as Padé approximations) through genetic
programming, or to refine approximations evolved via
genetic programming through a technique from numerical
analysis. Were the latter approach to prove effective, it
could be incorporated on-the-fly in the evalution of
individual approximations; one can imagine a rather
different approach to the problem in which all evolving
approximations are refined to a certain degree of accuracy
by adding terms based on Padé approximations or Taylor
series, and fitness is taken simply as the cost of the
resulting expression. This provides for an interesting
possible extension of the work reported in this paper.

7 FUTURE WORK
The work presented in this paper suggests a number of
possible extensions. First, by adding if-then functions
and appropriate relational operators such as less-than and
greater-than to the function set, one could evolve
piecewise rather than unconditional approximations to
functions. Second, as suggested in the previous section,
several extensions to this work based on the refinement of
approximations could be attempted. Third, little attempt
was made in this work to optimize parameters for the
problem of finding rational polynomial approximations in
general, and no parameter optimizations were made for
specific functions being approximated, so that alteration
of parameter settings represents a significant potential for
improvement on the results presented in this paper. These
results could also presumably be improved by using
additional computational power and memory, and by
employing a genetic programming system which allows
for automatically defined functions (Koza 1994).

Perhaps the ideal application of this technique would be
to perform the equivalent of conducting the Harmonic
number experiment prior to 1734, the year that Leonhard
Euler established the limiting relation

lim n→∞ Hn-ln(n) ≡ γ
which defines Euler's constant (Eulero 1734). Such a
result would represent "discovery" of an approximation
formula in the truest sense, and would be a striking and
exciting application of genetic programming.
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8 CONCLUSIONS
This paper has shown that genetic programming is
capable of rediscovering approximation formulae for
Harmonic numbers, and of evolving rational polynomial
approximations to functions which, under some
reasonable utility functions, are superior to Padé
approximations. For common mathematical functions of
a single variable approximated over a relatively large
interval, it has been shown that genetic programming can
provide a set of rational polynomial approximations
whose Pareto front lies in part to the interior of the Pareto
front for Padé approximations to the same function.
Though it has not been demonstrated explicitly in this
paper, one would expect that genetic programming would
also be able to expand upon the Pareto front for
approximations to functions of more than one variable
obtained by combining and nesting Padé approximations.
Furthermore, for at least one function of more than one
variable, genetic programming has been shown to provide
a way to evolve rational polynomial approximations
where the Padé approximation technique cannot be
applied. Finally, we have presented results involving
evolutionary refinement of evolved approximations.
Based upon these results, the authors regard the genetic
programming approach described in this paper as a
powerful, flexible, and effective technique for the
automated discovery of approximations to functions.
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Abstract

We examine the effectiveness of gradient search
optimization of numeric leaf values for Genetic
Programming. Genetic search for tree-like
programs at the population level is
complemented by the optimization of terminal
values at the individual level. Local adaptation of
individuals is made easier by algorithmic
differentiation. We show how conventional
random constants are tuned by gradient descent
with minimal overhead. Several experiments
with symbolic regression problems are
performed to demonstrate the approach’s
effectiveness. Effects of local learning are clearly
manifest in both improved approximation
accuracy and selection changes when periods of
local and global search are interleaved. Special
attention is paid to the low overhead of the local
gradient descent. Finally, the inductive bias of
local learning is quantified.

1 INTRODUCTION

The quest for more efficient Genetic Programming (GP)
is an important research problem. This is due to the fact
that a high computational complexity of GP is among its
distinctive features (Poli & Page, 2000). Especially now,
when variants of GP are being used on very ambitious
projects (Thompson, 1998; Koza et al., 1997), the speed
and efficiency of evolution are very crucial for such
problems.

Numerous modifications of the basic GP paradigm (Koza,
1992) are currently known, e.g. see (Langdon, 1998) for a
review. Among them, several researchers have considered
GP augmentation by hill climbing, simulated annealing
and other stochastic techniques. In (O'Reilly & Oppacher,
1996) crossover and mutation are used as move operators
of hill climbing, while Esparcia-Alcazar & Sharman
(1997) considered optimization of extra parameters (node
gains) using simulated annealing. Terminal search was
employed in (Watson & Parmee, 1996), but due to the

associated computational expense it was limited to 2-4%
of individuals. The presence of stochasticity in local
learning makes it relatively slow, even though some
hybrid algorithms yield overall improvement. For
example, Iba and Nikolaev (2000) and Rodriguez-
Vazquez (2000) considered least squares coefficients
fitting limited to linear models. Apparently, the full
potential of local search optimization is yet to be realized.

The focus of this paper is on a local adaptation of
individual programs during the GP process. We rely on
gradient descent for improved generation of GP
individuals. This adaptation can be performed repeatedly
during the lifetime of an individual. The results of local
learning may or may not be coded back into the genotype
(reverse transcription) based on the modified behavior,
which is reported in the literature as Lamarckian and
Baldwinian learning, respectively (Hinton & Nowlan,
1987; Whitley et al., 1994). The resulting new fitness
values affect the selection process in both cases, which in
turn changes the global optimization performance of a
GP. Such an interaction between local learning, evolution
and associated phenomena without reverse transcription
are also generally referred to as the Baldwin effect.

We were motivated by a number of successful
applications of hybridization to neural networks (Belew et
al., 1991; Zhang & Mühlenbein, 1993; Nolfi et al., 1994).
Both neural networks and GP trees perform input-output
mapping with a number of adjustable parameters. In this
respect, terminal values (leaf coefficients) in a GP
perform a similar function as weights in neural network.
A form of gradient descent is usually used to adjust
weights in a neural net architecture. In contrast, various
terminal constants are typically random within GP trees
and are rarely adjusted by gradient methods. The reasons
for this are twofold: the unavailability of
gradients/derivatives in some GP problems and the
computational expense that is assumed to exist in
computing those gradients. However, the complexity of
computing derivatives is largely overestimated. In order
to differentiate programs explicitly, algorithmic differen-
tiation (Griewank, 2000) may be adopted. Algorithmic
(computational) differentiation is a technique that
accurately determines values of derivatives with
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essentially the same time complexity as found in the
execution of the evaluation function itself. In fact,
gradients may often be computed as part of the function
evaluation. This is especially true for trees and at least
potentially true for arbitrary non-tree programs.
Generalization of the method for any program is possible,
given that the generated program computes numeric
values, even in presence of loops, branches and
intermediate variables. The main requirement is that the
function be piecewise differentiable. While not always
true, this is the case for a great majority of engineering
design applications. Moreover, it is also known, that
directional derivatives can be computed with many non-
smooth functions (Griewank, 2000). Knowledge of only
gradient direction, not its value, is often enough to
optimize the values of parameters.

In this paper we empirically compare conventional GP
with a GP coupled with terminal constant learning. The
effectiveness of the approach is demonstrated on several
symbolic regression problems. Arithmetic operations have
been chosen as the primitives set in our GP
implementation for simplicity sake. While such functions
make differentiation easy, again these techniques can be
adapted to more difficult problems.

Our results indicate that inexpensive differentiation along
with the Baldwin effect leads to a very fast form of GP.
Significant improvement in accuracy was also achieved
beyond that which could be achieved by either local
search or more generations of GP.

The Baldwin effect is known to change the inductive bias
of the algorithm (Turney, 1996). In the case of GP, where
functional complexity is highly variable, it is expected
that such a change of bias can be properly quantified.
Two manifestations of the learning bias were observed in
our experiments. Firstly, the selection process is affected
by local learning since the fitness of many individuals
dramatically improves during their lifetime. Secondly,
changes in the functional complexity of individuals were
observed in the experiments. Both the length (number of
nodes) of the best evolved programs and the number of
leaf coefficients were higher using local learning as
opposed to regular GP.

2 LAMARCKIAN VS BALDWIN
STRATEGY IN GP

Evolution rarely proceeds without phenotypic changes.
As we are interested in digital evolution, two dominating
strategies have been proposed which allow environmental
fitness to affect genetic features. Lamarckian evolution,
an alternative proposition to Darwinian approaches of the
time, claimed that traits acquired from individual
experience could be directly encoded into the genotype
and inherited by offspring. In contrast, Baldwin claimed
that Lamarckian effects could be observed where no
direct transfer of phenotypic characteristic to the genotype
occurred, in keeping with Darwinism. Rather, Baldwin
claimed that “innate” behaviors could be

Figure 1: Sample tree with a set of random
constants. In hybrid GP all these leaf coefficients
are subjected to training

selected for (in a Darwinian sense) which the individual
originally had to learn. In Lamarckian evolution learning
affects fitness distribution as well as the underlying
genotypic values, while the Baldwin effect is mediated
via the fitness results only. In our case, the question is
whether locally learned constants are copied back into the
genotype (Lamarckian) or whether the constants are
unmodified while the individual’s fitness value reflects
the fitness resulting from learning (Baldwin).

Real algorithmic implementations of evolution coupled
with local learning are much richer than two original
strategies. The researcher, usually guided by the total
computational expense, may arbitrarily decide both the
amount of and scheduling of learning or local adaptation
of solutions. Moreover, since local learning comes with a
price, it must be wisely traded off with genetic search
costs. Several questions must be answered:

• What aspect of the solution should be learned beyond
genetic search, as only a subset of solution
parameters may be chosen for adaptation?

• Should learning be performed at every generation or
should it be used as a form of fine-tuning when
genetic search is converged?

• How many individuals and which of those
individuals should have local learning applied to
them?

• How many iterations of local learning should be done
(really, how much computational cost are we willing
to incur)?

Accordingly, there are many ways to introduce local
learning into GP. Evolution in GP is both parametric and
structural in nature. Two important features are specific to
GP:
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1. The fitness of the functional structure depends
critically on the values of local parameters. Even very
fit structures may perform poorly due to
inappropriate numeric coefficients.

2. The fitness of the individual is highly context
sensitive. Slight changes in structure dramatically
influence fitness and may require completely new
parameters.

That is why we focus on learning numeric coefficients, so
called Ephemeral Random Constants or ERC (Koza,
1992), which are traditionally randomly generated as
shown in Figure 1. As explained below, the local learning
algorithm -- gradient descent on the error surface in the
space of the individual’s coefficients, turns out to be a
very inexpensive approach, so much so that every
individual can do local learning in every generation.

Formally we follow the Lamarckian principle of evolution
since we allow the tuned performance of individual to
directly affect the genome by modifying numeric
constants. At the same time, the choice between
Lamarckian and Baldwin strategies in our implementation
is not founded on the issue of computational complexity.
In both cases the amount of the extra work is
approximately the same. The main issue arises when
considering the fitness values of the offspring with
inherited coefficients vs. offspring with unadjusted
terminals. Our experiments indicate that there is little
difference between the two fitnesses when crossover is
the main operator. Two factors contribute to this:

1. Crossover usually generates individuals with
significantly worse fitness than their parents. The
coefficients found earlier to be good for the parents
are not appropriate for the offspring structures. The
subsequent local learning changes fitness
dramatically by updating the ERCs to more
appropriate values.

2. Newly generated offspring are equally well adjusted
starting from any values: earlier trained, not trained
or even random.

Hence, inheritance of the coefficients does not much help
the performance of the individuals created by crossover.
However, if an individual is transferred to a new
generation as a part of the elitist pool, i.e. unchanged by
crossover or mutation, then its learned coefficients are
also transferred. With respect to this structure, the use of
the Baldwin strategy would be wasteful, since it requires
relearning the same parameters. Thus, even though our
implementation formally follows the Lamarckian strategy,
we effectively observe the very same phenomena peculiar
to the Baldwin effect.

3 HYBRID GP

The organization of the hybrid GP (HGP) is basically the
same as that of the standard GP. The only extra activity
done by the algorithm is to update the values of numeric
coefficients. That is, all individuals in the population are

trained using a simple gradient algorithm in every
generation of the standard GP. Below we discuss the
exact formulation of the corresponding optimization
problem.

3.1 PROBLEM STATEMENT

The hybrid GP is intended to solve problems of a numeric
nature, which may include regression, recognition, system
identification or control. We will assume throughout that
there are no non-differentiable nodes, such as Boolean
functions. In general, given a set of N input-output pairs
(d,x)i it is required to find a mapping f(x,c) minimizing
certain performance criteria, e.g. mean squared error
(MSE):

Here, f is scalar function (generalization to multi-trees is
trivial), x is vector of input values, c is vector of
coefficients and the sum is over the training samples. Of
course, in GP we are interested in discovering the
mapping f(x,c) in the form of a program tree. That is, we
seek not only coefficients c, but also the very structure of
the mapping f, which is not known in advance. In our
approach, finding the coefficients is done by gradient
descent during the same time functional structures are
evolved. Descriptions of the standard GP approach can be
found elsewhere (e.g. Langdon, 1998), instead, we will
focus below on details of the local learning algorithm.

3.2 LEARNING LEAF COEFFICIENTS

Minimization of MSE is done by a few iterations of a
simple gradient descent. At each generation all numeric
coefficients are updated several times using the rule:

where α is the learning rate, and k goes over all the
coefficients at our disposal. Three important points must
be discussed: how to find the derivatives, what the value
of α should be, and how many iterations (steps) of
descent should be used.

3.2.1 Differentiation

Using both eq. 1 and 2 we obtain:

Thus, an immediate goal is to differentiate any current
program tree with respect to any of its leaves. The chain
rule significantly simplifies computing ∂f/∂c. Indeed, if
nj(⋅) denotes node functions, then:
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Therefore differentiation of the tree simply reduces to the
product of the node derivatives on the path which starts at
the given leaf and ends at the root. It is clear that each
term in the product is a derivative of a node output with
respect to its arguments (children). If paths from the
different leaves share some common part, then
corresponding sub-chains in the derivatives are also
shared. Computation of such a product in practice
depends on the data structure used for the program tree. In
simple cases, differentiation uses single recursive
postorder traversal together with the actual function
evaluation. Derivatives of the program tree with respect to
all its leaves can be obtained simultaneously. As soon as
an entire sum in eq. 3 becomes known, i.e. derivatives in
all training points obtained, one may need an extra sweep
through the tree to update the coefficients. In total, the
incurred overhead depends on the complexity of node
derivatives and the number of leaves. For instance, in our
implementation using only an arithmetic functional set,
the cost of differentiation was equal to the cost of function
evaluation, making the overall cost twice the standard GP
cost for the same problem.

3.2.2 Learning rate and number of steps

In a simple gradient descent algorithm, the proper choice
of learning rate is very important. Too large a learning
rate may increase error, while too small a rate may require
many training iterations. It is also known that the rule in
eq. 3 works better in the areas far from the vicinity of
local minima (Reklaitis, 1983). Therefore we decided to
make the rate as large as possible without sacrificing
quality of learning. After a few trials on the test problem
of symbolic regression we fixed the learning rate to the
value α=0.5. The same learning rate was used for all other
test problems. If the algorithm resulted in an increase in
the error of an individual, the training was stopped and no
update to the individual's fitness was recorded. However,
this problem did not have any impact on overall quality of
learning since it happened rarely, approximately 1 out of
10 successful individuals. Moreover, those individuals
that had this problem showed an error rate that was
typically not reduced by any subsequent application of
gradient descent.

This simple local learning rule dramatically improved the
fitness of individuals. Figure 2 shows the decrease in
MSE for typical individuals. It is important to note that
the most significant improvements happened after only
the first few iterations of local learning. Note that some
individuals were improved by as much as 60% or more.
We decided that 3 steps of gradient descent was a good
trade off between fitness gain and effort overhead. Again,
the number of iterations was never altered afterwards and
is used in all our experiments.

Figure 2: Local learning strongly affects fitness of
individuals. Typical learning progress is illustrated
using individuals from test problem f2.

4 EXPERIMENTAL DESIGN

The main goal of the empirical study is to compare the
performance of the GP with and without learning. Even
though an overall speed-up is very valuable, we are also
interested in other effects resulting from local learning.
These effects have to be properly quantified to shed light
on the internal mechanisms of the interaction between
learning and evolution. Three major issues are studied:

• Improvement in search speed

• Changes in fitness distribution and selection

• Changes in the functional structure of the programs

4.1 IMPLEMENTATION DETAILS

The driver GP program included the following major
steps:

1. Initialization of the population using the “grow”
method. Starting from a set of random roots, more
nodes and terminals are aggregated with equal
probability until a specified number of nodes are
generated. The total number of nodes in the initial
population was chosen to be three times greater than
the population size, that is three functional nodes per
individual on average.

2. Fitness evaluation and training (in HGP) of each
individual. Mean squared error over the given
training set, as defined by eq. 1, serves as an inverse
fitness function since we seek to minimize error. This
stage includes parametric training in HGP given that
the individual has leaf coefficients.

3. Termination criteria check. The number of function
evaluations was the measure of computational effort.
For instance, every individual is evaluated only once
in every GP generation, but three times in every HGP
generation if its parameters are trained for three steps.
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4. Tournament selection (tournament size = 2) of
parents. Pairs are selected at random with
replacement and their number is equal to the
population size. The better of the two individuals
becomes a parent at the next step.

5. Crossover and reproduction. Standard tree crossover
is used. Each pair of parents produces two offspring.
Mutation with small probability pm=0.01 is applied to
each node. In addition, elitism was always used and
the best 10% of the population survive unchanged.

6. Pruning the trees with the size exceeding predefined
threshold value.

7. Continue to step 2.

4.2 TEST PROBLEMS

Five surface fitting problems were chosen as benchmarks.

For each problem 20 random training points (fitness
cases) were generated in the range [-3...3] along each
axis. Figure 3 shows the desired surfaces to be evolved.

5 EXPERIMENTAL RESULTS

To compare the performance we made experiments with
both hybrid and regular GP with the same effort of 30,000
function evaluations in each run. All experiments were
done with a population size of 100 and the arithmetic
operators {+,-,*,%-protected} as the function set with no
ADFs. Initial leaf coefficients were randomly generated in
the range [-1...1]. Also, the pruning threshold was set to
24 nodes. If the number of nodes in an individual grew
beyond this threshold, a sub-tree beginning at some
randomly chosen node was cut from the individual. Each
experiment was run 10 times and the MSE value was
monitored.

Our main results are shown in Figure 3 and also
summarized in Table 1. The success of the hybrid GP is
quite remarkable. For all the test problems, the average
error of the best evolved programs was significantly
smaller (1.5 to 25 times) when learning was employed.
The first 20 – 30 generations usually brought most of
these improvements. The gap in error levels is wide
enough to require the regular GP to use hundreds more
generations to achieve similar results. Certain

improvements were also observed for the average
population fitness, but with lesser magnitude. The
similarity of each population’s average fitness indicates a
high diversity and that not all offspring reach small error
values after local learning.

Another set of experiments included extra fine-tuning
iterations performed only after the regular GP terminates.
Again, we run gradient optimization on the population
from the last GP generation. Each individual was tuned by
applying 100 gradient descent iterations. The results in
Table 1 show that this approach is not effective and did
not achieve the quality of result found in the HGP. This is
a strong argument for Baldwin effect, namely that another
factor affecting search speed-up is a change in fitness
distribution that directly affects selection outcome.
Learning introduces a bias that favors individuals that are
more able to adapt to local learning modifications. If we
would suppose that the selection bias does not occur, then
the hybrid GP would be only a trivial combination of
genetic search and fine tuning. However, as we see from
the results this is not the case.

We attempted to measure some properties of HGP that
would demonstrate this synergy between local learning
and evolution.

Table 1. Performance Comparison of Hybrid and
Regular GP. All data collected after 30000 f.e. and
averaged over 10 experiments.

Best MSE Ave. MSE Best MSE
Test

problem
HGP GP HGP GP GP + fine tuning

f1 0.009 0.26 0.47 0.80 0.233

f2 0.075 0.761 1.03 2.18 0.31

f3 2.32 6.22 5.98 6.59 6.21

f4 0.64 0.76 4.06 4.41 0.76

f5 0.097 0.36 0.27 0.78 0.30

First of all, a Baldwin effect in selection would mean that
the results of some tournament selections are reversed
after local learning. Indeed, local learning adaptable
individuals win their tournaments due to improved fitness
resulting from gradient descent. These individuals would
lose the same tournament in regular GP.

Figure 4 shows both the typical and average percentage of
reversed tournaments in the problem f1. A summary of
results for all the test problems is given Table 2.
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Figure 3: Surface fitting test problems and respective learning curves

160 GENETIC PROGRAMMING



Figure 4: Comparison of Selection Process in
HGP and GP. Local learning changes outcome of
some tournaments used to select a mating pool.

It was found that the average percentage of selection
changes remains the same during the course of search for
all test problems. Such a behavior would be expected if
selection pressure pushes offspring that are very
adaptable, even when older elite members are almost
converged. An empirical measure of this degree of
adaptability is provided by the average gain in fitness
achieved by newly generated offspring. The values are
given in Table 2. We do not include elite members in this
statistic to emphasize magnitude of learning from scratch.
The average observed drop of MSE is between 12% and
19% on all the test problems.

Figure 5: Typical dynamic of number of
terminals (numeric coefficients) used by the best
program as a function of GP generations (for the
test function f1).

What exactly makes one program more adaptable than the
other? Clearly, it is the functional structure of the
program. For example, a program with no numeric leaves
cannot learn at all using the gradient local learning
method described above. Furthermore, a tree with no
terminal arguments (inputs) containing only terminal
constants will always produce the same output and will
not benefit from local learning. Instead we have tried to
understand what characteristics of adaptable programs are
unique.

Table 2: Effects of local learning

Complexity of the best programs,

#coefficients / #nodes after the same effort (30000 f.e.)Test problems
Difference in HGP

selection vs. GP in each
generation on average, %

Ave. MSE gain for
newly generated

offspring, % HGP GP

f1 7.7 16.5 16.0 / 22.4 12.2 / 21.2

f2 7.1 12.7 16.6 / 23.0 13.7 / 21.8

f3 8.4 15.1 17.5 / 23.5 11.8 / 20.4

f4 7.9 18.7 17.3 / 22.9 12.4 / 21.6

f5 7.4 15.0 17.0 / 23.1 12.9 / 21.8
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We have focused on the length (number of
nodes) and on the number of coefficients in the
best evolved programs (remember, that length
had an upper limit too). As Table 2 illustrates
both values are noticeably greater for the
programs evolved by HGP. This is one
illustration of the inductive bias of the hybrid
algorithm. More adaptive programs use more
coefficients and consequently have lengthier
representations. Also, the number of the terminal
inputs (x and y) in HGP results is slightly
smaller. Figure 5 shows typical changes in the
number of coefficients for a “best” individual on
a generational scale for both GP and HGP.

6 CONCLUSIONS

This paper has shown a number of important
points. First, that local learning in the form of
gradient descent can be efficiently included into
GP search. Second, that this learning provides a
substantial improvement in both final fitness and
speed in reaching this fitness. Finally, the use of
local learning creates a bias in the structure of
the solutions, namely it prefers structures that are
more readily adaptable by local learning. We feel
that this approach could have significant impact
on practical, engineering problems that are
addressed by GP.
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