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Abstract

In this work we study the performance of a dis-
tributed GA that incorporates in its core parallel
cooperative-competitive genetic operators. A se-
ries of controlled experiments are conducted us-
ing various large and difficult 0/1 multiple knap-
sack problems to test the robustness of the dis-
tributed GA. Simulation results verify that the
proposed distributed GA compared with a canon-
ical distributed GA significantly gains in search
speed and convergence reliability with less com-
munication cost for migration.

1 INTRODUCTION

The development of parallel implementations of algorithms
has been mainly motivated by the desire to reduce the over-
all time to completion of a task by distributing the work im-
plied by a given algorithm to processing elements working
in parallel (Martin et al., 1997). An alternative approach
explores parallel computational models that can exploit in-
teractions among primitive components inducing emergent
synergetic behaviors for the entire system (Forrest, 1990).

There are a variety of models for parallelizing Genetic Al-
gorithms (GAs) in the literature. They have been sepa-
rated in four main categories: global master-slave, island,
cellular, and hierarchical parallel GAs (Gordon & Whit-
ley, 1993; Lin et al., 1994; Cantú-Paz, 1998). In a global
master-slave GA there is a single population and the eval-
uation of fitness is distributed among several processors.
Selection, crossover and mutation consider the entire pop-
ulation (Hausser & Männer, 1994). A cellular or fine-
grained GA consists of one spatially structured population.
Selection and mating are restricted to a small neighbor-
hood and the neighborhoods are allowed to overlap per-
mitting some interaction among individuals (Manderick &

Spiessens, 1989; Mühlenbein, 1989). An island GA, also
known as coarse-grained or distributed GA, consists on
several subpopulations evolving separately with occasional
migration of individuals between subpopulations (Pettey et
al., 1987; Tanese, 1987; Martin et al., 1997). Finally, a hier-
archical parallel GA combines an island model with either
a master-slave or cellular GA (Cantú-Paz, 1998).

The global master-slave GA does not affect the behavior
of the algorithm and can be considered only as a hard-
ware accelerator. However, the other parallel formulations
of GAs are very different from canonical GAs (Holland,
1975; Goldberg, 1989), especially with regards to popula-
tion structure and selection mechanisms. These modifica-
tions change the way the GA works affecting its dynamic
and the trajectory of evolution. For example, the subpopu-
lation size, migration rate, and migration frequency are cru-
cial to the performance of island models. Cellular, island
and hierarchical models perform as well as or better than
canonical versions and have the potential of being more
than just hardware accelerators (Gordon & Whitley, 1993;
Lin et al., 1994; Cantú-Paz, 1998).

Another aspect of GAs that can be parallelized is the appli-
cation of crossover and mutation. These operators, from a
processing time stand, are usually simple and any gain we
might expect reducing the overall time to completion could
seem minor. However, the processing time viewpoint alone
misses the dynamics that can arise from operators with
complementary roles acting in parallel. The balance be-
tween crossover and mutation is crucial to the performance
of GAs. One way to pursue better balances, and therefore
better performance, is to combine crossover with higher
mutation rates. Higher mutations parallel to crossover can
give an efficient framework towards this goal, in which the
strengths of the individual operators can be kept without
interfering one with the other. Rather than as a hardware
accelerator, the more significant gains from the parallel ap-
plication of operators within parallel GAs could come from
exploiting in a better way the interaction between them.
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In this work we focus on distributed GAs and study the per-
formance of a distributed GA that incorporates in its core
parallel cooperative-competitive genetic operators. We
conduct a series of controlled experiments using various
large and difficult 0/1 multiple knapsack problems to test
the robustness of the distributed GA. Simulation results
verify that the proposed distributed GA compared with
a canonical distributed GA significantly gains in search
speed and convergence reliability with less communication
cost for migration.

2 DISTRIBUTED GA (ISLAND MODEL)

The island model GA consists on several subpopulations
evolving separately and concurrently with occasional mi-
gration of individuals between subpopulations (Martin et
al., 1997). Selection, recombination and mutation are ap-
plied within each subpopulation. The basic island model
uses the same values for crossover and mutation rates in all
subpopulations. However, different values for these param-
eters can be chosen for each subpopulation (Tanese, 1987).
Migration of individuals is controlled by several parame-
ters such as: (i) the communication topology that defines
the connections between subpopulations, (ii) a migration
rate that controls how many individuals migrate, and (iii) a
migration interval that affects the frequency of migration.
Also, migration must include strategies for migrant selec-
tion and for their inclusion in their new subpopulations.

The communication topology can be defined as a graph in
which the subpopulations Pi (i = 0; 1; :::;K � 1) are the
vertices and each defined edge Lj;k specifies a communica-
tion link between the incident vertices Pj and Pk (neighbor
subpopulations). In general, assuming a directed graph, for
each defined link Lj;k we can indicate the number of in-
dividuals Rj;k that will migrate from Pj to Pk (migration
rate) and the number of generations M between migration
events (migration interval). The communication topology
and migration rates could be static or dynamic and migra-
tion could be asynchronous or synchronous. Various strate-
gies for choosing migrants, such as selection of the best and
random selection, have been applied.

The basic island model considers an overall population of
�total individuals that is partitioned into K subpopulations.
For an even partition each subpopulation has � = �total=K

individuals. It also considers a static topology that is speci-
fied at the beginning of the run and synchronous migration
occurring every M generations with a constant migration
rate R for each defined link Lj;k.

Distributed GAs are more complex than single population
GAs. The subpopulation size, the communication topology
(its degree of connectivity), migration rate, and migration
frequency are important factors related to the performance

of distributed GAs (Cantú-Paz, 1998). There is some ex-
perimental evidence that distributed GAs can produce so-
lutions with similar or better quality than single population
GAs while reducing the overall time to completion in an
factor that is almost in reciprocal proportion to the number
of processors.

3 IMPROVED DGA

3.1 CONCEPT OF GA-SRM

An empirical model of GA that puts parallel genetic op-
erators in a cooperative-competitive stand with each other,
pursuing better balances for crossover, mutation, and selec-
tion, has proved to be an effective approach to improve the
search performance of single population GAs (Aguirre et
al., 1999; Aguirre et al., 2000).

The main features of the model are (i) two genetic opera-
tors with complementary roles applied in parallel to create
offspring: Self-Reproduction with Mutation (SRM), and
Crossover and Mutation (CM) (ii) an extinctive selection
mechanism, and (iii) an adaptive mutation schedule that
varies SRM’s mutation rates from high to low values based
on SRM’s own contribution to the population.

To achieve better balances for mutation and crossover the
algorithm should be able to combine crossover with higher
mutation rates during the course of a run. One way to try
this is to simply apply one operator after the other, as in
a canonical GA (Holland, 1975; Goldberg, 1989). Under
this configuration, however, there could be interferences
between crossover and high mutation. If mutation probabil-
ities are high then although crossover alone could be doing
a good job it is likely that some of the just created favorable
recombinations may be lost because of the high disruption
introduced by mutation. On the other hand, mutation could
be working well but crossover may produce poor perform-
ing individuals (Spears, 1998) affecting the survivability of
beneficial mutations that would contribute to the search.

Another way to combine crossover with higher mutation
rates is to apply high mutation parallel to crossover. The
parallel formulation of operators can avoid the interfer-
ences between operators, implicitly increasing the levels
of cooperation to introduce and propagate beneficial mu-
tations. It also sets the stage for competition between oper-
ators’ offspring. Thus, to create offspring, in the model
CM applies crossover followed by background mutation
and SRM applies parallel adaptive mutations.

Although the parallel formulation of genetic operators can
avoid interferences between operators, it does not prevent
SRM from creating deleterious mutations or CM from pro-
ducing ineffective crossing over operations. To cope with
these cases the model also incorporates the concept of ex-
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tinctive selection that has been widely used in Evolutionary
Strategies (Bäck, 1996). Through extinctive selection the
offspring created by CM and SRM coexist competing for
survival (the poor performing individuals created by both
operators are eliminated) and reproduction. The parallel
formulation of genetic operators tied to extinctive selection
creates a cooperative-competitive environment for the off-
spring created by CM and SRM.

3.2 GA-SRM INTO DGA

3.2.1 Communication Topology

In this work we use a +1+...+L communication topology
(Cantú-Paz, 1999a) in which each subpopulation Pi (i =
0; 1; :::;K � 1) is linked to the next L subpopulations. The
neighbor populations are defined by the directed links Lj;k
where

k = fj + 1; :::; j + Lg mod K: (1)

Fig. 1 illustrates a +1+2 island model in which each sub-
population is linked to two neighbors (L = 2). In this ex-
ample, for instance, subpopulation P0 can only send indi-
viduals to P1 and P2 and receive migrants from P4 and P5.

P1

P0 P5

P4

P3P2

Fig. 1 +1+2 communication topology.

3.2.2 CM and SRM in DGA

In the above setting, the inclusion of GA-SRM into a
distributed GA is straightforward and the basic form of
GA-SRM is mostly preserved in each subpopulation Pi(t)

(i = 0; 1; :::;K � 1) at the t�th generation. CM creates
offspring by conventional one-point crossover and succes-
sive background mutation operator (Holland, 1975; Gold-
berg, 1989) in each Pi(t). The same crossover rate pc is

used in all Pi(t). The mutation probability p
(CM)
m is set

to a constant small value and is also the same in all Pi(t).
CM creates �CM offspring within Pi(t) and is expected to
propagate beneficial genetic information into the subpopu-
lation by combining segments from parent individuals.

On the other hand, SRM creates offspring by an adap-
tive mutation operators called Adaptive Dynamic Segment
(ADS) (Aguirre et al., 1999; Aguirre et al., 2000), which

directs mutation only to a segment of the chromosome us-
ing constant high mutation probabilities per bit in all Pi(t).

p
(SRM )
m

=

�
� (if the bit is in the segment)

0 (otherwise)

However, the mutation segment size `i (i = 0; 1; :::;K�1)

is independently adjusted in each Pi(t) based on a normal-
ized mutants survival ratio specified by

i =
�SRMi

�SRM
�
�

�
; (2)

where �SRMi is the number of SRM’s offspring that sur-
vive extinctive selection, �SRM is the offspring number
created by SRM, � is the total offspring number (�CM +

�SRM ), and � is the number of parent individuals in Pi(t).

In each Pi(t), `i varies dynamically from n0 (initial seg-
ment mutation size) to 1=� by reducing it to `i=� (� >

1) every time i falls under a predetermined threshold �

(i < � ). Hence, the expected average number of flipped
bits goes down from n0� to 1. Also, the segment initial
position, for each chromosome, is chosen at random. SRM
is expected to introduce diversity into each subpopulation
and its adaptation mechanism to provide better balances for
mutation and crossover throughout the course of a run.

3.2.3 (�; �) Proportional Selection in DGA

In order to implement the extinctive selection mechanism,
(�; �) Proportional Selection (Bäck, 1996) is used similar
to (Aguirre et al., 1999; Aguirre et al., 2000). Selection
probabilities within each subpopulation Pi(t) are computed
by

Prob(x
(t)

j ) =

8>>>><
>>>>:

f(x
(t)
j )

�X
k=1

f(x
(t)

k )

(1 � j � �)

0 (� < j � �)

(3)

where x(t)j is an individual at generation t which has the

j-th highest fitness value f(x(t)j ) in Pi(t).

3.2.4 Migration Policy

Migration implements a synchronous elitist broadcast strat-
egy (Cantú-Paz, 1999b) occurring every M generations.
Each subpopulation broadcasts a copy of its R best individ-
uals to all its neighbor subpopulations. Hence, every sub-
population in every migration event receives �m = L� R

migrants. In the target subpopulations, the arriving �m mi-
grants replace the same number of worst performing in-
dividuals and the replacement occurs before extinctive se-
lection. Thus, �m migrants also compete to survive with
the best � � �m offspring produced by SRM and CM in-
side Pi(t). In the following the migration rate is calculated
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Fig. 2 Migration policy and extinctive selection.

as 100 � �m=�. Fig. 2 illustrates the migration process
to a given subpopulation from its two neighbors (assum-
ing a +1+2 communication topology). As mentioned in
3.2.2, SRM’s adaptation occurs locally in each subpopula-
tion Pi(t) but it is not realized at the generations in which
migration is performed.

4 0/1 MULTIPLE KNAPSACK PROBLEM

In order to study the robustness of the distributed genetic
algorithm we use various large and difficult 0/1 multiple
knapsack problems proposed in (Chu & Beasley, 1998) and
obtained from the OR-Library (Beasley, 1996).

The 0/1 multiple knapsack problem consists of m knap-
sacks of capacities c1; c2; :::; cm and n objects. Each object
has a profit pi (1 � i � n), weights wij (1 � j � m),
and it is either placed in all m knapsacks or in none at all.
The 0/1 multiple knapsack problem can be formulated to
maximize the function

g(x) =

nX
i=1

pixi (4)

subject to
nX
i=1

wijxi � cj (j = 1; :::;m) (5)

where xi 2 f0,1g (i = 1; :::; n) are elements of a solu-
tion vector x = (x1; x2; :::; xn), which is the combination
of objects we are interested in finding. Solutions to this
problem have a natural binary representation in the GA
constructed by mapping each object to a locus within the
binary chromosome. A 1 in locus i indicates that the ob-
ject i is being included in the knapsacks and a 0 otherwise.
A solution vector x should guarantee that no knapsack is
overfilled and the best solution should yield the maximum
profit. An x that overfills at least one of the knapsacks
is considered as an infeasible solution. The 0/1 multiple
knapsack problem is regarded as NP hard combinatorial
optimization problem.

Table 1 Genetic algorithms parameters

Parameter DGA DGA-SRM
Selection Proport. (�; �) Proport.
Scaling Linear Linear
Mating (xi;xj); i 6= j (xi;xj); i 6= j

pc 0:6 1:0

p
(CM)
m 1=n 1=n

p
(SRM)
m - � = 0:5; ` = [n=4; 2]

� - 2

� : � - 1 : 2

�CM : �SRM - 1 : 1

5 RESULTS AND DISCUSSION

5.1 EXPERIMENTAL SETUP

We test two kinds of distributed GAs in our simulations. (i)
a distributed canonical GA (denoted as DGA), and (ii) the
proposed distributed GA-SRM (denoted as DGA-SRM).
Table 1 details the parameters used within each subpopula-
tion by DGA and DGA-SRM. DGA implements the same
+1+...+L communication topology and migration policy
used by DGA-SRM described in 3.2.1 and 3.2.4.

The knapsack problems we conduct experiments with are
highly constrained (Chu & Beasley, 1998). To deal with
infeasible solutions a penalty term is introduced into the
fitness function. We try the two following fitness functions

f1(x) = g(x)� s �maxfpig (6)

f2(x) =

�
g(x)=s �maxfojg (s > 0)

g(x) (s = 0)
(7)

where s (0 � s � m) is the number of overfilled knapsacks
and oj (> 1) is the overfilling ratio of knapsack j calculated
by

oj =

nX
i=1

wijxi=cj : (8)

The fitness function f1 of Eq. (6) did not produce feasible
solutions or the results were very poor especially on prob-
lems with restrictive knapsack capacity. Similar behavior
was observed in (Michalewicz, 1996) for single (m = 1)
0/1 knapsack problems of restrictive capacity. On the other
hand, the fitness function f2 of Eq. (7) did produce fea-
sible solutions on all test problems. The results reported
here are obtained using f2 with random initial populations
initialized with a 0:25 probability for 1s.

As a point of reference for the quality of solutions, Table 2
shows results for some of the test problems obtained by the
single population versions of the distributed GAs, denoted
as cGA and GA-SRM, respectively, set with a population
size of � = 100 individuals, T = 10

6 function evalua-
tions, and SRM’s adaptation threshold � = 0:64. In Table
2 column Problem identifies the problem instance. Name
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Table 2 Results by single population cGA and GA-SRM

Problem cGA GA-SRM
Name m n � Average Stdev Gap Average Stdev Gap

5:100� 00 5 100 0.25 23271.3 125.75 5.35 24242.8 33.78 1.40
10:100� 00 10 100 0.25 21846.3 198.94 6.96 22855.4 67.3 2.66
30:100� 00 30 100 0.25 20494.2 180.49 9.23 21711.8 116.76 3.84
30:100� 10 30 100 0.50 38509.1 186.49 6.70 40241.9 144.31 2.51
30:100� 20 30 100 0.75 55348.4 244.34 4.55 57046.1 241.98 1.62
30:250� 00 30 250 0.25 51920.6 180.11 9.59 55703.9 117.55 3.01
30:500� 00 30 500 0.25 106023.5 395.15 9.09 113135.3 280.52 2.99

is the name of the problem, m the number of knapsacks,
n the number of objects, and � the tightness ratio between
knapsack capacities and object weights (restrictiveness of
the capacities). Average is the average of the best solutions
in 10 runs, Stdev is the standard deviation around Average,
and Gap indicates the percentage gap between Average and
the optimal value given by the linear programming relax-
ation (Chu & Beasley, 1998) (the optimal integer 0/1 solu-
tions for the test problems are not known).

In our study we observe the influence of the problem dif-
ficulty, the subpopulation size, and the migration rate on
the robustness of the distributed GAs. The distributed GAs
use a �total = 800 individuals and the same T = 10

6

function evaluations. Also, unless indicated otherwise, the
distributed GAs use a configuration of K = 16 subpopula-
tions (� = 50), SRM’s adaptation threshold � = 0:56, and
a 10% migration rate.

5.2 PROBLEM DIFFICULTY

Factors related to the difficulty of the problem are the tight-
ness ratio �, the number of objects n, and the number of
knapsacks m.

First we observe the performance of the distributed GAs
on problems with different ratio �. Fig. 3 illustrates results
by DGA and DGA-SRM on problems of m = 30 capac-
ities, n = 100 objects, and ratio � = f0:25; 0:50; 0:75g.
To present a broader picture this and the subsequent fig-
ures plot the error Gap for migration intervals of M =

f2; 5; 10; 20; 40; 100g generations as well as results when
no migration is used and the subpopulations evolve in total
isolation (indicated by NM). Results obtained by the single
population GAs are also indicated on the left Y axis.

The main conclusions drawn from Fig. 3 are as follows.
(i) The quality of the solutions found by both DGA and
DGA-SRM decreases (larger Gap values) as the ratio � is
reduced. These results are quite intuitive since reductions
on � imply reductions on the fraction of possible subsets
of objects that constitute feasible solutions. Consequently,
the ratio between the feasible part of the search space and
the whole search space gets smaller and the smaller this

ratio is the harder it is to find feasible results. This was
also observed for 0/1 single (m = 1) knapsack problems
in (Michalewicz, 1996). (ii) The performance of DGA-
SRM without migration is by far superior to DGA without
migration indicating that a better search is being carried
out within each subpopulation in DGA-SRM. (iii) DGA
is far away from DGA-SRM unless DGA uses very short
migration intervals (2 generations). DGA-SRM achieves
high performance with less communication cost for migra-
tion, which could be a big advantage for implementation
(note that DGA-SRM even without migration performs bet-
ter than DGA with migration intervals of 5 generations). It
seems that DGA-SRM has an optimum range of migration
interval (around 10 � 20, for a 10% migration rate) that
attains the minimum error gap. Different from DGA, very
short migration intervals (less than 10 generation) deterio-
rates the performance of DGA-SRM. (iv) DGA and DGA-
SRM can achieve better results than its single population
versions if migration is included.

2 5 10 20 40 100 NM
Migration Interval

   (φ = 0.25)
   (φ = 0.50)
   (φ = 0.75)

DGA-SRM DGA

cGA

cGA

cGA

GA-SRM

GA-SRM

GA-SRM

Error Gap

0

2

4

6

8

10

12

Fig. 3 Tightness of the Capacities �
(K = 16, 10% migration, m = 30, n = 100).

Second we fix the number of capacities m and tightness ra-
tio � and observe the effect of the number of objects n. Fig.
4 illustrates results by DGA and DGA-SRM on problems
of m = 30 capacities, n = f100; 250; 500g objects, and
ratio � = 0:25. From Fig. 4 we can see that increasing the
number of objects n also makes it harder for the algorithms
to find high quality solutions. Also, we can clearly see
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the DGA-SRM’s optimum migration interval in this figure.
The general behavior by DGA-SRM and DGA are similar
to that observed in Fig. 3.

2 5 10 20 40 100 NM
Migration Interval

(n = 100)
(n = 250)
(n = 500)

DGA-SRM DGA

cGA

GA-SRM

Error Gap

0

2

4

6

8

10

12

Fig. 4 Objects n
(K = 16, 10% migration, m = 30, � = 0:25).

Third, we observe the effect of the number of knapsacks m
fixing the number of objects n and tightness ratio �. Fig.
5 illustrates results by DGA and DGA-SRM on problems
of m = f5; 10; 30g capacities, n = 100 objects, and ratio
� = 0:25. Similar to � and n, from Fig. 5 we can see that
increasing the number of knapsacks m has an strong im-
pact on the performance of the algorithms and that between
DGA and DGA-SRM the latter exhibits higher robustness.
Also, looking at Fig. 4 and Fig. 5, judging from the relative
increase on the Gap values, increasing the number of knap-
sacks (constraints) has an stronger impact than increasing
the number of objects (search space).

2 5 10 20 40 100 NM
Migration Interval

(m = 5)
(m = 10)
(m = 30)

DGA-SRM DGA

cGA

cGA

cGA

GA-SRM

GA-SRM

GA-SRM

Error Gap

0

2

4

6

8

10

12

Fig. 5 Knapsacks m
(K = 16, 10% migration, n = 100, � = 0:25).

5.3 SUBPOPULATION SIZE

Fourth, we choose one problem (m = 30, n = 100, and
� = 0:25) and observe the effect of reducing the subpop-
ulation size while increasing the number of subpopulations
(the overall number of offspring and the total number of

function evaluations are kept constant to �total = 800 indi-
viduals and T = 10

6 evaluations). Fig. 6 illustrates results
by DGA and DGA-SRM using K = f8; 16; 32g subpop-
ulations with subpopulations sizes of � = f100; 50; 251g
and � = f0:64; 0:56; 0:50g, respectively.

DGA-SRM tolerates population reductions better than
DGA (see NM for both algorithms) and can still approach
GA-SRM’s performance relaying on migration. We could
not recognize big performance differences between K = 8

and K = 16 while smaller subpopulations (K = 32) tend
to require shorter migration intervals.

2 5 10 20 40 100 NM
Migration Interval

   (Κ = 8)
   (Κ = 16)
   (Κ = 32)

DGA-SRM DGA

cGA

GA-SRM

Error Gap

0

2

4

6

8

10

12

Fig. 6 Subpopulation size �, K
(10% migration, m = 30, n = 100, � = 0:25).

2 5 10 20 40 100 NM
Migration Interval

   (λ   /λ = 5%)
   (λ   /λ = 10%)
   (λ   /λ = 15%)

DGA-SRM DGA

cGA

GA-SRM

Error Gap

m

m

m

0

2

4

6

8

10

12

Fig. 7 Migration Rate �m=�
(K = 16, m = 30, n = 100, � = 0:25).

5.4 MIGRATION RATE

Fifth, the effect of the migration rate is also observed. Fig.
7 illustrates results by DGA and DGA-SRM on one of the
problems using migration rates of f5%,10%,15%g.

In DGA-SRM smaller migration rates need shorter migra-
tion intervals and vice versa. To reduce communication

1When K = 32 DGA-SRM uses only � = 24 to keep a 1 : 1

balance for offspring creation between CM and SRM.
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cost, it may be better to use larger migration intervals with
higher migration rates in DGA-SRM.

5.5 ADAPTATION

Fig. 8 illustrates the adaptation of mutations rates in DGA-
SRM. The figure shows the average number of the actual
bits flipped by SRM over the generations for some of the
subpopulations. From Fig. 8 we can see that adaptation of
mutation rates follow similar trajectories and that for most
of the run the mutation rates are higher than the usual ex-
pected 1 flipped bit of canonical algorithms. It should also
be noticed that the instantaneous averages differ, which is a
consequence of the local adaptation within each subpopula-
tion. The local adaptation, besides varying mutation rates,
also induces different mutation rates for each subpopula-
tion Pi(t).

P0
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P8
P12

Generations

M
ut
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ed

B
its

1 10 100 1000
0

1

2

3

4

5

6

7

Fig. 8 SRM’s adaptation in DGA-SRM
(K = 16, m = 30, n = 100, � = 0:25).

5.6 EXTINCTIVE SELECTION

The remarkable increase in solution quality by the canon-
ical DGA when very short migration intervals are used,
i.e. 2 generations, seems at first glance rather counterintu-
itive (with such migrations intervals one might expect faster
convergence but not higher solution quality). However, this
is explained by the nature of the test problems and the ad-
ditional selection intensity caused by migration.

As mentioned above, the problems used in this study are
highly constrained with sparse feasible regions where algo-
rithms with penalty functions have a hard time finding fea-
sible solutions (Michalewicz, 1996; Chu & Beasley, 1998).
A higher selection pressure in these problems is helping the
algorithms to focus the search around the feasible regions
(this point has been previously verified in (Aguirre et al.,
2000) for single population GAs).

The strategies chosen in this work for migrants selection
and replacement (selection of the best and replacement of
the worst) causes an increase in the overall selection inten-
sity (Cantú-Paz, 1999b). These strategies combined with

very short migration intervals are capable of producing sig-
nificant selection pressures, which are being used by the
DGA. In the case of DGA-SRM, the higher selection pres-
sure is incorporated within the selection mechanism.

Fig. 9 illustrates the effect of extinctive selection in the dis-
tributed algorithms and clarifies the contributions of extinc-
tive selection and adaptive mutation SRM in DGA-SRM.
We show results by the canonical DGA with � = 50 indi-
viduals (DGA(50)) in each subpopulation, a DGA using
(�; �) Proportional Selection with � = 25 parents and
� = 50 offspring in each subpopulation (DGA(25,50)),
and the DGA-SRM with similar population sizes (DGA-
SRM(25,50)). From this figure we see that extinctive se-
lection alone increases the reliability of the distributed GA
in this kind of problems. However, when adaptive parallel
mutation, SRM, is used the robustness of the algorithm is
improved further.
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Fig. 9 Effect of Extinctive Selection
(K = 16, m = 30, n = 100, � = 0:25).

Fig. 10 plots the average fitness in the 10 runs of the
best solution over the generations by DGA-SRM and DGA.
From this figure it can be observed that DGA-SRM has not
only higher convergence reliability due to SRM but also a
higher search speed caused by extinctive selection.

Generations

Fitness

DGA-SRM (25,50)
DGA (25,50)
DGA (50)
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Fig. 10 Fitness Transition
(K = 16, m = 30, n = 100, � = 0:25, M = 20).
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6 CONCLUSIONS

In this work we have studied the performance of a
distributed GA that incorporates parallel cooperative-
competitive genetic operators (DGA-SRM). A series of
controlled experiments using various large and difficult 0/1
multiple knapsack problems were conducted to test the ro-
bustness of DGA-SRM. Comparisons were made between
DGA-SRM and a canonical distributed GA (DGA).

We observed that high selection intensity helps to perform
a better search in this kind of combinatorial problems. The
DGA-SRM incorporates a higher selection pressure within
its selection mechanism. The canonical DGA, however, has
to rely in the higher selection intensity introduced by mi-
gration and can achieve high results only at the expense of
very high communication cost.

The inclusion of high mutation parallel to crossover within
DGA-SRM improves further the convergence reliability of
the canonical DGA regardless of the difficulty of the prob-
lem. Also, due to the high selection intensity within each
subpopulation and its built-in source of diversity by SRM,
the search speed of the algorithm is increased without sac-
rificing the quality of solutions. DGA-SRM even without
migration produces very high results compared to canoni-
cal DGA with small migration intervals.

As future works, the effect that other communication
topologies and migration policies have on the performance
of this kind of hierarchical GA should be investigated.
Also, we would like to extend the concept of GA-SRM to
cellular models.
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Abstract

An interactive co-evolutionary genetic algorithm
is proposed for a class of multi-objective opti-
mization problems and is applied to the problem
of graph lay-out generation taking into account
the personal user’s preferences.

1 INTRODUCTION

When using evolutionary algorithms (EAs) for solving a
given problem, the user has to define a fitness function
which will be used to indicate the quality of a given can-
didate solution. This requirement can be relaxed if the user
somehow is able to rank the whole population of candidate
solutions according to its quality. As a minimum require-
ment, given two candidate solutions, the user must be able
to tell which one is the best.

In a number of applications for which EAs seem to be a
suitable tool, it is very difficult to construct a fitness func-
tion which accurately reflects the user’s perception of what
is a good solution for the problem at hand. For instance, all
artistic applications of EAs fall into this category where the
fitness function is subjective.

The potential of interactive evolution was first demon-
strated by Dawkins[1] and latter developed by Sims[2, 3].
Evolution strategies with subjective selection have been de-
veloped by Herdy[4, 5]. Additionally, a number of exam-
ples can be found in [6]. For musical applications, one is re-
ferred to [7, 8, 9, 10, 11] and references therein. Some hard
engineering problems have also been approached in such a
way that the user is included in the loop of the evolutionary
process. For instance, Gruau and Quatramaram[12] have
evolved neural nets for robot control by letting the user sub-
jectively affect the fitness value of a given solution.

It is well known to the interactive evolutionary computa-
tion (IEC) practitioners that user fatigue is a key element to

the success of an IEC application and, as a result, the con-
struction of tools which are able to learn the fitness func-
tion/user’s preferences and then replace the human in the
loop is an attractive idea. Using data gathered during in-
teractive run(s) with the user, neural networks have been
trained with the objective of replacing the user and allow-
ing for longer runs[9, 11].

Yet another very important situation where user prefer-
ences come into play is the arena of multi-objective op-
timization (MOO) problems, where genetic algorithms
(GAs) are specially attractive and a large literature is avail-
able (see the site maintained by Coello: www.lania.mx/˜
ccoello/EMOO/EMOObib.html). Although GAs have been
successfully applied to MOO problems, specially by us-
ing its population of solutions to approximate the whole
Pareto front, the task of both the GA (in finding the Pareto
front) and the user (in choosing a good compromise so-
lution) grows in complexity as the number of objectives
grows. One alternative solution is to weight the several
objective functions in such a proportion that the resulting
scalar objective function leads the GA to eventually find a
solution which satisfies the user’s preferences. Of course,
the task of assigning such weights is not trivial and we be-
lieve that the idea of co-evolution can help the design of an
interactive GA (IGA) for this class of problem.

One particular MOO application will be considered here,
namely that of graph lay-out, in order to test the proposed
procedure. An interactive co-evolutionary GA is proposed
which maintains two populations: a graph lay-out popula-
tion and a weight-set population. Each population evolves
via an independent GA but their evolution is coupled by
their fitness evaluation, which involves active user inter-
vention. For each lay-out several aesthetical objectives are
mathematically defined and the final fitness value is ob-
tained by the current set of weights. However, the pop-
ulation of weight-sets also evolves according to a fitness
defined as how well a given set of weights ranks the pop-
ulation of lay-outs as compared to the ranking periodically
provided by the user. It is expected that the lay-out popu-
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lation improves with respect to the current weight-set and
also that the weight-set population evolves generating in-
creasingly better weight-sets, i.e., sets that better reflect the
user’s preferences.

The paper is organized as follows: Section 2 describes the
multi-objective optimization problem and the graph lay-out
problem, Section 3 briefly reviews interactive evolutionary
computations and Section 4 summarizes the idea of co-
evolution and some previous work. Section 5 describes the
co-evolutionary GA used here and Section 6 presents some
computational experiments. The paper ends with conclu-
sions and suggestions for further work.

2 MULTI-OBJECTIVE OPTIMIZATION

In an unconstrained multi-objective optimiza-
tion (MOO) problem one seeks to optimize the
m components of a vector of objective functions
F (x) = (f1(x); f2(x); : : : ; fm(x)) where x 2 
 � R

n

is the vector of design (or decision) variables which
belong to the admissible set 
. The function F : 
 7! �
maps solution (or design) vectors x = (x1; x2; : : : ; xn)
to vectors y = (y1; y2; : : : ; ym), with yi = fi(x), in
the objective function space. Without loss of generality
it is assumed that each objective is to be minimized.
Due to their non-commensurable and conflicting nature
there is usually not a solution which minimizes all m
objectives simultaneously. This motivates the concept of
dominance: a vector a = (a1; a2; : : : ; an) dominates a
vector b = (b1; b2; : : : ; bn) if ai � bi 8i and there is j
such that aj < bj . One then defines Pareto optimality:
a solution x 2 D is said to be Pareto-optimal in D if
and only if there is no x

0 2 D such that its image F (x0)
dominates F (x). The Pareto-optimal set, P , is thus the set
of all x 2 D such that F (x) is non-dominated in �. The
Pareto front PF is the image of the Pareto-optimal set in
the objective function space.

The first application of GAs to MOO problems dates back
to the mid-eighties[13, 14] and several papers have been
published since then (see [15, 16, 17, 18]). An example
of a subjective MOO problem is presented by Shibuya et
all[19] where animations of human-like motions are to be
computer generated. Another example is that of graph lay-
out, which is discussed in the following section.

2.1 The graph lay-out problem

The graph lay-out or graph drawing (GD) problem con-
sidered here is the task of producing aesthetically-pleasing
two-dimensional pictures of undirected graphs drawn with
straight edges. Vertices will be drawn as points in the plane
inside a rectangular frame and the problem thus reduces to
finding the coordinates of such points, since the edges are

defined by a given 0/1 connection matrix.

Automatic graph lay-out is a long-studied problem in com-
puter science with a large literature (see [20], for a bibliog-
raphy). Many aesthetic criteria can be conceived of and
some generally accepted ones include: (i) uniform spa-
tial distribution of the vertices, (ii) minimum number of
edge-crossings, (iii) uniform edge length, (iv) exhibit any
existing symmetric feature and (v) vertices should not be
placed too close to edges. Of course one would strive for
an algorithm which generates a solution fulfilling all the
aesthetic criteria simultaneously. However, those criteria
are non-commensurable and conflicting. As an alternative
to a true multi-objective GA for approximating the Pareto
front in such a high-dimensional space (see Table 1) one
could “scalarize” the problem by assigning weights to each
of those criteria in order to obtain a single objective func-
tion. The problem is then how to assign those weights in a
way that a pleasant-looking lay-out emerges. In the graph
lay-out problem it is observed that different sets of weights
lead to different final solutions which display different as-
pects/properties of the graph at hand. The final choice is
thus often a matter of personal preference.

3 INTERACTIVE EVOLUTIONARY
COMPUTATION

When the fitness function is subjective, an interactive GA
is implemented in a way that the quality of every candidate
solution has to be externally provided by the user to the
GA which then performs recombination and/or mutation
of individuals in the current population in order to gener-
ate the next population. The new individuals must then be
presented to the user which has the task to evaluate them
according to his/hers preferences.

Caldwell and Johnston[21] have developed an IGA which
allows for the interactive evolution of a face of a suspect
seen by the user at the scene of a crime. An IGA has been
applied by Louis and Tang[22] to the traveling salesman
problem (TSP). First the user visually decomposes the TSP
into clusters of cities and then a GA is applied to solve
the TSP corresponding to each cluster. Finally, the user ei-
ther (i) manually connects sub-tours in order to get a com-
plete solution or (ii) defines a promising region between
two clusters and then let the system perform an exhaustive
search among edges to delete and add in this region such
that the total tour length is minimized.

It is interesting to note that when the evolved artifact is rep-
resented in two- or three-dimensional space the individuals
can be simultaneously presented (in small numbers though)
to the user which can then rank them by comparison. How-
ever, for a musical solution, say a jazz solo, which develops
itself in time, the user has to hear them carefully, one at a
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time, and then proceed to the ranking stage.

It has been observed that the user’s task often leads to fa-
tigue and that an IGA should be carefully implemented if it
is to be useful. One possible way to remove the human be-
ing from the IGA loop and thus speed up the evolutionary
process is to substitute it by a neural network trained to re-
flect the user’s preferences. That has been tried by Biles[9]
in order to simplify his original procedure which consisted
in presenting each solution (a jazz solo) to an audience for
evaluation. Unfortunely good results were not obtained in-
dicating that this option is also hard. In the work by Jo-
hanson and Poli[11] an interactive system allows users to
evolve short musical sequences using interactive GP. As the
user is the bottleneck in the process, the system takes rating
data from a user’s run and uses it to train a neural network
based automatic rater which can then replace the user and
allow for longer runs. The best pieces generated by the au-
tomatic raters were reported to be pleasant but were not, in
general, as nice as those generated in user interactive runs.

An approach to the interactive development of programs
for image enhancement using GP is presented by Poli and
Cagnoni[23]. There is no fitness function and the user de-
cides which individual should be the winner in the tourna-
ment selection. Good solutions to real-life problems are re-
ported after only hundreds of evaluations. Also, a strategy
to reduce user interaction is proposed: the choices made by
the user in interactive runs are recorded and later used to
build a model which can replace the user in longer runs.

There are other situations of scientific and technological
importance where, although a reasonable fitness function
can be designed, the evolutionary process would be im-
proved if any additional user knowledge (perhaps hard to
code into the fitness function) could be used in the evalua-
tion or ranking of the population. In this case, one would
profit from a supervised process where the user monitors
the evolution and occasionally intervenes in order to guide
the process towards what is perceived as a better region of
the search space at least according to the user experience.
An example of such approach has been presented recently
by Boscheti[24], where IGAs are proposed for a class of
geophysical inversion problems. For additional IEC appli-
cations and a survey, the reader is referred to Takagi[25, 26]
and references therein.

As already mentioned, an important area where user pref-
erences are essential is that of MOO problems, and we be-
lieve that the idea of co-evolution can bring some needed
help to the design of an IGA for this class of problem.

4 CO-EVOLUTION

In a standard GA the fitness function does not change with
time so that the population can be thought of as climbing

a fitness landscape and gradually converging to one of its
peaks. In contrast to these static landscapes, natural evo-
lution happens in a dynamic fitness landscape where or-
ganisms are constantly adapting to each other and to their
environment.

Artificial co-evolutionary algorithms have been used in the
solution of practical problems and one idea is that of coop-
eration. Potter and De Jong[27] used it for function opti-
mization in Rn where n subpopulations are maintained and
the fitness of a given individual of a particular subpopula-
tion is an estimate of how well it cooperates with other sub-
populations to produce good solutions. These ideas were
later applied to the co-evolution of neural networks[28] and
sets of rules[29].

Another approach is that of competition. In the pioneering
work of Hillis[30] it was applied to the problem of evolving
minimal sorting networks for lists of a given number of el-
ements. It was observed that the co-evolution of test cases
along with the sorting networks results in an improved pro-
cedure. Two independent populations are maintained: one
of sorting networks (or hosts) and the other of test cases
(parasites). The fitness of each sorting network was mea-
sured by its ability to correctly solve test cases while the
fitness of each test case was proportional to the number of
times it was incorrectly sorted by the networks. Both popu-
lations evolved simultaneously, interacting through the fit-
ness function.

Paredis[31] used a co-evolutionary approach to improve the
genetic evolution of neural networks. Again two popula-
tions were maintained: one of neural networks and another
of examples of the classification task which is submitted
to the neural networks. The fitness of a neural network is
defined as the number of successful classifications of the
twenty most recently encountered examples. On the other
hand, the fitness of an example is the number of times it was
incorrectly classified by the neural networks it encountered
most recently. However, the example population consists
all the time of the same 200 pre-classified examples. To
evolve decision trees, Siegel[32] also performed competi-
tive co-evolution with fixed training examples.

Rosin and Belew[33] used competitive co-evolution for
game-learning problems in which the fitness of an individ-
ual in a host population is based on a direct competition
with individual(s) from a parasite population.

Inspired by the work of Hillis[30], a co-evolutionary GA
has been proposed by Barbosa[34] in which two evolving
populations are used to solve min-max problems. Sev-
eral successful small scale applications were reported in
[34]. Later[35] that approach was applied to a class of op-
timization problems stated as an adversary game between
two players (“nature” and the designer), as well as to con-
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strained optimization problems[36].

Competitive co-evolution was also used by Sebald[37] in
the min-max design of neural net controllers for uncertain
plants while Husbands[38] used a cooperative/competitive
multi-population distributed co-evolutionary GA to handle
a generalized version of job shop scheduling.

In this paper an interactive, co-evolutionary GA is proposed
for MOO problems where the user’s preferences are subjec-
tive, such as in the graph lay-out problem considered here.
However, the procedure can not be classified neither as a
competitive nor as a cooperative co-evolutionary GA.

5 THE CO-EVOLUTIONARY GA

In the co-evolutionary GA proposed here, two popula-
tions will be maintained: a graph lay-out population and a
weight-set population. The lay-out population is composed
of individuals that contain the coordinates of all vertices in
the graph while the weights population is composed of in-
dividuals that contain, each one, a set of weights. An inde-
pendent GA is applied to each population and the coupling
of the evolutionary processes is made through the fitness
evaluation. Each one of the metrics/objectives can be ex-
actly computed for a given lay-out but the fitness of this
lay-out depends on how – i.e. with which set of weights –
those objectives are linearly combined.

A fitness function must also be defined for the weight pop-
ulation. Here it will be defined as follows. After the lay-
out population evolves for a given number of generations
(with its fitness being computed according to a fixed set of
weights) a sample of lay-outs from the current population
is displayed for user inspection. The user then ranks them
according to his/hers personal preferences, which may be
different from their current ranking in the population.

Now it is time for the weight population to evolve while
the current lay-out population is kept “frozen”. The fitness
function value of a given set of weights is then computed
as follows. Each individual (set of weights) evaluates the
sample of lay-outs and produces its own ranking. The fit-
ness of a given set of weights is higher, the closer its rank-
ing approaches the ranking provided by the user. A set of
weights that ranks the sample in a very different order from
that chosen by the user is not very useful and has thus a low
fitness.

The weight population is now evolved in order to search
for that set of weights which produces a ranking the most
closely resembling the one provided by the user. During a
fixed number of generations, the lay-out population is kept
“frozen”.

After a (hopefully) better set of weights is found, the lay-
out population is then allowed to evolve with its fitness

evaluation being now performed using the newly found
(best) set of weights.

The process is then repeated for a given number of cycles
until a satisfactory graph lay-out emerges.

As a result, the fitness of an element in the lay-out popula-
tion depends on the current set of weights, which depends
on the evolution of the weight population whose fitness, in
turn, depend on how well the current set of weights reflects
the user’s personal preferences concerning the graph lay-
outs. In other words, the evolution of the lay-out popula-
tion happens in a fitness landscape that changes every time
a new set of weights is presented by the weights population.
On the other hand, the fitness landscape of the weights pop-
ulation changes every time the user presents its ranking of a
sample of the current lay-out population. Figure 1 displays
the pseudo-code for the algorithm.

In order to minimize fatigue, the user only points and clicks
the mouse on some of the displayed lay-outs following a
decreasing order of his/her preference. The remaining lay-
outs are ranked after those picked by the user and maintain
their relative order.

Algorithm
Initialize lay-out population randomly
Initialize weight-set population randomly
Compute each criterion for all graph lay-outs
while not(user satisfied) do

Display a sample from the lay-out population
The user ranks the sample
for i = 1; 2; :::;max gen w do

Evaluate population of weights
Generate new population of weights

Pick the best set of weights
for j = 1; 2; :::;max gen l do

Compute each criterion for all graph lay-outs
Evaluate population of lay-outs
Generate new population of lay-outs

end

Figure 1: Pseudo-code for the algorithm.

Details of the GA used for each population are given next.

5.1 The genetic algorithm for the weights population

As suggested by an anonymous reviewer, a system of lin-
ear inequalities could be written defining the set of all fea-
sible sets of weights, that is, weights that reproduce a given
user’s ranking. However, it cannot be proven that such a
set is always non-empty: there is a human making choices.
As a result, a generational GA with a rank-based selection
scheme was adopted for the evolution of the weights popu-
lation, where each chromosome is simply a vector of posi-
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tive real numbers (the weights) whose sum is 1.

The fitness of a set of weights is evaluated by its capac-
ity to rank the lay-out population in accordance with the
user’s preferences. The process can be explained as fol-
lows. When the user inputs his/her own rank, it can be seen
as a vector U describing a specific ordering. The fitness of
a set of weights S can be calculated by:

f(S) =
mX

j=1

Cj(Wj � Uj)

where W is a vector like U, but describing the ordering gen-
erated by the individual S. C is a fixed vector of constants
which allows one to emphasize the importance of the first
individuals. In our tests, m = 9 and the elements of C are
f9; 8; 7; 6; 5; 4; 3; 2; 1g.

The crossover operator used was the blend crossover -
BLX[39] which generates one offspring by randomly gen-
erating for each weight a value in the range [ws

i
��; w

l

i
+�]

with � = �(wl

i
�w

s

i
) and wherews

i
and wl

i
are the smallest

and largest values respectively for wi in the parents’ chro-
mosomes (� was set to 0.3).

Two mutation schemes are used, which will be referred to
as weak perturbation mutation - WP and strong perturba-
tion mutation - SP. First of all, a value is randomly cho-
sen from the interval [0,1]. If it is lower than 0.85, mu-
tation will occur. Next, the WP mutation will be applied
with a probability of 0.7 and the SP will occur with proba-
bility of 0.3 (1.0 - 0.7). The mutation operators work as
follows: (i) WP: One weight wi of the set is randomly
chosen and perturbed by an amount limited to the interval
[�0:3wi; 0:3wi]; (ii) SP: One gene (a weight) is randomly
chosen and has its value changed to another value randomly
picked in the interval [0,1].

5.2 The genetic algorithm for the lay-out population

The GA used here is a standard generational one where
each candidate solution is encoded as a real vector contain-
ing the coordinates (xi; yi) of each vertex of the graph. The
initial population is randomly generated and the selection
process is rank-based.

The GA for graph lay-out tries to optimize for several aes-
thetic criteria. One of them is the energy function defined
by Kamada and Kawai[40]

E =

jV j�1X

i=1

jV jX

j=i+1

1

2
kij(jpi � pj j � lij)

2 (1)

where jV j is the number of vertices, pi is the position vec-
tor of vertex i, and kij and lij are respectively the spring
force and the ideal distance between vertices i and j. The

idea is to make the Euclidean distance between two vertices
as close as possible to the ideal “graph theoretic” distance,
which is defined as lij = Ldij where dij is the distance be-
tween vertices i and j measured as the length of the shortest
path between them and L is the ideal length of an edge in
the graph, given by L = L0=maxfdijg where L0 is the
length of the side of the square display area. Finally, the
spring constant in Eq. (1) is given by kij = K=d

2
ij

whereK
is a constant. Due to the observation that this energy func-
tion, which often leads to uniform edge length and uniform
vertex distribution, is not always able to achieve a good lay-
out, several other criteria have also been introduced. The
objective function is thus composed by a weighted sum
of those criteria and the energy function E . All criteria
adopted are listed in Table 1 with the complexity associ-
ated with their computation, where jEj denotes the number
of edges in the graph.

Only mutation operators are used in this GA. However, the
approach adopted here is different from that of the stan-
dard GA; here, each individual has a probability of 0.85
to be submitted to mutation. The first mutation operator is
the single vertex mutation – SV, which perturbs the coordi-
nates of a randomly chosen vertex by an amount not larger
than L. The second one is the exchange vertex mutation –
EV, which exchanges two randomly pre-selected vertices
of the same graph. Finally, a third one, called vertex re-
placement mutation - VR was also defined. Just like the
SP mutation of the GA for the weight population, it simply
replaces one gene for another value randomly chosen but
feasible, i.e., the (x; y) coordinates of a vertex are replaced
by a pair of values in the interval [0; L0]. The relative prob-
ability of these 3 operators was set as 0.5, 0.2 and 0.3, re-
spectively. One should note that both GA’s have to adapt
to – potentially drastic – landscape changes, so it seems a
good idea to have a high mutation probability.

The reason for not using a crossover operator is the fact
that the schemes tested not only did not bring any improve-
ment but also made the process slower. This seems to be
due to the difficulty known as the competing conventions
problem in the area of evolutionary neural networks. In our
case, it happens when two (or more) identical layouts of the
same graph are either shifted, rotated or inverted. It is de-
sirable for a crossover operator that, when combining two
equivalent layouts, the offspring generated be similar to its
parents. We intend to develop such an operator, using ideas
from [41].

6 NUMERICAL EXPERIMENTS

In order to illustrate the feasibility and performance of the
approach proposed here, the task of laying out a simple
planar graph was undertaken.
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Criterion Abb. Description Complexity
Energy En Potential energy E �(jV j2) a

Edge Crossings Ec Number of intersections between edges �(jEj2)

Edge Deviation Ed Difference between edge lengths �(jEj2)
Edge attraction Ea Distance between connected vertices �(jEj)

Vertices Repulsion V r Inverse of distance between vertices �(jV j2)
Centripetal Attraction Ca Distance between vertices and the centroid of lay-out �(jV j)

Central Uniformity Cu Difference between vertices distances to the centroid of lay-out �(jV j2)
Vertex-edge Distance V Ed Inverse of distance between vertices and edges �(jV jjEj)

aAssuming that the dij are previously calculated and stored.

Table 1: Aesthetics criteria adopted in the algorithm

Figure 2 shows 9 elements from the initial population
which were presented to the user.

Figure 2: A sample from the initial population.

The first run was made by a user who did not care about the
number of edge-crossings in the drawing.

The weights associated with the criteria used in this
case, En;Ed;Ec; Ca and V r then evolved respectively to
0.5394, 0.2854, 0.06554, 0.050776 and 0.05887 and a so-
lution with many edge crossings was obtained but with an
interesting spatial structure displayed as shown in Figure 3.

The second run was made by an user who wanted a solu-
tion with a minimum of edge-crossings. As expected, the
weights evolved to quite different values: 0.0008176, 0,
0.6478, 0.02042 and 0.3310. It is easy to see that the (third)
weight associated with edge-crossings now has evolved to a
value ten times higher than that of the previous case and the
one associated with the energy is almost 1=1000 of the pre-
vious solution, indicating that this criteria goes “against” a
planar solution in this problem. The graph obtained has no
edge-crossings and is displayed in Figure 4.

Figure 3: Solution for user 1.

7 CONCLUSIONS

The work presented here reports on an investigation be-
ing conducted concerning the design of an interactive co-
evolutionary genetic algorithm for multi-objective opti-
mization problems and its application to the graph lay-out
problem. Comparing with previous interactive evolution-
ary algorithms, the proposed interactive co-evolutionary
GA can use a larger population for the application at hand
since the user only has to rank a sample from the corre-
sponding population. A single paradigm – the genetic algo-
rithm – is used for both tasks, namely, that of searching for
a good solution of the multi-objective optimization prob-
lem (a graph lay-out, in the present application) and that of
learning the user’s subjective preferences.
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Figure 4: Solution for user 2.
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Abstract

It is still unclear how an evolutionary algo-
rithm (EA) searches a �tness landscape, and
on what �tness landscapes a particular EA
will do well. The validity of the building-
block hypothesis, a major tenet of traditional
genetic algorithm theory, remains controver-
sial despite its continued use to justify claims
about EAs. This paper outlines a research
program to begin to answer some of these
open questions, by extending the work done
in the royal road project. The short-term goal
is to �nd a simple class of functions which
the simple genetic algorithm optimizes better
than other optimization methods, such as hill-
climbers. A dialectical heuristic for searching
for such a class is introduced. As an example
of using the heuristic, the simple genetic al-
gorithm is compared with a set of hillclimbers
on a simple subset of the hyperplane-de�ned
functions, the pothole functions.

1 BACKGROUND

Evolutionary algorithms (EAs) are computational
search methods based on biological evolution. Some
common EAs are genetic algorithms (GAs) [12, 9, 18],
evolutionary programming (EP) [6], evolution strategies

(ESs) [24], genetic programming (GP) [17], and classi-

�er systems [14]. The study of EAs is called evolution-

ary computation (EC).

EAs are increasingly important in such areas as function
optimization, machine learning, and modeling. How-
ever, as Mitchell et al. emphasized in the royal road
(RR) papers [19, 7, 20], it is still unclear how an EA
searches a �tness landscape, or even what an EA does.
It is also unknown what types of problem are easy or
hard for a particular EA, how various landscape fea-
tures a�ect problem diÆculty for an EA, or under what

circumstances an EA will outperform another search
method. Even less work has been done to classify the
features of real-world problems that may be relevant
to EA performance. Moreover, the selection of EA pa-
rameters such as mutation rate or population size is still
largely a black art, despite some promising research in
this area. This lack of theory makes the selection and
con�guration of an EA for a given problem diÆcult.

A major open question in EC is the function and im-
portance of the crossover operator, which recombines
two individuals. Holland [12] has argued that crossover
is central to an EA's eÆcacy. The theoretical basis for
this is the building-block hypothesis (BBH) [9], which
states that an EA uses crossover to repeatedly combine
compact subsolutions with high observed �tness from
di�erent individuals, forming more complete subsolu-
tions with even higher observed �tness. Such subso-
lutions are called building blocks. When an EA uses
crossover on symbol strings from the set A`, where A

is the set of possible symbols and ` is the length of
a string, the building blocks are short schemata with
high observed �tness. Schemata are members of the
set (A [ f*g)`, where * is a wildcard symbol. They
are hyperplanes in the search space. Holland's schema
theorem [12] implies that short schemata with consis-
tently above-average observed �tness tend to increase
exponentially in frequency over several generations. (If
operators other than reproduction are neglected, this is
true for all partitions of the search space, not just for a
partition into schemata. However, applying crossover to
symbol strings induces a natural partition of the space
into schemata [27]. Furthermore, short schemata are
preserved by crossover. This makes schemata particu-
larly relevant when studying EAs that use crossover on
strings.) Applying crossover to individuals with high
�tness is a plausible heuristic for generating o�spring
that will also be highly �t. The chance that this heuris-
tic succeeds can be quanti�ed using Price's covariance
and selection theorem [1]. Implicit in the BBH is also
the hypothesis that there are many real-world problems
amenable to solution by this process.
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A common misconception is that a schema has a unique,
well-de�ned �tness, which is the average �tness of all of
its possible instances, and that observed �tnesses are
estimates of these \actual" values. In general, no such
unique schema �tness exists, and the schema theorem
makes no such assumption [11]: The observed �tness of
a schema is the average �tness of its instances in the
current population. This value depends on the distri-
bution of schemata in the current population, which is
biased by the EA over time. A uniform distribution is
only seen immediately after generating an initial ran-
dom population, if ever. Hence, there is no justi�cation
for arbitrarily de�ning a schema's �tness to be the av-
erage over a uniform distribution. A schema may be a
highly-�t building block in one population but not in
another, even under the same �tness function. Grefen-
stette [10] made essentially the same point when he crit-
icized the \static building-block hypothesis".

The BBH is often used to explain how EAs work and
to justify the importance of crossover. However, there
is no theory that speci�es in detail the conditions nec-
essary for the BBH to be valid and thus for crossover to
be bene�cial. While there is empirical evidence in favor
of the BBH [13], its validity in general for the SGA and
for other EAs using crossover remains controversial [6],
and the schema theorem's relevance to EA theory has
been questioned as well [27, 28]. In particular, uniform
crossover, which is more likely to break up short build-
ing blocks than traditional crossover, is very e�ective
on some problems [26], and it may be that on some
problems crossover acts as a macromutation operator,
rather than as an operator that recombines building
blocks [16]. More generally, it is not clear how to formu-
late a BBH that is valid for an arbitrary EA operating
on an arbitrary representation of solutions [22].

2 RESEARCH PROGRAM

This paper presents a research program to extend the
RR papers [19, 7, 20] in testing the validity of the
BBH, focusing speci�cally on the simple genetic al-

gorithm (SGA) [9]. The SGA is a GA that uses
�tness-proportionate selection, single-point crossover,
and point mutation to evolve a single panmictic pop-
ulation of bit strings, with each generation completely
replacing the previous one. I focus on the SGA because
it is a relatively simple EA with a large theoretical lit-
erature and because many EAs descend directly or in-
directly from it. A theory developed for the SGA has a
relatively good chance of being applicable to other EAs.

As in the RR papers, I use function optimization to
compare the SGA with other search algorithms. I do
this because it is an increasingly important application
for EAs, with relatively clear performance criteria, and

because a simple �tness function is easy to design and
implement. Also, function optimization can be viewed
as search, so theories developed for it may be relevant
to other applications of search, for instance arti�cial
intelligence [21] and evolutionary biology [30].

As De Jong [2] pointed out, the SGA is not a function
optimizer, per se. But if the BBH is valid, the SGA
should work particularly well as an optimizer on func-
tions rich in building blocks that can be recombined
to reach the optimum. Hence, to determine the valid-
ity of the BBH, it would be useful to know the class
of functions on which the SGA outperforms other opti-
mizers. Examining what makes this class of functions
particularly easy for the SGA will also help us to pre-
dict which functions the SGA will perform well on. One
step towards this goal is to �nd a simple class of func-
tions on which the SGA outperforms hillclimbers. This
was the goal of the RR papers and is also the immedi-
ate goal here. To meet this goal, the SGA should con-
sistently perform extremely well on the functions and
outperform hillclimbers by a wide margin, for a reason-
able set of performance criteria. (Note that this is a
di�erent question from that addressed by Wolpert and
Macready's [29] no free lunch (NFL) theorem.)

This paper takes a di�erent approach from that of the
RR papers, although the ultimate goal remains the
same. In those papers, Forrest and Mitchell [7] deter-
mined that hitchhiking was a major factor limiting SGA
performance on the RR functions, causing it to perform
worse than the random mutation hillclimber (RMHC).
Hitchhiking occurs when detrimental or neutral alle-
les increase in frequency due to the presence of nearby
bene�cial alleles on the same chromosome [8]. This can
cause bene�cial alleles at the same loci as the hitchhik-
ing alleles to die out in the population, preventing the
SGA from �nding any highly-�t individuals that con-
tain those alleles. (The fact that schemata do not have
unique, well de�ned �tnesses is a necessary precondi-
tion for hitchhiking.) After identifying this problem,
Mitchell et al. [20] investigated how to make the SGA
perform more like an idealized genetic algorithm that
was una�ected by hitchhiking. They developed the RR
function R4, which reduced hitchhiking by lowering the
�tness jump from one level of the function to the next.
In e�ect, they made the SGA outperform the RMHC by
making the functions easier for the SGA. In contrast, I
attempt to make them harder for hillclimbers. The RR
functions are easy for hillclimbers like the RMHC be-
cause they are convex: An algorithm never needs to go
downhill in order to reach the global optimum. To make
these functions hard for hillclimbers, I add potholes to
them: valleys in the �tness landscape that block a hill-
climber's path to the optimum [19]. This produces the
pothole functions, described in Section 3. (Holland pro-
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posed a class of RR functions, described by Jones [15],
that also contained potholes.)

Pothole functions are a very simple subset of Holland's
hyperplane-de�ned functions (HDFs) [13]; potholes are
examples of HDF re�nements. A long-term goal is to
design a class of pothole functions with parameters that
can be varied to select the landscape features present
in a function, as well as its overall diÆculty. An arbi-
trary number of functions could then be generated with
the desired characteristics by using those parameters to
de�ne probability distributions, which in turn could be
used to choose the schemata that contribute to an indi-
vidual's �tness, along with their �tness contributions.
(In this paper, these will be called a function's signi�-
cant schemata.) Such a class would allow a researcher
to use statistical methods to calculate the certainty of
statements about an algorithm's performance across the
entire class, while being easier to understand than more
general classes of HDFs. However, it is not yet clear
what parameters or distributions should be used, if the
goal is to describe a class of functions that is easy for
the SGA yet hard for hillclimbers. The immediate goal
is to use hand-designed pothole functions as testbeds to
determine what regions of distribution space should be
used for randomly-generated functions.

I base my work on the RR functions because they were
explicitly designed to investigate the validity of the
BBH by studying the SGA's performance on functions
rich in building blocks. The signi�cant schemata in a
RR function are not building blocks in every popula-
tion, since their �tness depends on the current popula-
tion. However, the functions are de�ned so that they
are building blocks in all contexts except in the occur-
rence of hitchhiking, since they make only positive �t-
ness contributions. The functions are \rich in building
blocks" in this sense; the pothole function p1 described
in Section 3 has the same characteristic. In this paper,
a schema that makes a positive �tness contribution (ig-
noring the �tness contribution of other schemata) will
be called a bene�cial schema. (It is possible to de�ne
a building block as any bene�cial schema, in contrast
to the de�nition given earlier. This de�nition is related
to Fisher's [5] average excess, but it makes the relation-
ship between the BBH and the schema theorem less
clear [J. H. Holland, personal communication].) Like
the RR functions, the pothole functions are not meant
to be realistic. Since the �tness contribution of every
schema is speci�ed in advance, schemata can be used
as tracers: They can be related to individual landscape
features, and their frequency in the EA population can
be tracked over time [19]. Hypotheses about the e�ects
of various landscape features on EA behavior can then
be formulated and tested. This knowledge can then be
applied to the study of real-world functions.

1. Create a function that is easy for the SGA, for some
performance criteria.

2. Use domain-speci�c knowledge to design a simple
algorithm that is able to optimize that function
better than the SGA. If no such algorithm can be
found, or if all such algorithms incorporate unrea-
sonable amounts of domain-speci�c knowledge, go
to Step 4.

3. Modify the function so that it is hard for the simple
algorithm yet still easy for the SGA. If no such
function can be found, go back to Step 1 and start
over. Otherwise, go back to Step 2.

4. Stop | a candidate function has been found.

Algorithm 1: A dialectical heuristic for �nding a simple
function that is easy for the SGA but hard for other op-
timizers. (Note that this heuristic may never succeed.)

Given enough domain-speci�c knowledge, it is plausible
that a specialized optimization method can be designed
to outperform the SGA on any suÆciently restricted
class of functions. (The NFL theorem does not hold if
the subset of functions being considered has measure 0
in distribution; this is true for many subsets of inter-
est, in particular all countable subsets [J. H. Holland,
personal communication].) Therefore, the issue is not
whether the SGA will outperform all other algorithms
on a given class. Rather, it is: How much domain-
speci�c knowledge is it reasonable to incorporate into
an algorithm before it becomes over-specialized or too
expensive to design and implement, outweighing any
performance advantage over the SGA? A related ques-
tion is: How broad must a class of functions be be-
fore the SGA outperforms a specialized optimizer on
it? More generally, the RR papers suggest a dialectical

heuristic to search for a simple function that is easy for
the SGA but hard for hillclimbers (Algorithm 1). (Note
that \dialectic" here simply denotes \the existence or
working of opposing forces" [25].) While this heuristic
is very straightforward, it has never been articulated
explicitly. Since it is a heuristic, it may never succeed;
however it is a plausible way to search for the desired
class of functions.

The remainder of this paper provides a concrete exam-
ple of using this heuristic. The pothole function p1 is
introduced and shown to be diÆcult for the RMHC but
easy for the SGA. Then a variant of the RMHC, the
lax random-mutation hillclimber (LRMHC), is de�ned,
which knows the depth of the potholes in p1 and is able
to cross over them to reach the optimum. This hill-
climber is shown to outperform the SGA on p1. The
paper concludes with a discussion of the results.
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Table 1: The pothole function p1. An individual's �tness is calculated by summing the �tness contributions of the
schemata of which the individual is an instance, and then adding this sum to a base �tness of 100. If the result is
less than 0, it is reset to 0. The global optimum is a string of 64 1s, with a net �tness of 115.

Level Schema Fitness

1 s0 11111111******************************************************** 1:0

s1 ********11111111************************************************ 1:0

s2 ****************11111111**************************************** 1:0

s3 ************************11111111******************************** 1:0

s4 ********************************11111111************************ 1:0

s5 ****************************************11111111**************** 1:0

s6 ************************************************11111111******** 1:0

s7 ********************************************************11111111 1:0

2 s8 1111111111111111************************************************ 1:4

s9 ****************1111111111111111******************************** 1:4

s10 ********************************1111111111111111**************** 1:4

s11 ************************************************1111111111111111 1:4

3 s12 11111111111111111111111111111111******************************** 1:0

s13 ********************************11111111111111111111111111111111 1:0

4 s14 1111111111111111111111111111111111111111111111111111111111111111 1:0

s15 111111111******************************************************* �0:1

s16 11111111*1****************************************************** �0:1

s17 ******1*11111111************************************************ �0:1

s18 *******111111111************************************************ �0:1

s19 ****************111111111*************************************** �0:1

s20 ****************11111111*1************************************** �0:1

s21 **********************1*11111111******************************** �0:1

s22 ***********************111111111******************************** �0:1

s23 ********************************111111111*********************** �0:1

s24 ********************************11111111*1********************** �0:1

s25 **************************************1*11111111**************** �0:1

s26 ***************************************111111111**************** �0:1

s27 ************************************************111111111******* �0:1

s28 ************************************************11111111*1****** �0:1

s29 ******************************************************1*11111111 �0:1

s30 *******************************************************111111111 �0:1

3 POTHOLE FUNCTIONS

Following the dialectical heuristic described in Sec-
tion 2, I modi�ed the RR functions to make them harder
for simple hillclimbers by adding potholes. Potholes are
detrimental schemata that contain bene�cial schemata,
and which, in turn, are necessary to reach bene�cial
schemata with higher �tness contributions [19]. This
produces the class of pothole functions. All experiments
in this paper were performed on the pothole function
p1, which is de�ned in Table 1. That table lists all of
the schemata that contribute to an individual's �tness,
along with their �tness contributions; these schemata
are called the function's signi�cant schemata.

The �tness p1(x) of a string x 2 f0; 1g64 is given by

p1(x) = max

8
<
:0; 100 +

X
s2Sjx2s

�(s)

9
=
; ; (1)

where S is the set of signi�cant schemata for p1, s is a
schema in S, and �(s) is the �tness contribution of s.

The notation x 2 s stands for \the string x is an in-
stance of the schema s". Individuals have a base �tness
of 100, so that in other pothole functions they may be
less �t than the base �tness without having a negative
�tness; the �tness is forced to be equal or greater than
0 so that �tness-proportionate selection may be used.
The global optimum is a string of 64 1s, which has a
�tness of 115.

The function consists of 4 levels, de�ned in Table 1.
The �rst level consists of elementary schemata, each
of which is a block of 8 1s. Each higher level consists
of compound schemata composed of schemata from the
previous one. The elementary and compound schemata
are all bene�cial schemata. An algorithm is said to
reach a level when it �nds an individual that is an in-
stance of at least one signi�cant schema from that level.

If p1 consisted only of schemata s0{s14, it would be
a RR function, similar to R2 [19]. The additional
schemata s15{s31 are potholes. The potholes s15 and
s16 prevent a single-mutation hillclimber, such as the
RMHC [7], that has reached the �rst-level schema s0
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from reaching the second-level schema s8. This is be-
cause every sequence of single-bit mutations that leads
from s0 to s8 would force the hillclimber to go downhill
in �tness through one of these potholes (assuming nei-
ther of them is present to begin with), which it cannot
do. Similarly, the potholes s17 and s18 prevent it from
reaching s8 if it has reached s1. The remaining potholes
block the path to the other second-level schemata.

4 EXPERIMENTS ON p1

I �rst compared the SGA against a variety of hill-
climbers on p1, to verify that it was more diÆcult than
the RR function R2 for hillclimbers such as RMHC.

4.1 SIMPLE GENETIC ALGORITHM

(SGA)

The SGA used a population of 512 individuals. Two
o�spring were produced for each pair of parents, and
the entire population was replaced in each new gener-
ation. Standard one-point crossover was used with a
probability of 0:7 per mating pair. Point mutation was
applied to each o�spring with a probability of 0:005 per
allele (mutations simply ipped the allele from 0 to 1 or
vice-versa). Fitness-proportionate, or \roulette wheel",
selection was used, with �-truncation scaling [9]:

f 0 = maxfmin[f � ( �f � c�); 1:5]; 0g: (2)

Here f 0 is an individual's scaled �tness, f is its unscaled
�tness, �f is the population average unscaled �tness, �
is the standard deviation of unscaled �tness in the pop-
ulation, and the scaling constant c = 2. The maximum
and minimum possible scaled �tnesses are 1.5 and 0, re-
spectively. The scaled �tnesses were then used to select
the parents of the next generation. If � < 0:0001, the
unscaled �tnesses were used instead. Scaling appears to
be necessary for the SGA to do well on these functions.

These parameters were chosen rather arbitrarily, since
the goal is to �nd a class of functions that the SGA
can optimize easily, without being sensitive to the exact
parameter settings.

4.2 HILLCLIMBERS

When comparing the SGA with hillclimbers, it is im-
portant to report results from a variety of hillclimbers.
In these experiments, I used the next-ascent hill-
climber (NAHC), steepest-ascent hillclimber (SAHC),
and random-mutation hillclimber (RMHC) described
by Forrest and Mitchell [7], and Jones's crossover hill-
climber (XOHC) [16].

The XOHC used di�ers from Jones's in that it repeats
if the maximum number of jumps is reached, until the

maximum number of evaluations has been performed.
Jones's original algorithm also quit if no �tness increase
was found within 10000 steps; the one used here does
not.

4.3 PERFORMANCE CRITERIA

In order for one algorithm to outperform another in this
study, it should do so over a wide range of reasonable
performance metrics. I use the number of function eval-
uations needed to reach the optimum as the primary
performance metric, under the assumption that func-
tion evaluation dominates an optimizer's running time.
When one algorithm reaches the optimum more often
than the other, I use the number of times the optimum
is reached as the primary performance metric. When
neither algorithm reaches the optimum, I use the num-
ber of evaluations needed to reach each level, as well as
the number of times each level was reached. The max-
imum �tness reached in each run is also recorded, but
not shown here.

Fitness timeseries were also plotted for each algorithm,
sampled every 512 function evaluations and averaged
over the set of runs; only those for the SGA and two of
the hillclimbers are shown here. (Individual runs were
also plotted but are not shown here.) These provide
much more information about the course of each run,
including the rate of improvement in �tness. For the
SGA, the population best and average unscaled �tness
are plotted; for the hillclimbers the �tness of the best
individual evaluated so far is plotted, along with the
�tness of the current individual being evaluated.

4.4 EXPERIMENTAL RESULTS

The SGA, NAHC, SAHC, RMHC, and XOHC were

each run 50 times on p1, for 256000 function evalua-
tions per run. The results are presented in Table 2.
Timeseries for the SGA and RMHC are presented in
Figures 1{2. The function p1 achieved the goal of be-
ing hard for the RMHC. Neither it nor any of the other
hillclimbers ever found the optimum. Among these al-
gorithms, only the SGA ever found the optimum (level
4), and it did so in almost every run. The timeseries for
the SGA and the RMHC are consistent with the other
performance metrics.

5 LAX RANDOM-MUTATION
HILLCLIMBER (LRMHC)

Following the dialectical heuristic presented in Sec-
tion 2, the next step was to see how hard it was to
design a hillclimber that outperformed the SGA on p1.
Since the �tness penalty of each pothole was 0:1, and
the �tness contribution of each bene�cial schema was

215GENETIC ALGORITHMS



100

102

104

106

108

110

112

114

51
2

26
11

2

51
71

2

77
31

2

10
29

12

12
85

12

15
41

12

17
97

12

20
53

12

23
09

12

Evaluations

F
it

n
es

s
Pop Best Fitness Pop Average Fitness

Figure 1: SGA population best and average �tness on
p1, sampled every generation and averaged over 50 runs.
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Figure 2: RMHC best and current �tness on p1, sam-
pled every 512 function evaluations and averaged over
50 runs.
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Figure 3: LRMHC best and current �tness on p1, sam-
pled every 512 function evaluations and averaged over
50 runs. (� = 0:1).

Table 2: The SGA, RMHC, NAHC, SAHC, XOHC, and
LRMHC on p1, 50 runs, 256000 function evaluations:
Mean evaluations needed to reach each level (level 4 is
the optimum). Here n is the number of times a level was
reached, �x is the sample mean number of evaluations
needed to reach each level, averaged over n, and s is the
sample standard deviation of the number of evaluations.

Level
1 2 3 4

SGA n 50 50 50 48
�x 36:9 4026:9 17838:2 65063:2
s 32:6 1833:5 13546:4 50361:2

NAHC n 50 48 0 0
�x 224:6 72733:2 | |
s 219:1 62128:0 | |

SAHC n 50 48 0 0
�x 213:3 71687:3 | |
s 183:1 57099:5 | |

RMHC n 50 2 0 0
�x 333:7 3133:5 | |
s 289:6 1051:5 | |

XOHC n 50 50 34 0
�x 392:0 10454:8 110519:0 |
s 453:8 8675:6 63414:0 |

LRMHC n 50 50 50 50
(� = 0:1) �x 249:9 1342:5 3547:1 6244:0

s 229:0 915:0 2025:4 3055:2

either 1:0 or 1:4, there is a foolproof method for deter-
mining whether a drop in �tness resulted from encoun-
tering a pothole, or from something else. If the drop is
0:1, then it is due to just a pothole and can be ignored.
If it greater than or equal to 0.8, one or more bene�cial
schemata have been lost.

The lax random-mutation hillclimber (LRMHC) listed
in Algorithm 2 resulted from incorporating this domain-
speci�c knowledge into the RMHC. The LRMHC is ex-
actly like the RMHC, except that it accepts any new
string whose �tness is no more than � below the �tness
of the current string; in these experiments, � is 0:1. (On
p1, � can be any value in the interval [0:1; 0:8).) The
algorithm is very similar to the constant threshold al-
gorithm (CTA) developed independently by Quick et
al. [23]. The only di�erence is that the CTA accepts a
new string only if its �tness is strictly greater than the
old string's �tness minus �, rather than greater than or
equal as in the LRMHC. (Due to a typo, the LRMHC
algorithm published by Holland [13] also di�ers in this
way from the algorithm listed here.) In turn, both al-
gorithms are similar to the record-to-record travel algo-
rithm and the great deluge algorithm [3], and to thresh-
old accepting [4].
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1. Initialize the current individual to a random string.

2. Mutate one randomly-chosen allele. If the new
string has a �tness equal to or greater than the
current individual's �tness minus �, replace the cur-
rent individual with the new individual.

3. If the number of �tness evaluations performed so
far is less than the maximum, go to Step 2. Oth-
erwise, stop.

Algorithm 2: The lax random-mutation hillclimber
(LRMHC) algorithm. � is set to 0.1 in this paper.

In e�ect, the LRMHC assumes that any function it
encounters has potholes that all have a depth of no
more than �, and that it can ignore them since build-
ing blocks have an observed �tness contribution higher
than this value. It might seem unreasonable to incorpo-
rate this knowledge into the LRMHC. But the RMHC
can be viewed as incorporating just as much knowledge;
it merely assumes that the pothole depth is always 0.
The issue here is not whether the LRMHC is a useful
general-purpose optimizer for real functions. Rather, it
is: How much domain-speci�c knowledge must be built
into a hillclimber so that it outperforms the SGA on
p1?

5.1 LRMHC EXPERIMENTAL RESULTS

Results for LRMHC on p1 are shown in Table 2 and
Figure 2. It outperforms the SGA and all of the other
algorithms on p1, always �nding the optimum, and �nd-
ing it much faster than the SGA. The timeseries for
LRMHC also shows a rapid increase in �tness over the
SGA and RMHC. These results demonstrate that there
is a very simple algorithm that outperforms the SGA by
a wide margin on p1. Similarly, Quick et al. [23] showed
that the CTA outperformed a GA variant on a class of

RR functions proposed by Holland and described by
Jones [15], which also contained potholes. (However,
the SGA outperforms this class of hillclimber on the
RR function R4 [20].)

6 CONCLUSIONS

This paper has presented a research program to inves-
tigate the validity of the BBH, as well as some prelimi-
nary results. A dialectical heuristic for �nding a simple
class of functions on which the SGA outperformed other
simple search algorithms was presented. A class of pot-
hole functions was designed by adding potholes to the
RR functions, in order to make them harder for simple
hillclimbers. The pothole function p1 was shown to be
hard for hillclimbers such as the RMHC but easy for

the SGA. Then a new hillclimber, the LRMHC, was
designed by incorporating domain-speci�c knowledge
about p1 into the RMHC. While LRMHC is not useful
as a general-purpose optimizer, this simple hillclimber
outperformed the SGA on p1, demonstrating that sim-
ple pothole functions such as p1 are still too easy for
hillclimbers. This result does not by itself invalidate
the BBH. However, it reinforces the �nding of the RR
papers that simple assumptions about what functions
are especially easy for the SGA, relative to other op-
timizers, are often unjusti�ed. Simple hillclimbers can
be surprisingly e�ective at optimizing simple functions.

The next step, following the dialectical heuristic from
Section 2, is to modify p1 so that it becomes hard for
the LRMHC, while remaining easy for the SGA. First,
however, the LRMHC's behavior on p1 must be inves-
tigated, in order to predict what kinds of functions it
will �nd diÆcult.
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Abstract

In this paper, we introduce the ICE frame-

work in which crossover from genetic al-

gorithms (GAs) is incorporated in iterated

density estimation evolutionary algorithms

(IDEAs). We focus on permutation opti-

mization problems and show how pure con-

tinuous IDEAs can be applied using the ran-

dom keys representation. The problems that

are hereby encountered, motivate the use of

ICE. As a result, permutation linkage infor-

mation is e�ectively processed, resulting in

eÆcient optimization of deceptive permuta-

tion problems of a bounded order. Experi-

ments show that ICE outperforms pure con-

tinuous IDEAs. Furthermore, we show that

ICE gives insight into how new IDEAs can

be designed that eÆciently work directly in

the permutation search space.

1 Introduction

Finding and using the structure of the �tness land-

scape can aid evolutionary algorithms (EAs) in opti-

mization. One approach to doing so, is by learning a

probabilistic model from the selected samples and by

using it in sampling new solutions. Such algorithms

have been successfully applied to various problems in

the case of discrete (binary) variables [9, 14, 15, 16, 17]

and continuous (real) variables [4, 7, 13].

In this paper, we focus on the class of permutation

optimization problems. This class of problems is very

interesting. On the practical side, important real life

problems such as scheduling and the traveling sales-

man are within this class. On the theoretical side, the

search space grows factorially as the amount of de-

cision variables increases. Furthermore, the solution

space consists of permutations, which is fundamentally

di�erent from that of the binary or real space that

most EAs have been designed for. EAs that directly

work on permutations are usually equipped with spe-

cialized crossover operators that ensure feasibility of

the solutions. An exception is the RKGA by Bean [1]

in which the solutions are coded in the real space in

such a way that all crossover operators generate fea-

sible solutions. The RKGA has obtained good results

especially in the �eld of scheduling.

With the exception of the OmeGA by Knazjew and

Goldberg [12], no attempts have been made to learn

and use the structure of permutation optimization

problems. The OmeGA is essentially a fast messy

GA [8] (fmGA) that has been adapted to work with the

same coding as used in the RKGA. The OmeGA has

been shown to e�ectively solve deceptive problems of

bounded diÆculty [11]. Furthermore, it signi�cantly

outperforms the RKGA, indicating the usefulness of

�nding and using problem structure.

The IDEA by Bosman and Thierens [4] is a framework

for EAs in which probabilistic models are used. It has

mostly been used to focus on continuous representa-

tions and optimization problems. Since the RKGA

introduces a real coding of permutations, continuous

IDEAs can be directly applied. However, since the per-

mutation space is discrete, such an application is likely

to encounter problems. In this paper, we investigate

the performance of continuous IDEAs on permutation

problems as a �rst attempt to design eÆcient proba-

bilistic model building EAs for permutation problems.

Furthermore, we explain the problems with such an

approach and propose a solution for them by introduc-

ing crossover. The resulting algorithm shows eÆcient

scaling behavior on problems of bounded complexity.

The results indicate that IDEAs can be designed that

eÆciently work directly in the space of permutations.

The remainder of this paper is organized as follows.

In section 2 we discuss the IDEA framework. Next,

219GENETIC ALGORITHMS



we go over the coding that is used in the RKGA in

section 3 and present the permutation problems that

we test the algorithms on. Subsequently, we test the

continuous IDEAs in section 4. In section 5, we pro-

pose to use crossover in the IDEA to overcome some

of the problems of the continuous IDEA on permuta-

tion problems. We test the resulting EAs in section 6.

In section 7 we reect on the computational require-

ments of learning and using probabilistic models in

evolutionary optimization. We discuss future research

in section 8 and present our conclusions in section 9.

2 The IDEA framework

The IDEA framework is a general de�nition of Iter-

ated Density Estimation Evolutionary Algorithms that

has mostly been used to focus on continuous rep-

resentations and optimization problems. Let L =

(0; 1; : : : ; l � 1). The rationale behind the framework

can be explained by assuming to have an l{dimensional

optimization problem C(yhLi) = C((y0; y1; : : : ; yl�1)).

Without loss of generality, we assume that we want

to minimize C(yhLi). With every problem vari-

able yi, we associate a continuous random variable

Yi. Without any prior information on C(yhLi), we

might as well assume a uniform distribution over

Y = (Y0; Y1; : : : ; Yl�1). Therefore, we generate an

initial (population) vector of n samples at random.

Now we let P
�(Y) be a probability distribution that

is uniform over all vectors yhLi with C(yhLi) � �.

Sampling from P
�(Y) gives more samples that eval-

uate to a value below �. Moreover, if we know �
� =

minyhLifC(yhLi)g, a single sample gives an optimal

solution. To use this in an iterated algorithm, we select

b�nc samples in each iteration t and let �t be the worst

selected sample cost. We then estimate the distribu-

tion of the selected samples and obtain an estimate

P̂
�t(Y) as an approximation to the true distribution

P
�t(Y). New samples can then be drawn from P̂

�t(Y)

and be used to replace some of the current samples. A

formal de�nition and more details on the IDEA frame-

work can be found elsewhere [4].

A special instance of the IDEA framework is obtained

if selection is done by taking the best b�nc samples,

the amount of new samples is set to n � b�nc and

all of these new samples are used to replace the worst

n�b�nc samples. This results in the use of elitism such

that the search for �� is conveyed through a monoton-

ically decreasing series �0 � �1 � : : : � �tend
. We call

the resulting algorithm a monotonic IDEA.

One of the most important parts in the IDEA is the es-

timation of the probability distribution of the selected

samples. One way of achieving this, is by �nding a

factorized probability distribution, which is a product

of probability density functions (pdfs).

If only multivariate joint pdfs are used, the factoriza-

tion becomes a marginal product model. We also call

this an unconditional factorization. For the factoriza-

tion to be valid, each multivariate joint pdf must de-

scribe a unique set of variables. To this end, we de�ne

the node vector � to be a vector of mutually exclusive

vectors that each hold the indices of the variables that

are contained in a single multivariate joint pdf. The

union of all of these mutually exclusive vectors is ex-

actly equal to L. For example, a valid unconditional

factorization for l = 5 is � = ((0; 4); (1); (3; 2)).

If multivariate conditional pdfs are used, the prod-

uct consists of exactly l factors. For each variable

Yi, we have exactly one factor P (YijY h�(i)i). The

parent variables Y h�(i)i that Yi is conditioned on,

are indicated by a function �(�) that returns a vec-

tor �(i) = (�(i)0; �(i)1; : : : ; �(i)j�(i)j�1). This can

be identi�ed with a directed graph by introducing a

node i for every random variable Yi. Furthermore,

an arc Yi ! Yj in the graph represents the fact that

i 2 �(j). To be able to sample from the resulting

factorized probability distribution, values must have

been sampled for the parents of Yi before sampling a

value for Yi itself. To ensure this, we use a vector

of ordering variable indices ! = !hLi. We can now

enforce that while scanning the variables in the or-

der Y!l�1
; Y!l�2

; : : : ; Y!0 , the variables that some vari-

able is conditioned on, will already have been regarded.

This ordering can be found by performing a topologi-

cal sort on the factorization graph. A valid conditional

factorization for l = 5 is 8i [!i = i] ; �(0) = (2); �(1) =

(2; 3; 4); �(2) = (3; 4); �(3) = (4); �(4) = (0).

To �nd a good factorization, we use an incremental

algorithm that starts from the univariate factoriza-

tion in which each variable is independent from the

others. For unconditional factorizations this means

� = ((0); (1); : : : ; (l � 1)). For conditional factoriza-

tions we have j�(i)j = 0; i 2 L. Each iteration, a

single operation is performed on the factorization that

increases some metric the most. In the unconditional

case, the only operation we allow is merging two vec-

tors. In the conditional case, we only allow the ad-

dition of a variable to the vector of parents of an-

other variable. This corresponds to adding arcs to

the factorization graph. However, to ensure that the

conditional factorization is still valid, an arc is only

allowed to be added if it does not introduce any cy-

cles. If no operation that increases the metric can

be performed anymore, the factorization search algo-

rithm stops. In this paper, we use two metrics that
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should be minimized, which are the Akaike Informa-

tion Criterion (AIC) and the Bayesian Information

Criterion (BIC). For a derivation of these metrics in

the IDEA context, we refer the reader to a more de-

tailed report [5]. The metrics are intended to provide a

useful tradeo� between complexity and goodness of �t.

Both metrics initially score a factorization by the neg-

ative log{likelihood of the factorized probability dis-

tribution. The AIC metric penalizes complexity by

adding the amount of parameters j�j that has to be

�t. Note that the operations on factorizations that

we have proposed, always increase the amount of pa-

rameters. The BIC metric is parameterized by a reg-

ularization parameter � that determines the amount

of penalization of more complex models in order to fa-

vor more simple models. The penalization in the BIC

metric increases logarithmically with the size of the

sample vector �ln(jSj)j�j. In this paper, we have used

� = 1
2
. As the size of the sample vector increases, the

BIC metric has a stronger penalization than does the

AIC metric. Since we have �xed � to 1
2
, this is the

case for any practical population size.

3 Random keys and permutation

problems

Permutations can be encoded in the real space using

random keys. In this section, we briey go over this

encoding and present some permutation problems of

tunable bounded diÆculty.

3.1 Permutation encoding

The encoding of permutations by random keys was in-

troduced by Bean [1]. The main advantage of random

keys is that no crossover operator can create unfea-

sible solutions since each encoding represents a per-

mutation. To encode a permutation of length l, each

integer in L is assigned a value (key) from some real

domain, which is usually taken to be [0; 1]. Subse-

quently, the numbers in L are sorted on the keys to

get the resulting permutation. For example, the ran-

dom key string (0:25; 0:1; 0:9) represents the ordering

(1; 0; 2). This decoding requires O(l log l) time.

3.2 Problems of bounded order

Knazjew [11] has introduced a general deceptive per-

mutation problem. The advantage of this problem over

most test problems is that the interactions between

the random keys are restricted to be of a certain or-

der lBB . A further advantage is that it is de�ned for

any lBB , unlike for instance the deceptive permutation

problems by Kargupta, Deb and Goldberg [10].
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Figure 1: Amount of evaluations for the continuous

IDEA, lBB = 4.

Knazjew's deceptive permutation problem is de�ned

using a distance between two permutations. This dis-

tance is de�ned as the minimum number of elements

in one string to be moved to obtain the other string.

Furthermore, the optimum is the trivial permutation

(0; 1; : : : ; lBB � 1). The distance from any permuta-

tion y to the optimum equals lBB � jlis(y)j, where

lis(y) is the longest increasing subsequence in y. For

example, if y = (4; 0; 3; 1; 2), then lis(y) = (0; 1; 2)

and lBB � jlis(y)j = 5 � 3 = 2. The two elements

to move are of course 4 and 3. Note that the reverse

permutation (lBB � 1; lBB � 2; : : : ; 0) is the only per-

mutation with a distance of lBB � 1. The deceptive

ordering problem for a single building block (BB) of

length lBB , is de�ned as follows:

fBB(y) =

�
1�

jlis(y)j

lBB
if jlis(y)j < lBB

1 if jlis(y)j = lBB

(1)

A building block is a subsequence of the complete ran-

dom key string. The actual �tness function that we

use, has length l = nBBlBB , where nBB is the amount

of building blocks. The locations of the individual

building blocks have been coded loosely. This implies

that building block 0 � i < nBB consists of the ran-

dom keys found at locations (i; i+nBB; : : : ; i+(lBB�

1)nBB). The fact that the problem is fully deceptive,

means that all schemata of an order smaller than k lead

to the suboptimum of the reverse permutation [10].

This makes the problem hard for any optimizer that

doesn't identify which random key positions together

constitute a building block [3]. Furthermore, because

of the loose coding, simple crossover schemes such as

one point crossover are not e�ective either.

4 IDEAs based on normal pdfs for

permutation problems

Since random key strings are real numbers, we can di-

rectly apply continuous IDEAs to permutation prob-
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Figure 2: Required population size for the continuous

IDEA, lBB = 4.

lems. In this paper, we use the normal pdf for the

pdfs implied by the factorization. We refer the reader

to previous work [4] for implementation details.

In all our testing, we used monotonic IDEAs. We used

the rule of thumb by M�uhlenbein and Mahnig [14] for

FDA and set � to 0:3. All results were averaged over 30

independent runs. As a measure of eÆciency, we use

the average amount of required function evaluations.

In �gures 1 and 2, the average amount of evaluations

and the required population size are shown respec-

tively on a logarithmic scale for nBB 2 f1; 2; : : :10g

and lBB = 4. It is clear that using the univariate fac-

torization in which each variable is taken independent

of all of the others, scales up signi�cantly worse than

when problem structure is exploited. The structure

of the problem is best represented in an unconditional

factorization in which the building blocks are perfectly

separated in the node vector �. We call this perfect

mixing information. Using this structure can be seen

to scale up polynomially. There is no obvious di�er-

ence between the AIC or BIC search metric here.

Note that the amount of instances for a permutation

of lBB = 4 is 4! = 24, which still tractable. If we move

to lBB = 5 however, the amount of instances already

becomes 120, which signi�cantly increases the prob-

lem diÆculty. This is reected by the fact that the

continuous IDEAs are unable to solve the deceptive

problems for nBB 2 f3; 4; : : :10g with n � 1:0 �105. In

the case of perfect mixing information, we got 2:0 BBs

on average using 3:1 �106 evaluations and n = 3:0 �104.

The OmeGA signi�cantly outperforms the continuous

IDEA, which points out that the continuous IDEA ap-

proach less eÆciently processes the building blocks.

5 The ICE framework

The results of the continuous IDEA cannot compete

for instance with the OmeGA. Both algorithms how-
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IDEA for increasing � , lBB = nBB = 5, b�nc = 250.
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for increasing � , lBB = nBB = 5, b�nc = 250.

ever attempt to �nd and use the relations between

the random keys. The main problem with the con-

tinuous IDEA is the density estimation of and sam-

pling from a normal pdf. It has some limitations with

respect to non{linearity and multimodality. Further-

more, the permutation space is inbedded in the real

space, meaning that the actual search space is a (spe-

cial) discretization of [0; 1]l. For an lBB{dimensional

fBB function, the optimum and the suboptimum are

contained in a convex region consisting of 100
lBB !

% of

the [0; 1]lBB hypercube. Furthermore, these two re-

gions are separated by the single line on which ev-

ery random key has an identical value. Finally, the

other types of building blocks have the highest �tness

in the neighborhood of the suboptimal block. This

means that, especially as lBB goes up, the geometri-

cal approximation of the normal distribution will have

great diÆculty to represent for instance the trade{o�

between the suboptimal block and the optimal block.

To increase their separability, the selection pressure

should increase or the population size should increase.

For instance, in order to isolate the optimal building

block in a random population, a selection percentage

of � = 100
lBB !

% is required. The performance for di�er-

ent values of � is displayed in �gures 3 and 4. In these

�gures, the selection size b�nc is kept constant. The
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rationale for this is that the goodness of a normal pdf

�t does no longer signi�cantly increase if the amount

of samples increases. The optimization performance

increases if the selection pressure increases. However,

this comes at the expense of the amount of required

evaluations. Therefore, there must be some range for

the best choice for � in the sense of required amount

of evaluations to reach the optimum. In section 7, we

investigate this further.

To overcome the problems with the normal pdf in the

real space with respect to �tting the embedded per-

mutation space, the random key strings should be in-

terpreted in the permutation space. By sampling from

the continuous normal pdf, we introduce a lot of re-

dundancy, since the random key string (0:1; 0:2; 0:3)

codes the same permutation as (0:91; 0:99; 0:999). To

cope with this redundancy, instead of sampling new

building blocks from a normal pdf, we propose to mix

them using crossover. Only combinations of the initial

strings are thereby generated, just as is done in GAs.

The way in which crossover is done, determines the

rate of success. First, we note that if the building

blocks are exchanged between parents as a whole, the

information is mixed in the most eÆcient mixing man-

ner, resolving the redundancy problem. However, on

beforehand we generally don't know the location and

size of the building blocks. This information is called

linkage information. To �nd this information, we rely

on the remainder of the IDEA framework to �nd a

structure that contains this linkage information. For

instance, if we have an unconditional factorization, we

are given groups of random keys that should be pro-

cessed in a multivariate joint pdf. Therefore, these

random keys should be processed together as a block.

We hope that these blocks are a good approximation

of the true building blocks in the problem.

Before copying a block to the o�spring, each block may

be transformed using a function %(�). This function

rescales the random keys to a subinterval of [0; 1] with

probability p%. If we for instance scale (0:1; 0:2; 0:3)

to [0:9; 0:95], we get (0:9; 0:925; 0:95). Note that this

doesn't change the permutation that is encoded. The

optimization problem can require a relative ordering

of the building blocks. Without rescaling, we have to

rely on the random key combinations that are gener-

ated initially. Rescaling the blocks increases the prob-

ability that they will be combined properly. To ensure

a large enough amount of intervals so that the blocks

themselves can be ordered, we set this amount to l.

We call the framework for the resulting algorithms ICE

(IDEA Induced Chromosome Elements Exchanger).

Its de�nition equals that of the IDEA, with the ex-

ception of the creation of o�spring. In ICE, this is not

done by sampling, but by randomly selecting two par-

ents from the selected samples and crossing over blocks

in the solutions. Which blocks we actually perform

crossover with, is determined by the type of factoriza-

tion. Since the resulting algorithm uses crossover, it

can validly be argued that we have designed a GA. The

specialty of this GA is that it attempts to learn link-

age information for permutations and use this linkage

information in a linkage preserving crossover operator.

ICE

1 par0  Random(f0; 1; : : : ; b�nc � 1g)

2 par1  Random(f0; 1; : : : ; b�nc � 1g� fpar0g)

3 B  CrossoverBlocks(&)

4 for i 0 to jBj � 1 do

4.1 par  Random(fpar0; par1g)

4.2 for j  0 to jBij � 1 do

4.2.1 off (Bi)j  %((ypar)(Bi)j )

5 Return(off )

6 Speci�c crossover operators in ICE

Having introduced the ICE framework, we test it on

the deceptive permutation functions. First however,

we elaborate on how we have selected the blocks to be

crossed over in our experiments.

6.1 Crossover operators

Conditional factorizations allow for more precise prob-

abilistic modelling because unconditional factoriza-

tions can be expressed using conditional factorizations,

but not vice versa. Therefore, it is interesting to base

crossover operators on both types of factorizations.

6.1.1 Unconditional: block mixing

By crossing over the random keys based on the node

vector �, we attempt to directly exchange and mix

the important blocks of information. This results in

an approach similar to the ECGA by Harik [9].

CrossoverBlocks(�)

1 Return(�)

6.1.2 Conditional: position biased TPX

To use conditional factorizations, we learn a chain of

dependencies in which random keys that are important

together, are placed close to each other. Subsequently,

we can apply for instance two point crossover such that

the linkage information in the chain is respected. This

approach was recognized earlier [3] to be interesting

for processing linkage information. To �nd a chain,
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100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

n

Amount of building blocks

AIC
BIC

Perfect mixing
Gaussian entropy

Permutation entropy
Fixed chain

Permutation IDEA
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the greedy entropy algorithm in MIMIC [2] can be

used. The entropy, which equals the average negative

log{likelihood for normal pdfs [6], can be computed

using the normal pdf as we have done for all continu-

ous IDEAs, but we can also use permutation entropy.

This amounts each time to �nding the unselected node

Yi+1 that occurs more often in one ordering than in the

other with respect to the lastly selected node Yi (max-

imize jP̂ (Yi < Yi+1) � P̂ (Yi+1 < Yi)j). The resulting

blocks to be exchanged, can now be found as follows:

CrossoverBlocks((�;!))

1 pos0  Random(f0; 1; : : : ; lg)

2 pos1  Random(f0; 1; : : : ; lg)

3 if pos1 > pos0 then

3.1 pos0 $ pos1

4 Return(((!0; !1; : : : ; !(pos0�1));

(!pos0 ; !(pos0+1); : : : ; !(pos1�1));

(!pos1 ; !(pos1+1); : : : ; !l�1)))

6.2 Results

ICE gives signi�cantly better results (�gures 5 and 6).

All tested algorithms, with the exception of uncon-

ditional factorizations in combination with the AIC

metric, were able to solve all tested problems up to

nBB = 10 for lBB = 5, with population sizes (well)

below 1 � 105. The entry of the permutation IDEA is

explained in section 8. Because the deceptive problem

is better separable if the selection pressure increases,

it was again observed that the performance increases

if � decreases for a �xed b�nc in a similar fashion as

observed for continuous IDEAs (�gures 3 and 4).

Since the AIC metric did not penalize the likelihood

e�ectively, it resulted in unconditional factorizations

that combined entire building blocks to sometimes

form the complete joint factorization, which does not

lead to eÆcient exploration of the permutation space.

In this case there is thus a preference for the BIC met-

ric. All approaches can be seen to scale up polyno-

mially. However, the chain approaches that use search

metrics scale up signi�cantly worse. There is not much

to choose between the normal entropy or the permu-

tation entropy. If the right structure is found (�xed

chain), the building blocks are propagated e�ectively

using position biased TPX. However, it is hard to �nd

the right second order linkage information, as these

approaches clearly scale up a lot worse for increasing

nBB . We conclude in a similar fashion as has been

done for binary spaces [3], that �nding and using lower

order linkage information is less eÆcient than �nding

and using higher order linkage information.

From the results shown so far, it seems that the best

approach is to use an unconditional factorization with

the BIC information criterion. However, we have not

tested it yet on problems with conditional dependen-

cies. To test this, along with the inuence of random

rescaling, we have used a diÆcult permutation problem

with overlapping building blocks. All of the building

blocks are now coded sequentially instead of loosely.

For nBB = 3 and lBB = 4, the individual building

blocks are found at positions (0; 1; 2; 3), (3; 4; 5; 6) and

(6; 7; 8; 9), giving l = 10. Note that the sole optimal

solution is the complete trivial permutation of length

l. We tested the algorithms on a problem with l = 40,

giving nBB = 13 at lBB = 4. We tested population

sizes up to n = 105 and allowed for a maximum of 109

evaluations. The results are shown in �gure 7. It be-

comes clear that using conditional dependencies in a

chain can be eÆcient, especially when random rescal-

ing is used. However, the results also show again that

learning the chain to use for position biased TPX does

not lead to the best results. Furthermore, introduc-

ing random rescaling does improve the results of the

unconditional factorization. The best reported results

of the OmeGA are approximately BBs = 9:60 after

300 � 106 evaluations.

7 A note on the running times

Algorithms that build and use probabilistic models

take up more time every iteration as the complexity
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Figure 7: Results on the overlapping deceptive permu-

tation problem, lBB = 4, nBB = 13, (l = 40, NE =

normal pdf entropy, FIX = �xed optimal chain).
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of the models increases. It is therefore important to

be aware of the running time next to the amount of

function evaluations. If we have a very costly eval-

uation function, this is of less importance. However,

there are plenty practical optimization problems, such

as knapsack and traveling salesman, that can be eval-

uated eÆciently and easily result in a very large di-

mensionality l. Since the learning of higher order fac-

torizations often scales as O(l3), exploiting problem

structure by learning factorizations will not result in

fast algorithms as l increases.

In this paper, we have used the rule of thumb by

M�uhlenbein and Mahnig [14] for FDA. However, this

rule of thumb is based on observations on non{

deceptive binary problems. Furthermore, the elitism

in FDA is restricted to the single best solution of the

previous generation. In �gure 8, we have plotted the

most eÆcient result of ICE using the BIC search metric

on unconditional factorizations for di�erent values of

� when each of 30 independent runs reached all build-

ing blocks correct. When only the amount of evalu-

ations or the actual complete running time is impor-

tant, � = 0:3 is clearly not optimal. Since the separa-

bility of the deceptive problem becomes easier when a

greater selection pressure is applied, this is not surpris-

ing. For the best memory{computation time trade{o�,

� 2 [0:15; 0:25] seems to be an e�ective choice. Con-

cluding, we suggest from empirical observervations to

use � � 0:25 in future experiments.

8 Discussion and future research

In this paper, we have used penalization metrics to

guide the search for a good factorization. The dif-

�culty with such an approach is choosing the right

amount of regularization. The amount of regulariza-

tion can be seen as a parameter that de�nes how much

time the algorithm is allowed to spend on model build-

ing. In a way, this is a substitute for limiting the max-

imum order of interactions in the factorizations. How-

ever, using a metric in addition inuences the decision

of which operations on the factorization are bene�cial.

Seen in this way, a penalization metric is a practical

approach to using exact statistical hypothesis tests to

determine whether some operation is truly bene�cial.

Even though the use of statistical hypothesis tests is

exact, it is also of less practical use because of its com-

putational requirements [6]. Therefore, it is practically

more interesting to use a metric as an approximation.

Still, it should be noted that selecting the settings for

such a metric is always subject to user experience.

We note that in this paper we have only run tests

over a limited amount of problems. Even though the

results are encouraging, veri�cation on other problems

is desired. It would for instance be interesting to see

how ICE algorithms perform on real life scheduling

problems as opposed to other EA approaches.

The ICE framework has pointed out that e�ective EAs

for permutation problems can be constructed if we �nd

and use linkage information in the permutation space

directly. Since crossover on permutations is used in

ICE, this is evidence that eÆcient IDEAs can be de-

signed by making them process the permutation space

directly. To do so, we need a way to estimate the multi-

variate joint distribution of a set of random keys. This

is suÆcient to also process conditional factorizations,

since a conditional probability is a quotient of two mul-

tivariate joint probabilities. In order to estimate the

probability of a set of k random keys, we can count

the frequency of a certain permutation instance. This

means that we require a frequency table of minimum

size k!. To generate such a table of minimum size,

we need to map permutations onto integers. This can

be done in O(k log k) time whereas a new random key

sequence can be made from an integer in O(k) time.

Given this correspondence, the frequencies of the pos-

sible permutations can be counted from the selected

samples. Subsequently, new samples can be drawn in

a similar fashion as is done for binary variables.
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In �gures 5 and 6, the results of testing a permuta-

tion based IDEA with the best possible �xed uncon-

ditional factorization, are plotted. At this point, the

development of the permutation based IDEA only al-

lows �xed factorizations as input as is the case for the

FDA [14]. However, the results in this section indicate

that IDEAs may be constructed by learning factoriza-

tions and thereby no longer assuming a priori knowl-

edge on the optimization problem. The results of the

permutation IDEA are slightly better than those of

ICE with perfect mixing information. However, we

have provided the permutation IDEA with the perfect

a priori structure information. It would be interesting

to see if a permutation IDEA that learns this structure

can outperform ICE on various problems.

9 Conclusions

Finding and using problem structure can aid EAs. We

have shown that this is also the case when random

keys are used to tackle permutation problems. Fur-

thermore, �nding and using a structure in which a

multiple of variables interact, is superior to using only

second order linkage information when the optimiza-

tion problem contains higher order interactions.

We have shown by introducing ICE that by mix-

ing blocks of random keys, permutation problems of

a bounded diÆculty can be solved eÆciently. To

this end, we have used continuous IDEAs to �nd the

structure of the optimization problem together with

crossover from GAs to mix the building blocks. By

doing so, the EA directly explores the permutation

space, which signi�cantly increases its eÆciency. This

is an indication that IDEAs that are designed to work

directly in the space of permutations may e�ectively

�nd and use the structure of permutation problems.
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Abstract

The Tartarus problem may be considered a

benchmark problem in the �eld of robotics. A

robotic agent is required to move a number of

blocks to the edge of an environment. The lo-

cation of the blocks and position of the robot

is unknown initially. The authors present

a framework that allows the agent to learn

about its environment and plan ahead us-

ing a GA to solve the problem. The authors

prove that the GA based method provides the

best published result on the Tartarus prob-

lem. An exhaustive search is used within the

framework as a comparison, this provides a

higher score still. This paper presents the

two best Tartarus results yet published.

1 Introduction

The Tartarus problem may be considered a benchmark

problem in the area of non-Markovian agent motion

planning. The agent is placed within an environment,

with no prior knowledge of the environment and lim-

ited means by which to gather information on the

environment (see Figure 1). The task to be under-

taken involves moving blocks placed at random po-

sitions within the environment to the outer edges of

the environment. There is only a �nite amount of en-

ergy available to the agent, thus limiting the number

of moves that can be made.

The challenge is therefore to devise a solution to the

problem that can gather information on the environ-

ment and solve the problem at the same time. We

enhance a genetic algorithm with a long term memory

model for incorporating information that was found in

previous steps. We will show that our approach out-

performs leading algorithms on this problem.

2 Problem Description

2.1 An overview of the Tartarus Problem

Within the Tartarus problem, a robotic agent is placed

in an environment that consists of a 6x6 square grid

(akin to a checkers board, see Figure 1). The agent oc-

cupies one square, while also on the board are 6 blocks

each of which occupy one square. The object of the ex-

ercise is for the agent to push the blocks to the edge of

the board, scoring 1 point for each block moved to an

edge or two points for each block pushed into a corner.

The maximum score then is 10. Only one block may

be pushed at one time. Each time the agent moves

forward, rotates or pushes a block forward it uses one

unit of energy.

The agent's sensors can only detect the contents of the

8 squares directly surrounding the agent's position.

The objective of the agent is to maximize the average

score over 100 randomly generated boards.

2.2 Board Initialisation

The board is initialised by placing all 6 blocks in ran-

dom squares, and then placing the agent in a random

square facing a random direction. Neither the blocks

nor the agent will be initially placed adjacent to the

edge. A con�guration of 4 blocks placed together can-

not be moved by the agent (because it can only move

one block at a time). Therefore the board is never

initialised with four blocks arranged in a square.

2.3 Sensors

The agents' sensors are capable of sensing the contents

of the eight squares adjacent to the agents' current

position. The sensors can detect whether each square

is empty, contains a block, or constitutes part of an

edge. The agent cannot sense its orientation or its
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View of the agentTartarus board

Figure 1: Example Tartarus board

position on the grid.

2.4 Energy Levels

Within the Tartarus problem, there is no time limit,

but the agent has only a limited amount of energy.

The agent has an initial energy level of 80 units, each

move forward or rotation costs the agent 1 unit of en-

ergy. Once all the energy has been used, the agent can

no longer move and the attempt to solve the problem

ceases.

3 Previous Work

Previous techniques applied to the Tartarus Prob-

lem include genetic algorithms, neural networks, �nite

state machines and genetic programming.

Teller[Teller, 1994] used genetic programming with in-

dexed memory to achieve an average score of 4.5.

In [Balakrishnan and Honavar, 1996], neural networks

have been utilised with a maximum score of only 4.5.

The highest score achieved so far has been by

[Ashlock and Joenks, 1998], whose GP-based algo-

rithm averaged

a score of 8.2. Earlier GP based work by Ashlock and

McRoberts[Ashlock and McRoberts, 1997] achieved a

score of 8.15.

The most recent research has been undertaken by

[Ashlock and Freeman, 2000] who utilised a GA to

evolve a �nite state machine. The �nite state machine

interprets the results of the sensors and at each change

in state can issue a command to the agent. The aver-

age �nal score achieved by Ashlock and Freeman was

7.11.

All of the research outlined above utilised some form

of internal state or memory within the agent to allow

the agent to learn about the environment. Solutions

that haven't utilised some form of internal state within

the agent have not achieved an average score of greater

than 2.

By examining previous research, it may be concluded

that the agent needs to be equipped with the ability to

hold an internal state within some form of 'memory'.

4 Formulating the Solution

4.1 Human Attempts to Solve the Problem

The authors initially carried out an informal experi-

ment using human agents (i.e. a human controlling the

agent by manually issuing commands). One agent was

asked to solve the problem while only being allowed

to view the inputs from the eight sensors. The second

agent was allowed paper and pencil to draw a map

of the environment as they explored it. Each agent

attempted to solve the problem 10 times. The experi-

ment revealed that even with the processing power of

a human brain, the eÆciency of the solutions increased

dramatically when the agent was allowed to collate the

information gathered through its sensors in the form

of a map. Without a map, the human agent averaged

a score of 7.2, but with the energy levels reduced to 0

in every case. By allowing the human agent to build a

map, the average score rises to 9.1 with more energy

left.

The authors' perceived reason for the human agents

improved performance when drawing a map, was the

ability to use the information in the map to pre-plan

sequences of moves before issuing commands to the

agent. Cognitive psychologists have estimated human

short-term memory only to capable of containing 7�2

'chunks' of information. The human agent working

without the map may have been unable to recall the

previous values of the sensors, and build a 'memory

map' of the area.

4.2 A Description of the Chosen Solution

4.2.1 Overview

The information contained in the agents' sensors may

be considered equivalent to the human short-term

memory. They are both transient and of low capacity.

The informal experiment conducted in section 4.1 and

previous research reviewed in section 2 both suggested

a requirement for the agent to be given some form

of 'long-term' memory. This long-term memory will

contain information about the environment, gathered

from the short-term memory (sensors) as the agent is

moved.
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Having established the requirement for short and long-

term memories, we now require to process the infor-

mation stored in the long-term memory to allow the

agent to carry out its task. The processor function will

be carried out by a Genetic Algorithm (GA). The GA

will evolve command sequences consisting of Forward,

Left or Right moves to allow the agent to push the

blocks discovered so far to the edge of the board. Af-

ter a set number of evaluations the GA will be halted

and the command sequence contained within the best

chromosome will be executed by the agent. As soon as

the agent discovers a new feature within the landscape,

it stops executing the command sequence and the GA

is restarted to evolve a new command sequence based

on the updated information now contained within the

long-term memory.

4.2.2 The Long and Short Term Memories

As has already been described, the short-term memory

is the bu�er for the eight sensors. Each time the agent

moves, the information contained within the sensors

will be replaced by values relating to the agents' new

position.

The long-term memory is a 11x11 grid. The long-term

memory must be bigger than the board, because the

agent could initially be placed almost anywhere on the

board. The long-term memory is large enough to allow

the data sensed from the agents initial position to be

placed in the centre and then the map to be built out

from this point.

Each of the 121 locations within long-term memory

can hold one of �ve values;

1. Block: This square de�nitely contains a block

2. Empty: This square is de�nitely empty

3. Edge: This square is on the edge

4. Probably Empty: This square has not been ex-

plored yet, but it is assumed that it is empty

5. Something: The agent has tried to push a block

into this square, but couldn't as it is either oc-

cupied by another block or it forms part of the

edge

As the agent progresses in solving the Tartarus prob-

lem, the map contained within long-term memory is

built-up. This map is used by the GA �tness func-

tion (see section 4.2.4) when evaluating command se-

quences.

4.2.3 Wall Deduction Heuristics

Because the characteristics of the environment, its size,

shape and the number of blocks contained within it

are known, the agent may be enhanced with a number

of simple heuristics. These heuristics assist the agent

when interpreting data contained in short-term mem-

ory and then enhancing the map contained in long-

term memory.

The deduction of the walls may be assisted by a num-

ber of simple rules. If one piece of wall is found, then

the entire wall can be deduced. If a wall is found then

we can establish the position of the wall running par-

allel to it.

When a block is discovered at location x, we can de-

duce that the walls can be no further than 5 squares

in any direction, thus the 11x11 grid can be reduced

in size. This heuristic has been named 'Smart Wall

Deduction' (SWD) by the authors. Further analysis

has resulted in the enhancement of SWD not only to

use blocks but assume that a wall is never more than

5 squares from any explored square. The modi�ed

heuristic has been named Even-Smarter Wall Deduc-

tion (ESWD).

Once all 6 blocks have been found, any remaining

memory locations marked as 'Something' must hold

walls, and vice-versa once the entire wall has been dis-

covered any remaining 'Something's must be blocks.

This has been named the '6 block heuristic'.

4.2.4 The Genetic Algorithm

The genetic algorithm is used within the agent to

evolve command sequences that may be carried out

by the agent. Each chromosome consists of a list of

commands in the form:

MMLMMMRM....

The commands are referred to as command sequences,

and are interpreted thus:

M - Move forward 1 square

L - Rotate left

R - Rotate right

The length of the chromosomes was altered during

the experiments carried out. Initially the chromosome

length was set to 80, this being the maximum num-

ber of commands that may be carried before the agent

runs out of energy.
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Table 1: Chromosome Initialisation

Previous Genes Possible values for current gene

L L M

R R M

L L or M

R R or M

Table 2: Initial �tness function rewards

Criterion Reward

A block has just been pushed 3

A previously unknown square explored 2

A block has just been pushed into a wall 7

The GA is initialised with semi-random strings of

genes. The authors identi�ed a number of patterns

that may occur within the chromosome that would

result in the agent wasting energy (e.g. by rotating

around in a circle). A simple initialisation scheme has

been set up that restricts the choice of gene based on

the previous genes (see Table 1). This scheme ensures

that the initial population is free from wasteful pat-

terns. Note that no repair occurs after mutation or

crossover.

The recombination operator used is standard two-

point crossover based on two parents creating one

child. The mutation operator selects an individual

with probability 0.1, a gene within that individual is

then selected for mutation with the probability 0.02.

The mutation consists of altering the value of the se-

lected gene to M, L or R randomly.

A steady-state population of 500 is maintained. Selec-

tion and replacement of individuals will be facilitated

by using a tournament selection operator. A tourna-

ment size of 7 was found to give reasonable results.

The �tness function evaluates the chromosome by sim-

ulating the execution of the command sequence using

a copy of the map contained within long-term memory.

The �tness function evaluates each command and re-

wards it based in the probable position of the agent af-

ter the command has been executed criterion as shown

in Table 2.

After completing the route the �nal score (blocks

against a wall + blocks in corners) is added to the

�tness weighted by a factor of 100. Because the Tar-

tarus problem has to be completed within a �nite num-

ber of moves, the �tness function only examines those

commands that could be executed given the remaining

energy level.

5 Experiments

5.1 Experimental setup

Because of the deterministic nature of the GA used

within the agent and the wide variety of starting con-

�gurations that exist for the Tartarus problem each

experiment was carried out 100 times using randomly

generated environments.

The software was initially implemented using ANSI

standard C++, running on Redhat Linux. To allow

for greater exibility the software was subsequently

re-written in Java. Later versions of the software were

implemented across a 128 CPU parallel processing net-

work.

5.2 The Initial Version

The initial version used a population size of 100 indi-

viduals, a mutation rate of 0.10 and a crossover rate

of 0.10. Initially the GA was allowed to run until 1000

tournaments had been completed. Unless it is men-

tioned, it can be assumed that these basic parameters

were used. The initial version incorporated no heuris-

tics, and evaluated as many commands as the current

energy level would allow. The average score achieved

over 100 boards was 4.38. The distribution of scores

was varied, one board scoring 8, four scoring 7 and the

remaining 95% achieved scores of 6 or less.

Analysis of boards where the agent achieved a low

score showed that a frequent problem was the agent

pushes a block while unknown to the agent there's

another block or a wall behind this block. In this

case, the agent knows there's something behind this

block, but it does not know whether this is a block

or a piece of wall. Noting this in the long-term mem-

ory map would be useful, because the agent would be

less likely to try and push this block. In the �tness

evaluation (see Section 4.2.4), no points are gained for

trying to push a block while knowing this is not possi-

ble. In order to be able to note down such information

in long-term memory, the data type 'Something' (see

Section 4.2.2) was added, allowing the average score

over 100 boards to rise to 6.09.

With the addition of the initial SWD heuristic (as de-

scribed in section 4.2.3) the average score was further

increased to 6.21.

It was felt that the GA was running for too brief a

period, and because there is no time constraint on the

Tartarus problem, the authors allowed the GA to run
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Table 3: Average scores over 100 boards using ad-

vanced edge detection, the six block heuristic and forc-

ing a restart after hitting a known wall

ESWD 6-block Restart After Wall score

0 0 1 7.52

0 0 0 7.39

0 1 1 7.60

0 1 0 7.32

1 0 1 7.41

1 0 0 7.44

1 1 1 7.50

1 1 0 7.40

for 10,000 tournaments. To avoid premature conver-

gence the population size was increased to 500. This

modi�cation caused the system to slow down, but the

average score increased to 7.95. In the case of two

boards the systemmanaged to solve the Tartarus prob-

lem completely by achieving the maximum score pos-

sible (10).

5.3 Advanced Heuristics

Further analysis showed that the GA sometimes pro-

duced a command sequence that forced the agent to

move forward into a wall. In our implementation,

driving the agent into a wall halts execution of the

command sequence and starts a new GA to evolve a

new sequence. It was decided that although this move

might appear to be illogical, the restarts might be un-

necessary. The remainder of the command sequence

may contain commands to solve the problem, and al-

though energy might be wasted walking into a wall,

a high overall score might be achieved. The e�ect of

switching forcing restarts is shown in Table 3 (third

column).

The '6 Block' heuristic and the ESWD heuristics (see

section 4.2.3) have been implemented and the results

obtained through their use can be seen in Table 3.

Reference to Table 3 allows us to draw the following

conclusions, the best score was achieved using the 6-

block heuristic, with the use of ESWD and allowing

the GA to restart after the agent hits a wall.

The �nal scores achieved by the GA with the addition

of the heuristics can be seen in Figure 2. The 'bump'

at score 4 is accounted for by those instances where

the GA has pushed 4 blocks together by accident in

the beginning of the run. The largest distribution is

at score 8, with a bell-like curve around it.
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Figure 2: Score distributions for Table 3

5.4 Combining the GA with brute-force

When there is only a small amount of energy left, it is

quicker for the system to perform an exhaustive search

using every possible command sequence, rather than

running the GA again. When the number of amount

of remaining energy drops to below a given threshold,

the system employees exhaustive search to �nish the

problem.

In Section 5.5 the exact number of legal strings is cal-

culated for each length. If the number of strings ex-

amined by the GA (= #tournaments + population

size) is more than the total number of legal strings,

exhaustive search will take place.

The GA has always been allowed, so far to produce

command strings that if fully executed would use up

all the agents' remaining energy. It was felt that some

improvement might be forthcoming if the GA was only

allowed to produce small strings. This will not only

concentrates the evolution into a smaller search space,

but also reduces that amount of energy lost.

Table 4 shows the results when examining chromosome

lengths between 7 and 20. The GA in �gure 12 is also

using the brute force method for calculating the �nal

strings.

By only looking ahead a small number of moves (about

12) the scores rise up to 8.77. The reason for this im-

provement may be attributed to the fact that the GA

almost never executes the last moves in the command

sequence, while they do count in the �tness calulation.

Whilst starting to solve the problem, new information

concerning the landscape will be frequently be found,
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Table 4: Results for reducing the number of moves for

the GA to look ahead. In column three, the average

number of times the GA is run per board is shown.

The average number of evaluations per board is the

number of strings considered per board (= #runs *

(populationsize + #tournaments)). The average num-

ber of actions per board is the number of actions

(M,L,R) considered by the agent (=#evals * chromo-

somelength).

Len of Avg. #runs evals/ actions/

chromo score of GA board board

7 8.42 20.60 30900 216300

8 8.69 19.14 28710 229680

9 8.67 18.48 27720 249480

10 8.66 18.41 27615 276150

11 8.63 18.04 27016 297176

12 8.77 17.33 25995 320040

13 8.67 17.32 25980 337740

14 8.73 16.64 24960 359100

15 8.60 17.23 25845 387675

20 8.67 16.63 24945 498900

after only a few commands have been executed. It is

wasteful and even misleading to include the later steps

in the �tness function.

There should be an optimum number of moves to look

ahead when evolving a command sequence. Too few

moves will prevent the GA evolving a meaningful se-

quence, but too many moves are misleading.

The execution time of a board is typically between 3

and 5 minutes. Note that our system was not opti-

mized for speed, that it was written in Java and ran

on a fairly slow processor (Pentium 200 MHz).

5.5 Method for Calculating the Exact

Number of Allowed Strings for a Given

Length

There is a large number of ineÆcient command se-

quences, such as an LR sequence where the R reverses

the e�ect of the L without any side-e�ect. All strings

with LR, RL, LLL or RR in it (RR is equivalent to LL,

thus redundant) are therefore not considered when do-

ing an exhaustive search.

The number of 'legal' strings can be calculated as fol-

lows. After an M, what can follow is M, LLM, LM or

RM. The rewrite rules are given in Figure 3.

La(x), Lb(x), R(x) and M(x), i.e. the number of Las,

Lbs, Rs and Ms at level x in the tree are calculated as

M

La

R
Lb

M
La Lb RM MM

Figure 3: Legal strings

follows:

La(x) = M(x� 1)

Lb(x) = M(x� 1)

R(x) = M(x� 1)

M(x) = M(x� 1) + La(x� 1) +

+Lb(x� 1) +R(x� 1)

with M(0) = 1;La(0) = Lb(0) = R(0) = 0. Level

x = 0 is arti�cial, but with this initial setting all legal

strings of length 1 and higher are correct.

5.6 A comparison to a non-evolutionary

heuristic

Given the success of the exhaustive search in enhanc-

ing the GA, a full comparison of solving the Tartarus

problem by replacing the GA with exhaustive search

has been carried out. All the heuristics used to pro-

duce the data shown in Table 4 are still in use. The

only di�erence is that instead of using an GA to evolve

the command sequence using mutation and crossover,

every possible command sequence generated using the

rules in Section 5.5 is evaluated and the best taken

as the command sequence. The maximum score pre-

sented in Table 5 (8.81) is slightly greater than that

presented in Table 4 (8.77). An exhaustive search

will usually always outperform an Genetic Algorithm,

given the non-deterministic nature of the GA. Note

though that for shorter lengths, the GA outperforms

the exhaustive search, which is most likely due to the

greater number of restarts of the GA. What is signi�-

cant is the number of evaluations required per board,

the exhaustive search evaluates 70% more command

sequences for an overall gain of 0.5%. A compari-

son of the exhaustive search (look ahead length 14)

and the GA (look ahaead length 12) may be seen in

Figure 4. The exhaustive search method is especially

good at scoring the maximum 10 points, while the GA

score distribution peaks between 8 and 9. This would

suggest that the exhaustive search is better at �nd-

ing solutions to complete the problem that the GA,

due to the exhaustive search always �nding the opti-

mal partial solution for the current board state. The

exhaustive search heuristic performs best with a look
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Figure 4: Score distributions for the GA with chro-

mosome length 12 and the exhaustive heuristic with

chromosome length 14

ahead of 14. This may be partly due to the fact that we

have 80 energy points. If we assume that the algorithm

produces stings of length l and restarts n times. The

best performance will be recieved in situations where

n � l is equal to the energy level (ie all the moves in

the �nal string can be executed). If we examine the nl

relationship below we can deduce that a length of 14

with 6 restarts allows 10 out of 14 moves in the �nal

string to be evaluated. Looking forward to the results

in Table 5, we can see that indeed l = 15 performs

worse than both l = 16 and l = 14.

6*12 = 72 7*12 = 84

6*13 = 78 7*13 = 91

5*14 = 70 6*14 = 84

5*15 = 75 6*15 = 90

4*16 = 64 5*16 = 80

Further research is needed to determine the exact re-

lationship between chromosome length and the �nal

result. A major problem is the unpredictablity of the

number of runs of the GA. The number of runs is de-

termined by the nature of the landscape that the agent

is operating in.

5.7 Upscaling properties

In this section we will investigate how well our ap-

proach scales up to larger boards with more blocks.

Following [Teller, 1994] we will use the following for-

mulas for the number of pieces and the initial amount

Table 5: Results for reducing the number of moves for

the exhaustive heuristic to look ahead. The number

of valid command sequences is calculated as in Sec-

tion 5.5. The last two columns are similar to those in

Table 4.

Len Avg. # #valid evals/ actions/

score runs com seq board board

1 0.84 80 3 240 240

2 0.96 40 6 240 480

3 3.44 27 13 352 1056

4 6.98 20 28 560 2240

5 7.39 16 60 960 4800

6 7.01 14 129 1806 10836

7 8.19 12 277 3324 23268

8 8.64 10 595 5950 47600

9 8.40 9 1278 11502 103518

10 8.65 8 2745 21960 219600

11 8.79 8 5896 47168 518848

12 8.81 7 12664 88684 1064208

13 8.76 7 27201 190407 2475291

14 8.91 6 58425 350550 4907700

15 8.57 6 125491 752946 11294190

16 8.78 5 269542 1437710 23003360

of energy:

Pieces = 1=3 � (N � 2)2

Energy = 2(N2 + 2N � 3)� 10

N is the width (and height) of the board. The �10

in the latter formula is somewhat arti�cial, but for

reasons of comparability we will use it.

The results with chromosome length 12 are given in

Table 6. Clearly the scores do not scale up terribly

well. The reason for this is the (very) limited amount

of initial energy, which makes initial exploration infea-

sible.

If we allow an initial energy of N3, as argued

in [Balakrishnan and Honavar, 1996], and make two

more modi�cations, results are much better (see Ta-

ble 7). Note that with larger boards, initial situations

may occur that are partly unsolvable, e.g.

XX

X X

XX

The modi�cations are:

� Make explorePoints a decreasing function of time.
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Table 6: Results with chromosome length 12 for larger

boards

N Pieces Energy Max score Average score

6 6 80 10 8.77

7 9 110 13 10.96

8 12 144 16 13.01

9 17 182 21 15.78

10 22 224 26 17.82

Table 7: Results with chromosome length 12 for larger

boards with energy=N3 and square penalty

N Pieces Energy Max. Score Energy

score used

6 6 216 10 9.23 113.38

7 9 343 13 12.17 146.20

8 12 512 16 14.95 206.52

9 17 729 21 19.55 290.75

10 22 1000 26 23.06 419.26

After some tuning we used the following formula:

ep = 2 + 10 � e�4�
initialEnergy�energy

initialEnergy

� Introduce a penalty for pushing a block into a

known four block square. We used a very strong

one: �tness = 0 if this happens.

6 Conclusions and future research

The authors have presented a novel approach to the

Tartarus Problem. We have achieved the highest score

in literature for the Tartarus Problem. An average

score of 8.91 has been achieved by the exhaustive

search heuristic with the �tness function introduced

in this work.

The use of GA combined with the long-term mem-

ory gave an average result of 4.5, equivalent to that

achieved using parse trees[Teller, 1994] and neural

networks[Balakrishnan and Honavar, 1996]. The ad-

dition of heuristics to assist with the building of the

long-term memory map such as smart wall deduction

and the 6-block heuristic improved results. The most

signi�cant improvement, scoring 8.77, was achieved by

the reduction in the length of the command sequence

(chromosome).

Given the relative ineÆciency of the exhaustive search,

the hybrid GA approach developed by the authors

would appear to be the most e�ective solution to the

Tartarus problem yet published.

When allowed more initial energy, the agent scores

close to optimal on all boards, even of larger sizes.

The basic agent developed here is now competent at

solving the Tartarus problem. Future research may

look at the possibilities of carrying out more complex

tasks in similar environments. Although the �tness

function and some of the heuristics used are speci�c

to this problem, it remains to be seen whether the

approach taken can be reapplied elsewhere.
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² ³~´ �T�]µ#¶'·'�I�]¸}µ ´
JLK�rdg,KAb¦aQU�g,h~��c~aVhi� MVPRNQSFg=NQPyc~KFM;g~�]g,�]NQg=NQPyc~K¦NVcqg � jFg,KF�`P_K]�U�KA^AP_aVc~K]r�U�K�N�P_M�K]c,N'�Ic~MQMVPyv]h_U`Z?U`{ �F{]vIU � g,SFMVU¦NVjFU-U�KA^AP_aVc~KT|r�U�K�N � jFg,KF�`U�M NVcAcC�~SFP � wAh_b`Zqv?U � g,S?M}U�NVj]U¥U�KA^AP_aVc~K]r�U�K�N� g`K]K]c`N�vIU�r�c`K]PyNVc~aVU�� � hyc�M}U�hyb�U�K]c`S]�~j1Z(c~a�v?U � g,S?M}U�NVjFU� jFg`K]�`U�M3c ��� S]a�g,e�NVU�a�NVj]U � c`r�r�PRNQr/U�K�NdNVc£gª�Fg,aVNVP � SFh_g`aMVc`h_STNVP_c`K�jFg`M8vIU�U�K�r�g~�TU`{
JLK�M}S � j � g`MVU�M�Z�Pu{ U~{ �#j]U�K¹NQj]UºMVc`h_STNVP_c`K � g`K¹KFc,N�vIUg`�Fg,�TNQU���Z4c`K]U�r�P_�`j�N��8g,K�N�NQc»NQg`w`U��]aQU � g,STNQPyc~KFM£g`KF�

MVU�g,a � jdezc~a�g3MVc`h_STNVP_c`K�NVjFg,N��?U�a}ezc~aVrdM���U�h_hIc=^~U�a8g,h_h��?c�MVMVPy|v]h_U¦ezSTNVSFaVU�M � U�KFg,aQPyc�M!NQjFg=N � g,K�vIU U"�T�?U � NQU���{
¼8j]PiM8�]aQc`�IU�aVNOb c,e½v?U�PyK]�dP_KFMVU�KFMVPyNVP_^`UqNVcdMVhyP_�`j�N � jFg,KF�`U�M�P_KNVjFU4U�K�^AP_aVc~K]r�U�K�N3c~a3KFc`PiM}U4PyK�NVj]U��TU � P_MVP_c`K�^=g`aVPig,v]h_U�M-P_Mg,hiMVc � g,h_hyU���¾Q¿`À�ÁAÂ�ÃuÄIÅ"Â�ÂÆ{
Ç c~r/U¦U��Tg`r��]hyU�M�ezc`a�g`�]�]h_P � g=NVP_c`K?M8PyK � hyS?�TU`t
È JLK�rdg`K�S]eÉg � NQS]aQPyK]�?ZFPyNqPiM�c`e�NVU�K�K]c,Nq�?c�MVMVP_v]hyU-NVc �FaVc`|�TS � U�g¥�]aQcT�TS � N�U"�]g � NVh_b�g ��� c~aQ�]PyK]�¥NQc¥NVj]Uª�TU�MVP_�`KMV�?U � P �?� g,NVP_c`KFM�Z�v]STN�P_KFM}NVU�g`��Z � U�a}N�g,P_Kdrdg,KASTeÉg � NVS]aQP_K]�NQc`h_U�a�g,K � U�M[jFgE^`U-NVc�v?U�g,h_h_c=��U���{�WÊ�]aVcT�TS � N��TU�MVP_�`KMVj]c`SFh_��NQg`w`U/NVjFP_M P_K�NVc�g ��� c~S]K�N g`KF�ªbAPyU�h_�ª�`cAcT��aVU�|MVS]hyNQM��TU�M}�FPRNQU c,eHNQj]U�MVU¦NVc~hyU�aQg`K � U�M�{
È JLK�M � jFU��TS]h_P_K]�3�FaVc~v]hyU�rdM�ZTMVc`h_STNVP_c`KFM8g`aVUqM}c~S]�`j�N�NVjFg,Ng`hyh_c=�£ezc~a!U`{ �F{`MVh_Py�~j~N!^=g`aVPig=NQPyc~KFM5PyKd�FaVc � U�MVMVP_K]�qNVP_r/U�M�ZNQPyr�U�ezc`a½r�g � j]P_K]U(v]aQU�g`wT�Tc=�#KFM1c~aHNQj]U�PyK � c`aQ�?c~aQg,NVP_c`Kc`e g`K¨g`�]�TPyNVP_c`K?g,h�S]aQ�`U�K�N ËOc`vC�#PRNQj]c`S]N�aVU���S]PyaQP_K]��gNQc,NQg`h�aVU�c`a��TU�aQP_K]�3c`eHNQj]U �]aQcA�]S � NQPyc~K��Fh_g`K1{
È XFc`a!rdg,KAb � c`K�NQaVc~h]�]aQc`v]h_U�rdM�Z,NVjFU�U�KA^APyaQc`KFr/U�K�N!r�gEb� jFg`K]�`U�MVh_c=�#hyb~Z`U`{ �F{½rdg � j]P_K]U�M!rdgEb3MVhyc=�#h_b-��U�g`a!c`S]Nc~a4NQj]U � c~r/�Ic~MVPyNVP_c`KIÌ,�~S?g,h_PRNObCc,e3NVj]U¥a�gE�Írdg=NQU�aQP_g`hrdgEb � jFg,KF�`U�MVhyP_�`j�NQhyb~{ � e�NQU�K�PRN�P_M3K]c`N/�Ic~MQM}P_v]h_U NQc� c`KFM}NQg`K~NQhyb�r�c`KFPRNQc`a[g`KF� � c`K�NVaQc`hHNVj]U/�]aQc � U�MQM�Z?NVjASFMPyN�PiM�g`�]^Eg`K�NQg,�~U�c~SFM4NVc�P_r��]hyU�r�U�K�N�MVc`h_STNVP_c`KFM�NVjFg,NbAP_U�hi�¨�`cAcT�CaVU�M}SFhRN�M c=^`U�a�g � U�aVNQg,P_K¨a�g,K]�~U�c,e�U�KA^APy|aQc`K]r�U�K~N�g,h � c`KF�TPyNVP_c`K?M�{

Î[S]U�NQc�NQj]U4SFK � U�a}N�g,P_K~NOb~Z5NVj]U � NQK]U�MQM3ezS]K � NQPyc~K�P_K�NVjFc~MVU� g~M}U�MdPiM�M}NVc � jFg`M}NVP � {ÏJÐe-Ñ5ÒzÓ;ÔVÕ=ÖdPiMdNQj]U � NQK]U�MQM�ezS]K � NQPyc~K�TU�NVU�aQr�PyKFPyK]��NQj]U-��SFg`hyPyNOb c,e!gdMVc`h_STNVP_c`K�Ó�P_K�g,K�U�KA^AP_aVc~KT|r�U�K�N3Õ�Z½NVj]U�K£P_K¥NVj]U4U"�]g,r��]h_U c,e#rdg,KASTeÉg � NQS]aVP_K]��NQc`h_U�aV|g,K � U�M�ZA�]aQPyc~a!NVc/U�^=g`hySFg,NVP_c`K1Z�NQj]UqMVc`h_STNQPyc~K Ó�Ò�NVjFU[�]aQcT�TS � N�TU�M}P_�`K?Ö3rdgEb£vIU��TPiMONQS]aVvIU��1Z�Pu{ U~{!ÓÏ×ØÙÓ�Ú�ÛA{�Ü'c,NdNVjFU�TU�M}P_aVU����]aQcA�]S � N(Ó;Z~vFSTN�MVc`r�U#^=g,aQP_g`K�N!Ó#Ú�Û¦PiM!�FaVcT�TS � U���{Ç P_r�Pyhig,aQhyb~ZAPyK4NVj]U¦c`NVj]U�a�NO��c/U"�]g,r��]h_U�M�Z�NVj]U¦U�KA^AP_aVc~K]r�U�K�NrdgEb vIU��TP_M}NVSFaVvIU���ZFPÝ{ U`{FÕq×ØÞÕ8Ú�ÛA{

235GENETIC ALGORITHMS



¼½g,v]h_U�m`t!¼;U�aQr�PyK]c~hyc~�`bdc`e � NQK]U�MQM#^=g,h_S]U�M8S?M}U��Ü'g,r�U ß�U�g`K]PyKF�Ñ5ÒzÓ¢Ö aQgE� � NVK]U�MVM X]S]K � NVP_c`K¥NQjFg=N � g,K¥vIU � g`hR|� S]hig=NQU����TU"NQU�aQr/P_K]PiMONQP � g,h_hybÑ`àOáEáFÒÉÓIÖ U"¡¢U � NQPy^~U � N}|K]U�MQM W � NQSFg,hHc`�TNQPyr�P_§�g=NQPyc~K � aQPRNQU"|aVP_c`K1Z?Pyr��]h_P � PyNVh_b��]U � K]U���vAbÑ�g`KF��NQj]U-�]aQc`v?g,v]P_hyPyNOb��TP_M}|NVaQPyv]S]NVP_c`K¨c,e��TPiM}NVS]aQvFg,K � U�M�{W'MQM}S]r�U��âNQc�v?UãSFKFgE^=g,P_hR|g,v]h_U�NQcäNVjFU�c~�TNVP_r�Py§�g=NVP_c`Kg,h_�`c`aQPyNVj]rÑ àOåÐæ ÒÉÓIÖ U�M}NVP_r�g,NVU��� NVK]U�MVM s(M}NVP_r�g,NVU���U�¡IU � NVP_^`U � NQK]U�MQMSFM}U��CvAb£NVjFU�s(W-{�s(M}NVP_rdg=|NVP_c`K�P_M!SFM}S?g,h_hyb/�Tc`K]U#c~K-NQj]UvFg`MVP_M�c,e��TPiMONQS]aVvIU��¥U�^=g,h_SFg=|NVP_c`KFM�Ñ5ÒÉÓ/Ú£Û,Ö
JLK�NVjFP_M(�Fg,�IU�a�Z~��U#�#P_hyh?aVU�MONQaVP � N(c~S]a(g,N}NVU�K�NVP_c`K�NVc�NVj]U � g`MVUc,e#g��TU"NQU�aQr�PyK]PiM}NVP � U�KA^APyaQc`K]r�U�K~N�g`KF��g��]P_M}NVS]aQvIU��¥M}c~hyS]|NVP_c`KHZ1PÝ{ U`{HÑ£çèÑ à ÒzÓ�ÚCÛ,Ö/ÒéËOS?MON�h_Pyw~U�PyK�NVj]U � g`MVU/c`e�rdg,K]|STeÉg � NVSFaVP_K]� NQc`h_U�a�g,K � U�M�ÖÆ{�ê'c=��U�^`U�a�Z?g`hyh;�]aQU�MVU�K�NVU���aVU�M}SFhRN�M� g`K�v?U�aVU�g`�TP_hyb�NVa�g,KFM}ezU�aQaQU���NVc�NQj]U � g`MVUdc,e�g��TPiM}NVS]aQv?U��U�KA^AP_aVc~K]r�U�K�N�g`M8��U�h_hÝ{
ëªU��TU � KFU-g/aVc~v]SFM}N'M}c~hySTNQPyc~K�g~M8NVjFU�M}c~hySTNQPyc~K�NVjFg,N�r�g,�A|P_r/P_§�U�M�NQj]U/U"�T�?U � NQU����IU�aVezc`aQrdg,K � U`{q¼8j]P_MqU��A�IU � NVU����?U�a}|ezc`aQrdg,K � U��#Pyh_h¦g,hiM}c�vIU � g,h_hyU��äÅÉì'Å�í�ÃÝî�ï=Å � NVK]U�MVM�Ñ àOáEá ÒzÓIÖg,K?��ZH�~Py^~U�K�g��]aVc~vFg,vFPyh_PRNOb��TU�KFMVPyNOb�ezS]K � NVP_c`K�ð½ÒÉÛ,Öqc,e#�TPiMO|NVSFaVvFg`K � U�M#ÛAZ � c~S]hi��P_K��]aVP_K � Py�Fg`h�v?U � g,h � S]hig=NQU���g`M
Ñ,àOáEá?ÒzÓ¢Öñç ò�ÒÝÑ5ÒzÓ�Ú£Û,ÖVÖ(ç�ó�ôõ ô

ð;ÒÉÛ,Ö�ö�Ñ5ÒzÓ�Ú£Û,ÖT÷�Û
� e � c~S]a�M}U~Z�ezc~a4�FaVc~v]hyU�rdM c,e aQU�h_U�^=g,K�N � c`r��]h_U"�TPyNOb`Z#NQj]P_M� g`h � S]hig=NVP_c`Kd�#P_h_hFK]c`N�vIU'�Ic~MQM}P_v]h_U�v?U � g`SFM}U�NVj]U'ezS]K � NQPyc~K4ÑPiM�KFc,N8w�KFc=�#K�P_K � h_c~MVU�� ezc`aQrèv]STN#�?U�aVj?g,�FM�c`KFhyb��`P_^`U�K�P_KNVjFU8ezc`aQr»c,e�g[MVPyr3S]hig=NVP_c`K/r�cT�TU�hu{�ø�c~KFMVU���S]U�K�NQhyb~Z~Ñ,àOáEá?ÒzÓIÖjFg~MHNQc¦v?U8U�M}NVP_rdg=NQU��-ezaVc~räM}P_K]�`h_U�U�^=g,h_SFg=NQPyc~KFM½c,eIÑ5ÒÉÓ(ÚdÛ,ÖÆ{
¼;c¨U�M}NVP_r�g,NVUªNVjFU£U"�T�IU � NQU��ÏgE^`U�aQg`�`Uª�~S?g,h_PRNOb�c,e/g`KÏPyKT|�TP_^AP_�TS?g,huZ'c`KFUªM}NVa�g,P_�`j�N}ezc~aV�8g,a��ù�?c�MVMVP_v]Pyh_PyNOb¨P_M4NVcù�]aQc`vIUNVjFU � NVK]U�MVMqhig,KF�]M � g`�?U�g=N MVU�^`U�aQg`h;a�g,K?�Tc`r��Ic`P_K�NQMqPyK�NVjFUK]U�Py�~j�vIc`aQj]cAcT��g`KF� � g,h � SFh_g,NVU/NVj]U�r/U�g,K1{ ¼8jFP_M�gE^~U�a�g,�~U`Z�TU�K]c,NQU���Ñ,àOåÐæ¦g`M¦c~�]�Ic~MVU���NVc�NVjFUdU"�]g � N¦U�¡IU � NQPy^~U � NVK]U�MVMÑ,àOáEá/rdgEb�NVjFU�K�v?U SFMVU���vAbdNVj]U s�Wúg~M�NVjFg,N8P_KF�TP_^AP_�]SFg,huû M� NQK]U�MQM�{3¼8j]U3U�¡IU � N PiMqg�MVr/cAc`NVj]P_K]��c`e(NQj]U � NVK]U�MVM¦hig,KF�T|M � g,�IU`Z��#PyNVjCMVjFg,aQ�£�IU�g,wTM3v?U�PyKF��ü?g,N}NQU�K]U���g,K?�£M}r�cAc,NQjj]P_hyhiM#vIU�P_K]�dg,h_r�c~M}N8KFc`KT|Lg=¡¢U � NVU��1{
W£rdg,ËOc`aH�Ta�gE�#vFg � w�c,eANVjFP_M;r�U"NVjFcA��P_M1NVj]U�PyK � aVU�g`MVU�� � c~r/|�]STN�g=NQPyc~K�NQPyr�U`t�MVP_K � U¥SFMVSFg,h_h_b�U�^=g,h_SFg,NVP_c`KúP_M�NQj]U¥NVP_r�U�TU�NVU�aQr�PyKFPyK]��eÉg � NVc~a�Z!U�^=g,h_SFg=NQPyK]�¥MVU�^`U�aQg`h(�Ic`P_K�NQM/ezc`a/c`KFUP_KF�TP_^�Pi�TSFg`h1PiM8^`U�aQb U��A�IU�K?M}P_^`U~{

¼8j]U�c`aQU"NVP � g`hyh_b4Ò � eO{¢ý ¼�p¦þAk�Z~Y�a�g`þ~o�ÿ�Ö"Z~vIU � g,SFMVU#NVjFU[s(W¨ezaVU�|��S]U�K�NQhybqaVU�|ÐMQg,r��]h_U�M1�]aVc~r�P_MVPyKF��g,aQU�g`M1c,eANVj]U�M}U�g,a � j M}�Fg � U~ZPyN(rdgEb3vIU'MVS�� � P_U�K�N!NVc-SFM}U[M}P_K]�`h_U'�TPiM}NVS]aQv?U��dMVg`r��]hyU�M�ezc~aU�^=g`hySFg,NVP_c`K1{½ê�c=��U�^~U�a�Z=SFM}P_K]���4MQg,r��]h_U�M½ezc~a5g¦MVPyKF�`h_U�U�^=g,hy|SFg,NVP_c`K£aQU��TS � U�M-NVjFU�M}NQg`KF�]g,a����TU�^�Pig=NQPyc~K£c,eqg,K£P_KF�TP_^AP_�A|SFg`hÝû M � NQK]U�MQM(�]P_M}NVaQPyvFSTNVP_c`KdvAb�gqeÉg � NQc`a!c`e�� �½Z~eÉg � Pyh_PyNQg=NQPyKF�s(W � c`KA^`U�aV�~U�K � U`{¦JLK�NQj]PiM¦�Fg,�IU�a�Z1��U-NQU�M}NqNQj]U�U"¡¢U � NVP_^`U"|K]U�MVM�c`e¢�]U"|ÐaQg`KF�Tc`r�P_§�P_K]�[NVj]U'MQg,r��]h_P_K]� vAb�SFMVPyK]� ^=g`aVPig,K � UaQU��TS � NVP_c`K r�U�NVj]cT�]M�{!X]S]aVNVjFU�aQr/c~aVU~Z~��U[NVU�M}N8�#j]U"NQj]U�a�NVjFUM � U�K?g,aQPyc�M�MVj]c`SFh_�4v?UqNQj]U MVg`r/Uqezc~a8g`hyh�P_KF�TP_^AP_�]SFg,hiM8PyK4NVjFU�Ic`�]S]hig=NQPyc~K1Z,c~a½�#jFU"NVjFU�a�NQj]U�b-MVj]c~S]h_�3vIU8�]aQgE�#K/PyK?�TU��IU�KT|�TU�K~NQhyb~{
¼8j]U��Fg,�IU�a�PiM�MONQaVS � NVS]aQU���g`M-ezc`h_hyc=��M�t JLK�NVj]U�K]U���N MVU � |NVP_c`KHZ½��U �~Py^~U g � c~r/�FaVU�j]U�KFMVP_^`U MVS]aV^~U�b�c,e#U�g`aVh_PyU�a���c`aQwP_K�NVj]U-g`aVU�g]{(¼8jFU�K1Z]P_K Ç U � NVP_c`K��FZTNVjFU-�TPy¡IU�aVU�K~N�^=g`aVPig,K � UaQU��TS � NVP_c`KCr�U"NQj]cT�]M�g`aVU��]aQU�MVU�K�NVU���{ Ç U � NQPyc~K	��aVU��?c~a}N�Mc`K�NVj]U/U�r��]P_aVP � g`hHaQU�MVS]hyNQM�{q¼8j]U3�Fg,�IU�a � c~K � h_SF�TU�M'�#PyNVj�gMVS]r�r�g`aVb�PyK Ç U � NVP_c`K�
T{
� ���� �½� � ¶�� µ!���
¼8j]UdPi�TU�g�NQc � c~KFM}Pi�TU�a¦NVj]U�MVU�K?M}PyNVP_^APRNOb�c,e#g�MVc`h_STNQPyc~KªvIU"|MVP_�TU�M PyNQM���SFg`hyPyNOb`Z½g,KF��NVc�M}�IU � P �?� g,h_hyb�M}U�g,a � j�ezc~a�aVc~v]SFM}NMVc`h_STNVP_c`KFM�Z5jFg`M3g,�]�IU�g`hyU��ªNVc�g�K�SFr-vIU�a/c,e�g,STNQj]c`a�M�Z½g`KF�MVU�^`U�aQg`h1�TPy¡IU�aVU�K~Nqg,�]�]aQc~g � j]U�M � g,K�v?U�ezc`S]KF��P_K�NVjFU-h_PRNQU�aV|g=NQS]aQU`{
¼8j]U»r�U"NQj]cT�&M}S]�~�`U�MONQU�� v�b���g,aQr�U�UúU"N�g,hu{�ý ��g,a�þ`l~g~Z��g,a�þ`l`v?Z�����Y8þ��EÿAPyKA^~c`h_^`U�MHM}U�g,a � j]PyKF�8ezc`a5M}U�^`U�a�g,h`j]Py�~j �?U�a}|ezc`aQrdg,K � U�aQU��`P_c`K?MdPyK�NVj]U � NVKFU�MQM�hig,KF�FM � g,�IU`Z�g,K?�CNVj]U�KU"�]g`r/P_K]P_K]�¥U�g � j�c`e'NVjFU�MVU�aVU��`P_c`KFM/r�c`aQU � h_c~MVU�h_b£U`{ �F{�P_KNVU�aVrdM#c`e;NQj]U�P_a�MVU�KFMVPRNQPy^APyNOb NQcd�Fg,a�g,r�U"NQU�a � jFg`K]�`U�M�{!W�e�NVU�aNVj?g=N�ZFezS]aVNVj]U�a'M}U�g,a � j � g,K�vIU�aVU�MONQaVP � NQU��4NVc NVj]c�M}U aQU��~Pyc~KFMNVj?g=N�g,aQU[r�c�MON8�]aQc`r�P_MVP_K]�3P_K NQU�aQrdM8c,eHaQc`v]S?MONQK]U�MQM�{ Ç P_K � Uc`KFhyb�MVc`r�U�M}rdg,h_h5aVU��`P_c`KFM[g,aQU/g~MVMVU�MQMVU���U���NQU�KFMVP_^`U�h_b`Z�g`KF�NVjFU�K NQj]U[MVU�g`a � j�PiM(aQU�M}NVaQP � NVU���NVc3g,aQU�g`M!NVjFg,N��]aQc`r�PiM}U[M}STe�|�?� PyU�K~NQhyb�aVc~v]SFM}N�MVc`h_STNVP_c`KFM�ZANVjFU � c`r��]STN�g=NVP_c`K?g,h¢c=^`U�aVj]U�g`�PiM � c`r��Fg,a�g=NQPy^~U�h_b�MVrdg,h_hÝ{ªê�c=��U�^`U�a�Z;NVjFU4g,�F�]aVc�g � j��TcAU�MK]c`N5c~�TNVP_r�Py§�U�NVj]U��TU�M}P_aQU�� � aVPyNVU�aVPigq�TPyaQU � NVh_b-g,K?�-rdgEb¦NVjASFMK]c`N'bAPyU�h_��c~�TNVP_rdg,h;aVU�M}S]hyNQM�{#X]S]aVNVjFU�aQr/c~aVU~ZFg`M'ë¨PyU�M}rdg`K]KU"N#g,hu{TM}jFc=�¨PyK¥ý ë�ê[Y8þ`oEÿÐZANVj]Uqc`�]NVP_r�g`h�M}c~hySTNQPyc~K�P_K NQU�aQr�Mc,e�aQc`v]S?MON(��SFg`hyPyNOb3�TcAU�M!K]c`N!K]U � U�MQMVg`aVP_hyb3hyP_U#P_K g j]P_�`j��?U�a}|ezc`aQrdg,K � U¦aVU��`P_c`K1{�1U�c`K�U"N'g`hÝ{;ý �~ë Ç þ��`ÿ;�TU�^`U�h_c`�IU���g��]aQc`vFhyU�r3|LMV�?U � P �?� Z]U��A|�]h_P � PRN4r/U�g`MVS]aQU�c`eqaQc`vFSFMONQK]U�MQM/ezc`a�ËOc`v¨M}jFc`�¨M � jFU��TS]h_P_K]��#PyNVjªr�g � j]P_K]U-v]aQU�g`wT�Tc=�#KFM�ZI�#jFP � j�P_M[NVjFU�KªSFM}U���NQc � g,hy|� SFh_g,NVU�NQj]U � NVK]U�MVM'^Eg`hySFU�M�{'ê�c=��U�^~U�a�Z?MVPyK � U NVjFU-U�M}NVP_rdg=NQUPiM ^`U�aVb��FaVc~v]hyU�r2MV�?U � P �?� Z;NVjFP_M Pi�TU�g � g,K¥K]c`N�v?U�aVU�g`�TP_hybNVa�g,K?MOezU�aVaQU�� NVcdc,NQj]U�a�g`�]�]h_P � g=NQPyc~KFM�{
ê'g`a}N4U"N4g`hÝ{qý ê���Ü'þ~o=ÿ¦�]aVc~�?c�M}U�NQc£U�^~c`h_^`U�g`a}NQP �?� P_g`h�P_r3|r-SFK]U�M}bTM}NVU�r�M�Z8vFg`MVP � g,h_h_b£v]S]P_h_�]PyK]��v]hyc � wTMdc`e¦MVc`h_STNVP_c`K?M�#j]P � j1Z#Pye � c`r3v]PyKFU��¨g,�F�]aVc~�]aQP_g,NVU�h_b`Z8MVj]c`S]hi�CvIU�g,vFhyU�NQc� c=^~U�a�gª�#P_�TU�a�g,K]�~U�c`eq�TPiMONQS]aQvFg,K � U�M�{ù¼;c¥g � j]P_U�^~U�NQj]P_M

236 GENETIC ALGORITHMS



�`c�g,huZ]NQj]U3g`a}NQP �?� P_g`hHP_r�r-S]K]U/M}bTM}NVU�r�M[g,aQU¦NVU�MONQU���g`�~g,P_KFM}Ng�a�g,KF�Tc~r MQg,r��]h_U�c,e��Ic~MQM}P_v]h_U��TPiMONQS]aVv?g,K � U�M�{ � e � c~S]a�M}U~ZNVjFU4vFg~M}P � Pi�TU�g�j]U�aVU4P_M-NVc�v?U�g,v]h_U NQcª��S]P � wAhybª�`U�K]U�a�g=NQUg�K]U��âM � j]U��TS]h_U�NQc�g�K]U��âM � U�KFg,aQP_cFZ��~Py^~U�K¨NQj]U¥v]S]P_h_�A|P_K]��vFhyc � wTM�PyK�NVj]U�P_r�r-S]KFU¥MVbTMONQU�r�{ Y�STN�g`�Fg,aVN�ezaQc`rNVj?g=N�Z?NVjFU3g,S]NVj]c~aQM[M}j]c=�ÏP_K£ý ê���Ü'þ~o=ÿ½NVjFg,N'NQj]U3MVc`h_STNVP_c`K?M�`U�K]U�a�g=NQU���PyKùNVj?g=N �8gEb�g,aQU4�~U�K]U�aQg`hyh_b£r�c`aQU�M}P_r�Pyhig,a�NQcNVjFU�c`aQP_�`P_KFg,h�M}c~hySTNQPyc~K�NVj?g,K£Pye�U�g � j�M}c~hyS]NVP_c`K���U�aQU c`�TNQPR|r�Py§�U��3ezaQc`r�M � a�g=N � j1Z=NQj�S?M��]aQc=^�Pi�TP_K]� M}c~r�U#aVc~v]SFM}NVK]U�MVM5P_KNVjFU�MVU�K?M}U�NVjFg,N/NQj]U�K]U � U�MQMVg`aVb � jFg`K]�`U�M3g`aVU4r/P_K]P_r�Py§�U���{¼8j]U�g`STNVjFc`a�M�M}�IU � S]hig=NVU NVjFg,N-PRN/r�Py�~j~N/g,hiM}c�vIU �Ic~MQM}P_v]h_UNVc�U�^`c~hy^~U�MVP_K]�`h_U�M � jFU��TS]h_U�M � c=^`U�aVP_K]�ªrdg,KAb�c~a�g,h_h��Ic~M}|MVPyv]h_U��TP_M}NVSFaVvFg`K � U�M�Z�vFSTN�NVj]PiM/P_�TU�g�j?g`M3v?U�U�K�h_U"e�N�NQc�ezST|NVSFaVU/��c~aVw¢{qW�MVPyr�P_h_g`aqg`�]�]aQc~g � j�jFg`M[v?U�U�KªM}S]�~�`U�MONQU���P_Ký ê���þ~þ,v1Z]ê���þ`þ~gEÿu{
¼8j]U�r�c~M}N½�~U�K]U�aQg`h~g,�F�]aVc�g � j1ZE�#j]P � j-PiM5g,hiM}c'NVj]U8g,�F�]aVc�g � j�TPiM � SFMQM}U���P_KÏr/c~aVU��TU�NQg`Pyh�P_KúNVj]PiM��Fg`�?U�a�Z¦PiM�NVc¨U�^Eg`hyS]|g=NQU�g`K�P_KF�TP_^AP_�TS?g,h8S]KF�TU�adM}U�^`U�a�g,h�M � U�KFg`aVP_c~M�ÒzPu{ U`{½NVc¥�TU"|h_PyvIU�a�g=NQU�h_b��TPiMONQS]aVvúU�^=g`hySFg,NVP_c`KFM�Ö�g,KF��NVcCSFMVU¥NVjFU¥gE^~U�aV|g,�~U��?U�a}ezc~aVrdg`K � U£g~M � NVKFU�MQM�r�U�g`MVS]aQU`{Þ¼8j]U£aQU�MVS]hyNVP_K]�� NQK]U�MQM�ezS]K � NQPyc~K�PiM�M}NVc � jFg`M}NVP � Z/v]STN£�TSFU�NQc�NQj]U�P_a¥SFMVUc,e'g�M}U�g,a � j¥�?c~�]S]hig=NVP_c`K�g,KF�¥NQj]U�aVU��?U�g=NVU���aQU"|LMVg`r/�FhyP_K]�c,e¦�]aQc`r�PiM}P_K]��g,aQU�g~M3c`e[NQj]U�MVU�g,a � j�MV�Fg � U`Z�U�^~c`h_STNVP_c`K?g,aQbg,h_�`c~aVPyNVjFr�M�ÒÉs(W[MQÖ g,aQU��`U�KFU�a�g,h_hyb��?U�a � U�P_^`U��ùNQc£vIU���U�hyhMVS]PRNQU���ezc`a�c~�TNVP_r�Py§�g=NVP_c`KùP_KùKFc`PiM}b�U�K�^AP_aVc~K]r�U�K�NQM�{C¼8j]P_Mg,�F�]aVc�g � j£j?g`M�g,h_aVU�g`�Tb¥�]aQc=^`U�K�MVS ��� U�MQMOezS]h8P_Kùg�KAS]r-vIU�ac,e'�]PR¡¢U�aQU�K�N/g`�]�]h_P � g=NQPyc~KFM�h_Pyw~U �]aQcT�TS � P_K]��eÉg,S]hyN-NQc`h_U�a�g,K�NK]U�S]aQg`h~KFU"NO��c`aQwAM(ý Ç X5þ�nEÿÐZ=U�^`c~hy^AP_K]��aQc`vIc,N � c`K�NQaVc~h~MVbAM}NVU�rdMý �~g`wAþAk~ZTÜ'Y8þ�k�ÿÐZ�NVj]U MVU�g`a � j�ezc~a�U�hyU � NVaQc`KFP �[� P_a � S]PRN�M(P_KFMVU�KT|MVPRNQPy^~U�NQc�NQU�r��?U�aQg,NVS]aQU � jFg,K]�~U�M�ý ¼8jFc~þ`l]Z!¼8j]c~þ~o�ÿuZ(üFPy�~j�N� c~K�NVaQc`h½S]KF�TU�a � j?g,K]�~PyK]� � c~KF�TPyNVP_c`KFM�ý Y�h_bTþ`oEÿÐZ�r-SFhRNQPyhigEb`U�ac`�]NVP � g,h � c~g,NVP_K]�~M¥P_KFMVU�KFMVPyNVP_^`UCNVc»rdg`K�S]eÉg � NQS]aQPyK]�úNQc`h_U�aV|g,K � U�Mqý pqaVU�þ��]Z]pqaQU�þ`lAZAë�ê[Y�þ~oEÿÐZT�#PyK]�`|uvIcE��c`�TNQPyr�P_§�g=NQPyc~KNQg`wAPyK]�#P_K�NVc'g ��� c`S]K�N1rdg,KASTeÉg � NVSFaVP_K]�8NVc~hyU�aQg`K � U�M�ý ß�ê�JOþ`l,ÿuZc`a5ËOc~v�MVj]c~��M � j]U��TS]h_PyK]��ý �#U�U�þ~nAZ]¼���ê'þ~þTZ� �U�KFþ`oEÿÐ{
Y�STN'g,hyNVjFc`S]�~j�NQj]P_M8r�U�NVj]cT��M}U�U�rdM�NVcdvIU ��S]PRNQU U"¡¢U � NVP_^`U`ZPyN'aVU���S]PyaQU�M#MVS]vFM}NQg`K�NVPig,h � c`r��]STN�g=NVP_c`K?g,h1�Ic=��U�a�Z]MVP_K � U�U�^�|U�aQb P_KF�TP_^AP_�TS?g,h1jFg~M�NVc�vIU U�^=g,h_SFg=NQU���M}U�^`U�aQg`h?NQPyr�U�M�{
¼#MVSTNQMVS]P?g`KF�dpqc~MVj�ý ¼�p¦X5þ`lFZ`¼�p¦þ�kEÿF��U�aQU8NVj]U � aQM}N�NVc�U��A|g,r�P_K]UdNQj]U Pi�TU�g�c`e#�]P_M}NVS]aQvIU��¥U�^=g`hySFg,NVP_c`KFM�r/c~aVU � hyc�M}U�hybg,K?�4MVj]c=��U���ZTSFMVP_K]�/NVj]U�M � j]U�rdg3NVjFU�c`aQU�r�ZANQjFg=N��~Py^~U�K4g`KP_K � K]PyNVU�hyb hig,aQ�`U[�?c~�]S]hig=NQPyc~K4MVPy§�U`ZTg,K�s(W��#PRNQj�MVPyKF�`h_U[�TPiMO|NVSFaVvIU��3U�^=g,h_SFg,NVP_c`KFM;P_M5g � NVS?g,h_hyb¦�IU�aVezc`aQr/P_K]�¦g`M;PReIPRN���c`S]hi���c`aQwdc`K4NVj]U U�¡IU � NVP_^`U � NVK]U�MVM8ezSFK � NQPyc~K1{
JÐe#NVjFU PyKF�]STN-NQc�NVjFU�U�^=g`hySFg,NVP_c`KªezS]K � NVP_c`K�ÒÉPÝ{ U`{HNVj]U4PyK?�TPR|^AP_�]SFg,h�Ö1PiM5�TPiMONQS]aVvIU��3a�g,KF�Tc~r�hybqezc`a½U�^~U�aQb¦U�^=g,h_SFg=NQPyc~K1ZENVjFUÅ"!$#FÅ�í"ÃLÅ&%4aVU�NVS]aQK]U���^=g,h_S]U�g=NdU�^`U�aQb��Ic`P_K~NdP_KùNVj]U�MVU�g`a � jMV�Fg � U3PiM�ËOSFM}N�U���S]P_^Eg`hyU�K�NqNQc�NVj]U�U"¡¢U � NVP_^`U � NQK]U�MQM�{ Ç P_K � UP_K�s(W[M�Z5�]aQc`r�PiM}P_K]��g,aQU�g~M�g,aQU �]aQc`vIU�����S]PyNVU4c,e�NQU�K1Z5NQj]P_MMVU�U�rdM(NVc3v?UqM}S�� � PyU�K~N�{�W'�]�TPyNVP_c`K?g,h_hyb~Z�U�^=g,h_SFg=NQPyc~K aVU�M}SFhRN�MP_K�ü?g=N¦g,aQU�g~M��#P_hyh½v?U3r�c`aQU � c~KFM}PiM}NVU�K�Nqc=^`U�a�NVP_r/U3NVjASFM[PyN� c~S]hi��vIU U�g~M}P_U�a8ezc~a8NVj]U�s�W�NQc�ezc � SFM8c~K4NQj]U�MVU g,aQU�g~M�{
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insensitive to perturbations
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X½Py�~S]aQU-m`t'�#c~v]SFM}N�MVc`h_STNVP_c`KFM(^TM�{�K]c`PiMVb � NVK]U�MVM�U�^=g,h_SFg,NVP_c`K
Y�aQg`K]w`Uqý Y�a�g`þ~oAZEY�a�g)(*(�ÿAj?g`M½U"�]g,r�P_K]U��3g'KAS]r3v?U�a5c,e?�8gEbTMNVcqP_r/�FaVc=^~U!NVjFU�s�W��IU�aVezc`aQrdg,K � U(�#PyNVj]c~STN�PyK � aVU�g`MVPyKF��NVjFUKAS]r-vIU�a-c,e#MVg`r/�FhyU�M �?U�a�P_KF�TP_^�Pi�TSFg`hÝZ;U`{ �F{1vAb�NQg,wAP_K]��NVjFU� NQK]U�MQM'c`e!K]U�P_�`jAvIc`aQPyKF�dPyKF�]Py^APi�TSFg,hiM[PyK�NVc4g ��� c`S]K�N�Z?vAb�PyKT|� aQU�g~M}P_K]�[NVj]U#�Ic`�FS]h_g,NVP_c`K�M}P_§�U~Z,c`a�vAb�^=g`aVbAP_K]�'NQj]U#KAS]r-vIU�ac,e�MQg,r��]h_U�M�NVjFaVc~S]�`j]c~STN�NVj]U aQS]K1{
Ü�c`NVU NQjFg=N'NVj]U��FaVc~v]hyU�r c`e � aQU�g=NQPyKF�/aQc`vFSFMONqM}c~hySTNQPyc~KFM�g~M�TU � K]U���jFU�aQU jFg`M�MVc`r�U-MVP_r/P_hig,aQPRNQPyU�M8NVcdc~�TNVP_r�Py§�PyK]��K]c`PiM}bezS]K � NVP_c`KFM�ZA�#j]P � jdjFgE^`U'g`h_MVc vIU�U�K�U"�]g,r�P_K]U���P_K � c~r-v]P_KFg,|NVP_c`K��#PyNVj�s(W'M�{+��g,�IU�a�M#PyK�NQjFg=Nqg,aQU�g�P_K � h_SF�TU ezc~a'U��Tg`r/|�]h_Uqý W;ë�þ��]Z=W�aQK,(*(TZ=W�K]��þ*
AZ=X;p¦o~oTZ=ê'Y8þ��FZEß�Pyhiþ�k�Z Ç N�g`þ~oEÿu{ê�c=��U�^~U�a�NVjFU�aQU¦g`aVUqNO��c3rdg`PyK��TPy¡IU�aVU�K � U�M�t
È �#PyNVj�K]c~P_MVbdezS]K � NVP_c`KFM�Z]MVc`r�U¦K]c`PiM}U¦PiM8SFMVSFg,h_hyb4g`�]�TU��NQc£NVjFU�c`S]NV�]STN¥ÒÉ��SFg`hyPyNOb]Ödc,e¦NQj]U�MVc`h_STNVP_c`KH{äJLK¨NVjFUMVU"NVNVP_K]�~M�aVU��~g`aQ�TU���j]U�aQU`Z�K]c~P_MVU'PiM�g~�]�TU���NVc3NVj]Uq�TU � PR|MVPyc~K4^=g`aVPig,v]h_U�M ÒÉc`a#�]jFU�K]c`NOb��IU�Ö�c`e;NQj]U�MVc`h_STNVP_c`K1{�JÆ{ U`{Pye8Ñ5ÒÉÓIÖ'P_M[NVjFU � NVK]U�MVM[ezS]K � NVP_c`K¥g,KF��ÛdPiMqMVc`r�U�ÒzU`{ �F{K]c~aVrdg`hyh_bª�]P_M}NVaQPyvFSTNVU��FÖ�KFc`PiM}U~Z;NQj]U�Kùg�K]c~P_MVb � NVK]U�MVMezS]K � NVP_c`K ��c`SFh_�qr�U�g`K-Ñ.-ÝÒÉÓIÖ(ç�Ñ5ÒzÓIÖQÚqÛAZ=�#j]P_hyU!P_K c`SFa� g`MVU-Ñ.-ÝÒÉÓIÖ#ç»Ñ5ÒzÓdÚ�Û,Ö Ò � eO{IX½P_�F{½m ezc`a�P_h_hySFM}NVa�g=NQPyc~K?ÖÆ{XFaVc~r�g¦�]a�g � NVP � g,hF�?c~PyK�N!c,e�^AP_U�� Z,NQj]U�K]c~P_MVU8ezc`a(K]c`PiM}bezS]K � NVP_c`K?MdP_M SFM}S?g,h_hyb � c`KFMVPi�TU�aQU���NVc¥vIU�M}bAr�r�U"NVaQP �g`KF�¦PyK?�TU��IU�KF�]U�K�N;c`e�NQj]U(P_KF�TP_^AP_�]SFg,huû MHhyc � g=NVP_c`K¦P_K NVjFUMVU�g`a � j�MV�Fg � U`{ � K�NQj]U3c`NVj]U�a[j?g,KF��Z�Pye!NQj]U3P_K]�]S]N[NQcNQj]U8U�^=g,h_SFg=NQPyc~K�ezS]K � NVP_c`K/PiM��TP_M}NVSFaVvIU���Z`KFg=NQS]aQg`hyh_b¦NVjFUc~vFM}U�aV^~U��d�TPiM}NVaQPyv]S]NVP_c`K c`e � NVKFU�MQM(^=g,h_S]U�M!ezc~a�g`K PyK?�TPR|^APi�TSFg,hIPiM�MVw`U���U���Z`j?g`M�K]c`KT|Ð§�U�aVc-r/U�g,K�g`KF� M}NVaQc`K]�~hyb�TU��?U�KF�]M-c`K¥NVjFU hyc � g=NVP_c`K¥c`e�NQj]U P_KF�TP_^AP_�TS?g,h(P_K¥NVjFUMVU�g`a � j�M}�Fg � U~{
È K]c~P_MVbèezS]K � NVP_c`KFM � g,K¹K]c,N¨vIUÏU�^=g,h_SFg=NQU�� �#PRNQj]c`S]NK]c~P_MVU`Z8NQj]U � j?g,h_hyU�K]�`U�ezc~a NVjFU�s(WÍP_M�NVc � KF�¨�`cAcT�MVc`h_STNVP_c`K?M-�TU�M}�]PyNVU4NVjFU�K]c~P_MVU`{�JLK�NVj]U�MVU"N}NQPyKF�~M � c`K]|MVP_�]U�aQU���PyK�NQj]PiM��Fg`�?U�a�Z?PRN'PiM�g~MVMVS]r�U��4NVj?g=N'c~K]hyb4NVjFU�TU � PiM}P_c`Kª^=g,aQP_g`v]h_U�Mqc,e�NVj]U � K?g,h!MVc`h_STNVP_c`K¥g,aQU�K]U � U�M}|MQg,aQPyh_b¥�TP_M}NVSFaVvIU���Z�S?M}SFg`h!ezS]K � NVP_c`K�U�^=g,h_SFg,NVP_c`KFM3�TS]aV|P_K]� NQj]U�s(W�aVS]K � c`SFh_��g,hiM}c vIU/�?U�a}ezc~aVr�U����#PRNQj]c`S]N�TPiM}NVS]aQvFg,K � U`{ª¼8j]PiM-PiM[ËOSFMONQP � U��£vIU � g,SFMVU �#PyNVj]P_K�g`Ks�W�Z1U�^Eg`hyS?g=NVP_c`K¥PiM SFMVSFg,h_h_b��Tc~K]Udc`KªNVjFU vFg`MVPiM¦c,e#gNQj]U�c~aVU�NVP � g,huZ � c`r��]STNQU�aQPy§�U���r/cT�TU�hÝZ��#j]P_hyU�NQj]U � KFg,hMVc`h_STNVP_c`K�PiM#NQj]U�K�g � NVS?g,h_hyb4Pyr��]h_U�r�U�K�NQU���g,K?�4j?g`M8NQceÉg � U3g`hyh;NVjFU-S]K � U�aVNQg`PyK�NVP_U�M[�]aQU�MVU�K�N'P_K�aQU�g`hyPyNOb`{'Ü'c,NQUNQjFg=NqNVj]U�Pi�TU�g~M'�FaVU�M}U�K~NQU���P_K�NVj]PiMq�Fg,�IU�a¦��c`S]hi��K]c`NvIU �]a�g � NQP � g,v]h_U¦�#PRNQj]c`S]N#NVj]PiM#�]aQc`�IU�aVNOb`{
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¼8j]U�M}U NO��c g`MV�IU � N�M�ZIc`�]NVP_r/P_§�g,NVP_c`K�S]K?�TU�a[K]c`PiM}b�U�KA^AP_aVc~KT|r�U�K�NQM(g,KF�3NVjFU�M}U�g,a � j�ezc`a(aVc~v]SFM}N�MVc`h_STNQPyc~KFM�Z`r�gEb3v?U#SFK]PR|� U���vAbªrdg`w�P_K]��NQj]U��TP_M}NVaQP_v]STNVP_c`K�c,e#NVjFU�K]c~P_MVU�g,hiMVc��TU"|�IU�KF�TU�K�N-c`KªÓHZ½PÝ{ U`{½Ñ.-ÝÒÉÓIÖ�ç Ñ5ÒÉÓIÖ�Ú¨ÛTÒÉÓIÖ"{4Y�c,NQj�ezc~aVr�U�ag`MV�IU � N�M�g`aVU�rdg=NQj]U�rdg,NVP � g,h_h_b�ËOSFM}N�MV�IU � Pig,h � g`MVU�M�c,e¦NVjFUhig=N}NQU�a�Z8j]c=��U�^`U�a�ezc`adNQj]U��]S]aQ�Ic~MVU�c,e c`�TNQPyr�P_§�g,NVP_c`K1Z�NVjFUwAK]c=�#h_U��T�~U-�#j]U�NVj]U�a'NQj]U��]aVc~v]h_U�r&P_Mqc`e(c`K]U-NObA�?U�c`a[NVjFUc,NQj]U�a#rdgEb vIU U"�T�]h_c`PyNVU���ÒÉhyP_w`U U~{ �?{TPyK�NQj]P_M��Fg,�IU�aÆÖÆ{
/ 0 �5�F¸O� ´ � �1	� ¶'·[�I�]¸Oµ ´�23� ��4�µ#¶[�
W'M�jFg`M v?U�U�K¨K]c`NVU��ùP_K Ç U � NVP_c`K�n]Z�ezc~adNVjFU��]aQc`v]h_U�r c,eMVU�g,a � j]P_K]��ezc`a aQc`v]S?MON MVc`h_STNVP_c`KFMdNVjFg,N P_MdaQU���g,a��TU���j]U�aVU~ZPyN[PiM��Ic~MQM}P_v]h_U NVc�g ��� S]a�g=NVU�hyb��TU"NQU�aQr�PyK]U/Ñ5ÒzÓIÖ[�TS]aQP_K]�dNVjFUs(WºaVSFK1Z?�#jFP � j�P_K�NQS]aVK�g,h_hyc=��M�NVc�U��T�]hyP � PyNVh_b � j]cAc~MVU NVjFU�TPiMONQS]aQvFg,K � U�M�Û/SFMVU���NQc U�^=g`hySFg,NVU¦NQj]U-P_KF�TP_^AP_�TS?g,hiM�{#pqU�KT|U�a�g,h_h_b`Z¢NVjFU�MVU �TP_M}NVSFaVvFg`K � U�MqjFgE^`U/v?U�U�K��Ta�gE�#K�a�g,KF�]c`r�hybg ��� c~aQ�TP_K]�¥NQc�NVj]U��]aQc`vFg`v]Pyh_PyNOb��TPiMONQaVP_v]STNQPyc~K¨NVj?g=N�PiM�U��A|�IU � NQU���P_K�aQU�g`hyPyNOb`{
ê�c=��U�^~U�a�ZTvAb4SFMVP_K]� r�c`aQU�g`�T^=g`K � U���MQg,r��]h_P_K]� r�U"NQj]cT�]M�ZNVjFU3^=g,aQPig,K � U�c,e!NQj]U��TP_M}NVaQP_v]STNVP_c`K�c,e � NQK]U�MQM[^Eg`hySFU�M'ezc`a¦gMVPyK]�~hyU�P_KF�TP_^AP_�TS?g,h!rdgEb�vIUdaVU��TS � U���Z½g,KF��NVjASFMqNQj]U s(W-û MMVU�g,a � j � g,�Fg`v]P_hyPyNVP_U�M � g,K�v?U U�K]jFg,K � U��1{
¼8j]U � a�MON/P_MQM}SFU NVj?g=N��#Pyh_h8v?U�g`�]�]aVU�MVMVU��¥P_K£NQj]P_M/MVU � NQPyc~KPiM!�#j]U�NVj]U�a�NVj]U[�TP_M}NVSFaVvFg`K � U�M�SFMVU��/ezc~a!U�^=g,h_SFg,NVP_c`KdM}jFc`S]hi�vIU�NVj]U�MQg,r�U�ezc~a g,h_h�PyK?�TPy^APi�TSFg`h_MdP_K¨g¥�?c~�]S]hig=NQPyc~KÏÒÝ�TU"|K]c`NVU��¥g~M5#F¿"#¢Á�687=ÃuîÉ¿=ÄAÖÆZ5c`a¦P_KF�TU��?U�KF�TU�K�N�ezaQc`râPyKF�]Py^APi�TSFg,hNVcdP_KF�TP_^AP_�]SFg,h!ÒÝ�TU�K]c`NVU���g~MqÂÆî�Ä:9)6yÅVÖ"{�\[M}P_K]�/NVj]U�MQg,r�U �TPiMO|NVSFaVvFg`K � U�M[NVj]aQc`S]�~j]c`S]N'NVjFU/aQS]K���c~S]h_��K]c,N rdg,w~U/MVU�K?M}U~ZMVPyK � U'NQj]U�K�NVj]U¦s(W � c~S]hi� � c~K � U�K~NQaQg,NVU[c`K U��A�Fhyc~PRNQPyK]�3NVjFUM}NVaQS � NQS]aVU¦c`e;NQj]U � �TU���M}U�N�c,e5�TP_M}NVSFaVvFg`K � U�M�{
\'MVP_K]���TPy¡IU�aVU�K�N4�TPiMONQS]aVv?g,K � U�Mdezc~a4�TPy¡¢U�aQU�K�N�P_KF�TP_^�Pi�TSFg`h_Mc,e3NVj]U£MQg,r�U¥�`U�K]U�a�g=NQPyc~K�r�P_�`j�N�v?U � c`KFMVP_�]U�aQU���SFKTeÉg,P_a�ZvIU � g`SFMVU¥gC�~cAcA��P_KF�TP_^�Pi�TSFg`h U�^=g,h_SFg,NVU��úS]K?�TU�a�S]KFhyS � wAb� P_a � S]rdM}NQg,K � U�M�rdgEbùvIUªaQg`K]w`U��C��c~aQMVU�NVj?g,K�g�vFg`��PyKT|�TP_^AP_�TS?g,h��#PRNQj�g�h_S � wAbªU�^=g,h_SFg=NQPyc~K1{�ê'c=��U�^`U�a�Z½c=^`U�a�NVjFUh_c`K]� aQS]K1ZFNVj]PiMqM}j]c~S]hi� � g,K � U�h;c`STN�ZIg~M�j]P_�`j��IU�aVezc`aQrdg,K � UaQU��`P_c`K?M�g,aQU�MVg`r��]hyU���rdg,KAb�NQPyr�U�M3ÒÝg`M�j?g`M'g`hyaQU�g~�Tb�vIU�U�Kg,aQ�`SFU���P_K�ý Ü[Y8þ�k�ÿzÖÆ{5W�hiM}c?Z,NQj]U#g,hyNVU�aQKFg,NVP_^`U`Z=K?g,r�U�h_b�SFMVPyKF�NVjFU4MQg,r�U��TPiMONQS]aQvFg,K � U�M¦ezc~a3g`hyh�PyKF�]Py^APi�TSFg,hiM�c`e�c`K]U��`U�K]|U�a�g=NQPyc~K1Z�rdgEb¥v?U3ËOSFM}N�g~M-S]K]eÉg,P_a�Z!vIU � g,SFMVU4�]P_M}NVS]aQvFg`K � U�MNVj?g=N(h_U�g~�-NQc�g,vIc=^`U�|ÐgE^~U�a�g,�`U(U�^=g,h_SFg=NQPyc~KFM½ezc`a(c`K]U#P_KF�TP_^AP_�A|SFg`h?rdgEb�hyU�g`� NVc-vIU�h_c=�8|LgE^`U�a�g,�~U8U�^=g,h_SFg=NQPyc~KFM(ezc`a8g,K]c`NVj]U�aP_KF�TP_^�Pi�TSFg`hÝ{ÏW�KCU��Tg`r��]hyU�P_Md�~Py^~U�KùPyK�X½P_�`S]aQU�nTt�ë¨PRNQjP_KF�TP_^�Pi�TSFg`h_M¦MVPRNVNVP_K]��c`K�vIc,NQj��IU�g,wTM�Z�g4MVj]Pye�N[NQc�NQj]U3aQP_�`j�Nr�Py�~j�N��FSFM}jùg,h_h#PyK?�TPy^APi�TSFg`h_M/c`K�NVj]U�h_U"e�N �IU�g`w�c=^`U�a3NVjFU� h_Py¡½Z1�#jFPyh_U-NQj]U�PyK?�TPy^APi�TSFg`h_M¦c~K�NVjFU3aQPy�~j�Nq�IU�g`w�g,aQU-c`KFhybMVhyP_�`j�NVh_b�g,¡IU � NVU���{
¼8j]UdMVU � c~KF�ª�~SFU�M}NVP_c`K¥g`�]�TaQU�MQMVU���P_K�NVj]PiM�MVU � NQPyc~K�PiM¦j]c=�NVcªM}U�hyU � N�NQj]U4�]PR¡¢U�aQU�K�N/�]P_M}NVS]aQvFg`K � U�M ezc`a3r-S]hyNVP_�]h_U4U�^=g,hy|SFg,NVP_c`KFM3c,e[gªMVPyK]�~hyU4PyK?�TPy^APi�TSFg`h8MVS � j�NVjFg,N3NQj]U4^=g`aVPig,K � UPiM�r�PyKFPyr�P_§�U��1{�¼8j]P_M-P_M�^`U�aQb�MVP_r/P_hig,a NQc�NVj]U4�]aQc`v]h_U�r2c,e
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X½Py�~S]aQU[nTt½JÐe�NVj]U�aVU[g,aQU�PyK?�TPy^APi�TSFg`h_M(c`K vIc,NQj �?U�g,wTM�Z`SFMVPyKF�NVjFU�MVg`r/U¦�TPiMONQS]aQvFg,K � Uqezc`a�g,h_h�P_KF�TP_^�Pi�TSFg`h_M8�#P_h_h¢eÉgE^`c`a�c`KFU�IU�g,w�c=^`U�a�NQj]U c,NQj]U�a�{
ß�c~K~NQU3ø�g,aQhyc�JLK�NVU��`a�g=NQPyc~K�Ò � eO{FU~{ �?{_ý pqU�KFþ~oEÿzÖ#g,KF��g`h_MVc�aVU�|hig=NVU��CNVc�U"�T�IU�aQPyr�U�K�N�g,h[�]U�MVPy�~Kºý ê'P � þ)�Eÿ g,K?��M}P_r-SFh_g,NVP_c`Ký �#Py�?o�k�ÿÐ{�ê�c=��U�^`U�a�Z � c`r��Fg`aVU��/NVc NQj]U!ËOS?MON�r/U�K�NVP_c`K]U��dg,aV|U�g~M�Z1NVj]UdKAS]r3v?U�a c,e#MVg`r/�FhyU�M'NQjFg=N � g,Kªv?U�N�g,w~U�KªPyK¥c`SFa� g~M}UqPiM�^~U�aQb M}rdg`hyhuZASFM}S?g,h_hyb MVrdg,h_hyU�a�NQjFg,K4NVjFUqKAS]r3v?U�a8c,e�TP_r�U�KFMVPyc~KFM�ZIvIU � g,SFMVU�NQj]c`S?MVg`KF�]M[c,e(P_KF�TP_^AP_�TS?g,hiM[j?gE^`U NQcvIU U�^=g,h_SFg=NQU����TS]aQPyKF�3NQj]U � c~S]a�M}U¦c,e;NVj]U�s�W�{JLKªNVj]U ezc`h_hyc=�#P_K]��U"�T�IU�aQPyr�U�K�N�M�ZHezc`S]a�MQg,r��]h_PyKF��r/U�NVj]cT�]Mg,aQU � c~r/�?g,aQU���t
m`{5<�7=Ä=%~¿?>A@Ês(g � jä�]P_M}NVS]aQvFg`K � U�P_M � j]c�M}U�KäPyK?�TU��IU�KT|�TU�K�NVh_b¦g,N;a�g,KF�]c`rèÒ�NVjFP_M½PiM1NQj]U��TU�eÉg,S]hyN5SFM}U��¦ezc`a;r�c~M}NU��A�IU�aQP_r/U�K�NQM�ÖÆ{
nT{�B[Ä?ÃÝî�ÃDC]Å�ÃÝîÉíE@½W�h_��gEbTM5�]aQcT�TS � U�M½�Fg,P_a�M5c,eI�]P_M}NVS]aQvFg`K � U�M�#j]P � jChyU�g`��NVc�KFU��~g,NVP_^`U�hyb � c`aQaVU�h_g,NVU���U�MONQPyrdg=NQPyc~KFM�{XFc`a/S]K]Pyezc`aQr/h_b��TPiMONQaVP_v]STNQU����]P_M}NVS]aQvFg`K � U�M�Z5NQj]U � a�M}N�TPiM}NVS]aQvFg,K � U8^`U � NVc~aGFÛ'PiM � j]c�M}U�K/g,N!aQg`KF�Tc~r�Z,NVj]U�MVU � |c~KF�¦P_MHNVjFU�K � j]c�M}U�K g`MIHAFÛA{½X]c~aHr�c`aQU(�TU�NQg,P_hiMHMVU�U(g`h_MVcý pqU�KFþ~oTZ,�#P_�FoAk�ÿu{�]{�JIÃÝ¾K7,ÃÝî L�Å&%)@ Ç NVa�g=NQP � U���MVg`r��]hyP_K]�¦�TP_^�Pi�TU�M5NVj]U�MV�Fg � U�c,e�Ic~MQM}P_v]h_U �TPiMONQS]aVv?g,K � U�M¦P_K~NQc�aVU��`P_c`KFMqc`e�U��~S?g,h!�]aQc`v]|g`v]Pyh_PyNOb�g`KF���Ta�gE��M�c`KFU-�TPiMONQS]aVv?g,K � U ezaVc~r U�^`U�aVb4aVU�|�~Pyc~K1{ JLK�NQj]U�Pyr��]h_U�r�U�K~N�g=NQPyc~K�SFMVU���j]U�aQU`Z�MVc`r�U��TPR|r�U�K?M}P_c`KFMdg`aVU��TP_^AP_�]U���PyK�NVc��Ic~MVPyNVP_^`U�g,KF��K]U��~g=NQPy^~U^=g,h_S]U�M�{ JÐeOZ'ezc~a�U��]g,r��]h_U`Z��ùMQg,r��]h_U�M�g,aQUªK]U�U��TU���ZNQj]U�KúNVjFU � a�MON�NO��cC�]Pyr�U�K?M}P_c`KFM�g,aQUª�TP_^AP_�]U���Z�g`KF�NQj]U�MQg,r��]h_U�M£g`aVU¨�Ta�gE�#Kè�#PRNQjèNVj]U�MVP_�`KFM�ÒÐÚGM`Ú¦Ö"ZÒÐÚ3ÔNH'ÖÆZiÒOH ÔÆÚ¦ÖÆZAg,KF��ÒOH ÔNH'Ö5ezc`a�NVj]U � aQM}N(NO��c-�TP_r�U�KT|MVPyc~KFM¦aQU�MV�?U � NVP_^`U�hyb~{ X]c~a�r�c`aQU��]U"NQg`PyhiM c~KªM}NVa�g=NQP � U��MQg,r��]h_PyKF��MVU�U¦U~{ �?{1ý pqU�KFþ`oFZ��#Py�?o�k�ÿÐ{�F{�P�7=Ãuî�ÄRQGS"#FÅ"¾Ví�ÁFÀ�ÅT@ j]U�aQU`Z�P_K£c~aQ�TU�a�NQc��Ta�gE�VU�MVg`r/|�]h_U�M�Z NQj]U£a�g,K]�~Uªc`e �TP_M}NVSFaVvFg`K � U�M�P_K»U�g � j»�TP_r�U�KT|MVPyc~KäPiM��TP_^AP_�TU��äP_K�NVc1U»U���SFg,h3�Fg,aVNQM�Z3g`KF�äg¨a�g,K]|�Tc~r MQg,r��]h_U�PiM � j]c�M}U�KÊezaVc~rñU�g � jã�Fg,aVN�Z4aVU�M}SFhRNV|P_K]�£P_KWUù^=g,h_S]U�M ezc`a4U�g � j¨�TP_r�U�KFMVP_c`K1{ä¼8j]U�M}U�^=g,hy|S]U�M ezaQc`r2NVj]U4�TPR¡¢U�aQU�K�N3�]Pyr�U�K?M}P_c`KFM3g,aQU�NVj]U�K � c~r/|v]P_K]U���aQg`KF�Tc~r/h_b�NVc�ezc~aVr NVjFUXU��TPiM}NVS]aQvFg,K � U�M�{�W'M
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g`KªU��]g,r��]h_U`Z � c`K?M}Pi�TU�a�NVj]U �~U�K]U�aQg,NVP_c`Kªc,e+���TPiMONQS]a}|vFg`K � U�M¥�#PRNQjY�Ï�TP_r�U�KFMVP_c`KFM�{ X]c`a¥NQj]UCS]K]Pyezc`aQr�hyb�TPiM}NVaQPyv]S]NVU����TP_M}NVSFaVvFg`K � U3PyK�NVj]U3PyK�NVU�aV^=g`h�ý8H5(�ZénTÔK(,Z n=ÿSFMVU��dNVj]aQc`S]�~j]c`S]N(NVjFP_M��Fg,�IU�a�Z�ezc`a�U�g � j �TPyr�U�KFM}P_c`K\[QZezc~S]aH^=g,h_S]U�M1÷^]_a` ý8H5(�ZénTÔTH5(�Z_m"ÿÐÔV÷:b_�` ýcH5(,Zym~ÔK(,Z (,ÿuÔQ÷*d_�`ý (�Z (]Ô"(�Z_m"ÿÐÔV÷*e_f` ý (,Zym~ÔK(�ZénEÿªg,aQUºa�g,KF�Tc~r�hyb � j]c~MVU�KH{¼8j]U�K1Z[NVj]U�M}U¥g,aQU � c`r-vFPyK]U��¨NQc�ezc~aVr�NQj]U�MVg`r/�FhyU�MÒÝ÷*g�h$ikjKl] ÔV÷:g�m$ikjKlb ÔV÷:gEnoikjKld Ö½�#PyNVjap3çämIZTZNZKU/g,K?�rq _ v?U�PyKF�g[aQg`KF�Tc~r»�?U�aVr3STNQg,NVP_c`K-c`eFNQj]U8^Eg`hySFU�M;ezc`a��TP_r�U�KFMVPyc~K[�{3¼8jFU/g~�T^=g,K�NQg`�`U-c`e�hig=NQPyKªjAb��IU�a � SFv?U�MVg`r��]hyP_K]��P_MNQjFg=N�P_K3U�g � j-c`eFNQj]U5U-MVS]v]a�g,K]�~U�M;PyK/U�g � j-c`e]NVj]U+���TPR|r�U�K?M}P_c`KFM�ZTNQj]U�aQU�PiM#U"�]g � NVh_b�c~K]U�MVg`r��]hyU~{�Ü'c,NVU�NVjFg,NNQj]P_M�r�U"NQj]cT�djFg~M!NQc-vIUqMVhyP_�`j�NQhyb/r�cA�]P � U�� Pye1NVjFU[�TPiMO|NQS]aVv?g,K � U�P_M[K]c`N'S]K]Pyezc`aQr�hyb��TPiMONQaVP_v]STNQU���{'¼8jFU�K1ZINVjFUP_K�NVU�aQ^=g,hiM ezc~a4U�g � j��]Pyr�U�K?M}P_c`K�MVj]c~S]h_��v?U¥g`�]g`�TNVU��MVS � j3NVjFg,N½NQj]U8�]aQc`vFg`v]Pyh_PyNOb c,eIgqa�g,KF�]c`rä�TPiMONQS]aQvFg,K � UÛ�NVc3eÉg,h_h�PyK�NVc�P_K�NVU�aQ^=g,h.[�PiM8U���SFg,hIezc~a8g`hyhs[�{�W�hiMVcFZANVjFUa�g,KF�]c`r©MQg,r��]h_U�NQg`w`U�KùezaQc`r©NVjFg,N�PyK�NQU�aQ^Eg`h�M}jFc`S]hi�vIU!N�g,w`U�K-g ��� c~aQ�TP_K]�8NQc�NVjFU(�]aQc`vFg`v]P_hyPyNObq�]P_M}NVaQPyvFSTNVP_c`K1{Ç U�U�g,hiM}c�ý ß�ø�Y�k=þTZ?pqU�KFþ`o=ÿu{
¼8j]U¦ezc~S]a'MQg,r��]h_PyK]��r�U"NQj]cT�]M'�]U�M � aQPyvIU���g,vIc=^`U g,aQU¦Pyh_h_SFMO|NVa�g=NQU��4vAb4g,K�U"�]g`r/�FhyU¦P_K�X½P_�`S]aQUG�]{

(c)

(a) (b)

(d)X½Py�~S]aQUt�Ft�s��]g,r��]h_U�M�ezc~a��Ta�gE�#PyK]���¨MVg`r��]hyU�M�PyK»g�n=|�TP_r�U�KFMVPyc~KFg,h(aVU � NQg`K]�`SFh_g`a¦g`aVU�g�SFM}P_K]��a�g,KF�]c`r2MQg,r��]h_P_K]�ÒÉg�ÖÆZ'g`K�NVPyNVj]U�NVP � MQg,r��]h_PyK]��Òzv?Ö"Z'MONQaQg,NVP � U��¨MQg,r��]h_P_K]��Ò � ÖÆZg,K?��hig=NQPyK�jAbA�?U�a � S]v?U�MQg,r��]h_P_K]��ÒÉ�FÖ"{
u vxwYy ¸O�F¸V�¢� �av{z � � ·'�;�]¸}µ ´
|�}�~ � >A°N�A�¦:=®����Ý>:��°
Î[S]U�NVc � c`r��]S]NQg=NQPyc~KFg,h'Uo� � P_U�K � bùg`KF��ezc`adNQj]U�MQg,w~U�c,eU�g~M}b g`KFg,h_bTM}PiM�Z�MVPyr��]h_U¦rdg=NVjFU�rdg=NQP � g,hIezS]K � NVP_c`KFM#g`aVU[SFM}U��

ezc`a;NVU�MONQPyKF��NVjFU�U�¡IU � NVP_^`U�K]U�MQM;c,e]NQj]U��]PR¡¢U�aQU�K�N½g`�]�]aQc~g � j]U�M�{
W�hiMVc�ezc`a�aVU�g`MVc`KFM!c,e � c~r��]STNQg,NVP_c`KFg`hFUN� � PyU�K � b~Z~P_KdNQj]U[U��A|�IU�aQPyr�U�K�N�M�aVU��?c~a}NQU��-v?U�hyc=� Z�g[SFK]PRezc~aVr�h_b-�TPiMONQaVP_v]STNQU����TPiMO|NVSFaVvFg`K � U3Û�P_M[SFMVU���{qÜ�c,NQU`ZIj]c=��U�^`U�a�Z]NVjFg,N¦g`hyh½M}S]�~�`U�MONQU��g,�F�]aVc�g � j]U�M � c`S]hi�3v?U#aQU�g~�TPyh_b-g`�]�]h_PyU���NQc�g,KAb wAPyKF�/c`eI�TPiMO|NVSFaVvFg`K � U~{
X]c~adU�^~U�aQb�NVU�MONdezS]K � NVP_c`K�Ñ _ Z���U��~Py^~U�NQj]U�U"�]g � N �TU � K]PR|NVP_c`K�ezc`a¦g M}P_K]�~hyU/�TPyr�U�KFM}P_c`KHZ¢�]U�K]c`NVU���v�b��Ñ _ {[¼8j]U�M}U/g,aQUM � g,h_U���NVcX���TP_r�U�KFMVP_c`KFMqvAb�M}P_r��]h_U�MVS]r�rdg=NQPyc~K�c=^~U�a[g`hyh�TP_r�U�KFMVPyc~KFM�ZTPÝ{ U`{

Ñ _ ÒzÓIÖ ç ��jK� ] �Ñ _ ÒzÓ j Ö
JLK NQj]U(U��A�IU�aQP_r/U�K�NQM1aQU��Ic`aVNVU��¦v?U�hyc=� Z,n)(��TP_r/U�KFMVPyc~KFM1��U�aQUSFMVU���{
¼8j]U3�]aVc~vFg,vFPyh_PRNOb��TU�KFM}PyNOb�ezS]K � NVP_c`K�c`e�NVj]U/�TPiMONQS]aVv?g,K � U3ÛPiM;g~MVMVS]r�U��qNQc'vIU(S]K]Pyezc`aQrÏc=^`U�a�NVj]U�PyK�NQU�aQ^Eg`h?ý8H5(�Zén��"(�ZénEÿ`P_KU�g � j4�TP_r�U�KFMVP_c`K1Z]g`KF��P_KF�TU��?U�KF�TU�K~N�c`eHNQj]UqNVU�M}N8ezS]K � NVP_c`K1{
|�}�~=}�~ � >A°N�A�;9;@����E�É®I@ Ñ ]X]SFK � NQPyc~KùÑ ] vFg`MVP � g,h_h_b�c`¡IU�aQM-NO��c�rdg,P_K�g,hyNVU�aVK?g=NVP_^`U�M�P_KU�g � jª�]Pyr�U�K?M}P_c`K1t g�j]P_�`j¥M}j?g,aQ���IU�g,wªg=N Ó£ç¹m)Z (4g`KF�ªgMVr�g`hyh_U�a�K]c`N�M}c¥MVjFg,aQ���IU�g`w�g=NdÓúç�H m*Z (F{ù¼8j]U�MVjFg,aQ��IU�g,w���c~S]hi�Cv?U��FaVU�ezU�a�g,v]h_U�PyK�g��]U"NVU�aVr�P_K]PiMONQP � MVU"NVNVP_K]�FZv]STNqNVjFU3c`NVj]U�a[�IU�g`w�g � NQSFg,h_hyb�jFg~M[g�j]P_�`j]U�a[U�¡IU � NVP_^`U � N}|K]U�MVM�{HJLK�c~aQ�]U�a1NQc[gE^~c`Pi� g,K P_K]PRNQP_g`hyP_§�g,NVP_c`K�vFP_g~M�ZEvIc,NVj3j]P_hyhiM�ûvFg~M}P_KFM#c`e5g,N}NVa�g � NVP_c`K�g,aQU¦c,e½NVj]U3MVg`r/U�MVP_§�U�g,K?�4j?gE^`U¦NVjFUMQg,r�U#gE^`U�a�g,�~U���SFg`hyPyNOb4ÒÉPÝ{ U`{=NQj]U8�A|uP_K�NVU�aV^=g,hiM�g,K?�-NQj]U�g,aQU�g~MvIU�h_c=�CNVj]U � S]aQ^`Uqg,aQU#NVjFUqMQg,r�U'c~K vIc,NVj�M}Pi�TU�MQÖ"{5¼8jFP_M�vFg,|MVP � ezS]K � NVP_c`K�PiM c=^~U�aQh_gEb~U����#PyNVj£g�M}NVaQc`K]��h_c=�ºezaQU���S]U�K � bc~M � P_h_h_g,NVP_K]��ezS]K � NVP_c`K�NVcªrdg,w`U4c`�TNQPyr�P_§�g,NVP_c`K£r�c`aQU � j?g,hy|h_U�K]�~PyK]�?{
¼8j]U8rdg=NQj]U�rdg=NQP � g,hAezc~aVr3S]h_g,NVP_c`K/c,e?NVj]PiM5ezS]K � NVP_c`K�rdgEb�vIU�`P_^`U�K�g~M

�Ñ ] ÒzÓ j Ö ç
�������� �������
H�ÒÉÓ j Ú¨mEÖOb(Ú�m)Z �GH�(,Z o=�OMVPyK1ÒÝl�Zén,o*�'ö�Ó j ÖN�t�H'n��ùÓ jG� ((,Z lqö�n õ=�E� �N��õ ] � ÚR(,Z þ:
,o~o`o�kH5(,Z o=�OMVPyK�ÒÉl,Z n`o)�qö�Ó j ÖN�t)(���Ó j � n( t`c,NVjFU�aQ�#P_MVUÓ j ` ý8H'n���nEÿ

X½Py�~S]aQU�� �FaVc=^APi�TU�M½^AP_MVSFg`hyP_§�g,NVP_c`KFM5c`e�Ñ ] g`KF��Ñ ]&  à}á�á PyK�c`KFU�TP_r�U�KFMVPyc~K1{�X]c~a'NQj]Udn�(��]Pyr�U�K?M}P_c`KFMqSFMVU��1Z?NQj]U�rdg=�TPyrdg`hU"¡¢U � NVP_^`U � NQK]U�MQM8PiM'Ñ¢¡]$  àOáEá ÒÉÓIÖ�£»m�o�Z þ)�/g=N#Ó _ ç¤H m~{
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X½Py�~S]aQUr�Ft[¼HU�MONqezS]K � NVP_c`K�Ñ ] g`KF��U�¡IU � NVP_^`U � NQK]U�MQM Ñ ]&  à}á�á�#j]U�K��]P_M}NVS]aQvIU���{
|�}�~=}¦¥ � >A°N�A�;9;@����E�É®I@ Ñ bX]SFK � NQPyc~K4Ñ b PiM��]U�MVPy�~K]U��3NVc/M}jFc=��NQj]U'P_KTüFS]U�K � U[c,e1g`MVbAr/|r�U"NQaVb4c`K4NVj]U�c~�TNVP_r�Py§�g=NQPyc~K4vIU�jFgE^AP_c`a�{!W���g,P_K1ZANVj]U�ezS]K � |NVP_c`KújFg~M�c~K]hyb�g�MVPyKF�`h_U��IU�g`wIZ[v]STN�NVjFP_M�NQPyr�U¥PRN��TaQc`�?MMVjFg,aQ�]h_b�c`K�c`K]U�MVPi�TU�Ò � eO{ºX½Py�~S]aQU§
`Ö"{ä¼8j]U�rdg=�TP_r-S]rezc`a#Ñ bN  àOáEá ÒÉÓIÖ�PiM�g,N�Ó�ç¨(�Z (]Z�ezc~a(NQj]U¦n)(-�TP_r�U�KFMVP_c`KFM�SFMVU���ZNVjFU�rdg=�TPyrdg`h1U"¡¢U � NVP_^`U � NQK]U�MQM�PiM'Ñ¢¡bN  àOáEá ÒÉÓIÖ8çºm�l�Z (]{�¼8j]P_MezS]K � NVP_c`Kúg,h_hyc=��M�NQc�a�g=NQU�NVjFU�g,�F�]aVc�g � j]U�M g ��� c~aQ�TP_K]�¥NQcNVjFU�P_a�aQP_MVwùgE�8g,aQU�KFU�MQM�t�NQj]U�ezS]aVNVjFU�a NQj]U�bCg,�F�]aVc�g � jùNVjFU�IU�g,w¢ZENQj]U��~aVU�g=NQU�a�NQj]U�P_a�g ��� U��TN�g,K � U!c,eFNVj]Uª©}aQP_MVw�«�NVc¦�TaQc`��Tc=�#K4NVj]U U��T�`U¦P_K � g`MVU¦c,e5�TP_M}NVSFaVvFg`K � U�M�{

�Ñ b ÒÉÓ j Öñç ¬ Ó j ÚR(,Z o tH5(,Z oª�ùÓ j � (,Z n( tÍc`NVj]U�aV�#PiM}UÓ j ` ýcH m*��m"ÿ
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X½Py�~S]aQUª
Tt[¼HU�MONqezS]K � NVP_c`K�Ñ b g`KF��U�¡IU � NVP_^`U � NQK]U�MQM Ñ bo  à}á�á�#j]U�K��]P_M}NVS]aQvIU���{
|�}¦¥ ®�¯s° >�:?���£>A@.��D���±H>:��9 ° D]@;¯³²4>^´ÐD]9��D��[DT:=D��£>:��>�:=°
Ç P_K � U NVj]U��TPR¡¢U�aQU�K � U�M-PyK¥NQj]U�g`hy�~c`aQPRNQj]rdM � c~r/�?g,aQU��¥g,aQUaQU�hig=NVP_^`U�hyb�MVrdg,h_hÝZqNQj]U��Fg,a�g,r�U�NVU�a�MVU"NVNVP_K]�~M�g`aVUªK]c,N�U��A|

�IU � NQU�� NVc-j?gE^`U#NQc�c/r-S � j PyK]üFS]U�K � U'c~K NQj]U'aQU�hig=NQPy^~U��?U�a}|ezc`aQrdg,K � U�M�{�¼8j]U�aVU�ezc`aQU`Z�PyN�j?g`M/K]c,NdvIU�U�K�NQaVP_U��£NVcªNVS]KFUNVjFU[�Fg`aQg`r�U"NVU�aQM!ezc`a�U�^~U�aQb�g`hy�~c`aQPRNQj]r�P � ^Eg`aVPig,K�N�{;JLKFM}NVU�g`��Zezc`a8g,h_h�g,h_�`c~aVPyNVj]rdM � c`r��Fg`aVU��dP_K�c`KFU[MVU"N8c,e1U"�T�IU�aQPyr�U�K~N�M�Zg,h_�8gEbAM�NQj]U�MVg`r�Uq�?g,a�g,r�U"NQU�a#M}U�N}NQPyK]��M#g,aQU¦SFM}U���{
\�KFhyU�MVM4MON�g=NVU��¨c,NQj]U�aQ�#PiM}U~Z�NQj]U��]U"eÉg,SFhRN�M}U�N}NVP_K]��M ��U�aQU�g�Ic`�]S]hig=NQPyc~K�MVP_§�Uqc,e'
)(]ZA�`U�K]U�a�g=NQPyc~KFg,hIaQU��]aQcT�TS � NQPyc~K��#PyNVjT|c`S]N-U�h_PRNQP_MVr�Z!g,KF�ªNO��c,|Ð�Ic`P_K~NV| � aVc�MVMVc=^`U�a[�#PyNVj��]aVc~vFg,vFPyh_PRNObc,eµ(F{ lF{ X]c`a�r-STN�g=NVP_c`KHZ-�#PyNVjºg¨�FaVc~vFg,v]P_h_PRNOb�c,e ]� ÒD��t� j]aQc`r�c~MVc`r�U h_U�K]�`NVj?Ö"Z�g,K�g`hyh_U�h_U�¶ _ PiMqg,hyNVU�aQU���v�b�g~�]�TP_K]�gCp¦g,SFMQM}Pig,K�aQg`KF�Tc`r�^=g,aQPig,v]h_U`Z[PÝ{ U`{�¶ _ ×Ø ¶ _ Ú»Û��#PRNQjÛ `¨· Ò�(FÔ b]O¸ ÖÆ{�¼8j]U4M}U�hyU � NVP_c`K�vFP_g~Mr¹3ezc`a�a�g,KFw�P_K]��MVU�h_U � |NVP_c`K��8g`M8MVU"N#NVc n]{ (F{
¼8j]U!KAS]r3v?U�a1c,eTU�^Eg`hyS?g=NVP_c`K?M�c`aHMQg,r��]h_U�M1SFM}U��qNVc � g,h � S]hig=NQUNVjFUªgE^~U�a�g,�`U � NQK]U�MQM4c,e-g�MVP_K]�`h_U�P_KF�TP_^AP_�TS?g,hqP_M��TU�KFc,NVU��ÂN7?>�#=6yÅdÂÆî8º�Å/{ JLK�NVj]U�U��A�IU�aQP_r/U�K�NQMqaVU��?c~a}NQU���vIU�h_c=� Z¢NVjFUMQg,r��]h_U¦MVP_§�U¦jFg`M�v?U�U�K�M}U�N8NVcA�F{
W'M-�?U�a}ezc~aVrdg`K � Udr�U�g~M}SFaVU~Z1NVjFUdNVaQS]U U�¡IU � NVP_^`U � NVK]U�MVM-c,eNVjFU M}P_K]�`h_U � KFg`h!M}c~hySTNQPyc~Kªg~M¦aVU�NVS]aQK]U���vAb�NQj]Udc`�TNQPyr�P_§�g,|NVP_c`Kdg`hy�~c`aQPRNQj]räPiM � c~KFM}Pi�TU�aVU���{ Ç P_K � U#NVj]U#U�¡IU � NQPy^~U � NVK]U�MVMPiM#g`MQM}S]r�U�� NQcdv?U S]KFw�KFc=�#K�NQc3NQj]U�g,h_�`c~aVPyNVjFr�Z�NQj]P_M � KFg,hMVc`h_STNVP_c`K PiM � j]c~MVU�K g~M�NVjFU[vIU�M}N�P_KF�TP_^AP_�]SFg,h?ezaVc~rÊNVj]U � KFg,h�Ic`�]S]hig=NQPyc~KC�#PRNQj¨aVU�M}�IU � NdNVc¥NVjFU�gE^`U�aQg`�`U�c`edmT()(¥g~�]�TPy|NVP_c`K?g,h1�TPiMONQS]aQv?U���U�^Eg`hyS?g=NVP_c`K?M(ezc~a8U�g � j4PyK?�TPy^APi�TSFg`h1PyK4NVjFU� KFg`h��?c~�]S]hig=NQPyc~K1{d¼8j]Udg � NQSFg,h�U�¡IU � NQPy^~U � NVK]U�MVMqezc~a¦NVjFg,NP_KF�TP_^�Pi�TSFg`h(PiM¦NVjFU�K£�TU�NVU�aQr�PyKFU��¥U"�ANQU�aQKFg,h_hyb�g,KF�ªSFMVU���g~M�IU�aVezc`aQr�g`K � U¦r�U�g~M}SFaVU~{
¼;c£aVU��TS � U�NVj]U�P_KTüFSFU�K � U�c,e a�g,KF�]c`r�K]U�MQM�Z�g`hyh[aVU��?c~a}NQU��aQU�MVS]hRN�M3g`aVU�gE^`U�aQg`�`U��ªc=^~U�aª
)(�aQS]KFM3�#PRNQj��TPy¡¢U�aQU�K�N/a�g,K]|�Tc~r MVU�U��FM�{�¼Hc �TU�NVU�aVr�P_K]U �#j]U"NQj]U�a�NVj]U��IU�aVezc`aQrdg,K � U¦c,eNO��c�g`hy�~c`aQPRNQj]rdM[�TPy¡¢U�a�MqMVP_�`K]P �?� g`K�NVh_b`Z1g�NO��c`|ÐMVP_�]U���NV|ÝNQU�M}Nezc`a;S]K]wAK]c=�#K�^=g`aVPig,K � U�M!ÒÝX½P_MVj]U�aV|LY�U�KF�TU�aQM;¼HU�MONÆÖ1g,K?� U�aQaVc~a�]aQc`vFg`v]P_hyPyNOb c,e'(]{ (*
-jFg`M8vIU�U�K�SFM}U���{
|�}¼» ½ >A°�9��D��°
JLK£c~aQ�TU�a�NQc�g`MQM}U�MVM�NVj]U���SFg,h_PRNObªc,e#NQj]U4g`v?c=^~U r�U"NQj]cT�]M�ZU�g � j¨MVg`r/�FhyP_K]�¥r�U"NVjFcA�Cj?g`MdvIU�U�K¨Pyr��]h_U�r�U�K�NQU��ùNO�#P � U`Zc`K � U��]aQgE�#P_K]�£g��]PR¡¢U�aQU�K�N��]P_M}NVS]aQvFg`K � U�ezc`a�U�^`U�aVbùPyK?�TPR|^AP_�]SFg,huZ!g,KF�£c`K � U SFMVPyK]��NVj]U�MVg`r�U4�TPiMONQS]aQvFg,K � U�M�ezc`a3g`hyhP_KF�TP_^�Pi�TSFg`h_M8P_K�NVj]U �Ic`�FS]h_g,NVP_c`K1{
JLK�g,h_h � g~M}U�M�Z¢NQj]U s(WÊ�8g`MqaVSFK�ezc~a�n�()(FZ (*()(�U�^=g,h_SFg=NQPyc~KFM�{¼8j]U#aQU�MVS]hyNQM!g`aVU��TU��]P � NVU���PyKd¼½g,v]h_U[n[ezc~a5NVU�M}N!ezS]K � NVP_c`K�Ñ ]g,K?�4¼½g,v]h_Ua�3ezc`a8NQU�M}N#ezS]K � NQPyc~K�Ñ b {� vA^APyc~SFM}h_b`Z]ezc`a#NQj]U3MVU"NVNVP_K]�~M8NQU�M}NVU���ZIg`r�c`K]��MON#NQj]U-�TPy¡IU�a}|U�K�N[MQg,r��]h_P_K]�dr�U"NVjFcA�FM�ZIc`K]h_b NQj]U�hig=NQPyK�jAbA�?U�a � S]vIU-MVg`r/|�]h_PyKF�db�P_U�hi�]M[M}P_�`K]P �?� g,K�N#Pyr��]aQc=^`U�r/U�K�NQM�{8ø�c`r��Fg`aVP_K]�/NVjFUSFMVU'c`e;�TPy¡IU�aVU�K~N8�TPiMONQS]aVv?g,K � U�M(ezc`a�U�g � j�PyKF�]Py^APi�TSFg,hIc`a�NVjFUMQg,r�U��TPiMONQS]aVv?g,K � U�ezc~a(g,h_h]P_KF�TP_^AP_�TS?g,hiM�c,e¢c`K]U#�Ic`�FS]h_g,NVP_c`K1ZNVjFU�hig=NVNVU�a½MVU�U�r�M;NQc[��c`aQw¦v?U�N}NVU�a�{ � ^`U�aQg`hyhuZEvAb SFM}P_K]�qh_g,NVP_KjAbA�?U�a � S]v?U¦MQg,r��]h_PyK]��g,K?��NVj]U MQg,r�U[�]P_M}NVS]aQvFg`K � U�M(ezc~a�g`hyh
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¼½g,v]h_U�nTt�ø�c`r��Fg`aVPiM}c~K�c`e��TPR¡¢U�aQU�K�N�MQg,r��]h_P_K]�äMONQaQg,NVU�|�`P_U�M£ezc`aCMVg`r��]hyU�M}P_§�UW�ºg,KF�ãNVU�M}N�ezSFK � NQPyc~K¹Ñ ] {¾�#U"|MVS]hRN�M rdg,aQw`U����#PyNVjR¿��TPy¡IU�a-MVPy�~K]P �I� g,K�NQhyb�ezaQc`râNVj]Uda�g,K]|�Tc~r Ì,M}P_K]�~hyU�M}NVa�g=NQU��~b�g`M3�TU"NQU�aQr�PyK]U���vAbªg�NO��c`|ÐMVP_�]U��ªN}|NVU�MON'g`KF�4U�aQaVc~a��FaVc~vFg,v]P_h_PRNOb c`e�(F{ (:
T{M}P_K]�~hyU �Ic`�FS]h_g,NVP_c`K gE^A�a�g,KF�Tc~r m=kA{ þ�� m�oF{ (:
)À m�o]{ ()(g,K�NQPRNQj]U"NQP � m=kA{ þ*
 m�oF{ymEn)À m�o]{ (��M}NVa�g=NQP � U�� m=kA{ þ)� m�oF{ (:
)À m=kA{ þ`þhig=NVP_K�jAb��IU�a � SFv?U m�oF{ym�o À m�oF{ �*( À m�o]{én?�gE^A� m�o]{ ()( m�o]{_mT� m�o]{ (�k
¼½g,v]h_U³�]t�ø�c`r��Fg`aVPiM}c~K�c`e��TPR¡¢U�aQU�K�N�MQg,r��]h_P_K]�äMONQaQg,NVU�|�`P_U�M£ezc`aCMVg`r��]hyU�M}P_§�UW�ºg,KF�ãNVU�M}N�ezSFK � NQPyc~K¹Ñ b {¾�#U"|MVS]hRN�M rdg,aQw`U����#PyNVjR¿��TPy¡IU�a-MVPy�~K]P �I� g,K�NQhyb�ezaQc`râNVj]Uda�g,K]|�Tc~r Ì,M}P_K]�~hyU�M}NVa�g=NQU��~b�g`M3�TU"NQU�aQr�PyK]U���vAbªg�NO��c`|ÐMVP_�]U��ªN}|NVU�MON'g`KF�4U�aQaVc~a��FaVc~vFg,v]P_h_PRNOb c`e�(F{ (:
T{M}P_K]�~hyU �Ic`�FS]h_g,NVP_c`K gE^A�a�g,KF�Tc~r m�
T{ �Fm mE
]{ ��o*À m�
T{ �:
g,K�NQPRNQj]U"NQP � m�
T{ �~l mE
]{ ��þ*À m�
T{ �~oM}NVa�g=NQP � U�� m�
T{ �Fm m�
T{ �~l m�
T{ �:
hig=NVP_K�jAb��IU�a � SFv?U mE
]{ 
~n)À mE
]{ 
)�*À m�
T{k
��gE^A� m�
T{ �:
 m�
T{ �~þ mE
T{ �Ak
P_KF�TP_^�Pi�TSFg`h_M¦c`e�c~K]U��?c~�]S]hig=NVP_c`KHZ�NVj]U��IU�aVezc`aQrdg,K � U � c`S]hi�vIU�P_r/�FaVc=^~U��úezaQc`r mEkT{ þ)�CNVcºm�o]{ �)(CaQU�MV�?U � NQPy^~U�h_b�ezaQc`rmE
]{ �?m!NQc/m�
T{k
��'�#j]U�K � c~r/�?g,aQU�� NQc'NQj]U�M}NQg,K?�]g,a���r�U"NQj]cT�c,e¢SFMVPyKF��aQg`KF�Tc~räPyK?�TU��IU�KF�]U�K�N��TPiM}NVS]aQvFg,K � U�M½ezc~a!U�g � j�PyKT|�TP_^AP_�TS?g,hu{£¼8j]P_M/P_r��]aVc=^~U�r�U�K�N/P_M/�Fg`a}NQP � S]h_g`aVh_b¥K]c,NQU���c`aV|NVjAb�vIU � g,SFMVU�PRN!rdgEb vIU8g � j]P_U�^`U����#PyNVj]c~STN!g,KAb-g~�]�TPyNVP_c`KFg`hezS]K � NVP_c`K3U�^=g,h_SFg=NQPyc~KFM�{HJLK�eÉg � N�Z,M}P_K � U�ezU���U�a½a�g,KF�Tc~rÏK�SFr3|vIU�a�M jFgE^`U/NQc�v?Ud�~U�K]U�aQg,NVU��1Z1NVjFU � c`r��]S]NQg=NQPyc~KFg,h � c~M}N P_Mg � NVSFg`hyh_b�MVhyP_�`j�NQhyb�MVrdg,h_hyU�a�{
Á Â · wÃw �5��Ä
� e�NVU�K1ZEPyK aQU�g`h`��c`aQh_�¦MVPRNQSFg=NQPyc~KFM�Z�NQj]U!�`c�g,h,PiM�NQc � KF� ¾V¿`À�ÁAÂÆÃMVc`h_STNVP_c`KFM�Z¢PÝ{ U`{¢MVc`h_STNVP_c`KFM'NVj?g=N¦�?U�a}ezc~aVr&��U�h_h;c=^~U�a[g��#P_�]Ua�g,K]�~U[c`e½�Ic~MQM}P_v]h_U M � U�KFg`aVP_c~M�{;JLK?MONQU�g`��c`e½g�M}c~hyS]NVP_c`K��#PRNQjc`�]NVP_r�g`h � NQK]U�MQM�Z,g�M}c~hyS]NVP_c`K �#PyNVj�c~�TNVP_rdg,h�ÅÉì'Å�í�ÃÝî�ï=Å � NVK]U�MVMPiM½MVc`SF�`j�N�ZE�#j]P � j-jFg~MHvIU�U�K3�TU � K]U��3g~M1NQj]U�gE^~U�a�g,�~U � NVK]U�MVMc=^`U�a#g,h_h��?c�MVMVPyvFhyU M � U�K?g,aQPyc�M�{
W�KdP_r��?c~a}N�g,K�N(g,�F�]hyP � g,NVP_c`K/P_M!NVj]U � g`MVU#c,e¢rdg,KASTeÉg � NVS]aQP_K]�NVc~hyU�aQg`K � U�M�{[Wº�]aQcT�TS � Nq�TU�M}P_�`K�MVj]c~S]h_��v?U/aVc~v]SFM}N'P_K�NVjFUMVU�KFMVU�NQjFg=N8PyK�M}�FPRNQU[c`e�NVj]U[NVc~hyU�aQg`K � U�M�Z~NVj]U¦��SFg,h_PyNOb/c`e1NVjFUrdg,KASTeÉg � NVSFaVU���PyNVU�r�M�P_M8aQU�h_P_g`v]h_b j]P_�`j1{
� K]U�MON�g,KF�]g`aQ�¦�8gEb[NVc � c`�IU(�#PyNVj NQj]U�PyK]jFU�aQU�K�N;S]K � U�aVNQg`PyK]|NVP_U�M¦PiM[NVc�U�^=g`hySFg,NVU�g,K�PyKF�]Py^APi�TSFg,h�vAb�S?M}P_K]�4NVj]UdgE^`U�aQg`�`Uc,e5g-KAS]r3v?U�a8c,e½MQg,r��]h_U�M�{½JLK�NQj]P_M8�?g,�IU�a�ZTPRN#jFg~M�vIU�U�K4U��A|g,r�P_K]U��-j]c=��NQj]U8U�M}NVP_r�g,NVP_c`K3^Eg`aVPig,K � U � g,K3v?U�aVU��TS � U���vAb

�TU�|ua�g,KF�]c`r�Py§�PyKF��NVjFU8MQg,r��]h_P_K]�F{½W�hiM}c?Z=NVj]U#g`hRNQU�aQKFg=NQPy^~U�M;c,eSFMVPyKF� NVjFU/MQg,r�U3�]P_M}NVS]aQvFg`K � U�M�ezc~aqg`hyh½PyK?�TPy^APi�TSFg`h_MqP_K�NVjFU�Ic`�]S]hig=NQPyc~K-g`M;c`�F�?c�M}U��¦NVc[PyKF�]U��IU�KF�TU�K�N��]P_M}NVS]aQvFg`K � U�M1ezc~aU�g � j4P_KF�TP_^AP_�]SFg,h1j?gE^`Uqv?U�U�K�NVU�MONQU���{
W'M�jFg`M¦vIU�U�K£M}j]c=�#KªvAb�U�r��]P_aQP � g,h5NVU�MON�M�Z;NVjFUdr/c�MON-MVS � |� U�MVM}ezS]h½g,�]�]aQc~g � j��8g`M8NQc SFMVU h_g,NVP_K�jAb��IU�a � SFv?U-MQg,r��]h_P_K]�P_KFMONQU�g~��c,e!a�g,KF�]c`r&MVg`r/�FhyP_K]�F{ Ç c~r/U/g`�]�]PRNQPyc~KFg,h;v?U�K]U � N� c~S]hi��v?Uq�~g`PyK]U���vAb3SFMVP_K]� NVjFU[MQg,r�U'�TPiMONQS]aQvFg,K � U�M!ezc`a�g`hyhP_KF�TP_^�Pi�TSFg`h_M-c,e�NVj]U��?c~�]S]hig=NVP_c`KH{�¼8j]U�M}UdPi�TU�g`M � c`r-vFPyK]U��MVPy�~K]P �I� g,K�NQhyb P_r��]aQc=^`U���NVjFU �?U�a}ezc~aVrdg,K � U¦�#j]P_hyU-g � NQSFg,h_hybMVhyP_�`j�NVh_b aQU��TS � P_K]�/NVj]U � c`r��]STN�g=NVP_c`K?g,h�h_c~g`�1{
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^Ø^×NÊEÒ&ÜÉË@?A�B����C
D$ËEË�5*ÐÆ :�Ókä*Ë�ENÍ Î<�*ÔcÓÕÔÕØF4	ÐG:�Ókä�Ù!�:ÒEÐH�¢Ú�áEÓÕÚ�ÔÕÈ:Ê�ãOá�I*â:Ü Ù�Ü ÙÝãç×oÙOÒ&ÊEÔÕÒ&ÜÞ¦áTã�×Nâ*ÙOáTÈ:áEæGáTâ:ÜKJ:ÔcÊ��?ÙML�Ç³å��:×TÓÕÓÕÒ&È:ÊTÒ�ÙOáªáTØ*ÙOÔÕæa×TÓå&áEÈ?ÙÝãOáEÓ�Ù!�:Ò&áNãÝä?Ð èéÈAèé×TÈµÎs×NãOæGÒ"Ò�
^Ò$Ö)ÔkÙOáTã�
=üG#EñKî^ðóò	�T÷êÛìTí�î^ï�ðóò¦ô?ù ò¦ô�ý�÷��çòÕùTô	ñTôB#ON{ñNô:ï�0&ñ�ú"ðóïC�O÷�
�Ø^×NÊEÒ&Ü
���EËP�Q��E���Ð32�Ø*ãOÔÕÈ:ÊTÒ"ã ßSRÛÒ"ãOÓc×TÊMT�áEÈ:Ö*áTÈ-
3$ËTË�E)ÐÆ :�ãç×EË�ENÍ Ñ*ÐU:�ãç×TÈ> �ÒEÐWV�ãOÒ$×oÙOÔcÈ*Ê�ãOá�I:â:Ü Ù+ÜÝáEÓÕâ*ÙOÔÕáEÈ*Ü(I?ä�æGÒ$×NÈ:ÜáTÞ�×TÈ�Ò&Ú�áTÓcâ)ÙOÔÕáEÈ^×oãÝä�×TÓÕÊTáTãOÔkÙ!�:æ�ÐXèéÈ�Ç�ÐX�IÐ7�¢ÔYI�Ò&È-

Z Ð.:\[×Tå� 3
P]{Ð.2�å��*á?Ò&È^×Nâ:Ò"ã�
5×NÈ^ÖF^�Ð ßàÎ.Ð\2)å��C��Ò"Þ¦Ò"Ó_
Ò$Ö*ÔkÙOáTãOÜA
`��ñ�� ñEõ¦õc÷"õ<�a�Ýì@b&õc÷Kíc�^ìEõ �$ò¦ô?ù)0��ÝìTí�&5ñTðóïC�Ý÷�
È)â*æWI�Ò"ã.A5�Ë�E ÔÕÈdT-6KVe2�ÐB2)Ø)ãOÔcÈ*ÊEÒ"ã�
U$ËTË�E�ÐÆ :�ãç×����NÍ Ñ*Ð$:�ãç×NÈ� �ÒTÐS�XfGå&ÔÕÒ&È?Ù�Ò&Ú�áTÓÕâ*ÙOÔÕáEÈ:×NãÝäª×TÓÕÊEáNãOÔÕÙ!�*æGÜ�Þ¼áTãÜÝÒ$×NãOå��:ÔÕÈ:ÊaãOá�I*â:Ü Ù�ÜÝáTÓÕâ*ÙOÔÕáEÈ*Ü&Ð�èàÈµèKÐ VÉÐ,Îs×NãOæGÒ&Ò�
�Ò&Ö)ßÔÕÙOáNã�
�üG#EñKî^ðóò	�T÷rêÛìNí�î^ï�ðóò¦ô?ùrò¦ô�ý�÷��OòcùTôXñTô$#WN{ñTô*ï)ø
0&ñ�ú"ðóïC�O÷�
:Ø^×TÊTÒ&Ü.��?EÌA�g��E��)Ð32)Ø*ãOÔÕÈ*ÊEÒ"ã�
B�������)ÐÆ h�iKE�ENÍ Ñ*Ðe]{ÐSh.ÔkÙ!8&Ø^×oÙÝãOÔÕå� §×TÈ:Ö�Ñ*Ð�Ñ*ÐaiÉãOÒ"Þ¦Ò&È*Ü ÙOÒ"ÙÝÙOÒEÐji�Ò"ßÈ:Ò"ÙOÔÕå�×TÓÕÊEáNãOÔÕÙ!�*æGÜ=ÔÕÈ5È:áTÔcÜ ä+Ò&È�Ú)ÔkãOáTÈ:æGÒ&È?ÙOÜ&Ð@N{ñ�ú�*�ò¼ô�÷
k ÷Ýñ��Kô*ò¦ô�ù�
B�gLY��C���'���C
X$Ë�E�E)ÐÆ i�Ò&È^Ë�ENÍ Ñ*Ð-�IÐ-i�Ò&È?ÙOÓÕÒEÐMl ñTô$#�ìNím&+ï�íMbK÷���n�÷Kô�÷�� ñTðóòDìTô ñNô$#
N{ìTô:ðà÷GêÛñ��KõÕìMNX÷Kðo*)ì�#��OÐe2�Ø*ãOÔÕÈ:ÊTÒ"ã�
-&ËEË�E)ÐÆ iÉãOÒ$Ë�5NÍ ^�Ð<iÉãOÒ&ÔÕÈ*Ò"ã$ÐqpÉá�I:â:Ü ÙPr^ÓkÙOÒ"ãaÖ)Ò&ÜÝÔÕÊEÈqI?ä�Ü ÙOá?å��:×TÜ ÙOÔÕåáEØ*ÙOÔÕæGÔY8$×oÙOÔcáTÈ�ÐªèéÈOh�Ð.Ç\I�Ò&ÓÕÒ&ÜA
¢Ò$Ö)ÔkÙOáTã�
(s.î^ðóòóúçñTõ¢öçô^øðà÷��	0$÷��Ý÷Kô�úç÷�êÛì$ñTðóò¦ô?ù���t3�e� ì$ú'u3�C��ö % 
�Ø^×NÊEÒ&Ü`oÌ��'����g�

$ËEË�5*ÐÆ iÉãOÒ$Ë��oÍ ^�ÐviÉãOÒ&ÔÕÈ*Ò"ã$Ð p�á�I*â:Ü Ù áEØ)ÙOÔcå&×TÓ�å&áE×NÙOÔÕÈ:ÊþÖ*Ò"ÜÝÔcÊTÈ
�IÔÕÙ!�¨Ò"Ú�áEÓÕâ*ÙOÔÕáTÈ^×NãÝä	Ü ÙÝãç×NÙOÒ&ÊTÔcÒ"Ü&Ð3ü�î�î�õ òD÷!#ws.î^ðóòóúx��
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Æ ^K:'Ë�5TÍ }�Ð-^+×TæGæGÒ"Ó�×NÈ^Ö Z Ð�:.[×Tå� �Ð~�ÛÚEáEÓÕâ*ÙOÔÕáEÈ�Ü ÙÝãç×oÙOÒ&ÊEÔÕÒ&ÜáEÈªÈ*áEÔÕÜ äaÞ¦â*È:å"ÙOÔÕáEÈ*ÜA
g�:á�� ÙOá�ÔÕæGØ*ãOáoÚ�ÒÉå&áEÈ�Ú�ÒKãOÊEÒ&È*å&ÒØ*ãOáEØ�ÒKãÝÙOÔcÒ"Ü&ÐGèéÈv��ÐU��×$Ú�Ô8Ö)áTã�
-^�Ð�Î.ÐD2)å��C��Ò"Þ¦Ò"Ó_
.×TÈ:Ö
p�Ð�]�[×NÈ:È*Ò"ã�
 Ò$Ö)ÔkÙOáTãOÜA
��Iñ��ÝñEõ¼õc÷"õ(�a�Ýì@b&õc÷Kí���ìEõ �$ò¼ô�ù
0��ÝìTíc&�ñTðóïC�O÷�
5È�â:æPI�Ò"ã�E���� ÔÕÈ,TU6(Ve2�Ð\2)Ø*ãOÔÕÈ*ÊEÒ"ã�

$ËEË�5*ÐÆ ^�ÔÕå$Ë��NÍ VÉÐ3p�Ð3^ÉÔcå� �Ü&Ð��,ï�ô$#EñTía÷Kô*ð�ñEõ êÛìTô�úç÷àî^ð/��ò¦ôXðo*:÷�ý�÷"ø
�çòÕùTôµì10 %<� î*÷��Kò¼ía÷Kô:ð/�OÐ<�\��Þ¼áTãçÖ)}�È:ÔÕÚ�ÒKãOÜÝÔÕÙàäGÎsãOÒ&ÜÝÜA
>5Ò$Ö*ÔkÙOÔÕáEÈU
-&ËEË���ÐÆ ^.pÉËEËT×NÍ��IÐ�^+×NãÝÙ�×NÈ^Ö�Î.Ð�pÉáTÜÝÜ&Ð Z �:ÒIÒ&ÚEáEÓÕâ*ÙOÔÕáEÈ ×TÈ^Ö�×TÈ^×NÓkä*ÜÝÔÕÜáTÞ5×XØ�áNÙOÒ&È?ÙOÔc×TÓÉ×TÈ?ÙOÔYI�á�Ö)ä ÓÕÔ9I)ãç×NãÝä Þ¦áNã�â*ÜÝÒ�ÔÕÈ�� á�I*ßÜ��:áEØaÜÝå��:Ò$Ö)â:ÓÕÔÕÈ:Ê)Ð.èéÈ���Ð>V�áTãOÈ:ÒÉÒ"ÙI×NÓDÐY
)Ò$Ö)ÔÕÙOáNã�
B&�÷��öx#?÷Ýñ��ªò¦ôjs.î^ðóò¦í�ò9�$ñTðóòDìTô>
 å��:×TØ)ÙOÒ"ã�'��
IØ^×TÊTÒ&Ü��EEÌ��
���@�?Ð3]ªå'iÉãç×A�,^�ÔÕÓÕÓ/
D$ËTËEË�ÐÆ ^.pÉËEË�I*Í��ÛæGæa×�^�×NãÝÙ ×TÈ^Ö�Î.ÒKÙOÒ"ãMp�áEÜÝÜ&ÐXÇÉÈ�ÔÕæGæ�â*È:Ò Ü ä)Ü ßÙOÒ&æ ×NØ:Ø)ãOá�×Tå��tÙOá�ÜÝå��*Ò$Ö*â*ÓÕÔcÈ*Ê�ÔcÈRå��^×NÈ:ÊEÔÕÈ*Ê Ò"È)Ú�ÔkßãOáEÈ:æGÒ"È�ÙOÜ&Ð§èéÈ�n�÷Kô�÷Kðóòóú{ñTôB# % �NìEõ ï�ðóòDìNô�ñ��çÿ êÛìTí øî^ï�ð�ñTðóòDìTôRêÛìTôA0$÷��O÷Kô^úK÷�
=Ø^×NÊEÒ&Ü�oÌTÌTË��BoÌ�����Ð|]ªáTãOÊ�×NÈ
� ×Tâ*Þ¼æa×TÈ*È-
3$ËTËEË)ÐÆ ^.pG6+Ë�ENÍj�IÐ.^+×NãÝÙ�
�Î.ÐKp�áEÜÝÜA
�×TÈ:Ö	Ñ*Ð(6ÉÒ&ÓÕÜÝáEÈ�Ð Î¢ãOá�Ö)â:å&ÔÕÈ?ÙãOá�I:â*Ü ÙªÜÝå��:Ò&Ö*â:ÓÕÒ&ÜrÚ�Ôc×�×TÈR×NãÝÙOÔ�r:å&Ôc×TÓ�ÔÕæGæ�â*È:ÒªÜ ä)Ü ßÙOÒ&æ�ÐsèéÈAöçô:ðà÷��çô�ñTðóòóìTô�ñEõ�êÛìTô�0$÷��Ý÷Kô�úç÷�ìTô % �NìEõ ï�ðóòDìTô:øñ��KÿAêÛìNí�î^ï�ð�ñTðóòDìNô�
^Ø:×TÊTÒ&Ü\5���5'��5@�TË)Ð�è��|�<�e
D$ËTË�E�ÐÆ Ñ�×� )Ë�?oÍ 6�ÐNÑ�×� �á�I*ÔDÐ>�¢Ú�áEÓÕâ)ÙOÔcáTÈ^×oãÝä�ãOá�I�áTÙOÔÕå&Ü¢×NÈ^Ö�Ù!�*Ò�ãç×TÖ*ÔÕå$×TÓÒ&È�Ú�Ò&ÓÕáEØ�ÒÛáTÞ:È:áEÔÕÜÝÒ|��ä)Ø�áNÙ!�:Ò&ÜÝÔÕÜ&Ð*ü`#�ñKî^ðóò	�T÷S��÷!**ñ��$òóì���

�>yz��{�L ���EÌ�������Eg
X$ËTË@??ÐÆ T�4�2)Ë�5TÍ�R�ÐÛÑ*Ð<T,Ò&áEÈU
e2�Ð7��ÐX4xâU
�×NÈ^ÖOp5Ð7^�Ð|2�ÙOáNãOÒ"ã$ÐOp�áTß
I:â:Ü ÙOÈ*Ò&ÜÝÜ¢æGÒ$×TÜÝâ)ãOÒ&Ü�×TÈ^Ö�ãOá�I:â*Ü ÙÛÜÝå��*Ò$Ö*â*ÓcÔÕÈ*Ê+Þ¦áTãU� á�IÜ��:áEØ*Ü&ÐµöÝö % +��ÝñTô>�Kñ�ú"ðóòDìTô>��
a���gy�Ì�{�L �@�A��5��g
a2)Ò&Ø)ÙOÒ&æ ß
I�Ò"ã($ËTË�5*ÐÆ ]�Va:e?TËoÍ;]{Ð-��Ð-]ªå � ×&ä�
U4�Ð,Ñ*ÐDV�áEÈ:áoÚ�ÒKã�
.×NÈ^Ö�p�Ð,Ñ)ÐD:�Ò&å� ?ßæa×TÈ�Ð=Ç å&áEæGØ:×NãOÔÕÜÝáEÈ�áTÞ,Ù!�*ãOÒ&ÒÉæGÒ"Ù!�:á�Ö)Ü�Þ¦áNã ÜÝÒ&ÓÕÒ&å"ÙÝßÔcÈ*ÊµÚE×NÓcâ*Ò&Ü�áNÞ�ÔÕÈ*Ø:â*Ù�ÚT×NãOÔc×�I*ÓcÒ"Ü ÔÕÈxÙ!�:Ò�×TÈ^×NÓkä*ÜÝÔÕÜ áNÞáEâ*ÙOØ*â*Ù5Þ¼ãOáTæ ×Aå&áTæGØ:â*ÙOÒKã�å"á�Ö*ÒEÐ�+�÷Ýú�*�ô^ìTía÷Kð/�çòDúx�!

�C�L ���EË'�C��5�ÌC
7$Ë�?TË)ÐÆ ]�^�èéË��NÍ�]{Ð\]ªå&èéÓY�^×NÊEÊE×g
�Î.Ðe^�â*Ü�I^×NÈ^Ö*ÜA
�×TÈ:Ö�p�Ð èàÚ�Ò&Ü&Ð¤Çå&áEæGØ:×NãOÔÕÜÝáEÈ\áTÞ�ÜÝÒ$×NãOå��\ÙOÒ"å��*È:Ô9�?â:Ò&Ü+áTÈX×��IÔÕÈ:ÊNß�I�á��áEØ*ÙOÔÕæGÔÕÜO×NÙOÔÕáTÈ�Ø*ãOá�I:ÓÕÒ&æ�Ð èéÈ�^�Ð ß�]{Ð<RÛáEÔÕÊTÙ�
�Ò$Ö*ÔkÙOáTã�

��ñ�� ñEõ¦õc÷"õ��e� ì@b&õc÷Kí���ìEõ �$ò¦ô?ù<0��ÝìTí�&�ñTðóïC�O÷S�>
EÈ�â:æWI�ÒKã
�A5g5ÔÕÈ�T-6KVe23
)Ø^×NÊEÒ&Ü\�gx5��C������ÐU2)Ø)ãOÔcÈ*ÊEÒ"ã�
U$ËTË���ÐÆ ]ªÔÕÓ8Ë�?oÍ :�ãç×EÖ"TÛÐD]ªÔÕÓcÓÕÒ"ã$ÐQ&5ìTòo�&÷�t`�^ñTí�î�õ ò¼ô�ù�t�ñTôB# %3� ú"òD÷Kô:ð
n�÷Kô�÷KðóòDú+üÉõ ù�ì��çò¦ðo*�íW�OÐÛÎ7����Ù!�*Ò&ÜÝÔÕÜA
���Ò&Ø*Ù$Ð)áTÞ7V�áEæ ßØ:â*ÙOÒKã�2)å&ÔÕÒ&È*å&Ò�
D}�È:ÔÕÚ�ÒKãOÜÝÔÕÙàäµáTÞ�èéÓÕÓÕÔcÈ*áEÔÕÜ�×NÙ�}Éã!I:×TÈ:×Nß
VS�^×TæGØ:×TÔÕÊEÈU
-&ËEË�?�Ð�×oÚT×TÔÕÓc×�I*ÓÕÒ5×TÜ Z p�Ë�?����CEÐÆ 6K:'Ë�?oÍ ÎsÐ�6�áNãçÖ*ÔÕÈA×TÈ:Ö�4	Ð$:�×TÈ�8x�^×NÞàÐ�ÇÉÈ�áTÈ*ß�ÓÕÔÕÈ:Ò5æGÒ"Ù!�:á�ÖÙOáxÒ&Ú�áTÓcÚEÒdI�ÒA�^×$Ú�ÔÕáTã�×TÈ:Ö ÙOáxå"áEÈ?ÙÝãOáEÓ�×XæGÔÕÈ:Ôc×NÙOâ)ãOÒãOá�I�áTÙªÔÕÈRãOÒ&×TÓ�ÙOÔÕæGÒ��IÔkÙ!�ëÊTÒ&È:ÒKÙOÔcå\Ø*ãOáTÊTãç×NæGæGÔcÈ*Ê*ÐüG#�ñKî:ðóò	�T÷(��÷!**ñ��$òDì���
�Ìgyz��{�LY��@?A�Bx5@�g
X&ËEË�?�ÐÆ Îs×NãçË��E×NÍ èKÐPVÉÐ�Îs×NãOæGÒ"ÒEÐ�V�ÓÕâ:Ü ÙOÒ"ãÝß�áNãOÔcÒ"È�ÙOÒ&Ö³ÊTÒ&È:Ò"ÙOÔÕå ×NÓÕÊEáTßãOÔÕÙ!�*æGÜ=Þ¦áNãsÙ!�:Ò�Ô8Ö)Ò&È?ÙOÔ�r^å$×oÙOÔcáTÈ�áNÞB�:ÔÕÊ��*ß�Ø�Ò"ãÝÞ¦áNãOæa×TÈ*å&ÒãOÒ&ÊEÔÕáEÈ*Ü áTÞXÖ*Ò&ÜÝÔÕÊTÈ ÜÝØ:×Tå&Ò&Ü&Ð èàÈH�e� ì$úç÷ç÷�#Tò¼ô�ù���ì10
% �?ê=ü(����
U$ËTË��)ÐÆ Îs×NãçË���I*ÍÃèKÐ`VÉÐ'Îs×NãOæGÒ&ÒTÐ Z �:Òµæa×TÔÕÈ?ÙOÒ&È:×TÈ:å"ÒAáTÞ�ÜÝÒ$×NãOå��RÖ*ÔkßÚ�Ò"ãOÜÝÔkÙéä�Þ¼áTã5Òx �Ò"å"ÙOÔÕÚ�Ò�Ö)Ò&ÜÝÔÕÊEÈ\ÜÝØ^×Nå&ÒGÖ*Ò"å&áEæGØ�áTÜÝÔÕÙOÔÕáTÈâ:ÜÝÔÕÈ:Ê+å"Ócâ*Ü ÙOÒ"ãÝß�áTãOÔÕÒ&È?ÙOÒ$Ö�ÊTÒ&È:ÒKÙOÔcå�×NÓcÊTáTãOÔkÙ!�:æGÜGy�å&áTÊ�×TÜ
{+×TÈ^Ö\æ�â*ÓÕÙOÔkßà×TÊTÒ&È?Ù�Ü ÙÝãç×NÙOÒ"ÊEÔÕÒ&ÜQy Ê�×E×NÈ?ÙM{KÐ èéÈO�a�ÝìTøúK÷O÷�#Tò¦ô?ù���ì10Éü�ê % ý ê(¡ ����
U$ËTË���Ð

Æ Î�Ñ�:'Ë�5NÍ èKÐDVÉÐ.Îs×oãOæGÒ&Ò�
X]{Ð.ÑEá��:È*ÜÝáEÈ-
s×TÈ^Ö�2�Ð-:�â)ãÝÙ$Ð Z Ò&å��*ßÈ:Ô9�?â:Ò&Ü=ÙOáÉ×TÔcÖ5ÊEÓÕá�I:×TÓ)ÜÝÒ$×NãOå���ÔcÈ�Ò&È*ÊEÔÕÈ:Ò&ÒKãOÔcÈ*Ê+Ö)Ò&ÜÝÔÕÊEÈ�ÐèéÈ��a�Ýì$úç÷O÷!#Nò¦ô�ù��Xì10Aöçô*ðà÷��Kô^ñTðóòDìTô^ñEõ�êÛìTôA0$÷��O÷Kô^úç÷�ìNôöçô$#TïC�Oð/�KòóñEõ�ñTôB# % ô�ùTò¦ô�÷ç÷��çò¦ô?ù�ü'î�î^õ òDúOñTðóòDìTô>�\ì10�ü�öñTô$# %|� î*÷��çða�*ÿ��Oðà÷KíW�!
�&ËEË�5*ÐÆ pÉÒ"Ò$Ë@�$Í VÉÐ$p�Ð�pÉÒ"Ò&Ú�Ò&Ü&ÐÉÇ	ÊEÒ"È:Ò"ÙOÔÕå�×TÓÕÊEáNãOÔÕÙ!�*æÃ×NØ:Ø*ãOáE×Tå��AÙOáÜ ÙOá?å��:×TÜ ÙOÔÕåQJ:á��IÜ��:áEØXÜÝÒ��?â:Ò&È*å&ÔÕÈ:Ê*ÐªèéÈ��a�Ýì$úç÷O÷�#Tò¦ô?ù��ì10�ðo*:÷�ö %<% êÛìEõ¼õÕì�¢"ï)ò¼ï)í ìNôwn�÷Kô�÷KðóòDú�üÉõ ù�ì��çò¦ðo*�íW�
0&ì���êÛìTô*ð/�ÝìEõ�ñNô$#O�:ÿ��çðà÷KíP� % ô?ùTò¦ô�÷O÷��çò¦ô�ù�
ÉÈ�â:æWI�ÒKã
$ËEË���£������ÔÕÈ��+ÔÕÊEÒ&Ü Ù�
�Ø:×TÊEÒ"Ü\���£C��B���£�5)Ð^è1�<�e
�T�áTÈ*ßÖ*áEÈU
-&ËEË���ÐÆ pÉÔÕØ�E@?oÍ :ÉÐ'��Ð'p�ÔcØ*ÓÕÒ"ä?Ð>�*ð�ì$ú�**ñ��OðóòDú\�*ò¦í�ï)õÕñTðóòóìTô:Ð�ÑEá��*È�4 ÔÕÓÕÒ"ä�
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Ê·w;\�Xª¨YsO¨>` j*p�nQ��_YXa` XªnOV,Zaw;`
\v�Q`TsÈnqp«j]` �Q_Y��\hV ¬ Zaw;`�VYnO\�Xl`®\vVZawY`·¦;ZaV;`TXaX�` g3squv_Ys3Z]\hniV�nOp¹sOV�\vVY�Q\vg7\v�Q_>squQÑ¹ä®�7mtZ]sO��\vV ¬ ZawY`¦;Z]V;` X]X·`�g3squv_YsqZa\vnOVYXAnqp�nqZawY`�jT}�¨Yja` g�\vnO_>XluvmS`�g3squv_YsqZa` �³\hV>�Q\^�g7\v�;_Ysqu�X*\vV�Z]w;`�V;` \ ¬ w7�>nijaw;n7nQ��\hV�Zancsi����nO_;V�Z ��Ê·w;\�XªXlwYnO_;u��w;` uh¨ÏZan±\vVY��ja`TsOXa`SZaw;`²` XlZa\v�Ss3Z]\hniVÏsO� ��_;jksO��m°®\hZaw;ni_QZ�ja`��ã�_;\vja\vV ¬ sO�;�;\^Z]\hniVYsqu¹¦;Z]V;` X]X®` gKsOuh_>s3Za\vnOV>X��
Ê·w;\�X ¬ `�V;` j]sOu�\��Q` s³wYsOX
¦YjkX[Z��>` `�VRXl_ ¬i¬ `TX[Z]` �+sqV>�+\h��¨;uv`����`�V�Za`T�È\hV�s·j]sqZaw;` j�X[Z]j]sO\ ¬ w�Zlp�nOj]·sqjk���SsqV;VY`�j�\vVo× �qÙ���ÎQsOV;nsqV>�+rÈ\^Zks+×^zK{7}�zTØKÙ�`�Õ;sq��\hVY` �(Zaw;`º\v�Q`TsS��nOj]`c��uvniXa`�uvm(sOVY�_YXa` �¯��nija`(ja\ ¬ nijani_YXcXlZ]s3Z]\vXlZa\���sOu���nQ�Q`�u�X�p�nOj�` XlZa\v��sqZa\vnOVJ�UWVMZ]w;\�X�¨Ysq¨5`�jT}*A`²®\vuhu/p�_;jaZaw;` j�`�u�sq�5nOjks3Za`(nOVÏZaw;`²\v�;` s;}_YXa\hV ¬ uvn7� squ�ja` ¬ j]` X]Xl\vnOV+sOVY�©��nQ�Q`�u�sO�Ysq¨QZks3Za\vnOV���dY_QZaw;` jl���nOj]`O}�Xl\vVY��`®�7m,_YXa\hV ¬ uvnQ��sOuYj]` ¬ j]` X]Xa\hniVº/`�\h��¨;uv\���\hZauvm,sOuvXannO�;Z]sq\vV³uvnQ��sOu ¬ j]si�Q\v`�V�Z/\vVQp�nija�Ss3Z]\hniV³niVoZawY`ÈXa` sOj]�kw(Xl¨Ysi��`i}/`�Xa_ ¬O¬ ` XlZAZ]n�_YXl`�ZawY\vX·\vVQp�nOj]�Ss3Z]\hniVoZan�\vV�Za` ¬ j]sqZa`�s�uvnQ��sOuw;\vuhu���uv\v�º�5`�jT�d;nij�Z]w;`
j]`��SsO\hVY�;`�j�nOpJZawY\vXA¨Ysq¨5`�jT}�A`�ja`TX[Z]ja\���Z/nO_;j/s3ZlZ]`�VQ�Za\vnOV³ZanºZaw;`È��siXl`�nqpJV;ni\vXam,p�_;VY��Z]\hniV³` gKsOuh_>s3Za\vnOV�}7sOu^Z]w;nO_ ¬ w/`·sOuvXanÈuhn7ni�cs3Z�s�p�_;VY��Za\vnOV�®\^Z]wS�Q\^´¹`�j]`�V�ZªV;ni\vXa`·\hV��Q\h´5` jl�`�V�Z/ja` ¬ \vnOVYX*nOp«Zaw;`�Xl`Tsqjk�kwoXl¨>sO��`i}OZ]w7_YX�/`®Z]w;\hVY��ZawYsqZ�ZawY`j]` Xa_;u^ZkXJ®\vuhu�¨;j]nO�YsO�;uvm�sq¨Y¨;uhm�Zan
jani�;_YXlZ=Xlniuh_;Za\vnOVcXa` sqjk�kw;\vV ¬sOX·/`�uvu��
Ê·w;`©¨>sq¨5`�jo\�Xonij ¬ sqV;\vÉ�`T�ÝsiX�p�nOuvuhn3�X ��UWV�Zaw;`+p�niuhuvn3®\vV ¬Xa` ��Z]\hniVJ}�A`o®\vuvu�`�ÕQ¨;u�sq\vV¯sqVY�§��nOZa\vgKsqZa`SZ]w;`o\��Q` s©nqp·_YX[�\vV ¬ uvnQ��sOu>j]` ¬ ja`TXaXa\hniVJ�=Ê·wY`�sO¨;¨;j]n7�kw³®\huvu¹�>`È��ni�,¨>sqj]` ��Z]n` sOjauv\v`�j�ja` uvsqZa`T�ºsq¨Y¨;jan�sO�kw;`TX�\vVSÎ7` ��Za\vnOV�Ø;��Ê·w;`·\hV�Za` ¬ jks3Z]` �w;\vuhuh�W��uv\h���>` j®\vXAZawY`�V+�Q\�Xa��_YXaXa` �³\hV+Î7`T��Za\vnOV²�Y�*b
V(` �,¨Y\hj]\^���sOu=��nO��¨Ysqj]\�XlniV(nOp�Z]w;`º�Q\h´¹`�j]`�V�Z
��`�Z]w;nQ�;X�� sqV��5`cp�nO_YVY�\vV+ÎQ` ��Z]\hniV��;�*Ê·w;`È¨Ysq¨5`�j���nOVY��uh_Y�;` X·®\hZaw+Xl_Y�,�SsOjamosOVY�nO_;Zauvn�ni�o\vV+ÎQ` ��Z]\hniV²yY�
å æ �Q¡��QÆa�i�QÆa¢¹¡*çºè#Ã®Ä�é=ç
êJ`�ZÈÐ��EÑ5�
�>`ºZaw;`�¦;ZaVY` X]X�p�_;V>��Za\vnOV©Zan³�5`ºni¨QZa\v��\hÉ ` �«}«sOVY�ÓS��Ñ¹��ÔÛÐ���Ñ5�=�MÒQ�EÑ5�·�Q`TXl\ ¬ VYsqZa`�ZawY`csO��Z]_YsquJX]sq��¨;uv` X �
ÚR`��YsiXl`AnO_;j=�,nQ�Q` uiniVtZawY`ªp�nOuvuvn3®\hV ¬ Zaw;j]`�`/sOX]Xl_;��¨QZ]\hniVYX �
zO��Ð��EÑ5���SsKmë�>`ìuvnQ��sOuhuvmísq¨;¨YjanKÕQ\v��sqZa`T�ë�7mîsÖuhn3¨5nOuvm7V;nO��\�squRp�_;VY��Za\vnOVï��`O� ¬ �©��nOVYXlZ]sOV�Z }Muv\hVY` sqjT}Mnijã�_Ysi�Qj]sqZa\�� �
{Q�®Ê·w;`ºgKsOja\�sqV>��`È®\^Z]w;\vV±s�uhnQ� squJV;` \ ¬ w7�>nijaw;n7nQ�(\vX���nOV;�XlZ]sOViZ
Ø;�®Ê·w;`�V;ni\vXa`9\vX§V;nija�SsOuhuvmð�Q\vXlZaj]\v�;_QZa`T�«}S\�� `i�cÒQ��Ñ5�&ñòM�G�;ó]ô«õO��Ñ¹�l�

Ê·w;`TXl`osiXaXa_;��¨QZa\vnOV>X�Zaw;` V§sOuhuvn3öZ]n�_YXl`SuvnQ��sOu*ja` ¬ j]` X]Xl\vnOVp�nOj®`TX[Z]\h�SsqZa\vnOVJ�
Ê·w;`S\��Q` s�nOp/uvnQ��sOu*ja` ¬ j]` X]Xl\vnOV°\vXÈZ]n©��niVYXl\��Q` jtnOV;uvm+ZawYniXa`�;sqZ]sS¨5nO\vV�Z]X
p�nOj�®w;\v�kw©b�XaXa_;��¨QZ]\hniVYXºz���Ø³sqj]`cg3squv\v�«��d;nij

Zaw>s3Z*¨;_;j]¨>n�Xl`i}qs�/`�\ ¬ w�Za\vV ¬ p�_;VY��Za\vnOVº÷�ø5�Eù7�=\vX�_YXa` �cZanÈ�Q`��Za` ja��\vV;`ÈZawY`c\hV;ßY_;`�V>��`cnOp�sS�;sqZ]s�¨5nO\vV�Z
úoZ]n�Zaw;`c`TX[Z]\h�Ssq�Za\vnOVSsqZ�uhnQ� s3Za\vnOV,Ñ¹äO}i®\^Z]wo�Q` ��ja`TsOXa\hV ¬ /`�\ ¬ w�Z*p�nOj�\hVY��ja`TsOXl�\vV ¬ �Q\�X[ZksqVY��`ºùS�5`�Z[/`�`�V+Ñ«ätsOVY��ú¹�Ab&Z[m7¨;\���sOuJA` \ ¬ w�Za\vV ¬p�_;VY��Za\vnOV�\�X·p�nOj®`�ÕQsO��¨;uh`�Z]w;`ÈZaj]\^�W��_Y�>`�p�_;VY��Za\vnOVM× |KÙ��
÷ ø �Eù7��Ôìû �lz�üþýø5ÿ � ÿ �îù����� �������
	��T÷����	

®\hZaw��³�5`�\vV ¬ sº¨Ysqjksq��`�Z]`�j��;`�¦YV;\vV ¬ Zaw;`�Xl\vÉ�`�nqp«Z]w;`�uvnQ��sOuV;` \ ¬ w��5nOj]w;n7nQ�«�b
� ��nij]�Q\vV ¬ Z]noZ]w;\vX���nQ�Q`�u�}¹`�g3squv_YsqZa\vnOVYX
nqp�sqV±\hVY�;\hg7\��Q_Ysquú²\hV�Z]w;`cV;` \ ¬ w��5nOj]w;n7nQ�²nqpªs�¨YsqjaZa\���_YuvsOj�\hV>�Q\hg7\��Q_YsOu�Ñ¹ät\vXsq¨Y¨;janKÕQ\v�Ss3Za` uhmo�;\vXlZaj]\h�Y_QZa`T�²siX
ÓS��ú;�ªñ�òM���«��Ñ ä ��óaô*�EÑ ä �l�

®\hZaw����>` \hV ¬ souvn3&¨>niuhm7V;ni�,\�squ�p�_;VY��Za\vnOVJ�
Ê·wY`ºg3squv\v�;\^Z[mnqp«Z]w;\�X�sq¨Y¨;janKÕQ\v�Ss3Za\vnOVSXaw;j]\hV;�QX�®\^Z]wo\hV>��j]` sOXa\vV ¬ �Q\�X[ZksqVY��`ùt�5`�Z[/`�` V�Ñ«ä®sqV>�ºú¹}q®w;\��kw�\vX�j]`�ß>` ��Z]` ��\hV,Z]w;`®A` \ ¬ w�Za\vV ¬p�_;VY��Za\vnOV�÷ ø �Eù7�/_YXl`T�(p�nOj®j]` ¬ j]` X]Xa\hniVJ�Ê·w;`t��nQ�Q`�u«\�X®g7\�Xl_YsOuh\vÉ�`T�³\vV+d�\ ¬ �«zO�
f(x)

w(d)

x*

2h

w(d)

f(x*)

d�\ ¬ _;j]`SzO���+nQ�Q` u�nOp=Z]w;`ºXa` sqjk�kw�Xl¨Ysi��`i����\vXa¨;u�sKmO` �(\�X®ZawY`` XlZa\v�Ss3Z]` �Mã�_Ysi�Qj]sqZa\��,¦;ZaVY` X]Xcp�_;V>��Za\vnOVÏ¨;uh_>X��3�,\vV7_YX,��nOV;�XlZ]sqV�ZÈg3sqj]\vsOVY��`i�ºÊ·w;`,gKsOuh\��Q\hZ[m+nqpAZaw;`�j]` ¬ j]` X]Xa\hniV©Xlw;j]\vV;�QX®\hZaw¯\vVY��j]` siXl\vV ¬ �Q\�X[ZksqVY��`�p�jani� Ñ«äSsOXc\hVY�;\v� s3Za`T�R��m°ZawY`/`�\ ¬ w�Za\vV ¬ p�_;VY��Za\vnOV�÷ ø �Gù����
b�V(\h��¨5nOjaZ]sOViZ/\vX]Xa_;`�nOp«Zaw;`���nQ�Q`�u¹\�X�Z]w;`�¨;jani¨>` jA`TX[Z]\h�Ssq�Za\vnOV¯nOp®Zaw;`(V;`�\ ¬ w7�5nOj]w;n7nQ�°¨>sqjksq��`�Z]`�j���}�ja`�ßY` ��Za\vV ¬ ZawY`Xa\hÉ `�nOp�Z]w;`ÈV;`�\ ¬ w7�5nOj]w;n7n7�op�nOj·®w;\��kw³Z]w;`tsq�5n3gO`ÈsOX]Xl_Y�,¨;�Za\vnOV>X®sqj]`�g3sOuh\��«�UWV�ZawY\vX�¨Ysq¨5`�jT}q/`
sqj]`/Za` XlZa\vV ¬ Z[/ntsq¨;¨Yjan�sO�kw;`TX�ZancXa`�ZlZ]\hV ¬ZawY`t¨Ysqjksq��`�Z]`�j����UWV�ZawY`�� �"!$#&%('�)���*+�,'.-�/10�2&� /3242�5º�,nQ�Q` uG}+�+\�X��kw;n�Xl` V�siX·ZawY`Xa��sOuhuv` XlZ/�;\vXlZ]sOVY��`ÈXl_>�kwSZawYsqZ·sqZ/uv` siX[Z®�76þnqp�squvu5sKg3sq\vu�sq�;uv`
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X]sq��¨;uv` X�sqj]`°\vV�Z]w;`¯��niVYXl\��Q` ja`T��V;` \ ¬ w��5nOj]w;n7nQ�«��Î7\vVY��`ZawY`c��b&®\vuhu���nOV�Za\vV7_;`ÈZan ¬ `�V;` j]sqZa`ÈV;` �X]sq��¨;uv` X·\vV�w;\ ¬ w¨5`�jap�nOj]��sOVY��`(ja` ¬ \vnOVYX }8�Ý®\huvu·�>`T��nO��`�Xl�SsOuhuv`�j,n3gO` jcZawY`��ni_;jkXl`�nqp·Z]w;`Sja_YVJ}=®wY\huv`SZawY`oV7_;�º�5`�jcnOp·X]sq��¨;uv` Xc_YXl`T�\vVY��j]` siXl`TX�}7uv` sO�;\hV ¬ Z]nS\hVY��ja`TsOXa` �(sO����_;jksO��mi�b
X�sqVosquhZa` jaV>s3Za\vgO`i}q\vV�Z]w;`�#759#;:+%<'�)&�=*+�,'.-�/10�2&� /3242�5
�,nQ�Q` uG}��\�X·nO¨QZ]\h��\vÉ�`T�³p�nij®`�gi`�j]m�¦;ZaV;`TXaX�gKsOuh_Y`�Z]nS�>`t`TX[Z]\h�SsqZa` �J�UWV°× |KÙ�};scV7_;���>` jAnOp���`�ZawYn7�YX/sOja`�Xl_ ¬O¬ `TX[Z]` �,Z]n�ni¨QZa\v��\hÉ `���/Ç
`�j]`O}Y/`c�Q`T��\��Q` �²Z]no_YXa`ÈZaw;`?>Aj]niX]Xl��g3squv\��;s3Z]\hniV²��ja\hZa`��j]\hniVJ}Q®w;\��kw(\�X��Q`�¦YV;` ��siX��
@BA �,C�9D&E,F ø � Ô GIHJLKNM ÷ ø �Eù J ���EÓS�EÑ J ��üOC�
P JD�E,F ø ��Ñ J �a�[õ

G HJ$KNM ÷�øY�Gù J �®\hZaw(ù J �>` \hV ¬ ZawY`��Q\�X[ZksqVY��`��5`�Z[/`�` Vo\vVY�Q\vg�\��Q_YsOuvXAÑ¹ä�sOVY�Ñ J }�C� P JD E F ø �5`�\vV ¬ Zaw;`°ja` ¬ j]` X]Xl\vnOV9p�_;VY��Za\vnOV�sqj]nO_;VY��uvnQ��sq�Za\vnOVðÑ«ä§`TX[Z]\h�Ss3Z]` �&_YXa\vV ¬ V;`�\ ¬ w7�5nOj]w;n7nQ�7��¨>sqjksq��`�Z]`�jQ�J}V;nOZ®Z]sq�7\vV ¬ \hV�Z]n�si����nO_;V�Z·Zaw;`cX]sq��¨;uv`ÈÑ J �e·sOXa\v� squvuhmi} @BA \�X�Zaw;`²/`�\ ¬ w�Za`T�MsKgO` j]s ¬ `Snqp�`�j]janij]XcZawYsqZnQ����_;jª®w;` VoXasO�,¨Yuh`�Ñ J \�Xª`TX[Z]\h�Ss3Z]` �,p�j]nO�¶squvu;nqZ]w;`�j/XasO�,�¨;uv` X };\vV³Z]_;jaV²p�nij�squvu�XasO��¨;uh`TXR]�Ê·w;`§V;` \ ¬ w��5nOj]w;n7nQ�7��¨Ysqjksq��`�Z]`�jS��\vX²Z]w;`�Vð�kw;n�Xl` VÛXa_Y�kwZaw>s3Z @BA \�X(��\vV;\v�,\vÉ�`T�«�¶d;nOj²��\hVY\h��\vÉ s3Z]\hniVJ}�sÝXl\v��¨;uv`V7_;��`�j]\v� squ«w;\vuvu���uv\h���>` j®\vX�_YXl`T�«�µ�nOZa`§Z]wYs3Z©\vV&nOjk�Q`�j�Z]n9`TX[Z]\h�SsqZa`Ms¸ã�_YsO�;j]sqZa\��Ý�Euh\vV;` sOj }��niVYXlZ]sqV�Z��,¦;ZaVY` X]Xop�_;V>��Za\vnOVÛ\hVUT��Q\v��`�VYXa\vnOVYX }
s3Z(uh`TsOXlZz��STÛ��TR�VTÛ�§zT�]áq{���j]` Xa¨>`T��Z]\hgi`�uvm(z��STRó�zK��uh\vV;`Tsqj]uhm�\hVQ��Q` ¨>` VY�Q`�V�Z�X]sq��¨;uv` X�s3Zª�Q\h´¹`�j]`�V�Z*uhnQ��sqZa\vnOVYX�sOja`/V;` ��` X]XasOjami�Ê·w7_YX���w>sOX/ZanS�5`cs3Z�uv` siX[Z�u�sqj ¬ `�`�VYnO_ ¬ w(Z]n�`�VYXa_;j]`ÈZawYsqZZawY`/VY`�\ ¬ w7�>nijawYn�nQ�º`�VY��nO��¨YsOX]Xa` X=Zaw;`·j]` ã�_;\vja`T�cV7_;���>` j*nqpX]sq��¨;uv` X �Í�VY��`�st¨;j]nO¨5`�j��owYsOX*�5`�` Vo�Q`�Z]`�j]��\hV;`T�«}iZaw;`
¦;ZaV;`TXaXAÐ���Ñ5���sOV(�5`t` XlZa\v�Ss3Z]` �²�7mo_YXa\hV ¬ uvnQ��squ«j]` ¬ ja`TXaXa\vnOVJ�
CÐ���Ñ ä �ªÔWC�9D E F ø ��Ñ ä �

µ�nOZa`RZaw>s3Z+ZawY`M��nO��¨;_;Z]s3Z]\hniVYsqut��nO��¨;uv`�ÕQ\^Z[m�nqpºZ]w;`Msq¨;�¨;j]nisi�kw¯\vX�Xa_;�YXlZ]sqV�Z]\vsOu·sOVY�ÏXlZaj]nOV ¬ uvmR�Q` ¨>` VY�Q` ViZSniVMZawY`V7_;�º�5`�jSnOp��Q\v��`�VYXa\vnOVYX�nOp
ZawY`+¨;jani�;uv`����9b�X�wYsOX��5`�` V\vuhuv_YXlZajks3Za`T�³sO�>n3gi`O}ip�nOj®ã�_YsO�Qjks3Z]\v�
ja` ¬ j]` X]Xl\vnOV�}7X,ÔOY��ZT�õK�g3sqj]\vsO�;uv` X�wYsKgO`,Z]n²�5`S` XlZa\v�Ss3Z]` �R\hV[T �;\h��`�V>Xl\vnOVYX }�sOVY�ZawY`Mja` ¬ j]` X]Xl\vnOV�Zaw;` VðwYsOX©��nO��¨;uv`�ÕQ\hZ[m\Y���à]X7õK��}t®\hZawðà�5`�\vV ¬ Zaw;`�V7_;�º�5`�jtnOpA\vVY�Q\vg7\v�Q_>squ�XÈ\hV°Zaw;`�V;` \ ¬ w7�>nijaw;n7nQ����5nO_YVY�Q` �º�7mÈZaw;`/V7_;�º�5`�j�nqp>�Ys3Z]s
¨>ni\hV�ZkX=\vVcZ]w;`/w;\vXlZanijam;���Ê·w;\�X���nO��¨;uv`�ÕQ\hZ[mc��ni_;uv�c¨>nOZa`�V�Z]\vsOuhuvmt�>`·j]` �Q_>��` �c`�\hZaw;` j��7m
^ _YXa\vV ¬ uh\vV;` sOj®\hV>X[Z]` sO�²nOp�ã�_YsO�;j]sqZa\���j]` ¬ ja`TXaXa\vnOV
^ \vV�Zaj]n7�;_Y��\vV ¬ XanO��`ªs®¨;j]\vnOj]\q�7V;n3®uh`T� ¬ `ªsO�>ni_QZ=�Q\v��`�VQ�Xa\hniV+�Q`�¨5`�VY�;`�VY��\h`TX�}>`�´¹` ��Z]\hgi`�uvm³j]` �Q_>��\vV ¬ Zaw;`ºV;` ��` Xl�X]sqj]m�V7_;�º�5`�j=nqp7g3sqj]\vsO�;uh`TX5ZawYsqZ�wYsKgi`�Zan®�5`ª` XlZa\v�Ss3Za`T�

^ j]` XlZaj]\v��Za\vV ¬ Z]w;`ÝVY`�\ ¬ w7�>nijawYn�nQ�ðXa\hÉ `ÝsOVY��Zaw7_YX°ZawY`V7_;���>` j�nOp�\vVY�Q\vg7\v�;_Ysqu�X�Z]wYs3ZÈsqj]`º��niVYXa\v�Q` ja`T�²p�nOj�ja`��¬ ja`TXaXa\hniVJ�
µ�` gO` jlZ]w;`�uv` X]X�}7\vV�ÎQ` ��Z]\hniV��º/`È��nO��¨YsOja`
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nij®z �i�
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�������V� HJF :Y6=N�:Q13NO�S0�:;N=13:QF CGI � 472Y1347DTD CG¾>6d�\hjkXlZ }�A`
��nO��¨YsOja`·Z]w;`
sq¨Y¨;jan�sO�kwS�Q`TXa��ja\v�>`T�Ssq�5n3gO`·_YXa\hV ¬ã�_YsO�;j]sqZa\��·ja` ¬ j]` X]Xl\vnOV,®\^Z]wSZawY`
��nQ�Q`�u>_YXl`T�S�7m�Î;sqV;ncsOVY�rÈ\hZ]s�×^zK{TÙ��
b
Xt� sqVR�>`oXa`�` VJ}«Z]w;`Sja` ¬ j]` X]Xl\vnOV±` XlZa\v��sqZanij]X�wYsKgi`,s�Xa\ ¬ �V;\h¦>��sOV�Zauvm,uvn3/`�jª`TX[Z]\h�Ss3Z]\hniVo`�j]j]nOj*Z]wYsqV�ÎQsqV;nt�3rÈ\hZ]sS�Gd=\ ¬ ����E� �a��}Ysi��Z]_Ysquvuhmi}�Zaw;`È` XlZa\v�Ss3Z]\hniV(` jaj]nOjR� \�X·\hV³Zaw;`ÈjksqV ¬ `nqp�sqV²��bÛ¨>` jlp�nija��\vV ¬ �O�º\vVY�Q` ¨>` VY�Q` ViZ�X]sq��¨;uv` XAp�nOj·`TsO�kw`�g3sOuh_YsqZa\vnOVJ� >AniVYXl\��Q` ja\vV ¬ ZawY`©Zaj]_;`+¦YZaV;`TXaX(nqpÈZawY`©¨>` jl���` \hgi` ���5` XlZ/\vVY�Q\vg7\v�;_Ysqu�}inijªZ]w;`
Z]ja_Y`�¦;Z]V;` X]XªnOp«Zaw;`ÈsO��Za_YsOu
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�5` XlZ,\vVY�Q\vg7\v�Q_>squ/\hVÏZaw;`(¨>ni¨;_;u�s3Za\vnOVÏw;n3A` gO` j }�ZawY`oZawYja` `��ni��¨Ysqj]` �+`TX[Z]\h�SsqZanOjkX�¨>` jlp�nija�íXa\v�,\vu�sqjT}5®\hZaw°ZawY`�si�;sq¨;�Za\vgO`(ja` ¬ j]` X]Xl\vnOV§��nQ�Q`�u·��niV7gO`�j ¬ \vV ¬ pEsOXlZa` j�\vV¯Z]w;`³�5` ¬ \hVQ�V;\vV ¬ }®sOVY�ÝZaw;`©j]`�u�s3Z]\hgi`�ja` ¬ j]` X]Xl\vnOVÝ�,nQ�Q` u
�Q\�Xl¨YuvsKm7\vV ¬ sXauh\ ¬ w�Z�sO�Qg3sOViZks ¬ `
Z]n3/sOj]�;XAZ]w;`t`�VY�J�
��������� H�CEL«ª��G4i1 � 472>134�DTDTCE¾56¬ö¾�N=4®�EDf
Xa\vV ¬ Xl\v��¨;uv`�j�j]` ¬ ja`TXaXa\hniV���nQ�Q` uvXö�G��niVYX[ZksqV�Z }Ruv\hV;`Tsqj��Xa¨>` ` �;XÈ_;¨¯��nO��¨;_QZks3Za\vnOV��od;nOjÈZ]w;`oã�_YsO�;j]sqZa\��cZ]` XlZtp�_;VY���Za\vnOVÛ_YXa` ��p�nij³Z]` XlZa\vV ¬ }�VYs3Z]_;j]sOuhuvm¸ã�_YsO�Qjks3Z]\v�©ja` ¬ j]` X]Xl\vnOV/nO_;u��Ï�5`©\��Q` sOuG�¸UWV9Z]w;\vX(Xl`T��Z]\hniVÝ/`+`�Õ;sq��\vV;`��7mÏw;n3�º_>�kw�Z]w;`®j]` Xa_;u^ZkXª�kwYsOV ¬ `·®w;` V�Xa\v�,¨Yuh` jªja` ¬ j]` X]Xl\vnOVº�,nQ�7�`�u�X®sqj]`È_YXa` �«�b
X=`�ÕQ¨5` ��Za` �tZaw;`Aw;\ ¬ w;`�j�Zaw;`Aja` ¬ j]` X]Xl\vnOVÈ�Q` ¬ j]`�`*Z]w;`��5`�ZaZa`�jZawY`Sja`TXl_;uhZ]X �³Ê·w;`S`�´5`T��Zc\vVY��j]` siXl`TX�p�jani�î`TX[Z]\h�Ss3Z]` �R�5` XlZn3gO` j·n3gO`�jksquvu5�>`TX[Z®Z]no�Q`�g7\�s3Za\vnOV��
�������L¯ � B=4Q°²±�47IqF�¾{³�P+CV�<��´]I7�ECGLsµ�CE6�2µ�n3ÛA`t`�Õ;sq��\hVY`�Z]w;`t`�´¹` ��Z�nqp�_YXa\hV ¬ Z]w;`csq_QZ]nO�Ss3Z]\v� squvuhm¬ ` V;`�jks3Z]` � ¬ j]si�Q\h` V�Zº\hV;p�nOj]��sqZa\vnOV¯Z]n±\vV�Za` ¬ j]sqZa`³s°Xl\v��¨;uv`w;\vuhu=��uv\h���>` j �b
XS� sqVÝ�>`�Xl` `�V9\hV9d�\ ¬ ��yY}�w;\vuvu^�W��uv\h���;\vV ¬ \v��¨;j]n3gO` XºZawY`¨5`�jap�nOj]��sOVY��`op�nOjcZ]w;`²ja` ¬ j]` X]Xl\vnOVR��n7�;`�u®sqVY�¯sOuhu/¨5`�jap�nOja��SsqVY��`t��` sOXa_;j]` X �AÊ·w;`º`�´¹` ��Z�nOV�ZawY`º�Q`�g7\�s3Z]\hniV²\�X�VY` ¬ uv\h�¬ \v�;uv`O};siX/Zaw;`t��nQ�Q`�u�\vX·Z]w;`cX]sq��`O�
¶ ` Ã Â ¢«çaÅ
�7Æ[Ã Â ¡ Â Ä¸·�Å®�;Å� YéU¹ Ãª 1º
UWVRZaw;\�XÈ¨YsO¨>` j }=A`�j]`�`�Õ;sO�,\vV;`T�+ZawY`S\v�Q`Ts²nqp/¦;ZaV;`TXaXÈ`TX[Z]\^��Ss3Z]\hniVºZksq�7\hV ¬ \vV�Zancsi����ni_;V�ZªsKgKsO\hu�sq�Yuh`A¦;ZaVY` X]X*`�g3squv_YsqZa\vnOVp�j]nO��V;`�\ ¬ w7�5nOj]\hV ¬ \vVY�Q\vg7\v�;_Ysqu�X��=Ú°`�wYsKgO`ªXaw;n3®V�ZawYsqZ�Z]w;\vX\��Q` s���sqV³�>`�ja`Tsquv\hÉ ` ��nOV(sºXanO_;VY�³X[Zks3Za\�XlZa\���squ>�YsOXa\�X��7m,_YX[�\vV ¬ uhnQ��sOu«ja` ¬ j]` X]Xl\vnOV��b
X³¦YjkX[Z(`�ÕQ¨>` ja\v��`�V�Z]X(nOV�sÝXl\v��¨;uv`©Za`TX[Z(p�_;VY��Za\vnOV�wYsKgi`Xaw;n3®VJ}TuhnQ��sOuOj]` ¬ ja`TXaXa\hniV
\�X�Xa\ ¬ V;\h¦>��sOViZ]uhm��5`�ZlZ]`�j=\hVc`TX[Z]\h�Ssq�Za\vnOVRZ]wYsqV§¨;j]`�g7\vnO_YXtsO¨;¨;j]nisO�kwY` X �,Ê·w;`S`TX[Z]\h�SsqZa\vnOV§`�j]janij\�X�sO�>ni_QZ�`Tãi_Y\hg3squv`�V�Z�Zan±_>Xl\vV ¬ �O�+\vVY�Q`�¨5`�V>�Q`�V�ZSXasO�,¨Yuh`TXZan�`TX[Z]\h�Ss3Z]`t` si�kw(\vVY�Q\vg7\v�Q_>squ��Ê·w;`Sj]` ¬ ja`TXaXa\hniV±®\hZawMsi�;sq¨QZ]\hgi`�V;`�\ ¬ w7�5nOj]w;n7n7�Rsqu�Xan²¨YjanO��Q_Y��` XJZaw;`ª�5` XlZ�j]` Xa_;uhZ]X���nOVYXa\��Q`�j]\hV ¬ Z]w;`*¦;Z]V;` X]XJnOp7Zaw;`*Z]ja_Y`�5` XlZª\hVY�;\hg7\��Q_YsquY\hV�Zaw;`®¨5nO¨Y_;uvsqZa\vnOVJ}�sqVY��\hZ���nOV7gi`�j ¬ ` X�Xa\ ¬ �V;\h¦>��sOV�ZauvmSpEsOXlZa` j·ZawYsOV²¨Yja` g�\vnO_>X®sq¨;¨;j]nisi�kw;` X �b
XÈs(Xl\��Q`,¨;janQ�Q_>��Z }¹uvnQ��squ�j]` ¬ j]` X]Xa\hniV²`TX[Z]\h�SsqZa` X�Z]w;` ¬ j]sq��Q\v`�V�Z®nqpJZ]w;`�¦;ZaV;`TXaX·u�sqV>�;Xa� sq¨5`O�*b
X//`�w>sKgO`�Xaw;n3®VJ}�Z]w;\vX\vVQp�nOj]�Ss3Za\vnOV(��sqV(sO�;�Q\hZa\vnOV>squvuhm��5`�_YXa` �oZan,Xl¨5`�`T�o_;¨²��nOV;�gO` j ¬ `�VY��`��7m(\hV�Za` ¬ jks3Z]\hV ¬ sSXa\h��¨;uv`tuvn7� squJwY\huvu^�W��uv\v�º�5`�jT�ªUWVnO_Yj®`�ÕQ¨>` ja\v��`�V�Z]X }Q\vViZ]` ¬ j]sqZa\vV ¬ Z]w;`tuvn7� squ«w;\vuvu^�W��uv\h���>` j
sO�Q��Q\hZa\vnOVYsOuhuvmo\v��¨;jan3gi` �(¨>` jlp�nija�SsOVY��`��7m³s��Ss ¬ VY\^Z]_Y�Q`O�Ê·w;` ja`�XlZa\vuhu5j]`��Ssq\vV�nO¨;¨5nOjaZa_;VY\^Z]\h`TX�p�nOj�p�_QZa_;j]`�/nOj]�¹�=d�\hjkXlZnqp�sOuhu�}Qst¨;j]nO¨5`�j·Xl`�ZlZ]\hV ¬ nqp«Z]w;`�VY`�\ ¬ w7�>nijawYn�nQ��¨YsOj]sO��`�Za` j

�¯Xaw;nO_Yuv�R�5`�p�_;jlZ]w;`�jº\hV7gO`TX[Z]\ ¬ s3Z]` �«�oÊ·w;` VJ}�\hZ�Xaw;nO_Yuv�R�5`Za`TX[Z]` �²w;n3¸Z]w;`tj]`�¨5nOjaZa` �(j]` Xa_;u^ZkX/ZajksqVYXlp�`�j/Z]n,��nija`t��ni�,�¨;uv\v� s3Z]` �,Za`TX[Z�p�_;VY��Z]\hniVYX�sOVY��squ�XlnÈZ]ntja`Tsqu;/nOj]u���¨Yjani�;uh` �SXuv\h�i`A`i� ¬ �qXa�kw;`T�Q_;uv\hV ¬ �=b
uvXanY}O\^p>Zaw;` ja`/\vX�` V;nO_ ¬ w���nO��¨;_QZ]\hV ¬¨5n3A` j
sKg3sq\vuvsO�;uh`cZanoj]_;V+�SsqV7m²`�g3squv_Ys3Z]\hniVYX };ZawY`ºV7_;�º�5`�jnqp,XasO�,¨Yuh`TX(XlZanija`T�¸\hV�Zaw;`R��`���nOj]m�wYsOX³Zan9�5`°uv\h��\hZa`T�XanO��`�w;n3t�
» é�¼kéJ ;é Â ¢¹é��
½¿¾ À�Á�ÂjÃ²Â1Á�Ä.Å�£mÆ©£�£4Ç®ÈnÉ�Â®ÊhÂ®ÊS£4Ë
Â�ÌÍ¨ Ë7ÎmÈ7Ï7ÐÑÄ.Ç7ÒBÓ4ÔÕÒ�Î;ÇjÎ;Ö×ÄÑ¨£4ÐÑÒ�Ó"Ø×Ä¿Ö×ËjÙBÚ{ÄÑÇ�£ÛÇjÓ4ÄÑÚyÜ�Î�ÇÍÝÍÄ¿Ø×Ó�ÇjÙBÎ;ÇÍÖmÂ�Þ©ß"à�á âÍã�äZà4å®æ4ç è²éÕà4ê=ëì âÍãVæ4ã�äZà4å7í®îj£4Ò�Î;ÚRï�ðmñ®¾mò�ò&í+¾mï4ï4ó7Â
½ òmÀ�ô+Â®õ7Â®Á�Ç7Ò�Î�ÐÑÄÑÇjÎ�Â�ÁRÈ7£4î9Ö×Ä.Ý�Îl£4ÇjÈ�Ú�Î�Ð¿ÔLö<£4Èj£4î9Ö×ÄÑÝ�Î�Î�Ý�Ó�ÐÑÏ9Ö×Ä.Ó4Ç7ö£"Ø�Ü�¨�Ó4ÙBîjÏ7Ö�£,Ö×ÄÑÓ�ÇjÚ�Âø÷(ÇùéÕà4ê ì âÍãVæ4ã�ä�à4åtæ�á+ú�åjã<û;áLá ä.ü&û åtý�ûmþ=ÿ

� è"åtæ4ê²äZý��jè��×ã<û ê���û ç�� ì û�ý;ã�ä�ß4û í+¨�Ë®£"î7Ö×Î;Øø¾�¾�í3îj£4Ò�Î;Úø¾	�4òmñ¾�
�9Â{¾�ï�ï��ÍÂ
½ �,À��øÂ�Á�Ø×ÇjÓ4Ð.È3Â��ÕÝ�Ó4ÐÑÏ7Ö×ÄÑÓ�Ç=ÚyÖ�Ø�£,Ö×Î�Ò�ÄÑÎ�ÚÕÄÑÇ=ÇjÓ4ÄÑÚyÜøÎ�ÇÍÝÍÄ¿Ø×Ó�Ç7ÙBÎ�Ç&Ö×Úö3£�Ú�Ï9Ø×Ý�Î;Ü�Ó4ÔjÎ��9ÄÑÚyÖ×Ä.Ç7Ò�Æ�Ó4Ø��tÂ9÷(Ç��1û�ý×à4å���ÞÛß"à���û ã��7âÍêøê�û ç

�tý��7àmà4á�à4å�� �7û×à"ç×û ã�äZý×æ�á{ÿ!� ì û�ý;ã"�øà$#�Þ©ß"à�á âÍã�äZà4å®æ4ç�è�éÕý×à4êøëì âÍã�ä�åÍü4ÂtÌ9î9Ø×Ä.Ç7Ò�Î;Ømí®ò%%�%ÍÂ
½ ó"À�õ7ÂRÉNØ�£4Ç&��Î�Â('NØ×Î�£"Ö×ÄÑÇjÒ Ø×Ó4¦jÏ7ÚyÖ�Ú�Ó�ÐÑÏ7Ö×ÄÑÓ�Ç7Ú�¦&Ü«ÙBÎm£"ÇjÚ Ó"Ô£4Ç�Î�Ý�Ó4Ð.Ï9Ö×ÄÑÓ�Ç®£,Ø�Ü�£4ÐÑÒ4Ó4Ø×Ä¿Ö×ËjÙ Â�÷<Ç�Á�Â)�ÛÂ*�ÕÄÑ¦tÎ�Ç3í,+RÂ3É.-£4¨��1í

/ Â�ÌÍ¨ Ë7Ó&Î�Ç®£"ÏjÎ;Ømí�£"Ç®È10�Â ö(ô+Â+Ì9¨�Ë&Æ©Î;ÔLÎ�Ð�í�ÎmÈ7Ä¿Ö×Ó4Ø×Ú�í2�8æ4çyæ�á�á.û;á
�Ûçyà43�á.û ê5�tà4á ßmä�åÍü6# ç�à"ê7��æ"ã�â9ç�û í®ÇÍÏjÙ²¦tÎ;ØR¾;ó�ï8øÄÑÇ:9
Ã;'ÛÌ1ÂÌ9î9Ø×Ä.Ç7Ò�Î;Ømí3¾mï4ï�8ÍÂ

½ �mÀ�õ7Â�ÉNØ�£"Ç���Î�Â �=<=¨�ÄÑÎ�Ç&Ö�Î�Ý�Ó4Ð.Ï9Ö×ÄÑÓ�Ç®£,Ø�ÜW£4ÐÑÒ4Ó4Ø×Ä¿Ö×ËjÙBÚ�ÔLÓ4ØÚ�Îm£"Ø×¨�ËjÄÑÇ7ÒOØ×Ó�¦7ÏjÚyÖ Ú�Ó4ÐÑÏ7Ö×ÄÑÓ�Ç7Ú�Â�÷<Ç ÷�Â '�Â�ô]£,Ø×ÙBÎ�Î�í�ÎmÈ7Ä¿öÖ×Ó4Ømí+ÿ>��æ ì ã�ä�ß4û?éÕà4ê ì âÍã�ä�åÍü?ä�å � û��×ä.ü4åQæ"å���?�æ"åjâ�#�æ�ý;ã�âÍç×û
@�ÿ�é � ?BADC4C4C�E,í®î®£4Ò4Î�Ú�ò�ð�mñ9ò�8�
ÍÂ
Ì9î7Ø×ÄÑÇ7Ò�Î;Ømí®ò%%�%9Â

½ 
,À�õ7Â / Â*F+Ä¿Ö×Å�î®£,Ö�Ø×Ä.¨���£4ÇjÈ�õ9Â3õ7Â,G�Ø×Î;Ô�Î�Ç7ÚyÖ×Î;Ö�Ö×Î�ÂHGRÎ�Ç7Î;Ö×ÄÑ¨B£4Ð¿öÒ�Ó"Ø×ÄÑÖ×Ë7ÙBÚøÄÑÇQÇjÓ4Ä.ÚyÜQÎ;Ç9ÝÍÄ¿Ø×Ó�Ç7ÙBÎ�Ç&Ö×Ú�ÂI?�æ�ý��Íä�åtû�J+û�æ4ç å7ä�åÍü4í
�DKÑ¾�%Í¾ ñj¾,ò%Íí]¾mï8�89Â

½ ðmÀ�L²Â�0R£4ÙBÙBÎ�Ð4£4ÇjÈM+RÂ"É!-£4¨��tÂN��Ý�Ó�ÐÑÏ7Ö×ÄÑÓ4Ç�ÚyÖ�Ø�£,Ö×Î�Ò�ÄÑÎ�Ú]Ó4Ç�ÇjÓ�ÄÑÚyÜÔ�Ï7Çj¨;Ö×ÄÑÓ�Ç7Ú�í®Ë7Ó,Æ«Ö×ÓBÄÑÙBî7Ø×Ó,Ý�ÎR¨�Ó�ÇÍÝ�Î;Ø×Ò4Î�Çj¨;Îlî7Ø×Ó�îtÎ Ø�Ö×Ä.Î;Ú�Â©÷(Ç
O Â*�l£mÝÍÄ.È7Ó4Ømí 0²Â
ô+Â{Ì9¨�Ë&Æ©Î;ÔLÎ�Ð�í]£4ÇjÈQP�Â / -£4Ç7ÇjÎ;Ømí{ÎmÈ7Ä¿Ö×Ó4Ø×Ú�í
��æ"ç�æ�á�á.û;á��©ç�à43�á.û êR�tà4á ßmä�åÍü6# ç�à"ê5�læ4ã�âÍç×û íjÇÍÏjÙø¦tÎ ØS8�

=ÄÑÇ
9
Ã;'ÛÌ1Â®Ì9î7Ø×ÄÑÇ7Ò�Î;Ømí1¾mï4ï4ó9Â

½ 8,ÀT'�ÂD9
Ó�£�È7Î ØmÂUJ{àmý×æ�á&V8ûZü4ç×û����×äZà4å�æ4åW�XJ�äZY�û;á ä[�7àmà��4Â+Ì9î7Ø×ÄÑÇ7Ò�Î;Ømí¾mï4ï�ï9Â
½ ï,À�ÉNØ�£�È\9ÕÂ / ÄÑÐÑÐÑÎ;ØmÂ]��à"ä^�;û�_`�®æ4ê ì á ä�åÍü_�æ4åW��Þ*a ý;äVû åjã�b8û;ëå1û ã�äZýSÿ�á ü�à4ç�ä�ãc�Íê��×Â ôÕË&� Ö×ËjÎ�Ú�ÄÑÚ�í���Î�î7ÖmÂ�Ó4Ôd'�Ó4ÙBîjÏ9Ö×Î;ØÌ9¨�ÄÑÎ�Ç7¨�Î�í*LRÇ7ÄÑÝ�Î;Ø×Ú�Ä¿Ö(ÜnÓ"Ô©÷<Ð.ÐÑÄÑÇjÓ4ÄÑÚ�£"ÖXL�Ø×¦®£4Çj£"öe'�Ë®£"ÙBî®£"Ä.Ò4Ç
í¾mï4ï�ðÍÂ�£mÝ�£"ÄÑÐ$£"¦jÐÑÎ�£4Ú>+fPhï�ð%%9¾�Â

½¿¾�%,ÀB÷ Âf'�ÂÛô]£,Ø×ÙBÎ�Î�Âg+©ËjÎnÙ�£4ÄÑÇ&Ö×Î�Çj£4Çj¨;ÎnÓ4Ô�Ú�Îm£,Ø×¨ Ë«È9Ä.Ý�Î;Ø×Ú�Ä¿Ö(ÜÔ�Ó"Ø©Î�h1Î�¨ Ö×Ä.Ý�Î�È9Î�Ú�ÄÑÒ�Ç�Ú�î®£"¨�Î�È7Î�¨�Ó4ÙBîtÓ�Ú�Ä¿Ö×ÄÑÓ�ÇBÏ7Ú�Ä.Ç7Ò�¨�ÐÑÏjÚyÖ×Î;Ø�öÓ4Ø×ÄÑÎ�Ç&Ö×ÎmÈ�Ò�Î�Ç7Î;Ö×ÄÑ¨Û£4ÐÑÒ�Ó"Ø×Ä¿Ö×ËjÙBÚÛ¢i'SjXG�Á�Ú�¤+£"Ç®È�ÙøÏ7ÐÑÖ×Ä¿ö<£4Ò4Î�Ç&ÖÚyÖ�Ø�£"Ö×Î�Ò4ÄÑÎ�Ún¢iG�ÁRÁ�Ã;+8¤ Â�÷(Ç\�©ç�àmý�û×ûk�4ä�åÍü�?à$#=ÿ�é
Þ � éXl mNn"í¾mï4ï�
9Â
½¿¾�¾ ÀT'�Â�P�Â�P�Î�Î�Ý�Î�Ú�Â Á Ò�Î�Ç7Î;Ö×ÄÑ¨�£4ÐÑÒ4Ó4Ø×Ä¿Ö×ËjÙ�£"îjî9Ø×Ó�£4¨�Ë Ö×ÓÚyÖ×Ó&¨ Ëj£4ÚyÖ×ÄÑ¨Mo®ÓmÆ8Ú�ËjÓ4înÚ�Î�p&ÏjÎ�Ç7¨�ÄÑÇjÒ7Â�÷(Çq�©ç�àmý�û×ûk�4ä�å&ü�=à$#lãc�jûúyÞNÞ éÕà4á�áÑà�r;âÍä�âÍê à"å7b�û åtû ã�äZý�ÿ�á ü�à4ç�ä�ãc�ÍêH�H#�à4ç�éÕà4å7ã�ç�à�áæ4å��;�7è�×ã<û ê��NÞ©åÍü4äLå1û×û ç äLåÍü4í�ÇÍÏ7Ùø¦tÎ;ØÕ¾mï4ï�ò�s&¾�%
�ÄÑÇ`��ÄÑÒ�Î�ÚyÖmíî®£"Ò�Î�Úl¾���sÍ¾�ñ®¾���s"ó9Â
÷e�2�Ûí�9
Ó�ÇjÈ7Ó4Ç
í3¾mï�ï�òÍÂ

248 GENETIC ALGORITHMS



0.1

1

10

0 5000 10000 15000

T
*¡

no of evaluations

adp const Reg 
adp lin Reg 

adp quadr Reg 

¢Z£�¤
0.01

0.1

1

10

0 5000 10000 15000

B
*¥

no of evaluations

adp const Reg 
adp lin Reg 

adp quadr Reg 

¢�¦t¤
0.1

1

10

0 5000 10000 15000

D

§

no of evaluations

adp const Reg 
adp lin Reg 

adp quadr Reg 

¢�¨m¤
d�\ ¬ _;j]`/�Q�©>AnO��¨Ysqj]\�XlniVcnqpQZ]w;`/Zaj]_;`�¦YZaV;`TXaX=nqp;Z]w;`·¨>` j]��`�\vgO`T�t�>`TX[Z�\vVY�Q\vg�\��Q_YsOu«�Esi��}3ZawY`�Z]ja_;`A¦;Z]V;` X]X�nOp;ZawY`/�5` XlZ�\hVY�;\hg7\��Q_Ysqu\vV�Zaw;`c¨5nO¨Y_;uvsqZa\vnOVJ}5sqVY�§�G� �/Z]w;`ºsKgO` j]s ¬ `�` XlZa\v�Ss3Za\vnOV+` jaj]nOj/p�nij®Zaw;`�sO�;sO¨QZa\vgO`tj]` ¬ ja`TXaXa\hniV³��nQ�Q`�u�}Y®\hZaw°��nOV>X[ZksqV�Z };uv\vV;` sOjsqV>�(ã�_Ysi�Qj]sqZa\���ja` ¬ j]` X]Xl\vnOVSp�_YVY��Z]\hniVJ�

0.01

0.1

1

10

0 5000 10000 15000

T
*¡

no of evaluations

adp quadr Reg 
adp quadr Reg with hill 

¢Z£�¤
0.001

0.01

0.1

1

10

0 5000 10000 15000

B
*¥

no of evaluations

adp quadr Reg 
adp quadr Reg with hill 

¢�¦t¤
0.1

1

0 5000 10000 15000

D

§

no of evaluations

adp quadr Reg 
adp quadr Reg with hill 

¢�¨m¤
d�\ ¬ _;j]`Ay;�©>AnO��¨Ysqj]\�XlniVcnqpQZ]w;`/Zaj]_;`�¦YZaV;`TXaX=nqp;Z]w;`·¨>` j]��`�\vgO`T�t�>`TX[Z�\vVY�Q\vg�\��Q_YsOu«�Esi��}3ZawY`�Z]ja_;`A¦;Z]V;` X]X�nOp;ZawY`/�5` XlZ�\hVY�;\hg7\��Q_Ysqu\vV�Zaw;`�¨>ni¨;_;u�s3Za\vnOV�}isqV>�+�E� ��Zaw;`�sKgO`�jks ¬ `A`TX[Z]\h�SsqZa\vnOV�`�j]janij�p�nOj/ãi_>sO�Qjks3Z]\v�·j]` ¬ ja`TXaXa\hniVº®\hZaw³si�;sq¨;Za\vgO`®V;` \ ¬ w��5nOj]w;n7nQ��Xa\vÉ�`O}®\hZaw+sqVY�²®\hZaw;ni_QZ�w;\vuhuh�W��uv\h���>` j �

249GENETIC ALGORITHMS



½¿¾,òmÀ O ÂÛÌ7£4Ç7Ó�£4ÇjÈ]0²ÂutlÄÑÖ�£ÍÂvjRî9Ö×Ä.ÙBÄÑÅm£,Ö×ÄÑÇ Ó4Ô�ÇjÓ4ÄÑÚyÜ�wjÖ×Ç7Î�Ú�ÚÔ�Ï7Çj¨;Ö×ÄÑÓ�Ç7Ú+¦&Ü�ÙBÎm£4Ç7Ú{Ó"Ô®Ò�Î;ÇjÎ;Ö×ÄÑ¨Û£"Ð.Ò4Ó4Ø×Ä¿Ö×ËjÙBÚ]Ï7Ú�ÄÑÇjÒ�ËjÄÑÚyÖ×Ó4Ø�ÜÓ4ÔRÚ�Îm£"Ø×¨�Ë
Â ÷(Ç / Â©ÌÍ¨ Ë7Ó&Î�Ç®£"ÏjÎ;Ømíut=Âx��Î�¦
íSG²ÂxP�ÏjÈ7Ó�ÐÑî7Ë
í
y Â O £4Ó9í,�ÛÂ 9
Ï9Ö�Ö×Ó�Ç
í
õ7Â
õ7Â / Î;Ø×Î;Ð.Ó9í+£"Ç®Èq0²Â ö<ô+Â
Ì9¨�ËÍÆ�Î;Ô�Î;ÐZíÎmÈ7Ä¿Ö×Ó"Ø×Ú�í��8æ4ç�æ4á�á.û;á&�Ûçyà43�á.û ê5�tà�á ßmäLåÍüS# ç�à"êz��æ4ã�âÍç�û�@c�x�S�{�
| ú}EmítÝ�Ó�ÐÑÏjÙBÎ=¾�ï9¾,ð�Ó4ÔuJ��øéU�jí®î®£4Ò4Î�ÚM�4ðÍ¾ ñ{�8%9Â+Ì9î7Ø×ÄÑÇ7Ò�Î;Ømíò%%�%9Â

½¿¾��,À O Â�Ì7£"ÇjÓ9íf0²ÂxtlÄ¿Ö�£9í©÷ Â=t�£4ÙBÄÑË7ÄÑØ�£Íí8£4ÇjÈ / Â O £4Ù�£4Ò4Ïj¨�ËjÄ�Â
jRÇjÐÑÄÑÇjÎlÓ4î7Ö×ÄÑÙBÄÑÅm£"Ö×ÄÑÓ�Ç?Ó4Ô�£"Ç Î�ÇjÒ4ÄÑÇjÎl¨�Ó4ÇÍÖ�Ø×Ó4ÐÑÐ.Î ØR¦&Ü�ÙBÎm£"ÇjÚÓ4Ô�£ Ò�Î�Ç7Î;Ö×ÄÑ¨Q£4ÐÑÒ�Ó"Ø×ÄÑÖ×Ë7Ù ÏjÚ�ÄÑÇjÒ ËjÄÑÚyÖ×Ó4Ø�ÜÓ4ÔBÚ�Î�£"Ø×¨�Ë
ÂW÷(Ç
�ÍÞNÿ>J]ÂtÌÍî7Ø×ÄÑÇjÒ4Î;Ømí®ò%�%%9ÂÕÖ×ÓB£4î7îtÎm£"ØmÂ

½¿¾�ó"À�ô+Â�ÌÍÖ�£4Ò4Ò�Î�Â Á�Ý�Î;Ø�£"Ò�ÄÑÇjÒsÎ�<B¨�ÄÑÎ�Ç&Ö×Ð¿Ü ÄÑÇ«Ö×ËjÎ�î7Ø×Î�Ú�Î�Ç7¨�Î�Ó"ÔÇjÓ4Ä.Ú�Î4Â ÷<ÇUÁ�Â`�ÛÂ`�ÕÄÑ¦tÎ�Ç3íT+RÂøÉ.-£4¨��1í / ÂøÌÍ¨ Ë7Ó&Î�Ç®£"ÏjÎ;Ømí£4ÇjÈq0�Â ö(ô+Â3ÌÍ¨ Ë&Æ�Î;Ô�Î�Ð�í3ÎmÈ9ÄÑÖ×Ó"Ø×Ú�í,��æ4çyæ�á�á.û;á)�©ç�à�3�á.û ê~�tà�á ßmäLåÍü
# ç�à"êv�læ4ã�âÍç×û | í�Ý�Ó4ÐÑÏjÙBÎ�¾�ó�ï�8lÓ4Ô J,�=éU�7í�îj£4Ò�Î;Ú�¾�88,ñj¾mï�ð&ÂÌ9î9Ø×Ä.Ç7Ò�Î;Ømí3¾mï4ï�8ÍÂ

½¿¾	�mÀ Ì1Â)+©Ú�Ï9Ö×Ú�ÏjÄ]£"Ç®È�Á�Â�GRËjÓ4Ú�Ë
ÂMGRÎ;ÇjÎ;Ö×ÄÑ¨²£4ÐÑÒ�Ó"Ø×ÄÑÖ×Ë7ÙBÚ�Æ8Ä¿Ö×Ë�£Ø×Ó�¦7ÏjÚyÖÛÚ�Ó4Ð.Ï9Ö×ÄÑÓ�Ç Ú�Îm£"Ø×¨�ËjÄÑÇjÒ²Ú�¨ Ë7Î�ÙBÎ�Â+úyÞÕÞNÞv�jç�æ4å&� æ�ý;ã�äZà4å&�à4å?ÞÛß"à4á â9ã�ä�à4åtæ4ç�è�éÕà4ê ì â9ãVæ"ã�äZà4åjí
¾�¢���¤�K ò�%9¾�ñ9ò%89í]¾�ï�ï�ð&Â
½¿¾�
,À��øÂjÊ[Ä.Î;Ú�Ù�£4ÇjÇ3íWL�Â�0R£4ÙBÙBÎ�Ð�íj£4Ç®È�+RÂ®É!-£4¨��tÂSP�Ó�¦jÏ7ÚyÖ�È9Î;öÚ�ÄÑÒ�Ç Ó"Ô�ÙøÏjÐ¿Ö×ÄÑÐ.£�Ü&Î;Ø8Ó�î9Ö×ÄÑ¨m£4Ð3¨�Ó�£,Ö×ÄÑÇjÒ�Ú�¦&Ü ÙBÎm£4Ç7ÚÛÓ4Ô]Î�Ý�Ó�ÐÑÏ7öÖ×ÄÑÓ�Ç®£,Ø�Ü�£4ÐÑÒ4Ó4Ø×Ä¿Ö×ËjÙBÚ�Â�úyÞNÞÕÞv�7ç�æ4å&�;æ�ý;ã�äZà4å���à4å Þ©ß"à�á âÍã�äZà4åjëæ4ç�ènéÕà4ê ì âÍãVæ4ã�ä�à4åjítò9¢�ó&¤�KÑ¾�
�òmñj¾�
�ðÍí�¾mï4ï�89Â

250 GENETIC ALGORITHMS



Evolving Populations of Expert Neural Networks

Joseph Bruce and Risto Miikkulainen

fjbruce|ristog@cs.utexas.edu
Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712 USA

Abstract

In standard neuroevolution, the goal is to

evolve one neural network that would com-

pute the right answer most often. However,

it often turns out that the population as a

whole could perform even better, if we could

only choose the right network for each input.

One way to do this is to evolve networks that

output not only the answer, but also an es-

timate of that answer's correctness. Experi-

ments in the handwritten character recogni-

tion domain show that such an evolutionary

process, combined with an e�ective technique

for speciation, can create a population of net-

works that collectively performs better than

any individual network.

1 Introduction

In a typical approach to problem solving with evolu-

tionary methods, a genetic algorithm is used to evolve

a population of individuals each attempting to solve

the task. The most �t individual found during the

evolution, the champion, is designated as the �nal re-

sult. For example, when neural networks are evolved

for a decision task, the champion is the neural network

that is most likely to produce the correct decision for

any given input. The rest of the population, and the

knowledge and expertise it encodes, is simply thrown

away.

However, an analysis of the �nal population shows that

there are often other individuals in the population that

are able to produce correct decisions for inputs that

the champion cannot handle. Figure 1 shows the �t-

ness of the �nal population in the handwritten char-

acter recognition task. Although the champion only

identi�es 64% of the characters correctly, 98% of the
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Figure 1: Percent of correct decisions attain-

able from a standard neuroevolution popula-

tion. Three di�erent measures are used, from top to

bottom: the best answer found in the entire population

(unrealizable in practice), the answer of the most �t

individual, and the population average. Fitness indi-

cates the percentage of correctly-identi�ed test charac-

ters in the handwritten character recognition domain

(section 4).

characters are correctly identi�ed by at least one indi-

vidual in the population.

We could obtain this level of accuracy by simply choos-

ing the best answer from those produced by the entire

population. But how can we determine which individ-

ual most likely has the right answer for a given input?

One solution is to evolve the individuals not only to

produce the answer, but also a level of con�dence that

this answer is correct. The population's answer can

be de�ned as the decision made by the most con�dent

individual.
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This idea is tested in the handwritten character recog-

nition task. For the method to work, it is essential to

maintain high diversity in the population. Several spe-

ciation methods are tested; the island model and its

continuous version, the spatial model, are found to be

the most e�ective. With such diversity, the method

leads to populations that collectively perform better

than any single individual. Con�dence evolution of

expert neural networks therefore constitutes a promis-

ing approach to utilizing the entire population as the

result of the evolutionary algorithm.

2 The Method of Con�dence

Evolution

Figure 1 suggests that in order to make use of the

knowledge and expertise in the entire population, the

champion might be determined separately for each in-

dividual input. Such a selection can be made correctly

only based on the correct answer, which is not avail-

able during performance. Therefore, although such a

high level of performance exists in the population, it

is unattainable in practice.

However, it is possible to approximate this selection

in various ways. For example, it may be possible to

train (or evolve) a meta-level neural network to de-

cide which individual in the population is most likely

to produce the right answer for a given input. This is

the approach taken for example in the Mixtures of Ex-

perts approach [Jacobs et al., 1991], which works well

in many supervised tasks. An interesting alternative

is to require each individual to rate the quality of each

answer it produces. If the population learns to do this

e�ectively, one would be able to outperform the cham-

pion by choosing the decision of an individual report-

ing the highest level of con�dence for each decision.

This is the approach taken in this paper.

Con�dence may be represented by an additional out-

put unit on the neural network. Con�dence is that

unit's activation when the network is presented with

an input. The range of con�dence, therefore, is be-

tween 0 and 1. To encourage the network to output

useful estimates through this unit, the �tness evalua-

tion must be altered. Many �tness evaluations in deci-

sion tasks are sums of Booleans, counting the number

of correct decisions an individual makes in trials on a

training set:

f =
X

i

s(~vi); (1)

where s(~vi) = 1 if the network's answer on trial i was

correct, 0 otherwise.

Training with con�dence changes this evaluation in a

simple way. It treats each of these trials as a bet.

Instead of simply winning 1 each time it is correct, it

also stands to lose 1 if it is incorrect. Moreover, the

size of the bet is determined by its con�dence output

c(~vi):

f =
X

i

s(~vi)c(~vi); (2)

where s(~vi) = 1 if the answer is correct, s(~vi) = �1 if it
is incorrect. So the network is penalized s(~vi)c(~vi) for

a wrong decision on input ~vi and is awarded s(~vi)c(~vi)

for a correct decision. This process allows the network

to unilaterally set the amount of the bet that its re-

sponse is correct. It encourages networks to output

high con�dence only for decisions that are likely to be

correct.

The fundamental change to the standard way of evolv-

ing neural networks is that in an evolution with con-

�dence, the entire population is considered to be the

product of evolution. Answers may be obtained from

the population by simply choosing the answer provided

by the most con�dent individual. The speci�c method

for leveraging con�dence to extract high-quality deci-

sions is problem-dependent. For example, for some

decision tasks the sum of the population's outputs

weighted by their con�dence might be a useful quan-

tity. But in other domains, such as robotic controllers,

it might be better to allow a single individual to pro-

vide each decision: weighted sums of di�erent motor

outputs could easily lead to a disaster.

In order to use con�dence, the population must be di-

verse enough so that signi�cantly di�erent decisions

are made by networks inhabiting distinct niches. A

strong method of diversity maintenance (also called

speciation or niching), is therefore crucial for suc-

cess. On the other hand, the restrictions imposed by

the speciation technique may adversely a�ect learn-

ing performance for all individuals in the population.

A proper speciation technique should strike a balance

between these two factors.

3 Methods of Speciation

Speciation is an important design principle in genetic

algorithms. Genetic algorithms lose diversity over the

course of evolution, converging to a point at which all

of the genomes in the population are essentially the

same. At this point, crossover operation between two

nearly identical genomes is unlikely to create a more

�t o�spring, and the progress of the GA from that

point will be slow, mostly through mutation. A prop-

erly speciated population, containing several \niches"

of solutions to the task, can continue improving even
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after some of the niches reach local maxima from which

they are unable to improve. It provides for a more re-

liable search, with many approaches being explored in

parallel throughout the evolution.

Speciation techniques are generally implemented in

terms of genomes, rather than the structure imple-

mented by the genomes, or that structure's perfor-

mance, because a diversity of genomes is needed to

search the solution space in parallel. However, this

diversity of genomes also results in diversity of behav-

iors. A speciated population contains a wider range

of answers|and is more likely to contain at least one

correct response for a particular input|than a homo-

geneous population. Therefore, speciation can be used

to create a population where di�erent individuals are

responsible for di�erent inputs.

Methods for promoting diversity may involve changes

to di�erent parts of the canonical genetic algorithm.

In this paper we will compare speciation techniques

that modify the GA's selection scheme, the replace-

ment scheme, and the �tness evaluation function. Also

crucial to population diversity is the scaling scheme,

i.e. the algorithm that converts the individuals' �t-

nesses into probabilities of being included in the next

generation, either unchanged or combined with an-

other genome by crossover. An aggressive scaling

scheme that rewards slightly �tter individuals with

much higher probabilities will quickly lead to conver-

gence, as genetic material possessed by moderately-�t

individuals will be lost in each generation. More sub-

tle scaling schemes are desirable (and also used in this

paper) to delay population convergence.

A very simple approach to speciation is to arbitrarily

divide the population into non-interacting subpopula-

tions, or islands. A genome cannot perform crossover

with any genome of another island, and a newly cre-

ated individual may replace only a genome in the is-

land of its parents. In some versions, the island model

provides for a small rate of migration between islands.

Without migration, this approach is equivalent to run-

ning a genetic algorithm independently on each of the

islands. Even this trivial approach to speciation can

be useful; if the genomes in one island reach a plateau

early, others may continue improving. This di�erence

is not directly promoted; it is simply allowed to occur

by chance. Under migration, populations on an island

are allowed time to make small adjustments before

competing with outside genomes [M�uhlenbein, 1991].

A more general, continuous version of the island

method is the spatial, or topological, method. Each in-

dividual may inhabit a vertex of an undirected graph,

and it may only perform crossover with an individ-

ual connected to it through an edge. The resulting

o�spring may only replace the least �t of its parents,

only if the o�spring is more �t. This setup is more

biologically plausible than the usual \panmictic" pop-

ulations in which any individual may mate with any

other. It prevents premature convergence since a par-

ticular genome can spread only to immediate neigh-

bors in a single timestep [Kephart, 1994].

The implementation of a spatial population described

above also incorporates the more general speciation

strategy called preselection, which stipulates that a

newly created individual in a population may only re-

place one of its parents. This protects against prema-

ture convergence because it ensures that at least some

of an individual's genetic material will survive into the

next generation [Goldberg, 1989].

Fitness sharing is a technique that penalizes genomes

that inhabit neighborhoods of many other genomes.

Generally, an individual's �tness evaluation is divided

by a sharing factor that measures the genome's prox-

imity to others in the population. Genomes in heavily

populated peaks receive a high penalty, which trans-

lates into a lower probability of propagating to the

next generation. This technique is intended to spread

the population across several peaks in the solution

space, with larger (wider or higher) peaks able to

support more individuals. Implicit sharing is a vari-

ation in which, for each input, only the individual

with the best response from a randomly-selected sub-

set of the population is awarded �tness for that input

[Darwen and Yao, 1996].

Crowding is a generalization of preselection, where an

individual only replaces a genome to which it is similar

(but not necessarily the parent). Under crowding, af-

ter a new genome is created, a subset of genomes is ran-

domly selected from the population. The genome in

the subset which is closest to the new genome is chosen

to be replaced by the new genome [Goldberg, 1989].

The con�dence method was tested in conjuction of

each of the above speciation methods. Interestingly,

their performance was found to di�er a lot in the hand-

written character recognition domain, which will be

described next.

4 Experiments

The method of con�dence evolution was applied to the

standard benchmark task of recognizing handwritten

digits. There are many methods developed speci�cally

for this task. The present goal is not to compete with

them, but rather to test the viability of the method

and to re�ne it further. This task is well-suited for
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such analysis because the correct decisions are readily

available. After the method has been tested and re-

�ned, it will be possible to apply it to other task where

the correct performance is not known.

The data set used was the freely-available subset

of 2,992 examples of handwritten digits 0..9 in the

NIST database, scaled to an accuracy of 8 � 8 pixels

[Choe et al., 1996]. The networks had an input layer

of 64 units to encode the 8 � 8 input representing a

digit to be classi�ed. The input layer was fully con-

nected to a hidden layer of 20 units, which was fully

connected to an output layer of 11 units, representing

each of the ten possible digit classi�cations, and an ad-

ditional unit to output the con�dence in this classi�ca-

tion. The output unit with the highest activation was

chosen as the classi�cation. The genome represented

the real values of the weights and biases of the net-

work. While the canonical GA operates only on binary

strings, analogous operations of crossover and muta-

tion were implemented for the real-valued genome: a

uniform crossover could take place between weights,

and each weight was mutated with a 0.01 probability

by adding a normally distributed random value of 0

mean and 1.0 standard deviation to the weight.

The genetic algorithm proceeded on a population of

100 individuals for 5,000 generations. During each

generation, the �tness for each network was calculated

according to equation 2 (and equation 1 for those ex-

periments where con�dence was not used) on a train-

ing set of 2,000 patterns, selected randomly among the

2,992 for each experiment. Fitness scaling was done

by sigma truncation scaling [Goldberg, 1989], which

tolerates negative �tness values. Selection was �tness-

proportionate. Throughout evolution, each population

was tested on a randomly-chosen test set of 200 pat-

terns not part of the training set.

Notice that a more accurate �tness evaluation could

easily be designed, such as the sum of squared er-

rors between the outputs and the target output. Such

an evaluation would capture more information about

the di�erences between individuals; however, Boolean

values were chosen in order to emulate less well-

understood decision tasks for which such detailed

information is not available. Furthermore, the �t-

ness evaluation seeks to reward only the desired out-

come (the correct classi�cation in the winner-takes-

all sense), not any speci�c way of attaining the out-

come. Having such an open-ended �tness evalua-

tion allows the network to implement its own, pos-

sibly unexpected, method for achieving the result

[Floreano and Urzelai, 2000].

The di�erent speciation techniques outlined in Sec-
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Figure 2: Population diversity under di�erent

speciation methods. The plots (from top to bot-

tom) show the maximum, average and minimum Eu-

clidean distances between genomes in the population

as evolution progresses. Plots are each averaged over

10 independent evolutions.

tion 3 were each tested as part of the con�dence evo-

lution method. The island method was implemented

by splitting the 100 genomes into 10 noninteracting

islands of size 10, with no migration. A spatial popu-

lation was laid out on a 10� 10 grid with edges folded

back to create a torus; an individual could mate only

with one of its four neighbors, with the o�spring re-

placing the parent with lower �tness, only if the o�-

spring's �tness was higher. Fitness sharing was imple-

mented by penalizing genomes according to Euclidean

proximity to others in the population. Crowding was

implemented such that a new individual was placed in

the population in place of the closest Euclidean neigh-

bor in a random subset of 10 from the population. In

preselection, an o�spring replaced the parent with the

lowest �tness if the o�spring was more �t than that

parent.

5 Results

To varying degrees, each speciationmethod was able to

maintain diversity in the evolution. For each of these

methods, the average Euclidean distance between the

100 genomes in the population throughout an evolu-

tion without con�dence is plotted in �gure 2. The is-

land model and the spatial model, i.e. those methods

that directly restrict mating to a local neighborhood,

resulted in particularly good genomic diversity. A con-

trol evolution with no speciation is shown as well. The
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Figure 3: Accuracy of con�dence evolution with

islands. On top, the �tness obtained by choosing

(through an unrealizable oracle) the best answer in

the entire population is plotted. In the middle, the

�tness obtained by choosing the answer of the most

con�dent individual is shown. The �tness of the most

�t individual is plotted in the bottom. The plots are

averages over 10 runs.

control evolution quickly lost much genomic diversity,

bottoming out at approximately generation 200. This

result highlights the need for speciation.

Evolutions with crowding, sharing, and preselection

each slowed convergence compared to the evolutions

with no speciation, but were considerably less e�ec-

tive. These techniques do not restrict replacement as

strongly as the island and the spatial models do; they

involve a high degree of randomization in the choice

of which population member a new genome should re-

place. Since this decision is randomized, sampling er-

ror can a�ect replacement, causing genetic drift. Mah-

foud (1992) cites this stochastic error as a diÆculty

with crowding and preselection.

As expected, those speciation methods that main-

tained the highest diversity also provided the best ad-

vantage for con�dence evolution. Populations evolved

using the island model and the spatial model were di-

verse enough so that choosing the answer of the most

con�dent individual resulted in better performance

than could be obtained from the population's cham-

pion. Figure 3 compares the accuracy in the test set

of the (unattainable) best answers, answers selected by

con�dence, and the most �t individual for the island

model.

The accuracy of the di�erent methods in the test set
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Figure 4: Accuracy of con�dence evolution with

di�erent speciation methods vs. standard evo-

lution. The island method performs the best; the

other methods are weaker than the standard evolution,

labeled \Control", in the order shown in the legend.

The plots are averages over 10 runs.

is compared in �gure 4. The main result is that con-

�dence evolution with islands resulted in a slightly

higher level of performance than the control evolution.

The other methods were worse, underlining the impor-

tance of an e�ective speciation method in con�dence

evolution. Crowding, in particular, did not perform

above chance; apparently one or more high-bidding

and wrong individuals persisted thoughout the evolu-

tion, never being replaced because they were too far

from the other genomes. This result demonstrates the

di�erence between random diversity (such as the popu-

lation before the �rst generation), and useful diversity

(niches of high-performing but di�erent individuals).

Only the latter kind of diversity is useful for con�dence

evolution.

Interestingly, when speciation methods were added to

the standard evolution, the performance either was not

a�ected or actually became worse. This result suggests

that making full use of speciation requires a technique

such as con�dence. It also shows that the observed

improvement over standard evolution is indeed due to

con�dence, and not speciation.

6 Discussion and Future Work

The experimental results in this paper show that con�-

dence evolution can improve performance of neuroevo-

lution in the handwritten digit recognition task. They

also show that e�ective speciation is crucial for this
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technique. How general are these results?

Speciation is generally used in a genetic algorithm to

increase the overall rate of learning by slowing down

population convergence. However, when speciation is

used in conjunction with con�dence evolution, the goal

is instead to increase the variation in answers made.

The existing speciation techniques used in this pa-

per may not be the best for this new, slightly di�er-

ent goal. This issue is underscored by the fact that

con�dence provided the greatest advantage in evolu-

tions with completely noninteracting subpopulations

{ a technique that would tend to harm overall �tness

since small populations are being evolved in each is-

land, leading to cruder solutions.

In the extreme, a speciation technique that even sig-

ni�cantly decreases the overall �tness of the popula-

tion would work well with con�dence evolution if it

maintains a large variety of correct answers. This is

a tradeo� that is not acceptable in a standard ge-

netic algorithm: if the goal of speciation is to increase

the overall rate of learning, a technique that lowered

the �tness of all individuals signi�cantly would not

be useful. But given this new set of criteria, perhaps

such strong speciation techniques could be devised in

the future, gaining even more bene�t from con�dence

evolution than is possible with the current techniques

[Ackley, 1987, Katila, 1987].

It is also possible that domains other than character

recognition might be more amenable to the current

speciation techniques. This domain bene�ts from a

large number of individuals �ne-tuning an approxi-

mate solution in a small space, which requires exactly

the convergence that speciation attempts to avoid. In-

stead, genetic algorithms in general and speciation

methods in particular are strongest at quickly �nd-

ing approximate solutions. Therefore, problems that

involve more global search may be more amenable to

the current techniques.

In particular, genetic algorithms are the method

of choice for sequential decision tasks where the

correct answers are not known and the feedback

is highly sporadic [Moriarty and Miikkulainen, 1997,

Moriarty et al., 1999]. Given the promising results in

the handwritten character recognition domain, con�-

dence evolution should work well in such tasks. For

example, imagine applying con�dence to the training

of a robotic controller. Each neural controller in the

population would be presented with an encoding of the

robot's sensory input, and it would output a motor ac-

tion and a con�dence level. The action recommended

by the most highly con�dent controller would be se-

lected. After several decisions were made, a �tness

evaluation for the whole sequence of decisions would

be obtained. This �tness would then be distributed to

the controllers according to how con�dent they were

of their outputs and how often they were selected.

Although at �rst it seems that such �tness informa-

tion might be too noisy, the situation is very simi-

lar to those of SANE and ESP neuroevolution meth-

ods described in [Moriarty and Miikkulainen, 1997],

[Moriarty, 1997], [Gomez and Miikkulainen, 1997],

and [Gomez and Miikkulainen, 1999], where popula-

tions of neurons are evolved to form good neural net-

works. Each neuron receives a �tness based on how

well the whole neural network performed in the task:

in e�ect, the neurons are evolved to speciate into use-

ful subtask that work well together. In reinforcement

learning tasks with con�dence evolution, similarly each

network is rewarded based on how well the whole pop-

ulation did in the sequence of decisions. Given how

powerful the SANE and ESP methods are, this same

approach may also work well in con�dence evolution.

In other learning tasks, it may be useful for an agent to

express its con�dence in a more direct form, by answer-

ing a more speci�c question about its performance. For

example, a neural robotic controllermight estimate the

amount of time needed to reach a goal state, rather

than estimating its probability of success. Such �tness

functions might lead to more powerful evolution. Sim-

ilarly, instead of always selecting the most con�dent

individual's answer, the answer might be constructed

by combining answers of the most �t individuals, or by

at least not considering the answers of those with the

lowest �tness. This method would for example solve

the problem that occurred with crowding in the above

experiments.

Di�erent techniques of training individuals to output

con�dence could also be considered. Evolving net-

works to provide answers and con�dence estimates is

clearly a more diÆcult task than simply evolving net-

works to provide answers. Might this increased diÆ-

culty be o�set by using a combination of evolution and

learning, or by Lamarkian evolution? Might it be ben-

e�cial to evolve the con�dence neuron or network in a

separate phase of evolution? Or perhaps as a separate

network entirely? These are some of the issues that

will be explored in future work.

7 Conclusion

This paper shows how the knowledge and expertise en-

coded by the entire evolved population can be utilized

to obtain a high level of performance. High-quality

decisions may be extracted from the population if a
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�tness evaluation rewards individuals that accurately

output estimates of the quality of their decisions. To

use this technique, a diverse population, capable of

producing many di�erent correct answers, is needed.

This research motivates the development of techniques

to ensure a high level of diversity throughout evolu-

tion, possibly even at the expense of overall �tness.

The technique of con�dence may have broad applica-

bility in the domain of reinforcement learning tasks,

which is the main direction of future work.
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Abstract

In this paper, we propose a hybrid genetic al-
gorithm for the optimal sorting network prob-
lem. Based on a graph-theoretical viewpoint,
we have devised a new local optimization
heuristic. We also propose a new encoding
scheme and have devised a new crossover and
mutation operator. Using a single-CPU PC,
we obtained results comparable with previous
results obtained using supercomputers.

1 Introduction

A sorting network is a hardware logic in which inputs
are sorted through a number of homogeneous compara-
tors. We denote a comparator by c(a,b). In a compara-
tor c(a,b), the ath bus and bth bus are compared; if their
values are in order, they are ignored, otherwise they are
exchanged. Figure 1 shows a simple sorting network
[ c(0,1), c(2,3), c(0,2), c(1,3), c(1,2) ]. This is a 4-bus
sorting network with �ve comparators. Here, each ver-
tical edge represents a comparator that connects two
buses. The four inputs in the buses 0, 1, 2, 3 are sorted
after passing the �ve comparators.

We can usually run a number of comparators simul-
taneously. In Figure 1, the �rst and second compara-
tors can run simultaneously, since they are indepen-
dent. Similarly, the third and the fourth comparators
also can run simultaneously. Thus, the sorting can be
completed in just three parallel steps.

bus 0

bus 1

bus 2

bus 3

Figure 1: A 4-bus sorting network

Sorting networks have been studied both in the aca-
demic world and in industry. The research has two
main aims [14]. One is to reduce the number of com-
parators and the other is to reduce the number of par-
allel steps to minimize the running time. We focus on
minimizing the number of comparators following the
convention [11] [7] [13]. We focus especially on the 16-
bus case.

Historicallymany scientists had made a study of 16-bus
sorting networks [3] [9] [1] [15] [10]. In 1969, Green [10]
�rst discovered a 60-comparator sorting network which
is still one of the best known. Recently, 16-bus sorting
networks have attracted attention again due to the im-
provements in new stochastic search methods [11] [2]
[7] [13] [8].

In 1992, Hillis [11] tackled this problem by a genetic al-
gorithm on a CM-1 supercomputer. First, he initialized
each network with the �rst 32 comparators of Green's
network so that the size of the problem space was re-
duced, and then evolved the networks by a genetic al-
gorithm with co-evolution. He found a 61-comparator
sorting network.

Although he failed to reach the quality of the best
known, his record was encouraging as the �rst trial
with a genetic algorithm. After that, Drescher [7]
attacked the same problem as Hillis and found 60-
comparator sorting networks, whose quality matches
the best known. He also used a genetic algorithm
on a CM-5 supercomputer. In 1995, Juill�e [13]
also found 60-comparator sorting networks with a
stochastic search method called END (Evolving Non-
Determinism), without �xing the �rst 32 comparators,
on a Maspar MP-2 supercomputer.

Because of the huge computational needs, all these
studies used supercomputers. In [6], we used a single-
CPU Pentium PC and found 60-comparator sorting
networks with a 76% probability in average 30 min-
utes. In this study, we propose a way to improve this
result. This is thought to be possible by devising e�ec-
tive local optimization heuristics and combining them
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with genetic operators.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our theoretical view of the sorting
network problem. In Section 3, we describe our local
optimization heuristics and in Section 4 we provide a
genetic algorithm combined with the local optimization
heuristic. We give the experimental results in Section
5. Finally, we make our conclusions in Section 6.

2 Preliminaries

2.1 Problem De�nition

To check the validity of an n-bus network, we have
to be assured that the network correctly sorts all pos-
sible input sequences. There are n! sequences and it
is costly, sometimes intractable, to check all of them.
Fortunately, the Zero-One Principle [14] says that we
can prove the validity of the network by testing just 2n

binary sequences instead of n! sequences.

We denote by Tn the entire set of 2n binary se-
quences with which we test and by Sn the set of
sorted sequences from Tn. (Sn � Tn) For example,
T4 = f0000; 0001; 0010; : : : ; 1111g and, consequently,
S4 = f0000; 0001; 0011; 0111; 1111g. We can consider
an n-bus sorting network as a function from Tn to Tn.
Let f� be the function corresponding to a sorting net-
work �. Then the entire set of valid sorting networks,
Vn, can be de�ned as follows:

Vn = f�
�� f�(Tn) = Sng:

If we denote by j�j the number of comparators in the
sorting network �, then the n-bus minimum sorting
network problem is to �nd �� 2 Vn such that j��j =
minfj�j

�� � 2 Vng. If we �x the comparators in the
front part of networks in advance, we can reduce the
problem search space considerably; this is because we
only have to test the sequences not sorted by the �xed
comparators out of the 2n binary sequences. Let � be a
sequence of comparators. The set of binary sequences
not sorted after passing � is f�(Tn) � Sn. Then, in
the case that �xes the comparators of �, the minimum
sorting network problem is �nding  � such that

j �j = minfj j
�� f (f�(Tn)� Sn) � Sng:

In the 16-bus sorting network problem, we �xed the
sequence �32 of the �rst 32 comparators following Hillis
[11]. (i.e., j�32j = 32) Then we only have to consider
the 151 sequences of f�32(T16)�S16 among all the 216

binary sequences of T16.

I1

I2

I3

c(1,2)

c(1,3)

c(2,3)

s

0010

G :

t i 0100

= 0001i

i

=

Figure 2: Problem space graph for ti = 0100

J1

J2

J3 J4

J5

J6

c(1,2)
c(0,2)

c(1,2)

c(2,3) c(2,3)

c(0,3)

c(1,3)

c(0,1)

s

01011010G

1001 0110

c(0,3)

c(1,3)
c(0,2) c(0,1)

j :

j 1100 j = 0011=t

Figure 3: Problem space graph for tj = 1100

2.2 Graph Representation for Problem

Spaces

For an element ti 2 Tn, let si be the sequence pro-
duced by sorting ti. (si 2 Sn) For example, in 4-bus
networks, if ti = 0100, then si = 0001. Now we con-
sider a directed graph Gi, which has ti as the starting
point and si as the end point. (See Figure 2.) Here,
c(x,y) represents the comparator that connects input
buses x and y. Each vertex represents the state of the
binary sequence after sorting ti by the comparators in-
dicated by the edges from the starting point to the
vertex. In the above graph, the minimum network for
sorting ti is the network composed of only c(1,3), which
is the only comparator on the shortest path from the
starting point to the end point.

We now consider tj = 1100 and, consequently, sj =
0011 in a similar way. Then we have a graph Gj as in
Figure 3. In this case, there are four distinct minimum
sorting networks with two comparators that sort tj :
[ c(1,2), c(0,3) ], [ c(1,3), c(0,2) ], [ c(0,2), c(1,3) ], and
[ c(0,3), c(1,2) ].

If the test set is composed of only one sequence as in
Figure 2, the problem of �nding a valid minimum sort-
ing network is just a shortest path problem in the graph
corresponding to that sequence. However, it is not triv-
ial when the test set has more than one sequence. For
instance, it is not trivial to �nd a minimum network
that sorts both ti and tj by individually looking at Gi
and Gj in the above example. We combine the two
graphs Gi and Gj for this. We denote by Gi

N
Gj the

graph obtained after combining Gi and Gj . Figure 4
shows Gi

N
Gj .

Then, from Gi

N
Gj , it is easy to �nd the minimum

sorting network for the two test sequences. In this
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c(0,1)

c(0,2)

c(1,3)

c(0,3)

c(1,2)

c(2,3)

Gi Gj :

Figure 4: Combined problem space graph

case, there are two distinct minimum networks with
two comparators: [ c(0,2), c(1,3) ] and [ c(1,3), c(0,2) ].

In this way, we can represent the problem space of an
n-bus sorting network as a graph. First, we construct
a graph Gi for each ti 2 Tn. Then, we combine all
these graphs to get the graph representing the problem
space of n-bus networks. In the case where a set �
of comparators is �xed, we only have to combine the
graphs corresponding to the sequences in f�(Tn)�Sn.
That is, the problem space graph becomes

G =

jf�(Tn)�SnjO

i=1

Gi :

In the end, the problem of �nding a minimum sorting
network is equivalent to �nding a sequence of compara-
tors obtained by solving a shortest path problem from
the starting point to the end point of G. When the
input size is small, it is not di�cult to construct such
a graph G. However, the size of the graph sharply in-
creases in relation to the input size. Even when we
�x the set �32 of the �rst 32-comparators in the 16-
bus network problem, it is impossible to construct the
problem space graph with a tractable space [6].

2.3 O-Pairs and N-Pairs

Let t(i) be the ith bit value of a binary sequence t. For
two input bus indices x and y such that x < y (x; y =
0; 1; 2; :::; n�1), if (f�(t))(x) � (f�(t))(y) for all t 2 Tn,
then the sorting is acceptable with the sorting net-
work � as far as the two input buses are concerned.
In this case, we call such an input bus pair (x,y) an
ordered pair (o-pair) with respect to the network �.
On the other hand, if there exists a t 2 Tn such that
(f�(t))(x) > (f�(t))(y), then the sorting is not guar-
anteed for the two buses. In this case, we call such an
input bus pair (x,y) a non-ordered pair (n-pair) with
respect to the network �.

Figure 5 shows an example of 4-bus networks.
Whatever sequences we provide for this network, the

0

1

2

3

Figure 5: An invalid network

input bus pair (0,1) is eventually in order. The input
bus pairs (0,2) and (0,3) are also in order. That is,
input bus pairs (0,1), (0,2) and (0,3) are o-pairs for the
above network. On the other hand, for the input bus
pair (1,2), there exist unordered input sequences such
as ti = 0100. Thus (1,2) is an n-pair. The pairs (1,3)
and (2,3) are also n-pairs.

We denote by OP(�) the entire set of o-pairs for a net-
work � and by NP(�) the entire set of n-pairs for it.
Similarly, we use OP(v) and NP(v) for the vertex v

corresponding to the network � in the problem space
graph. It is clear that jOP(�)j+ jNP(�)j =

�
n

2

�
.

2.4 Parallel Layers

In a sorting network, a number of consecutively located
independent comparators are allowed to be shu�ed.
Figure 6 shows an example. In the �gure, the �rst
and the second comparators can be interchanged. Sim-
ilarly, it is also possible to interchange the third and the
fourth. We handle these interchangeable comparators
as a set, since the sequence of these comparators does
not a�ect the function of the network. We call such
a set of comparators a parallel layer. The network in
Figure 6 is composed of three parallel layers.

A parallel layer strongly a�ects the subsequent search
direction. In the 16-bus sorting network problem, the
four parallel layers, corresponding to the set �32 of the
�rst 32-comparators, are generally �xed in the front
part of a network. Of course, �xing these four parallel
layers signi�cantly narrows down the search space.

If a considerable number of leading parallel layers have
been determined, the rest is straightforward. For ex-
ample, if the �rst 55 comparators of a 60-comparator
sorting network have been determined, it is fairly easy
to �nd the remaining �ve comparators by the local op-
timization heuristic described in the next section. That

Figure 6: An example of parallel layers
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Figure 7: Examples of redundant comparators

is, from the perspective of the parallel layers, the sort-
ing network problem can be considered to be the prob-
lem of �nding a considerable number of leading parallel
layers. For this reason, we evolve only a �xed number
of parallel layers from the front. The details are de-
scribed in section 3 and section 4.

3 Local Optimization

The local optimization consists of two sequential sub-
processes: edit and repair. It is performed after
crossover and mutation in our genetic algorithm.

3.1 Edit

The edit removes redundant comparators in a network.
Consider the networks in Figure 7. Comparators are in-
dexed 1 through 6 for the convenience of explanation.
Both networks represent valid networks. However, in
the �rst network, the input bus pair (0,3) is an o-pair
with respect to the comparators 1 through 5; compara-
tor 6 is redundant. The network is still valid after re-
moving comparator 6 from the network. Redundant
comparators do not necessarily exist only in the last
part of a network. In the second network, the input
bus pair (0,1) is an o-pair with respect to the compara-
tors 1, 2, and 3; comparator 4 is redundant.

As shown in the above example, if an input bus pair
corresponding to a comparator is an o-pair with respect
to its previous comparators, the comparator is redun-
dant. We can �nd all the redundant comparators as
follows. First, we provide all the test sequences to the
network and perform sorting. In this process, we check
the comparators that do not exchange any input pair.
The input bus pair corresponding to such a compara-
tor is an o-pair even without it. All these redundant
comparators are removed in the edit process. After the
edit process, there may be some parallel layer that has
no comparator. In the second network of Figure 7, for
example, there is no comparator in the third parallel
layer after the edit process. In this case, we shift ahead
the subsequent parallel layers.

3.2 Repair

An o�spring produced as a result of crossover and mu-
tation is usually not valid. The repair process modi�es

t

G= 1011

1 = 0100

0 :

:

:1000=t2

v

nv(0,1)

c(0,1) c(1,3)

G

t

:

0

G2

G1

c(0,1)

c(1,3)

c(1,2) c(2,3)

c(0,1) c(1,3)

c(0,2) c(2,3)

c(1,2)

c(0,3)

Figure 8: An example of related sequences

an invalid network to a valid one by adding new com-
parators.

3.2.1 Appending

As seen in the previous section, the problem space can
be represented by a graph G. Here, every vertex except
the end point corresponds to an invalid network. The
process of appending a new comparator to the network,
in the repair process, corresponds to a move between
two adjacent vertices in the graph. In this process, a
shortest path means a minimal use of comparators.

However, the size of the problem space is usually too
large and, consequently, it is not generally possible to
deterministically �nd a shortest path from a given ver-
tex (an invalid network) to the end point in tractable
time. In the end, we cannot help but reach the end
point by searching only a limited number of neighbor-
hood vertices for each vertex and selecting a promising
one among them.

We call the adjacent vertices of a vertex v in a graph
G the explicit neighbors of v. We denote by EN (v) the
set of the explicit neighbors of v. We choose a vertex
from EN (v) that reduces the most number of n-pairs.
It turns out through experiments that the number of n-
pairs is a fairly useful measure in selecting a promising
neighbor.

Figure 8 shows an example. For a 4-bus invalid network
�
0, assume that there are three sequences t0, t1, and
t2 in f�0(T4)�S4. Let nv(i; j) be the explicit neighbor
vertex in G to which v is transited by comparator c(i,j)
among the elements of EN (v). (nv(i; j) 2 EN (v)) In
this example, if we sort t0 and t1, then t2 is sorted
accordingly. By measuring the number of remaining
n-pairs, we would select the neighbor nv(0; 1). Table 1
shows the number of remaining n-pairs after transition
by each possible comparator.

In a graph G, let dG(v) be the shortest distance from
vertex v to the end point. Then, we can get the fol-
lowing bound for dG(v) using the number of n-pairs
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Table 1: The number of n-pairs for each nv(i; j)

nv(i; j) nv(0; 1) nv(0; 2) nv(0; 3) nv(1; 2) nv(1; 3)

1011 0111 1011 1011 1011 1011
0100 0100 0100 0100 0010 0001
1000 0100 0010 0001 1000 1000

jNP(nv(i; j))j 2 4 3 4 3

[6].

Fact 1 For G =
N

i
Gi,

maxfdGi
(v)g � dG(v) � jNP(v)j :

3.2.2 Insertion

Not only do the comparators that are \appended" to
a network transit the vertex v to promising neighbors.
The comparators \inserted" in the middle of the net-
work also have the potential to transit v to promising
neighbors. When we consider an invalid network �0 as
a sequence of comparators, there are j�0j+1 candidate
positions in which we can add a new comparator in the
repair process.

When we insert (as opposed to \appending") a com-
parator in the middle of �0, the comparator does not
necessarily transit v to an adjacent vertex of v in the
graph G. We call such a vertex, which is not adjacent
to v but can be transited to by a comparator insertion,
an implicit neighbor of v. (Figure 9) We denote by
IN (v) the set of the implicit neighbors of v.

In selecting a promising neighbor of v, we are able to
search the problem space more extensively by consider-
ing IN (v) as well as EN (v). However, it is too expen-
sive to consider all the elements of IN (v). We restrict
the search by protecting the boundaries of parallel lay-
ers.

If we allow a comparator to be inserted in any position
of a network, the structure of the parallel layers that
an o�spring inherits from the parents can be distorted
considerably. Since the repair process is performed af-
ter crossover and mutation, the repair with this type of
insertion may often prevent an o�spring from inherit-
ing the structures of the parallel layers in the parents.

neighbor

explicit
neighbors

an implicit

starting
point

end
point

added
comparator

jump

in different contexts
different meanings

Figure 9: A symbolic representation of an implicit
neighbor

0

1

2

3

4

5

6

7

Figure 10: An example of 8-bus network

In this context, we consider only the comparators that
do not break the structure of the parallel layers in the
repair process. Figure 10 shows an example 8-bus net-
work. In the �gure, the buses 0, 2, 4, and 6 have already
been used in the �rst parallel layer. So, we do not con-
sider comparators that connect at least one of these
buses in the �rst layer. Instead, we consider only the�
4
2

�
= 6 comparators that connect two unused buses.

In the second layer, we do not consider any compara-
tors since all the buses in the layer have been used. In
the third layer, there are two unused buses and we thus
consider only the comparator c(5,7).

In this manner, we can search the elements of IN (v)
reasonably maintaining the structure of parallel layers.
We call the vertices, which are not adjacent to v but
to which v is transited in this way, the restricted im-
plicit neighbors of v. We denote by RN (v) the set of
the restricted implicit neighbors of v. It is clear that
RN (v) � IN (v).

We consider the elements of RN (v) with respect to
the �xed number of parallel layers and the elements of
EN (v) in the repair process. It seems to be desirable to
select a comparator that reduces the number of n-pairs
as much as possible among the comparators that transit
v to RN (v) [ EN (v). Here, an inserted comparator
can make new redundant comparators after it, unlike
the appended comparators. We remove such redundant
comparators from the network using the edit process;
the length of the network can be even smaller than the
network before the insertion. Thus, we also consider
the edited lengths of the networks when we evaluate
the elements of RN (v).

We select the promising neighbor of v in the following
priority:

1. A vertex in RN (v) such that its corresponding
network has fewer comparators than the network
of v and the number of its n-pairs is also smaller
than jNP(v)j.

2. A vertex in RN (v) such that its corresponding
network has fewer comparators than the network
of v and the number of its n-pairs is the same as
jNP(v)j.

3. A vertex in RN (v) such that its corresponding
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create initial population of a �xed size;
do f

choose parent1 and parent2 from population;
o�spring = Crossover(parent1, parent2);
Mutation(o�spring);
LocalOptimize(o�spring);
Replace(population, o�spring);

g until (stopping condition);
return the best individual;

Figure 11: The outline of the hybrid genetic algorithm

network has the same length as that of the network
corresponding to v and the number of its n-pairs
is smaller than jNP(v)j.

4. A vertex in RN (v) [ EN (v) that has the smallest
number of n-pairs.

When a tie occurs in 4, we give favor to the comparators
that are inserted in the front side.1

4 GA Framework

We used a typical hybrid steady-state genetic algo-
rithm. Figure 11 shows the outline of the hybrid ge-
netic algorithm. To evolve the parallel layers properly,
we used a new encoding scheme, and devised a new
crossover and mutation strategy. We describe the de-
tails of our genetic algorithm in the following.

� Encoding: Each sorting network is represented
by a chromosome. Figure 12 shows the structure
of a chromosome. A chromosome is composed of
a �xed number of parallel layers and one supple-
mental layer. Each gene is represented by a pair
of input buses and corresponds to a comparator.
Each parallel layer consists of a bounded number
of independent comparators and the supplemental
layer consists of an unlimited number of compara-
tors.

1Let rand[a,b] be a random integer in [a,b]. When the

number of ties is t, we select the k
th comparator from

the front in the order of inserted positions such that k =
rand[1; rand[1; t]].

at most 8 genes no limit to the number of genes

supplemental layerparallel layer 2 parallel layer k

gene 8 gene 1 gene 2

parallel layer 1

gene 1 gene 2

Figure 12: The structure of a chromosome

The order of the layers in the chromosome is
trivially the same as that of the layers of the sort-
ing network; and the order of the genes in each
layer in the chromosome is the same as that of the
comparators in the corresponding layer of the sort-
ing network. The number of genes in each parallel
layer is at most half the number of input buses.
(In a 16-bus network, each parallel layer has at
most 8 genes.) There is no limit to the number of
genes in the supplemental layer. After all, there is
no limit to the number of genes in a chromosome.

In our GA, only the genes in the parallel lay-
ers are used for crossover. On the other hand, the
genes in the supplemental layer are used only for
the evaluation of �tness. This is basically a type
of Baldwinian hybrid GA [12] [16].

� Initialization: We set the population size to be
50. This is fairly smaller than Drescher's [7] and
Juill�e's [13]. For each parallel layer in a chro-
mosome, we randomly generate independent com-
parators. The number of independent compara-
tors are chosen between quarter and half the num-
ber of input buses. We then perform edit and re-
pair processes to make the chromosome valid.

� Parents Selection: The �tness value Fi of chro-
mosome i is calculated as follows:

Fi = (
1

Li
�

1

Lw
) + (

1

Lb
�

1

Lw
)=3

where

Lw : the length of the worst (longest)

chromosome in the population,

Lb : the length of the best (shortest)

chromosome in the population, and

Li : the length of chromosome i:

Each chromosome is selected as a parent with a
probability proportional to its �tness value. This
is a typical proportional selection scheme.

� Crossover: As mentioned, we consider only the
parallel layers of the two parents in crossover. We
perform one-point crossover with each pair of lay-
ers independent of the other layers. Since the num-
bers of genes in the two layers are usually not the
same, the traditional one-point crossover is not
possible. Thus, we generate a cut point on the
\relatively" same position in the parents. Figure
13 shows an example of the crossover. Few paral-
lel layers of o�spring made in this way are usually
valid. We convert each layer to a valid one by re-
moving comparators until there is no comparator
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parent 1

offspring

supplemental layer

supplemental layerparallel layer kparallel layer 2parallel layer 1

parallel layer 1 parallel layer 2 parallel layer k

gene 1 gene 2 gene 3 gene 4

gene 1 gene 2 gene 3 gene 4 gene 5 gene 6

parent 2

Figure 13: An example of crossover

that shares the same bus with another compara-
tor in the layer. This crossover helps handle each
parallel layer as a unit.

� Mutation: We randomly select each comparator
with a low probability (P=0.07) in each layer and
change one of the input buses at random. If there
exists a comparator in the same layer that shares
the changed bus, we exchange the buses of the two
comparators.

� Local Optimization: As mentioned in Section
3, we perform the edit and repair processes to an
o�spring after mutation.

� Replacement: We replace the inferior of the two
parents if the o�spring is not worse than both par-
ents. Otherwise, we replace the worst member
of the population. This scheme is a compromise
between preselection [5] and GENITOR-style re-
placement [17], and showed successful results in
[4].

5 Experimental Results

Experiments were performed on an Intel Pentium III
866 MHz. As mentioned, we �xed the �rst 32-
comparators of networks and evolved the population of
networks using a genetic algorithm. In particular, we
used a population size of 50, signi�cantly smaller than
other studies [11] [7] [13]. Table 2 shows the number
of 60-comparator sorting networks (of quality equiva-
lent to the best known) that we found in 15 minutes
in 100 trials, according to the number of the paral-
lel layers that we used for the GA. When we used no
more than two parallel layers, we could not �nd any
60-comparator sorting network from 100 trials. The
probability that the GA found a 60-comparator sort-
ing network showed a bitonic distribution with respect
to the number of parallel layers.

In particular, when we used 4 parallel layers, the GA
found 60-comparator sorting networks in 2 to 15 min-
utes in all of the 100 trials. Table 3 summarizes the ex-
perimental results and the environments of Hillis [11],
Drescher [7], Juill�e [13], our previous study [6] and

Table 4: The number of distinct sorting networks ac-
cording to the number of parallel steps

# of parallel steps 10 11 12 Total

# of sorting networks 26 25 35 86

Figure 14: A 60-comparator sorting network with 10
parallel steps

this study. When we examined the 100 networks with
60 comparators that we found using 4 parallel layers,
there were 86 distinct sorting networks (of course, ig-
noring the sequences in the same parallel step). Table
4 classi�es the 86 sorting networks according to the
number of parallel steps. We present in Figure 14 one
of the 60-comparator sorting networks that we found
with 10 parallel steps.

6 Conclusion

We considered the sorting network problem space as a
graph. This viewpoint provided us with a new insight
into the problem. From this, we could see the problem
space more formally and approach the problem graph-
theoretically.

We presented the concept of o-pairs and n-pairs. This
concept gave us a viewpoint that considers each com-
parator at a fairly low level. From this viewpoint we
could �nd the redundant comparators of a network and
could select the promising comparators to repair an in-
valid network.

Also we presented the concept of parallel layers and de-
scribed the importance of the use of the parallel layers
in the processes of the local optimization and the ge-
netic algorithm. We devised a new local optimization
heuristic. And, to evolve the parallel layers properly,
we provided a reasonable search range for the local op-
timization heuristic. Following the same logic, we pro-
posed a new encoding scheme in our genetic algorithm
and devised new crossover and mutation operators ac-
cordingly.

When the local optimization heuristic and the genetic
algorithm were combined, they showed strong synergy.
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Table 2: The number of 60-comparator sorting networks that we found in 15 minutes in 100 trials, according to
the number of the parallel layers

# of parallel layers 1 2 3 4 5 6 7 8 9 10

# of networks 0 0 74 100 98 91 66 36 21 7

Table 3: Comparison of Experimental Results and Environments

Hillis [11] Drescher [7] Juill�e [13]y Choi & Moon [6] This Study

Population size 65,536 524,288 4,096 100 50

Machine CM-1 CM-5 Maspar MP-2 Pentium III Pentium III
(17,000 Mips) 866 MHz 866 MHz

# of processors 65,536 64 4,096 1 1

Results 61 comparators 60 comparators, 60 comparators, 60 comparators, 60 comparators,
100 % for 10 runs almost 100 % 76 % for 100 runs 100 % for 100 runs

Execution time 5 to 50 minutes 5 to 18 minutes 5 to 10 minutes 5 to 60 minutes 2 to 15 minutes
(average 30 minutes) (average 5 minutes)

yThe version where the �rst 32 comparators are �xed

We found the best known in 16-bus networks with a
fairly small time budget. To the best of our knowl-
edge, this is the �rst result (with [6]) of �nding 60-
comparator sorting networks under a PC environment.

There are, however, remaining problems. We restricted
the problem space by �xing the �rst 32 comparators.
Although it is often believed that the global optimum
will contain the �xed 32-comparators, nobody has been
able to prove it. The global optimum may be in the
restricted space, outside it, or in both of them. We
are currently working on the theoretical justi�cation of
the restriction. This study includes experiments using
the model without �xing any comparators. We would
also consider problems of higher order than 16-bus in
further studies.
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Abstract

This paper describes research investigating the
behavior of feedforward neural networks with
different neuron types when applied to
classification problems. For this purpose, a
hierarchical evolutionary technique (HCGA) was
employed towards the automatic design of
heterogeneous neural nets. In an upper level, a
genetic algorithm keeps in charge of building the
net topology by choosing its hidden layer
neurons (possibly with distinct features). Neural
nets compete against each other across the GA
generations. In a bottom level, a coevolutionary
approach was selected in order to train the
network by adjusting both the activation function
parameters of the hidden neurons and its
incoming input weights. This tuning is done by
means of a cooperative process where the
neurons receive their fitnesses according to the
average fitness of the networks in which they
participate.

1 INTRODUCTION
Multi-Layer Perceptron (MLP) and Radial Basis Function
(RBF) networks are the most common feedforward
artificial neural networks (ANNs) used on classification,
recognition and prediction problems. Typically, ANNs are
composed of a predefined number of similar neurons in
their hidden layer. Despite the existence of some rules of
thumb to indicate this parameter in accordance with the
available training data, such empirical considerations are
failure-prone, preventing their applicability in all cases.

In this context, designing ANNs through simulated
evolution has been showing its effectiveness as an
automatic alternative to manual configuration. The
designer is no more required to provide expertise
knowledge about the problem to be handled and its
representation into the neural architecture (Whitley,
1995). Moreover, such technique is very adaptable to
dynamic changes in the environment and its employment
has brought improvements on a range of aspects, such as
better network performance, increased robustness, faster
training, and better utilization of the computational
resources (parsimony). As a multitude of different net

architectural solutions exists for each problem domain,
finding the best configuration (or just a high quality one)
can be regarded as well as a searching problem, where the
aforementioned aspects could be considered as guide
parameters for assessing and leveraging an evolving
population of neural prototypes.

By other means, although the node activation function has
been shown to be an important parameter for the ANN
configuration—it is typically the source of non-linearities
responsible for the approximation capabilities—, fewer
works have explored such fact while devising new neural
net topologies. Currently, there are no extensive results
reported in the literature contemplating the actual
effectiveness of employing Gaussian or logistic transfer
functions in all neurons at the hidden layer. This tendency
is followed, generally, for simplification purposes.

However, if the mapping function of each neuron could
be automatically defined, better results regarding the net
performance and the training convergence rate could be
achieved. In this work, we attempt to investigate such
conjecture by using GAs for the design of heterogeneous
neural networks. The idea is to view each hidden unity as
a peer with distinguished capabilities (different transfer
node) to be explored while integrating with others in a
same aggregate (neural net). Such abstraction aims at the
cooperative combination of evolving populations of
experts, mixing their qualifications towards the problem
solution (Potter & De Jong, 2000) (Zhao et al., 2000).

For such endeavor, we have made use of a hierarchical
approach, known as HCGA, composed of two
evolutionary levels (Moriarty & Miikkulainen, 1996). In
an upper level, a GA is used to build the net topology, that
is, to choose neurons (possibly with distinct features) to
take part into the net hidden layer. In a bottom level, a
coevolutionary approach was selected in order to train the
networks by adjusting both the activation function
parameters of the hidden neurons and the incoming input
weights.

In the remainder of the paper, we introduce remarks
concerning the employment of evolutionary techniques
for neural nets configuration, present our framework
towards the automatic design of heterogeneous networks,
show results from our experiments, identify future plans
of work, and address some final considerations.

266 GENETIC ALGORITHMS



2 GENETIC ALGORITHMS AND
COEVOLUTION

In the conventional genetic algorithm model, a population
of strings (chromosomes) codifying the possible solutions
for the problem at hand passes through a cyclic process in
which new candidates are constantly created and
evaluated according to some adequacy measure known as
fitness. Ancestors are charged by computational operators,
very much resembling natural evolutive phenomena
(reproduction, selection and mutation), being progressive-
ly replaced by more adapted newcomers. The population
fitness tends to converge on the course of the process and
(sub-) optimal solutions are obtained at final stages.

Some problems with this model have been reported. First,
it is very prone to the “local minima/maxima problem”, as
it depends on the configuration (search space distribution)
of the initial population. Likewise, some fast convergence
problems may occur if the population size is not properly
set. Finally, it is not very suitable for the representa-
tion/generation of complex structures such as those
composed by many entities (e.g. neural net architectures).

There is now such a trend to apply coevolution as a more
effective technique towards complexity overcoming
(Potter & De Jong, 1994). In this realm, two or more
populations of the same or different species are optimized
together, one influencing the other by some means. The
coevolutionary process has a range of features (Potter &
De Jong, 2000): (i) Each species represents a
subcomponent of a potential solution; (ii) Complete
solutions are obtained through the composition of
members representing the different types of species (A
given species could have more than one representative in
the group.); (iii) The credit assignment for each species is
a direct function of the values of fitness associated with
complete solutions in which their members take part; (iv)
There is flexibility on defining the number of available
species; and (v) A separated evolutionary algorithm (GA,
ES), that may have a totally different configuration from
the others, does the evolution of each species.

3 EVOLUTIONARY ALGORITHMS
APPLIED TO NEURAL NETWORKS

GAs have been used in conjunction with neural networks
in three major undertakings (Whitley, 1995): data pre-
processing, weight optimization algorithm, and a
procedure to search for a suitable neural net topology. The
second synergy has been hampered mainly because of the
Competing Conventions Problem. As the weight
adjustment with GAs relies heavily on recombination,
there may be many equivalent symmetric solutions to the
same optimization problem, which may delay the
convergence process. This can be alleviated through more
appropriate crossover operators, which would try to avoid
individuals showing the same cyclic genetic order of their
chromosomes.

Another strategy centers upon the integration between
evolutionary programming (EP) and ANNs. Liu and Yao
(1996) have presented an EP-based algorithm for the
tuning of ANNs with different activation function nodes.
The weights are adjusted through a combination of the
Backpropagation (BP) algorithm with a random search
algorithm. For simplicity, the authors chose to use only
the logistic and the Gaussian neurons, as they represent
two broad classes of activation functions with
complementary features. The resulting generalized neural
net (GNN), as they call, resembles very much what we
name here as heterogeneous neural networks, albeit our
approach gears towards the employment of a hierarchical
coevolutionary genetic algorithm (HCGA) and is open to
other types of neuronal behaviors.

Moreover, there is currently a tendency to merge
constructive and evolutionary approaches. The former
follow the general strategy of starting up with a minimal
architectural template and then going on annexing new
units and adjusting them in accordance with the others
already embodied, until a desired solution could have
been found (Parekh et al., 1998). In such realm, Ensley
and Nelson (1992) implemented another version of the
Cascade-Correlation (CasCor) in which it is possible to
design neural nets through the competitive fusion of
neurons with different types of mapping functions. At
each step, the new CasCor selects from a predefined finite
set of transfer functions the one which best complements
the work performed by the others.

Iyoda and Von Zuben (1999) have also attempted to
analyze the impact of configuring ANNs with different
activation functions at the hidden layer by proposing an
evolutionary hybrid architecture inspired by another
constructive method (Projection Pursuit Learning - PPL).
Such approach also incorporates distinct composition
functions in the output layer (additive and/or multiplica-
tive), guiding to a higher efficiency on the combination of
the mapping efforts realized by the hidden neurons. Their
algorithm relies only on a classical GA, not directly
promoting for the cooperation among the units.

By other means, Potter (1992) conceived the idea of
replacing the gradient descent procedure typically used to
adjust the unit placement by a competitive genetic
algorithm. Therefore, successive runs of the GA can
optimize successive hidden units. The competing entities,
thus, are individual units rather than whole networks. The
work depicted here follows another direction: To promote
the cooperation of these building blocks by means of
coevolution.

The roll of aspects indicated in the previous section for
the coevolutionary approach seems very suited for
simulating cooperation and/or competition behavior
among neural entities. Following this premise, Whitehead
and Choate (1996) have devised a cooperative-
competitive genetic scheme for the automatic
specification of two RBF parameters, centers and
variances, when applying such kind of feedforward neural
net to time series prediction. In such attempt, a GA
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operates on a population of competing basis functions
φi(||x-ci||/di), where ||·|| is typically the Euclidian norm
and x, ci, di are the input patterns vector, the radial basis
center and a scaling factor, respectively. The whole
population corresponds to a single RBF net. Hence,
individual RBFs, although competing with each other, are
forced to cooperatively model the desired function over
the domain of interest, sharing the mapping liabilities.

Through another line of reasoning, Zhao and others
(Zhao, 1997) (Zhao et al., 2000) have applied cooperative
coevolution to modular neural networks, devising an
algorithm in which each module is individually optimized
by a separate GA. In this model, the blend of neural
building blocks comes to be a coarser alternative when
compared with the previous one.

Finally, it is worth to mention the prominent evolutionary
methodology developed by Moriarty and Miikkulainen
(1996) (1998). SANE relates to a “symbiotic adaptive
neuro-evolution system”, in which a population of
homogeneous neurons is coevolved to compose a neural
net devoted to be deployed on dynamic environments.
This hierarchical solution attempts to optimize the neural
topology by two means. First, since neurons are
recognized as functional building blocks, their ensemble
can be more accurately performed. Second, since no
neuron is evaluated only by its own capabilities, but rather
by the qualities of the groups in which it takes part,
evolutionary pressure exists to evolve several
complementary neuron types. The architecture shown in
the next section was inspired by such guidelines.

4 HCGA APPROACH
Here, we first present the main design deliberations taken
during the conception of the HCGA approach, when
applied to heterogeneous neural nets. Then we assess its
adequacy and performance through a series of
benchmarking results over well-known pattern
classification problems.

4.1 HCGA ARCHITECTURE

Figure 1 shows the heterogeneous neural network model
behind the HCGA proposal. It resembles very much a
typical feedforward neural net; the main difference lies on
the hidden layer as its neurons may have distinct
activation functions (hj(·)). These functions are chosen
from the delimited candidate set (which is extensible)
presented in Table 1. The reason behind selecting such
candidates is that they comprehend a broad parcel of
those usually employed in the construction of neural nets,
ranging from simple behaviors to various degrees of non-
linearities. Besides the logistic (hyperbolic tangent) and
Gaussian functions (as employed by Liu and Yao (1996)),
we opted to make use of steps, polynomials and other
Gaussian-alike shapes.

Figure 1: Architecture of the heterogeneous neural network to be evolved by the hierarchical approach. The
shadowed box indicates the components to be optimized by the coevolutionary process: neurons with
different activation functions and the associated weights.
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As illustrated, x and y represent, respectively, the input
vector of the training/testing patterns and the resulting net
output. The output neurons have all the same aggregation
function g(·), implemented here as an additive linear
combination (∑), and the number of hidden neurons is
predetermined. There are two sets of weighted
connections, namely, V and W. The latter is optimized
during a supervised configuration process, through
stimulus-response pairs, by means of the Least Mean

Square (LMS) method. The adjustment of the weights in
W is defined in order to solve the following optimization
problem:

W
min ||y – s||2,

where ||·|| is the Euclidian norm and

y = HW = 
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to minimize the sum of the squared errors produced by
each of the p input-output patterns. The H matrix is
obtained, in this case, after the definition of m transfer
functions chosen among the candidates given by Table 1
and applied to the p patterns thereupon. The optimal
solution for the output weights is given by

HTHW = HTs ⇒ W = (HTH)-1HTs,

where (HTH)-1HT is the pseudo-inverse of H, which shall
only exist if H has a non-deficient rank.

By other means, the shadowed box in Fig. 1 indicates the
components of the heterogeneous net to be optimized
directly by the HCGA approach. As depicted in Fig. 2, we
conceived a hierarchical evolutionary architecture
composed of two levels. In a bottom level, a co-
evolutionary approach was selected in order to train the
networks by adjusting both the activation function
parameters of the hidden neurons and the incoming input
weights. In order to promote the cooperative behavior

Figure 2: Process of hierarchical evolution of the neural networks.

Table 1: Set of activation function candidates.

CANDIDATE ACTIVATION
FUNCTION

Linear f1  = x
Step f2  = 1 (if x > 0)

f2  = 0 (otherwise)
Hyperbolic Tangent

f3  =  
sxsx

sxsx

ee

ee
−

−

+
−

Gaussian
f4  =  
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2
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x

e

−

Cauchy
f5  =  2
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2
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σ
x+

Multiquadric f6  =  5f

Inverse Multiquadric
f7  =  

6

1
f

Polynomial f8  =  nx
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among the neurons that participate in a given net (aiming
at the optimized sharing and division of responsibilities)
and, at the same time, detect the most promising entities
across the various nets, each unity receives its fitness
according to the average fitness of the networks wherein
it engages. Each kind of neuron can be viewed as a
distinct evolving species and is allotted to a separate GA
customized to represent its attributes.

In an upper level, a conventional GA is used to build the
net topology, that is, to choose neurons (possibly with
distinct features) to compose the hidden layer. The same
neuron, thus, is allowed both to integrate various neural
architectures and to appear more than once in the same
structure. Neural nets compete against each other across
generations and are refined through the iterated LMS
optimization process applied to their output weights.

Appendix A is dedicated to the HCGA pseudo-algorithm.
The number of generations considered for benchmarking
purposes relates to the upper GA cycles. The initial
populations of both kinds of GA (upper and bottom) are
set in a random manner (zero-average and uniform
distribution). At the upper level, however, we decided to
allow for the creation of new individuals in an
intermediary population as a means to increase the
diversity through generations. This intermediary
population is also randomly generated.

At each cycle of the upper level GA, the evaluation of the
neural net individuals is made over a different pattern test
set, in such a way to incorporate their degree of
generalization. Their fitness is inversely proportional to
the mean squared error produced over the test patterns
and the selective pressure is elitist generation-based, that
is, the k better individuals from the last generation are not

replaced by less adapted offspring (Hancock, 1994). To
allow the net refinement phase, we decided to employ two
selection operators, one for the progressive fine-tuning
and the other for actual best net maintenance, whose
parameter rates are given in Table 2 (NNET_ELITIST and
NNET_SURVIVAL_RATE).

The chromosomes associated with neural nets are codified
as follows: Each gene represents a logical link to a given
neuron pertaining to a certain bottom GA. In this way, it
is possible to have the same neuron appearing more than
once in a given net. As the order of the neurons in the
hidden layer is irrelevant, the uniform mutation operator
was employed as it allows for the simultaneous swapping
of n neurons at a time (for us, n was limited to 2). The
recombination operator used was the one-cut crossover.

At the bottom level of evolution, each of the possible
activation functions has an associated GA. By this means,
it is possible to codify the peculiarities of each transfer
function in a proper chromosome template. The fitness of
the neural nets (set at the upper level) is propagated to all
neurons that integrate them; in this way, the fitness of a
neuron is given by the average fitness of the nets they
participate. (Neurons that do not take part in any neural
topology for NEURON_NON_FITNESS_HIST GA cycles are
replaced.) Typically, the codification of the neuron
chromosomes comprehends two slots: one for the input
weights and other for the neuron’s function parameters.
The mutation and crossover operators actuate on one of
those two slots each time, with equal probability.

4.2 RESULTS

The two pattern classification problems considered here
were obtained from the PROBEN1 benchmarking

Table 2: System configuration parameters: NNET refers to the upper level GA and NEURON to the bottom level GAs.

Parameter Meaning Value
NNET_POPSIZE Number of networks in GA 50

NNET_MAX_GEN Maximum number of generations for the neural nets 20

NNET_EXPANTION_RATE Percentage of  new elements to be inserted in the intermediary population during the
neural nets refinement phase

50%

NNET_ELITIST Number of best nets copied to next generation (elitist selection) 40%

NNET_SURVIVAL_RATE Number of best nets whose neurons are not changed on next generation 5%

NNET_CROSSOVER_CHANCE Chance of crossover occurrence 50%

NNET_MUTATION_CHANCE Chance of mutation occurrence 25%

NNET_MAX_MUTATION_SIZE Maximum number of exchanged neurons 2

NNET_NUM_HID_NEURONS Number of neurons at the hidden layer 15

NEURON_POPSIZE Number of neurons in each GA 20

NEURON_MAX_GEN Number of generations for the neurons (and the whole algorithm) 50

NEURON_EXCHANGE When to switch between selection operators (in percent of generation) 35%

NEURON_ELITIST Number of best nets copied to next generation (elitist selection) 40%

NEURON_BICLASSIST1 Number of best nets copied to next generation (biclassist selection) 30%

NEURON_BICLASSIST2 Number of worst nets copied to next generation (biclassist selection) 20%

NEURON_CROSSOVER_CHANCE Chance of crossover occurrence 25%

NEURON_MUTATION_CHANCE Chance of mutation occurrence 1%

NEURON_NON_FITNESS_HIST  Maximum number of generations until the replacement of a particular neuron that has not
been chosen for  the composition of any net
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repository (Prechelt, 1994), allowing the comparison of
our proposal with others. The first problem, Card, refers
to the task of approving or not the delivery of credit cards
to particular customers, taking into account their profiles.
The database has 690 samples of possible customers
(patterns), with 51 input parameters (net input attributes)
and two possible output responses (yes or no). 44% of the
customers have good profiles and there are some absent
data referring to some attributes, something that hinders
the classification process. We used 518 samples to train
the networks and 172 to test them. Those samples were
used in 3 different orders (predefined in PROBEN1).

The Heart problem lies in the area of predicting cardiac
diseases by observing some clinical cases (patients’ health
conditions). In this repository, there is a bunch of 920
patient samples (patterns) each composed of 35 inputs
(personal data) and two outputs (prone to cardiac
problems or not). Some attributes are also missing,
making the decision even harder. We used 690 samples
for training and 230 to test the networks. Here again we
used the samples in 3 different, predefined orders.

Table 3 shows the configuration of the best network
evolved for each problem. As can be noted, some kinds of
neurons appeared more frequently than others. This is in
line with what is expected: Since we are facing a
classification problem, a Step neuron is typically more
suitable for such a task than a Polynomial would be.

Figure 3 shows graphically the fitness of the best network
and the average fitness of all networks for each data set
along generations. The best network converges very fast
due to the elitist selection used by the GA (Hancock,
1994). The average fitness oscillates continuously along
generations because every time the neurons are evolved
the networks owning them have to be readjusted.

Table 4 compares the results achieved by many neural
network architectures (Ribeiro & Vasconcelos (1999))
and our HCGA approach for the same data sets. HCGA
performs better than all other approaches in most of the
cases, showing its great generalization capabilities when

applied to classification problems. For instance, the
HCGA improvement over the second best ANN for the
Card-3 problem reaches nearly 30%, taking into account
the classification error rate.

Liu and Xao (1996) also achieved good results when
comparing their GNN approach with common MLPs and
Gaussian MLPs in classification problems. Through a
series of experiments, the evolved GNN performed better,
exhibiting lower means of the average test set error
against the ones produced by the MLP and Gaussian
MLP. Nevertheless, the benchmarking repository used for
their analysis was a modified version of the Heart
database, composed only of 303 data samples, with only
270 patterns effectively exploited.

Iyoda and Von Zuben (1999), as well, attained good
outcomes when comparing the performance of their
hybrid architecture against the typical MLP and PPL
approaches in approximation problems. Nonetheless, the
computational costs related to their proposal constantly
reached huge amounts, something that may become a
bottleneck when applying the technique to hard problems.

4.3 FUTURE WORK

Some improvements could be undertaken as future work.
To combine other constructive techniques with ours in
different manners seems suitable. For instance, to employ
a CasCor implementation to produce a net that would
serve as an initial start-up template to generate the initial
population of neural nets at the upper HCGA level. This
would comprise a typical sequential arrangement of
strategies.

Likewise, it would also be possible to incorporate the idea
established by Iyoda and Von Zuben (1999) of evolving
distinct composition functions in the output layer
(additive and/or multiplicative). Other enterprises include:
(i) The possibility of also augmenting or pruning (Reed,
1994) the number of hidden neurons at each generation,
given space to the arising of “extend-shrink” behaviors;
(ii) The employment of other EAs to evolve the neuronal
subpopulations; (iii) The expansion in the number of
levels in the hierarchy; and (iv) The application of
cooperative coevolution to more coarser building blocks.

Table 3: Number of neurons of each type on the best
network for each data set. C# stands for the Card
data set and H# for the Heart data set.

C1 C2 C3 H1 H2 H3
Linear 3 1 2 2 5 4

Step 1 6 3 3 3 7

Hyperbolic Tangent 1 2 3 2 - 1

Gaussian 3 2 4 2 2 1

Cauchy 2 - 1 3 1 -

Multiquadric 2 2 1 2 2 -

Inverse Multiquadric 3 2 1 1 1 2

Polynomial - - - - 1 -

Table 4: Compared results (percentage of correctly
classified patterns) between HCGA and other ANNs.

C1 C2 C3 H1 H2 H3
MLP 86.00 81.00 81.00 80.00 82.00 76.00
RBF 88.00 82.00 83.00 82.00 82.00 79.00

CasCor 84.00 79.00 82.00 82.00 80.00 74.00
Tower 84.88 78.49 79.65 78.70 78.26 70.87

Pyramid 86.05 79.07 79.07 79.57 78.26 76.09
DistAl 84.35 84.06 82.90 79.13 80.87 82.61

PerCasc 87.58 86.80 84.07 82.72 82.56 80.96
Upstart 90.70 86.05 83.72 84.05 81.45 80.78
Tiling 80.23 79.05 79.07 76.52 71.64 77.39

HCGA 90.12 87.79 88.95 88.26 85.65 81.30
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5 CONCLUSION
This work has examined the suitability of merging
together into the same framework various promising
approaches proposed recently for the configuration of
neural net architectures, particularly involving
coevolution. The resulting model (HCGA) comprehends a
new hierarchical-based evolutionary scheme devoted to

the progressive assembling of heterogeneous neural
structures. This blending strategy was assessed through a
series of benchmarking tests over classification problems.
The findings obtained so far corroborate other results
already presented in the literature, showing that HCGA
constitutes a promising design strategy in the direction of
fully automatic adjustment of an extended set of neural
networks parameters.

Figure 3: Results showing the evolution of the best neural network and the average fitness of the
networks along generations.
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Appendix A (HGCA Pseudo-algorithm)

1. Create initial population;
         Create neuron populations;
         Create neural net population;

2. Evolve neural nets (refinement);
     do
          Create intermediary population (expansion);
          Evaluate neural networks
               Train (adjust weights via LMS)
               Test (compute NN_error);
          Compute fitness;
               fitness ⇐– NN_error;
          Elitist Selection;
          Mutation;
          Adjust the expansion rate;

     while( subGenCount < NNET_MAX_GEN &&
                (bestFit > lastBestFit || avgFit >lastAvgFit) );
     Set survival flag on neurons of the NUM_SURVIVE

                                                              best networks;
     Cutoff the exceeding neural nets;

     Propagate fitness to neurons;
          Neuron fitness ⇐ avg of NNets it participated;

3. Evolve neurons;

     if( subGenCount < NEURON_EXCHANGE )
          Biclassist Selection;
     Else
          Elitist Selection;
          Mutation;
4. Repeat steps 2. and 3. for NEURON_MAX_GEN times
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Abstract

In this paper, we propose a micro genetic al-
gorithm with three forms of elitism for mul-
tiobjective optimization. We show how this
relatively simple algorithm coupled with an
external �le and a diversity approach based
on geographical distribution can generate ef-
�ciently the Pareto fronts of several diÆcult
test functions (both constrained and uncon-
strained). A metric based on the average dis-
tance to the Pareto optimal set is used to
compare our results against two evolution-
ary multiobjective optimization techniques
recently proposed in the literature.

1 INTRODUCTION

Despite the considerable volume of research on evo-
lutionary multiobjective optimization (see for exam-
ple [4, 1, 16]), until recently, little emphasis had been
placed on developing eÆcient techniques. The usual
approach has been to use a ranking procedure to clas-
sify a population of individuals based on their Pareto
dominance. This ranking procedure normally con-
sumes most of the running time of an evolutionary
multiobjective optimization technique1. Pareto rank-
ing is O(kM2), where k is the number of objective
functions and M is the size of the population. Addi-
tionally, an extra mechanism is required to preserve
diversity (some form of �tness sharing [3] is normally
adopted). This generally implies the use of another
process that is O(M2).

Some authors have recently addressed eÆciency issues

1This is obviously considering the academic test func-
tions that most researchers have used so far. In real-
world problems, most of the computational time is nor-
mally spent evaluating the �tness functions of the problem.

in the context of evolutionary multiobjective optimiza-
tion (e.g., [10, 2]). Knowing the sources of ineÆciency
of traditional evolutionary multiobjective optimization
techniques, several researchers have focused their re-
cent e�orts on reducing the checkings for nondomi-
nance and in the development of eÆcient approaches
to keep diversity. Regarding the �rst issue, the main
emphasis has been on using an external �le that stores
nondominated vectors found during the evolutionary
process. These vectors are put back into the popula-
tion at later generations (this can be seen as a form of
elitism in the context of multiobjective optimization
[6, 18]). Regarding the second issue, the main em-
phasis has been on using clustering techniques [2] or
approaches based on geographical positioning of indi-
viduals in an adaptive grid [10].

Also, some researchers have suggested the use of a dis-
tributed GA in which Pareto dominance is applied only
to neighbors within a certain region [13]. Such sort of
approach can handle the two problems previously men-
tioned simultaneously. The approach is eÆcient be-
cause Pareto dominance is applied in parallel to small
groups of individuals. Diversity does not require an
extra mechanism, since it naturally emerges from the
distributed population. However, to take advantage of

these features of the algorithm, a parallel architecture
is necessary.

Our approach was to use a GA with a very small popu-
lation size and a reinitialization process (a micro-GA)
to solve multiobjective optimization problems of di�er-
ent degrees of complexity. To validate the performance
of our approach, we used a metric previously de�ned
in the literature to compare our results against two
techniques that are representative of the state-of-the-
art in evolutionary multiobjective optimization algo-
rithms: the Nondominated Sorting Genetic Algorithm
II (NSGA II) [2] and the Pareto Archived Evolution
Strategy (PAES) [10].
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2 PREVIOUS WORK

The term micro-genetic algorithm (micro-GA) refers
to a small-population genetic algorithm with reinitial-
ization. The approach was derived from some theo-
retical results obtained by Goldberg [5], according to
which a population size of three was suÆcient to con-
verge, regardless of the chromosomic length. The pro-
cess suggested by Goldberg was to start with a small
randomly generated population, then apply to it the
genetic operators until reaching nominal convergence

(e.g., when all the individuals have their genotypes ei-
ther identical or very similar), and then to generate
a new population by transferring the best individu-
als of the converged population to the new one. The
remaining individuals would be randomly generated.

The �rst to report an implementation of a micro-GA
was Krishnakumar [11], who used a population size
of �ve, a crossover rate of one and a mutation rate
of zero. His approach also adopted an elitist strat-
egy that copied the best string found in the current
population to the next generation. Selection was per-
formed by holding four competitions between strings
that were adjacent in the population array, and declar-
ing to the individual with the highest �tness as the
winner. Krishnakumar [11] compared his micro-GA
against a simple GA (with a population size of 50, a
crossover rate of 0.6 and a mutation rate of 0.001). He
reported faster and better results with his micro-GA
on two stationary functions and a real-world engineer-
ing control problem (a wind-shear controller task). Af-
ter him, several other researchers have developed ap-
plications of micro-GAs (e.g., [8, 17]). However, the
work reported in this paper represents, to the best of
our knowledge, the �rst attempt to use a micro-GA
for multiobjective optimization.

Regarding similar work, we are only aware of an ap-
proach developed by Jaszkiewicz [7] in which a small
population initialized from a large external memory is
used for a short period of time. However, to the best
of our knowledge, this approach has been used only
for multiobjective combinatorial optimization. Some
could also argue that the multi-membered versions of
PAES can be seen as a form of micro-GA. However, the
authors of PAES concluded that the addition of a pop-
ulation did not, in general, improve the performance of
their approach, and increased the computational over-
head in an important way [10].

3 DESCRIPTION OF OUR

APPROACH

The way in which our technique works is illustrated
in Figure 1. First, a random population is generated.
This random population feeds the population mem-
ory, which is divided in two parts: a replaceable and a
non-replaceable portion. The non-replaceable portion
of the population memory will never change during
the entire run and is meant to provide the required di-
versity for the algorithm. In contrast, the replaceable
portion will experience changes after each cycle of the
micro-GA.

The population of the micro-GA at the beginning of
each of its cycles is taken (with a certain probability)
from both portions of the population memory so that
we can have a mixture of randomly generated individ-
uals (non-replaceable portion) and evolved individuals
(replaceable portion).

During each cycle, the micro-GA undergoes conven-
tional genetic operators (binary representation is used
in our implementation): tournament selection, two-
point crossover, uniform mutation, and elitism. Af-
ter the micro-GA �nishes one cycle, we choose two
nondominated vectors2 from the �nal population and
compare them with the contents of the external mem-
ory (this memory is initially empty). If either of them
(or both) remains as nondominated after comparing it
against the vectors in this external memory, then they
are included there (i.e., in the external memory). This
is our historical archive of nondominated vectors. All
dominated vectors contained in the external memory
are eliminated.

The same two vectors previously mentioned are also
compared against two elements from the replaceable
portion of the population memory. If either of these
vectors dominates to its match in the population mem-
ory, then it replaces it. Otherwise, the vector is dis-
carded. Over time, the replaceable part of the popu-
lation memory will tend to have more nondominated
vectors, some of which will be used in some of the ini-
tial populations of the micro-GA.

Our approach uses three types of elitism. The �rst
is based on the notion that if we store the nondomi-
nated vectors produced from each cycle of the micro-
GA, we will not lose any valuable information obtained
from the evolutionary process. The second is based on
the idea that if we replace the population memory by
the nominal solutions (i.e., the best solutions found

2This is assuming that we have two or more nondomi-
nated vectors. If there is only one, then this vector is the
only one selected.

275GENETIC ALGORITHMS



Population

Nominal

Selection

Crossover

Mutation

Elitism

New
Population

Convergence?

Filter

External 
Memory

cycle
micro−GA

N

Y

Non−ReplaceableReplaceable

Population Memory

Random
Population

Fill in
both parts

of the 
population
memory

Initial

Figure 1: Diagram that illustrates the way in which our micro-GA works.

when nominal convergence is reached), we will gradu-
ally converge, since crossover and mutation will have
a higher probability of reaching the true Pareto front
of the problem over time. Nominal convergence, in
our case, is de�ned in terms of a certain (low) num-
ber of generations (two to �ve in our case). The third
type of elitism is applied at certain intervals (de�ned
by a parameter called \replacement cycle"). We take
a certain number of points from all the regions of the
Pareto front generated so far and we use them to �ll
the replaceable memory. Depending on the size of the
replaceable memory, we choose as many points from
the Pareto front as necessary to guarantee a uniform
distribution. This process allows us to use the best
solutions generated so far as the starting point for the
micro-GA, so that we can improve them (either by
getting closer to the true Pareto front or by getting a
better distribution).

To keep diversity in the Pareto front, we use an
approach similar to the adaptive grid proposed by
Knowles & Corne [10]. Once the archive that stores
nondominated solutions has reached its limit, we di-
vide the objective search space that this archive covers,
assigning a set of coordinates to each solution. Then,
each newly generated nondominated solution will be

accepted only if the geographical location to where
the individual belongs has fewer individuals than the
most crowded location. Alternatively, the new non-
dominated solution could also be accepted if the in-
dividual belongs to a location outside the previously
speci�ed boundaries.

The adaptive grid requires two parameters: the ex-
pected size of the Pareto front and the number of po-
sitions in which we will divide the solution space for
each objective. The �rst parameter is de�ned by the
size of the external memory. We have found that our
approach is not very sensitive to the second parameter
(e.g., in our experiments a value of 15 or 25 provided
very similar results). The process of determining the
location of a certain individual has a low computa-
tional cost (it is based on the values of its objectives
as indicated before). However, when the individual
is out of range, we have to relocate all the positions.
Nevertheless, this last situation does not occur too of-
ten, and we allocate a certain amount of extra room
in the �rst and last locations of the grid to minimize
its occurrence.
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4 COMPARISON OF RESULTS

Several test functions were taken from the specialized
literature to compare our approach. In all cases, we
generated the true Pareto fronts of the problems using
exhaustive enumeration (with a certain granularity)
so that we could make a graphical comparison of the
quality of the solutions produced by our micro-GA.
Additionally, we decided to use one of the metrics de-
�ned in objective space by Zitzler et al. [18]:

M�

1 =
1

j Y 0 j

X
d02Y0

min
�
k d0 � �d k�; �d 2 �Y

	
(1)

where: Y 0; �Y � Y are the sets of objective vectors

that correspond to a set of pairwise nondominating
decision vectors X 0; �X � X , respectively, and X cor-
responds to the decision variables of the problem. It
should be obvious that M�

1 gives the average distance
to the Pareto optimal set. Therefore, we should aim
to minimize this value (see [18] for further details).

Since the main aim of this approach has been to in-
crease eÆciency, we additionally decided to compare
running times of our micro-GA against two very fast
algorithms: the NSGA II [2] and PAES3 [10].

In the following examples, the NSGA II was run using
a population size of 100, a crossover rate of 0.8, tour-
nament selection, and a mutation rate of 1/vars, where
vars = number of decision variables of the problem. In
the following examples, PAES was run using a depth of
�ve, a size of the archive of 100, and a mutation rate of
1=L, where L refers to the length of the chromosomic
string that encodes the decision variables.

For constrained functions, we used a very simple ap-
proach. Whenever two individuals were compared, we
checked their constraints. If both were feasible, non-
dominance was directly applied. If one was feasible
and the other was infeasible, the feasible would dom-
inate. If both were infeasible, then the one with the
lowest amount of constraint violation would dominate
the other. This same approach was used in PAES. The
NSGA II has its own constraint-handling mechanism,
so we did not have to implement one for it.

To allow a fair comparison of running times, all the
experiments were performed on a PC with a Pentium

3Readers interested in reproducing these experi-
ments may download the source code of the NSGA
II and PAES (original versions from their correspond-
ing authors) from the EMOO repository located at
http://www.lania.mx/~ccoello/EMOO/EMOOsoftware.html.
The code of the micro-GA is available from the authors
upon request.

III processor running at 650 MHz, 128 Mb of RAM
and a hard drive of 15 Gbytes. Our implementation
was compiled using GNU C running under Linux Red
Hat release 6.2.

Several test functions were used to validate our ap-
proach, but due to space limitations, only the results
corresponding to the four test functions shown in Ta-
ble 1 were included in this paper. In all our exper-
iments, our micro-GA used a crossover rate of 0.7,
an external memory of 100 individuals, a number of
iterations to achieve nominal convergence of two, a
population memory of 50 individuals, a percentage of
non-replaceable memory of 0.3, a population size (for
the micro-GA itself) of four individuals, and 25 sub-
divisions of the adaptive grid. The other parameters
used are shown in Table 2. Note that the mutation
rate was always 1=L (L = length of the chromosomic
string).

Figures 2, 3, 4, and 5, show the results produced by
the NSGA II, PAES and our micro-GA in the four
test functions adopted. The true Pareto fronts of each
problem are also shown in each �gure.

Results are summarized in Table 3. In all the uncon-
strained test functions used, the micro-GA obtained
the lowest CPU time and the lowest value of the met-
ric M�

1 . For the constrained test functions (such as
functions three and four), the NSGA II obtained the
lowest value of the metric, and the micro-GA placed
second. However, note that for the third test function,
the micro-GA only took a third of the running time
than the NSGA II and it covered most of the Pareto
front of the problem unlike the other two algorithms.

5 ANALYSIS OF RESULTS

There are a few things that we can say about the
observed behavior of the three algorithms compared.
The NSGA II is a very good algorithm that provides
elegant solutions and a good performance (in terms
of CPU time). However, we have found that in some
test functions the NSGA II is not able to cover prop-
erly the whole Pareto front. We believe that its ex-
ploratory capabilities could be improved, and that its
main strength is its extraordinary capability to exploit
a promising region of the search space, once it �nds it.
This last point is in fact the main weakness of our
micro-GA in its current form. However, our micro-
GA has compared relatively well in terms of the met-
ric adopted and it obtained the lowest computational
costs in all the test functions used. In fact, for the case
of the unconstrained test functions used, the micro-GA
exhibited the best overall performance. That is also an
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Table 1: Test Functions used to validate our micro-GA

TEST FUNCTION OBJECTIVES SOURCE

1 Min f1(x) =

8>><
>>:

�x if x � 1
�2 + x if 1 < x � 3
4� x if 3 < x � 4
�4 + x if x > 4

[14]

Min f2(x) = (x� 5)2

�5 � x � 10

2 Min f1(~x) =
P

n�1

i=1

�
�10 exp

�
�0:2

q
x2
i
+ x2

i+1

��
[12]

Min f2(~x) =
P

n

i=1

�
jxij

0:8 + 5 sin(xi)
3
�

�5 � x1; x2; x3 � 5

3 Max f1(x; y) = �x2 + y [9]
Max f2(x; y) =

1

2
x+ y + 1

1

6
x+ y � 13

2
� 0

1

2
x+ y � 15

2
� 0

5x+ y � 30 � 0

4 Max f1(x; y) = (x � 2)2 + (y � 1)2 + 2 [15]
Max f2(x; y) = 9x� (y � 1)2

x2 + y2 � 225 � 0
x� 3y + 10 � 0

Table 2: Some of the parameters used by our micro-GA for each of four test functions (TF) used to validate our
approach (the other parameters were kept constant in all our experiments)

PARAMETER TF1 TF2 TF3 TF4

number of iterations 150 3000 2500 1500
mutation rate 0.056 0.019 0.0217 0.0192

replacement cycle (iterations) 25 50 50 100
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Figure 2: Pareto fronts produced by the NSGA II (left), PAES (middle), and our micro-GA (right) for the �rst
test function
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Table 3: Comparison of results. Results are reported over 20 runs

TEST FUNCTION 1

Perf. measure NSGA II PAES micro-GA

average M�

1 0.00161422 0.0675201338 0.001530162
variance of M�

1 0.0000000200 0.0169825683 0.0000005886
average running time 0.282s 0.107s 0.017s
�tness function evals. 1,200 1,200 1,200

TEST FUNCTION 2

average M�

1 0.13777005 0.42445655 0.13460185
variance of M�

1 0.0000288497 0.0645582672 0.0000479001
average running time 6.481s 2.195s 0.704s
�tness function evals. 24,000 24,000 24,000

TEST FUNCTION 3

average M�

1 0.04684924 0.399809545 0.26210439
variance of M�

1 0.0064993289 0.2463272535 0.0622687130
average running time 6.4857s 68.937s 2.6896s
�tness function evals. 20,000 20,000 20,000

TEST FUNCTION 4

average M�

1 0.2951232 5.6864776 0.4046362
variance of M�

1 0.0015191459 384.12725166 0.0214295578
average running time 4.038s 56.6706s 3.4679s
�tness function evals. 12,000 12,000 12,000
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Figure 3: Pareto fronts produced by the NSGA II (left), PAES (middle), and our micro-GA (right) for the second
test function
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Figure 4: Pareto fronts produced by the NSGA II (left), PAES (middle), and our micro-GA (right) for the third
test function
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Figure 5: Pareto fronts produced by the NSGA II (left), PAES (middle), and our micro-GA (right) for the fourth
test function
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indicative that our approach to incorporate constraints
may not be the most appropriate for the micro-GA
and we are studying other techniques. Finally, PAES
has diÆculty with disconnected Pareto fronts, since
in those cases it exhibited its worst behavior. Also,
the approach used to handle constraints with PAES
(the same adopted for the micro-GA) may not be the
most appropriate and it probably had some impact on
its performance. Nevertheless, a more comprehensive
study is still necessary (using more test functions and
other metrics) to derive more general conclusions.

6 THE PARAMETERS OF OUR

APPROACH

Since our micro-GA uses several parameters that are
not typical of evolutionary multiobjective optimization
approaches, we performed several experiments to try
to determine a set of values that can be used by default
(i.e., when nothing about the problem is known).

The size of the external memory is a parameter that
should be easy to setup, since it corresponds to the
number of nondominated vectors that the user wishes
to �nd.

Regarding the size of the population memory, we rec-
ommend to set it to 50% of the size of the external
memory. The reason is that if a larger percentage is
used, the number of individuals to undergo evolution
becomes too large. On the other hand, if the percent-
age is lower, we can easily lose diversity.

For the number of iterations of the micro-GA, we found
that a value between two and �ve seems to work well.
It is important to be aware of the fact that a larger
value for this parameter implies a greater CPU cost for
the algorithm. However, a larger value provides Pareto
fronts with a better spread. Therefore, the setup of
this parameter is really a trade-o� between eÆciency
and quality of the solutions found.

Regarding the number of subdivisions of the adaptive
grid, the recommended range is a value between 5 and
100. As a default value, we suggest 25, which is the
value that provided the best overall performance in
our experiments. Larger values for this parameter will
provide a better spread of the Pareto front, but will
sacri�ce eÆciency and memory requirements.

For the percentage of non-replaceable memory, we sug-
gest to use 0.3, since this value ensures that for each
pair of individuals evolved, one will be randomly se-
lected (i.e., this promotes diversity).

Finally, for the replacement cycle, we suggest to use a

value between 25 and n (where n is the total number
of iterations). We have used values between 25 and
200 for this parameter. However, this is a parameter
that requires special attention and we intend to study
its behavior in more detail to try to derive more gen-
eral values within a narrower range. This value is also
critical for our algorithm, because if it is too small,
the algorithm may converge to a local Pareto front. If
it is too large, the replacement of the population at
each cycle may not be enough to guarantee the nec-
essary diversity. So far, the value proposed has been
empirically set up for each particular problem.

7 CONCLUSIONS AND FUTURE

WORK

We have proposed the use of a GA with a very small
population size (only four individuals) and a reini-
tialization process to solve multiobjective optimization
problems. Our approach has been compared against
the NSGA II and PAES in several test functions. In
the unconstrained test functions used, our approach
has been able to converge faster (in terms of CPU
time) to the true Pareto front than the two other
algorithms analyzed. Also, it has performed better
than them in terms of a metric previously proposed
in the specialized literature. In the constrained func-
tions, however, its performance has not been as good
as that of the NSGA II, although it has been better
than PAES. Also, in some cases, it produced a bet-
ter distribution along the Pareto front than any of the
other two algorithms analyzed.

Our initial future work will be to analyze other ap-
proaches to handle constraints in our micro-GA and
to study the capabilities of our algorithm to exploit a
certain promising region of the search space (the main
advantage of the NSGA II over our approach). We
will also perform a careful sensitivity study of the pa-
rameters of the algorithm so that we can provide more
general guidelines to set them up, and we also aim to

eliminate some of the parameters currently used.
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Abstract

We describe a new selection technique for

evolutionary multiobjective optimization al-

gorithms in which the unit of selection is a

hyperbox in objective space. In this tech-

nique, instead of assigning a selective �tness

to an individual, selective �tness is assigned

to the hyperboxes in objective space which

are currently occupied by at least one indi-

vidual in the current approximation to the

Pareto frontier. A hyperbox is thereby se-

lected, and the resulting selected individual

is randomly chosen from this hyperbox. This

method of selection is shown to be more sensi-

tive to ensuring a good spread of development

along the Pareto frontier than individual-

based selection. The method is implemented

in a modern multiobjective evolutionary al-

gorithm, and performance is tested by using

Deb's test suite of `T' functions with varying

properties. The new selection technique is

found to give signi�cantly superior results to

the other methods compared, namely PAES,

PESA, and SPEA; each is a modern multi-

objective optimization algorithm previously

found to outperform earlier approaches on

various problems.

1 Introduction

Standing on the shoulders of seminal research and de-

velopment in the area of multiobjective evolutionary

algorithms (MOEAs), such as the Niched Pareto Ge-

netic Algorithm (Horn et al., 1994; Horn and Nafpli-

otis, 1994), and the Non-Dominated Sorting method

(Srinivas and Deb, 1994), the last half-decade has

seen an explosion of interest and development of more

capable MOEAs. The techniques that have recently

emerged seem to provide fast and e�ective approxima-

tions to the Pareto frontier for a variety of benchmark

problems. These new methods include, among oth-

ers, SPEA (Strength Pareto Evolutionary Algorithm

{Zitzler and Thiele, 1999), PAES (Pareto Archived

Evolution Strategy { Knowles and Corne, 2000), M-

PAES (Memetic PAES { Knowles and Corne, 2000a),

PESA (Pareto Envelope based Selection { Corne et

al, 2000), MOMGA (Multi-Objective Messy Genetic

Algorithm, Van Veldhuizen and Lamont, 2000), and

NSGA-II (Non-Dominated Sorting genetic Algorithm

II { Deb et al, 2000).

PAES, PESA, SPEA, and NSGA-II can each be con-

sidered to be `basic' MOEAs in the sense that their

ow of control is essentially a pure evolutionary algo-

rithm framework, while the di�erences between them

amount to explorations of various di�erent ways to do

selection and population maintenance in multiobjec-

tive spaces. Methods such as M-PAES and MOMGA,

on the other hand, are more sophisticated algorithm

designs in which a pure evolutionary framework is es-

chewed in favour of a hybrid or multi-stage ow of con-

trol. M-PAES, for example, is a memetic algorithm in

which population based search is hybridised with local

search, while MOMGA is a messy genetic algorithm

(Goldberg et al, 1991) adapted for use in multiobjec-

tive search.

In this paper we are interested in the `basic' evolu-

tionary multiobjective framework, and will therefore

no longer consider M-PAES, MOMGA, and other such

methods, but the technique developed may of course

be incorporated in sophisticated MOEAs such as M-

PAES and MOMGA in future work. We describe a

variation on how to do selection in basic MOEAs, and

compare an MOEA which uses this technique to each

of PAES, PESA and SPEA on a variety of test prob-

lems. We have not yet compared with NSGA-II, which

is an omission we hope soon to rectify.
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We should also mention that much impressive mul-

tiobjective optimisation work is being done in the

�elds of multiple criteria decision making (MCDM)

and operations research. Until recently, there has

been little crosstalk between these communities and

the MOEA community. Strong-performing algorithms

emerging from these areas include a variety of local-

search based multiobjective techniques, e.g. Czyzak

and Jaszkiewicz (1998), Gandibleux et al. (1996), and

Hansen (1996; 1997). Comparison of such methods

with modern MOEAs has been done little so far, al-

though recent work by Zitzler and Thiele (1999) and

Knowles and Corne (2000) indicate that methods such

as PAES and SPEA are at least comparable in quality

to these other methods.

The remainder of this paper is set out as follows. In

section 2 we briey review selection schemes in modern

evolutionary multiobjective algorithms, and introduce

the simple concept of region-based selection. Some

simple analysis is done to suggest why region-based se-

lection may be favoured over other methods, in terms

of its maintained strong bias towards developing iso-

lated regions of the Pareto front. In section 3 we note

the algorithms and describe the test functions used in

later experiments. These experiments are described in

section 4 and their results are presented in section 5,

and we have a concluding discussion in section 6.

2 Region-Based Selection in

Evolutionary Multiobjective

Algorithms

2.1 Individual-Based Selection

We will use Figure 1 to illustrate the main selection

schemes used in current multiobjective evolutionary

algorithms. In the �gure, a number of points are plot-

ted in objective space for a supposed two-objective

problem, and we imagine that the goal is to minimize

along both axes (in the directions shown by the ar-

rows). Objective space is divided into squares (gen-

erally, `hyperboxes' in higher dimensional objective

spaces). In both PAES and PESA, the algorithms in-

corporate a subdivision of the objective space into hy-

perboxes as shown in the �gure. In PESA, information

concerning the occupation of hyperboxes is used for se-

lection as follows. An archive is maintained containing

only non-dominated solutions, and as such represents

the algorithm's current approximation to the Pareto

frontier. Selection is only from this archive. The se-

lective �tness of an individual is simply the number

of other solutions which occupy the same hyperbox

as that individual. This is called the `squeeze fac-

tor'. Tournament selection (or any other basic selec-

tion scheme) can then be used to select parents with

a bias towards small squeeze factors.

In PAES, selection is rather a di�erent a�air since

PAES is essentially a local search method. There is

just one current solution at any time, and this is there-

fore always selected to be the parent of a mutant. How-

ever, when the mutant and current solution are non-

dominated, a decision has to be made as regards which

will become the new current solution (which can be

seen indirectly as selecting the parent for the next iter-

ation). The full details of this decision are in Knowles

and Corne (2000) but for present purposes we note

that, like PESA, it makes use of hyperbox occupancy.

Selection in SPEA is done via a `Strength Pareto'

scheme developed by Zitzler and Thiele (1999). This

is a way of assigning selective �tness to an individual

based on the number of individuals in the population

which it covers { an individual covers another if it dom-

inates it, or is equal to it. This method therefore relies

on having population members around which are not

in the current approximation to the Pareto front. In

SPEA, this is organised by having two populations, an

internal and external population. The external popu-

lation only contains non-dominated individuals, while

the internal population contains the latest crop of chil-

dren produced via genetic operators, and as such may

contain individuals which are dominated by members

of the external population. Figure 1, may represent

the combined populations at a snapshot in a run of

SPEA. The point labelled X is nondominated, and

hence in SPEA's external population, and it domi-

nates two members of the external population (those

contained in the region enclosed by the lines emanat-

ing from X. The Strength measure for a nondominated

individual is just the number of individuals in the in-

ternal population which it covers. Strength measures

for members of the internal population are derived by

summing the strengths of the external population in-

dividuals which cover them. Selection is biased to-

wards minimising this strength �gure, thus preferring

the exploration of less populated regions of the ob-

jective space. So, in Figure 1, Y will have a better

selective strength than X.

Finally, NSGA-II uses a rather di�erent selection tech-

nique which has been found to be both highly e�cient

and to perform very favourably in comparison to oth-

ers. In NSGA-II, a selective �tness measure is derived

for an individual by �rst �nding the distance to the

closest other individual to it for each objective in turn.

The product of these distances gives a hypervolume

which in turn estimates the isolation of this individ-
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Figure 1: Illustration of Selection Methods in Modern MOEAs.

ual. Selection is therefore biased towards individuals

with a high isolation value. In Figure 1, for example,

the points in box A would have a low isolation value,

but that of point Y would be relatively high.

Each of the selection techniques is oriented towards

maintaining development of the Pareto front in a well

spread manner. That is, by biasing search in the re-

gion of relatively lonely regions of the current approx-

imation to the Pareto front, the aim is to promote an

even spread of individuals along it. The main di�er-

ence between the methods is the precise way in which

the degree of isolation of an individual is estimated.

PAES and PESA use hyperbox counts, NSGA-II uses

distance to nearby individuals, and SPEA uses a some-

what indirect method which estimates an individual's

isolation based on how many previously generated in-

dividuals it covers. An aspect which all of these meth-

ods share is that selection is individual-based. That

is, the unit of selection is an individual. The di�erent

variations can therefore be seen as imposing di�erent

distributions of selection probability on the individu-

als, with the goal of achieving higher probabilities for

those in isolated regions than those in crowded regions.

2.2 Region-Based Selection

Region-based selection provides an alternative, in

which the above goal is achieved more directly. In

region-based selection, the unit of selection is now a

hyperbox, rather than an individual. A selective �t-

ness is derived for a hyperbox. Using any standard se-

lection method, a hyperbox is therefore selected, and

the resulting individual chosen for genetic operations

is randomly chosen from the selected hyperbox. In

Figure 1, for example, hyperbox C would have a bet-

ter selective �tness than hyperbox B, which in turns

would have a better selective �tness than hyperbox C.

The following simple analysis suggests why region-

based selection may be favoured over an individ-

ual based scheme. Assume we are using binary

tournament selection without replacement in both

cases. That is, binary tournament selection is used

to select an individual based on selective �tnesses,

whether those selective �tness are individual-based

(measures of isolation such as strength or Deb's

crowded-comparison measure (Deb et al, 2000)) or

hyperbox-based. It is worth �rst considering a patho-

logical case in which just two hyperboxes are occupied

in the current approximation to the Pareto front. One

is occupied by 9 individuals, and the other by a single

individual. We will also assume, which seems reason-

able, that the single individual is the most isolated in

respect of the typical individual based selective �tness

measures we have considered.

With binary tournament selection, the chance of se-

lecting the best individual (the most isolated one) in an

individual based selection scheme will be 1�(9=10)2 =
0:19. The chance of selecting any one of the 9 over-

crowded individuals will therefore be 0.81. This does

not seem to provide suitably high bias towards de-

velopment in the less-crowded region. With region-

based selection, however, the units of selection are the

two occupied hyperboxes. The chance of choosing the

least-occupied box (and hence choosing the best indi-

vidual) is 1 � (1=2)2 = 0:75. The chance of choosing

any one of the more crowded individuals is therefore

0.25. With individual based selection in this example,
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we are actually more likely to choose a highly non-

isolated individual than the most isolated one. With

region-based selection, we are three times more likely

to choose the isolated than any of the non-isolated in-

dividuals.

We will now take a slightly more formal look, stepping

away from the pathological case to see what may be

the more typical situation. We will remain interested

in the relative probabilities of choosing a most isolated

individual over a most crowded individual, and will

continue to assume the use of binary tournament se-

lection. Consider an approximation to the Pareto front

which has b occupied hyperboxes, with ni individuals

in box i, and P individuals altogether in occupied hy-

perboxes, such that
P

b

i=1
ni = P . Assume now, with

a slight loss of generality, that a single hyperbox j
has the largest bi and another single hyperbox has the

smallest ni. The numbers of individuals in these least

and most crowded boxes will be l and m respectively.

When using individual based selection, the chance of

choosing an individual from the least crowded box will

be 1 � ((P � l)=P )2. The corresponding term for the

most crowded box is simply (m=P )2; the ratio of these
probabilities (2P l � l2)=m2. When m is high with

respect to l, the relative chance of choosing an iso-

lated individual rather than a crowded one reduces

fairly sharply, this would seem to unreasonably draw

selective attention towards the crowded regions. In

contrast, the corresponding ratio for region-based se-

lection turns out to be 2b� 1. It is una�ected by the

relative numbers of individuals in the di�erent boxes,

and never less than 1 (in fact, always at least 3 when

more than 1 hyperbox are occupied).

It might be thought that the same e�ect { that is, duly

high attention to isolated regions rather than crowded

ones, could be achieved by individual-based selection

with a higher tournament size. However, notice that

the chance of choosing an individual from the most

crowded box in this case will be (m=P )k, where k is

the tournament size. When the tournament size is

large, this will drop very sharply with a large popula-

tion and a fairly even distribution of individuals among

them. In these conditions, the chance of choosing an

individual from the least crowded box would become

unacceptably low, a�ecting the exploratory capabili-

ties of the algorithm.

2.3 Complexity Issues

Here we briey reect on the complexity issues inher-

ent in individual-based versus region-based selection

schemes. In the context of multi-objective search, the

issue of main interest to us here is the complexity of

calculating selective �tness based on crowding in phe-

notype space. For simplicity, we will assume genera-

tional approaches in which a new population of size n
is in every generation.

Individual-based selection requires estimates of the de-

gree of `isolation' of each individual. Accurate esti-

mation of the relative isolation of the individuals in a

population of size n would of course require n2 compar-
ison operations, where the distances between all dis-

tinct pairs are calculated. However, it has been found,

in both NSGA-II and PAES, for example, that ap-

proximate estimates of isolation can be achieved more

quickly, with quite adequate results. For example, the

metric used to approximate isolation in NSGA-II (Deb

et al., 2000) requires O(k �n logn) time, where k is the

number of objectives.

In region-based selection using hyperboxes, the key

computational concern is to caclulate a hyperbox ID

for each individual. As indicated in Knowles & Corne

(2000), in a k-objective problem using a grid of gk

hyperboxes, only Ok � n comparison operations need

be made per generation. E�ciency is improved if g
is a power of 2, but the broad order of complexity is

just linear in n. A single pass through the hyperbox

IDs then easily yields the selective �tness information

required by either region-based or individual-based se-

lection.

3 Algorithms and Test Functions

The algorithms we test in this paper are PAES, SPEA,

PESA, and PESA-II. PAES is described in full in

Knowles and Corne (2000), SPEA is described in Zit-

zler and Thiele (1999), and PESA is described in Corne

et al (2000). PESA-II is a version of PESA which uses

region-based selection. the parameter settings used are

detailed in section 4.

Deb (1998) gives a procedure for designing tunable test

functions for multiobjective optimisation. This tech-

nique enables the incorporation into objective space of

a range of characteristics to varying degrees. These

include discontinuity, concavity, non-uniformity of in-

dividuals along the Pareto front, and deception, each

of which are considered by many to be the key char-

acteristics which capable evolutionary multiobjective

optimisers need to cope with.

In this paper we use six test functions designed using

Deb's scheme. These are the functions T1-T6 which

were used in a comparison of the performance of eight

di�erent MOEAs by Zitzler et al (1999), and in a com-

parison of three di�erent algorithms by Corne et al

(2000). The important characteristics of these func-
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tions are as follows. T1 plays the role of a baseline,

simple test; it has a convex Pareto front, and no char-

acteristics which should lead to particular di�culty; T2
has a non-convex Pareto front { this causes di�culties,

for example, for several techniques from the operations

research and MCDM communities, which attempt to

iteratively optimise weighted sums of the objectives for

di�erent sets of weights, since solutions in the concave

region are not optima of any such scalarisation; T3 has
many discontinuities in the Pareto front; T4 is highly

multimodal and has 219 Pareto fronts; T5 is a decep-

tive problem, and T6 has a non-uniformly distributed

search space with solutions non-uniformly distributed

along the Pareto front.

Each is a two-objective problem de�ned on m param-

eters, in which both objectives are to be minimized.

In �ve of the problems the parameters xi were coded

as a binary string decoded such that xi 2 [0; 1]. The

remaining function (T5) also employed a binary chro-

mosome but this time unitation was used to evaluate

each of the parameters. We encode the functions here

in precisely the same way as done in Zitzler et al (1999)

and Corne et al (2000).

To briey summarize Zitzler's study, SPEA seemed to

be the best algorithm overall of the eight tested. Those

compared included several of the classic methods such

as the Niched Pareto Genetic Algorithm (Horn et al.,

1994; Horn and Nafpliotis, 1994), the Non-Dominated

Sorting method (Srinivas and Deb, 1994), and vari-

ous versions of SPEA. Later, in Corne et al's study

(2000), SPEA was compared with PESA and PAES.

PESA was found to be best overall, although on T5, the
deceptive problem, SPEA was slightly, but certainly,

the best of the algorithms compared.

4 Experimental Design

4.1 Experiments

Our experiments sought to determine the relative qual-

ity of PESA, SPEA, PAES and PESA-II, a version of

PESA which incorporates region-based selection, on

the Deb test functions. Parameter settings are given

in Table 1.

In the next section we summarise the statistical com-

parison method used to analyse the results within a

set of experiments.

4.2 Statistics

Given the results of several trial runs for each algo-

rithm, we compare the performance of two or more

Crossover rate 0.7 in PESA, PESA-II and

SPEA; not used in PAES

Crossover uniform in PESA, PESA-II

method and SPEA; not used in PAES

Mutation rate bit-ip rate set to 1=L where

L is chromosome length

Populations archive 100 in all algorithms,

IP size 10 in PESA and SPEA

Chromosome 900 in T1, T2 and T3,
lengths 300 in T4 and T6, 80 in T5
Hyper-grid size 32�32 grid in PESA, PESA-II

and PAES, not used in SPEA

Table 1: Parameter settings

multiobjective optimisers using a method proposed

originally by Fonseca and Fleming (1995a) which we

have implemented with certain extensions. When com-

paring two multiobjective algorithms (A and B), this

method returns two numbers: the percentage of the

Pareto frontier on which A conclusively beats B (based

on a Mann-Whitney U test at the 95% con�dence

level), and the percentage of the Pareto frontier on

which B beats algorithm A. For example, two well-

matched MOEAs might yield a result like [3.7, 4.1],

indicating that each algorithm was de�nitely better

than the other in small regions of the space, but they

performed similarly well on the majority of the Pareto

frontier. A clear indication that one algorithm is su-

perior to another, however, is given by a comparison

result such as [68.3, 2.2], or [100, 0.0].

In a comparison of more than two algorithms, the

comparison code performs pairwise statistical compar-

isons, as before, for each distinct pair of algorithms.

The results then show, for each algorithm, on what

percentage of the discovered Pareto frontier we can

be con�dent that it was unbeaten by any of the oth-

ers, and on what percentage of the space it beat all of

the others. For example, in Table 2, we can see that,

on problem T2, PESA-II was unbeaten by any of the

other algorithms individually on the entire Pareto sur-

face, and conclusively superior to all of the others on

27.4% of the Pareto Tradeo� surface.

5 Results and Discussion

Table 2 summarises all results for the set of experi-

ments in which each trial run was allowed 5,000 �t-

ness evaluations. The best performing algorithm for

each problem has its table entries highlighted in bold;

when there is little di�erence between the best two

(or all three), each such entry are highlighted in bold.

287GENETIC ALGORITHMS



There are two rows for each problem; the �rst give the

unbeaten statistic for each algorithm, and the second

gives the beats all statistic. For example, on problem T6,
PESA-II was unbeaten by any of the other algorithms

on 100% of the combined Pareto frontier discovered

over all trials, and on this frontier it was signi�cantly

superior to all of the others on 12.5% of it. In the

case of T6, PESA-II was so much better than the other

methods, we did additional trials to 20,000 evaluations

to see if the other methods could `catch up'.

Problem PAES SPEA PESA PESA-II

T1 66.1 1.1 99.8 100

0 0 0 0

T2 0 0 72.3 100

0 0 0 27.4

T3 65.4 22.3 78.4 100

0 0 0 0

T4 64.4 100 100 99.8

0 0.1 0 0

T5 0 100 98.6 99.7

0 0 0 0

T6 16.7 74.5 18.8 100

0 0 0 12.5

T6-long 2.8 0.5 1.1 99.8

0.2 0 0 96.1

Table 2: Comparison of PAES, SPEA, PESA and

PESA-II at 5,000 evaluations (plus an extra compari-

son at 20,000 evaluations for T6

As Table 2 shows, PESA was clearly the best method

on three of the functions, and joint best with SPEA

on a further two. On the one remaining function

it achieved the second-best performance. SPEA is

clearly best on just one function, and joint best with

PESA on two. PAES is the worst performer here, be-

ing clearly worst on three of the test functions, and

second or joint second best on the remaining three.

The results are summarised in Table 3, in which we

show the rank for each algorithm on each problem.

The rank is simply one plus the number of algorithms

which clearly did better. For example, PAES has rank

3 for T1 since two algorithms (PESA and PESA-II)

performed better than it on this function.

With reference to both tables 2 and 3, PESA-II clearly

outperforms the other methods on the test functions

examined overall. The performance on the T6 is espe-
cially marked.

We will now briey consider the di�erential perfor-

mance in terms of the T problem characteristics. T1
is a straightforward problem, and we �nd that both

Problem PAES SPEA PESA PESA-II

T1 3 4 1 1

T2 3 3 2 1

T3 3 4 2 1

T4 4 1 1 1

T5 4 1 1 1

T6 4 2 3 1

T6-long 2 4 3 1

Table 3: Summary of PAES, SPEA, PESA and PESA-

II comparisons on Functions T1-T6

PESA and PESA-II perform excellently on it, with

PAES doing well too, but SPEA doing rather badly.

Since the problem lacks deception, and PAES is essen-

tially a local search procedure, the good performance

of PAES, especially in comparison to SPEA, is under-

standable. SPEA, as hinted at in Section 2, and unlike

any of the other algorithms tested here, spends signif-

icant algorithmic e�ort in considering non-elitist solu-

tions. This strategy seems to be unnecessary for T1,
and seems to have prevented SPEA from performing

well on it in the available time. In contrast, SPEA's

non-elitism is likely to be responsible for it maintain-

ing overall best performance on the deceptive prob-

lem, T5, and also the highly multimodal problem, T4.
T2 has a concave front; this makes it non-trivial for

a local search based method and also seems to have

confounded the strength pareto approach; PESA and

PESA-II, especially the latter, perform very well on it.

PESA-II also particularly shines on the remaining two

problems, T3 and T6, which, respectively, have highly
discontinuous and highly non-uniform Pareto fronts.

6 Conclusion

We have described region-based selection as an alter-

native selection scheme for use in evolutionary mul-

tiobjective optimisation. We have implemented it

within PESA, although it may of course be employed

in most evolutionary multiobjective frameworks. Ex-

periments on functions from Deb's test suite seem to

con�rm that region-based selection is a very promising

technique. PESA-II, which employed the new selection

method, was only beaten (and then slightly) on two of

the test problems. These were the highly multimodal

problem, and the deceptive problem; hence, the rel-

atively low pro�le for region-based selection in these

cases can potentially be explained by the fact that

SPEA is non-elitist (a highly helpful feature in prob-

lems with such characteristics), while region-based se-

lection was implemented in an entirely elitist method
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(PESA).

One promising avenue for further work would seem to

be the deployment of region-based selection in a non-

elitist framework. However this is not trivial; consid-

ering occupied hyperboxes in dominated regions of the

space requires us to have a way of preferring, for ex-

ample, a hyperbox on the Pareto frontier over a dom-

inated hyperbox which has the same number of occu-

pants. Another complicating factor is that a hyperbox

may contain both dominated and nondominated indi-

viduals. We are thinking along the lines of using the

Strength Pareto approach (Zitzler and thiele, 1999) to

deal with these issues. A simple alternative might be

to simply do region-based selection on the nondomi-

nated frontier most of the time, but for a portion of

the time select from dominated individuals based on

their strength Pareto �tnesses. A further alternative

would be to only use region-based selection, but ap-

portion algorithm e�ort between selecting in this way

from di�erent Pareto frontiers, akin to the nondomi-

nated sorting approach (Srinivas and Deb, 1994).

There are runtime complexity issues which we have not

dealt with in this paper. For example, �nding occupied

hyperboxes can be done quickly, though is not trivial.

Depending on the enclosing algorithm framework, the

hyperbox and related datastructures may or may not

need constant updating. Also, region-based selection

(and any hypergrid method) requires the choice of a

parameter to de�ne the individual hyperbox dimen-

sions. NSGA-II (Deb et al, 2000), for example, re-

quires no such parameter. Preliminary investigations

suggest that results are not overly sensitive to the hy-

perbox dimension parameter, although much more in-

vestigation needs to be done to determine if this is

generally the case.
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Abstract

Adaptive �tness functions have led to very
successful evolutionary algorithms (EA) for
various types of constraint satisfaction prob-
lems (CSPs). In this paper we consider
one particular �tness function adaptation
mechanism, the so called Stepwise Adaption
of Weights (SAW). We compare algorithm
variants including two penalty systems and
we experiment with extensions of the SAW
mechanism utilizing a re�nement function
and a decay function. Experiments are ex-
ecuted on binary CSP instances generated
by a recently proposed method (method E).
This new method for generating problem in-
stances allows one single hardness parameter
and is well suited to study algorithmic behav-
ior around the phase transition. The results
show that the original version of the SAW
mechanism is very robust and has a compara-
ble or better performance than the extended
SAW mechanisms.

1 INTRODUCTION

Informally, a constraint satisfaction problem (CSP)
consists of �nding an assignment of values to vari-
ables in such a way that the restrictions imposed by
the given set of constraints are satis�ed. Constraint
satisfaction is a fundamental topic in arti�cial intel-
ligence with great practical and theoretical relevance.
On the practical side, CSPs have relevant applications
in planning, default reasoning, scheduling, etc. and a
great deal of practical problems are constrained. The-
oretically, CSPs are, in general, computationally in-
tractable (NP-hard) thereby forming a big challenge
to algorithm designers.

Evolutionary algorithms are known for their good per-
formance in the �eld of optimization. Constraint han-
dling, however, is not straightforward in an EA as the
traditional search operators, mutation and recombi-
nation do not heed constraints (or their violation).
Nevertheless, there is a growing body of literature
on applying EAs to various CSPs, such as graph-
coloring, satis�ability, or randomly generated binary
CSPs. One research line is based on a pure penalty
approach, where the evolutionary algorithm handles
all constraints indirectly. That is, all constraint viola-
tions are turned into penalties and the EA is \only"
optimizing an unconstrained problem where the �t-
ness function is composed from these penalties. In
this approach any direct constraint handling (e.g. spe-
ci�c constraint respecting mutation or crossover op-
erators, or repair mechanisms �xing some constraint
violations) is absent, making it very transparent and
general.

The SAW procedure is an add-on to this general
scheme to boost performance (to minimize the penal-
ties more e�ectively): It adaptively changes the com-
position of the �tness function during the search pro-
cess. Here we experiment with the SAW EA with two
penalty systems (penalizing the violated constraints
vs. penalizing the wrongly instantiated variables), dif-
ferent re�nement functions, and decay functions, so as

to give a complete overview of di�erent variations on
this algorithm.

Another novelty in the present work is the usage of
a recently proposed problem instance generator. As
shown by Achlioptas et al. in [1], the widely applied
CSP generators (much used in EA research) have seri-
ous de�ciencies. Most importantly, the generated in-
stances tend to be asymptotically unsolvable, prevent-
ing a sound study of algorithmic behavior around the
phase transition. The proposed alternative cures this
problem and has an additional nice feature: It allows
one single hardness parameter, making the presenta-

291GENETIC ALGORITHMS



tion (and interpretation) of results much easier.

The paper is organized as follows. Section 2 will de-

�ne the notation and terminology we use for describ-
ing CSPs and in section 4 we will examine further
how CSPs are generated using model E. In section
4.1 we will discuss how the standard stepwise adap-
tion of weights method will work on these CSPs while
in section 4.2 the re�ning function and the adaptation

mechanisms are discussed. In section 4.3 the decay
mechanisms are discussed, followed by the experimen-
tal results in section 5. Conclusions are given in section
6.

2 NOTATION AND

TERMINOLOGY

A constraint network consists of a set of variables
X1; : : : ; Xn with respective domains D1; : : : ; Dn, and
a set of constraints C. The Cartesian product of sets
D1�� � ��Dn is called the search space and denoted by
S. For 2�k�n, a constraint cj1;:::;jk 2 C; j = 1; : : : ;m
is a subset of Dj1

� � � � �Djk
, where the j1; : : : ; jk

are distinct. We say that cj1;:::;jk is of arity k and
that it bounds the variables Xj1

; : : : ; Xjk
and that

Cj1;:::;jk is the set of constraints that bound variables
X1; : : : ; Xk

1 For a given constraint network, the Con-
straint Satisfaction Problem (CSP) asks for all the
n-tuples (d1; : : : ; dn) of values such that di 2 Di,
i = 1; : : : ; n, and for every cj1;:::;jk 2 C, (dj1 ; : : : ; djk ) =2
cj1;:::;jk ; j = 1; : : : ;m. Such an n-tuple s 2 S is called
a solution of the CSP. The decision version of the CSP
is determining if a solution exists.

For an instance � of CSP with n variables, its con-

straint hypergraph G� has n vertices v1; : : : ; vn, which
correspond to the variables of � and it contains
a hyperedge fvj1 ; : : : ; vjkg if and only if there ex-
ists a constraint of arity k that bounds the vari-
ables Xj1

; : : : ; Xjk
. The following convenient graph-

theoretic representation of a CSP instance � will be
used; the incompatibility hypergraph of �, C�, is an n-
partite hypergraph of which the ith part corresponds
to variable Xi of � which has exactly jDij vertices,
one for each value in Di. In C� there exists a hyper-
edge fvj1 ; : : : ; vjkg, if and only if the corresponding
values dj1 2 Dj1

, dj2 2 Dj2
; : : : ; djk 2 Djk

are in (not
allowed by) some constraint that bounds the corre-
sponding variables. Hence, the decision version of CSP
is equivalent to asking if there exists a set of vertices in
C containing exactly one vertex from each part while
not `containing' any hyperedge, i.e., if there exists an

1We use shorthand cj and C
j if it cannot lead to confu-

sion.

independent set with one vertex from each part2. We
de�ne the Boolean function � on the search space S as
the feasibility condition, with �(s) = true if and only if

s is a solution of S, while the set fs 2 Sj�(s) = trueg
will be called the feasible search space.

Note that for the sake of simplicity we study binary
CSPs where all constraints have arity k = 2 (bound
two variables) and where all the variable domains con-

tain the same number of values D. We adhere to this
simpli�cation because it restricts experimental com-
plexity and every CSP of arity larger than two has an
equivalent binary CSP ([17]).

3 GENERATING CSPS

In [1], Achlioptas et al. show that the so-called Models
A to D are unsuitable for the study of phase transition
and threshold phenomena such as CSPs. This is be-
cause the instances they asymptotically generate have
almost certainly no solutions.

A general framework for these models, presented in
[15, 16] works in two steps:

Step 1 Either (i) each one of the
�
n

2

�
edges is selected

to be in G independently of all other edges with prob-

ability p1 (constraint density), or (ii) we uniformly

select a random set of edges of size p1
�
n

2

�
.

Step 2 Either (i) for every edge of G each one of the

D2
edges in C is selected with probability p2 (constraint

tightness), or (ii) for every edge of G we uniformly

select a random set of edges in C of size p2D
2

Combining the options for the two sets, we get four
slightly di�erent models for generating random CSPs,
in particular, in the terminology used in [16], if both
Step 1 and 2 are done with option (i), we get Model
A, while if both steps are done with option (ii), we get
Model B.

As Achlioptas et al. show in [1] Model A generates al-
most certainly unsatis�able instances for every p2 6= 0,
while Model B generates almost certainly unsatis�-
able instances for every p2 � 1=D (analogously for
the other two models). They further show that one
source of this asymptotic insolubility is the appear-
ance of `awed' values, i.e., values that are incompati-
ble with all the values of some other variable. A num-
ber of experimental studies, as reported in [14] have
avoided this pitfall, but many others did not.

2The superscript from both the constraint and the in-
compatibility hypergraph will be omitted when it is clear
from the context what instance is referred too
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In the same paper, Achlioptas at al., proposed an al-
ternative model for generating random CSP instances
(Model E), which does not su�er from the de�ciencies

underlying the other models. This model resembles
the model used for generating random boolean formu-
las for the satis�ability problem and the constraints
it generates are similar to the `nogoods' proposed by
Williams and Hogg ([18]). This model is de�ned as:

De�nition 1 C�
is a random n-partite graph with D

vertices in each part constructed by uniformly, inde-

pendently and with repetitions selecting m = p
�
n

k

�
Dk

hyperedges out of the
�
n

k

�
Dk

possible ones, with k = 2
for binary constraint networks. Also, let r = m=n de-

note the ratio of the selected edges to the number of

variables.

Such a model can be fully speci�ed as E(n;m;D; k),
where n is the number of variables, m is the number of
constraints, D is the number of values in each domain
and k is the arity of each constraint. Informally one
could say that Model E works by choosing uniformly,
independently and with repetitions conicts between
two values of two di�erent variables. The paper con-
tinues by stating that for a random instance � gen-
erated using Model E, if we have r < 1=2, � almost
certainly has a solution and it is possible to bound the
underconstrained and overconstrained regions.

It was known for Model A to D, that, when one
of their parameters was varied, the generated CSP
would exhibit a so called phase transition, where
problems change from being relatively easy to solve
to being very easy to prove unsolvable. The region
where the probability that a problem is soluble
changes from almost zero to almost one is gener-
ally indicated as the mushy region. In the mushy
region, problems are in general diÆcult to solve or
prove unsolvable and therefore of particular interest
when comparing di�erent algorithms for eÆciency.
In [1] Achlioptas et al. show that Model E also
exhibits a phase transition when one of its variables
is changed and, they give bounding formulas for the
mushy region. In this paper, all CSP instances are
generated using Model E with n = 15 variables,
domain size D = 15, k = 2, probabilities from the set
f0:20; 0:22; 0:24; 0:26; 0:28; 0:30; 0:32; 0:34; 0:36; 0:38g,
and the corresponding values of m (see De�nition 1).
This puts all generated instances between the under-
and overconstrained regions.

4 ADAPTIVE FITNESS

FUNCTIONS FOR CSPS

4.1 STANDARD STEPWISE ADAPTION

OF WEIGHTS

The Stepwise Adaptation of Weights (SAW) mecha-
nism has been introduced by Eiben and van der Hauw
[7, 8]. In several comparisons the SAW EA proved to
be a superior technique for solving speci�c CSPs [9, 2].
The basic idea behind the SAWmechanism is that con-
straints that are not satis�ed after a certain number
of search steps (i.e. �tness evaluations), must be hard
and therefore be given more attention. This is real-
ized by using a weighted sum of constraint violations
as �tness function and varying these weights to direct
the search. Technically, all weights are given an initial
value of 1 and re-setting them happens by adding a
value �w after a certain prede�ned number of evalu-
ations. The best individual of the given population is
used as reference for weight updates. Constraints that
are violated in the current-best-individual are given a
higher weight during an update operation.

The two penalty systems we compare here di�er in
the elementary penalty terms the �tness function is
composed from. Namely, these terms can be based on:

1. constraints that are violated, or on

2. variables that are wrongly instantiated.

These two mechanisms can formally be described as
follows:

f1(s) =

mX
i=1

wi � �(s; ci); (1)

where

�(s; ci) =

�
1 if s violates ci
0 otherwise

respectively

f2(s) =

nX
i=1

wi � �(s; C
i); (2)

where

�(s; Ci) =

�
1 if s violates at least one c 2 Ci

0 otherwise

Obviously, for the above functions f1; f2 and for each
s 2 S we have that �(s) = true if and only if fi(s) = 0
with i 2 f1; 2g.

The corresponding adaption schemes, that is, weight
update mechanisms, are as follows:

wi  wi + �(X�; ci) for i 2 f1; : : : ;mg (SAWcon)
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respectively

wi  wi + �(X�; Ci) for i 2 f1; : : : ; ng (SAWvar)

with X� denoting a variable in the best individual in
the population found so far.

4.2 REFINING FUNCTIONS

In [12] and [13], Gottlieb and Voss have shown that re-
�ning functions improve the performance of SAW for
3-SAT problems. Here we investigate if using these
re�ning functions also improves performance on ran-
domly generated binary CSPs. Extending the SAW
EA with a re�ning function means to add a term
��r(X) to the �tness functions leading to the following
de�nitions:

f3(s) =

mX
i=1

wi � �(s; ci) + � � r(X) (3)

respectively

f4(s) =

nX
i=1

wi � �(s; C
i) + � � r(X) (4)

Adding � � r(X) to the �tness function makes it pos-
sible to di�erentiate between individuals having the
same basic �tness value. Note that the re�ning func-
tion values are limited to the range [0; 1). By using a
re�ning factor �, the inuence of the re�ning function
on the �tness function can be tuned. The original def-
inition of the re�ning function used in [13] is adapted
to CSPs as follows:

r(X) =
1

2

 
1 +

P
n

j=1
K(Xj) � vj

1 +
P

n

j=1
jvj j

!

with

K(Xj) =

�
1 ifXj is not causing a violation inX�

�1 otherwise

where weight vj belongs to variable Xj . Note that
r(X) always adds a term concerning the wrongly in-
stantiated variables and we get two separate sets of
weights. In case of f1 (f3) we get weights wi with
i 2 f1; : : : ;mg for the constraints and weights vj with
j 2 f1; : : : ; ng for the variables. In case of f2 (f4)
both sets of weights wi with i 2 f1; : : : ; ng and vj
with j 2 f1; : : : ; ng concern the variables.

In both cases the update rule SAWcon, respectively
SAWvar can be used for the w's and we introduce a
new rule for the v's. The values for the v's are also
initiated with 1 and updated simultaneously with the
w's.

Following [13] we, in fact, introduce two di�erent up-
date rules for the weights in the re�nement function.
The rule AW1 is a problem-independent version which

reects a moderate adjustment of the weights towards
the complement of the current best individual X�,

vj  vj �K(x�
j
) for j 2 f1; : : : ; ng (AW1)

The rule AW2 is a problem-dependent version that
uses CSP speci�c knowledge in Cl:

vj  vj �

nX
l=1

K(x�
l
)j Cl(x�

l
)j j 2 f1; : : : ; ng (AW2)

AW2 takes into account that it is necessary to change
a variable that has an unsatis�ed constraint that binds
it in order to improve the current solution and hence
guides the EA towards solutions satisfying yet unsat-
is�ed constraints. We denote the SAW algorithm that
uses f3 with update rule AW1 as SAWcon;ref;AW1

and if it uses f4 with update rule AW1 we use
SAWvar;ref;AW1. We replace AW1 subscript with
AW2 if the SAW algorithm uses the AW2 update rule.

4.3 DECAY

In [11], Frank showed that WGSAT, a local search
algorithm using clause weights, is susceptible to large
absolute weights and convergence of relative weights.
To overcome this problem he suggested a decay factor.
A decay factor yields a chance to reduce high absolute
weights, which allows a correction of inappropriately
adapted weights. Given the decay factor � 2 [0; 1], we
consider the decayed adaption schemes:

wi �wi + �(X�; ci) (SAWvar;d)
wi �wi + �(X�; Ci) (SAWcon;d)
vj  �vj �K(x�

j
) (AW1d)

vj  �vj �
P

n

l=1
K(x�

l
)j Cl(x�

l
)j (AW2d)

As already observed for WGSAT in [11] and for SAW
in [13], for 3-SAT, the good �-values are very close to 1.
The same behavior for large decay rates occurred us-
ing the SAW mechanisms for CSPs as it did for 3-SAT.
If the decay rate was too large (� too small, approxi-
mately � � 0:9), it destroyed much of the information
learned during the search process.

5 EXPERIMENTAL RESULTS

We used a steady-state evolutionary algorithm with
order-based representation that proved to be the best
option in [10]. Here an individual is a permutation of
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the variables and a decoder is used to assign domain
values to each variable in the order they appear in
a given permutation. The decoder sequentially takes

variables from the permutation and tries to instanti-
ate it with values that do not violate any constraints
that bind already instantiated variables. If the decoder
does not �nd such a value, the variable is left unin-
stantiated. (Technically, it is instantiated to a special

value indicating a conict.) Earlier work has shown
that small populations produce the best performance
and that for CSPs a population size of just 1 is optimal.
Therefore, we use a (1 + 1) style EA and no crossover
operation is needed. The mutation operator is a simple
swap operator, which randomly chooses one variable
in the given permutation and swaps it with another
randomly chosen variable. The initial population is
generated randomly and the weights are adapted each
time 250 evaluations have been done. (Preliminary ex-
periments with di�erent adaption periods showed lit-
tle di�erences in performance; 250 gave just slightly
better results than other values.) After a maximum
of 100,000 evaluations, the runs were terminated. As
mentioned in section 3, we used a set of 10 di�erent
probabilities for the Model E CSP generator. With
each of these probabilities we generated 25 instances

and performed 10 runs over each instance, resulting in
250 runs for every p value for each algorithm variant.

We used two measures of comparison for the algo-
rithms; �rst Success Rate (SR), which denotes the
percentage of the runs that were completed with a so-
lution3; second, Average number of Evaluations to a
Solution (AES). Note that the last measure is only de-
�ned when a solution was found and that, although it
seems a `fair' measure, it could be misleading as some
EAs use `hidden labor' which could be invisible to the
measure. An example of hidden labor could be some
of the work done in (AW2), where problem-speci�c
knowledge was used in the �tness function.

We experimented with SAW algorithms using the dif-
ferent �tness functions (f1; f2; f3; f4), using the two
re�ning functions (AW1 and AW2) for �tness func-
tions f3 and f4 and using the decay mechanisms.

The results are depicted in �gure 1, the corresponding
numerical �gures are given in table 1. These outcomes
show that there is little di�erence between the SAW
algorithms that consider either constraints or variables
(�tness functions f1 or f2). It might be observed that
SAWvar has a small advantage in Average Evaluations
to Solution (AES) but when comparing Success Rate
(SR), the di�erences are small. In instances with prob-

3We use the decimal notation of a percentage: 10% =
0:10
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Figure 1: SR and AES graphs for SAWvar and SAWcon

ability 0:34 and 0:38 SAWvar has a better SR, while
in instances with probability 0:36 SAWcon solved more
instances. Other instances were solved by both algo-
rithms equally well (SR) and until p = 0:24 the speed
�gures (AES) are also the same. The standard devi-
ations of the averages for AES (not presented here)
were also so close that no further distinction could be
made.

The little di�erence between trying to solve CSPs with
either penalizing variables or constraints is somewhat
surprising if we consider that there are much more
constraints than variables. This implies that SAWcon

working with the �tness function f1 has more infor-
mation, but apparently f2 is already \strong" enough.

SAWvar SAWcon

SR AES SR AES

0.20 1 9.936 1 9.936
0.22 1 17.304 1 17.304
0.24 1 45.632 1 45.632

0.26 1 104.448 1 106.336
0.28 1 258.28 1 311.068
0.30 1 870.556 1 1023.66

0.32 1 2984.63 1 3322.18
0.34 0.816 13962.6 0.808 15212.3
0.36 0.396 21683.3 0.424 22480.3
0.38 0.124 18968.3 0.108 12332.2

Table 1: Numerical results for SAWvar and SAWcon

The results of the experiments with the ex-
tended SAW mechanism are given in table 2 for
SAWvar;ref;AW1 and SAWcon;ref;AW1 and in table 3
for SAWvar;ref;AW2 and SAWcon;ref;AW2. The �gures
show that the addition of the re�ning function AW1
produced no improvement at all. Experiments were
also performed with varying re�nement factors, even
up to values where the performance of the algorithms
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began to deteriorate. Di�erences between the re�ning
functions (AW1 and AW2) are also small, which in-
dicates that adding extra domain information, in the

form of Cl, also did not improve search performance.
This is also surprising because one would expect to in-
crease search speed when incorporating extra domain
knowledge. This might come at the cost of premature
convergence because of searching too greedily

SAWvar;ref;AW1 SAWcon;ref;AW1

SR AES SR AES

0.20 1 9.936 1 9.936
0.22 1 17.304 1 17.304

0.24 1 45.632 1 45.632

0.26 1 104.448 1 106.336
0.28 1 258.28 1 311.068

0.30 1 870.556 1 1023.66
0.32 1 2984.63 1 3322.18
0.34 0.816 13962.6 0.808 15212.3

0.36 0.396 21683.3 0.424 22480.3
0.38 0.124 18968.3 0.108 12332.3

Table 2: Results for SAWvar;ref;AW1 and
SAWcon;ref;AW1

SAWvar;ref;AW2 SAWcon;ref;AW2

SR AES SR AES

0.20 1 9.936 1 9.936

0.22 1 17.304 1 17.304
0.24 1 45.632 1 45.632
0.26 1 104.448 1 104.524

0.28 1 258.28 1 252.996
0.30 1 870.556 1 1048.48

0.32 0.996 2984.63 1 3430.64
0.34 0.816 13962.6 0.840 16487.5
0.36 0.396 21683.3 0.368 20957.4

0.38 0.124 18968.3 0.116 23669.4

Table 3: Results for SAWvar;ref;AW2 and
SAWcon;ref;AW2

When interpreting these results, recall that the re�n-
ing function was designed to distinguish between indi-
viduals having the same basic �tness value. The lack
of improvement when using re�ning functions seems to
imply that in case of binary CSPs, the basic functions
f1 and f2 contain suÆcient information to guide the
search successfully.

Experiments using decay factor for solving SAT prob-
lems showed that values around � = 1 work best, cf.

[11, 13]. Our studies with random binary CSPs also
indicated the same. However, we also found that ap-
plying decay to the SAW technique did not change al-

gorithm performance signi�cantly when � values were
taken from the set f0:95; 0:96; 0:97; 0:98; 0:99; 1:00g.
Note that � = 1:00 amounts to no decay. Therefore
this observation implies that algorithm variants with-
out decay and with decay using a good � value are not

performing di�erently.

Figure 2 gives an illustration by showing typical runs
using di�erent decay factors. These runs were per-
formed on instances generated with probability 0:32.
Note that the �gure only presents the search speed
results (AES). The success rates are not given be-
cause all algorithms solved all instances, except for
SAWvar;ref;AW1;d with decay factor 0:98 which solved
096% of the instances (a SR of = 0:96). The curves in-
dicate a di�erence between SAWvar;ref and the other
algorithms. Namely, SAWvar;ref using either AW1 or
AW2 seems to improve when switching o� decay, i.e.
for � = 1:0. For all other algorithms a decay factor
has no signi�cant inuence on the search speed. Recall
that the decay of weights in the SAW �tness function
was added to actively suppress the growth of weight

values. These results indicate that such a growth {
identi�ed as dangerous in related �elds, cf. [11, 13],
{ either does not occur or is not harmful in case of
random binary CSPs.
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Figure 2: graphs of SAWvar;d and SAWcon;d with dif-
ferent decay factors. p = 0:32, � = 250, re�nement-
factor � = 40

6 CONCLUSIONS

The research presented in this paper had a twofold
objective: presenting and illustrating a recently pro-
posed problem instance generator for binary CSPs and
comparing a number of variants and extensions of the
SAW technique. In particular, we used a CSP gener-
ator based on the so-called model E in [1]. We found
that the phase transition e�ects were clearly observ-
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able and by the use of one single hardness parameter
the results were easier to present { and to interpret {
than in case of the formerly used two-parameter-based

generators [3, 4, 5, 10]. The new generator deserves a
recommendation for further experimental research.

As for the algorithm variants, we experimented with
the unextended version of the SAW technique with
two penalty systems: one calculated over the variables

and one calculated over the constraints. They turned
out to yield very similar performance, which is sur-
prising. The constraint based �tness function, after
all, is based on more information as there are usually
more constraints than variables and one would expect
to improve a search algorithm when using more infor-
mation.

Inspired by related work on satis�ability problems we
have also experimented with two extensions of SAW-
ing. In particular, we tried re�ning functions and a
decay mechanism. A re�ning function � � r(X) added
to the �tness function makes it possible to di�erenti-
ate between individuals having the same basic �tness
value. We found that the application of re�ning func-
tions did not improve performance and that varying
the re�ning factor � did not have any inuence on

performance. These results seem to imply that in case
of binary CSPs the basic functions f1 and f2 contain
suÆcient information to guide the search successfully.

The addition of the decay factor did not improve the
performance in general either, neither for the origi-
nal SAW techniques, nor for the SAW technique with
a re�ning function. In fact it had a negative e�ect
on SAWvar;ref . This might be the consequence of
the relatively small problem size, where the accumu-
lation of large relative weights stays within limits and
thus does not need a counterforce. This �nding points
to the same direction as our conclusion about re�ne-
ment functions: the basic SAW mechanism is powerful
enough to solve random binary CSPs.

All in all, the comparison of the algorithm variants
shows a surprising, but pleasant picture: The simplest
setup (SAW with variable related penalties, no exten-
sions) is as good or better than any of the more sophis-
ticated variants. Although current and future research
will undoubtfully re�ne this picture, for the time being
this is good news for algorithm designers.

Further research is carried out with new types of re�n-
ing functions, problems with varying sizes (scale-up),
and larger population sizes.
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Abstract

The paper proposes a linear representation of tree
structures in order to evolve complex fuzzy rule
sets for solving classification problems. In
particular, linguistic rules are evolved, where the
condition part of a rule can have an arbitrary
structure of conjunctions and disjunctions. We
describe an efficient rule representation scheme,
which uses a genetic algorithm. The method is
tested with a number of benchmark data sets and
some results are reported.

1 INTRODUCTION

The problem of classification has been studied
extensively in machine learning (Holte,93; Michalski,98;
Weiss,91), and has recently received a lot of attention in
the emerging area of Data Mining (or Knowledge
Discovering) (Han,00; Michalski,98). The problem of
classification can be stated as follows: Given a set of
classified elements (training set), build a system
(classifier) that is capable of categorizing unlabeled
elements (testing set) where the label of an element
represents the class to which it belongs.

There exist many approaches for solving classification
problems (Weiss,91): statistical methods, decision trees,
neural networks, rule-based methods, etc.; and all of them
have some advantages and disadvantages (Curram,94;
Lim,97). The choice of a particular method depends,
however, on factors like the kind of problem to be solved,
the resources available, etc. An important factor in a
good number of problems is the comprehensibility of the
resulting classifier, that is, the possibility of
understanding the resulting model and extracting useful
knowledge to understand the modeled system.
Approaches like neural networks and many of the
statistical methods have very little comprehensibility
(Weiss,91).

Another method, Fuzzy logic has been applied
successfully (Fidelis,00; Gonzalez,98; Ishibuchi,00, 97
and 95) to extract comprehensible classifier knowledge
from data in the form of linguistic rules (in this context,
the linguistic is synonym of fuzzy). The fuzzy method
has the ability to represent imprecise knowledge and the
capability of dealing with noisy data.

Moreover, there have been several works that have
attempted to produce classifier rules (fuzzy and non-
fuzzy) using evolutionary techniques (Bojarczuk,99;
Ishibuchi,95; Liu,00). One of the main problems
encountered in this approach, is the representation of the
condition part of a rule in the chromosome. Since the
condition part can be a very complex logical expression,
there is not a natural way to represent it as linear string.
However, there are two main approaches that have been
studied (De Jong,91):

• Linear representation of the condition part

In some approaches (De Jong,91; Fidelis,00;
Gonzalez,1998; Ishibuchi 00 and 95; Liu,00), the
condition part was restricted to be a conjunction
of one or more logical terms (tests). This makes
the representation of the condition as a linear
string. But, in general, a single rule is not
sufficient enough to characterize a class; rather a
set of rules is necessary. In other approaches
(Giordana, 93), condition structures were
predefined and only some parameters of rules
were evolved. Figure 1(a) shows an example of
such cases.

• Tree representation of the condition part

In this approach, it was possible to represent
arbitrarily complex conditions using Genetic
Programming, with a substantial increase in the
implementation complexity (Bojarczuk,99;
Folino,99; Freitas,97; Tunstel,96). Figure 1(b)
gives an example of tree representation.
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Figure 1: Conventional approaches to represent condition
part of a rule. (a) a linear representation (b) a tree
representation.

The purpose of the work presented in this paper, is to
explore a new representation for linguistic classifier rules,
which tries to combine the linear and tree methods,
exploiting the advantages of both. In this approach, we
evolve arbitrarily complex rules using a novel
representation of tree structures in order to apply a genetic
search.

The subsequent sections are organized as follows. Section
2 briefly describes the approach to perform classification
tasks using fuzzy IF-THEN rules. Section 3 presents the
proposed fuzzy rule representation scheme, Section 4
describes experiments and the analysis of results, and
Section 5 draws some conclusions.

2 CLASSIFICATION USING
LINGUISTIC RULES

In general, a linguistic classifier rule has the following
form:

IF x1∈ S1 op1 x2∈ S2 ... opn-1 xn∈ Sn THEN Class m

where,

xi ∈ [0.0,1.0], is an attribute or linguistic variable

Si ∈ {S,MS,M,ML,L}, is a fuzzy set

opi ∈ {AND, OR}, is a Fuzzy-Boolean operator

In this work, the attribute values are normalized in the
interval [0.0,1.0] and fuzzy sets are defined by the
membership functions shown in the Figure 2.

Figure 2: Fuzzy sets and membership functions

In our current experiments, we used 5 linguistic values,
such as S (small), MS (medium small), M (medium), ML
(medium large) and L (large). However, the method can
be easily extended to any number of fuzzy values.

A classifier model can be represented by a set of m rules,
where m is the number of different classes, that is, each
class is represented by one, and only one, rule. For
example,

R1: IF Condition1 THEN Class C1

: : : :

Rm: IF Conditionm THEN Class Cm

In order to classify an unclassified element (x1, ... , xn),
which is represented by a vector of attributes, the
condition part of each rule is evaluated using the
membership functions and the fuzzy-set operators1. Then,
the rule with the highest value in the condition is selected,
and the element is classified according to the consequent
part of that rule:

)},...,({max),...,( 1
},..,1{

1 nc
mc

n xxConditionxxClass
∈

=

where, Conditionm(x1, ... , xn) represents the value of the
ConditionC evaluated for the element (x1, ... , xn), which is
a real value between 0.0 and 1.0.

3 PROPOSED APPROACH

In general, the condition part of a rule corresponds to a
logic expression, which can be represented by an
expression tree; a linear chromosome with variable length
represents this expression tree.

A standard genetic algorithm with special operators is
applied to evolve the rules. A GA run evolves a rule, so
multiple runs are needed to cover all classes in the
training set. The elements in the training set that belong to

1 The union (OR) operator is calculated by the function max( , ) and the
intersection (AND) by the function min( , )

S MS M ML L

0.0 1.0

(a )
IF te s t 1 a n d te s t2 … a n d te s t n

T H E N C la s s m

(b )
IF te s t 1 a n d ((… a n d te s t 2 ) o r … )
T H E N C la s s m

te s t 1 te s t2 … .. te s tn

a n d

o r

a n d

te s t 1

te s t2
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the class of the respective run are considered positive
examples and the elements that belong to other classes are
considered negative examples.

3.1 LINEAR REPRESENTATION OF
LINGUISTIC RULES

Since there are different GA runs for each class, we do
not have to represent the action part of the rule in the
chromosome; it only represents the condition part.

Formally, a condition is generated by the following
grammar:

(1) <condition> ::= <condition> <operator>

<condition>

| <atomic_condition>

(2) <atomic_cond> ::= <variable> <rel op>

<set>

(3) <operator> ::= AND <prec> | OR <prec>

(4) <variable> ::= X1|...| xn

(5) <rel op> ::= ∈ | ∉

(6) <set> ::= S | MS | M | ML | L

(6) <prec> ::= 1 | 2 |...| 8

The tree structure of an expression is generally expressed
using braces that indicate the order of evaluation of the
operators. When braces are not used, the default
precedence of the operators determines the order of
evaluation.

In our approach, we introduced precedence values for
each operator in the representation itself (represented by
<prec> in the grammar). This precedence value
indicates the order of evaluation; an operator with a
higher precedence value is evaluated first. Therefore, it is
not necessary to have braces or a tree representation to
express the evaluation order, so the expression can be
represented by a linear string.

For example, the condition

X2 ∈ MS AND2 X1 ∉ S OR1 X3 ∈ ML AND3 X2 ∈ L

represents the condition expression, as shown in Figure 3:

(X2 ∈ MS AND X1 ∉ S) OR (X3 ∈ ML AND X2 ∈ L)

Figure 3: Tree representation of a condition expression

The precedence value of the operator AND2 indicates that
this operation has to be performed before the operation
OR1. When two consecutive operators have the same
precedence value, the left one is evaluated first.

This scheme allows the representation of arbitrary
complex conditions; the number of different precedence
values determines the maximum depth of an expression
tree.

Applying the grammar rule (1) multiple times, we get a
condition with the following structure:

<ac1> <op1> ... <acn> <opn> <acn+1>

where

<aci>: Atomic Condition

<opi>: Fuzzy Operator

This condition expression is represented by a
chromosome with the structure shown in the Figure 4.

Gene1 ... Genen Genen+1

ac1 op1 ... acn opn acn+1 **

var1 ro1 s1 o1 prec1 ... varn ron sn on precn varn+1 ron+1 sn+1 **

Figure 4: Chromosome representation of the condition.

An Atomic Condition and a Fuzzy Operator compose a
gene. However, there is an exception in the last gene,
which is composed of an Atomic Condition, and the last
part (Fuzzy Operator) is ignored.

In our implementation, each gene is represented using 16
bits in the following way:

• Atomic Condition part:

o 8 bits to represent the variable (vari)

o 1 bit to represent the relational operator (roi)

o 3 bits to represent the set (si)

• Operator part:

o 1 bit to distinguish between AND and OR (oi)

o 3 bits to represent the precedence (preci)

An important characteristic of this representation is that,
in order to express the genotype, it is not necessary to
build the expression tree. Instead, the classical parsing
algorithm, operator precedence parser (Aho,86), can be
used. This technique allows the evaluation of an
expression in a very efficient way. The chromosome only
has to be traversed once, that is, the time complexity of
the evaluation is O(n), where n is the condition expression
length.

The evaluation algorithm based on the operator
precedence parser can efficiently be implemented (using
array and stack operations instead of pointer operations).

OR

ANDAND

X2 ∈ MS X1 ∉ S X3 ∈ ML X2 ∈ L
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This fact along with the compact chromosomal
representation makes this approach computationally
inexpensive.

3.2 FITNESS EVALUATION

The fitness of each chromosome (rule) is evaluated with
respect to a set of attribute vectors (training set) to which
a class has been previously assigned. In each run of the
genetic algorithm, a rule with different class Ci is evolved.
Accordingly, vectors in the training set with class part
equal to Ci are considered positive examples, and the
elements with class part different from Ci are considered
negative examples.

In our approach, the first step is to evaluate the condition
part of the rule for a given vector. If the result is greater
than or equal to 0.5, then the condition is true, otherwise it
is false. Next, the class of the vector is compared to the
class Ci of the actual run, and four different outcomes are
possible, shown in Table 1.

Table 1: Types of the classifications results

Condition Class Type

TRUE Equal True Positive (TP)

TRUE Different False Positive (FP)

FALSE Equal False Negative (FN)

FALSE Different True Negative (TN)

The fitness of the condition is evaluated taking into
account three objectives: maximize the sensitivity,
maximize the specificity, and minimize the length of the
chromosome. The length of the chromosome is penalized,
because we want to evolve simple rules. This is an
important factor that contributes to the comprehensibility.
The formulas used are as follow:

where MaxLength is the maximum allowable genes in a
chromosome, and length is the actual number of genes in
the chromosome.

This is a multi-objective problem, and there are different
ways to deal with this kind of problem (Fonseca, 97). We
chose to use a weighted sum approach, however, further
experimentation with other multi-objective optimization
approaches will be necessary. The wi terms in the fitness
definition represent the weight values.

3.3 GENETIC OPERATORS

The following genetic operators are used:

• Restricted Crossover: A crossover point is chosen
between 1 and the minimum of the lengths of the
two selected chromosomes. The child with minimal
length is chosen (Figure 5.a).

• Mutation: A randomly chosen bit is changed as
used in simple GA’s.

• Gene Elimination: A gene is chosen randomly and
eliminated. The length of the new chromosome is 16
bits shorter than the parent chromosome (Figure
5.b).

• Gene Addition: A random gene is generated and
added at the end of the chromosome. The length of
the new chromosome is 16 bits longer than the
parent chromosome (Figure 5.c).

Figure 5: Genetic operators. (a) restricted crossover (b)
gene addition (c) gene elimination.

However, only one operator is applied each time. The
operator to be applied is chosen using a uniformly
generated random number and the probability assigned to
each operator.

4 EXPERIMENTATION

In order to evaluate the performance of the proposed
approach to extract comprehensible linguistic rules from
the training data, tests were conducted using publicly
available data sets (University of California, Irvine,
Repository of Machine Learning Databases (Blake,98)).
These data sets are referenced frequently in the
classification and machine learning literature, and it is a
well-known standard for testing.

The data sets used are described in Table 2. The sample
size s, the number of classes, and the type of attributes are
shown in Table 2.

)1(s

and,

s

321 MaxLength

length
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Table 2: Test Data sets used for experiments

AttributesData

Set

Sample
size

No. of
classes

Numerical Categorical

IRIS 150 3 4 0

VOTE 435 2 0 16

WINE 178 3 13 0

4.1 EXPERIMENTAL SETTING

The data sets with numerical attributes were normalized
to have all values in a fixed range [0.0,1.0]. The attributes
of the VOTE data set have 3 possible values ‘YES’, ‘NO’
and ‘?’2; these values were codified as 1.0, 0.0 and 0.5,
respectively, to deal with categorical data.

A ten-fold testing strategy was employed (Lim, 97), that
is, the data set was partitioned into ten randomly chosen
subsets, and each subset was used as a testing set for the
classifier trained with the remaining subsets. The score of
the classifier (correctly classified samples / sample size)
was calculated as the average score of 10 tests. This
process was repeated 5 times for each data set and the
average score was taken.

A number of GA parameters were tested, and the reported
results used tournament selection, with a tournament size
of 4, along with elitism -- the best individual of each
generation is copied to the next generation.

GA parameter values:

Population: 200

Generations: 200

Mutation Rate: 0.05

Crossover Rate: 0.35

Gene Addition Rate: 0.35

Gene Elimination Rate: 0.25

Maximum Length: 50 genes

Each GA run was initialized with a random population of
rules with five genes. The weights used in the fitness
function were w1=0.45, w2=0.45 and w3=0.1, to give more
importance to sensitivity and specificity terms. In our
empirical study, these values produced good results in
different experiments; however, more experimentation
will be necessary to define criteria for tuning parameter
values.

4.2 RESULTS AND ANALYSIS

The average score and the variance in data sets are
reported in Table 3. In particular, the value 94%+/-0.3 in
the first row illustrates that the experimentations of the
IRIS data set produce an average score of 94.5% with a
variance of 0.3%. Although quantitative comparisons with
other methods are useful, and desirable, our results

2 The character ‘?’ means a neutral vote, neither YES or NO.

compare well to those reported in the literature (IRIS
(Folino,99; Gonzalez,1998; Ishibuchi,95; Liu,00), VOTE
(Folino,99; Lim,97), WINE (Ishibuchi,00)).

Table 3: Results of average prediction accuracy

Data Set Score

IRIS 94.5% +/- 0.3

VOTE 94.7% +/- 0.1

WINE 93.9% +/- 0.7

The most important objective of our fuzzy rule
classification was to obtain comprehensible rules. The
proposed approach was able to evolve simple rules, and
the following set of rules were evolved for IRIS data set
in a typical run:

R1: if X3 ∈ S OR6 X2 ∈ S THEN Class 1

R2: if X3 ∈ M THEN Class 2

R3: if X3 ∈ ML OR ( X2 ∈ ML AND X0 ∈ M) OR X3 ∈ L
THEN Class 3

There are two key points to be noted in this set of rules:

- The simplicity of the rules: The system was able to
evolve short rules.

- The feature selection: The system was able to
select attributes that contribute to distinguishing a
class, discarding other attributes.

These improved results were accomplished due to the
evolutionary pressure towards shorter rules. Figure 6
shows the evolution of the fitness and the average rule
size of the population in a particular run of the GA using
the IRIS data set. It shows how the size of the rule
converges to an optimal value, while the average fitness
of the population increases.

Figure 6: Fitness and size of the rule 2 evolution for the
IRIS data set (the fitness is multiplied by 5)
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The optimal size of a rule depends on the complexity of
the class that it intends to model. Figure 7 shows the
change in the average size of three rules for the IRIS data
set. The convergence value of each rule is different and it
can be interpreted as a measure of complexity of the class
that it represents.

Figure 7:Evolution of the rule size for the IRIS data set.

Figure 8 presents the rule size behavior for the WINE data
set. The convergence values are greater than those of the
IRIS data set. This indicates that the WINE data set is
more complex than the IRIS data set from the
classification point of view.

Figure 8: Evolution of the rule size for the WINE data set.

In some cases, there is a tradeoff between simplicity and
accuracy. Table 4 shows the scores for the previously
shown set of evolved rules for the IRIS data set. Here, the
rule R2 has 4 false positives and 2 false negatives. In
another run with the same training set (IRIS), a different
rule was evolved for the class 2:

R2′:IF (X2 ∈ M OR X1 ∉ S) AND X3 ∈ M

THEN Class 2

Table 4: Fitness of evolved rules for the IRIS data set.
Here Sens, Spec and Fitn represent sensitivity,

specificity and fitness, respectively.

Rule TP TN FP FN Sens Spec Fitn

R1 42 93 0 0 100% 100% 0.996

R2 44 85 4 2 96% 96% 0.958

R3 47 80 8 0 100% 91% 0.951

This rule (R2′) has a more restrictive condition than
previous R2. In effect, the number of false positives is
reduced to 3, but the fitness remains similar (0.959)
because of the increase of the condition length
(chromosome).

The simplicity of the rules depends on the data set
characteristics. For instance, the rules evolved for the
WINE data set are more complex. The following is a
typical rule evolved for this data set:

IF

(X3 ∈ MS OR X10 ∈ M) AND (X0 ∉ MS OR X10 ∈ S)
AND X5 ∉ MS AND X9 ∉ S AND X6 ∉ MS AND X4 ∉ S

THEN Class 1

In the case of the VOTE data set, there are only two
classes. The complexity of these two rules is expected to
be the same, and the experiments confirmed that as is
shown in figure 9.

Figure 9: Average rule size for the VOTE data set.

5 CONCLUSIONS

Our experiments showed that the proposed representation
works well in a wide variety of classification problems.
Despite the fact that only five values for the linguistic
variables were used, the accuracy of the evolved classifier
rules was very good and comparable to those reported in
the literature. The accuracy can be further improved by
increasing the number of linguistic values and applying
genetic tuning methods to the membership functions
(Herrera, 98).
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The main goal of this work was to evolve comprehensible
rules, which could be accomplished by producing shorter
rules, and performing automatic feature selection
according to the complexity of data.

The main contribution of the present work is the design of
a representation scheme. It allows an efficient and
compact representation of complex conditions, using a
linear chromosome.

However, more experiments need to be performed with
bigger data sets and using other genetic operators. It is
also important to perform quantitative comparison against
other rule evolution methods, which is a part of our future
work.
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Elhadef@dmi.usherb.ca

David A. Coley
School of Physics, University of Exeter,

Exeter, EX4 4QL, UK.
D.A.Coley@ex.ac.uk

Abstract

In this paper we introduce a new mutation heuris-
tic in an attempt to better match genetic algo-
rithms and the geography of search spaces. This
is achieved by varying the mutation rate across
the genotype to more rapidly search those areas
that are currently believed to be having the great-
est detrimental impact on the phenotype fitness.
The new adaptive mutation operator is shown to
be efficient in two applications: fault diagnosis
in distributed and multiprocessor systems and the
classical traveling salesman problem. We believe
that the proposed, adaptive, mutation operator is
the first step in realizing a new class of adaptive
genetic operators for use with a distinct, but com-
mon, subset of real world applications.

1 INTRODUCTION

In the general case, the fitness landscape of a difficult mul-
tidimensional optimization problem is a complex multidi-
mensional surface, exhibiting features over a wide-range
of scales. For many problems this makes locally based
search impractical and suggests the use of non-local meth-
ods; with one possibility being an evolutionary algorithm.
Such algorithms are general, and have been applied to nu-
merous problems such as numerical function optimization,
combinatorial optimization, image processing, fuzzy logic,
engineering processes, biology, artificial life, and machine
learning (PPS, 1992), (PGA, 1993), (ICE, 1994), (PPS,
1994) (to name only a few). But, and moving away from
the general case, many real-world fitness landscapes con-
tain a large amount of (unknown) underlying structure. The
use of a non-local method is still required for successful
navigation through such a space, but ideally this should be
with true regard to the geography of the landscape.

This paper describes a method of using some of this geo-

graphic information to improve the performance of genetic
algorithms on certain problems. The class of problem the
approach is applicable to are those that can naturally be ex-
pressed as:

���������	��������
����
���������������������������������������� �!�����"�
(1)

where
�

denotes an individual within the population,
�����#�

is the objective, or cost, function of the problem at hand,�������%$
a series functions which define fitness for subset

��$
of unknowns & , i.e.,

� $	' & , and (*) the number of
unknowns.

The classic example of such a problem is the Traveling
Salesman Problem (TSP) (Lawer et al., 1985), (Zbigniew,
1994), where the object to be minimized is the simple sum
of the distances between the cities. Although to find the
global optimum route is, for all but the simplest of arrange-
ments, an extremely difficult problem, a simple heuristic
such as “go to the next nearest city” works surprisingly
well. The TSP is just one of a number of problems where
we believe reasonable solutions can be found by separating
the problem into a series of elemental fitnesses and treat-
ing these fragments differently within an evolutionary al-
gorithm. The separation is only partial because the sub-sets
in Eq. (1) share elements (

� $,+ �.-�/�103254�/�76
) and the����� �

are not completely independent. (For truly separable
problems each unknown can be optimized sequentially and
in isolation).

The remainder of this paper is organized as follows. In
the next section we discuss the proposed adaptive mutation
process and formalize it. In Sections 3 and 4 we present
two applications of the adaptive mutation operator. Finally,
we provide some concluding remarks and suggest future
research directions.

2 ADAPTIVE MUTATION

In the early stages of a GA run, mutation has the power to
provide novelty by vaulting individuals around the search
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space. In the later stages mutation is a background opera-
tor that ensures that the probability of finding the optimal
solution is never zero and is useful for escaping from the
local minima.

Mutation acts as a safety net to recover genetic material
that may be lost through selection and crossover. The ge-
netic material recovered may be “good” or “bad”. In this
paper, we devise a new mutation process, which is expected
to preferentially recover good genetic material. The new
mutation process is henceforth referred to as adaptive mu-
tation and the standard mutation operator as random muta-
tion.

The key idea is to allocate an individual fitness to each gene
in a chromosome, and thus, the whole fitness of the chro-
mosome can be computed as function of its individual gene
fitnesses. Consider a chromosome � and let ��� ��� denotes the�����

gene. The fitness of gene ��� ��� can be computed using a
fitness function

�
. That is,

� � �	� �
��� refers to the individual
fitness of the

� ���
gene. The fitness of a given chromosome� can now be formalized as function of its individual gene

fitnesses and is given by:

�� � � � ��� �5� � ����� �����#� � �	� � � �����������#� � �	� ( ��� �

Rather than giving each gene an equal chance to be flipped,
a mutation threshold is introduced. All genes with indi-
vidual fitnesses not satisfying the threshold are mutated. It
follows that the chance of a given gene undergoing muta-
tion is now a function of its performance measure, i.e., its
individual fitness. This will ensure a decreasing likelihood
of mutating higher fitted bits, i.e., bits with individual fit-
ness not satisfying the mutation threshold, as time goes by.

Although the method is not a general one, because of the
need to have some rational way of temporarily assigning
fitnesses to individual unknowns (or set of unknowns), it
is our belief that many real world problems can be treated
like this. In essence, it provides a natural way to apply vary-
ing mutation rates to different fragments of the genotype,
which in turn, allows for a rapid search without restricting
the size of the search space, or using varying length geno-
types. The fragments of the genotype of most interest are
those that impact most on the overall fitness.

Since mutation is now fitness-dependent, it follows that the
mutation process should be performed before crossover. In
the following sections, we present two applications of the
new adaptive mutation operator, and demonstrate its effi-
cacy.

3 APPLICATION I: FAULT DIAGNOSIS
IN DISTRIBUTED AND
MULTIPROCESSOR SYSTEMS

With advancing technology, distributed multiprocessor and
multicomputer systems have arisen as powerful and eco-
nomical tools for use in critical applications in military,
commercial, and scientific computing. Along with this pro-
liferation has come an increasing reliance on such systems,
which unfortunately consist in most cases of inherently un-
reliable components. Therefore, it becomes essential to
provide mechanisms for detecting and diagnosing faults at
the system level. A crucial problem in this area, known as
system-level fault diagnosis, is to identify the fault status
of all processors in the system, i.e., to answer the ques-
tion, which are faulty and which are fault-free? This prob-
lem has been extensively studied in the last two decades
(Blough and Brown, 1999), (Dahbura, 1988), (Kreutzer
and Hakimi, 1987), (Pelc, 1991).

The classical approach to fault diagnosis was originated by
Preparata, Metze, and Chien in (Preparata et al., 1967).
They introduced a fault diagnosis model known as the PMC
model, in which a set of intelligent, independent devices,
called processors (or nodes), is assembled such that each
node is tested by a subset of the other nodes. It is as-
sumed that, at most, a bounded subset of these nodes is
permanently faulty, and that it is possible that these faulty
nodes can incorrectly claim that fault-free nodes are faulty
or that faulty nodes are fault-free. A directed graph is used
to model the testing assignment, where the set of vertices
corresponds to the set of processing nodes and the set of
edges (arcs) represents inter-node tests. From the collec-
tion of test results nodes are diagnosed as faulty or fault-
free. Hakimi and Amin (Hakimi and Amin, 1975) gave
necessary and sufficient conditions on the testing assign-
ments of such systems so that, in spite of the presence of
faulty nodes, each node can be correctly identified as faulty
or fault-free based on any possible set of test results, as-
suming of course, that the number of faulty nodes does
not exceed a given bound

�
. Such systems are said to be�

-diagnosable. An example of a � -diagnosable system is
shown in Figure 1.

Although much is known about the nature of testing struc-
tures for diagnosable systems, the problem of efficiently
identifying the set of faulty nodes of a system in which the
fault situation is known to be diagnosable remains an out-
standing research issue. Recently, a novel approach based
on genetic algorithms have been developed to deal with this
problem (Elhadef and Ayeb, 2000). The authors noted that
a standard genetic algorithm requires many generations to
identify the set of all faulty nodes, and hence, the diagno-
sis is not efficient since they aim on-line fault diagnosis.
Adaptive mutation operator was developed to overcome
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Figure 1: A testing assignment and a syndrome for a system
which is � -diagnosable. Faulty nodes are shaded. A dotted
edge represents two nodes testing each other.

this problem.

3.1 MODEL DESCRIPTION

In the most general case, a distributed system is assumed
to consist of a collection of ( heterogeneous processing
nodes, denoted by the set

 ��� & 
 ��������� & ���
, intercon-

nected via point-to-point communication links, broadcast
busses, or an arbitrary combination of each. The system
is modeled by two graphs: a system graph and a testing
graph. A system graph is an undirected graph where every
node represents a processor in the system, and an edge be-
tween two nodes represents a communication channel be-
tween the corresponding processors in the system. A test-
ing graph is a directed graph which is a subgraph of the
system graph. A directed edge from a node & �

to another
node & $

in the testing graph means that & �
is a tester of & $

.

A node can be either fault-free or faulty, and its status does
not change during diagnosis. Each node is assumed to be
able to initiate a test of a neighboring node and to be able to
respond to a test initiated by one of its neighbors. A test can
be as elementary as an “Are you alive?” query. Each node
& ��� 

is assigned a particular subset of the remaining
nodes to test, and it is assumed that no node test itself. The
complete collection of tests in the system is represented by
a testing graph � �  ��� �

. A test outcome � �%$
is associated

with each edge
� & � � & $�� � �

, where a weight of 0(1) is
assigned to � � $

if & �
evaluates & $

to be fault-free (faulty).
Since the faults considered are assumed to be permanent,
the outcome � �%$

of a test is reliable if and only if the tester
node & �

is fault-free. Given a node & � � 
, we denote by

� � & � �
the set of nodes tested by & �

and by
��� 
 � & � �

the set
of nodes testing & �

, and are given by:� � & �5� ��� & $��"� & � � & $�� � � �
� � 
 � & �5� ��� & $�� � & $ � & �5� � � �

In addition, we associate to each node & � � 
the quan-

tities ! ��� � & � � �#" �$� 
 � & � �%"
and !'&�( � � & � � �)" � � & � �%"

. The
set of test outcomes of the system is called the syndrome
and is denoted by * . Formally a syndrome is a map-
ping function * �+�-,/. �10 � � � , defined such as for all� & � � & $�� � � � * � & � � & $��.� � � $

. We denote by * � & ���
and* � 
 � & ���

the subsets of syndrome * corresponding, respec-
tively, to tests carried out by node & �

and by
�$� 
 � & ���

and
are defined by:

* � & ��� � � * � & � � & $ �2� & $ � � � & ��� �* � 
 � & ��� � � * � & $ � & ���2� & $ � � � 
 � & ��� �
A diagnosis algorithm is executed if some nodes become
faulty at a given point of time. We consider only diagnosis
of systems shown to be

�
-diagnosable, i.e., all faulty nodes

can be unambiguously identified provided the number of
faulty nodes is at most

�
.

3.2 FITNESS FUNCTION

A binary representation is used to represent the state (faulty
or fault-free) of each node. For example, consider the sys-
tem shown in Figure 1. The chromosome3 � 040 � 05040 � 056
represents the set of faulty nodes

� �7� & 
 � &98 � &;: � , i.e.,
those with a bit value at 1.

Consider a chromosome � , let
�

and * be its correspond-
ing fault set and syndrome, respectively. We denote by �	� �
�
the

� ���
gene of chromosome � . Let

� <
and * < denote, re-

spectively, the set of faulty nodes present at a given point
of time and its corresponding syndrome. The performance
of a single gene can be formalized as follows:

� � ��� ��� � � � &�( � � ��� �
� ����� � � � ��� �
� �
�

where

�� �!� �	� �
��� � " * � 
 � & � � + � * < � � 
 � & � �="! ���!� & � �

and

� &�( � � �	� �
��� � > � if !'&�( � � & � � �?0
,@ ACBED4FHGJIKA'LMBND5FOG�@PRQTSRU BND F G otherwise.
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� ��� � ��� �
� � computes the normalized number of tests per-
formed on node & �

in syndrome * that are identical to their
corresponding in syndrome * < . Similarly,

� &�( � � ��� �
� � cal-
culates the normalized number of tests executed by & �

on
its neighbors, i.e.,

� � & �5�
. It follows that if node & �

has no
neighbors, then

� &�( � � ��� �
� � � � ; otherwise,
� &�( � � �	� �
��� de-

notes the normalized number of test outcomes in syndrome* that match their corresponding in syndrome * < . Note
that the performance of the

� ���
bit includes both & �

’s role:
either as a tester, or as a testee.

� � ��� �
� � can be seen as the
correctness probability of the potential state of node & �

.

The objective function
��

of the genetic algorithm used
for diagnosis is given by:

�� � � � � � � � 
����� � � �	� �
���
(

Let
� � � �

denotes the set of faulty nodes (those with a gene
value at 1). It follows that if the chromosome � corresponds
to the optimal solution, i.e.,

� � � � � � <
, then

�� � � � � � .
The fitness function corresponds to the correctness proba-
bility of the potential solution

� � � �
. Since the set of faulty

nodes
� <

had to be uniquely identified it follows that the
termination condition of the genetic algorithm is to achieve
the fitness value 1. Therefore, the processes of selection,
crossover, mutation, and evaluation are repeated until the
particular chromosome corresponding to

� <
is reached.

3.3 EXPERIMENTAL RESULTS

Simulation results showed that if every bit has an equal
chance to undergo mutation (random mutation), a high
number of generation is required in order to determine the
optimal solution (see Table 1). Whereas, using adaptive
mutation process, where genes are only flipped if and only
if their individual performance measures are under certain
threshold, the diagnosis algorithm is highly improved.

The mutation threshold was fixed to the value
0 ���

. Each
bit has

�40��
of chance to undergo mutation since all bits

are equiprobable. Furthermore, it is possible for some po-
tential solutions that all genes have a performance measure
superior to

0"� �
, in such a situation the bit with the lowest

performance measure is flipped. This will ensure a decreas-
ing likelihood of mutating higher fitted bits as time goes by.
Note that a single-point crossover has been used.

4 APPLICATION II: THE TRAVELING
SALESMAN PROBLEM

The now classic Traveling Salesman Problem (TSP) can
also be formalized in order to be solved using adaptive mu-
tation. This problem can be easily stated as follows: “sup-
pose a salesman must visit clients in different cities, and

Table 1: Number of generations needed to reach the opti-
mal solution: (Random) every bit has an equal chance to
undergo mutation and (Adaptive) the probability of mu-
tation of the

� ���
bit is its performance measure

� � ��� ��� � .	�
�	  ������� � 0 , number of runs = 1000.

( Random Adaptive ����� � P &�� ��� P ��� � �����
8 57.95 2.74 50.29 2.21

16 48.89 2.39 25.30 1.13
32 157.03 3.71 64.69 1.85
50 203.72 4.47 62.58 2.01

100 586.13 6.45 144.98 3.35
200 � � 0 � 11.91 � � 0 � 6.02
500 ! � 0 � 22.13 � � 0 � 13.16

then return home. What is the shortest tour through those
cities, visiting each one once and only once?”. Evolution-
ary approaches to such problems have already been pro-
posed in the literature (PPS, 1991), (Grefenstette, 1985),
(Grefenstette, 1987), (Schaffer, 1989). Moreover, various
genetic operators and different representations have been
studied. In this section, our objective is first to show that
adaptive mutation can be applied to TSP, and second to
demonstrate the efficiency of this new method by compar-
ing it with a standard random mutation.

4.1 PRELIMINARIES

We use path representation to encode the search space.
Thus, a tour is represented by a list of ( cities. Initial
populations are generated randomly and a proportionate se-
lection schema is used. Order crossover (OX) (Zbigniew,
1994) is used and elitism is incorporated in the genetic al-
gorithm. We use inversion mutation in order to alter chro-
mosomes. That is, if a gene has to undergo mutation an-
other gene is chosen and both genes are swapped.

Let " � � # � $ � denotes a cost matrix, where # � $ represents
the cost of traveling from city

�
to city

4
. We assume that

the salesman can travel from any city to all other cities, and
hence, the cost matrix is a square matrix (%$ ( . Before
we present the fitness function we need first some kind of
cost normalization. We use the following cost normaliza-
tion function:

& 
' � � � �54 � � " � � �54 �
(*)�+ � " �

where
(*)�+ � " �

and " � � �54 � denote, respectively, the
maximum of cost matrix " and the cost of traveling from
city

�
to city

4
. Using such normalization the maximum of

the cost matrix is allocated the value 1 and the minimum of
the cost matrix is allocated the lowest value over all. From
now on, ," denotes the normalized cost matrix.

309GENETIC ALGORITHMS



4.2 FITNESS FUNCTION

Consider a chromosome � , we denote by �	� �
� the
� ���

gene
of chromosome � . The fitness of a single gene can be for-
malized as follows:

� � �	� �
��� � & 
' � � ��� �
� ��� & 
' � � 
 � �	� �
���
& 
' � � � �

where
& 
' � � ��� �
� � and

& 
' � � 
 � ��� �
� � denote, respectively,
the cost of traveling from and to city ��� �
� , and

& 
' � � � �
de-

notes the cost of the whole tour represented by chromo-
some � .

& 
' � � � ����& 
' � � ��� �
� ��� and
& 
' � � 
 � ��� ��� � are given

by:

& 
' � � � � �
��

����

& 
' � � ��� �
� �

& 
' � � �	� �
��� � � & 
' � � �	� ( ��� ����� ��� if
� � ( ,& 
' � � ��� �
��� ��� � � � ��� otherwise.

& 
' � � 
 � �	� �
��� � � & 
' � � �	� ( ��� ����� ��� if
� � � ,& 
' � � ��� �;, � �
� �	� �
��� otherwise.

Note that well fitted genes are those with lower fitness val-
ues. Now, we can define the fitness function

��
to be max-

imized as follows:

�� � � � � �
& 
' � � � �

� �
& 
' � � � � � �����
 � � ��� ��� �

We also define a mutation threshold for each gene in a given
chromosome as follows:

� � ��� � � ��� � ," � �
������� ��� � ," � � � � �
& 
' � � � �

where
� ��� � ," � �
��� denotes the average of raw cost corre-

sponding to city
�
, and

� �
corresponds to the city preceding

city
�

in the tour represented by chromosome � .

4.3 SIMULATION RESULTS

Experimental results using adaptive mutation are compared
with those generated using the standard random mutation
operator. The pseudocode for random mutation is given in
Figure 2 and that of adaptive mutation in Figure 3. The
mutation rate is fixed to 	 � � 0 � 0 � and the population
size to 	�
�	  ����� � � 0 . Note that in adaptive mutation

operator we flip genes that have individual fitnesses supe-
rior to their corresponding mutation thresholds, contrary to
the standard mutation process. This is due to the mean-
ing attributed to an individual fitness value. In fact, the
individual fitness value

� � �	� �
��� of the
� ���

gene represents
the impact of that gene on the whole fitness of the given
chromosome � . Hence, if a given gene has a high impact,
it should be flipped since we deal with costs. To ensure
that we are being fair with both mutation methods the num-
ber of mutations in the adaptive method is bounded by the
expected number of mutated bits in the random method:
(�� 	 ��� 	�
�	  � ��� .

Procedure Random Mutation
Input : A population of chromosomes & 
�	 .
Output: A new population of chromosomes & 
�	
	 .
Begin

for each chromosome � � & 
�	 do
for each gene ��� ��� do�� random number from the range � 0 ��� � � ;

if ( ��� 	 � ) then
Select another gene �	� 4 �
��4 /�	�

;
Swap(v[i],v[j]);

endif
End

Figure 2: Pseudocode for random mutation.

Procedure Adaptive Mutation
Input : A population of chromosomes & 
�	 .
Output: A new population of chromosomes & 
�	
	 .
Begin������� ( � � ) � � 
 ( �� 0

;
for each chromosome � � & 
�	 do

for each gene ��� ��� do
if (
������� ( � � ) � � 
 ( �� (�� 	 � ) then
if (

� � �	� �
��� � � � ��� �
� � ) then
Select another gene ��� 4 ���54 /���

with the highest
bit fitness value, i.e.,

� � �	� 4 ��� , and which has
not been mutated yet;

Swap(v[i],v[j]);������� ( � � ) � � 
 (  ���
;

endif
endif

End

Figure 3: Pseudocode for adaptive mutation.

We consider first the evolution of the population over gen-
erations. Next, we discuss the performance of the new mu-
tation process.
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4.4 POPULATION EVOLUTION

Figure 4 shows the evolution of the elite chromosome us-
ing a � 050 $ � 040 cost matrix. We can conclude that adaptive
mutation provides better results than random mutation. In
fact, we can see that adaptive mutation finds better results
faster than random mutation. On the other hand, Figure
5 shows the evolution of cost average over generations;
again, we can see that adaptive mutation performs well.
Under random mutation the cost average variation is de-
creasing slowly and it is not monotonic. Whereas, under
adaptive mutation the cost average of generations is de-
creasing faster and the variation is somewhat monotonic.
The number of mutations for both methods is plotted in
Figure 6. It is interesting to note that although each method
gives approximately the same number of mutation per gen-
eration (and hence we are being fair with both methods),
adaptive mutation has a much smaller variation in number.

Figure 4: Evolution of the elite chromosome as a function
of generation using a � 050 $ � 050 cost matrix.

Figure 5: Evolution of the population average as a function
of generation using a � 050 $ � 050 cost matrix.

Figure 6: Number of mutations as a function of generation
using a � 040 $ � 040 cost matrix.

4.5 MUTATION EFFICIENCY

Extensive simulations were conducted to determine the
performance of the new mutation process and specifically
its impact on improving the efficiency of the genetic al-
gorithm. The GA is performed 1000 times using differ-
ent cost matrices. The number of generations was fixed to
(
� � � ( � � 040 . Each time both mutation operators start

from the same randomly generated initial population. Ex-
perimental results are shown in Figure 7 using a � 050 $ � 050
cost matrix. We can easily conclude that adaptive mutation
provides better results than random mutation. In fact, all
tours output using adaptive mutation imply lower cost than
those output using random mutation. This result is clearer
for large number of cities. Figure 8 shows a tour produced
using adaptive mutation and a � 0 $ � 0 cost matrix.

Figure 7: Tour costs produced after 200 generations using
adaptive and random mutation and a � 040 $ � 040 cost matrix.
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Figure 8: A tour produced after 500 generations using
adaptive mutation and a � 0 $ � 0 cost matrix.

5 CONCLUSION AND FUTURE
RESEARCH

In this paper, we have presented a novel mutation heuris-
tic. We have proposed that each gene in a chromosome
should have an individual fitness measure that describes its
impact on the whole fitness of the corresponding chromo-
some. Genes that do not satisfy some threshold are altered
rapidly using mutation. The technique has been demon-
strated successfully on two sample problems.

Future work will be directed at developing other new adap-
tive operators. For example, crossover is also typically con-
sidered as a random process, with crossover points deter-
mined randomly.

The technique is not a general one, but it can be applied to
a variety of real world problems where there is a need to
rapidly locate good solutions.
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Abstract 

 

 

The applications of a modified version of the 
simulated annealing algorithm for solving the 
edge-coloring problem, which consists of 
partitioning the edges of a graph into the 
minimum number of disjoint subsets such that no 
two edges in a given subset are adjacent, was 
investigated.  With the exception of coloring 
bipartite graphs, finding a minimum edge 
coloring of a graph is NP-Complete.  The 
traditional simulated annealing algorithm was 
modified to incorporate an additional 
perturbation (disruptive) operator.  The details of 
the modifications to the simulated annealing 
algorithm, and the technique we chose to 
represent solutions for the edge-coloring problem 
are presented in the paper.   We also describe 
two perturbation operators used by our modified 
technique, along with the heuristic function used 
to evaluate solutions.  Our algorithm for solving 
the edge-coloring problem was tested on over 
sixty test graphs from the literature.  In every 
case, our algorithm found the optimal edge 
coloring.  We compared our algorithm to a 
grouping genetic algorithm technique for solving 
this problem published recently in the literature.  
Our results over a wide variety of test graphs 
were vastly superior to the grouping genetic 
algorithm technique. 

1 INTRODUCTION 

Generally, for NP-Hard partitioning problems like the 
vertex-coloring problem, heuristic optimization 
techniques, such as simulated annealing, are well suited 
for approximating solutions.  The edge-coloring problem, 
which is another NP-Hard partitioning problem, is no 
exception.  Solutions to the edge-coloring problem have 
numerous practical applications including timetable 
problems (Bondy & Murty, 1976), partitioning problems 
(Fiorini & Wilson, 1977), and certain types of scheduling 

problems.  The edge-coloring problem consists of 
partitioning the edges of a graph G into the minimum 
number of disjoint subsets such that all edges in a given 
subset are not adjacent.  The smallest number of subsets 
into which the edges of a graph can be partitioned is 
called the chromatic index of the graph G, denoted as 
χ’(G) (Fiorini & Wilson, 1977).  The chromatic index of 
any graph is bounded by ∆

max
 (G) ≤χ’(G) ≤∆

max 
(G)+ µ, 

where ∆
max 

(G) is the maximum degree of the graph and µ 
is the maximum edge multiplicity of the graph (Vizing, 
1964). 

Khuri et al. (2000) provides the most recent and 
comprehensive work on various techniques for solving 
the edge-coloring problem.  Khuri developed and tested 
three approaches for approximating solutions to instances 
of the edge-coloring problem.  By far, Khuri’s most 
successful approach to approximating solutions to the 
edge-coloring problem came from his use of a grouping 
genetic algorithm.  Grouping genetic algorithms, which 
are a subclass of genetic algorithms, focus on 
approximating solutions to problems with grouping 
properties, such as the edge-coloring problem.  Using a 
grouping genetic algorithm, Khuri was able to find the 
optimal solution for nearly all of the graphs he tested.  
However, as the density, (which is the ratio of the number 
of edges to the number of vertices in a graph), increased, 
the performance of his approach faltered, producing 
approximations using as many as three additional colors 
beyond the optimal number. 

In order to overcome the deficiencies experienced by 
Khuri’s algorithm, we developed a different approach to 
the edge-coloring problem.  In our approach, solutions to 
the edge-coloring problem were “forged” using simulated 
annealing rather than “evolved” using genetic algorithms.  
We applied a slight modification to the traditional 
simulated annealing technique.  This modification 
consisted of applying a secondary perturbation operator at 
key times during the execution of the algorithm.  This 
modified technique was then applied to 63 simple graphs 
and 15 multigraphs from various sources in the literature 
such as Knuth’s Stanford GraphBase (1993) and the 
DIMACS ftp site (2000), and compared to the results 
obtained by Khuri (2000). 
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The rest of this paper is organized as follows:  Section 2 
presents the modifications we made to the traditional 
simulated annealing algorithm.  Section 3 depicts the 
representation we used to encode a solution to the edge-
coloring problem, and the definition of the heuristic 
function used to evaluate candidate solutions.  The 
algorithms used by the perturbation, and the additional 
perturbation operators to improve solutions, as well as the 
details of how solutions are initially generated are also 
presented in Section 3.  Section 4 presents the results of 
several runs of our modified simulated annealing 
algorithm on various the test graphs from the literature.  
Section 5 describes the conclusions of our research, and 
comparisons to results obtained Khuri’s grouping genetic 
algorithm.  Acknowledgements and references are given 
at the end of the paper. 

2 SIMULATED ANNEALING AND 

MODIFICATIONS 

Traditionally, simulated annealing uses only one 
operation—perturbation.  Perturbation, which is similar in 
functionality to mutation in genetic algorithms, attempts 
to improve a solution by making small modifications.  
The resultant solution created by perturbation is accepted 
or rejected based on several parameters given at runtime.  
For the edge-coloring problem, perturbation alone was not 
able to solve certain graphs in a reasonable amount of 
time; therefore, an additional operator was implemented 
to overcome this weakness.  The new operator, which we 
call the “kick” operator, is similar in functionality to 
perturbation.  The kick operator functions as follows: if a 
specified number of iterations has passed during which 
there has been no heuristic improvement, then some 
perturbation on the current solution is performed.  This 
perturbation is intended to disrupt the current solution 
such that further iterations of the modified simulated 
annealing algorithm will lead to heuristic values 
exceeding those found before the kick was executed.  
Unlike the perturbation operation, the modifications made 
by the kick operator are accepted regardless of any 
benefits or losses that result.  The modified simulated 
annealing algorithm is described as follows (it is assumed 
that the reader is familiar with simulated annealing):  

 

1. Generate an initial solution and set the change 
counter to zero. 

2. Given the parameters T, the initial temperature, 

α, the rate at which the temperature decreases, N, 
the initial number of iterations to perform before 
decreasing the temperature and increasing the 

number of iterations to be performed, β, the rate 
at which N increases, and C, the number of 
iterations allowed to occur in which the current 
solution does not improve before the kick 
operator is executed.  Execute the following 
three steps N times. 

a. Execute the perturbation operator on the current 
solution.  This will produce a new solution. 

b.   Choose a new current solution by weighing the 
new solution against the current solution with 
the acceptance function.  The acceptance 
function will choose one of the two solutions 
based on the current temperature, T, the 
heuristic value of the current solution, and the 
heuristic value of new solution.  The acceptance 
function behaves as follows: If the new solution 
is better than the current solution, then the new 
solution is chosen and the change counter is 
reset to zero; however, if the new solution is 
worse than the current solution, a random real 
number is generated and compared against a 
value based on the current temperature and the 
heuristic difference between the current and 
new solutions.  If the random real number is 
greater than or equal to the calculated value, 
then the new solution is chosen and the change 
counter is reset; otherwise, the current solution 
is chosen and the change counter is incremented 
by one (except for the change counter logic, this 
a traditional simulated annealing algorithm). 

c. After the acceptance function has chosen a new 
current solution, test the following condition: if 
the change counter equals C, then perform the 
kick operation and reset the change counter to 
zero. 

3. Increase N to N*β, and decrease T to T*α.. 
4. Perform the following test: if the total number of 

iterations performed equals the maximum number 
of iterations allowed, the maximum value of the 
heuristic is found, or a specified time limit is 
exceeded, then return the current solution, 
otherwise, repeat step 2a. 

3 SOLUTION REPRESENTATION, 

HEURISTIC EVALUATION, AND 

OPERATOR ALGORITHMS 

3.1 SOLUTION REPRESENTATION, 

HEURISTIC EVALUATION, AND 

OPERATOR ALGORITHMS 

The solution representation is extremely important to the 
success of any algorithm.  Our solution representation of 
the edge coloring of a graph is simply an array of integers 
representing the color assigned to each edge with the 
edges of a graph numbered a priori.  This proved to be 
extremely successful.  The first number represents the 
color of edge 1; the second number represents the color of 
edge 2; and so on.  This representation lends itself to 
efficient color lookup, efficient heuristic evaluation, and 
efficient memory usage.  Figure 1 shows an example 
graph and the solution representation for that graph. 
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Figure 1: Solution Representation 

 

3.2 HEURISTIC FUNCTION 

The heuristic function used for this problem is defined as 
Σ [d(i)–invalid(i)] for i = 1..n, where d(i) is the degree of 
the ith node, invalid(i) is the number of edges with the 
same color that are connected to the ith node, and n is the 
number of nodes in the graph.  It is important to note that 
Σ d(i) for i=1..n is a fixed constant for a given graph. 
Thus, when the value of the heuristic function is equal to 
Σ d(i) for i=1..n, a solution is feasible.  Therefore, the 
heuristic function measures a solution’s distance to 
feasibility; consequently, higher heuristic values indicate 
solutions that are closer to feasibility.  In addition, the 
number of usable colors is a fixed constant specified at 
run-time.  Thus, annealing can stop when the heuristic 
value of the current solution is equal to Σ d(i) for i=1..n, 
indicating that no two adjacent edges share the same 
color. 

3.3 PERTURBATION FUNCTION 

The pertubation function is a greedy operation.  The 
perturbation operator randomly selects one node in which 
infeasible edges are incident.  The operator then randomly 
selects one of those incident infeasible edges.  Next, the 
operator attempts to assign a non-conflicting color to the 
selected edge.  If a non-conflicting color cannot be found, 
then the selected edge is assigned a random color. 

For example, consider Figure 2a.  Assume that node 1 is 
randomly selected.  Observe that edges 1 and 2, which are 
incident to node 1, have the same color, (color 1).  
Assume that edge 1 has been randomly selected.  Then a 
free color (a color other than color 1 in this case) is 
randomly selected.  Assume the free color selected was 
color 3, then color 3 is assigned to edge 1 (see figure 2b).  
If no free color exists, then edge 1 receives a random 
color that was not the color of any edge connected to node 

3 to which edge 1 is adjacent (node 3 has the highest 
degree). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Perturbation Example with Node 1 Selected. 

 

3.4 KICK FUNCTION 

The kick function is a disruptive operation that reassigns a 
new color to a randomly selected edge with an invalid 
color.  Empirical results support the claim that this 
operator is able to overcome many of the local hurdles 
that the heuristic function presents, producing the optimal 
solution on certain graphs in ¼ of the time required for 
traditional simulated annealing to produce the same 
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results.  On every graph we tested, traditional simulated 
annealing was able to produce an optimal solution.  
However, on many graphs, depending upon the seed used, 
traditional simulated annealing required as many as four 
times the number of iterations compared to our modified 
simulated annealing algorithm.  As a kick operator 
example, consider again Figure 2a.  In this case, edge 1 
has been assigned an invalid color, and is, therefore, a 
candidate for the kick operation.  Assume that the kick 
operator randomly chose edge 1.  Edge 1 would be 
reassigned a random valid color, in this case, 3. If no 
color for edge 1 had existed, which was not in conflict 
with other colors assigned to adjacent edges, then edge 1 
would have been assigned a random color. 

3.5 INITIAL SOLUTION GENERATION 

The initial solution is constructed using the following 
algorithm: first, find the node with the highest degree.  
Second, assign a different color to each edge connected to 
the node with the highest degree.  Finally, the remaining 
edges are then assigned random colors.  Note the range of 
valid colors for the remaining edges is reduced by the 
colors of edges connected to the node with the highest 
degree.  For example, in Figure 1, node 3 has the highest 
degree; thus, edges 2, 3, 4, and 6 must always have 
different colors.  As a result, this significantly reduces the 
search space for any given graph.  Furthermore, the colors 
of the edges connected to the vertex with the highest 
degree do not change!  This is an application of the 
reduction principle presented in (Corcoran & Wainwright, 
1996), and proved to be significant to the success of our 
algorithm.  Also the number of usable colors is a fixed 
constant specified by the user at runtime.  Fixing the 
number of usable colors in this manner turned out to be a 
critical aspect of the success of our algorithm.  Fixing the 
usable colors allows the user to specify a minimum 
quality for solutions.  Thus, all the user has to do is 
specify the optimal number of colors to obtain an optimal 
solution 

4 RESULTS 

The performance of our modified simulated annealing 
algorithm and the grouping genetic algorithm were 
compared on 63 problem instances taken from various 
sources in the literature such as the DIMACS challenge 
ftp site (2000) and the Stanford GraphBase (1993).  Graph 
density values ranged from 2 edges per node all the way 
up to 99.5 edges per node.  In addition, graphs with a 
wide range of other properties, such as completeness, 
were tested.  Table 1 depicts the results obtained for the 
63 problem instances from our modified simulated 
annealing algorithm and the grouping genetic algorithm 
described by Khuri (2000).  For the modified simulated 
annealing algorithm, the following parameters were used: 
T = 0.0,α = 0.0, β = 1.0, N = 1000, and C=500...1250.  
For Khuri’s grouping genetic algorithm, the following 
parameters were used: mutation rate = 0.2, crossover rate 
= 0.6, and population size = 20.  The Problem Instance 

(left half) portion of Table 1 lists the datasets used and 
various properties of those datasets.  The first 21 datasets 
are complete graphs named completex.col, where x is the 
number of nodes in the graph.  The remaining test graphs 
were taken from Donald Knuth’s Stanford GraphBase 
(1993) and the DIMACS ftp site (2000).  The column 
headed by ∆ indicates the maximum degree for each 
graph, and, for many graphs, the minimum number of 
colors that can be used to color that graph. 

The results shown in the right portion of Table 1 record 
the # of iterations, the # of colors used, and the time 
required (in seconds) to reach the optimal solution for our 
modified simulated annealing algorithm.  We ran our 
modified simulated annealing algorithm on the test 
datasets using an Intel Pentium III 700Mhz processor 
running Microsoft Windows 2000 Professional and Sun’s 
JDK version 1.3.  Optimal solutions, which are indicated 
as a bold entry in the column (# of colors used), are 
solutions where the number of colors used were in the 
range of [∆…∆+µ], where µ is the maximum edge 
multiplicty of the graph. 

Khuri et al. (2000) research represents the most recent 
work on this topic.  In his paper he developed three 
techniques for solving the edge-coloring problem, the best 
of which was his GGA algorithm.  The results from 
Khuri’s GGA algorithm for the 63 test graphs are given in 
the last column under the heading GGA results.  
Similarly, entries in the column (GGA Results) that are 
depicted in bold represent optimal solutions.  Our 
algorithm found the optimal solution in all 63 cases.  
Khuri’s grouping genetic algorithm found the optimal 
solution in 21 of the 63 cases. 

5 CONCLUSIONS 

The results indicate that the edge-coloring problem lends 
itself very nicely to our modified simulated annealing 
algorithm.  Impressively, our modified simulated 
annealing algorithm generated optimal solutions for every 
test data set.  This includes all of the multigraphs from the 
Stanford GraphBase, the simple graphs from the 
DIMACS ftp site, and the generated complete graphs.  
The optimal coloring was even obtained for a complete 
graph with 200 nodes.  For every dataset except those that 
formed a complete or regular graph with an odd number 
of nodes, the number of colors used in the final solution 
was equal to ∆, the optimal number.  In the cases in which 
datasets formed a complete or regular graph with an odd 
number of nodes, the number of colors used increased to 
∆+1; however, the chromatic index of a complete or 
regular graph, Kn, for which n is odd, is ∆+1, thus, all 
results in which ∆+1 colors were used were optimal as 
well (Rosen, 2000).  The empirical results obtained using 
the modified simulated annealing algorithm support the 
claim that it is superior in performance when compared to 
recently developed algorithms for the edge-coloring 
problem.  The use of only a fixed number of colors was of 
critical importance to the success of the modified 
simulated annealing technique in finding optimal 
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solutions to the graphs tested.  Limiting the number of 
usable colors allowed the modified simulated annealing 
technique to determine with absolute certainty whether or 
not the best solution, given the initial parameters, had 
been found.  Also, by fixing the number of usable colors 
to the optimal number, the modified simulated annealing 
algorithm worked only towards finding the optimal 
solution while retaining the ability to produce feasible 
solutions that are not optimal. Also, the masking 
performed in assigning colors of edges reduced search 
space and lead to faster discoveries of optimal solutions.  
The incorporation of the kick operator, while unnecessary 
in producing optimal solutions, greatly reduced the 
average number of iterations required to find solutions to 
instances of the edge-coloring problem.  Finally, the 
modified simulated annealing algorithm proved to be an 
excellent algorithm for solving the edge-coloring problem 
over a wide variety of graphs. 
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Table 1: Edge Coloring Results 

 

PROBLEM INSTANCE RESULTS
1
 

File Name 
# of 

nodes 

# of 

edges 
Density2 ∆∆∆∆ Iterations # of colors used Time (seconds) GGA results 

         

complete20.col 20 190 9.5 19 795 19 1 20

complete25.col 25 300 12 24 1321 25 2 26

complete30.col 30 435 14.5 29 1966 29 3 31

complete35.col 35 595 17 34 2697 35 4 37

complete40.col 40 780 19.5 39 4116 39 4 41

complete45.col 45 990 22 44 6106 45 5 47

complete50.col 50 1225 24.5 49 6870 49 6 52

complete55.col 55 1485 27 54 7233 55 7 58

complete60.col 60 1770 29.5 59 9973 59 11 63

complete65.col 65 2080 32 64 12817 65 17 70

complete70.col 70 2415 34.5 69 16789 69 23 75

complete75.col 75 2775 37 74 19892 75 35 78

complete80.col 80 3160 39.5 79 22407 79 43 83

complete85.col 85 3570 42 84 25563 85 52 88

complete90.col 90 4005 44.5 89 26638 89 77 93

complete95.col 95 4465 47 94 31124 95 92 98

complete100.col 100 4950 49.5 99 36267 99 127 104

complete105.col 105 5460 52 104 40065 105 169 109

complete110.col 110 5995 54.5 109 37493 109 180 114

complete115.col 115 6555 57 114 40967 115 233 119

complete200.col 200 19900 99.5 199 174191 199 3341 203

anna.col 138 986 7.14 142 224 142 2 142

david.col 87 812 9.33 164 113 164 1 164

homer.col 561 3258 5.80 198 590 198 5 198

huck.col 74 602 8.14 106 118 106 1 106

jean.col 80 508 6.35 72 125 72 1 72

mile250.col 128 774 3.02 32 470 32 1 32

miles500.col 128 2340 9.14 76 1985 76 4 77

miles1000.col 128 6432 50.25 172 6326 172 133 173

miles1500.col 128 10396 81.22 212 16563 212 171 213

queen5_5.col 25 320 12.8 32 377 32 1 33

queen6_6.col 36 580 16.11 38 867 38 1 39

queen7_7.col 49 952 19.43 48 1289 48 2 48

queen8_8.col 64 1456 22.75 54 2215 54 3 54

queen9_9.col 81 2112 26.07 64 2841 64 5 64

queen8_12.col 96 2736 28.5 64 5249 64 9 65

queen10_10.col 100 2940 29.4 70 4643 70 9 70

 

                                                           

1 Optimal solutions are indicated in bold. 
2 Density is the ratio of the # of edges to the # of vertices in a graph. 
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Table 1: Continued 

 

PROBLEM INSTANCE RESULTS
3
 

File Name 
# of 

nodes 

# of 

edges 
Density4 ∆∆∆∆ Iterations # of colors used Time (seconds) GGA results 

         

queen11_11.col 121 3960 32.73 80 5540 80 15 80 

queen12_12.col 144 2596 36.05 86 8136 86 33 86

queen13_13.col 169 6656 39.38 96 9897 96 56 97

queen14_14.col 196 8372 42.71 102 12869 102 96 102

queen15_15.col 225 10360 46.05 112 15047 112 143 113

queen16_16.col 256 12640 49.38 118 19731 118 243 119

myciel3.col 11 20 1.81 5 12 5 1 5

myciel4.col 23 71 3.09 11 25 11 1 11

myciel5.col 47 236 5.02 23 119 23 1 23

myciel6.col 95 755 7.95 47 326 47 2 47

myciel7.col 191 2360 12.36 95 820 95 3 95

games120.col 120 1276 10.63 26 1836 26 2 27

le450_15a.col 450 8168 18.15 99 4051 99 35 99

le450_15b.col 450 8169 18.15 94 4293 94 36 94

le450_15c.col 450 16680 37.06 139 12153 139 234 139

le450_15d.col 450 16750 37.22 138 12297 138 231 140

le450_25a.col 450 8260 18.35 128 3558 128 33  129

le450_25b.col 450 8263 18.36 111 4018 111 38 112

le450_25c.col 450 17343 38.54 179 9887 179 243 180

le450_25d.col 450 17425 38.72 157 12030 157 440 159

le450_5a.col 450 5714 12.7 42 4764 42 25 43

le450_5b.col 450 5734 12.74 42 4677 42 25 43

le450_5c.col 450 9803 21.8 66 9175 66 93 67

le450_5d.col 450 9757 21.68 68 8485 68 88 69

fpsol2.i.3.col 325 8688 26.73 346 3082 346 51 347

 

                                                           

3 Optimal solutions are indicated in bold. 
4 Density is the ratio of the # of edges to the # of vertices in a graph. 
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Abstract

This paper develops the theory that can en-

able the design of genetic algorithms and

choose the parameters such that the propor-

tion of the best building blocks grow. A prac-

tical schema theorem has been used for this

purpose and its rami�cation for the choice

of selection operator and parameterization

of the algorithm is explored. In particular

stochastic universal selection, tournament se-

lection, and truncation selection schemes are

employed to verify the results. Results agree

with the schema theorem and indicate that

it must be obeyed in order to ascertain sus-

tained growth of good building blocks. The

analysis suggests that schema theorem alone

is insuÆcient to guarantee the success of a

selectorecombinative genetic algorithm.

1 Introduction

The importance of building blocks (BBs) and their

role in the workings of GAs have long been recognized

(Holland, 1975; Goldberg, 1989). Furthermore, the

following six conditions for a GA success have been

proposed (Goldberg, Deb, & Clark, 1992): (1) Know

what GAs are processing - building blocks (BBs), (2)

ensure an adequate initial supply of raw BBs, (3) en-

sure growth of superior BBs, (4) ensure the mixing

of BBs, (5) ensure good decisions among competing

BBs, and (6) solve problems with bounded BB diÆ-

culty. One of the important conditions is to make sure

that the GA is well supplied with a suÆcient supply of

the BBs required to solve a given problem. It is also

equally important that the proportion of the good ones

in the population grow. The �rst task is addressed

elsewhere in this proceedings (Goldberg, Sastry, & La-

toza, 2001), and the second task, that is, the issue of

guaranteeing the increase in market share of good BBs

in a population is addressed in the current study.

The usual approach in achieving this is the schema the-

orem (Holland, 1975; De Jong, 1975). Therefore, the

objective of this study is to utilize a practical schema

theorem to explore the rami�cations of the schema

theorem for the choice of selection operator and pa-

rameterization of the algorithm. In this study we

consider three selection schemes: stochastic universal

selection (SUS) (Baker, 1987; Grefenstette & Baker,

1989), s-wise tournament selection (Goldberg, Korb,

& Deb, 1989), and truncation selection (Muhlenbein

& Schlierkamp-Voosen, 1993). SUS is a proportionate

scheme and s-wise tournament selection and trunca-

tion selection are ordinal schemes. The performance

of each of these selection schemes in both early as well

as late in the GA run is analyzed based on the schema

theorem.

We start by presenting a brief note on the schema the-

orem, both its original version, and a generalized ver-

sion. A simpli�ed version of the generalized schema

theorem is then used for the BB growth design. Three

di�erent selection schemes are considered in the light

of the BB growth design and are analyzed for param-

eter settings to ensure the growth of best BBs in the

population.

2 Generalized Schema Theorem

There have been many studies on schema theorem,

and a complete literature review on schema theorem

is beyond the scope of this study. Instead, we present a

brief overview of schema theorem and refer the reader

elsewhere (Goldberg, 1989) for a detailed exposition of

the same. Under proportionate selection, single-point

crossover, and no mutation, the schema theorem may
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be written as follows:

hm(H; t+ 1)i � m(H; t)
f(H; t)

f(t)

�
1� pc

Æ(H)

`� 1

�
; (1)

where hm (H; t+ 1)i is the expected number of individ-
uals that represent the schema H at generation t+ 1,

m(H; t) is the number of individuals that represent the

schemaH at generation t, f(H; t) is the average �tness

value of the individuals containing schema H at gen-

eration t, f(t) is the average �tness of the population

at generation t, pc is the crossover probability, Æ(H)

is the de�ning length de�ned as the distance between

the outermost �xed positions of a schema, and ` is the

string length.

Inspection of the schema theorem and an analysis

of proportionate selection and single-point crossover

(Goldberg, 1989), indicates that the the term

m (H; t)
f(H;t)

f(t)
accounts for the selection, and the termh

1� pc
Æ(H)
`�1

i
accounts for crossover operation. It

should be noted that the term representing the selec-

tion operator is exact and the inequality occurs due

to the crossover operation. Some factors like crossover

between identical individuals (self-crossover) are ne-

glected. The schema theorem tells us that the pro-

portion of schemata increases when they have above

average �tness and relatively low crossover disruption.

However, the schema theorem as given by equation 1

is restricted to proportionate selection and one-point

crossover. This concern can be eliminated by identify-

ing the characteristic form of schema theorem and sub-

stituting appropriate terms for other selection schemes

and genetic operators. Recognizing that a selection

scheme might allocate the numbers of schemata in a

di�erent manner, and a genetic operator might yield

a di�erent survival probability when compared to pro-

portionate selection and single point crossover, the fol-

lowing generalized schema theorem (Goldberg & Deb,

1991) can be written

hm(H; t+ 1)i � m(H; t)(H;mi; fi; t); (2)

where,

(H;mi; fi; t) = �(H;mi; fi; t)Ps(H;mi; fi; t); (3)

and � is the selection factor, and is a function of the

�tness function fi, the distribution of structures in the

population mi, at generation t. The value of � for a

schema H is calculated by adding the contributions

of all the individual strings that are members of the

schema H . Ps is a survival probability. The gener-

alized schema theorem can alternatively be written in
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Figure 1: Limiting crossover probability pc as a func-

tion of selection pressure sp for di�erent values of op-

erator loss �.

proportion form by dividing throughout by population

size N as,

hP (H; t+ 1)i � P (H; t)(H;mi; fi; t): (4)

This theorem states that desirable schemata grow if

 (H;mi; fi; t) � 1. Although both the selection factor

� and the survival probability Ps are functions of the

�tness function and the population, both quantities

can be characterized more simply and are explained in

the following section.

3 Designing for BB Growth

To employ the schema theorem in design, we simplify

it by replacing � with the selection pressure sp, and

parameterize the survival probability on an operator

loss � and the crossover probability pc. The schema

theorem can now be written as

hm (H; t+ 1)i � m (H; t) sp [1� pc�] : (5)

Then the desirable schema's grow if

sp [1� pc�] � 1: (6)

Rearranging in terms of crossover probability pc gives

Pc �
1� s

�1
p

�
: (7)

The limiting pc value is plotted as a function of se-

lection pressure at di�erent crossing losses in �gure

1. We can see that even in the case of total loss of

schema integrity, BB market share growth can still be
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ensured with reasonable combinations of suÆcient se-

lection pressure and diminished crossover probability.

An interesting factor to note is that the schema the-

orem can always be satis�ed with zero exchange |

pc = 0. However, in such a case the whole basis of

operation principle of the GA with crossover is vio-

lated. This suggests that schema theorem must be

obeyed, but that does not guarantee even a modicum

of building block exchange, which is very important

for a successful GA design.

To apply the BB design developed in this section in

a real GA requires the consideration of selection pres-

sure exerted by a given selection procedure. This issue

is addressed in the next section for three di�erent se-

lection schemes.

4 Selection Schemes and Selection

Pressure

We estimate the selection pressure sp exerted in two

phases, one early in the run and the other late in the

run. The reason for doing so can be justi�ed as follows:

The initial generations are critical to the success of a

GA run, because unless a schema (or its components)

grow at the outset, its chances for success later on are

quite poor. However, even if the conditions early in a

GA push the best BBs fairly aggressively, but as the

evolution wears on, even schemes with fairly steady

drive toward convergence loose some of their initial

punch. This might be a deal breaker, because the loss

of selection pressure combined with high schema loss

and �xed crossover probability might cause the evolu-

tion to stall before the best BBs dominate the popu-

lation.

Here we consider the selection pressure exerted by

three selection schemes, s-wise tournament, trunca-

tion, and proportionate selection procedures.

4.1 Tournament Selection

In s-wise tournament selection, s individuals are ran-

domly drawn from a population (with or without re-

placement) and the best individual is selected. As-

sume that the initial proportion of superior BBs at

time t = 0 is P0 and is very small. The proportion

of the best individuals under selection alone can be

written as (Goldberg & Deb, 1991),

Pt+1 = 1� (1� Pt)
s
: (8)

To consider the early performance of tournament se-

lection, we calculate the selection ratio �t = Pt+1=Pt

when Pt � 0.

�t = P
�1
t

[1� (1� Pt)
s
] : (9)

Recognizing that P0 is small, and that (1�x)
n � 1�nx

for small x, we obtain

�t �
1� (1� sPt)

Pt

= s: (10)

Thus early in the run when a good schema exists only

in small proportions, the best schemas increase by a

factor of s, the tournament size. This result is justi�ed,

since each individual participates in an average of s

tournaments and the best individuals win all s of them.

Equation 7 can be written for the case of tournament

selection early in the run as

pc �
1� s

�1

�
: (11)

As the proportion of a good schema becomes signi�-

cant, the e�ective loss due to crossover reduces. This

occurs due to the fact that for many crossover opera-

tors, a schema crossed with itself yields an instance of

the same schema (Holland, 1975; Scha�er, 1987). The

success probability, Ps, incorporating self-crosses can

be written as

Ps = 1� p
0

c
(1� Pt) ; (12)

where p0
c
= pc�, and the term 1�Pt is the result of self

crossing | a schema contained in a string crossed with

another string containing the schema is not disrupted

regardless of the crossover point. The late behavior of

the tournament selection is then given by

Pt+1 = [1� (1� Pt)
s
] [1� p

0

c
(1� Pt)] : (13)

To perform a late analysis, we assume that the better

structures have taken over more than (1=s)th of the

population. Then the selection term [1� (1� Pt)
s
]

approaches 1 and the late performance is described by

Pt+1 = [1� p
0

c
(1� Pt)] : (14)

The selection ratio, �t is given by

�t = P
�1
t

[1� p
0

c
(1� Pt)] : (15)

It can be easily seen that �t � 1 if (1) 0 < Pt � 1, (2)

0 < p
0

c
� 1, and (3) s [1� p

0

c
] � 1, based on which the

selection pressure and crossover probability are cho-

sen for initial growth. Thus, by accounting for self-

crossing we have shown that the subsequent e�ective

slowing of convergence rate due to selection is more

than overcome by the e�ective reduction in crossover

probability.
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4.2 Truncation Selection

Truncation selection is an ordinal selection scheme in

which the top 1=s individuals in a population are given

s copies each. If the proportion Pt of best individu-

als in a population is 1=s (early in the run), then the

growth is geometric,

Pt+1 = sPt: (16)

In other words, the selection rate �t = s, which is

the same as that for tournament selection. Once the

proportion of good structures reaches or exceeds 1=s�
Pt � s

�1
�
, the scheme saturates and the �nal propor-

tion is,

Pt+1 = 1: (17)

Therefore the late performance is inuenced only by

the crossover operation and the proportion of good

structures can be written as

Pt+1 = [1� p
0

c
(1� Pt)] : (18)

Thus truncation and tournament selection procedures

have essentially similar late performance.

4.3 Proportionate Selection

To understand the early performance of proportion-

ate selection, consider a highly simpli�ed model. Con-

sider two possible alternatives, 1 and 2, represented by

objective function values f1 and f2 respectively with

f2 > f1. Here the assumption is that alternative 1

is the average individual and alternative 2 is the best

individual in the initial population. The proportion of

alternative 2 can be tracked with the following di�er-

ence equation,

Pt+1 =
f2

f
t

Pt; (19)

where f
t
is the average function value at generation t,

and is given by f
t
= f1 (1� Pt) + f2Pt. Substituting

this value in the above equation we get,

Pt+1 =
s

(s� 1)Pt + 1
Pt; (20)

where s = f2=f1. The early performance, when there

is a small proportion of good structures (Pt � 0), is

given by Pt+1 � sPt. In other words, the selection rate

for proportionate selection early in the run is given by

�t = s. This is similar to the early performance of

tournament and truncation selection. However, un-

like tournament and truncation selection schemes, the

value of s will vary from problem to problem. It is very

hard to know a priori whether an arbitrarily scaled

problem will have adequate selection pressure. It is
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Figure 2: 8-bit trap function

one of the reasons why ordinal selection procedures

like tournament and truncation selection are preferred

over proportionate selection (Baker, 1985). It is also

one of the reasons for using some sort of scaling pro-

cedure along with proportionate selection.

Analysis of the late behavior of proportionate selection

follows the similar procedure as that of the previous

two selection schemes. Modifying equation 20 to in-

corporate self-crossing we get,

Pt+1 =
sPt

(s� 1)Pt + 1
[1� p

0

c
(1� Pt)] : (21)

Requiring the selection rate to be greater than or equal

to one, we get

s

(s� 1)Pt + 1
[1� p

0

c
(1� Pt)] � 1: (22)

Rearranging the above relation yields

p
0

c
� 1� s

�1
: (23)

This model appears to show that proportionate selec-

tion would lead to full convergence in any situation for

which the initial situation was favorable. However, it

should be noted that s, de�ned as f2=f1, is not a con-

stant during a run. In other words, both f2 and f1 can

change in every generation, and also that the average

�tness f1 increases as a run goes on. This implies that

the average �tness rises and the best BB's progress to

dominate the population stalls. This phenomenon can

be more accurately modeled by replacing the term s

of equation 22 with a term where f1 or the average

�tness rises with increasing Pt. In the next section,

we verify the theory with computational experiments.

5 Results

The theory developed in the above two sub-sections

is veri�ed with a computational experiment. Similar

331GENETIC ALGORITHMS



10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Selection pressure, s
p

C
ro

ss
ov

er
 p

ro
ba

bi
lit

y,
 p

c

Truncation    
Tournament WOR
Tournament WR 

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Selection pressure, s
p

C
ro

ss
ov

er
 p

ro
ba

bi
lit

y,
 p

c

Truncation    
Tournament WOR
Tournament WR 

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Selection pressure, s
p

C
ro

ss
ov

er
 p

ro
ba

bi
lit

y,
 p

c

Truncation    
Tournament WOR
Tournament WR 

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Selection pressure, s
p

C
ro

ss
ov

er
 p

ro
ba

bi
lit

y,
 p

c

Truncation    
Tournament WOR
Tournament WR 

(a) (b)

(c) (d)

Figure 3: The experimental results showing the required crossover probability at a given selection pressure for

tournament with or without replacement, and truncation selection at di�erent disruption rates: (a) � = 1.0, (b)

� = 0.95, (c) � = 0.9, and (d) � = 0.85.

control maps are reported elsewhere (Thierens, 1995),

although the problem considered in the present study

consists of a single building block and has a known

schema disruption rate. We optimize a single 8-bit

trap function (Goldberg, Deb, & Horn, 1992) (�gure

2) with f8 = 7, f0 = 8, and trap break �tness fz = 0

at z = 1. Single point crossover is used with either

tournament selection (with and without replacement)

or truncation selection and the disruption rate is �xed.

A trap function is used to make it diÆcult to �nd

the best point (all-zeros, 00000000) and easy to �nd

the second best (all-ones, 11111111). Experiments are

run for speci�ed s values to determine the crossover

probability pc when 25 independent runs successfully

increase the proportion of the best strings for 10 con-

secutive generations. The population size taken was

N = 5000. Bisection method was used to determine

the pc value within a tolerance of 10�5. The results

shown in �gure 3 are average of 10 such independent

runs of the bisection method. Both tournament and

truncation selection agree with the design equation

well at di�erent disruption rates, � = 0.85, 0.9, 0.95,

and 1.0.

The theory on proportionate selection is veri�ed using

stochastic universal selection. In these runs, neither

scaling nor ranking is employed and hence the selec-

tion pressure cannot be manipulated independent of

the problem scaling. This results in three cases: (1)

convergence to the best point (All-zeros, 00000000),

(2) stall of the best point, at some proportionate value,

and (3) mis-convergence to the second best point (all-

ones, 11111111). These three cases are exempli�ed in

�gures 4(a){(d). The results shown are based on 25

successes in 25 trials in a population of 5000.

Figure 4(a) shows a successful takeover of the popula-

tion by the best point. Initially, the inferior point (all-

ones) grows faster, but due to low crossover probability
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Figure 4: The proportion of all-ones points and all-zeros points is plotted versus generation number at di�erent

crossover probabilities. The results are averaged over 25 independent runs.
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Figure 5: The proportion of all-ones points and

all-zeros points when stall occurs is plotted versus

crossover probability. The results are averaged over

100 independent runs.

(pc = 0.2), the superior point is able to completely

take over the population. Figures 4(b){(c) demon-

strates the stall of all-zeros proportion at crossover

probabilities, pc = 0.225, and pc = 0.23 respectively.

Finally, �gure 4(d) indicates failure of the best point

to takeover the population at pc = 0.26. The pro-

portion of best and the second best point when stall

occurs is plotted against crossover probability in �gure

5. The results are averaged over 100 independent tri-

als. The plot shows that at low crossover probabilities

the best point successfully takes over the population,

at high crossover probabilities the best point fails to

sustain the market share increase, and at intermedi-

ate crossover probability values the best point stalls

at some intermediate proportion value. However, it

should also noted that we can have either a total suc-

cess or total failure in take over of the population by

the best point. Examples of the same phenomena are

shown in �gures 6(a){(d). In all these cases the propor-

tion of best point stalls for a long time (30{70 gener-

ations) and then either it succeeds or fails to takeover
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Figure 6: Demonstration of success and failure after intermediate stall at di�erent crossover probabilities (a)

pc = 0:215, (b) pc = 0:22, (c) pc = 0:225, and (d) pc = 0:23. The results are of a single run

the population. The results shown are at crossover

probabilities of 0.21, 0.215, 0.22, and 0.225. These re-

sults indicate the reason for preferring pushier schemes

like tournament and truncation selection over propor-

tionate selection.

6 Conclusion

This study clearly shows that the schema theorem

works with di�erent selection schemes and genetic op-

erators and that it must be obeyed. The schema theo-

rem provides a good bounding advice on how to assure

the growth of good subsolutions and to sustain the

growth to takeover the population. Employing early

and late analysis, it has been demonstrated that one

can set the GA parameters, the selection pressure, s

and the crossover probability pc for tournament and

truncation selection schemes to obey schema theorem.

Unscaled proportionate schemes have a tendency to

stall, indicating that proportionate selection schemes

though useful when applied with scaling procedures

or niching, should not be generally used without such

augmentation. The fact that schema theorem can be

satis�ed with a crossover probability of zero suggests

that schema theorem does not consider the positive ef-

fects of crossover, the exchange of BBs that is at the

heart of GA mechanics.
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Abstract

This study addresses the issue of building-

block supply in the initial population.

Facetwise models for supply of a single build-

ing block as well as for supply of all schemata

in a partition have been developed. An

estimate for the population size required

to ensure the presence of all raw building

blocks has been derived using these facetwise

models. The facetwise models and the

population-sizing estimate are veri�ed with

computational results.

1 Introduction

The importance of building blocks (BBs) and their role

in the working of GAs have long been recognized (Hol-

land, 1975; Goldberg, 1989a). Elsewhere the prob-

lem of successful design of a selectorecombinative GA

has been decomposed into six subproblems (Goldberg,

Deb, & Clark, 1992): (1) Know what GAs are process-

ing - building blocks (BBs), (2) ensure an adequate ini-

tial supply of raw BBs, (3) Ensure growth of superior

BBs, (4) ensure the mixing of BBs, (5) ensure good de-

cisions among competing BBs, and (6) solve problems

with bounded BB diÆculty. One of the essential steps

towards successful design of a GA is making sure that

the GA is well supplied with a suÆcient number of

the BBs required to solve a given problem. There are

two approaches to address the BB supply question, a

spatial and a temporal one. The spatial approach esti-

mates the population size required to ensure diversity

and the number of BBs present in the initial popula-

tion. The temporal approach assumes the existence of

a mutation or other diversity generator to return suf-

�cient BB diversity on an appropriate time scale. In

this study we restrict ourselves to BB supply in selec-

torecombinative GAs, and hence address the spatial

approach.

The objective of this study is to develop a facetwise

model for supply of BBs and to estimate the popula-

tion size required to guarantee the presence of all raw

BBs in the initial population. Though, ensuring BB

growth supersedes BB supply in the subsequent pop-

ulation, BB growth will be extremely diÆcult if BB

supply is not ensured. While decision making governs

population sizing usually, it is sometimes governed by

BB supply. In such cases a facetwise model of BB

supply is necessary for ensuring a successful GA de-

sign. It should be noted that there exist sophisticated

models that combine the requirements of supply and

decision making in a single model (Harik, Cantu-Paz,

Goldberg, & Miller, 1997). These complex models

are composed of simpler models, and blend the e�ects

of those simple models. Therefore, developing sim-

ple facetwise models are useful for obtaining insight in

more complex models. Here, we consider the BB sup-

ply question in isolation and derive a facetwise model

using some straightforward probabilistic calculations.

In this study we restrict ourselves to strings with �xed

length, �xed alphabet cardinality, and �xed BB size.

We start with a brief review of past work in this area.

Then two facetwise models of the probability of BB

supply are derived. Subsequently, an estimate of pop-

ulation size is presented by using the second facetwise

model.

2 Brief Literature Review

A full review of past work on the supply of BBs is be-

yond the scope of this paper and hence a brief review is

presented. Holland (1975) was the �rst to address the

issue of BB supply. He estimated the number of BBs

that receive at least a speci�ed number of trials using

Poisson distribution. A later study (Goldberg, 1989b)

calculated the same quantity more exactly using bino-
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mial distribution and used those calculations to study

their e�ects on population sizing in serial and paral-

lel computation. Recently Reeves (1993) proposed a

population-sizing model for supply of BBs with �xed

cardinality. However, he only considered BBs of unit

size. Holland (1973, 1975) addressed the issue of deci-

sion making using the analogy of a two-armed ban-

dit problem. De Jong (1975) incorporated the ef-

fects of noise in the decision process and proposed a

population-sizing model based on the signal and noise

characteristics of the problem. Goldberg and Rud-

nick (1991) developed a population-sizing model based

on variance of �tness. A subsequent work (Goldberg,

Deb, & Clark, 1992) developed a decision-based model

to estimate population size to minimize decision errors.

Their model is based on deciding correctly between the

best and second best BBs in a partition in the presence

of noise arising from other partitions. Harik, Cantu-

Paz, Goldberg, and Miller (1997) re�ned this model

by incorporating cumulative e�ects of decision mak-

ing over a GA run. They also incorporated the e�ects

of initial BB supply in their population-sizing model.

3 Facetwise Model for the Supply of a

Single BB

Consider the probability of having a single k-position

schema, pk represented by one or more structures in

a randomly generated population of size n. Let the

population consist of strings of cardinality �, k be the

order of the schema. pk is given by

pk = 1�

�
1�

�
1

�k

��n
: (1)

Using the approximation, (1� r=n)
n
� e�r, and rec-

ognizing that this approximation is suÆciently accu-

rate even for modest values of n, we can write

pk = 1� exp

�
�

n

�k

�
: (2)

The above equation is a simpli�ed expression for the

probability of having one or more successes at given

schema. This model is compared to empirical results

with alphabet cardinality of 2, 3, 4 and 5.

Figures 1(a), 1(b), 1(c) and 1(d) depict the proportion

of runs out of 1000 trials for which at least one copy of

a particular BB was present, for alphabet cardinalities

of � = 2, � = 3, � = 4, and � = 5 respectively.

The empirical results agree more accurately with the

analytical results as the population size, n increases

and as the term �k increases. An extension of this

facetwise model to incorporate success at all schemas

of a partition is presented in the next section.

4 Facetwise Model of Supply for

Partition Success

When solving real-world problems, one does not have

prior knowledge about a particular schema being su-

perior to others in a partition. Hence it is necessary to

ensure that all competing schemata in a partition are

present. The decision process would then be able to

consider all the relevant alternative schemata. There-

fore in this section we extend the model developed in

the previous section to ensure the presence of at least

one copy of all the competing schemata in a partition.

For example, if a particular problem requires the last

two bits of a four-bit string to be evaluated jointly

(���), we should ensure that all schemata in the par-

tition (� � 00, � � 01, � � 10, � � 11) be present in the

initial population.

We �rst derive an exact model to predict the proba-

bility of having at least one copy of all the competing

schemata in a partition for the case k = 1 and alpha-

bet cardinalities � = 2, 3, and 4. Then a generalized

model of this probability for any schema-order and al-

phabet cardinality is presented. First considering the

case � = 2, for a population of size n, the probability

of having at least one copy of 1� and 0�, ps can be

written as: ps = 1 - probability of all the individuals

being either 1� or 0�. That is,

ps = 1�

�
1

2n
+

1

2n

�
;

= 1�
1

2n�1
: (3)

For � = 3, ps is the complement of the probability that

none of the individuals have at least one schema (0�,
1�, 2�). The number of possible ways of not having at
least one of the schemas in a given partition, nf , can

be written as

nf = 3 + 3

n�1X
i=1

�
n

i

�
: (4)

The �rst term represents the possibility of having iden-

tical schema in all individuals and the second term

represents all possibilities of having two schemas. Us-

ing the binomial theorem,
Pn

i=0

�
n

i

�
= 2n, we can

write

nf = 3 + 3 (2n � 2) = 3 (2n � 1) : (5)

It can be easily seen that the total number of possible

ways of schemas being present in the population is

�n = 3n. The probability of success, ps is given by

ps = 1�
nf

3n
;
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Figure 1: Veri�cation of the facetwise model for a single BB supply (equation 2) with empirical results for di�erent

schema order values, k, and alphabet cardinalities, �, as a function of population size, n. The empirical results

depict the proportion of runs having at least one copy of a particular schemata out of 1000 trials. Cardinality of

the string (a) � = 2, (b) � = 3, (c) � = 4, and (d) � = 5. Equation 1 matches the experimental results exactly

and the agreement between equation 2 and experimental results increases with n and �k.

= 1�
2n � 1

3n�1
: (6)

Similarly, for � = 4, the number of possible ways of

not having at least one of the schemata in a partition,

nf is given by

nf =

�
4

1

�
+

�
4

2

� n�1X
i=1

�
n

i

�
+

�
4

3

�
n�2X
i=1

"�
n

i

� n�i�1X
k=1

�
n� i

k

�#
: (7)

Some straightforward simpli�cation of the above equa-

tion yields,

nf = 8� 2n+1 + 8n+ 4

n�2X
i=1

��
n

i

�
2n�i

�
: (8)

Using the binomial theorem, we can equate

n�2X
i=1

��
n

i

�
2n�i

�
= 3n � 2n � 1� 2n:

Substituting the above result in equation 8, we get

nf = 4
�
3n � 3 � 2n�1 + 1

�
: (9)

The probability of success, ps is given by

ps = 1�
nf

4n
;

= 1�
3n � 3 � 2n�1 + 1

4n�1
: (10)

In general, for a schema-order value of k and alphabet

cardinality of �, the number of possible ways of not
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having at least one of the schema in a given partition

can be written as

nf =

nk�1X
i=1

(�1)i�1
�

nk
i

�
(nk � i)

n
: (11)

where nk = �k. Therefore the probability of success

of having at least one copy of all schemata in a given

partition is given by

ps = 1�
1

nnk

"
nk�1X
i=1

(�1)i�1
�

nk
i

�
(nk � i)

n

#
: (12)

We can easily see that when n > nk, the above equa-

tion can be approximated as

ps � 1� nk exp

�
�

n

nk

�
: (13)

The exact model becomes complicated for higher val-

ues of schema order and does not give us useful insight.

Hence we may derive a simpler form by assuming that

the schema partition success values are independent.

Then the probability of at least one success at each of

the nk = �k partitions, ps is given by ps = pnkk . Using

equation 2 we get

ps =

�
1� exp

�
�

n

nk

��nk
: (14)

Again using the approximation, (1� r=n)
n
� e�r, re-

sults in the following relation,

ps = exp

�
�nk exp

�
�

n

nk

��
: (15)

When n > nk, using the approximation (1 � x)n �
1�nx for small values of x, equation 14 can be written

as

ps � 1� nk exp

�
�

n

nk

�
: (16)

Equations 13, and 16 show that the approximate

model agrees with the exact model of the BB success

probability for higher population sizes. The simpli�ed

model of equation 15 is compared to the exact result

of equation 12 and empirical cases for k = 1 in �gure

2. The empirical results match the exact model very

accurately. The approximate model is a conservative

estimate of the probability and it agrees well with em-

pirical result at higher population sizes.

The above approximate model (equation 14) is veri�ed

with empirical results in �gures 3(a){(d). The plots

compare the proportion of runs out of 1000 trials that

have at least one copy of all members of a particular

schema partition for alphabet cardinality of � = 2, 3,
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Figure 2: Comparison of the exact (equation 12) and

approximate (equation 14) models for BB partition

success with empirical results. The empirical results

depict proportion of runs having at least one copy of

all members of a particular schema partition out of

1000 trials for schema order value, k = 1 as a function

of population size, n, for di�erent alphabet cardinal-

ity, �. The solid line represents equation 14, and the

dashed line represents equation 12. The agreement

between equations 12 and 14 increases as n increases.

4, and 5. As seen earlier we can see that the agreement

between the empirical results and the analytical model

increases with the increase in the schema order, k, and

the population size, n.

5 Population Size for BB Supply

The facetwise model derived in the previous section

will be rearranged in this section to estimate the pop-

ulation size required to ensure the presence of all BBs

of a partition for problems of varying BB size, k, count,

m, and alphabet cardinality, �. Assuming that we can

tolerate a probability � of not having all BBs in a

given partition, and setting ps to 1��, we can rewrite

equation 15,

1� � = exp

�
�nk exp

�
�

n

nk

��
: (17)

Taking logarithm on both sides and using the approx-

imation log(1� x) � �x, for small values of x, gives

� = nk exp

�
�

n

nk

�
: (18)

Solving the above equation for n yields

n = nk (lognk � log�) : (19)
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Figure 3: Veri�cation of the model for BB partition success (equation 14) with empirical results for di�erent

schema order values, k, and alphabet cardinalities, �, as a function of population size, n. The empirical results

depict the proportion of runs having at least one copy of all members of a particular schema partition out of

1000 trials. Alphabet cardinality (a) � = 2, (b) � = 3, (c) � = 4, and (d) � = 5. Equation 12 matches the

empirical results exactly and the agreement between equation 14 and experimental results increases with n and

�k.

Using the de�nition of nk we get,

n = �k (k log�� log�) : (20)

This relation yields the estimate of the population size

required to ensure the presence of all BBs of a parti-

tion. We can simplify this relation further if we assume

that the supply error is inversely proportional to the

number of BBs, m, that is, � = 1=m. Then the equa-

tion may be rewritten as

n = �k (k log�+ logm) : (21)

It can be easily seen that the above result can also

be obtained from equations 13, and 16. The above

population-sizing equation is an upper bound on the

population size required to ensure the presence of all

the BBs in the initial population. This model is ver-

i�ed with empirical results in �gures 4(a){(d). The

plots depict population size vs the number of building

blocks, m, at di�erent k values and di�erent alpha-

bet cardinality � values. It can be easily seen from

the plots that the model results agree with empirical

results. The results shown are averaged over 100 inde-

pendent runs, with all 100 runs yielding a supply error

of less than or equal to 1=m.

The population-sizing equation has two asymptotic

cases. One when a problem is relatively large with

respect to its complexity | when m � �k | and

the other in which the problem is relatively complex

with respect to its size | when �k � m. In the �rst

case, the population size required for ensuring the pres-
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Figure 4: Veri�cation of the population-sizing model for BB supply (equation 21) with empirical results for

di�erent partition sizes, k, and alphabet cardinalities, �, as a function of number of BBs, m. The empirical

results depict the population size required to represent all schemas in a partition of size k at a supply error of

1=m. The experimental results are averaged over 100 runs. Alphabet cardinality (a) � = 2, (b) � = 3, (c) � = 4,

and (d) � = 5. The agreement between equation 21 and experimental results increases with n and �k.

ence of all the schemas in a partition is O(�k logm).

In the later case, the population size required on BB

supply grounds is O(k�k log�). In both cases, the

supply population-sizing is less than that required on

decision-making grounds (Goldberg, Deb, & Clark,

1992; Harik, Cantu-Paz, Goldberg, & Miller, 1997).

6 Conclusions

In this paper, a detailed analysis of BB supply in

the initial population, one of the six essential steps

for a successful GA design, has been presented. Two

facetwise models are derived, one for ensuring supply

of a single schemata in a partition, and the other for

ensuring supply of all competing schemata in a parti-

tion. The latter model has been employed to estimate

the population size required to ensure the presence of

at least one copy of all raw BBs of a partition in the

initial population. The population-sizing model indi-

cates that for large easy problems the population size

required on BB supply grounds is O(�k logm), and

for relatively complex problems the population size is

O(k�k log�).
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k>cUf�O�OjÎ:TXQSc � caUcalnT � dec � k>W�hÓRaQ�TX�IO�PIWSO(hÓP�dglIOjWVW�Rah
TV� � W � R:f � lIAiUºIPIT�RUTX��O(QSW5�Ic � O¬�AR � l:TXOjf¯RUPIT5TV�IcUT
J QUÒPIhÓOjQKl:PIk,º�OjQVWZi�TX�IRaPIU� � Ral �(� WVO,cUlIfÌO(caWVmØTXR
fIO � R:fIO:indgc �^Ù TX�IOÚO(WSWSO(l:T � cUd8�IQSRU�AO(QST � O(W�RUh<dgR � cadg»
� TumÖcUlIf¾�IOjQ � TXcaº � d � TumnYÛ°¬� � W � RUl�Ü �g� T�k>RUT �g� cUTVO(W
RaPIQÌWSTXP�fImnYÝb�O×O(Î:cUk � lIOÞTV�IO×�IQVRa��OjQVT � OjWÌRah
J QUÒPIhÓOjQ<l:PIk,º�OjQVW�cUl�f � Rak>�IcUQSO J QUÒPIhÓOjQ<l:PIk,º�OjQVW
½ � TX�#RaTX�IOjQ � R:f � lIaW � l#O � RadgPIT � RalIcUQSm¬cUdeURaQ � TX��k'W
hÓRaQ<hÓRaPIQ<��QVRaºIdgOjk>W<TV�IcUT � l � RUd � O5WS�IcUl�l � l�2TXQSO(OjW�Y
ß PIQ � RUl � dePIW � RUl � W f�O(àIl � TXO:á J QUÒP�hÓO(Q l:PIk,º�OjQVW
� cUPIWSO��ARnRaQ �AO(QShÓRUQSk>cUl � O � lâO � RadgPIT � RalIcUQSmãcadg»
aRUQ � TV�Ik>W¬cUlIfÛWV��RUPIdefÊºAO#c � R � f�O(f<Y
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H l�O � RUdePIT � RUl�cUQSmÊcadgaRUQ � TV�IkìëÓí H>î k'c � l:TVc � lIWÚcÊ�ARU�IP�dgca»
T � RUlïRUh5fIcaTXcÊWVTVQVP � TXPIQSO(WKTX�IcaTKQSO(��QVOjWVOjlnT � cUl�f � f�cUTXO,WVRadgP�»
T � RUl�W2TXR¯c �IQVRaºIdeO(k�Y5«ul�cÌðañ¼òSó�ðUñ�ô^õuö¼÷Uø¼ñ¼ðÛí H iÐOjc � �ØfIcUTVc
WSTXQSP � TVPIQVO � cUl'º�O�TV�IRUPIa�:T�Rah�caW��IQSR �n� f � lI � lIWVTVQVP � T � RUl�W
TXRÚcùfIO � R:fIO(QÉTX��cUTÉºIP � dgf�W5TX�IO�WSRUdePIT � RUl,TX�IO�WSTXQSP � TVPIQSO�QSO(��»
QSO(WSO(l:TXWZY\°¬��Oùf�cUTXc,WVTVQVP � TXP�QVO � W�TV�IOKWSRUdePIT � Ral<ú W¬ûÐñjü�óUýÍþSÿ:ñ��
TX��O#fIO � Rnf�O(fØWVRadgP�T � RUl � W � TXW2ÿ��Uñ�ü�óaýDþSÿÐñnY
«ul�í H W�hÓRaQØ�IQVRaºIdeO(k>WØRUh � RUk,º � l�cUTXRaQ � cUdùRU��T � k ��� caT � RUl<i

TX��OKfIO � R:fIOjQ � cUl � RUlIW � f�O(Q��IQVRaºIdeO(k>»DWS�AO �(� à �K� lIhÓRaQVk>caT � RUl
WSP � �>cUW � RalIWSTXQSc � lnTVW��ZTX�IO�í H ú W�cUPITV�IRUQ�TX�IOjl'l�O(O(f>lIRaT�fIO(»
W � al � RUk>�IdeO(Î�O � RUdePIT � RUl�cUQSmÛRa��OjQVcaTXRaQVWÚRUQÚ�AO(lIcadgTumïhÓPIl � »
T � RUl�W�Y<°¬�IOùfIO � R:fIO(Q�WS�IRUPIdef ºAOùhÓcUWST�incUl�f TX��O � Rnf � lI � k'»
�IdeO(k>O(l:TVO(f � l'TX�IO¬aO(lIRaTum:��Oj»DfIO � R:fIOjQ<�Ic � QÉWS�IRUP�dgf'O(Î:� � º � T
� ó�ò¼÷ �	� ýÍþÛcUl�f
�Uñ�ô � ýD÷aö ���	� ýÍþ�áÖWSk>cUded � �IcalIUOjW � lLaO(lIRaTum:��OjW
WS�IRUPIdef � RaQVQSO(WS�ARUlIf×TXRÔWSk>cUded � �IcalIUOjW � lâTV�IO�WSRUdePIT � RUl�W
TX��O(m¾QSO(�IQSO(WSO(l:T�i�calIfãWSRUdePIT � RalIW>UO(l�O(QScUTXOjfÔº:m � QSRUWSWVR � O(Q
WS�IRUPIdef � RUk,º � lIO#hÓO(caTXPIQSO(W¬Rah"TX��O � Q��IcUQSO(l:TVW�Y
�ùO � R:fIOjQV»ÍºIcaWVOjf�í H W��Ic � OãºAO(O(l�cU�I��d � O(f�TVR/��QVRaºIdgOjk>W
TX��cUTÚWVOjcUQ � �ïWS�Ic � O(WÚRUh¥WV��cUlIl � lIÛTXQSO(OjW�Y�� � lIf � lIØcUl�PIlI»
� RalIWSTXQSc � lIO(f¯k � l � k,PIk WS�IcUlIl � lI,TXQSO(O � W�O(caWVm:i	º�PIT¥k>calnm
�IQSRUºIdeO(k>W � l � RUd �n� lIÔWS�IcalIl � lIÞTVQVOjO(WÛcUQSO � RUk>�IPITVcUT � RUl�»
cUdedem �IcaQVfØcUl�f�TX�:PIW2WSP � TXcaºIdgO#TVcUQSUOjTXW�hÓRaQ��IO(P�Q � WVT �g� W�WSP � �
cUW í H WZY�Kô����� ñ�ô�ü ��� öSñ�ô^ø�RUÑAO(Q�c¾fIO � Oj�IT �e� Ojdgm×O(deO(acUl:T� R:f � lI�RahÉWV�IcalIl � lI�TVQVOjO(W2½¬��RUWSO�fIO � R:f � l��cUdeURaQ � TX�Ik � W
hÓRUP�lIf � lØc � RalIWVTVQVP � T �e� OÚ�IQSR:RUh<RUh���cZm:deO(m\ú W�hÓRaQVk,PIdecAY
°¬� � W¯hÓRUQSk�PIdec � f�O(l:T � àIO(W¯TV�IO�l:PIk�ºAO(Q RUh2P�l � RalIWVTVQVc � l�O(f
WS�IcUlIl � lI�TXQSO(OjW � l×c � RUk>�IdeO(TVOÛP�lIf � QVO � TXOjfãaQVca�I�ãRal��
lIR:fIOjW�caW���������ëX��cZm:deO(m\iA[^³U³a_��Uí � O(l<iA[^_ �  AiU�I�<Y _U³a±A[�`U] î Y
J QUÒPIhÓOjQ�ëV[^_A[�³ î f�O(W � Q � ºAO(f�cKRUlIOj»DTVRU»ÍRUlIO�k'ca�I� � lI2ºAO(Tu½�O(Ojl
WS�IcUlIl � lIØTVQVOjO(W�Ral��ÕlIR:fIO(W�cUlIfÖWSTXQ � lIaW#RUh�� � � l�Rnf�O
decUºAO(deW�Y¾��Ral � O(l:T � RUl�cUdedgm:i � lnTVO(aO(QSW�dgcaº�Ojd¥TV�IO�lIR:fIOjW�i<calIf
TX��O#WVTVQ � lIUW¬Rah"decUºAO(deW�cUQSO � cUdedeO(f J QUÒPIhÓO(Q¬l:PIk,º�OjQVWZY
J QUÒPIhÓOjQ'l:PIk,º�OjQVW¯TV�:PIW¯O(l � R:fIOØWV�IcalIl � lI�TXQSO(O(WZi�calIf×QVOj»
WSO(cUQ � �IOjQVW���c � O�P�WVOjf J QUÒPIhÓOjQ2l:PIk�ºAO(QSW � lÌí H WKhÓRaQK�IQSRUº�»
deO(k>WÔTX��cUT¾WSO(cUQ � �&WV�Ic � OjW¾RUhÛWV�IcalIl � lI�TXQSO(OjW�Y °¬��O(WSO
�Ic � O � l � dgP�fIO(f#TV�IO5�IQSRUºIcaº � d � WVT �g� k � l � k�PIk�WV��cUlIl � lI¬TVQVOjO
�IQSRUºIdeO(k ë H ºIP�cUd � O(TùcUduYgiÉ[^_a_U´ î i�TX�IO>fIOjUQSO(Oj» � RUlIWSTXQSc � lIO(f
k � l � k,PIk WV�IcalIl � lI TVQVOjO��IQSRUºIdeO(k ë�!:��RUP�cUl�f M O(l<i
[^_a_ � î i,TX�IOËT � k'Oj»Df�O(�AO(lIfIOjl:T¾k � l � k�PIk WS�IcUlIl � lI TVQVOjO
�IQSRUºIdeO(k ë M cUQSUcalIR�O(T�cUduYein[�_U_a³ î ijTV�IO¥à�ÎnOjfI» � �IcUQSUO5TVQVcalIWS»
�ARUQSTXcUT � Ralâ�IQSRUºIdeO(k ë ¹ � O(TÛcUduYgiÚ[�_U_U³ î cUl�fËcãº �g� Q � TXOjQ � c
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� OjQVW � RUl>RUh � Tùë M Ojl�cUl�f¯¹ � i�[^_a_U_ î iZcalIf¯c�k,PIdgT � »ÍRUº�"XO � T �g� O
lIOjTu½¥RaQ Ù fIO(W � Ul��IQSRUº�dgOjk ë�# � k calIf M Ojl<iÉ[^_a_U_ î Y G Rak>O
cUP�TX�IRaQVW��Ic � OKk>cUf�OKOjÎnTVQVc � caUcUl:T � dec � k'W�hÓRaQ¬TX�IOÚO(Ï � c � m
RUh�TX� � W � Rnf � lI8i � l � dePIf � lI$# � k cUlIf M O(l�i:½¬�IR¯½¬QSRUTXO
°¬�IO J QUÒPIhÓO(QÚl:PIk�ºAO(Q � W � OjQVm�WSP � TXcUº�dgO>hÓRUQÚOjl � R:f � lI
cùWS�IcalIl � lIÚTXQSO(Oni	O(WS��O �(� cUdedgm � l'WVRak>O�QSO(WSO(caQ � �,àIO(defIWZi
WVP � �ÛcUW¬TVQVcalIWS��RaQVTVcUT � RUl �IQVRaºIdeO(k>W�ink � l � k�PIk WV�IcalI»
l � l�¯�IQVRaºIdeO(k>W�iacalIfØWVR>RUl�Y

G P � � � dec � k>W#cUQSO � l�O(QSQVRaQ�YÚ«ulÖaO(lIOjQVcad i J QUÒPIhÓOjQÚlnP�k�ºAO(QSW
fIR�l�RUTzWSPI�I�ARUQST\O(ÑAO � T �e� O5O � RUdePIT � RalIcUQSm�WSO(cUQ � �<Y H dgTVO(QSlIcUTVO
� R:f � lIaW�RUh�WS�IcUl�l � l��TXQSO(O(W � RalIW � WSTXO(l:TVdgm��IQSR �n� fIO¯ºAO(TVTXO(Q
QSO(WSPIdgTVW�incaW¬½¥OÚWS�IRZ½ � lØhÓRUPIQ¬OjÎ:cUk>�IdeO(WZY
°¬� � WÉ�IcU�AO(QÉfIOjW � Q � º�OjW J QUÒP�hÓO(QÉl:PIk�ºAO(QSW<calIf�TV�IO � QÉ�IQSRU�AO(QS»
T � O(W2cUlIf � Rak>�IcUQSO(W J QUÒPIhÓOjQ¬lnP�k�ºAO(QSW¬½ � TV�ÛRaTX�IOjQ � R:f � lIaW
RUhÐWS�IcalIl � lI2TVQVOjO(W � l,í H W�hÓRUQ�hÓRUP�Q<�IQSRUº�dgOjk'WZá8TV�IO�fIOjUQSO(Oj»
� RalIWSTXQSc � lIO(fLWS�IcUl�l � l�ÔTXQSO(O���QVRaºIdgOjk�i�TX�IO � Rak'k,PIl �e� ca»
T � RUl WS�IcUl�l � l��TVQVOjOL�IQSRUºIdeO(k�i'TX��OLQVO � T � d � lIOjcUQ G TVO � lIO(Q
�IQSRUºIdeO(k�i�calIf�TX��O�à�ÎnOjfI» � �IcUQSUO�TVQVcalIWV�ARUQSTXcaT � RUl���QVRaºIdgOjk�Y
«ul�O � O(QSm � caWVO:iKO � RadgP�T � RUlIcaQVmLWSO(caQ � � � WÌk>RUQSO�OjÑ�O � T �g� O
½ � TX�ØRUTV�IO(Q � Rnf � lIaW¬TX�IcalØ½ � TV� J QUÒP�hÓO(Q¬l:PIk�ºAO(QSWZY

% &('*),+ Æ.-é*/ ) Æ10�é32�Ã ) Æ14 )65 Æ ) Ä )\æ Å:ÇÉÅnêXç æ
°¬� � W WSO � T � RUlÕfIO(W � Q � º�OjW TX��O�cUdeURaQ � TX�Ik TX�IcaT�fIO � R:fIO(W c
J QUÒPIhÓOjQ¯lnP�k�ºAO(Q�TVR¾c�WS�IcalIl � lI¾TXQSO(O:i5OjÎncak � lIOjW¯TX�IOïdgRa»
� cad � Tum>cUlIfÊ�IO(Q � TXcUº � d � Tum>Rah\TX�IO J QUÒPIhÓOjQ � Rnf � lI,PIlIfIOjQ � RUl�»
� Ojl:T � RUlIcad¬O � RadgP�T � RUlIcaQVmÔRa��OjQVcaTXRaQVWZi5calIfÕàIlIfIWÊTX�IcaT�TX��O
QSO( � RUlãRUh¬TX��OÛWSO(caQ � �¾WS�Ic � O ½¬��O(QSO c J QUÒPIhÓO(QS» � R:fIO(f¾í H
k � a�:T¬��OjQVhÓRaQVk ½�O(ded � W � cal � WV� � lIadgm�WSk>cUded Y
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¹"OjTBA�CDA ��EFEGE A �����IH1J [LKFMGMFMNKO��PQ������ºAO�c J QUÒPIhÓOjQ<l:PIk,º�OjQ�Y«ul�TV�IO � RaQVQSO(WS��RalIf � lI�WS�IcUl�l � l�2TXQSO(O:i�O(c � ��lIR:fIOnú WÉfIO(aQVOjO
� W¥RalIO2k>RUQSO2TV�IcUlÊTX�IOùl:PIk�ºAO(Q�RUhzT � k>OjW�TV�IOùlIR:fIOnú W¥decUºAO(d
cU����OjcUQSW�Y<°�R � fIOjlnT � hÓmÊTX�IO#WS�IcalIl � lI>TXQSO(Onú W¬O(f�UO(WZá
[UY GI� cUlÞTX�IO J QUÒPIhÓOjQ,l:PIk,º�OjQ¯TXR � f�O(l:T � hÓmÔO(c � �ãlIR:fIO:ú W
fIOjUQSO(O:Y"«ul � T � cad ��� OÚc � cUQ � caºIdeOSR�TXR�[UY

� Y¥� � lIf�TX�IO�lIR:fIOUTÊRUhÉfIOjUQSO(O�[ù½ � TX�ØTX�IO�WVk>cUdedeO(WST¬dgca»
ºAO(duY¬ë�TNKFALV î�� W�c>WS�IcUl�l � l�'TVQVOjOÚO(fIaOnY

 AY¥�ùO � QVOjk'Ojl:T¬TX�IO#fIOjUQSO(OjW�RahNTÊcalIf ALV�� � l � QSO(k>OjlnT�RjY
´AY�W�Oj��OjcUTKWVTVO(�IW>ë � î cUlIfãë   î P�lnT � d<cUded"lIR:fIOjW2�Ic � O#fIO(»
aQVOjOK`8inO(Î � Oj�IT¬Tu½¥R'½ � TX�ØfIO(aQVOjO>[aY�°¬�IO(WSOÚhÓRUQSk TX��O
WS�IcUl�l � l�'TVQVOjOnú W¬dgcaWVT�OjfIUO:Y

H l×O(Ï �j� OjlnT � k'��dgOjk'Ojl:TXcUT � RalÞRah�TX� � W¯cadgaRUQ � TV�Ik PIWVOjW>c
�IQ � RaQ � Tum3X:PIOjPIO � k'��dgOjk'Ojl:TXO(f � l#c���O(cU�ÚTVR��IRUdef#TX��O5lIR:fIO(W
RUh¥fIO(aQVOjOÛ[aY#°¬�IO>cUdeURaQ � TX��k�ú WùT � k'O � W#TX�IOjlZY�ë[��dgRa\� î Y
� � aPIQSO#[�WS�IRZ½¬W�c J QUÒPIhÓOjQ�lnP�k�ºAO(Q5Rah�deO(lIaTX�>hÓRUPIQ�cUlIf>TX��O
TXQSO(OÚRalÛW � Î�lIR:fIO(W¬TVR¯½¬� �e� � � T¬fIO � R:fIO(WZY
G O � O(QScUdÉhÓOjcUTXP�QVOjW#RUh J QUÒP�hÓO(Q#l:PIk�ºAO(QSW#WSPIUaO(WSTKTV�IcUT#TV�IO(m
k � a�:T�WSPI�I�ARUQST,OjÏ �j� Ojl:T�O � RUdePIT � RUl�cUQSmÌWSO(caQ � �¾Rah¬WV�Ic � OjW
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� lI^�1� � T � k>O(WÚhÓQVRak_�ÞlIR:fIO�decUºAO(deW`�AcUlIf J QUÒPIhÓO(QKlnP�k'»
ºAO(QSWKWSPI�I�ARUQST � RUl � Ojl:T � RUlIcad\O � RUdePIT � RUlIcaQVmÛRU�AO(QScUTVRUQSW�d �gÙ O
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b2RZ½�O � O(QZi J QUÒP�hÓO(Q�l:PIk�ºAO(QSW�ún�AR:RUQ�deR � cUd � Tum¯calIfÛ�IO(Q � TVcUº � de»
� TumãcUQSOØlIRUT � RUlIf�P �(�e� OØTXR¾O � RadgPIT � RalIcUQSmÖWVOjcUQ � �<i�caW�TX��O
QSO(k>c � lIfIOjQ¬RUh"TV� � W�WVO � T � RalÊfIOjk>RUlIWSTXQScUTVO(WZY
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H�� R:f � lIË�IcaWï� � U� dgR � cad � Tum � h k�PITVcUT � lI/cËUOjlIRUTum:�AO
� �IcalIUOjW�TV�IO � RUQSQVOjWV�ARUlIf � lI/�I�IOjlIRUTum:�AOLRUlIdem�WSd � U�:TXdemnY
G O � O(QScUd�QVOjWVOjcUQ � �IO(QSW�i � l � dePIf � lI J cadgk>OjQ�cUlIfd##OjQVWS�IO(l�»
ºIcaPIk ëX[^_a_U´ î cUl�f@W�RUTV�IdecUPIh\calIf M RadgfIºAO(QSÛë � `a`U` î iZ�Ic � O
�AR � lnTVO(fÌRUPITKTX�IO'��R:RaQKdeR � cUd � TumÛRah J QUÒPIhÓOjQ2l:PIk�ºAO(QSWÚ½ � TV�
QSO(WS��O � T�TXR � RUl � O(l:T � RUlIcad:��RaW � T � RUlI»Íº:m:»D�ARUW � T � Ral,k,PITXcaT � RUl<Y
«ulØUOjlIO(QScUdui J QUÒPIhÓO(Q¬l:PIk,º�OjQVW¬QSO(decUTVO(fÛº:m WSP � �Êk,PITXcaT � RUlIW
fIR¯lIRaT¬QVOj�IQSO(WSO(l:T�W � k � decUQ¬WS�IcUl�l � l�'TVQVOjO(WZYÉ��RaQ¬O(Î:cUk>�IdeOni
� �IcalI � lI�TX�IO�dgcaWVTzf �  � T � l#TX�IO J QUÒPIhÓO(Q\l:PIk,º�OjQ\RUh:� � UPIQSO�[
hÓQSRUk  ïTVR×[¯m � O(defIW �U�  A[Ui"½¬� �e� �ãfIO � R:fIOjW,TVRïTX��OÊOjfIUOjW
ë � i ´ î i�ë � i � î i�ëÓ 8i � î i�ëV[Ui   î i�calIf�ëV[Ui ] î Y ß lIdgm¾Tu½�RïRah�TX��O
RUQ �  � lIcUd8TXQSO(O:ú W¬à � OÚO(fIaO(W¬QSO(k>c � l<Y
G Rak'O J QUÒPIhÓOjQ�l:PIk,º�OjQVWÉfIRÚ�Ic � O�� � U�'deR � cUd � Tum:Y H WSTXcUQ � WÉc
WS�IcUlIl � lI�TXQSO(O � l�½¬� �e� ��O � O(QSm'lIR:fIO2ºIP�T�RUl�O � W�c�deO(cahXY H
WSTXcUQ¥RUle�ïlIR:fIOjW��IcaWùë[�$�Ì[ î ë[�$� � î lIO � a�:º�RaQVWZiZRaºITXc � lIOjf
º:mKQSO(��dgc �(� lI¬RUlIO�Rah � TVW<OjfIUOjW\½ � TV��cUl�RUTX��O(Q\hÓOjcUW � ºIdeO5OjfIUO:Y
«ul#c¬WSTXcUQZú W J QUÒPIhÓO(Q\l:PIk,º�OjQ�i(cUded	TV�IO5WSmnk,º�RadgW"cUQSO�TX�IO5WScUk>O:Y
H WVTVcUQZú W¥lIO � U�:ºARUQSW¥caQVO�QSO(��QVOjWVOjlnTVO(f�º:m>TX��OKlIO � a�:º�RaQVW¥RUh
� TXW J QUÒPIhÓOjQ¯l:PIk�ºAO(QZi5RaºITXc � l�O(fÕº:m � �IcUl� � lIÖRUlIOØRUhùTX��O
f �  � TXW`�ùTX�IOjWVO�lIO � a�nºARUQSW cadgWSRãl:PIk,º�OjQÖë[�,��[ î ë[�]� � î Y
��RaQ\WSTXcUQSWZi�TV�IO5UOjlIRUTum:� �e� cUl�f#�I�IO(l�RUTum:� �e� lIO � U�:ºARUQS�IR:R:fIW
� R � l �(� fIOnincalIfØdgR � cad � Tum � W¬k>cUÎ � k>cad Y
°¬� � WÖWVOjO(k>WÖcUPIWS� �e�(� RUPIWZi�º�PIT J QUÒPIhÓO(Q�l:PIk�ºAO(QSW�úKdeR � cUd � »
T � O(W � caQVm�½ � TX� TV�IOLWV��cU�AO(W¾RUhÊTX�IOLTVQVOjO(W¾TV�IO(m�QSO(��QVOj»
WSO(l:T�Y H d � WVT � W�c¾WS�IcalIl � lIÖTXQSO(O�½ � TX�LTu½�R¾dgOjc � O(W>calIf
�Z� � lIR:fIO(W¯Rah2fIOjUQSO(O � YÞ«ulÞcÖd � WST�ú W J QUÒPIhÓOjQ'l:PIk,º�OjQ�i
cUdedzTX��O#WVm:k�ºARUdeW�cUQSOÚf � WST � l � T�i:calIfÊc>d � WST�RUlf�Öl�Rnf�O(W¬�IcaWCg ��ë��I�Û[ î ë��ihÛ[ î �I�IhÛ[�lIO � a�:º�RaQVWZY G TVcUQSW�cUlIf'd � WSTXW��Ic � OTX��O¥WSk>cUdedgOjWVT<cUlIf,dgcaQVaO(WST\�I�IOjlIRUTum:� �e� lIO � a�:º�RaQV�IR:R:fIWZijQVOj»
WS��O � T �e� Ojdgm:Y H dedzRUTX��O(Q�WV��cUlIl � lI'TXQSO(OjW¥hÓcadgdzºAO(Tu½�O(Ojl TX��O(WSO
O(Î:TVQVOjk'OjW�i�½¬� �e� �L� � aPIQVO � ��dgRaTXW�caW¯c¾hÓPIl � T � RalLRUhÚTX��O
l:PIk�ºAO(QI�âRUh�lIR:fIO(WZi"cUlIf¾QScUlIf�RUk TXQSO(O(W�cUQSO � l¾aO(lIOjQVcad
k>RUQSOÚW � k � decUQ¬TVR'd � WVTVW�TX�IcalÊTVR¯WVTVcUQSW�Y
� � aPIQSO�  � dgdePIWSTXQScUTVO(W�TV�IO¾dgRZ½ dgR � cUd � TumâRah,k>RaWVT J QUÒPIhÓOjQ
l:PIk�ºAO(QSWZY���RaQ � T�i�½�O OjÎ:cUk � l�O(fÔTV�IO lIO � a�:º�RaQV�IR:R:fIW,RUh
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� � aPIQSO � á J �IO(lIRaTum:� �g� l�O � U�:º�RaQV��RnR:fØW �j� O(W�hÓRaQ�d � WSTXW�calIf
WSTXcUQSWZiZcUW¥hÓPIl � T � RUlIW�RUh8TV�IOKl:PIk,º�OjQ�RahzlIR:fIO(WZY<°¬�IO � cUdePIO(W
hÓRUQ¬cadgdzRaTX�IOjQ¬TXQSO(OjW¬d � O#º�OjTu½¥OjO(lØTX��O(WSO � PIQ � O(WZY

[8`a`U`�WV��cUlIl � lI¬TVQVOjO(WlkÞWSTXcaQVWZi^caQVº � TXQScUQSm¬TXQSO(OjW�i(cUl�f#d � WVTVWmk
RUln�po [^]×lIR:fIO(WZY � � UP�QVOÖ Aë c î WV��RZ½¬WÛf � WSTXQ � º�PIT � RUlIW
RUh�UOjlIRUTum:� �e� f � WVTVcUl � O(W¬hÓRUQ¬l�O � U�:º�RaQ � lI'WV��cUlIl � lI¯TVQVOjO(W`�
TX��cUT � WZiUhÓRaQ�WS�IcUl�l � l��TXQSO(OjW�TX��cUT�f � ÑAO(Q � lÊRUlIO2O(fIaOnY<� � a»
PIQSOØ AëÓº î WS�IRZ½¬W'f � WVTVQ � ºIPIT � RalIW¯RUhK�I�IO(l�RUTum:� �e� f � WSTXcal � OjW
hÓRUQØlIO � a�:º�RaQ � lI J QUÒPIhÓO(QØl:PIk�ºAO(QSW`�#TX��cUT � WZiKhÓRUQ J QUÒPIhÓOjQ
l:PIk�ºAO(QSW�TV�IcUT,f � Ñ�OjQ � lãRalIO�f �  � T�Y ß lIdgm�hÓRUQ'WSTXcUQSW�calIf
TXQSO(OjW<W � k � decUQ"TVR2WSTXcaQVW � W�TX�IO¥dgR � cUd � TumÚRUhÐTV�IO J QUÒP�hÓO(Q � R:f � l�
� � U�<Y¯«ul¾UO(l�O(QScUdui8TX�IO¯���IO(lIRaTum:��OjW�RUh�UOjlIRUTum:� �e� lIO � U��»
ºARUQSW¬cUQSO � O(QSm�f � Ñ�OjQVOjlnT�i:cUl�f � RUl � OjQVWSO(demnY

7 �9q r�7:��CE@j�IF�CEBECD@¼�
H � R:f � lI �IcUWÕ� � U� �IOjQ � TXcaº � d � TumniØ½ � TX� QVOjWV�AO � TÕTXR&c
� QSRUWSWSR � O(QÕRa��OjQVcaTXRUQZi � h¾RUÑAWS�IQ � lI ���IO(lIRaTum:��OjW � RalIW � WST
k>RUWSTXdem�RUh�WSPIºIWSTXQSP � TVPIQVOjW#RUh¥TX�IO � Q���cUQSO(l:TXWZú��I�IO(l�RUTum:��OjW�Y
bL�IOjl,aO(lIRaTumn�AO(W�O(l � R:fIO�WV�IcalIl � lIùTXQSO(O(WZi�RUÑAWS�IQ � lIùTXQSO(OjW
WS�IRUPIdef � RUl�W � WVTØk>RUWSTXdemâRaQ�O(l:T � QVOjdgmËRUh���cUQSO(l:TXcad#O(fIaO(WZY
�2WSPIcadgdemni�½ � TX� � RUl � Ojl:T � RUlIcad"RU�AO(QScUTVRUQSW�iI�IO(Q � TXcUº � d � TumØ½ � dgd
ºAO¯dgRZ½�½¬��O(QSO'deR � cad � Tum � W#dgRZ½�Y,«ul J QUÒPIhÓO(Q#l:PIk,º�OjQVWZi8TX��O
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� � aPIQSO� Aá¬� � WVTVQ � ºIPIT � RalIWÚRUhKë c î UOjlIRUTum:� �e� f � WSTXcUl � O(WÚhÓRaQ
lIO � a�nºARUQ � lI¾WV��cUlIl � lI¾TVQVOjO(WZi�calIf ëÓº î �I�IOjlIRUTum:� �e� f � WV»
TXcal � OjW¬hÓRUQ¬lIO � a�:º�RaQ � lI J QUÒPIhÓO(Q¬l:PIk,º�OjQVWZinRUlÔ[^]'lIR:fIOjW�Y
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� � aPIQSO#´Aá J OjQVhÓRaQVk>cal � OùRUhÉc J QUÒPIhÓOjQV» � R:fIOjfÊí H RUl ß lIOj»
��caÎn»Í°�QVOjO'��QVRaºIdgOjk>W�RUh�  � lIR:fIOjW�i"½ � TX�¾RU��T � k�PIk TXQSO(OjW
RUh � cUQ � RaPIW�WVTVQVP � TXP�QVOjW�Y

k>O(cal � l�UW�Rah�aO(lIRaTum:� �g� WVm:k�ºARUdeW�fIOj��OjlIfÔRal¾TX�IO � Q � RUl�»
TXOjÎ:TXWZincUlIf a »D�AR � l:T � QVRaWVWSR � OjQ5½ � ded8lIRUT��IQSO(WSO(Q � O���cUQSO(l:TXcad
WSPIºIWSTXQSP � TVPIQVOjW � l×RUÑAWV��Q � lIï���IO(lIRaTum:��OjW�YÔ°¬�nP�W J QUÒP�hÓO(QS»
� R:fIOjf�í H W"PIW � lI�WSP � ��c � QVRaWVWSR � OjQA½ � dedaWSO(caQ � �ÚO(ÑAO � T �e� Ojdgm
RUl�dgm�l�O(cUQ¬WSTXcaQVWZia½¬�IO(QSO#deR � cUd � Tum � W�� � U��Y
í�Î:�AO(Q � k>OjlnTVW2½ � TX��c�W � k'��dgO,�IQVRaºIdeO(k � RUlIà�QVk TX�IcaT2TV� � W
� W�WVR8Y,«ul�TV�IO ß lIOj»D��caÎ��IQSRUºIdeO(k�i\cÛº � T#WSTXQ � l�Aú W#àITXlIOjWVW
� W2TX��O�l:PIk�ºAO(QKRUh�[^W � l � T�Y¬«ul�TX�IO ß lIO(»Í��cUÎ:»Í°<QSO(OÚ�IQSRUº�»
deO(k ë�W�RaTX�IdecUP�hAOjT�cad Yei � `U`U` î i�cal¯RU�IT � k,PIk WV��cUlIl � lI#TVQVOjO
� WKWS��O �(� àIO(f�iAcUlIfÌTX�IO'àITXl�O(WSWKRah5cUl:mØTXQSO(O � WùTX�IO'l:PIk�ºAO(Q
RUh<O(fIaO(W�TX��cUT � T�WS�IcUQSO(W�½ � TX�ÛTX� � W¬TXcaQVaO(T�Y H lÊí H ½¬�IRUWSO
� R:f � lI¬�IcaW\WSPIÏ �(� O(l:T\�IOjQ � TXcaº � d � Tum2WS�IRUPIdefÚWVRad � OÉTX� � W"�IQSRUº�»
deO(k OjcUW � demninº:m¯�IQSO(WSO(Q �:� lI,O(fIaO(W¬Rah\TX�IO#TVcUQSUOjT¥TVQVOjOKhÓQSRUk
�IcaQVOjlnTVW¬TXR>RUÑAWS�IQ � lI8Y
H UO(l�O(QScUT � RUl�cUd�í H hÓRaQ ß l�O(»Í��cUÎ:»Í°<QSO(O�Ojl � R:fIOjfãWS�IcUl�»
l � lIãTVQVOjO(WÛcUW J QUÒPIhÓO(QÛl:PIk�ºAO(QSWZY�«uTÛcU�I��d � O(fâl�RÞk,PITXca»
T � RUl�i5RalIdgmãRUlIOj»D�AR � l:T � QVRaWVWSR � OjQ�i�calIf×PIWVOjf ë[v]hxw î WVOj»
deO � T � Ral<i"½ � TV� vyo_w]o [��U`U`8Y¯� � UPIQSO¯´ � dedePIWVTVQVcaTXOjW�TX��O
cUdeURaQ � TX��k�ú W¬�AO(QShÓRUQSk'cal � OÚRalÛWSO � O(QScUd ß lIOj»D�ïcUÎ:»D°�QSO(O � lI»
WSTXcUl � O(W>½ � TX�z�{o   � lIR:fIO(WZi�½¬�IRaWVOÛTXcaQVaO(T,TXQSO(O(W>½�O(QSO
� cUQ � RaPIWSdgmùWVTVcUQSW�i(QScUlIfIRak/TVQVOjO(WZijcUlIf�d � WVTVW�Y ß lIdgmÚ½¬�IOjl�TX��O
TXcaQVaO(T5TVQVOjOnú W�deR � cUd � Tum,½�cUW5� � a��k ��| ñ | i � T�½�cUW5c,WVTVcUQlkÞf � f
TX��O�í H àIl�f � T�Y5«ul�RaTX�IOjQ � cUWSO(WZi:TV�IO�í H ú W2WVOjcUQ � �ÊhÓc � deO(f<i
cUl�fÊhÓc � deO(fØºIcafIdgm:Y

7 �9} ~�¨�7:��7 c ?6;a�IBECD@S�ÞCE;$r�C9=A¨
H lïí H ½ � dgd�WSO(cUQ � �ØO(ÑAO � T �e� O(dem � l�QSO( � RalIW�Rah�� � a��dgR � cUde»
� TumniAºIPIT#½¬��O(l J QUÒP�hÓO(QÚl:PIk�ºAO(QSWKOjl � R:fIO>WS�IcUl�l � l�ÊTVQVOjO(WZi
TX��O(WSOÌQSO( � RalIW�cUQSOïT � l:m:Y b�O�O(Î:TXOjlIfâTX��OÌfIOjàIl � T � RUl/RUh
lIO � a�nºARUQSWÚTXR � l � dePIfIO>TXQSO(OjW#½¬�IRUWSO J QUÒP�hÓO(QùlnP�k�ºAO(QSW#f � hÓ»
hÓO(Q � lãcaT,k>RUWSTiRO�\�l�Øf �  � TXW�ë�R��\�l�z��� î Y�°¬�IOÛl:PIk�ºAO(Q
RUh�lIO � a�nºARUQSW¬RUh�WSTXcUQSW � W2TX��O(l Vj�����V��6� �����V ë����L[ î V �ÐTV� � W
� cUdePIO � W^Y�ë[��� V ����� î Y#°¬�IO'l:PIk�ºAO(QÚRah�WS�IcUlIl � lIÛTXQSO(OjWKRal
� � O(QST �e� OjW�i¥calIfÕTX�:PIW�TV�IO�W �j� O�RUhÚTX�IOïWVOjcUQ � �ÞWS�Ic � Oni � W
�������nY H WK� � UP�QVO#� � dedgPIWSTXQScUTVO(WZi:TX��O��IQSRU�ARUQST � RUlÛRUhÉTX��O(WSO
� � U�I»ÍdeR � cUd � Tum¾TVQVOjO(W � W¯WVk>cadgd¬O � O(l×hÓRUQ¯k>R:fIOjQVcaTXO���calIf
f � k � l � WS�IO(WÚO(Î:�ARUlIOjl:T � cUdedgmÛcUW3�ãUQSRZ½¬W�Y ß lï�IQSRUºIdeO(k>WKRUh
� lnTVO(QSO(WST � lI>W ��� O:i J QUÒPIhÓO(QS» � R:fIO(fÊí H W � calIlIRUT�WSP �(� O(Ojf<Y
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number of network nodes n

� � aPIQSO��8áz°¬�IO¬��QVRa��RaQVT � Ral,Rah�WS�IcUl�l � l�ùTVQVOjO(W�Rali�ØlIR:fIO(W
½¬�IRaWVO J QUÒPIhÓO(Q>l:PIk,º�OjQVW>�Ic � OÊ� � U�×deR � cUd � Tum:i�fIOjàIlIOjfÞcaW
f � Ñ�OjQ � lI¯hÓQSRUk TV�IO J QUÒPIhÓOjQ¬lnP�k�ºAO(Q�Rah<c>WSTXcUQ � lØlIR¯k>RUQSO
TX��cUl�R �\�m� oã�>f �  � TXWZY

°¬�IO'hÓRUdedgRZ½ � lIÛhÓRUPIQÚWSO � T � RUlIW � Rak>�IcUQSO � Rnf � lIaWKRah�WS�IcUl�»
l � lI�TVQVOjO(W � l�í H W¥hÓRUQ�hÓRaPIQ�WSPIºIWSTXcal:T �e� O��IQSRUº�dgOjk'WZY"°¬�IO(m
� RalIàIQSk TX��O#PIlIWSP � TVcUº � d � TumÊRUh"TV�IO J QUÒPIhÓOjQ � R:f � lIAY

� &('*)�n)6� Æ )6)��F� ç æ Ä:ÅnÆ�Ç�ê æ3) è�� ê æ ê�2�é*2
� 5 Ç æKæ ê æ*�{& Æ )6)x+ ÆIç5Ã*� ) 2

M��e� O(l c/½�O � U�:TXOjf�PIlIf � QSO � TXO(f UQScU�I����i�TX��OÞfIOjUQSO(Oj»
� RalIWSTXQSc � lIO(f k � l � k�PIk WS�IcUl�l � l� TVQVOjO �IQSRUºIdeO(k ë��j»
� G ° JÚî WVOjO Ù W<cùWS�IcUlIl � lIùTXQSO(O�RUl��ãRah�k � l � k,PIk�½�O � U�:T
½¬�IRaWVO�f�O(UQSO(O#f�RnOjW2lIRaT�O(Î � O(O(f��$��[aY¥°¬� � WK�IQSRUºIdeO(k � W
N J »D��cUQSfÌë M caQVOjm'calIf@�nRU�Il�WVRal<i�[�_ � _AiZ��Y � `U] î Y"� � UP�QVOK]
WS�IRZ½¬W�cUlËPIl � RalIWSTXQSc � lIO(fLWS�IcUl�l � l�ÔTXQSO(OÞë RUh#fIOjUQSO(O�� î
cUl�fÌc�WS�IcUl�l � l�ÛTVQVOjO>½ � TV��k>caÎ � k�P�k fIO(aQVOjO���o� ÛRal
�zo/[a[��AR � l:TXW � lØTX�IO#�IdecUl�OnY
°¬�IO�fIOjUQSO(O � RalIWSTXQSc � lnT'WSPIUaO(WSTXW¯TX��cUT J QUÒPIhÓOjQ¯lnP�k�ºAO(QSW
k � a�:T���OjQVhÓRaQVk ½�O(ded � l¾cUl¾í H hÓRUQ�TV� � W'�IQSRUºIdeO(k�i"W � l � O
TX��O2fIOjUQSO(O�RahAOjc � �¯lIR:fIO � l c�WV��cUlIl � lI�TVQVOjO � W¥RalIO�k>RUQSO
TX��cUl�TV�IO�l:PIk�ºAO(QÉRUh�T � k'OjW � TVWÉdgcaº�Ojdnca�I�AO(cUQSW � l'TX�IO�TVQVOjOnú W
J QUÒPIhÓOjQ�l:PIk,º�OjQ�Y�°¬�:PIWZi � T � W¬OjcUWSm¯TXR � f�O(l:T � hÓm calIfÊQSO(��c � Q
J QUÒPIhÓOjQ¬lnP�k�ºAO(QSW¬½¬�IRUWSOÚTXQSO(O(W �:� RUdecUTVOKTV�IO � RalIWVTVQVc � l:T�Y
!:�IRaP#cUlIf M O(lÊëV[^_U_ � î �IQSO(WSO(l:TVO(f#cUl�í H hÓRaQ"TX��O3��»D� G ° J
TX��cUT�O(l � R:fIO(W¬WS�IcUl�l � l�'TVQVOjO(W�cUW J QUÒP�hÓO(Q�l:PIk�ºAO(QSW�Y�bKRZ½¬»
O � O(QZi � Tù½�cUW#TVO(WSTXOjfÌRalIdgmïRUl � O(QSm�WSk'cadgduizQScUl�fIRUk��IQSRUº�»
deO(k � lIWSTXcUl � O(WZY"°¬�IO(WSO�½¥OjQVO�WV��RZ½¬l�TXRÚºAO¬O(caW � dgm#WSRUd � Ojf�TVR
RU��T � k'cad � Tum'ºnm'UQSO(OjfIm'�IO(PIQ � WVT �g� W�i	ºIQVcal � �I»ÍcUlIf�»DºARUPIl�f<iZRaQ
í H W�PIW � lI#RUTV�IO(Q¥O(l � Rnf � lIaWKë�##l�RZ½¬dgOjW5cUlIfï��RaQVl�Oni � `U`U`��
##Q � WS�IlIcak'R:RaQVTV�nm>OjT¬cUduYgi\[�_U_a_�� W�c � fIdui � `a`U` î Y
ß TX��O(Q�QSO(WSO(caQ � ��O(QSW#�Ic � O¯PIWSO(f¾RaTX�IOjQ � Rnf � lIaW�Y¡##l�RZ½¬dgOjW
cUl�f ��RaQVl�OËë � `a`U` î fIO(W � Q � ºAO(f cal�í Hì� l�½¬� �g� � aO(lIRa»

(a) (b)

� � aPIQSO�]Aá H lÔP�l � RalIWVTVQVc � l�O(fÖWV��cUlIl � lI�TVQVOjOÌëÓc î cUl�f¾c
WS�IcUlIl � lI>TVQVOjOù½ � TX�Øk>cUÎ � k�PIk fIO(aQVOjO¢�$o¾ �ëÓº î Y

Tum:��OjW,caQVOÊWVTVQ � lIaW�RUh � l:TXOjUOjQVW,TX�IcaT � lIÜIPIOjl � OÛTX��O RUQSfIOjQ
� l�½¬� �e� ��c � cUQ � caT � RUl¯Rah J Q � k�ú W�k � l � k,PIk WV�IcalIl � lI�TVQVOjO
cUdeURaQ � TX��k � RUl�lIO � TXW�lIR:fIOjW¬TXR>TX��O#WV�IcalIl � lI>TXQSO(O:Y
J cUdek>O(QØcUl�f##OjQVWS�IOjlnº�cUPIk ëV[^_a_U´ î Ojl � R:fIOjf�WS�IcalIl � lI
TXQSO(OjWÚcUWÚWVTVQ � lIaWKRah�QSO(cUde» � cadgP�O(f�½�O � U�:TXWZYÚ°¬�IO'TXQSO(O'WSP � �
c¯UOjlIRUTum:�AO#QVOj�IQSO(WSO(l:TXW � W�hÓRaPIlIf�º:mÊTVO(k>�ARUQScUQ � dem cafIf � lI
O(c � �>lIR:fIOnú W�½�O � U�:T�TXR�cUdedITX�IOKf � WVTVcUl � O(W � l¯½¬� �e� � � T5��cUQS»
T �e�(� �IcaTXO(WZinTX��O(lÛcU�I�Idem � l� J Q � k�ú W�cUdeURaQ � TX�Ik TVR,TV�IOÚk'R:fI»
� àIO(f/f � WSTXcal � OjW�YyW�c � fIdùcUlIfn�aPIdeWSTXQSRUk ë � `a`U` î cUfIca�ITXOjf
TX� � W � R:f � lI�TXR¬TV�IO3��»Í� G ° J i¼PIW � lI�lIRaQVk>cUdedem2f � WVTVQ � ºIPITVO(f<i
k�P�dgT � �Id �e� cUT �g� O#½¥O � a�:TXWZY
##Q � WS�IlIcak'R:RaQVTV�nm¾OjT�cUduY�ëV[^_U_a_ îK� Rak>�IcUQSO(fÕTu½�R J QUÒP�hÓO(QS»
� R:fIOjf�í H W�ia½¬� �e� ��f � ÑAO(QSO(f � l TV�IO � Q � QSRUWSWVR � O(Q�RU�AO(QScUTVRUQSW
cUl�f�ºIQSO(O(f � lIKW � ��O(k>O(WZijTXR2cK½¥O � a�:TX» � R:fIO(f#í H calIf�RaTX�IOjQ
RU��T � k ��� caT � RUl¯TVO � �Il � X:PIO(WZY<°¬�IO J QUÒPIhÓOjQV» � R:fIOjf>í H W¥hÓc � dgOjf
RUl¾cadgd � lIWVTVcUl � O(W,O(Î � Oj�IT�TX��O W � k>�IdeO(WSTQ�5RUl¾c � OjQVcaUO:izTX��O
½�O � U�:TX» � R:fIOjf í H �AO(QShÓRUQSk>O(fÛº�OjWVT�Y
W�O � O(l:TVdgm:i£W�c � fIdØë � `U`U` î fIOjW � Q � º�Ojf�cUl�í H hÓRUQÌTX�IOx�j»
� G ° J TV�IcUT�WSTXRaQVOjWØTX�IO¾OjfIUOjW�RUh � cUl�f � f�cUTXO¾WS�IcalIl � lI
TXQSO(OjW"f � QSO � TVdgm � l�d � WSTXWZY\°¬��O�QSO � Rak�º � lIcaT � RUlÚRU�AO(QScUTVRUQ\PIWSO(W
�IcaQVOjlnTVcUd\OjfIUOjW2TVR�ºIP � dgfïc�lIO(½ WS�IcUl�l � l��TXQSO(O<�ÐTXRÊc � R � f
�:� RadgcaT � lI¾TX��O�fIO(aQVOjO � RUl�WVTVQVc � l:T�i � T�k�PIWST�R �(� cUW � RalIcUdedem
� lnTVQVR:fIP � O#O(f�UO(W2TX�IcaT�cU�I�AO(caQ � l�lIO � TX�IOjQ��IcaQVOjlnT�Y���P�TXcU»
T � RUl � lIWVOjQVTVW�cÚlIO(½ÞO(fIaO�calIf'TX�IOjl'QSO(k>R � O(W�cUl'O(fIaO¥hÓQSRUk
TX��O � m � deOÚWVR � QSO(caTXOjf<Y
°�cUºIdeOï['WV��RZ½¬W#WVRak'O � ��cUQSc � TVO(Q � WST �e� QVOjWVPIdeTXW�hÓQVRak¤W�c � fId
ë � `U`a` î RUlØW � Î��IcaQVf�ink � WSdgOjcUf � lI>�U»Í� G ° JÕ� lIWVTVcUl � O(W¬fIP�O
TXR�##lIRZ½¬deO(W2calIfÞ��RaQVlIOÛë � `a`U` î Y�°¬�IO,TXcaºIdgO,�IQSO(WSO(l:TXWKQVOj»
WSPIdgTVW�hÓRUQ�cUl í H TV�IcUT�O(l � R:fIO(f WV�IcalIl � lI'TXQSO(O(W�cUW J QUÒPIhÓOjQ
l:PIk�ºAO(QSW#ë J W î cUl�f�hÓRUQ�TX�IQSO(OKRUTV�IO(Q¥cUdeURUQ � TX�Ik>WZá\TV�IO2í H
RUh¥##l�RZ½¬dgOjW�cUl�f/��RUQSlIOÌë¦#£§ � î i"TX�IOÊ½¥O � a�nTV» � R:fIO(f¾í H
RUh�W�c � fIdzcalIf��nPIdeWVTVQVRak ë � `U`U` î ë bLTXW î iÐcalIf TV�IO#O(f�UO(»Íd � WST
í H RUh\W�c � f�d�ë � `U`a` î ë ¹"Raí î Y H W � fIO�hÓQSRUk � TXW � R:f � lI calIf
RU�AO(QScUTVRUQSW�i�TV�IO J QUÒPIhÓOjQV» � R:fIOjf,cadgaRUQ � TV�Ik�½�cUW � fIO(l:T �g� cUdITVR
TX��OùOjfIUOj»Dd � WVT�í H YUí¥c � ��cadgaRUQ � TV�Ik ½¥caW�QVPIl � ` � l�fIO(�AO(lI»
fIOjlnT'T � k>O(W'RUlÔOjc � � � lIWSTXcal � O:Y H W � l¨##Q � WS�IlIcak>RnRaQVTV�:m
O(T,cUduY¥ëV[^_a_U_ î i<TX�IO J QUÒPIhÓO(QS» � R:fIO(fÖí H �AO(QShÓRUQSk>O(f¾½�RUQSWVT�i
cUl�f � TXWÚ��OjQVhÓRaQVk>cal � O,fIO(TVO(Q � RaQVcaTXO(fïk'RaWVTUX:P �e�^Ù demØcUWÚTX��O
�IQSRUºIdeO(k W ��� O � l � QSO(caWVOjf<Y

°�cUºIdeO�[aá HK� OjQVcaUO¯½�O � U�:TXW,RUh¬TX��O ºAO(WST�WS�IcUlIl � lIÌTXQSO(OjW
hÓRUP�lIfLRUl � `¾TXQ � cadgW�½ � TX�LhÓRaPIQ � Rnf � lIaW Ral×W � ÎÞ�IcaQVfÕ�a»
� G ° JÕ� lIWSTXcUl � O(WZY

�U»Í� G ° J � J W #£§ � bLTVW ¹<RUí
��©<ª<©:q6« �a` [� AY ` ³8Y � ]AY � ]AY ]
��©<ª<©:q<¬ �a` [�´AYe[ � Y ³ ]AY ` �AY ³
�N«G©<©:q6« [^`a`  a�AY ³ [^ 8Y � [U[aY ´ [U[UYe[
�N«G©<©:q<¬ [^`a`  a_AY � [^�8Y � [U[aY _ [U[UY ´
��¬<©<©:q6« � `a` ³a`AY � � `8Y _ [^³8Y ³ [^³AY ´
��¬<©<©:q<¬ � `a` ³ � Y   � ]8Y ´ � `8Y   [^_AY �
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��RUl�W � fIO(Q#c � RUdedgO � T � RUl�RUh�lIR:fIOjW�hÓRUQ#½¬� �e� �ÖTX�IO � RUk>k�P�»
l �e� caT � RUl�fIOjk'calIf�ºAO(Tu½�O(Ojl�O(c � �Û��c � Q2RUh�l�Rnf�O(W � Wù �e� O(l�Y
«ulïTV�IO ß �IT � k>cUd¬��RUk>k�PIl �g� cUT � RUl G �IcUl�l � l�Ê°�QVOjO J QVRaºI»
deO(k ë ß � G ° Jùî i�½¥OØWSO(O Ù c¾TXQSO(Oj»DWSTXQSP � TVPIQSO(fãl�O(Tu½�RUQ Ù RUh
k � l � k,PIk TVRUTVcUd � RUWST¯TX�IcaT � RUl�lIO � TXW�cadgd�TV�IO�lIR:fIOjW�Y H
d � l Ù ú WKÜ�RZ½ � WùTX�IO,WVP�k Rah�TX�IO � Rak>k�PIl �e� caT � RUl�fIOjk>cUlIfIW
ºAO(Tu½�O(O(lÌcUded��Ic � QSWKRah�lIR:fIOjW � RUk>k�P�l �g� cUT � lIÛf � QVO � TVdgm�RaQ
� lIf � QVO � TXdem�R � OjQ2TV�IO,d � l Ù Yù°¬�IO � RUWST2hÓRaQKOjc � ��d � l Ù�� WÚlIRaT
àIÎ:O(f¾÷ÚÿAô � óaô � ºIP�T�f�O(�AO(lIfIW¬Ral TV�IOÚdgOjlIUTV� cUl�f � ca�Ic �j� Tum
RUh¬TV�IO d � l Ù Y H d � l Ù ú W � ca�Ic �j� TumÌk�PIWST�WScUT � WShÓmÖTX�IOÊd � l Ù ú W
ÜIRZ½ cUlIfÕTX� � WÊÜIRZ½ fIOj��OjlIfIW�RalÕTX�IO�OjlnT � QSO�TXQSO(O�WSTXQSP � »
TXP�QVO:Y#¹ �eÙ O'RUTV�IO(Q � RUlIWSTXQSc � lIO(fïWV�IcalIl � lIÛTXQSO(O>�IQSRUºIdeO(k>WZi
TX��O ß � G ° J � WÛN J »D��cUQSf ë M cUQSO(mÕcalIf±�nRU�IlIWSRUl�iK[�_ � _8i
�<Y � ` � î YÕ� � UPIQSO � WV�IRZ½¬W¯c � RUk>k�P�l �g� cUT � Ral×WS�IcalIl � lI
TXQSO(O#Ralã[^�¯lIR:fIOjW�cUl�f�O(k>�I�IcaW ��� OjW�TX�IO��IcUTV� � RUl�lIO � T � lI
lIR:fIOjW¬ ¯cUlIf¾[^´8Y
G O � O(QScUdAQSO(WSO(cUQ � �IOjQVW5��c � O2Ojl � R:fIOjf � cUlIf � fIcaTXO � RUk>k,PIl � »
� caT � RUlLTVQVOjO(W caW J QUÒPIhÓOjQ l:PIk,º�OjQVW � lâí H WÊhÓRUQ TV� � WÊcalIf
QSO(decUTXOjfï�IQSRUº�dgOjk'WZYù��RaQÚO(Î:cUk>�IdeOni�# � k�cUlIf M O(lÕëX[�_U_U_ î
� RalIW � fIOjQVOjfÕ�IQVRaºIdeO(k>W � lL½¬� �e� �âTX�IOïlIR:fIO(WÊ½¥OjQVO���cUQST � »
T � RUl�O(f � l:TXRÛPIWSO(QSWÚcUlIfÌWVOjQ �:�e� O � O(l:TVO(QSW�YÚí¥c � �ÌPIWVOjQ � RUl�»
lIO � TXOjfØTXR¯O(Î:c � TXdem�RalIOÚWVOjQ �:�e� O � OjlnTVO(QZincUlIf J QUÒPIhÓOjQ¬lnP�k'»
ºAO(QSW�QSO(�IQSO(WSO(l:TXOjf>WV�IcalIl � lI�TVQVOjO(W5Ral¯TX�IOKWVOjQ �:�e� O � Ojl:TXO(QSWZY
W�RaTX�IdecUPIh�OjT2cad Y<ë � `a`U` î cUfIca�ITXOjf�N2OjT�##O(m:W>ë�²�O(cal<i<[�_U_ � î
TXR QVOj�IQVOjWVOjl:T � RUk>k,PIl �e� cUT � Ral�TXQSO(OjW�Y�«ul�TV� � WùQSO(�IQSO(WSO(l:TXca»
T � RUl�inc'aO(lIRaTum:��O � W¬c'WSOFX:PIOjl � OùRUh<QVOjcUde» � cadgPIOjf �IQ � RUQ � T � OjW
cUWSWSR �j� caTXOjf'½ � TX�¯TV�IO2OjfIUOjW5TX��cUT5k � U�:T5cU����OjcUQ � l¯c � Rak>»
k�P�l �g� cUT � RalÔTXQSO(O:Y�°¬�IOÛfIO � R:f � lIïcadgaRUQ � TV�Ik º�P � defIW>TX��O
QSO(�IQSO(WSO(l:TXOjfÖTXQSO(O�º:m � l � dgPIf � lIÌO(fIaO(W � l¾RUQSfIOjQ�RUh�TX��O(WSO
�IQ � RaQ � T � O(WZi�W Ùn� �I� � lIÌO(fIaO(W'TX�IcaT,hÓRaQVk � m � dgOjW�YÌNKO(T�##Ojm:W
WSPI�I�ARUQST � RUl � Ojl:T � RUlIcadAO � RadgPIT � RalIcUQSm¯RU�AO(QScUTVRUQSW�Y
J QUÒPIhÓOjQ5l:PIk�ºAO(QSW5cUl�f¯N2O(Tm##O(m:W5½�O(QSO � Rak'��cUQSO(f � l¯c�UO(l�»
O(QScUT � RalIcUd8í H RalÊhÓRaPIQ � lIWVTVcUl � O(W¬Rah"TX��O ß � G ° J f�O(Q �g� O(f
hÓQSRUk cïQVOjcUde»D½�RUQSdgfÌ�IQSRUºIdeO(k ½¬�IRUWSO¯lIR:fIO(W�QVOj�IQVOjWVOjl:T#dgRa»
� caT � RUlIW2TX�IQSRUPIa�IRUP�T M OjQVk>calnm:YÉ�ùO(�AO(lIf � lI�RalØTX�IO�Ü�RZ½�i
O(c � � d � l Ù�� W�caWVW � alIO(fÊRUlIOùRUh<hÓRUPIQ�d � l�OùTum:�AO(W`�nTX�IOjWVOÚ�Ic � O
f � WVT � l � T � RUWSTXW��AO(QKPIl � T2deO(lIaTX�<Y�«ul�Tu½¥R¯Rah<TV�IO � lIWSTXcal � OjW
ëÓ°�m:��OÛ[ î iÐO(c � �Ød � l Ù ú W � RUWST � l � dgP�fIO(W�c¯à�ÎnOjf � l�WVTVcUdedgcaT � RUl
� RaWVT,TX�IcaT>fIR:O(W'lIRUT'fIO(�AO(l�fãRUlÞTX�IOÛd � l Ù ú W>dgOjlIUTV�<Y���RaQ
TX��O(WSO � lIWVTVcUl � O(WZi<RU�IT � k>cUd�WSRUdePIT � RUlIW,QVOjWVOjk�ºIdeO�WSTXcaQVWZYÛ«ul
TX��O�RUTV�IO(QKTu½¥R � lIWSTXcal � OjW'ë °¥m:�AO � î iIOjc � ��d � l Ù ú W � RUWST�fIO(»
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� � aPIQSO � á Hã� Rak>k�PIl �e� caT � RUl�WS�IcalIl � lI2TVQVOjO�RUlÛ[^��lIR:fIOjW�i
½ � TX�ØTX�IOÚ�IcaTX� � RalIlIO � T � lI>lIR:fIO(W¬ 'cUl�fÖ[�´,Ojk'���IcUW �j� O(f<Y

�AO(lIfIW�RalIdemLRUl � TXWØdeO(lIaTX��cUlIf � ca�Ic �j� Tum:Y°b2O(QSOni�RU�IT � »
k>cUd�WVRadgPIT � RalIW5caQVO¬W � k � dgcaQ�TVR�W � k>�IdeO�k � l � k�P�k&WS�IcalIl � lI
TXQSO(OjW�Y
°¬�IO#í H�� lØ½¬� �e� �ÊTV�IO#Tu½¥R � R:f � lIaW¬½¥OjQVO � Rak>�IcUQSO(fÊ½¥caW
TX��cUT¬RUh�W�RUTV�IdecUPIh�O(T�cUduY\ë � `U`a` î Y\«uTVW���Ra�IPIdecUT � RalÊW �j� OÚ½¥caW
� `a`U`�RalÊcadgd8TX��Où��QVRaºIdgOjk � l�WVTVcUl � O(WZY"«uT�WSO(deO � TXO(fÊ�IcUQSO(l:TVW
� l�TXRaPIQVl�cUk>O(l:TXW<RUhÐW �j� O�TV�IQVOjO�calIf#UOjlIO(QScUTVO(f#cUdednRUÑAWV�IQ � lI
½ � TX�ÖPIl � hÓRUQSk � QSRUWSWSR � O(Q`��k�PITVcUT � RalÌ½�cUWÚlIRaTùP�WVOjf<Y�°¬��O
cUdeURaQ � TX��k ½�cUWKQVPIlï�U` � lIfIOj��OjlIfIOjlnTùT � k>O(WùTX�IQSRUP�U�ã[^`a`
UOjlIO(QScUT � RalIW�½ � TV�ØO(c � � � R:f � lI>RUlÛO(c � � � lIWSTXcal � O:Y
°�cUºIdeO � WVP�k'k>caQ ��� OjWÌTV�IOÞQSO(WSPIdeTXW�RUh�TV�IO(WSO×TXQ � cadgWZY «uT
�IQSO(WSO(l:TXW>TV�IO�c � OjQVcaUO��AO(Q � OjlnTVcUaO(W>º:mÔ½¬� �e� �ÞTV�IO � RaWVTVW
RUhzTV�IO�ºAO(WST�TVQVOjO(W � l�Ojc � �¯TXQ � cUd�OjÎ � O(OjfIO(f¯TV�IO � RUWSTXW¥RUhzTX��O
W � lIadgOÛºAO(WST¯TXQSO(O � fIOjl:T � àIO(f×RUl×O(c � � � lIWVTVcUl � OnYÔ°¬�IOØcUde»
URaQ � TX��k�ú W¬�AO(QShÓRUQSk'cal � O#½ � TX� J QUÒPIhÓOjQ�l:PIk�ºAO(QSW�½�cUW � lIhÓO(»
Q � RaQ5TXR � TXW¥��OjQVhÓRaQVk>cUl � O¬½ � TX�¯N2OjT�##OjmnW¥cUlIf>fIOjTXOjQ � RUQScUTVO(f
k>RUQSO³XnP �g�^Ù dem�½ � TV� � l � QVOjcUW � l�,�IQSRUº�dgOjk W ��� O:Y

°�cUºIdeO � áÛ°¬�IO�c � O(QScUUO ��OjQ � O(l:TXcaUOØº:mÔ½¬� �e� �×TV�IO�ºAO(WST
TXQSO(OjW�ú � RUWSTXW2½ � TV��O(c � � � R:f � l�¯O(Î � OjO(fIOjfÛTV�IO � RUWST¬RUhÉTX��O
W � lIadgOÚºAO(WST¬TXQSO(OÚhÓRUP�lIf<i:RalÛOjc � � ß � G ° JÕ� lIWSTXcal � O:Y

ß � G ° J W �j� O J QUÒPIhÓOjQ N2OjT�##O(m
[^]  8Y  a³ `AY ` �°¥m:�AO [   � _8Y �a³ `AY _ �
[^] �8Y � [ `AY � ³°¥m:�AO �   � [^´8Y  8[ � Y ` �
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M��e� O(lØc � RUdedgO � T � RalÛRah<�AR � l:TXW � lØTX��O��IdecUlIO:iÐc¯QSO � T � d � lIO(caQ
G TVO � lIO(Q�TXQSO(O>ë�W G TV° î\� W�c�TXQSO(OKRUhz�IRaQ ��� Ral:TXcUd�cUlIf � O(QST �e� cad
d � lIO¬WSO(ak>O(l:TXW�TV�IcUT � RUlIlIO � TVW�TX�IOjk cUdeduY H W G TX°�ú W5dgOjlIUTV�
� W�TX�IO¯WSPIk RUh � TVW�WVOjUk>O(l:TVW�ú8deO(l�UTX��W�i\½ � TV��R � O(QSdgca�I� � lI
WSO(Uk>OjlnTVW � l � dgP�fIO(f�RUlIdem�Ral � O:Y#°¬�IO>WSO(cUQ � ��hÓRaQùc�W G TX°
RUh"k � l � k�PIk deO(l�UTX�ÊRUl�c'WSO(T�Rah\�AR � lnTVW � W�TX�IOùQSO � T � d � lIO(caQ
G TVO � lIO(Q��IQSRUº�dgOjk ë�W G T Jùî i�cUlIf � T � WÉN J »Í�IcaQVfÊë M cUQSO(m#calIf
�nRU�IlIWSRUl�iz[^_ � _AiU�<Y � `U_ î Y
«ul c�QSO � T � d � lIO(caQ G TVO � lIO(Q×TXQSO(O:i¯TX��OâcUfIf � T � RalIcUdÊ��R � l:TXW
½¬�IOjQVOÚTX��OùWSO(ak>O(l:TXW¬k>O(OjT�cUQSO � cUdedgOjf G TVO � lIO(Q¬�AR � l:TXWZY�«ul
WSO(cUQ � � � lIÔhÓRaQÊcÞk � l � k>cUd³W G TV°�i�½�Oïl�O(O(f � RalIW � fIOjQÊcaW
G TVO � lIO(Q5�AR � l:TXW¥RUlIdem�TV�IO�PIlIR �j� PI� � O(f � RUQSlIO(QSWÉRUh8TX��O�QVO � TV»
cUl�UdeO(WZi�½ � TV��W � fIOjWÉ�IcUQScUdedgOjdaTVRKTV�IO�cUÎ:O(WZi�TX��cUT�O(c � �,�Ic � Q�RUh
�AR � lnTVW�fIO(àIl�O(W�ë�bKcUlIcal<i8[^_U]a] î Y\í¥c � ���Ic � Q�RUh"��R � l:TXW�cadgWSR
fIOjàIlIO(W¬cal OjfIUOùTX�IcaT�k'cZm>ca�I��OjcUQ � lÊc'W � k>�IdeOùWS�IcalIl � lI
TXQSO(O:Y H WSW � al � l��c G TVO � lIO(Q'��R � l:T,TXRïOjc � �¾Rah�TV�IOf����[
O(f�UO(W � lLc¾WS�IcUl�l � l�ÔTXQSO(O�WS��O �(� àIO(WÊc�W G TV°�Y�� � aPIQSO�³
WS�IRZ½¬W�c^W G TX°�cUl�f � TXW�P�lIfIO(QSdem � lI>WS�IcUlIl � lI>TVQVOjOnY
H P�Uk>O(l:T � lIÌc J QUÒPIhÓO(Q,l:PIk�ºAO(Q'½ � TV�ãc�WSTXQ � lI�RUh¶�z��[
º � lIcUQSm�WSm:k�ºARUdeW�TV�IcUT � lIf �e� caTXO G TVO � lIO(Q¬�AR � l:TXW¬Ojl � R:fIOjW¬c
QSO � T � d � lIO(caQ G TXO � l�O(Q TVQVOjOnY J QUÒPIhÓO(Q lnP�k�ºAO(QSW�cUlIfLº � lIcaQVm
WSTXQ � lIaW¬WVP��I��RaQVT � RUl � OjlnT � RalIcUd8O � RUdePIT � RalIcUQSm>RU�AO(QScUTXRaQVWZY
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(a) (b)

� � aPIQSO#³Aá H QSO � T � d � lIOjcUQ G TVO � lIO(Q2TXQSO(OÊë c î cUl�f � TVW2PIlIf�O(QS»
dem � lI>WS�IcUlIl � lI>TVQVOjO ëÓº î Y

H l×cUdeTXOjQVl�cUTXO � Rnf � lI�cUP�Uk>O(l:TXW J cadgk>O(Q>calIfz##OjQVWS�IO(l�»
ºIcaPIk�ú WÌëV[^_a_U´ î WSTXQ � l�UW¯RUhK½¥O � a�:TXWZi5k>O(l:T � RalIO(f � l G O � »
T � RUlØ 8i:½ � TV��º � lIcUQSm�WSTXQ � lIaW�Y�°¬��O�º � lIcUQSm�WSmnk,º�RadgW¬WS�AO � »
� hÓm G TXO � l�O(QÉ��R � l:TVW�hÓRaQÉTX�IO�O(f�UO(W�RUh�TX�IO�WS�IcUlIl � lIùTXQSO(O�TX��O
½�O � U�:TXWùQVOj�IQSO(WSO(l:T�YK°¬� � W � R:f � lIÊcadgWSR WSPI�I�ARUQSTXW � RUl � OjlI»
T � RUl�cUd2Ra��OjQVcaTXRaQVW`�¬k,PITXcaT � RUl � �IcalIUOjW �IcaQVOjlnTVcUd�½�O � U�:TVW
cUl�fÊÜ � �IW G TXO � lIOjQ���R � l:TVW�Y
H TX� � QSf � R:f � lIÖRUhùQVO � T � d � lIOjcUQ G TVO � lIO(Q�TVQVOjO(W � W¯cUW¯d � WSTXW
RUh'WS�IcUlIl � lILTVQVOjOÖO(fIaO(W�caPIUk>O(l:TVO(f�ºnm G TXO � l�O(Q��AR � l:T
� �IR �g� O(WZá"TV�IO#O(l:TVQVmïëV[ � i � �8ig[ î QSO(��QVOjWVOjlnTVW�TX�IO#�Ic � Q¬Rah"QSO � »
T � d � lIOjcUQ#OjfIUOjW¶"XR � l � l�Û�AR � l:TXW [ � calIf � � �n� cAi\WVcZm:iATX�IO � Q
Q � a�nT G TVO � lIO(Q���R � l:T�Y H d � WST�RUh·�i��[�WSP � �'O(l:TXQ � O(W�O(l � R:fIO(W
c¡W G TX°�Y���QSRUWSWSR � O(Q¬calIfïk,PITXcaT � RUlÌRU�AO(QScUTXRaQVWKcUQSO,º�cUWSO(f
RUlÛPIl � RUl�»DàIl�fÛ��cUQST � T � RUlIW¬Rah"TX��O# �e� O(lÛ�AR � lnTVW�Y
�nPIdgWSTXQSRUkìë � `U`8[ î5� RUk>�IcaQVOjfïTV�IO(WSO � R:f � l�UW � l�cÊaO(lIOjQVca»
T � RUl�cUd�í H ½ � TX�Ì��Ra�IPIdecUT � RUl�W ��� O � �ÔcUlIf�WSO(deO � T � RUl�hÓQSRUk
TXRaPIQSlIcUk>O(l:TVW¬RUh�W ��� OÚhÓRUP�Q�Y�b � TX��Ojc � � � R:f � lIAi:TV�IO#cUdeURa»
Q � TV�Ik ½�cUW�QVPIlÛ�U`,T � k>O(W¬RUlÊW � Î^W G T JÕ� lIWSTXcal � OjW�RUh\hÓQSRUk
�U`�TVRÞ[^�a`Ø��R � l:TXWZYÊ°<caºIdeO¯ �WVP�k'k>caQ ��� OjW�TX�IOjWVO TXO(WSTXW`� � T
d � WSTXW�TX��OKc � O(QScUUO�deO(lIaTX�ÊRUh\TV�IOKºAO(WST�TXQSO(O(W�hÓRUP�lIf � l Ojc � �
WSO(TÚRUh¥TXQ � cadgWZY�°¬��O'í H ú W#��OjQVhÓRaQVk>cal � O � W#�AR:RUQ#½ � TX�ÖTX��O
J QUÒPIhÓOjQ � R:f � lIAi�hÓcaQ�ºAO(TXTVO(QÛ½ � TV�LcUPIak>O(l:TXOjfLWVTVQ � lIUW RUh
½�O � U�:TXWZincUlIfÛºAO(WST¬½ � TV�Ûd � WVTVW�RUh<O(fIaO(WZY

°�cUºIdeOØ Aá H2� OjQVcaUOÛdgOjlIUTV�IW>RUhùTX�IOØWS�IRUQSTXOjWVTeW G TV°¬W�TX��O
í H hÓRUP�lIfã½ � TX� J QUÒPIhÓO(Q'l:PIk�ºAO(QSWZiÉcUPIak>O(l:TXOjfÔ½¥O � a�:TXWZi
cUl�fÊd � WSTXW2RUh�O(fIaO(WZY

J QUÒP�hÓO(Q H P�Uk>O(l:TXOjf ¹ � WSTXW¬RUhW G T J � lnP�k�ºAO(QSW ½¥O � a�:TXW OjfIUOjW
pzyjx<ª<© �U` ] � _ ´a]A[ ´a U]
r(w<¸<© � ` [ � ³ � �  U` ]a_U�
pzyjx<¸<ª � � ³ �   � � ´ �a�U´
¢n}:q:¤<¹<© ³U` [^�a]U] ³a U� � ³U`
¢n}:q:¤6«G©�© [�`U` [^_ � ` ³a_U` ³ � ´
¢n}:q:¤6«Gª�© [��U` �U´ �^� � [�]U³ � `U A[

º &('*)» ê�¼ ) è �F�z' ÇÉÆ �.)d& ÆIÇ æ Ä 5 ç5Æ�ÅnÇÉÅ:ê¦ç æ
+ ÆIç5Ã*� ) 2

��RUl�W � fIO(Q�f � WSTXQ � º�PIT � lIâc � Rak>k'R:f � TumËhÓQSRUk¾½ WSRUPIQ � OjW
ëÓhÓc � TVRUQ � OjWÌRaQï½�cUQSO(�IRaPIWVOjW î TXR�O(c � ��Rah$� fIOjWVT � l�cUT � RUl�W
ë � RUlIWSPIk>O(QSW î Y×°¬�IO�cak'RaPIl:TXW¯RahKTV�IO � Rak>k'R:f � TumÔc � c � de»

cUº�dgO�caT�Ojc � �ÖWVRaPIQ � O¯cUl�fÔQVOGX:P � QSO(fÖcaT�O(c � �ÖfIO(WST � lIcUT � Ral
cUQSO Ù lIRZ½¬l�i�cUlIf�cal:m#WVRaPIQ � O � cal�WS� � ��TXRùcUl:mÚfIOjWVT � lIcaT � RUl<Y
b�O¯WVOjO Ù c��IcaTXTVO(QSlÌRah¥WS� � �Ik>O(l:TXWZi � cUdedgOjf�cØTVQVcalIWV�ARUQSTXca»
T � RUlÖ�IdecUl�i\TV�IcUT�k � l � k ��� OjW�TV�IO¯TXRaTXcUd � RUWST#RUh�TV�IO¯fIO(d �e� »
O(Q � O(WZYÚ� � aPIQVO'_Aë c î WV��RZ½¬WKcal � lIWVTVcUl � O,Rah�TV� � W#��QVRaºIdgOjk�i
½ � TX�,½ o  ãWSRUPIQ � OjW calIf]�¿o � fIOjWVT � lIcaT � RUlIWZY�� � a»
PIQSOÚ_AëÓº î WV�IRZ½¬W¬c>TVQVcalIWV�ARUQSTXcaT � RUlÊ�IdgcalÊhÓRaQ � T�Y
«ul�TX��O#d � lIO(caQ�TXQScUl�WV�ARUQSTXcaT � RUlÛ�IQVRaºIdeO(k�i:TX��O � RaWVT¬Rah<Ojc � �
d � l Ù º�OjTu½¥OjO(lÖcØWVRaPIQ � O'cUlIfÖcØfIO(WST � lIcaT � RUlÖfIO(�AO(l�fIW�d � lI»
O(caQVdem�RalÊTV�IO#cUk>RUP�lnT�WS� � �I��Ojf��ÐTV� � W��IQSRUºIdeO(k � W�WSRUd � cUºIdeO
� lâ��Radgm:lIRak � cad�T � k>O×ëÓí¥fIk>RUlIf�W cUl�f,##cUQS�<i�[^_ �^� î Y/«ul
TX��O�à�ÎnOjfI» � �IcUQSUO5TVQVcalIWS��RaQVTVcUT � RUl#��QVRaºIdgOjk ëÓ����° Jùî ijOjc � �
d � l Ù cUdeWVR'�IcUW�c'àIÎ:O(f � RaWVT�TX�IcaT � W � l � R Ù O(f � h"TV�IcUT�d � l Ù�� W
PIWSO(f��ITX� � W2��QVRaºIdgOjk � W2N J »Í�IcUQSfÖë M P � WVOj½ � TVO�cUlIf J caQVfIca»
deRUWZiz[^_U_a` î Y
H TVQVcalIWS��RaQVTVcUT � RUl�TVQVOjO � RUlIW � WSTXWKRUh�TV�IO,d � l Ù W � l�c TVQVcalIWS»
�ARUQSTXcUT � RalÌ��dgcalÌcalIfÖ��RaWVW � º�dgm�cafIf � T � RUlIcad�d � l Ù W#½ � TX� � ca»
�Ic �(� Tum � OjQVR8i5caW�� � 8YÉ_Aë �nîÚ� dedgPIWSTXQScUTVO(WZYL«ulÕWSP � �Õc¾TXQSO(Oni
TX��O�cUk>RUP�lnTVW¯cUWSW � Ul�O(fÕTXR � TXW�OjfIUOjW�cUQSO � cad � PIdecUTXOjfÞº:m
TXQSc � OjQVW � lI#TX�IOKO(fIaO(WZi � TXOjQVcaT �e� Ojdgm'WVOjdgO � T � lI,cUl�OjfIUO � l �j� »
fIOjlnT#TVRØc�dgOjcUhXi8calIfÖTX�IOjl�caWVW � Ul � lIÛTX�IO¯k>cUÎ � k�PIk hÓO(ca»
W � ºIdeO>cUk>RUP�lnTùTXRØOjc � �<Y�°<QScUl�WV�ARUQSTXcaT � RUl�TVQVOjO(WÚQVOj�IQSO(WSO(l:T
c'WVPIº�WVOjT¥Rah\TX�IOÚhÓOjcUW � ºIdeOùTXQScUlIWS��RaQVTVcUT � Ral��IdecUlIWZiacUlIfÊTX�IcaT
WSPIºIWSO(T>cUde½¥cZm:W � RUl:TVc � lIW>cUT>dgOjcUWST,RalIOÛUdeRUºIcad�Ra�IT � k�P�k�i
WSR � T � W¯QVOjcUWSRUlIcaºIdeOÊTVR¾QVOjWVTVQ �e� T>WSO(cUQ � �×TXR¾TXQSO(OjW¯RUlÕTX��O
WSRUPIQ � OjW�calIfÛfIO(WST � lIcUT � RalIWZY"NKRUT�cUdedzTXQSO(OjW¬QVOj�IQSO(WSO(l:T � cad � f
TXQScUl�WV�ARUQSTXcaT � RUl ��dgcalIW�incaW¬� � 8Y:_Aë f î WV��RZ½¬W�Y
¹ � O(T�cUduY¥ëV[^_U_a³ î fIOjW � Q � ºAO(f¾cUlãí H hÓRaQ�TX��O ����° J TX�IcaT
O(l � R:fIO(WÉTVQVcalIWV�ARUQSTXcaT � RUl#TVQVOjO(WÉcUW J QUÒPIhÓOjQ<l:PIk,º�OjQVWZY M RaTXTX»
d � Ojº�calIf¾í �^Ù O(QST>ë � `a`U` î OjÎnTVO(lIf�O(f¾TX� � W � R:f � l��½ � TV�¾QVOj»
�Ic � Q'k>O � �Ical � WSk>W>TXR�O(lIWSPIQSO TX��cUT>O(c � � J QUÒPIhÓO(Q'l:PIk�ºAO(Q
fIO � R:fIO(W¬TVR¯c>hÓO(cUW � ºIdgOÚWSRUdePIT � RUl�Y
® � Ul�cUPIÎÊcUlIfØ� �e� �IcUdeO(½ �e�F� ëV[^_U_8[ î O(l � R:fIO(fØTVQVcalIWV�ARUQSTXca»
T � RUl×�IdecUlIW¯caW>��OjQVk,PITXcaT � RUlIW>RUhKTX�IO¡½¡�/d � l Ù W¯ºAO(Tu½�O(Ojl
WSRUPIQ � OjW,calIfãfIOjWVT � l�cUT � RUl�W�Y H f�O � R:fIOjQ>W � cUlIW'TX�IOØd � l Ù W
� l¾��OjQVk,PITXcaT � RUlÖRUQSfIO(Q�cUlIfÖcUWSW � alIW�TXR�Ojc � �ÖTX��O�dgcaQVaO(WST
cUk>RaPIl:T�RUh8TX�IO � RUk>k>R:f � Tum � RalIW � WSTXOjlnT�½ � TX�¯��QVO �n� RUP�W�cUWS»
W � alIk>O(l:TXW�cUlIf,TX�IO��IQSRUºIdeO(k�ú W � RUlIWSTXQSc � l:TXWZY M RUTVTXd � Ojº�calIf
J cUP�dgk>cUl�l/ëX[�_U_U³ î PIWSO(f×TX� � W � R:f � lI � l×cUlÞí H hÓRUQ>TX��O
����° J Y

1

1

2

2

2

(a) 1

1

2

2

2
2

1

1
(b) 1

1

2

2

2
2

0

1

1
(c) 1

1

2

2

2
2

0

0
1

(d)
� � aPIQSO¯_AáÛëÓc î¬H TXQScUl�WV�ARUQSTXcaT � RUl��IQVRaºIdeO(k ½ � TV�1½Ào  
WSRUPIQ � OjW�ë �(� Q � dgOjW î cUl�f¨�_o � f�O(WST � lIcUT � RalIWïëÓfIRaTXW î Y�ëÓº î
H hÓOjcUW � ºIdeO�TVQVcalIWV�ARUQSTXcaT � RUlÛ�IdecUl�hÓRUQKTX�IO��IQVRaºIdeO(k�YKë �nî5H
TXQScUl�WV�ARUQSTXcaT � RUl�TXQSO(O � RaQVQSO(WS�ARUlIf � lIÛTXR�TV�IO��IdecUlÖRahÚë º î Y
ëÓf îÐH TVQVcalIWS��RaQVTVcUT � RUlÚTVQVOjO5½¬�IRUWSO5�IdecUl �:� RUdecUTVO(W\TV�IO��IQSRUº�»
deO(k�ú W � RUl�WVTVQVc � l:TXWZY
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H d � WVT�RUh � TVW��ARUW � T �e� O�O(fIaO(WZi�O(c � ��½ � TV��TX��O¥cak'RaPIl:T<RahITX��O
� Rak>k'R:f � TumØcUWSW � Ul�O(f�TXR � T�i � cal�cUdeWVRÊQVOj�IQSO(WSO(l:T�c TVQVcalIWS»
�ARUQSTXcUT � Ral�TXQSO(O:Yz��RUQ"TV� � W � R:f � l�AijTX�IOjQVO¥cUQSO�Tu½�R�k�P�TXcUT � Ral
RU�AO(QScUTVRUQSW�Y ß lIO � l:TXQSR:fIP � OjW cÔl�O(½�QVcalIfIRak O(f�UO�calIf
cUf`"XPIWVTVWKTV�IO�TVQVOjO�c �j� RaQVf � lIadgm6�:TV�IO�RaTX�IOjQ2QSO(cUQSQScUlIaO(W¬TX��O
O(f�UO(W � l �j� f�O(l:T�TVR�c�QScUlIfIRak>dgm,WVOjdgO � TXOjf¯lIR:fIOnY���QSRUWSWVR � O(Q
� lIWVOjQVTVW��Icadgh"TX�IOKO(fIaO(W�RahzRUlIOK�IcUQSO(l:T � l:TXR�TV�IOùRUTX��O(Q���cUQS»
O(l:T¬calIfÊQSO(k>R � O(W�O(Î � WVT � lI>OjfIUOjW¬cUW¬lIO � O(WSWScUQSmnY
°¬�IOjWVO � R:f � lIUWÛ½�O(QSO � Rak>�IcUQSO(f � lËc×WVTVO(cafIm:»DWSTXcaTXO�í H
hÓRUQKTX�IO,����° J YI«uTXWù��Ra�IPIdecUT � RUl � RUl:TVc � lIO(fã[�`U` � lIf �e�n� fIPI»
cUdeW ë � `U`ØhÓRUQ q<Á<¸<©<© cUlIf q<Á<¸�©:p î � � T#WSO(deO � TXOjf���cUQSO(l:TXW � l
TXRaPIQSlIcUk>O(l:TVWKRah�W �j� O,Tu½�R�� � TÚUO(l�O(QScUTXOjf�cUdedÉRUÑAWV��Q � lI º:m
� QSRUWSWSR � O(QZi�TX�IOjlÖk�PITVcUT � RUl�� � T#cUde½�cZmnWÚQSO(�Idec � O(f�TX�IO � PIQS»
QSO(l:TK½�RUQSWST2UOjlIRUTum:�AO��AcalIf � TÚf � fÌlIRUTùcUdedeRZ½��I�IO(l�RUTum:� �e�
fIPI��d �e� caTXO(WZY<°¬�IO�í H ½¥caW5QSPIl¯Tu½¥Ojd � O � l�fIO(�AO(lIf�O(l:T�T � k>O(W
½ � TX�LO(c � � � R:f � l�¾RUlÕW � Îã����° J � lIWSTXcal � OjW�QScUlI � lI � l
W �j� OùhÓQSRUk�½ÂoÔ³>calIf��¨o/[ � TXR¢½Ãoã�U`>cUl�f@�zo/[�`U`8Y
°�cUºIdeO�´�WSPIk>k'caQ ��� OjW�TX��O(WSO�TXQ � cadgWZizWSRUk>O�Rah¥½¬� �g� �¾½�O(QSO
QSO(�ARUQSTXO(f � lÞë M RUTXTVd � O(ºïcUlIf�í �^Ù OjQVT�i � `a`U` î Y¥��RUQKO(c � � � lI»
WSTXcUl � O�cUlIf�Ojc � � � R:f � lIAi�TV�IO¥TVcUºIdeO��IQVOjWVOjl:TXW�TX�IO��AO(Q � O(l:TV»
cUaOKº:m�½¬� �g� �ÛTX�IO#c � O(QScUaO � RaWVT�RUh<TX�IO#TVQ � cUdeWZúnº�OjWVT��IdecUlIW
O(Î � O(O(f�O(f'TX�IO � RaWVTÉRah�TX��O�W � lIUdeO�º�OjWVTÉ�IdecUl'hÓRUPIl�f<Y H Uc � l<i
TX��O�í H �AO(QShÓRUQSk>O(fÖ½¥RaQVWSTÚ½ � TV�ÖTX�IO J QUÒP�hÓO(Q � R:f � lI8Y¯«uTXW
�AO(QShÓRUQSk'cal � OÛ½�cUW¯ºAO(TXTVO(Q�½ � TX�Õ�AO(QSk�PITVcUT � RalIW>cUlIfÕºAO(WST
½¬�IOjlÛd � WVTVW¬RUh�O(fIaO(W¬QSO(�IQSO(WSO(l:TXOjf TVQVcalIWV�ARUQSTXcaT � RUlÊ�IdgcalIWZY

°�cUºIdeO�´Aá�°¬�IO�c � O(QScUaOK�AO(Q � OjlnTVcUaO#ºnmÛ½¬� �e� ��TX�IO,Tu½¥Ojd � O
ºAO(WST��IdecUlIWZú � RUWSTXWZiZ½ � TX��Ojc � � � R:f � lIAiUO(Î � O(O(f�O(f>TX�IO � RaWVTVW
RUh�TX��O#º�OjWVT¬�IdecUl�W¬hÓRUPIlIf�i:RUlÛW � Î�����° J×� lIWSTXcal � OjW�Y

J QUÒPIhÓOjQ J O(QSk�PI» ¹ � WVTVW�RUh����° J l:PIk,º�OjQVW TVcUT � RalIW O(f�UO(W
{:}nx<¹<Ä6«G¬ `AY `U` `AY `U` `AY `U`
¢:}nq<Å<Ä<Æ<Å � [UY  U´ `AY �U´ `AY � [
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Abstract 
 

 

In this paper, we present a new model of genetic 
algorithms, the Spontaneous Evolution Genetic 
Algorithm (SEGA) that incorporates both the 
concept of spontaneous generation and winner-
take-all competition.  It employs the idea of 
adding potential members during the search 
process, which keeps the evolution process 
boiling and thus preventing premature 
convergence.  The winner-take-all competition 
preserves elitism during the search process.  We 
used a learning scheme to preserve past results 
for future use in creating new candidates, which 
are the potential members, during the 
spontaneous generation phase.  Experiments 
conducted on TSP with this new SEGA model 
proved that it produces better quality solution 
than bare GLS, LK local search, and simple 
SEGA (without learning memory). 

1 INTRODUCTION 

The importance of the traveling salesman problem (TSP) 
did not come from the need of the salesman in minimizing 
their travel routes, but in fact, from the need of many real 
world problems.  Drilling of printed circuit boards, 
physical wiring of networks, vehicle routing, drilling of 
printed circuit boards, chronological sequence, and the 
double digest problem (DDP) from computational biology 
can be modeled into a TSP instance. 

The traveling salesman problem (TSP) is closely related 
to the Hamiltonian-cycle problem, a salesman must visit 
N cities.  Modeling the problem as a complete graph 
G(V,E) with N vertices and (N*(N-1))/2 edges, which 
represents the cities and the routes respectively, we can 
say that the salesman wishes to make a tour, or 
Hamiltonian cycle, visiting each city exactly once and 

finishing at the city he starts from.  There is a cost c(i,j) to 
travel from city i to city j, and the salesman wishes to 
minimize to total cost of traversing the tour, where total 
cost is the sum of the individual costs along the edges of 
the tour. 

Mathematically, the traveling salesman problem can be 
formulated as finding a permutation π  of the set 
{1,2,3,…,n} that minimizes the quantity: 

(1) 
 
where dij denotes the distance between city i and city j.  
Formula (1) is referred to as the cost or distance of a tour.  
For genetic algorithms, it is called fitness function.  Two 
different cases of TSP are studied: symmetric TSP (STSP) 
and asymmetric TSP (ATSP).  In STSP, dij = dji holds for 
all i and j.  For the ATSP case, this condition is not 
satisfied.  In this paper, attempts are focused on the STSP 
case only. 

We can see that the TSP problem is simple to state but 
hard to solve.  For a case with N cities, there will be (N-
1)!/2 possible tours.  For the symmetric 532-cities 
instance, there are more than 101000 possible tours.  From 
Gary and Johnson’s [2] work, the traveling salesman 
problem is stated to belong to NP-complete class.  Thus, a 
fast and exact algorithm for the traveling salesman 
problem is unlikely to exist. 

2 GENETIC ALGORITHMS 

Evolutionary computing (Soft computing) has been 
proven useful in solving NP-Complete and NP-Hard 
problems.  For the traveling salesman problem, genetic 
algorithms have been a great success. 

A genetic algorithm traditionally contains three types of 
operators: selection, crossover and mutation.  A simple 
genetic algorithm executes as follows [16]: 

1. Start with a randomly generated population of n x-
bit chromosomes.  These are the candidate solutions 
to the problem. 

∑
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=
+ +=
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2. Calculate the fitness F(x) of each chromosome x in 
the population. 

3. Repeat the following steps until n offspring have 
been created: 

a. Select a pair of chromosome playing the role as 
parents.  The probability of an individual been 
selected is usually a function of fitness.  The 
fitter the individual is, the more likely it will be 
selected to reproduce. 

b. With a probability Pc (the crossover rate), 
crossover the pair at a randomly chosen point to 
form two offspring.  If no crossover takes place, 
form two offspring that are exact copies of their 
respective parents. 

c. Mutate the two offspring at each locus with 
probability Pm (the mutation rate) and place the 
resulting chromosomes in the new population 

4. Replace the current population with the new 
population. 

5. Go to step 2. 

 

 

Figure 1: Traditional Genetic Algorithm 

 

Each iteration of this process is called a generation.  The 
entire set of generations is called a run.  Usually, the 
desired solution will be found at the end of a run having 
the best fitness value. 

3 THE SPONTANEOUS EVOLUTION 
GENETIC ALGORITHM 

Although genetic algorithms has been proven to be 
successful in attacking the Traveling Salesman Problem, 
there is one major improvement that can be made: the 
problem of premature convergence in genetic algorithms.  
In this work, a new genetic algorithm model incorporating 
spontaneous generations spawned from the spawning pool, 
which is assisted by a learning memory to keep track of 

past events plus a winner-take-all competence within the 
individual members to provide top elitism is proposed.  
Since in this model, a new member generated from the 
spawning pool with reference to the learning memory is 
introduced into the population every generation, we will 
call this algorithm the Spontaneous Evolution Genetic 
Algorithm (SEGA).  The flow of this algorithm is shown 
in Figure2.  Detail descriptions of this algorithm will be 
given in the following sections. 

 

 

Figure 2: The Spontaneous Evolution Genetic Algorithm 

 

3.1 POPULATION INITIALIZATION POLICY 

Yoichi and Nobuo [20] have proposed the use of 
geometric properties of points in construction of the initial 
population.  They stated that the Visiting Order 
Restriction Theorem (VORT), proved by Flood [4], gives 
a necessary condition for the shortest tour of TSP on the 
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Euclidean plane by using the convex hull.  VORT is 
stated as follows: 

Let S be the set of given cities in the plane, C be the 
convex hull of S, V be the set of cities on the boundary 
of C, P be the shortest tour of S.  Let F be the polygons 
that are made up by tracing the cities of V according to 
the visiting order in the shortest path P.  Then polygon 
F is equivalent to the convex hull C. 

Based on this concept, Hsu [8] has developed a general 
initialialization technique using the 1-Tree heuristic (see 
section 3.5) plus the convex hull optimization, and proved 
that this technique produces better initial solution 
candidates.  In SEGA, we have chosen to use 1T+CH as 
our initialization policy. 

3.2 GENETIC EVOLUTION STRUCTURE 

We have adopted the GLS [15] architecture and made 
modifications to it.  In the case of STSP, the GLS 
approach starts with the nearest neighbor (NN) [10] 
initialization policy and uses the variable k-change 
heuristic suggested by Lin and Kernighan [11] for local 
search.  Merz and Freisleben [15] pointed out that for 
most instances defined in the TSPLIB [18], the average 
percentage excess is about 2% above the optimum, 
although there are instances with topographical structures 
for which the results are much worse, such as the instance 
fl3795 [9]. 

 

 

Figure 3: Pseudocode of SEGA 

 

The mutation operator used in the GLS is called the non-
sqeuential four change [11].  Since in the Lin-Kernighan 
heuristic performs only sequential changes, the effects of 
this kind of mutation cannot be reversed in a single step, 
and there is a high probability for ending up with a new 
solution after the local search phase.  Due to that only 

four edges are exchanged, most information coded in the 
chromosome will be preserved. 

Our modification of the GLS algorithm into SEGA is 
shown in Figure 3.  Since we use 5-opt sequential and 
non-sequential move for our local search heuristic, the 
non-sequential four changes will also be included (by 
using combinations of 2-opt and 3-opt changes that 
disconnects and then reconnects the disconnected tours).  
Thus, we did not incorporate the mutation operator into 
our algorithm because it is embedded in the local search 
procedure.  From this aspect, our genetic algorithm is 
much simpler. 

3.3 SELECTION OPERATOR 

The selection operation used in our method is the uniform 
distributed selection operator.  Every individual in the 
population has the same probability to be selected for 
mating.  This method was considered because the 
population sized we used for our experiments were quite 
small, ranging from 10 to 20 individuals.  If we bias the 
selection in anyway (by using rank selection or fitness 
proportionate selection [16]), the population diversity will 
decrease quickly and the population will converge 
prematurely. 

After each mating, the individuals are restored back into 
the population.  This implies that they may be reselected 
again for mating.  By using this approach, we have a high 
probability to create a more diverse next generation. 

3.4 CROSSOVER OPERATOR 

The distance preserving crossover (DPX) [15] can 
preserve common information of the parents into the 
offspring, and can lead to promising regions of the search 
space without degrading to an uncontrolled random walk.  
The distance of two possible tours is a precise measure of 
the level similarity between them.  This metric is defined 
as follows [13]: Let G=(V, E) be the graph of a given TSP 
instance and T1, T2 be two feasible tours, then the distance 
D between the tours is defined as 

(2) 

The motivation of the DPX operator was from the 
analysis of TSP search space by Boese [1].  Boese’s 
observation on the symmetric 532-cities instance of 
Padberg and Rinaldi [17] shows that the optimum lies 
more or less in a single valley of near-optimum local 
minima and the average distance between these near-
optimum solutions is similar to their distance to the 
optimum.  Another motivation is that by identifying the 
edges that are not shared by the parents, the search will be 
focused on particular regions of the search space. 

DPX works as follows: the content of the first parent is 
copied to the offspring and all edges that are not in 
common with the other parent are deleted.  The resulting 
fragments of the broken tour are reconnected without 
using any of the edges that are contained in only one of 
the parent.  A greedy reconnection procedure is employed 

{ }2121  ),( TeTeEeTTD ∉∧∈∈=

Algorithm SEGA 
{ 

Initialize population P with a construction heuristic; 
Repeat 
{ 

For a = 1 to #crossovers 
{ 

Select two parents ia and ib ∈P randomly; 
ic := RDPX(ia,ib); 
Add individual ic to P; 
If ic is better than ia and ib then 

Update_Learning_Memory(ic); 
} 
Spontaneous-Generate(i); 
Add I to P; 
Competition(P); 
Convergence_Detection(P); 

} 
Until P converged; 

} 
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to achieve this: if the edge (i,k) has been destroyed, the 
nearest available neighbor k of i among the endpoints of 
the remaining tour fragments is taken and the edge (i,k) is 
added to the tour, provide that (i,k) is not contained in one 
of the two parents.  This process continues until all of the 
tour fragments are reconnected to form a feasible tour.  
Thus, the child has equal distance to both parents and this 
distance is equal to the parents themselves.  Figure 4 
illustrates this process. 

 

 

Figure 4: The DPX Crossover 

 

Our implementation of the DPX crossover relaxes the 
constraint that the distance between the offspring and the 
parents and the distance of the parents themselves has to 
be the same.  We call this implementation Relaxed DPX 
(RDPX).  In addition, we did not use the greedy 
reconnection strategy for reconnecting the tour fragments.  
We used random reconnection strategy to form the 
feasible offspring tour.  Our relaxation has caused the 
distance between the offspring and the parents are at least 
as small as the distance between the parents themselves.  
This approach was used for two reasons.  First, greedy 
algorithms are usually time consuming and may not 
produce optimal configurations most of the time.  Second, 
this implementation is simple and saves a great deal of 
computational time because it is purely stochastic. 

3.5 1-TREE HEURISTIC 

Selecting the N closest cities as a candidate set for a 
specific city to connect to may be inappropriate.  Padberg 
and Rinaldi [17] has pointed out one of the links in the 
optimal tour of att532 is the 22nd nearest neighbor city for 
one of its endpoint.  However, selecting 22 candidates for 
each city may be inappropriate since it results in a 
substantial increase in search time. 

The candidate set manipulation proposed by Helsgaun [5] 
used the minimum 1-tree to select the candidate cities for 
each city.  A 1-tree is defined as follows: 

A 1-tree for a graph G=(N,E) is a spanning tree on the 
node set N-{1} combined with two edges from E 
incident to node 1. 

The choice of node 1 as a special node is arbitrary.  It can 
be seen that a 1-tree is not really a tree since it contains a 
cycle as shown in Figure 5. 

 

 

Figure 5:  An example of a 1-tree 

 

Usually, a minimum spanning tree contains many edges 
in common with an optimal tour.  A minimum 1-tree is 
even more suitable in measuring the possibility of an 
edges being in the optimal tour.  This is because the 
optimal tour usually contains 70 to 80 percent of the 
edges of a minimum 1-tree.  The probability of an edge 
being in the optimal tour is measured by the nearness of 
the edge to the minimum 1-tree.  Edges that belong or 
nearly belong to the minimum 1-tree has a high chance of 
belonging to the optimal tour.  Conversely, edges that are 
far from belonging to the minimum 1-tree have a low 
probability of belong to the optimal tour.  Formally, this 
measure of nearness is defined as follows: 

Let T be a minimum 1-tree of length L(T) and let T+(i,j) 
denote a minimum 1-tree required to contain the edge 
(i,j).  Then the a-nearness of an edge (i,j) is defined as 
the quantity: 

)()),((),( TLjiTLji −= +α                    (2) 
That is, given the length of any minimum 1-tree, the a-
nearness of an edge is the increase of length when a 
minimum 1-tree is required to contain this edge.  This is 
represented by Formula (2). 

The a-nearness is a systematic way to identify edges that 
are potent to be included in the optimal tour.  These 
promising edges can help form the candidate set, e.g., 
consist of the k a-nearest edges incident to each node.  
The use of a-nearness measures for specifying the 
candidate set is much better than using nearest neighbors.  
Usually, the candidate set will be smaller without 
degrading the final solution.  The efficiency of this 
method has a time complexity of O(n2) and a space 
complexity of O(n) [2, 19]. 
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3.6 LOCAL SEARCH OPTIMIZATION 

In our algorithm, we used sequential 5-opt moves for our 
basic moves.  This approach attempts to ensure 2, 3, 4 and 
5-opt.  The moves considered are now sequences of one 
or more 5-opt move, and the construction of a move halts 
when a feasible tour improvement is detected.  Selecting 
5-opt for our basic move was due to observations made by 
Christofides and Eilon [3].  They pointed out that 5-opt 
should be expected to yield a relatively superior 
improvement over 4-opt compared with the improvement 
of applying 4-opt over 3-opt. 

 

 

Figure 6: A double bridge. 

 

Shown in Figure 6 is the double bridge phenomenon, 
where a peninsula hops around in the tour.  Only non-
sequential moves can allow these kind changes.  These 
kind of changes are also called kicking moves, which was 
proposed by Martin, Otto and Felten [14].  We used two 
methods to obtain the same results of the kicking move: 

1. We did a 2-opt move that disconnects the tour by 
producing two cycles and then a 2-opt or 3-opt move 
that produces a feasible tour by reconnecting the 
cycles together. 

2. We did a 3-opt move that disconnects the tour by 
producing two cycles and then a 2-opt move that 
produces a feasible tour by joining these two cycles 
together. 

Using this approach, we can kick the tour in less time than 
using non-sequential 4-opt moves, and the chances of 
finding good kicks are greater [5]. 

4 LEARNING FOR SPONTANEOUS 
EVOLUTION 

This memory cells idea came from Lo and Hsu’s [12] 
Annealing Learning Scheme (ALS).  They incorporated a 
memory unit that will alter the probability of acceptance 
of their annealing process.  This allows past search results 
to contribute their information for current use.  If we can 
somehow allow information from the search process 
guide our spontaneous generation, we can create new 
members that have higher chance of evolving into optimal 
solutions.  This prevents adding members to the 
population blindly by using initialization techniques that 

creates a member just like the beginning of the algorithm, 
which starts the search all over again. 

4.1 MEMORY CELL: SMART EVOLUTION 

The dimension of the memory cell is N*N, where N is the 
number of city.  At the beginning of the algorithm, where 
the evolution process starts, we set all of the elements in 
the memory cells to zero.  We use M(i,j) to represent the 
value of a specific memory cell position, and (i,j) itself to 

represent the link or edge from city i to city j. 

 

 

Figure 7: A 5-city Example 

 

 

 

Figure 8: Learning Memory Configuration of Figure 7 

 

Next, we must have a mechanism of updating datas into 
the memory cells.  It is not difficult to verify that M(i,j) = 
0 for all i=j, since that there will be no loop-backs.  We 
use the following two rules to make changes to the 
memory cells: 

1. If the individual T was improved by using the 
RDPX operator, then we consider that this 
chromosome is good and update the whole 
member’s link to the memory. 

∀edges (i,j) in T: M(i,j) = M(i,j) + 1 

2. If a specific or a chain of flip operations improves 
the tour, then we update these edges in the change 
into the memory. 

∀edges (i,j) involving in the k-change of T: 
M(i,j) = M(i,j) + 1 
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Consider the example shown in Figure 7.  Assume some 
RDPX operation was conducted on the two parents 
producing the offspring shown in Figure 7 (left), the 
memory will be updated according to rule 1 and the 
results shown in Figure 8 (left).  Following by is a local 
search k-opt move, which changes 2 edges (2,3) and (4,5) 
to (2,4) and (3,5) respectively (shown in Figure 7 (right)), 
the memory will be updated using rule 2 and the final 
result is shown in Figure 8 (right). 

Using this simple algorithm, we can effectively keep track 
of what edges contribute in leading to the optimal solution.  
We neither waste the previous search efforts nor keep 
excessive data.  In our case, our destined problem is to 
solve the symmetric TSP where edge (i,j) has the same 
meaning as edge (j,i).  When we update M(i,j), we update 
M(j,i) correspondently too.  The result is that the learning 
memory is reflexive, i.e., M(i,j) = M(j,i).  This algorithm 
has a time complexity of O(n) and a space complexity of 
O(n2). 

4.2 SPONTANEOUS GENERATIONS 

With our learning memory constructed during the search 
process, we need a method to let the spawning pool know 
how to generate spontaneous members.  Our approach 
uses greedy algorithm with some randomization. 

 

 

Figure 9: A Learning Memory Configuration 

 

Consider the learning memory configuration shown in 
Figure 9.  Assume that we now want to generate a 

spontaneous member from this configuration.  The 
following steps for spontaneous member construction are 
listed as follows: 

1. Select a random city i, as the starting node.  Mark 
city i as selected. 

2. Obtain the column sum S of city i from the learning 
memory.  If S=0, then select the next city j randomly 
and goto step 4, otherwise select city j with step 3. 

3. The probability of city j, i.e. edge (i,j), being 
selected as next city is: 

4. Mark city j as selected and let i=j.  If there are still 
cities unselected, then goto step 2. 

Let us begin with city 3.  The column sum of city 3 is 
1+1+4+2=8.  The chance of selecting city 1, 2, 4 and 5 
are1/8, 1/8, 4/8, and 2/8 respectively.  Now assume that 
we select city 4 as the next city.  The selected list is now 
(3,4) and the tour list is (3,4).  For city 4, the column sum 
is 0+2+0=2 (since city 3 and 4 are marked selected).  The 
probability of selecting city 1,2, and 5 are 0/2, 2/2, and 
0/2 respectively.  It is intuitively that we will select city 2 
as the next city.  The tour list is now (3,4,2) and the 
marked city list is (3,4,2).  We continue this process until 
all the cities are selected into the tour list forming a 
feasible tour. 

5 INDIVIDUAL COMPETITION 

If our initial population size is N, then we will have a 
population size of 2N + 1 now (N individuals created from 
crossover and one individual created spontaneously from 
the spawning pool).  The major objective here is to 
simulate the cruel environment: the fittest one gets all the 
resource for survival, i.e., it gets to perform local search.  
Hsu [7] has proposed this competition algorithm (shown 
in Figure 10), and proved that GA using competition 
yields better solution. 

 

 

Figure 10: The Competition Algorithm 

 

The local search of the SEGA occurs only in this step.  
Starting from the fittest individual, we perform local 
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Algorithm Competition 
{ 

Sort population P in non-decreasing order; 
 
Do 
{ 

If an individual has fitness in common with some other 
individuals then 

Replace this individual with a spontaneous 
generated individual; 

} While no two individuals of P have the same fitness 
 
Sort this new calibrated population P in non-decreasing  
order; 

 
Starting from the most fitted individual i and do 
{ 

in = Local-Search(i); 
If in is better than i then: 

Replace i with in and break; 
Else  

Select the next fitted individual for local search; 
} 
Select the individuals to survive for the next generation; 

} 
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search on this individual.  If the result of the local search 
improves this individual, we replace this individual by the 
one produced by local search procedure.  Otherwise, we 
choose the next individual and apply local search to it.  
We continue this process until an improvement is detected 
or all of the individuals are checked.  We also call this 
algorithm the winner-take-all competition since that only 
the best of the best member gets to perform local search. 

Finally, we select the N most fitted individual for survival 
and let them become the new initial population for the 
next generation of evolution.  Using the individual 
competition approach guarantees in finding a better 
solution or preserve the current best solution found so far, 
i.e., elitism. 

6 EXPERIMENT RESULTS 

The experiment conducted in this section uses a 
population size of 20.  1-Tree and convex hull 
optimization (1T+CH) scheme was used for population 
initialization.  20 trials were executed for each test case 
and each trial is executed for 100 generations.  The 
recorded data was the average of these 20 trials.  The 
machine used is Intel Pentium III 500MHz with 256M of 
memory running Mandrake Linux v7.2. 

The following schemes will be compared: 

l BARE: No spawning pool, no spontaneous 
generations and no learning memory are used.  It is 
just identical to bare genetic local search (GLS) 
algorithm. 

l LS: Local search method by Hsu [7]. 

l Simple SEGA: The spawning pool was used to 
generate spontaneous members, but without any 
learning memory.  This is actually blind initiation 
(random) of a member introduced into every 
generation of GLS. 

l SEGA: The model proposed in this paper. 

 

Table 1: Average Execution Time 

 

 

From Table 1, we can see that LS is the fastest method.  
This can be explained because BARE, simple SEGA, and 
SEGA are actually conducting multiple LS during each 
generation.  BARE is fast but yields poor quality solutions 
because of the premature convergence property of genetic 
algorithms.  From the three genetic algorithm mutants, we 
can see that SEGA outperforms BARE and simple SEGA 
(although it is slower that BARE, it yield better solutions).  
This is because it is able to find better solution and then 
converge (thought it may not be an optimal solution). 

 

Table 2: Comparasion of Average Solution Gap 

 

Method (AVG Gap) 
Problem Name 

BARE LS Simple 
SEGA 

SEGA 

att48 0.000% 0.000% 0.000% 0.000% 
eil51 0.000% N/A 0.000% 0.000% 

kroA100 0.000% N/A 0.000% 0.000% 
d198 N/A 0.050% N/A N/A 

lin318 0.192% 0.310% 0.000% 0.000% 
pcb442 0.210% N/A 0.002% 0.000% 
att532 0.185% 0.200% 0.009% 0.000% 
rat783 0.362% 0.040% 0.186% 0.002% 

vm1084 1.467% N/A 0.111% 0.012% 
d1291 0.027% 0.340% 0.023% 0.017% 
fl1577 0.058% 0.920% 0.036% 0.012% 

 

Table 3: Best Solution’s Gap Obtained 

 

 

Both tables 2 and 3 shows that SEGA provides the best 
solution quality, both on average and best case.  
Comparing to SEGA, the large execution time of simple 
SEGA is due to that a new search is started when a 
spontaneous member is introduced.  This is because this 
member is initialized randomly and can be anywhere in 
the search space Besides the search process has a very 
high probability to end where it has started before adding 
this spontaneous member.  This is why we did not use 
                                                           
1 Result obtained from Hsu [7]. 
2 Fields containing N/A represent that experiments for those instances 
are not conducted. 

Method (Best Gap) 
Problem Name 

BARE LS Simple 
SEGA 

SEGA 

att48 0.000% 0.000% 0.000% 0.000% 
eil51 0.000% N/A 0.000% 0.000% 

kroA100 0.000% N/A 0.000% 0.000% 
d198 N/A 0.000% N/A N/A 

lin318 0.123% 0.00% 0.000% 0.000% 
pcb442 0.005% N/A 0.000% 0.000% 
att532 0.028% 0.000% 0.000% 0.000% 
rat783 0.004% 0.000% 0.002% 0.000% 

vm1084 0.041% N/A 0.018% 0.011% 
d1291 0.055% 0.000% 0.040% 0.000% 
fl1577 0.007% 0.010% 0.012% 0.002% 

Method (Avg. Exec Time in Seconds) 
Problem Name 

BARE LS1 Simple 
SEGA 

SEGA 

att48 0.152 0.180 0.162 0.096 
eil51 0.147 N/A2 0.175 0.106 

kroA100 0.261 N/A 0.222 0.263 
d198 N/A 1.430 N/A N/A 

lin318 3.260 2.120 2.912 3.105 
pcb442 10.007 N/A 19.864 5.226 
att532 8.925 5.120 15.554 9.513 
rat783 10.503 6.870 23.102 12.295 

vm1084 25.174 N/A 419.495 387.872 
d1291 44.62 19.100 1452.523 767.235 
fl1577 1089.78 57.670 3349.235 1513.630 
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random (blind) generation of the spontaneous member.  
Although without using spawning pool and learning 
memory has a faster execution time, the drawback is that 
the chance for it to find optimal solution is lessen. 

7 CONCLUSION 

We have proposed a successful new genetic algorithm 
model, the Spontaneous Evolution Genetic Algorithm 
(SEGA).  This model has three major capabilities.  First, 
it is able to prevent premature convergence by introducing 
new members into the population.  Second, this new 
SEGA does not generate these new members blindly.  It 
does so by referencing to the learning memory.  This 
learning memory assists the spawning pool, where the 
new member is produced, in building feasible and good 
candidate tours with in formations from past search trials.  
This process is called a spontaneous generation.  Third, 
the local search operator was carefully used in 
combinations with mutation operator, i.e., mutation is 
performed during local search.  With this assumption, we 
removed the mutation step in GLS.  In addition, by 
allowing only a single member to enter the evolution 
chamber for local search sped up the algorithm. 

Proven that the spawning pool unit (spontaneous 
generation) and evolution chamber unit (winner-take-all 
competition) are successful, this model can be applied to 
other problems, such as graph partitioning, knapsack 
problem, and vehicle routing problems. 
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Abstract

Premature convergence is the loss of diversity

in the population that has long been recog-

nized as one crucial factor that hinders the

eÆcacy of crossover. In this paper, a strategy

for independent sampling of building blocks

is proposed in order to nicely implement im-

plicit parallelism. Based on this methodol-

ogy, we developed a modi�ed version of GA:

independent sampling genetic algorithms (IS-

GAs). Simply stated, each individual inde-

pendently samples candidate schemata and

creates population diversity in the �rst phase;

subsequently we allow individuals to actively

select their mates for reproduction. We will

present experimental results on two bench-

mark problems, \Royal Road" functions of

64-bits and bounded deception of 30-bits, to

show how the performance of GAs can be im-

proved through the proposed approach.

1 INTRODUCTION

Genetic algorithms (GAs) have been successfully ap-

plied to several diÆcult search and optimization prob-

lems in science and engineering. One major source

of the power of GAs is derived from so-called implicit

parallelism (Holland, 1975), i.e., the simultaneous al-

location of search e�ort to many regions of the search

space. A perfect implementation of implicit paral-

lelism implies that a large number of di�erent short,

low-order schemata of high �tness are sampled in par-

allel, thus conferring enough diversity of fundamen-

tal building blocks for crossover operators to combine

them to form more highly-�t, complicated building

blocks. However, traditional GAs su�er from prema-

ture convergence (Goldberg, 1989) where considerable

�xation occurs at certain schemata of suboptimal re-

gions before attaining more advancement. Among ex-

amples of premature convergence, hitchhiking (Das, &

Whitley, 1991; Mitchell, 1996) has been identi�ed as

a major hindrance, which limits implicit parallelism

by reducing the sampling frequency of various ben-

e�cial building blocks. In short, non-relevant alleles

hitchhiking on certain schemata could propagate to

the next generation and drown out other potentially

favorable building blocks, thus preventing independent

sampling of building blocks. Consequently, the eÆcacy

of crossover in combining building blocks is restricted

by the resulting loss of desired population diversity.

Mitchell, Holland and Forrest (1994) considered a so-

called \idealized genetic algorithm" (IGA) that allows

each individual to evolve completely independently;

thus new samples are given independently to each

schema region and hitchhiking is suppressed. Then

under the assumption that the IGA has the knowl-

edge of the desired schemata in advance, they derived

a lower bound for the number of function evaluations

that the IGA will need to �nd the optimum of Royal

Road function R1 (Mitchell, Forrest, & Holland, 1992).

However, the IGA is impractical because it requires the

exact knowledge of desired schemata ahead of time.

Partially motivated by the idea of the IGA, we pro-

pose a more robust GA that proceeds in two phases:

the \independent sampling phase" and the \breeding

phase". In the independent sampling phase, we design

a core scheme, named the \Building Block Detecting

Strategy" (BBDS), to extract relevant building block

information of a �tness landscape. In this way, an in-

dividual is able to sequentially construct more highly-

�t partial solutions. For Royal Road R1, the global

optimum can be attained easily. For other more com-

plicated �tness landscapes, we allow a number of indi-

viduals to adopt the BBDS and independently evolve

in parallel so that each schema region can be given

samples independently. During this phase, the popu-
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lation is expected to be seeded with promising genetic

material. Then follows the breeding phase, in which

individuals are paired for breeding based on two mate

selection schemes (Huang, 2001): individuals being as-

signed mates by natural selection only and individuals

being allowed to actively choose their mates. In the

latter case, individuals are able to distinguish candi-

date mates that have the same �tness yet have di�er-

ent string structures, which may lead to quite di�er-

ent performance after crossover. This is not achiev-

able by natural selection alone since it assigns individ-

uals of the same �tness the same probability for being

mates, without explicitly taking into account string

structures. In short, in the breeding phase individu-

als manage to construct even more promising schemata

through the recombination of highly-�t building blocks

found in the �rst phase. Due to the characteristic of

independent sampling of building blocks that distin-

guishes the proposed GAs from conventional GAs, we

name this type of GA independent sampling genetic

algorithms (ISGAs).

2 LITERATURE REVIEW

In GA research, extensive attention has been paid to

how to alleviate premature convergence. An example

is the class of parallel GAs (PGAs) that are devel-

oped to degrade centralized selection control used in

simple GAs in order to accommodate more population

diversity. Among these PGAs, the \�ne-grained" type

(Cant�u-Paz, 1997) is an idealized model that allows

only one individual to evolve in each deme and thereby

implements the decentralization of selection scheme to

the maximum degree. M�uhlenbein (1991) used a lo-

cal hillclimbing algorithm to re�ne the individuals in

his �ne-grained PGAs along with a mating strategy

based on population structure and the empirical re-

sults showed that his PGA is an e�ective optimization

tool.

The independent sampling phase of ISGAs is similar

to the �ne-grained PGAs in (M�uhlenbein, 1991) in

the sense that each individual evolves autonomously,

although ISGAs do not adopt the population struc-

ture. The second distinction is that M�uhlenbein's

�ne-grained PGAs process strings in a homogeneous

fashion. An initial population is randomly generated.

Then in every cycle each individual does local hill-

climbing, and creates the next population by mating

with a partner in its neighborhood and replacing par-

ents if o�spring are better. By contrast, ISGAs parti-

tion the genetic processing into two phases: the inde-

pendent sampling phase and the breeding phase as de-

scribed in the preceding section. Third, the approach

employed by each individual for improvement in IS-

GAs is di�erent from that of the PGAs. During the

independent sampling phase of ISGAs, in each cycle,

through the BBDS, each individual attempts to ex-

tract relevant information of potential building blocks

whenever its �tness increases. Then, based on the

schema information accumulated, individuals continue

to construct more complicated building blocks. How-

ever, the individuals of M�uhlenbein's PGAs adopt a

local hillclimbing algorithm that does not manage to

extract relevant information of potential schemata.

The motivation of the two-phased ISGAs was partially

from the \messy genetic algorithms (mGAs)" in (Gold-

berg, Korb, & Deb, 1989; Goldberg, Deb, Kargupta, &

Harik, 1993). The two stages employed in the mGAs

are \primordial phase" and \juxtapositional phase",

in which the mGAs �rst emphasize candidate build-

ing blocks based on the guess at the order k of small

schemata, then juxtaposing them to build up global

optima in the second phase by \cut" and \splice" op-

erators. However, in the �rst phase, the mGAs still

adopt centralized selection to emphasize some candi-

date schemata; this in turn results in the loss of sam-

ples of other potentially promising schemata. By con-

trast, ISGAs manage to postpone the emphasis of can-

didate building blocks to the latter stage, and highlight

the feature of independent sampling of building blocks

to suppress hitchhiking in the �rst phase. As a result,

population is more diverse and implicit parallelism can

be ful�lled to a larger degree. Thereafter, during the

second phase, ISGAs implement population breeding

through two mate selection schemes as discussed in

the preceding section. In this way, we may examine if

the results obtained for the ISGAs are consistent with

what has been done for simple serial GAs in (Huang,

2001).

In the following sections, we present the key compo-

nents of ISGAs in detail and show the comparisons be-

tween the experimental results of the ISGAs and those

of several other GAs on two benchmark test functions.

3 COMPONENTS OF ISGAS

ISGAs are divided into two phases: the independent

sampling phase and the breeding phase. We describe

them as follows.

3.1 INDEPENDENT SAMPLING PHASE

To implement independent sampling of various build-

ing blocks, a number of strings are allowed to evolve

in parallel and each individual searches for a possi-

ble evolutionary path entirely independent of others.
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In this paper, we develop a new searching strategy,

Building Block Detecting Strategy (BBDS), for each

individual to evolve based on the accumulated knowl-

edge for potentially useful building blocks. The idea

is to allow each individual to probe valuable informa-

tion concerning bene�cial schemata through testing its

�tness increase since each time a �tness increase of a

string could come from the presence of useful building

blocks on it. In short, by systematically testing each

bit to examine whether this bit is associated with the

�tness increase during each cycle, a cluster of bits con-

stituting potentially bene�cial schemata will be uncov-

ered. Iterating this process guarantees the formation

of longer and longer candidate building blocks.

The operation of BBDS on a string can be described

as follows.

1. Generate an empty set for collecting genes of can-

didate schemata and create an initial string with uni-

form probability for each bit until its �tness exceeds

0. (Record the current �tness as Fit.)

2. Except the genes of candidate schemata collected,

from left to right, successively ip all the other bits,

one at a time, and evaluate the resulting string. If

the resulting �tness is less than Fit, record this bit's

position and original value as a gene of candidate

schemata.

3. Except the genes recorded, randomly generate all

the other bits of the string until the resulting string's

�tness exceeds Fit. Replace Fit by the new �tness.

4. Go to steps 2 and 3 until some end criterion.

The idea of this strategy is that the cooperation of cer-

tain genes (bits) makes for good �tness. Once these

genes come in sight simultaneously, they contribute a

�tness increase to the string containing them; thus any

loss of one of these genes leads to the �tness decrease

of the string. This is essentially what step 2 does and

after this step we should be able to collect a set of

genes of candidate schemata. Then at step 3, we keep

the collected genes of candidate schemata �xed and

randomly generate other bits, awaiting other building

blocks to appear and bring forth another �tness in-

crease.

However, the step 2 in this strategy only emphasizes

the �tness drop due to a bit-ip. It ignores the possi-

bility that the same bit-ip leads to a new �tness rise

because many loci could interact in an extremely non-

linear fashion. To take this into account, the second

version of BBDS is introduced through the change of

step 2 as follows.

Step 2. Except the genes of candidate schemata col-

lected, from left to right, successively ip all the other

bits, one at a time, and evaluate the resulting string.

If the resulting �tness is less than Fit, record this

bit's position and original value as a gene of candi-

date schemata. If the resulting �tness exceeds Fit,

substitute this bit's \new" value for the old value, re-

place Fit by this new �tness, record this bit's position

and \new" value as a gene of candidate schemata, and

re-execute this step.

Because this version of BBDS takes into considera-

tion the �tness increase resulted from bit-ips, it is

expected to take less time for detecting. Several em-

pirical results so far support this reasoning (for exam-

ple, the experimental results of these two versions on

Royal Road functions shown in the next section).

Other versions of BBDS are of course possible. For ex-

ample, in step 2, if a bit-ip results in a �tness increase,

it can be recorded as a gene of candidate schemata,

and the procedure continues to test the residual bits

yet without completely travelling back to the �rst bit

to re-examine each bit. However, the empirical re-

sults obtained thus far indicate that the performance

of this alternative is quite similar to that of the second

version. More experimental results are needed to dis-

tinguish the di�erence between them. In this paper,

we present the results obtained based on the �rst and

second versions of BBDS.

The overall implementation of the independent sam-

pling phase of ISGAs is through the proposed BBDS

to get autonomous evolution of each string until all

individuals in the population have reached some end

criterion.

In section 4, we will present an analysis of the BBDSs

on two types of idealized test functions: \Royal Road"

functions (non-deceptive) and problems of bounded

deception (deceptive).

3.2 BREEDING PHASE

After the independent sampling phase, individuals in-

dependently build up their own evolutionary avenues

by various building blocks. Hence the population is

expected to contain diverse bene�cial schemata and

premature convergence is alleviated to some degree.

However, factors such as deception and incompatible

schemata (i.e., two schemata have di�erent bit values

at common de�ning positions) still could lead indi-

viduals to arrive at sub-optimal regions of a �tness

landscape. Since building blocks for some strings to

leave sub-optimal regions may be embedded in other

strings, the search for proper mating partners and then

exploiting the building blocks on them are critical for
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overwhelming the diÆculty of strings being trapped in

undesired regions. In (Huang, 2001) the importance

of mate selection has been investigated and the results

showed that the GAs are able to improve their per-

formance when the individuals are allowed to select

mates to a larger degree.

In this paper, we adopt two mate selection schemes

analyzed in (Huang, 2001) to breed the population:

individuals being assigned mates by natural selection

only and individuals being allowed to actively choose

their mates. Since natural selection assigns strings of

the same �tness the same probability for being parents,

individuals of identical �tness yet distinct string struc-

tures are treated equally. This may result in signi�cant

loss of performance improvement after crossover. This

issue is the major concern in (Huang, 2001) and we

continue this research line to ISGAs in this paper.

We adopt the tournament selection scheme (Mitchell,

1996) as the role of natural selection and the mech-

anism for choosing mates in the breeding phase is as

follows:

During each mating event, a binary tournament

selection|with probability 1.0 the �tter of the two

randomly sampled individuals is chosen|is run to pick

out the �rst individual, then choosing the mate accord-

ing to the following two di�erent schemes:

A. Run the binary tournament selection again to

choose the partner.

B. Run another two times of the binary tournament

selection to choose two highly-�t candidate part-

ners; then the one more dissimilar to the �rst in-

dividual is selected for mating.

The implementation of the breeding phase is through

iterating each breeding cycle which consists of 1)

Two parents are obtained based on the mate selec-

tion schemes above. 2) Two-point crossover operator

(crossover rate 1.0) is applied to these parents. 3) Both

parents are replaced with both o�spring if any of the

two o�spring is better than them. Then steps 1, 2, and

3 are repeated until the population size is reached and

this is a breeding cycle. (To give crossover its sti�est

test, we turn o� mutation for all the performance tests

in this paper.)

In (Huang, 2001), the results showed that the mate

selection scheme B outperforms scheme A in general,

given the objective of �nding the global optimum with

minimum time. Since those results were obtained in

simple GAs, we are concerned with whether this con-

clusion can be extended to the ISGAs as well.

Having described the components of ISGAs, we are

now on the road to test their performance.

4 EXPERIMENTAL RESULTS

Two types of test functions are used for examining

the performance of the ISGAs: \Royal Road" func-

tions (non-deceptive) and problems of bounded decep-

tion (deceptive). The performance of some other ap-

proaches will be compared with that of the ISGAs as

well.

4.1 PERFORMANCE ON ROYAL ROAD

FUNCTIONS

The Royal Road functions designed by Mitchell, For-

rest, and Holland (1992) were to investigate in more

detail the validity of the Building Block Hypothesis

(Holland, 1975; Goldberg, 1989), which implies that

the performance of GAs largely depends on the eÆ-

cacy of crossover to combine small, highly-�t schemata

to form more complex, highly-�t schemata. The �t-

ness landscape of Royal Road functions consists of

two characteristics: the presence of short, low-order,

highly-�t schemata and hierarchical structure which

allows these small schemata to repeatedly construct

more and more highly-�t schemata and eventually

reach the global optimum. One example of this class

is Royal Road R1 whose �tness landscape is composed

of eight consecutive building blocks of eight ones each.

It is apparent that Royal Road R1 is a non-deceptive

function and it was expected that GAs perform quite

well on such a �tness landscape due to the Building

Block Hypothesis. However, Mitchell's experimental

results indicated that the unsatisfactory GA perfor-

mance on this function is primarily from hitchhiking

phenomenon, one of possible causes of premature con-

vergence.

In (Mitchell, 1995), the performance of the GA

was further compared with those of three iter-

ated hill-climbing searching algorithms: steepest-

ascent hill-climbing (SAHC), next-ascent hill-climbing

(NAHC) (M�uhlenbein, 1991), and random-mutation

hill-climbing (RMHC) (Forrest, & Mitchell, 1993).

They performed 500 runs for the GA with population

size 128 and 200 runs for each of the three hill-climbing

algorithms, and reported that SAHC and NAHC never

found the optimum within 256,000 function evalua-

tions but the GA can attain the optimum in an aver-

age of 61,334 function evaluations. Moreover, RMHC

found the optimum only in an average of 6179 function

evaluations, nearly ten times faster than the GA.

We performed 1000 runs of the ISGA on Royal Road
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R1 and the end criterion is the moment for the global

optimum being found. It turned out that for such a hi-

erarchical, non-deceptive structure only an individual

is needed, based on the building block detecting strat-

egy discussed earlier, to serve for good performance. It

actually found the optimum only in an average of 975

function evaluations for the �rst version of BBDS and

901 for the second version|more than six times faster

than RMHC and sixty times faster than the GA.

These experimental results can be summarized in Ta-

ble 1 in which the standard deviation is shown for each

case as well.

Table 1: Experimental Results on R1

Function Evaluations to Optimum

Mean Standard Deviation

GA 61334 32583

SAHC >256,000 {

NAHC >256,000 {

RMHC 6179 2630

BBDS v. 1 975 314

BBDS v. 2 901 309

To see why the structures aggregated by the BBDS

are indeed potentially promising schemata, let us turn

to the motivation of the BBDS, i.e., the IGA. On the

idealized model Royal Road R1, Mitchell et al. (1994)

discussed the expected time for the IGA to construct

all the eight building blocks for reaching the opti-

mum and obtained the theoretical result of 696 func-

tion evaluations. In the process of BBDS version 1,

when the �rst building block emerges in the string,

64 evaluations are required to detect it since we need

to ip all the 64 bits, one at a time, and evaluate

the resulting string. Similarly, as the second build-

ing block comes in sight, another 56 evaluations is re-

quired to detect it. By this reasoning, the total eval-

uations required for detecting the building blocks are

64+56+48+40+32+24+16=280. (It is not necessary

to detect the �nal single block because the appearance

of the �nal building block is at the same moment of

the optimum being attained.) If two or more build-

ing blocks appear simultaneously, the evaluations for

detecting will be less than 280, but this occurs with

a rather small probability. Therefore, the sum of 696

function evaluations (the theoretic result obtained by

Mitchell et al.) for constructing all the eight build-

ing blocks and 280 function evaluations for detecting

these building blocks is 976. This is almost perfectly

consistent with the result obtained for BBDS version 1

shown in Table 1. Thus, we can conclude that BBDS

implements nearly the idealized GA on Royal Road

R1 in the sense that extra function evaluations are re-

quired to detect the building blocks. As for the perfor-

mance of the second version of BBDS, since it adopts

a more greedy method to detect the building blocks,

it takes less time to attain the optimum than the �rst

version does.

Another idealized model to test the power of BBDS

is Royal Road R2 (Forrest, & Mitchell, 1993). This

function was designed to verify if the presence of inter-

mediate \stepping stones" (intermediate-order higher-

�tness schemata that result from combinations of the

lower-order schemata, and that in turn can combine to

form even higher-�tness schemata) can speed up GAs'

searching process. Forrest et al. (1993) found that if

some intermediate stepping stones are much �tter than

the primitive components, then hitchhiking problem

becomes more severe and thus premature convergence

slows down the discovery of some necessary schemata.

We summarize the results from two versions of the

BBDS and those reported in (Forrest, & Mitchell,

1993) in Table 2.

Table 2: Experimental Results on R2

Function Evaluations to Optimum

Mean Standard Deviation

GA 73563 40115

SAHC >256,000 {

NAHC >256,000 {

RMHC 6551 2998

BBDS v. 1 975 314

BBDS v. 2 901 309

This table shows that the GA indeed performed worse

on R2 than on R1. However, under the same random

seed, the BBDS has the exact performance on R1 and

R2, indicating that stepping stones do not have any

negative impact on the search power of the BBDS.

This is because the BBDS essentially takes into ac-

count only �tness increase or decrease, not the amount

of relative �tness di�erence. Thus any extra �tness dif-

ference contributed by the stepping stones of R2 does

not a�ect the performance of the BBDS.

Since Royal Road functions are non-deceptive, such

landscapes allow BBDS to exhibit the maximum ca-

pability to extract information concerning the build-

ing blocks whenever they come in sight on the string;

thus the global optimum can be reached very quickly.

Several empirical results obtained so far indeed show

that BBDS signi�cantly outperforms RMHC and tra-

ditional GAs on such non-deceptive �tness landscapes.

Although the ISGA needs to employ only a string to

attain the optimum of Royal Road functions, this sin-
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gle individual can be fooled by any deceptive schemata.

If this is the case, the ISGA with population size one

is certainly not enough for attaining gratifying perfor-

mance. In the next subsection, we present the exper-

imental results of the ISGAs with larger population

size on another benchmark test function which bears

this �tness landscape feature.

4.2 PERFORMANCE ON 30-BIT

BOUNDED DECEPTION PROBLEM

The problems of bounded deception designed by Gold-

berg et al. (1989) were to investigate the performance

of GAs on deceptive functions in which low-order,

highly-�t schemata mislead GAs away from global op-

tima and toward the complement of the global opti-

mum. One example of this class is an order-3 fully

deceptive function as de�ned in Table 3.

Table 3: A fully deceptive, order-3 problem

bit value bit value

111 30 100 14

101 0 010 22

110 0 001 26

011 0 000 28

On this 3-bit, deceptive problem, calculations of the

average �tness of schema show that GAs are likely

to be led toward the complement of the global opti-

mum, i.e., 000, instead of toward the global optimum,

111. To demonstrate the e�ect of this deception on the

search power of GAs, Goldberg et al. (1989) designed

a 30-bit deceptive function, E10, which is composed of

ten consecutive blocks of this 3-bit deceptive function.

In contrast to the non-deceptive feature of Royal Road

functions, it is apparent that this 30-bit deceptive

function imposes enough diÆculty for GAs to arrive

at the global maximum (1,1,...,1).

We performed 50 runs of the ISGAs with mate se-

lection schemes A and B on E10, based on the sec-

ond version of BBDS, for population size 40 and 80.

The end criterion of the BBDS in this case is the mo-

ment that the length of candidate schemata reaches

the length of the string. After all the strings reach the

end criterion of the BBDS, the independent sampling

phase stops and the breeding phase gets started. We

then measure the number of function evaluations re-

quired to �nd the global optimum and the results are

shown in Table 4 (the standard deviation is given in

the parentheses).
Notice that the ISGA with mate selection scheme

B requires fewer function evaluations than that with

scheme A. These results indicate that the ISGA with

Table 4: Experimental Results on E10

Function Evaluations to Optimum

Population size 40 Population size 80

Scheme A 11786 (11034) 16794 (12175)

Scheme B 9582 (7889) 11122 (5614)

mate selection B indeed outperforms that with scheme

A, which is consistent with the results obtained in

(Huang, 2001).

To see how the BBDS version 2 searches this �tness

landscape, we show that after the independent sam-

pling phase, only (111) or (000) will emerge at each

block, and the probabilities are 1

4
, and 3

4
, respectively

(please see Appendix). Thus for a population of 40 in-

dividuals, the probability that the population contains

no building block (111) at a building-block location is

only ( 3
4
)40 � 1:0 � 10�5; and for a population size

80, the probability is ( 3
4
)80 � 1:0 � 10�10. Therefore

these two population sizes serve for enough underlying

building blocks to construct the global optimum.

To compare total function evaluations used by the two

phases in the ISGAs, we show the results in Table 5,

where the �rst element corresponds to the evaluations

spent in the independent sampling phase and the sec-

ond corresponds to that in the breeding phase. In this

table, it is clear that scheme B has higher eÆciency

of exploiting the building blocks found in the indepen-

dent sampling phase to construct the global optimum.

Table 5: Total Function Evaluations in Two Phases

Population Size 40 Population Size 80

Scheme A (1159,10627) (2322,14472)

Scheme B (1160,8422) (2320,8802)

To demonstrate the capability of the ISGAs, we com-

pare their performance (based on population size

40) with that of several di�erent types of GAs: a

mGA (Goldberg, Korb, & Deb, 1989), a modi�ed

mGA (Goldberg, Deb, Kargupta, & Harik, 1993),

a Breeder GA (BGA) (M�uhlenbein & Schlierkamp-

Voosen, 1993), and two versions of PGA (2pc-wohc,

two-point cyclic crossover without hill-climbing, and

2pc-nahc, two-point cyclic crossover with next ascent

hill-climbing) (M�uhlenbein, 1991). We also ran a sim-

ple serial GA over 50 runs (based on a binary tour-

nament selection{with probability 1.0 the �tter of the

two randomly sampled individuals is chosen, mutation

rate 0.005, two-point crossover rate 0.7, population

size 80, and maximum function evaluations 50000 for

each run). The experimental results of the ISGAs and
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other GAs reported can be summarized in Table 6 from

which we can see that the ISGAs signi�cantly outper-

form other GAs.

Table 6: Performance of Several Types of GAs

Mean Function Evaluations to Optimum

ISGA (Scheme A) 11786

ISGA (Scheme B) 9582

mGA 40600

Modi�ed mGA 26650

BGA 16000

2pc-wohc PGA 21398

2pc-nahc PGA 40500

Serial GA 0 runs reached optimum

5 DISCUSSIONS

One issue that also concerns us is the e�ect of popu-

lation size. In Table 4, we see that the ISGA with

larger population size has worse performance than

with smaller population size. This can be more clearly

seen in Table 5. In this table, for the same population

size, the function evaluations required in the indepen-

dent sampling phase for two schemes are almost the

same, yet in the breeding phase the di�erence between

two schemes for population size 80 is larger than that

for population size 40.

This is the opposite of what has been obtained for

simple serial GAs in (Huang, 2001), in which larger

population size reduces the performance di�erence be-

tween these two mate selection schemes. So far, the

answer for this seeming paradox has not yet been ob-

tained, but we can conjecture that since the ISGAs

implement independent sampling of building blocks in

the �rst phase to a maximum degree, they may gen-

erate too diverse a population if the population size is

large enough. This in turn slows down the evolution

of the population in the breeding phase.

How does population diversity a�ect the searching pro-

cess for di�erent goals, such as �nding a global op-

timum or forming speciation? From the discussion

above, it is clear that larger population size is not al-

ways advantageous and we will manage to investigate

the relationship between diversity and �nding a global

optimum in the near future.

6 CONCLUSIONS

In this paper we �rst present an exploratory method

(BBDS) to show how the searching speed of individu-

als can be improved. Through explicitly acquiring rel-

evant knowledge of candidate building blocks, BBDS

outperformed several representative hill-climbing algo-

rithms on non-deceptive Royal Road functions. Then

a new class of GAs based on BBDS, i.e., ISGAs, is

proposed. In the �rst phase of ISGAs, implicit par-

allelism is nicely realized by allowing each individual

to accomplish independent building-block sampling to

suppress hitchhiking; thus the population is expected

to carry diverse promising schemata. Afterwards, with

one mate selection scheme that allows individuals to

actively choose their mating partners, the eÆcacy of

crossover is enhanced and the ISGAs have been shown

to outperform several di�erent GAs on a benchmark

test function that is full of deception.

7 FUTURE WORK

Much work remains to be done. The author is now

testing the capability of ISGAs on more complicated

�tness landscapes, such as the hyperplane de�ned

functions (HDFs) designed by Holland (2000), which

parameterize �tness landscapes to encompass features

such as hierarchy, poor-linkage, potholes, hills, bad-

lands, ridges, etc. Other research lines are to examine

in more detail the impact of mutation and the di�er-

ence between two-phased and traditional (one-phased)

GAs. Afterwards, our hope is to extend the single two-

phased procedure to successive two-phased procedures

over the course of evolution, i.e., iterating the two

phases during the whole run. In addition, other ver-

sions of BBDS are worth investigating so that building-

block detecting is more e�ectively implemented. More-

over, a theoretical foundation is needed to explain the

whys and wherefores of the excellent performance of

ISGAs, and �nally our goal is to extend the applica-

tion of ISGAs to real problems.
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Appendix

For BBDS version 2, let us start with an initial 3-bit

sub-string, for example, at (101) (�tness = 0). Then

the �rst bit is ipped to 0, which causes the �tness to

increase to 26; thus this bit's value must be replaced

by 0 and its bit-position and new bit-value (i.e., 0)

are recorded as the �rst gene of the candidate schema.

After this function evaluation the candidate schema is
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(0xx) (\x" represents a not-yet-tested gene) and this

sub-string is now (001).

Then under the instruction of step 2, we have to go

back to the �rst bit again and ip it. But since this

gene has been already recorded, we do not ip this

bit; instead the next bit is temporarily ipped to 1

for test, leading the �tness to decrease to 0. Thus the

original value of the sub-string's second bit is kept (i.e.,

0) and we record this bit's position and original value

as the second gene of the candidate schema, and this

candidate schema is now (00x).

Then the BBDS goes to the third bit and ip it. We

thus obtain (000), which leads to the �tness of 28.

Thus we record this bit's position and new value as

the third gene of the candidate schema, which is now

(000).

Since the length of this candidate schema reaches the

length of this 3-bit sub-string, we stop here.

The process can be symbolized in the following:

(101) �! (0xx) �! (00x) �! (000).

Analogously, the collected candidate schemata for the

starting points at (100), (110), (010), (001), and (000)

will be (000); and those for (011) and (111) will be

(111).

We summarize the results as follows:

(000) �! (0xx) �! (00x) �! (000);

(001) �! (0xx) �! (00x) �! (000);

(010) �! (0xx) �! (00x) �! (000);

(100) �! (0xx) �! (00x) �! (000);

(101) �! (0xx) �! (00x) �! (000);

(110) �! (0xx) �! (00x) �! (000);

(011) �! (1xx) �! (11x) �! (111);

(111) �! (1xx) �! (11x) �! (111).
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Abstract

Mutation and crossover are the main search
operators of different variants of evolution-
ary algorithms. Despite the many discus-
sions on the importance of crossover nobody
has proved rigorously for some explicitly de-
fined fitness functions fn : {0, 1}n → R that
a genetic algorithm with crossover can opti-
mize fn in expected polynomial time while
all evolution strategies based only on muta-
tion (and selection) need expected exponen-
tial time. Here such functions and proofs are
presented for a genetic algorithm without any
idealization. For some functions one-point
crossover is appropriate while for others uni-
form crossover is the right choice.

1 INTRODUCTION AND HISTORY

Ideas from biological evolution have influenced the de-
sign of systems for various aims, i.e., adaptation, sim-
ulation, control, and optimization. Here we consider
the optimization, in particular, the maximization of
pseudo-boolean functions fn : {0, 1}n → R

+
0 . Evolu-

tionary algorithms use selection operators, search op-
erators, and a stopping criterion. The class of search
operators contains mutation where one parent creates
one child preferring individuals closer to the parent
and crossover where (in most cases) two parents cre-
ate one or more children which lie in the subcube of
{0, 1}n spanned by the parents.

There have been long debates which type of search
operator is “more important”. This paper is not a
contribution to this debate. We are interested in spe-
cific fitness functions such that crossover is necessary
to obtain an evolutionary algorithm (then also called
genetic algorithm) where the expected time until an

optimal search point is evaluated (called the expected
optimization time) is polynomial (instead of exponen-
tial).

Holland (1975) has described the possible use of
crossover leading to the building-block hypothesis (see
also Goldberg (1989)). The well-known schema the-
orem describes the development of schemata within
one step. Hence, in general, it does not lead to re-
sults on the expected optimization time. Based on
these considerations Mitchell, Forrest, and Holland
(1992) have introduced the so-called royal road func-
tions RRn,k : {0, 1}n → R

+
0 (w.l.o.g. n = mk) where

the set {1, . . . , n} of indices is partitioned to m con-
secutive blocks of k elements each. Then RRn,k(x) is
defined as the number of blocks containing only xi-
bits equal to 1. Mitchell, Holland, and Forrest (1994)
have investigated these functions (for an overview see
Mitchell (1996)).

It has turned out that mutation-based evolutionary
algorithms are quite successful for the royal road func-
tions. The so-called (1 + 1)EA with population size
1 and mutation probability 1/n has an expected opti-
mization time of O(2k · n

k log n
k ). We only mention that

we can prove that this bound is asymptotically tight.
It has been shown in the above mentioned papers that
the expected optimization time of an idealized genetic
algorithm (IGA) is of order 2k · log n

k . IGA does not
consider the negative implications of the hitchhiking
effect. Experiments show that the (1 + 1)EA is faster
than genetic algorithms on royal road functions. It
is also clear that even the idealized GA saves only a
polynomial factor of order n/k. Moreover, the analysis
of the royal road functions shows that crossover often
has simultaneously positive and negative effects and
one has to argue carefully to prove that the positive
effects are more important.

Watson, Hornby, and Pollack (1998) and Watson and
Pollack (1999) have presented another “GA-friendly”
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fitness function called H-IFF. For n = 2k we have 2m

natural blocks of length 2k−m each. The “value” of
a block is equal to its length and a block is “acti-
vated” if all bits in this block have the same value
(0 or 1). Finally, H-IFF(x) is the sum of the values
of all activated blocks. The interesting aspect of H-
IFF is that the blocks “are strongly and non-linearly
dependent on one another” (Watson (2000)). Several
aspects of this function have been investigated (Wat-
son, Hornby, and Pollack (1998), Watson and Pollack
(1999, 2000a, 2000b), Watson (2000)) where part of
the analysis is based on methods due to Wright and
Zhao (1999). These papers contain many arguments
why mutation-based evolutionary algorithms have ex-
ponential expected optimization time while genetic al-
gorithms may have polynomial expected optimization
time. However, all analytical results have been ob-
tained under some simplifying assumptions. Neverthe-
less, the discussion on H-IFF has revealed new aspects
of crossover.

The focus of our paper is another one. We are in-
terested in upper and lower bounds on the expected
optimization time which are proved without any as-
sumption. The aim is to show that genetic algorithms
have on some functions polynomial expected opti-
mization time while mutation-based evolutionary algo-
rithms need exponential expected optimization time.
The functions are defined just to have the desired prop-
erties (as it was the case with RR and H-IFF). Our
functions will not have such a clear “schema structure”
as RR and H-IFF. However, our aim is to show that we
can control for some “GA-friendly” functions all neg-
ative aspects of crossover without using an artificial
algorithm. The first paper where the use of uniform
crossover has been proved rigorously is by Jansen and
Wegener (1998). However, they have used an artificial
small crossover probability of 1/(n log3 n) in order to
control the hitchhiking effect and, for their example,
the expected optimization time for mutation-based al-
gorithms is only super-polynomial, namely of order
nlog n, and not exponential.

Since one-point crossover is the historically first
crossover operator and since one-point crossover was
assumed to be adequate for the royal road functions,
we first consider this type of crossover operator. In
Section 2, we introduce and analyze the so-called real
royal road functions for one-point crossover. In Sec-
tion 3, we do the same for uniform crossover. We finish
with some conclusions.

2 REAL ROYAL FUNCTIONS FOR
ONE-POINT CROSSOVER

Definition 1. For x ∈ {0, 1}n let |x| be the number
of ones in x, i.e., x1 + · · · + xn, and let b(x) be the
length of the longest block consisting of ones only, i.e.,
the largest l such that xi = xi+1 = · · · = xi+l−1 = 1
for some i. The real royal road functions for one-point
crossover are defined by

Rn,m(x) =




2n2 if x = (1, 1, . . . , 1)
n|x| + b(x) if |x| ≤ n − m

0 otherwise

We use the notation Rn for the special case m =
	n/3
.

The function has the property that, as long as |x| ≤
n−m, the fitness depends on the number of ones and
ones which build a block are better than ones that are
spread over the vector. The all-ones string is optimal
and is surrounded by a large valley of bad points. Also
H-IFF has the property that the second-best points are
far away from the optimal ones. However, for people
who like to see “more smooth” functions we can con-
sider such a variant of the real royal road functions Rn

where we assume for the ease of description that n is
a multiple of 6:

– If (2/3)n < |x| ≤ (5/6)n, the fitness equals
(10/3)n2 − 4|x|n + b(x) − |x|, i.e., the fitness de-
creases linearly with |x|. If b(x) = |x|, the fitness
decreases from (2/3)n2 to 0.

– If (5/6)n ≤ |x| ≤ n, the fitness equals 12|x|n −
10n2 +b(x)−|x|, i.e., the fitness increases linearly
with |x|. If b(x) = |x|, the fitness increases from 0
to 2n2.

This variant is for genetic algorithms even easier than
the original function for Rn. The lower bounds for evo-
lution strategies without crossover get a bit worse as
we show now.

An evolution strategy starts with an initial population
of polynomial size. The individuals are chosen ran-
domly and independently. The probability that such
an individual has more than (2/3)n ones is bounded
above by e−n/18 = e−Ω(n) (application of Chernoff’s
bound, see Motwani and Raghavan (1995)). Hence,
the probability of having an individual with more than
(2/3)n ones is exponentially small. If the evolutionary
strategy uses a plus-strategy, i.e., accepts only indi-
viduals which are not worse than the given ones, the
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optimal string has to be produced by mutation from
an individual with at most (2/3)n ones.

We allow all mutation probabilities where the bits
are flipped independently with the same probability
p ≤ 1/2. Then the probability for producing the all-
ones string is maximized for strings with (2/3)n ones.
The success probability equals pn/3(1 − p)2n/3 which
is maximized for p = 1/3 and therefore exponentially
small. This implies that the probability of obtaining
the optimum in polynomial time or even in time 2εn

for some small ε > 0 is exponentially small. Evolution
strategies may allow to accept individuals with more
than (2/3)n ones. Then it is the best to have a blind
search without any advice, since the optimal string
is a single peak like a needle in the haystack. The
search region contains exponentially many points and,
therefore, the search takes exponential time. For the
smooth variant of the real royal road function it may
be sufficient to obtain by mutation a point with more
than (5/6)n ones from a point with at most (2/3)n
ones. The probability for such an event is exponen-
tially small for all mutation probabilities. If we search
within the region of more than (2/3)n and less than
(5/6)n ones we even get hints to decrease the num-
ber of ones. Moreover, the fraction of strings with
at least (5/6)n ones among the set of strings with at
least (2/3)n ones is exponentially small. This implies
the following result.
Proposition 2. Evolution strategies (without
crossover) need with a probability exponentially close
to 1 exponentially many steps to optimize the real
royal road function Rn (or its smooth variant).

We now introduce the steady-state GA (genetic algo-
rithm) which we want to analyze. Steady-state GAs
are easier to analyze, since we produce only one new
individual per step. We use the parameter s(n) for the
population size, the parameter pc(n) for the probabil-
ity to apply the operator one-point crossover (the two
parents are cut after the ith position, 1 ≤ i ≤ n − 1
is chosen randomly, and the child takes the first i po-
sitions from the first parent and the last n − i posi-
tions from the second parent), and the standard choice
pm(n) = 1/n for the probability that bits are flipped
during mutation.
Algorithm 3. Steady-state GA

1.) Choose independently and randomly the s(n) in-
dividuals of the initial population.

2.) With probability pc(n) go to Step 3′ and with the
remaining probability of 1 − pc(n) go to Step 3′′.

3′.) Choose two parents x and y from the current pop-
ulation. Let z∗ be the result of one-point crossover

applied to x and y and let z be the result of mu-
tation applied to z∗.

3′′.) Choose one parent x from the current population.
Let z be the result of mutation applied to x.

4.) If the fitness of z is smaller than the fitness of the
worst individual of the current population, go to
Step 2. Otherwise, add z to the population. Let
W be the multi-set of individuals in the enlarged
population which all have the worst fitness and let
W ′ be the set of those individuals in W which have
the largest number of copies in W. Eliminate ran-
domly one element in W ′ from the current popu-
lation. Go to Step 2.

Remark. For the selection procedure in Step 3′ and
3′′ we only require that f(x) ≥ f(x′) implies that the
probability of choosing x is at least as large as the prob-
ability of choosing x′ which implies the same selection
probabilities for x and x′ if f(x) = f(x′).

Algorithm 3 has no stopping criterion, since we want
to estimate the expected optimization time. In order
to simplify the control of the well-known hitchhiking
effect we have introduced a simple and reasonable rule
to enlarge the diversity of the population. Among the
worst individuals we eliminate one with the largest
number of copies.

Theorem 4. Let pc(n) ≤ 1 − ε for some ε > 0, m ≤
	n/3
, and s(n) ≥ m + 1. Then the expected optimiza-
tion time of the steady-state GA for the real royal
road functions Rn,m is bounded above by O(n · s(n)2 ·
log s(n)+ n2 · s(n) · m + s(n)2/pc(n)). For the typical
case where pc(n) is a positive constant and s(n) ≤ n
the bound is O(n3(m + log n)).

Proof. We consider several phases of the run of the
steady-state GA. Each phase has a goal and we esti-
mate the expected time until the goal is reached.

Phase 1. The goal is that at least one individual has
at most n − m or exactly n ones.

Claim 1. The expected time for Phase 1 is bounded
by 1 + o(1).

Proof. The probability that the initial population has
not the desired property equals by Chernoff’s bounds
2−Ω(n2). The probability that mutation produces an
individual with the desired properties is much larger
than n−n and the expected waiting time for such an
event is at most nn = 2O(n log n). Including the initial
step we have to wait on average 1 + o(1) steps.
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Phase 2. Phase 1 is finished and the goal is that all
individuals have exactly n− m ones or we have found
the optimum.

Claim 2. The expected time for Phase 2 is bounded
by O(n2 · s(n)/m).

Proof. We pessimistically assume that we do not find
the optimum. Increasing the number of ones is for
Rn,m more important than to increase the length of
the largest 1-block. As long as the individuals do not
have all n − m ones, we will show that the probabil-
ity of increasing the number of ones in the population
is at least ε · m/(e · n) leading to a waiting time of
O(n/m). This implies the claim, since it is sufficient
to produce s(n)(n − m) ones. We still have to prove
the lower bound on the probability of increasing the
number of ones in the population. With probability
at least ε we only perform mutation. If we choose a
parent with less than n − m ones, there are at least
m 1-bit mutations increasing the number of ones and
each has a probability of 1

n (1 − 1
n )n−1 ≥ 1/(e · n). If

we choose a parent with exactly n−m ones, there is a
probability of (1 − 1

n )n ≥ 1/e ≥ m/(e · n) to produce
a replica which replaces an individual with less than
n − m ones.

Phase 3. Phase 2 is finished and the goal is that all
individuals x have exactly n − m ones where b(x) =
n − m or we have found the optimum.

Claim 3. The expected time for Phase 3 is bounded
by O(n · s(n)2 · log s(n)).

Proof. We pessimistically assume that we do not find
the optimum. Then only strings with exactly n − m
ones are accepted. Let b1 ≤ · · · ≤ bs(n) be the lengths
of the longest 1-blocks of the individuals. Individuals
are only replaced with individuals with the same or
a larger b-value. Hence, b1 and b1 + · · · + bs(n) are
non-decreasing with respect to time. We only consider
steps without crossover, since crossover cannot make
things worse.

If b1 = · · · = bs(n) = i, the expected time to ob-
tain an individual with a b-values larger than i is
O(n2/(n − m − i)). We may choose any individual.
The 1-block with i ones has at least one neighbored
0. There are n − m − i further ones. The 2-bit muta-
tions flipping the neighbored 0 and one of the further
n − m − i ones increase the fitness. Each 2-bit muta-
tions has a probability of ( 1

n )2(1− 1
n )n−2 ≥ 1/(e · n2).

The expected waiting time for a good 2-bit mutation
is O(n2/(n−m− i)). For each i-value we have to wait
once for such an event, 1 ≤ i ≤ n − m. Hence, the
contribution of such events altogether is O(n2 log n).

If b1 = i and j > 0 individuals have a larger b-
value, one individual with b-value i is replaced with
a better individual if we choose one of the j bet-
ter individuals and mutation flips no bit. The ex-
pected waiting time equals O(s(n)/j). For each of
the at most n − m possible i-values we have to con-
sider all values j ∈ {1, . . . , s(n) − 1} leading to the
bound O(n·s(n)2·log s(n)). Altogether, we have proved
Claim 3.

Phase 4. Phase 3 is finished and the goal is to obtain
a population of individuals containing all possible in-
dividuals x with n−m ones and b(x) = n−m at least
once or to find the optimum.

Claim 4. The expected time for Phase 4 is bounded
by O(n2 · s(n) · m).

Proof. The number of different second-best optimal
strings (i. e., strings x with |x| = n − m and b(x) =
n − m) equals m + 1, since the 1-block may start at
each of the positions 1, . . . , m + 1. Here it is essential
to have s(n) ≥ m + 1. A second-best individual is of
type j if the 1-block starts at position j. If Phase 4
has not been finished, there is some j such that the
population contains a type-j individual and no type-
(j−1) individual or no type-(j+1) individual. In both
cases the probability to choose the type-j individual
equals 1/s(n), since all individuals have the same fit-
ness. Since crossover cannot have negative effects, we
only consider steps without crossover. There is always
a 2-bit mutation changing a type-j individual into a
type-(j − 1) individual (flip the 0 at position j − 1
and the last one of the block) and also a 2-bit muta-
tion changing a type-j individual into a type-(j + 1)
individual (flip the first one of the block and the first
0 behind the 1-block). The probability of such a 2-
bit mutation is at least 1/(e · n2). In the positive case
we obtain a “new” individual with the same fitness as
all other individuals. We accept this individual and
eliminate one individual which is contained at least
twice in the population. Remember that the assump-
tion s(n) ≥ m + 1 ensures such duplicates. Hence, the
expected time to increase the number of different indi-
viduals is O(n2 · s(n)). The total expected time of this
phase is bounded by O(n2 ·s(n) ·m), since the number
of different individuals has to be increased at most m
times.

Phase 5. Phase 4 is finished and the goal is to obtain
an optimal individual.

Claim 5. The expected time for Phase 5 is bounded
by O(s(n)2/pc(n)).
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Proof. Because of the selection scheme we always have
at least one type-1 individual 1n−m0m and one type-
(m + 1) individual 0m1n−m. The probability of choos-
ing a crossover step with this pair of individuals is
at least pc(n)/s(n)2. Each crossover position p where
m ≤ p ≤ n− m leads to the child 1n. The probability
of such a position is n−2m+1

n−1 ≥ 1
3 . Moreover, the prob-

ability that mutation does not destroy 1n is at least
1/e. Altogether, the waiting time for such a good step
is O(s(n)2/pc(n)).

The theorem follows by summing up the expected
times for all phases.

We see that 1-blocks are building blocks. However,
only 1-blocks at the beginning or at the end of the
string are useful to obtain the optimum by 1-point
crossover.

We have introduced Rn,m as real royal road functions
for one-point crossover, since we obtain for m = 	n/3

a trade-off of exponential time for evolution strategies
without crossover and polynomial time for our steady-
state GA.

We also investigate the steady-state GA where one-
point crossover is replaced with uniform crossover (for
all positions i independently choose xi or yi with prob-
ability 1/2). The analysis of the first four phases can
be used without changes. The probability that uni-
form crossover creates 1n from 1n−m0m and 0m1n−m

equals 2−2m. This is polynomially bounded only if
m = O(log n). If m = �log n, we still get the bound
O(n4) for the expected optimization time (if pc(n) is
a constant and s(n) ≤ n). However, evolution strate-
gies (with a single individual) need time Θ(n�log n�) in
this situation. Hence, we obtain the same trade-off
as Jansen and Wegener (1999), but for non-artificial
values of pc(n).

3 REAL ROYAL ROAD
FUNCTIONS FOR UNIFORM
CROSSOVER

Real royal road functions for uniform crossover are
harder to design. The reason is that 1-point crossover
can only create n − 1 different children. For uniform
crossover of x and y we have two possibilities. If the
Hamming distance between x and y is small, also the
number of different possible children is small. How-
ever, in this situation also mutation can create these
children with not too small probability. If the Ham-
ming distance between x and y is large, each possible
child has a vanishing probability to be created.

In order to simplify the description we assume that n =
2m and m = 3k. The input x ∈ {0, 1}n is described as
pair x = (x′, x′′) where x′ and x′′ both have length m.
Furthermore, x′′ = (x′′

1 , x′′
2 , x′′

3 ) where x′′
1 , x′′

2 , and x′′
3

all have length k. We say that x′′ ∈ C (C is a circle) if
x′′ ∈ {0i1m−i, 1i0m−i|0 ≤ i ≤ m − 1}. The circle is a
closed path (Hamming distance 1 between neighbored
points) of length 2m = n. We say that x′′ ∈ T (T
is the target) if each of the substrings x′′

1 , x′′
2 , and x′′

3

contains �k/2 ones and 	k/2
 zeros. For strings a and
b let H(a, b) be the Hamming distance between a and
b. For a set of strings B let H(a, B) be the smallest
Hamming distance between a and some b ∈ B.
Definition 5. The real royal road functions for uni-
form crossover are defined by

R∗
n(x′, x′′) =




n − H(x′′, C) if x′ �= 0m

and x′′ �∈ C

2n − H(x′, 0m) if x′′ ∈ C

0 if x′ = 0m

and x′′ �∈ C ∪ T

3n if x′ = 0m

and x′′ ∈ T

This definition needs some explanation. With over-
whelming probability, the initial population contains
only individuals where x′ is far from 0m. Then the fit-
ness function gives advice that x′′ should be changed
into a “circle string”. This can be done efficiently with
mutations only. It is unlikely to create in this phase
a string where x′ = 0m. If x′′ ∈ C, the fitness in-
creases with decreasing distance of x′ to 0m. Then we
will have individuals where x′ = 0m and x′′ ∈ C. The
steady-state GA will ensure that the population will
contain all possible x′′ ∈ C (if the population is large
enough). However, we are far from the optimal strings
where x′ = 0m and x′′ ∈ T . Uniform crossover of
0m0i1m−i and 0m1i0m−i has a good chance to create
an optimal string and mutation only cannot do this
job efficiently.

We admit that this function is an artificial one, but
it is the first one where one can prove that uniform
crossover decreases the expected optimization time
from exponential to polynomial. As for the real royal
road functions for 1-point crossover it is possible to de-
fine a “smooth” variant of R∗

n. We omit this technical
definition.

The analysis of evolution strategies follows the lines of
the corresponding analysis in Section 2. The probabil-
ity that the initial population of polynomial size con-
tains an individual x where x′ has less than m/3 ones
is exponentially small. As long as x′ �= 0m and x′′ �∈ C
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the search on the first half, namely x′, is a search for
the needle 0m in a haystack. Hence, the probability of
finding in polynomial time a string where x′ = 0m and
x′′ �∈ C is exponentially small. Afterwards, x′′ ∈ C is
better than x′′ �∈ C with the only exception of x′ = 0m

and x′′ ∈ T . With small mutation probabilities like
1/n it is easy to find strings x where x′ = 0m and
x′′ ∈ C. With large mutation probabilities we miss
the strings where x′ = 0m. Hence, we need a muta-
tion from x where x′ = 0m and x′′ ∈ C to some y
where y′ = 0m and y′′ ∈ T . The minimal Hamming
distance between some x′′ ∈ C and some y′′ ∈ T is
Ω(n). This follows easily, since two of the three strings
x′′

1 , x′′
2 , and x′′

3 are of type 0k or 1k. Hence, we need
a mutation step where none of the first m bits flips
and a constant fraction of the last m bits flips. The
last event has an exponentially small probability if the
mutation probability decreases with n. For larger mu-
tation probabilities the first event has an exponentially
small probability. This implies the following result.

Proposition 6. Evolution strategies (without
crossover) need with a probability exponentially close
to 1 exponentially many steps to optimize the real
royal road function R∗

n (or its smooth variant).

Theorem 7. Let pc(n) be some positive constant
smaller than 1 and s(n) ≥ n. Then the expected opti-
mization time of the steady-state GA for the real royal
road function R∗

n for uniform crossover is bounded
above by O(n2 · s(n)) which is O(n3) if s(n) = O(n).

Proof. We follow the same proof strategy as in the
proof of Theorem 4.

Phase 1. The goal is that x′′ ∈ C for all individuals
x = (x′, x′′) of the population or we have found the
optimum.

Claim 1. The expected time for Phase 1 is bounded
by O(n2 · s(n)).

Proof. We pessimistically assume that we do not find
the optimum. As long as there is an individual x =
(x′, x′′) where x′ = 0m and x′′ /∈ C ∪ T (these are the
only strings with fitness 0), one of them is eliminated
with a positive constant probability. We only consider
steps without crossover. Either we choose one of the
described individuals. Then it is sufficient that at least
one of the first m = n/2 bits flips. Otherwise, it is
sufficient to construct a replica. Hence, on the average,
after O(s(n)) steps we have no individual with fitness
0.

Afterwards, we like to eliminate the individuals where
x′ �= 0m and x′′ /∈ C. The “distance” of the popula-
tion to our goal is measured as the sum of all H(x′′, C)

where x = (x′, x′′) belongs to the population, x′ �= 0m,
and x′′ /∈ C. This distance is smaller than s(n) ·m and
the goal is to decrease it to 0. Because of our selection
procedure the distance cannot increase. Therefore, it
is sufficient to consider steps without crossover. If we
select an individual x, where x′ �= 0m and x′′ /∈ C, for
mutation, there is at least one 1-bit mutation which
creates an individual z where H(z′′, C) < H(x′′, C). If
we select an individual where x′′ ∈ C, the distance of
the population decreases if mutation creates a replica.
Hence, the expected waiting time to decrease the dis-
tance is O(n) (this is the waiting time for a special
1-bit mutation). We have to wait for such an event
for at most s(n) ·m times which proves Claim 1. (The
bound of Claim 1 can be improved, since often there
are many good 1-bit mutations. However, this will not
improve the bound of the theorem.)

Phase 2. Phase 1 is finished and the goal is that x′ =
0m and x′′ ∈ C for all individuals x = (x′, x′′) of the
population or we have found the optimum.

Claim 2. The expected time for Phase 2 is bounded
by O(n2 · s(n)).

Proof. We pessimistically assume that we do not find
the optimum. Hence, we only have to consider indi-
viduals x = (x′, x′′) where x′′ ∈ C. Now the “distance”
of the population to the goal is measured as the sum
of all H(x′, 0m) where x = (x′, x′′) belongs to the pop-
ulation. The distance is at most s(n) ·m and the goal
is to decrease it to 0. The situation is similar to the
proof of Claim 1. The distance does not increase and
we consider only steps without crossover. If we select
an individual x where x′ �= 0m for mutation, there
is at least one 1-bit mutation which creates z where
H(z′, 0m) < H(x′, 0m). Otherwise, x′ = 0m. If muta-
tion creates a replica and the distance of the popula-
tion is positive, we decrease the distance. Altogether,
we have proved Claim 2 (and also the bound in Claim 2
can be improved).

Phase 3. Phase 2 is finished and the goal is to ob-
tain a population containing all possible individuals x
where x′ = 0m and x′′ ∈ C at least once or to find the
optimum.

Claim 3. The expected time for Phase 3 is bounded
by O(n2 · s(n)).

Proof. We pessimistically assume that we do not find
the optimum. Then the population only contains in-
dividuals x where x′ = 0m and x′′ ∈ C. The circle
C is a closed path where each point has two neigh-
bors with Hamming distance 1. As long as the goal is
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not reached, the population contains at least two in-
dividuals, say x = (x′, x′′) and y = (y′, y′′), such that
x′ = y′ = 0m, x′′, y′′ ∈ C, and both individuals have a
Hamming neighbor, say x̃ = (x̃′, x̃′′) and ỹ = (ỹ′, ỹ′′)
resp., such that x̃′ = ỹ′ = 0m, x̃′′, ỹ′′ ∈ C, and x̃ and ỹ
do not belong to the current population.

We define the “distance” of the current population to
the goal as the number of individuals z = (z′, z′′), z′ =
0m, and z′′ ∈ C, which are not contained in the popu-
lation. The distance is at most n−1 and the goal is to
decrease it to 0. Our selection procedure implies that
the distance cannot increase. Hence, we look for the
expected time to decrease the distance. This happens
if we choose a step without crossover, select one of the
individuals described above, and perform the “good”
1-bit mutation. Here we need the assumption that
s(n) ≥ n = |C|. Hence, the expected waiting time to
decrease the distance is bounded by O(n · s(n)) which
proves Claim 3.

Phase 4. Phase 3 is finished and the goal is to obtain
an optimal individual.

Claim 4. The expected time for Phase 4 is bounded
by O(n3/2 · s(n)).

Proof. Because of our selection procedure we always
have all individuals x = (x′, x′′), x′ = 0m, x′′ ∈ C,
in our population if we have not found the opti-
mum. Here we only consider steps with crossover. Let
x = (x′, x′′) be the first chosen parent. Then the prob-
ability of choosing y = (y′, y′′) where y′ = 0m and y′′

i =
1 − x′′

i for all i is at least 1/s(n). The reason is that y
is contained in the population and that all individuals
of the population have the same fitness and, therefore,
the same chance of being chosen. Let z̃ be the result
of uniform crossover applied to x and y. Then z̃′ = 0m

and z̃′′ is a random string, since x′′ and y′′ have dif-
ferent bits at all positions. We have z̃′′ = (z̃′′1 , z̃′′2 , z̃′′3 ).
The probability that z̃′′j , 1 ≤ j ≤ 3, contains exactly
�k/2 ones and 	k/2
 zeros is Θ(k−1/2) (the usual esti-
mate of

(
k

�k/2�
)
2−k by Stirling’s formula). Hence, the

probability that z̃′′ ∈ T is Θ(k−3/2). Finally, there
is a probability of at least 1/e that mutation does
not destroy z̃. Hence, the success probability is at
least Ω(s(n)−1 · k−3/2) = Ω(s(n)−1 · n−3/2) and the
expected waiting time for a success is bounded by
O(n3/2 · s(n)).

The theorem follows by summing up the expected
times for all phases.

4 CONCLUSIONS

We have presented for the first time functions where it
can be proved without any assumption that evolution
strategies without crossover need with overwhelming
probability exponential time to find the optimum while
a realistic steady-state GA has a polynomial expected
optimization time. One-point crossover is successful
for a function with building blocks. However, the ex-
ample function has the property that only two of the
building blocks are useful to create the optimum by
crossover. The real royal road function where uniform
crossover works has no building blocks. Here it is es-
sential that the population contains quite different in-
dividuals and that it is possible to create individuals
“in the middle of the population”.

Nevertheless, the real royal road functions are very
special. The results heer can be seen as a first step
of analyzing crossover rigorously. The next steps are
to obtain results for other fitness functions and results
about the diversity of populations. It will take many
major steps to prove rigorously that crossover is essen-
tial for typical applications.
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Abstract 

We introduce a new genetic algorithm architec-
ture based on the careful balance of exploration 
and exploitation in the solution space of a typical 
problem in optimization. In this architecture,  the 
population in each generation consists of three 
sub-populations: a preserved part, a reproduced 
part and a randomized part. Two parameters are 
introduced to control the percentage of each 
sub-population efficiently to achieve good bal-
ance between the processes of exploration and 
exploitation while doing optimization. By mod-
eling the algorithm as a homogeneous finite 
Markov chain, the new genetic algorithm is 
shown to converge towards global optimum of the 
problem at hand. Experiments are designed to test 
the algorithm using Rastrigin function, 
Griewangk function and Schaffer function. Data 
analysis using average success ratio, average ob-
jective calculating number, average first passage 
time to solution, and standard deviation of first 
passage time are made and compared with ca-
nonical genetic algorithm, elitist genetic algo-
rithm, and steady genetic algorithm. The results 
show strong evidence that our algorithm is supe-
rior in performance in terms of economy, ro-
bustness and efficiency. 

1 INTRODUCTION 
Genetic algorithms (GA) are versatile evolutionary com-
putation techniques that are largely based on the principle 
of survival of the fittest (Holland,1975). Through simple 
encoding schemes of the representation of individuals in a 
population of potential solutions, complex phenomena are 
described by their collective evolution. Without making 
assumptions on continuity, existence of derivatives, 
uni-modality and other matters, the Darwinian selection 
mechanism drives the population in a parallel manner in 
the exploration of the solution space, while the natural 
selection of fit individuals to survive and reproduce pro-
vide the necessary exploitation of the knowledge built 
from past generations (Goldberg,1989) (Pan,1998). These 
attractive features of genetic algorithms have been ex-

ploited in many applications in different areas of science 
and engineering, such as forecasting, machine learning, 
image processing, and pattern recognition (Szeto,1998)  
(Szeto,1999) (Hu,1999) (Ankerbrandt,1990).  

Conceptually, there exist two different kinds of operation 
in genetic algorithms: exploration and exploitation. The 
common genetic operators such as crossover and mutation 
are mechanisms for exploration of the solution space 
(Pan,1998). In crossover, existing genes are recombined to 
obtain chromosomes which are more fit in the immediate 
environment. In mutation, new genes are brought into the 
population to maintain the diversity of chromosomes. Both 
operators aim at exploring different regions of the solution 
space. In contrast, selection is an operator that takes an 
adequate exploitation to obtain useful information in the 
current population by guiding the algorithm towards search 
areas that are more probable to contain the global optimum. 
Exactly how useful information can be exploited by the 
selection mechanism is one of the subtle research questions, 
but the aim to get quickly to solution with high reliability is 
the common goal in application. In this point of view, it is 
easy to understand that the pivotal problem in GA is to find 
an intelligent way to coordinate exploration and exploita-
tion, without sacrificing the efficiency, while making sure 
that the method used is sufficiently general and not specific 
to a particular class of problems. We are here addressing 
this fundamental problem by formulating a new genetic 
algorithm, in a sufficiently general framework with clarity 
so that applications can be easily implemented in different 
problems. 

A prevalent method in GA is to assign survival probabili-
ties to corresponding individuals and tune the probabilities 
to obtain the balance between exploration and exploitation 
(Goldberg,1989)(Pan,1998). However, the process of se-
lecting parameters is itself subjective, in the sense that one 
should refer to the nature of the given problem and char-
acteristic features of the solution space. Indeed, experien-
tial strategies and intelligent adaptation of parameters are 
not possible or difficult to be implemented in this common 
application of GA. Adaptive schemes that adjust the prob-
abilities of crossover and mutation while running the GA 
have also been considered to address this problem 
(Srinivas,1994). Nevertheless, adjustment between ex-
ploration and exploitation in this manner is not efficient, as 
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both crossover and mutation are operators for exploration.  
On the other hand, we can also divide the population into 
sub-populations with sensible criteria and attach meaning 
to the divided population. We will address this issue later in 
the paper. For now, we should make two important ob-
servations. (1) Since the way that the population is divided 
into sub-population does not depend on the details of the 
genetic operators used in other parts of the algorithm, we 
have a general scheme in tuning the relative levels of ex-
ploration and exploitation by controlling the size of each 
sub-population. (2) Since the architecture and the selection 
strategy do not depend on the specific features of the 
problem, the encoding scheme, and various genetic op-
erators, the parameter control on the selection mechanism 
is in principle very general. These two observations sug-
gest that a simple philosophy underlying the new genetic 
algorithm is to find a general parameter control in selection 
strategies that enable efficient tuning of the importance of 
exploration and exploitation during evolution by control-
ling the sizes of the sub-populations. 

We now introduce the new genetic algorithm by outline the 
criteria and meaning in the division of populations in the 
architecture. The newly generated population consists of 
three sub-populations: a preserved part, a reproduced part 
and a randomized part. The amount of preserved indi-
viduals represents the relative importance of exploration 
and exploitation in the genetic algorithm. The amount of 
reproduced individuals stands for the effect of various 
genetic operators while the algorithm explores the solution 
space. The amount of randomized individuals adjusts the 
efficiency of exploration in a slight way, so that the di-
rected search is balanced by the injection of new indi-
viduals that can come from a region possibly far from the 
searched area. This method of control on exploration and 
exploitation leads to efficient genetic algorithms that fulfill 
optimization tasks with flexibility, robustness, and speed. 

To ensure that our new architecture of genetic algorithm 
does work generally, we must address the problem of 
convergence. Here we provide several theorems on con-
vergence that makes use of the insights in previous works 
(Rudolph,1994)(Dinabandhu,1996)(Suzuki,1995). In or-
der to address the problem that simple genetic algorithm 
cannot guarantee global convergence despite its ergodicity 
(Rudolph,1994), various elitist genetic algorithms have 
been proposed (Rudolph,1994), (Dinabandhu,1996) and 
(Suzuki,1995). To analyze their convergence properties, 
the population in each generation defines a distinct state of 
a finite Markov chain. Using the theories about finite 
Markov chains (Iosifescu,1980), we succeed in proving the 
convergence of our new genetic algorithm.  

We introduce the algorithm architecture in section 2, and 
discuss the convergence properties in section 3. In section 
4, dynamic properties of the algorithm are discussed in the 
context of several evaluation criteria. In section 5, ex-
periments designed for testing the algorithm are described 
and the results are analyzed and compared with several 
typical GAs. Finally, in section 6, conclusions are pre-
sented. 

2 ALGORITHM ARCHITECTURE 
We only discuss genetic algorithms with a fixed number N 
of individuals in population. Given an initialized popula-
tion P(0), genetic operators will be applied on it to generate 
population P(1), thereby yielding a series of populations 
P={P(0),P(1),…,P(t),P(t+1),…}. If the individual corre-
sponding to the global optimum appears in certain popu-
lation in the series, we say that the global optimum is found. 
In practice, a terminating criterion should be used to stop 
the algorithm to obtain a finite part of the infinite series, 
P(t)={P(0),P(1),…,P(t)}. The basic problem of this iter-
ating procedure is to get P(t+1), the population in time t+1, 
from P(t), the population in time t. In a GA with our ar-
chitecture, P(t+1) is constructed by three sub-populations: 
a preserved part P1(t), a reproduced part P2(t) and a random 
generated part P3(t). Corresponding parameters, r1, r2 and 
r3 are introduced to the architecture to control the amount 
of each sub-population. In each generation, individuals are 
sorted according to their fitness and some fit ones are 
copied to form P1(t). Then, certain strategy is employed to 
select some individuals out of the sorted ones. Genetic 
operators are then performed on them to generate P2(t). 
Finally, some individuals are generated randomly to form 
P3(t). Fig.1 summarizes this procedure. 

Population P(t)

(N individuals)

Generation t

(1-r1)N
individuals

(Death) N2=r2N
(Even) individuals

Crossover &
Mutation

Generation t+1
Preserved

sub-population
(N1  individuals)

Reproduced
sub-population

(N2  individuals)

Randomized
sub-population

(N3  individuals)

N3=r3N individuals
randomly generated

Sort

Se
le

ct

N1=r1N
individuals with
highest fitness

Evolution procedure from P(t) to P(t+1)

 
Fig.1: The algorithm architecture 

Parameters r1, r2 and r3 have the following meaning: 

• r1: Preservation fraction. It determines the number of 
individuals N1= r1N in P(t+1) that are directly copied 
from P(t). These individuals form P1(t). 

• r2: Reproduction fraction. It determines the number of 
individuals N2= r2N in P(t+1) that are generated by 
genetic operators. These individuals form P2(t). 

• r3: Random fraction. It determines the number of in-
dividuals N3=r3N in P(t+1) that are generated ran-
domly. These individuals form P3(t). 

Since the total number of individuals, N1+N2+N3=N, is 
fixed, r1+r2+r3=1. This means that only two parameters r1 
and r2 are independent. Note that N1=r1N>0 and N2=r2N>0 
in order to have the possibility of global convergence. Now 
the problem is to make a connection between these two 
parameters and the balance of exploration and exploitation 
by controlling the sizes of these sub-populations. To 
achieve this aim, we must first address two central ques-
tions concerning the operation procedures in defining the 
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architecture. (1) How do we determine the preserved indi-
viduals? (2) How do we select individuals for reproduction? 
According to analyses on existing selection strategies 
(Pan,1998), we can use the ranks of the fitness of indi-
viduals for question (1) and the roulette wheel selection 
based on ranks for question (2). We now define the pro-
cedures of evolution for our new genetic algorithm by the 
following steps: 

Step 1:  Calculate the preservation fraction r1, the re-
production fraction r2, and the random fraction 
r3. Calculate N1, N2, and N3, the amount of each 
sub-population. 

Step 2:  Sort individuals in population P(t) according to 
their fitness to form a descending series. 

Step 3:  Select anterior N1 individuals from the series to 
form the preserved population P1(t). 

Step 4:  Select N2 individuals from the series with rou-
lette wheel strategy. Perform crossover and 
mutation on them. Evaluate them to form the 
reproduced population P2(t). 

Step 5:  Generate N3 individuals randomly and evaluate 
them to form the random population P3(t). 

Step 6:  Generate the population P(t+1) by letting 
1 2 3( 1) ( ) ( ) ( )P t P t P t P t+ = ∪ ∪ . 

3 CONVERGENCE PROPERTIES 
Without loss of generality, we assume a binary encoding 
scheme in the problem of finding the maximum of a func-
tion ( )f x . Here x is defined on a discrete space that can be 
spanned by binary strings. An individual is defined as a 
string with length L over the finite set {0,1}=B . There are 
2L distinct individuals over B , forming the collection I. A 
function ( )fit i  defined on I is introduced to evaluate 
individuals and ( ) 0,fit I I> ∀ ∈ I . Let F be the collection 
that contains all the possible fitness values, i.e., 

{ : ( )F F fit I= =F , any }I ∈ I . Let b be the number of 
elements in F. Note that 2Lb ≤ . According to the fitness of 
each individual, the collection I can be divided to 
non-empty sub-sets { }iΙ , { :i I I= ∈I I  and ( ) }ifit I F= ; 
i=1,2,…,b. Apparently, i φ≠I , i=1,2,…,b, i j φ=I I∩ , 

i j∀ ≠ , and 1
b
i i= =I I∪ . We can sort the collection 

1 2{ , ,..., }bF F F=F  so that F1>F2>,…,>Fb. After this sort-
ing, we see that F1 is the global optimum fitness F* and I1 
contains all the individuals whose fitness equal to F*. 
A population P is a collection of N individuals. Let Ik 
(k=1,2,…,N) be the k-th individual in P and denote P as 
{I1,I2,…,IN}. Since individuals in the population are not 
required to be unique, we can compute the possible number 
M of distinct populations defined on the collection B  
using theorems in combinatorics and get 

2 1L N
M

N
 + −

=  
 

 

All possible populations form a collection P with M ele-
ments. A fitness-evaluating function, defined to be 
fit(P)=max{fit(I)}, I P∀ ∈ , is introduced to measure the 
maximum fitness of a given population P. Since the col-
lection of population fitness is identical with the collection 

of individual fitness, we have 1( )bF fit P F≤ ≤ , P∀ ∈ P . 
According to their fitness, P can be divided to non-empty 
sub-sets { }iP , with iP  being itself a collection of popula-
tion: { :i P P= ∈P P  and ( ) }ifit P F= , i=1,2,…,b. Note 
that i φ≠P , i=1,2,…,b; i j φ=P P∩ , i j∀ ≠ ; 1

b
i i= =P P∪ ; 

and P1 contains all those populations with fitness F*. Let 
ip  be the number of elements in iP . (Note 

1

b
ii

p M
=

=∑ ). 
Let ijP  be the j-th element in set iP , j=1,2,…,pi, i=1,2,…,b. 
With the operation of genetic operators, the population ijP  
may directly transit to population klP  and we denote this 
state transition by ij klP P→ , with transition probability 

,Pr( )ij kl ij klP P p→ = . Similarly we can define the transition 
directly from the population ijP  to any population in col-
lection kP , and denote this population transition by 

ij kP → P , with transition probability ,Pr( )ij k ij kP p→ =P . 
Finally, the transition directly from the collection iP  to the 
collection kP  is denoted by i k→P P  with transition 
probability ,Pr( )i k i kp→ =P P . Note that we have the fol-
lowing general results on transition probabilities: 

, ,1
kp

ij k ij kll
p p

=
=∑ , ,1

1b
ij kk

p
=

=∑  and , ,i k ij kp p≥  
Here j=1,2,…,pi, i=1,2,…,b; l=1,2,…,pk, and k=1,2,…,b.  
With these definitions, we now define global convergence 
and prove that genetic algorithms with our architecture 
converge to the global optimum. 
Definition 1: Let P(n) be the population in the n-th gen-
eration of a given genetic algorithm and F* the global 
optimum fitness. We say that the algorithm has the prop-
erty of global convergence when 

*lim Pr{ [ ( )] } 1
n

fit P n F
→∞

= =  (1) 
Since F*=F1, global convergence also means 

1lim Pr{ ( ) } 1
n

P n
→∞

∈ =P  (2) 

 
Lemma 1 (Iosifescu,1980): Let P be an n n×  reducible 
stochastic matrix, that is, it can be brought into 

 
=  
 

C 0
P

R T
 

by applying the same permutations to rows and columns. 
Here C is an m m×  primitive stochastic matrix and 

, ≠R T 0 . Then 

1

0

lim lim
k

k
k i k i kk k
i

∞
∞

− ∞−→∞ →∞
=

   
 = = =      ∑

C 0 C 0
P P

R 0T RC T
 

is a stable stochastic matrix with '∞ ∞= ⋅P e p , where 
(1,1, ,1)=e " , 0 0lim k

k

∞ ∞

→∞
= ⋅ = ⋅p p P p P  is unique regard-

less of the initial distribution p0, and ∞p  satisfies: 0ip∞ >  
for 1 i m≤ ≤  and 0ip∞ =  for m i n< ≤ . 
Theorem 1: For a genetic algorithm with the basic archi-
tecture with 1 1 0N r N= ⋅ >  and 2 2 0N r N= ⋅ > , we have 
for all  j=1,2,…,pi,  i=1,2,…,b, and  k=1,2,…,b, 

,

0,
         

0,ij k

k i
p

k i
> ≤

 = >
 

Proof: Follow the method of Dinbandhu et al 
(Dinabandhu,1996) pp 739. ■ 
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Theorem 2: For a genetic algorithm with our architecture 
with 1 1 0N r N= ⋅ >  and 2 2 0N r N= ⋅ > , we have for all 
i=1,2,…,b, and  k=1,2,…,b, 

,

0,
         

0,i k

k i
p

k i
> ≤

 = >
 

Proof: Theorem 2 can be obtained from Theorem 1. Note 
that , ,i k ij kp p≥ , 1,2,..., ij p= , 1,2,...,i b= , 1,2,...,k b= .  ■ 
Theorem 1 tells us that a population may transit to another 
one with equal or higher fitness but cannot transit to a 
population with lower fitness, while theorem 2 tells us that 
when the population of an algorithm belongs to a collec-
tion of populations with certain fitness, it can transit to a 
collection of populations with equal or higher fitness. Note 
that we do not have the reverse result. 

Theorem 3: A genetic algorithm with our architecture can 
guarantee the convergence to the global optimum. 
Proof: We prove this by showing that (2) in our definition 
of global convergence can be satisfied by our new genetic 
algorithm. First note that each Pi, i=1,2,…,b can be treated 
as a state in a homogenous finite Markov chain. Let iη  be 
the probability that the algorithm stays in Pi. Note that 

0iη >  for i=1,2,…,b and 
1

1b
ii

η
=

=∑ . Since the transition 
probability ,i kp  from a state iP  to another state kP  satis-
fies , 0i kp > , i k∀ ≥  and , 0i kp = , i k∀ < . The transition 
matrix of this finite Markov chain is therefore given by 

1,1

2,1 2,2

3,1 3,2 3,3

,1 ,2 ,3 ,

0 0 0
0 0

0

b b b b b

p
p p
p p p

p p p p

 
 
    = =     
 
 
 

C 0
P

R T

"
"
"

# # # % #
"

 

Apparently, 1,1 1 0p= = >C , 2,1 3,1 ,1( , , , ) 0bp p p ′= >R " , 
and 0≠T . From Lemma 1, we have 

1

0

lim lim
k

k
k i k i kk k
i

∞
∞

− ∞−→∞ →∞
=

   
 = = =      ∑

C 0 C 0
P P

R 0T RC T
 

Here, 1∞ =C and (1,1, ,1)∞ ′=R " . We now obtain the 
stable stochastic matrix ∞P  as 

1 0 0
1 0 0

1 0 0

∞

 
 
 =
 
  
 

P

"
"

# # % #
"

 

This means that population will eventually fall into the 
collection with the highest fitness. Thus, (2) in the defini-
tion of global convergence is satisfied. ■ 

4 DYNAMIC PROPERTIES OF THE 
ALGORITHM 

Before we analyze experiment data and compare with 
other architectures of GA, we should first address the dy-
namic properties of algorithms with the architecture. We 

first define the various genetic operators and criteria for 
evaluating the performance of a given algorithm. 

4.1 IMPLEMENTATION AND EVALUATION 

Encoding Scheme: Although binary encoding scheme is 
widely used, we will encode individuals as vectors of real 
numbers when optimizing continuous functions to avoid 
the cost of converting binary strings to real numbers, 
without damaging the convergence properties discussed in 
the last section. An individual is encoded as an 
n-dimensional vector v=(v1,v2,…,vn), 0 1iv≤ ≤ , i=1,2,…,n. 

iv  can be transformed when calculating the objective. 
Crossover Operator: Given vectors, 1 2( , , , )nx x x=x "  
and 1 2( , , , )ny y y=y " , representing two individuals. 
Their offspring can be obtained by the crossover operator 

(1 )a a′ = ⋅ + − ⋅x x y  
(1 )a a′ = ⋅ + − ⋅y y x  

0 1a≤ ≤  is a random number from a uniform distribution. 

Mutation Operator: Given individual, 1 2( , , , )nx x x=x " . 
Select ix , i=1,2,…,n with probability 1/n  for mutation. If 

kx is chosen, we set 0.1k kx x δ′ = + ⋅ , with 1 1δ− ≤ ≤  is a 
random number from a uniform distribution. If 1kx′ > , let 

1kx′ = ; if 0kx′ < , let 0kx′ = . Then, kx′  replaces kx  in x . 
We now define  

1 1N N rα = =  (3) 

2 2 3 2 2 3( ) ( )N N N r r rβ = + = +  (4) 

Note that 0 1α≤ ≤  and 0 1β≤ ≤ . We interpret α  as a 
measure of the relative importance of the exploitation 
operation and the exploration operation, while β  repre-
sents the relative importance of the genetic operators and 
the random operators. Clearly, we can deduce r1, r2, r3 from 
α  and β  

1r α=  (5) 

2 (1 )r α β= − ⋅  (6) 

3 (1 ) (1 )r α β= − ⋅ −  (7) 

Evaluating Criteria: Statistical measurements are used to 
evaluate our algorithms, such as the average success ratio 
RAS, the average objective calculating number CAVE, the 
first passage time TAFP, and the standard deviation of the 
first passage time DAFP. We first give some definitions. 
Definition 2: An experiment is a run of a certain algorithm 
with the limitation of the maximum iteration number Nmax. 
In the n-th iteration of an experiment for some finite posi-
tive n, if 

* * *

*

| |  ; 0
| |   ; 0

n
Best
n

Best

F F F F
F F

ε
ε

 − < ⋅ ≠
 < =

 (8) 

then, the experiment succeeds, otherwise, fails. Note that 
F* represents the global optimum, n

BestF  is the optimum in 
the n-th generation. For a successful experiment, the first 
passage time, TFP, is the minimum n that satisfies (8). 
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Definition 3: Let C be the number of times that the ob-
jective is calculated in a successful experiment. The av-
erage objective calculating number, CAVE, is the 
arithmetical average of C over several experiments. 
Definition 4: Given MS successful experiments out of M 
trials, the average success ratio is AS SR M M= . Note that 
RAS is an estimate of PS, the probability of the algorithm 
finding the global optimum within a certain time limit. 
Definition 5: Given MS successful experiments out of M 
trials, the average first passage time, TAFP, is defined as the 
arithmetical average of the first passage time over suc-
cessful experiments 

1

1 SM
i

AFP FP
iS

T T
M =

= ∑  (9) 

The standard deviation DAFP of the TAFP is defined as: 

2

1

1 ( )
SM

i
AFP FP AFP

iS

D T T
M =

= −∑  (10) 

4.2 SUCCESS RATIO VERSUS ( , )α β  

To test the performance of algorithms with our architecture 
and further study their dynamic properties, we use the 
Rastrigin function (Muhlenbein,1991) defined by 

2

1
( ) ( cos(2 ))

n

i i
i

R x nA x A xπ
=

= + −∑  

with [ 5.12,5.12]ix ∈ − , i=1,2,…,n. A is a constant. R(x) is a 
multi-modal function with the global minimum 0 when 
xi=0, i=1,2,…,n and approximately 10n local minima in the 
range S={ [ 5.12,5.12]ix ∈ − , i=1,2,…,n}. We use A=1.0, 
n=20, 0.01ε = , and Nmax=1000 and look for the depend-
ence of RAS on α  and β . We change α  and β  from 0 to 
1 in step of 0.05. We run 1000 independent experiments 
with each parameter combination. Fig.2 shows the relation 
of RAS versus α  and β , where we can define approxi-
mately three regions in ( , )α β according to RAS,  

• The Fail Area: RAS=0. 
• The Success Area: RAS=1. 
• The Partial Success Area: 0< RAS <1. 

We may further draw the following conclusions: 
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Fig.2: RAS versus ( , )α β  

1. Our algorithm is safe and robust. A safe algorithm 
refers to high average success ratio, which means that 
the global optimum can be found with a fairly high 
probability. If we find high average success ratio in a 
wide range of ( , )α β , then the algorithm is robust as 
one can choose many combinations of parameters and 
still run a successful experiment. Fig.2 shows that the 
algorithm has a large success area and is safe and ro-
bust. 

2. Several failing areas appear when (i) 0α =  with any 
β ; (ii) 1α =  with any β ; (iii) 0β =  with any α . 
Case (i) is similar to population non-overlapped sim-
ple GA. Since 0α = , no optimum individual ever 
found is retained in the course of evolution. The al-
gorithm cannot guarantee the global convergence al-
though it has ergodic property (Rudolph,1994). In 
case (ii), since no genetic operation is performed at all, 
the algorithm cannot explore any new area in the so-
lution space, the population will remain unchanged 
and there is no evolution. In (iii), the algorithm de-
pends entirely on the random generated individuals to 
do exploration. The lack of orienting mechanism re-
sults in poor performance, and (iii) is equivalent to 
random search. 

We next introduce the average success area fraction.  
Definition 6: Among Q trial values of β that have been 
tested for a givenα , we denote by ( )SAQ α  the number of 
trials that yield average success ratio of 1. The average 
success area fraction under this α  is defined as 

( )ASA SAR Q Qα = , which is shown in Fig.3. 
There are four segments in this curve in Fig.3: 

• The Zero segment: 0α =  and 0.95α ≥ . Here RASA=0, 
implying that the global optimum cannot be found 
without reference to β . 

• The Ascending segment: 0 0.05α< < . RASA increase 
rapidly with the increment of α . 

• The Flat segment: 0.05 0.4α≤ ≤ . RASA remains ap-
proximately unchanged without reference to α . 

• The Descending segment: 0.4 0.95α< < . RASA de-
crease slowly with the decrement of α . 

To achieve high performance safely and robustly, we see 
that α  in the range (0.05 0.5)α≤ ≤  will be good. 
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Fig. 3: RASA versus corresponding α  
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Fig.4: AFPT ′  versus ( , )α β  

4.3 FIRST PASSAGE TIME VERSUS ( , )α β  

The average first passage time ( , )AFPT T α β=  can be 
obtained under the same condition in 4.2. We introduce 

max{ }AFP AFP AFPT T T′ = −  for presentation purpose and it is 
shown in Fig.4. Focusing on the success area, we have two 
conclusions. 

1. α  plays an important role in coordinating exploration 
and exploitation and has great effect on the overall 
performance. For small α ( 0.05α ≤ ), the algorithm 
has a surplus in exploring ability, but deficient in the 
power of exploitation. For large α ( 0.3α ≥ ), the al-
gorithm has a surplus exploiting ability, but deficient 
in the power of exploration. In either case, unsatis-
factory long average first passage times are observed.  

2. β  tunes the performance slightly. Given α , different 
β  yields different AFPT ′ , with two regimes observed: 

• The Unimodal segment: ( 0.3α < ). AFPT ′  is a sin-
gle-peak function of β  in this segment. The value 
of β  in the peak increases and the rate of change of 
the curve after the peak decreases when α  in-
creases. We can speculate from these features that 
random operation enhances exploration to the so-
lution space, thus improving the overall perform-
ance. However, when the fraction of the preserved 
individuals is increased, (i.e., increased exploitation 
decreased exploration), the contribution of the 
random operation becomes less important. 

• The Increasing segment: ( 0.3α ≥ ). AFPT ′  increases 
with increasing β and reaches the maximum at 

1.0β = . We can speculate from the features that 
here a surplus in exploiting power exists, while 
exploration is insufficient, the algorithm can boost 
up the exploration only by increasing the effect of 
genetic operators. 

4.4 STANDARD DEVIATION OF THE FIRST 
PASSAGE TIME VERSUS ( , )α β  

We can measure the standard deviation of the first passage 
time ( , )AFPD D α β= , and define as before 

max{ }AFP AFP AFPD D D′ = −  shown in Fig.5.  
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Fig.5: AFPD′  versus ( , )α β  

Again let’s focus on the successful area. First of all, Fig.5 is 
very similar to Fig.4 for AFPT ′  versus ( , )α β . For small 
α ( 0.05α ≤ ), the algorithm has a surplus in exploring 
power but deficient exploiting ability, while the contrary 
result is associated with a large α ( 0.3α ≥ ). Thus, the 
algorithm presents unsatisfactory large deviations in both 
cases. Since the existence of the deviation implies an in-
herent risk associated with the use of the algorithm, we like 
to have small DAFP for the algorithm with the same RAS and 
TAFP. Similar to AFPT ′ , AFPD′  also possesses a uni-modal 
area and an increasing area. 

4.5 CONCLUSIONS ON THE DYNAMIC 
PROPERTIES 

In sub-section 4.2 to 4.4, we have analyzed the properties 
of the average success ratio, the average first passage time 
and its standard deviation versus α  and β . We see that an 
optimum situation for a genetic algorithm with our archi-
tecture occurs when the balance of the exploration and the 
exploitation is achieved. In this situation, the algorithm 
runs in the success area of the average success ratio, and at 
the same time is located in the uni-modal area, or in the 
increasing area that is close to the uni-modal area of the 
average first passage time and its standard deviation. We 
can also speculate that our genetic algorithms will perform 
best when the exploration and the exploitation are coor-
dinated, so that the majority of genetic operations should 
be maintained and properly used, while attentions to the 
random operations can also contribute. Based on these 
analyses, we expect that the area with 0.05 0.5α≤ ≤  and 
0.5 1.0β≤ ≤  is the region in the parameter space that 
yields better performance as the exploration and the ex-
ploitation can be well balanced. 

5 EXPERIMENTS AND RESULTS 
We compare the performance of some typical genetic al-
gorithms with our new algorithms (For brief, acronym 
NGA is used for GAs with our architecture). These algo-
rithms include the canonical genetic algorithm (CGA), the 
elitist genetic algorithm (EGA) and the steady genetic 
algorithm(SGA) (Holland,1975), (Goldberg,1989) and 
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(Pan,1998). Testing functions include Rastrigin function 
(Muhlenbein,1991), Griewangk function 
(Griewangk,1981), and Schaffer function (Schaffer,1989).  
Canonical Genetic Algorithms: Simple GA with 
non-overlapped population over generations. In each gen-
eration, certain reproduction scheme is adopted and N 
individuals are selected from P(t) and crossover and mu-
tation are then performed on them to generate the popula-
tion P(t+1). Finally, P(t+1) replaces P(t) entirely. 
Elitist Genetic Algorithms: A variable E is used to store 
the best individual ever found thus far. After the population 
P(t+1) is generated by performing the same operations as 
those in the canonical genetic algorithm, compare E with B, 
the best individual in P(t+1). If E is better, choose one 
individual randomly from P(t+1) and replace it with E, 
otherwise update E with B.  
Steady Genetic Algorithms: After a new population Q(t) 
is generated by performing the same operations as those in 
the canonical genetic algorithm, select N individuals from 
the population that consists of P(t) and Q(t) to form the 
population P(t+1). Here, N best individuals is selected out 
of 2N individuals in P(t) and Q(t) to form P(t+1). 
Rastrigin Function: As is described in 4.2. 
Griewangk Function: It is defined as, 

2

1 1

1( ) cos( ) 1
4000

nn
i

i
i i

xG x x
i= =

= ⋅ − +∑ ∏  

Where, 600 600ix− ≤ ≤ . The global minimum of this 
function is xi=0,  i=1,2,…, n,  while its local minima are 

ix k iπ≈ ± ⋅ ⋅ , i=1,2,…, n. 
Schaffer Function: It is defined as, 

2 2 2
1 2

2 2 2
1 2

sin 0.5
( ) 0.5

[1 0.001 ( )]
x x

S x
x x

+ −
= −

+ ⋅ +
 

with 1,2100 100x− ≤ ≤ . Its global maximum is (0,0), while 
there exist uncountable local maximum within a distance 
π  apart from the global maximum. The feature of rapidly 
varying multi-modal with global optimum surrounded by 
local ones makes it difficult to locate the global maximum. 
For all algorithms, we set N=100, Pc=1.0, Pm=0.8, and 
Nmax=10000. For NGA, α =0.25 and β =0.95 and run each 
algorithm 10000 times over each function to get statistics 
such as the average success ration RAS, the average objec-
tive calculating number CAVE, the average first passage 
time TAFP and its standard deviation DAFP. All these statis-
tics are listed in Tab.1~3. These statistics manifest a large 
variety of behavior due to the diversity of the solution 
spaces of these functions. Nevertheless, we may draw the 
following conclusions.  

1. The canonical genetic algorithm substitutes the whole 
population with newly generated individuals in each 
generation, causing probably the lost of some existing 
excellent genes. Since the operation of crossover and 
mutation may damage some excellent individuals and 
generate some bad ones, it is hard for the algorithm to 
find the global optimum. 

2. The elitist genetic algorithm has the property of global 
convergence (Rudolph,1994). However, it suffers 
from a deficiency of the exploring ability. The algo-
rithm needs a very long period to converge to the 
global optimum, causing an unacceptably large aver-
age first passage time. 

3. The steady genetic algorithm adopts a simple trade-off 
between exploration and exploitation, thus achieving 
generally good results. Nevertheless, since the 
trade-off pays no attention to the coordination be-
tween the exploration and the exploitation to the so-
lution space, the average success ratio is low while the 
average first passage time is long when the algorithm 
optimizes some complex functions such as the 
Griewangk and the Schaffer function. This statistics 
suggests that the steady genetic algorithm is likely to 
be trapped into local optima. 

4. The algorithm with our architecture (NGA) exhibits 
excellent performances when optimizing these func-
tions. The introduction of controlling parameters al-
lows a better balance between exploration to the 
problem’s solution space and the exploitation of better 
solutions, thus getting excellent results.  

5. In CGA, EGA and SGA, N new individuals are 
generated in each generation, thus objective value 
should be calculated N times. In contrast, in NGA, 
only (1 ) Nα− ⋅  new individuals are generated and 
evaluated in each generation. This yields considerable 
saving in computational cost and our NGA algorithms 
can perform more iteration with the same processor 
time. 

Tab.1: Rastrigin function with ε =0.0001 

Algorithm RAS TAFP DAFP CAVE 
CGA 0.00 — — — 
EGA 1.00 2205.80 325.35 220580 
SGA 1.00 753.20 193.59 75320 
NGA 1.00 296.26 37.87 22220 

Tab.2: Griewangk function with ε =0.01 

Algorithm RAS TAFP DAFP CAVE 
CGA 0.00 — — — 
EGA 0.00 — — — 
SGA 0.63 1700.58 680.72 170058 
NGA 1.00 758.20 189.35 56865 

Tab.3: Schaffer function with ε =0.0001 

Algorithm RAS TAFP DAFP CAVE 
CGA 0.00 — — — 
EGA 0.89 896.88 474.56 89688 
SGA 0.33 381.05 268.42 38105 
NGA 1.00 365.63 122.88 27423 

6 CONCLUSIONS 
We have introduced and analyzed a new genetic algorithm 
(NGA) and demonstrated with sufficient statistics over 
several well-known test functions that our algorithm is 
superior to existing ones. We also provide a theoretical 
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understanding of the good performance underlying our 
algorithms. In the NGA architecture, a preserved part, a 
reproduced part and a randomized part constitute the new 
population in each generation. The amount of individuals 
in each part is controlled by two parameters r1 and r2. In 
applying the algorithm, the preserved part contains copies 
of excellent individuals in the parent generation. Per-
forming crossover and mutation on individuals selected 
from the parent generation creates the reproduced part. The 
randomized part consists of individuals randomly gener-
ated. From the viewpoint of exploring the solution space 
and exploiting the information in past search, our attention 
to exploitation is measured by the amount of the preserved 
individuals. The attention we pay to the effect of various 
genetic operations while exploring the solution space is 
measured by the amount of the reproduced individuals. 
Finally, the attention we pay to the effect of getting trapped 
in local optima is represented by the amount of the ran-
domly generated individuals. Since we fix the scale of the 
population, only two numbers (α  and β ) or ( r1 and r2  ) 
are needed to parameterize these three portions that make 
up the entire population. 
Experiments have been designed to analyze the dynamic 
properties of algorithms with our architecture and to test 
the performance of algorithms with the architecture while 
doing optimization over complex multi-modal functions. 
Our analyses of statistics are quite extensive, including the 
average success ratio, the average first passage time and its 
standard deviation. Since parameters are introduced to 
coordinate exploration and exploitation in the solution 
space, our new algorithm is more flexible and robust than 
CGA, EGA and SGA. To summarize, our algorithm has the 
good features of economy, robustness, and efficiency. 
Economy: There are two aspects. (1) All the individuals in 
the parent population are sorted according to their fitness 
in descending order, before generating the preserved 
sub-population. The result of the sorting can be used to 
generate the parent individuals while doing crossover and 
mutation. (2) All the newly generated individuals, includ-
ing the reproduced ones and the randomly generated ones, 
will be accepted, implying that we do not waste any effort 
in their calculation of the objective.  
Robustness: There exists a large success area in our new 
genetic algorithm. This indicates that our algorithm can 
find the global optimum with a maximum probability, or in 
another word, with the minimum risk. This is a strong 
indication that our new genetic algorithm is robust.  
Efficiency: From the point of view of TAFP, the average first 
passage time, our new genetic algorithm outperforms some 
typical genetic algorithms in various experiments. This 
result is explained in the paper and we understand this 
efficiency as a manifestation of the good coordination and 
balance between exploration, exploitation, and between 
directed search and the careful avoidance of local traps. 
From the point of view of DAFP, the standard deviation of 
the average first passage time, our new genetic algorithm 
maintains a small deviation while getting satisfactory TAFP. 
This indicates little divergence while optimizing. 

Finally, adaptive features will be introduced into the new 
genetic algorithm described in this paper to achieve more 
flexibility in dealing with a much wider class of problems 
in future publication (Jiang et al, 2001). 
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This paper presents an adaptive genetic 
algorithm that learns to adjust some of its 
parameters for rapid solution based on the 
current state of the population.  The mapping 
from population states to parameter values is 
learned during a training phase that is followed 
by an execution phase during which the 
algorithm uses the learned mapping to solve the 
problem. The algorithm learns which crossover 
rate, mutation rate, and fitness scale factor 
produce the best fitness growth for the problem.  
Two variations of the method were tested on the 
DeJong problem suite, and in some cases 
produced a 66% improvement over a non-
adaptive approach. 

1 INTRODUCTION 
The parameters that control the development of a solution 
population in a genetic algorithm (GA) are the driving 
force behind the algorithm’s success or failure.  Although 
studies have discovered parameter values that produce 
rapid results on average, we hypothesize that optimum 
parameter settings vary depending upon a problem’s 
fitness landscape.  For example, a smooth, continuous, 
fitness landscape with one maximum should be easily 
solved without mutation, while a rough landscape with 
many local maxima may require high population mutation 
to explore the many maxima before the solution is found.  
If optimum parameters are dependent upon the shape of a 
fitness landscape, we conjectured that an Adaptive 
Genetic Algorithm (AGA) could investigate its solution 
space to derive optimum parameter settings while the 
population moves through the fitness landscape. Our work 
attempts to devise a method for real-time adaptation of 
GA control parameters—crossover probability, mutation 
probability, and power scaling factor—in order to 
maintain consistent positive fitness growth. 
 

If an AGA is to modify its parameters based upon the 
fitness landscape, it must have a method for estimating 
the characteristics of that landscape and how the 
population is distributed over that landscape.  This work 
uses three measures on the population to estimate the state 
of the population in a fitness landscape: 1) the rate of 
change of the maximum fitness (∆Fm), 2) the variance of 
the population’s fitness values (σ2

f), and 3) the diversity 
of its chromosomes (σ2

p).  ∆Fm was selected as a measure 
of how close the population is to local maxima, and σf 
and σp provide measures of the population’s diversity 
within the landscape.  The triple of values, (∆Fm, σf, σp), 
for a given population will be called the state vector for 
that population. The objective, then is to develop a 
mapping from state vectors to parameter values for the 
genetic algorithm. Two difficulties arise when defining a 
set of population state vectors and corresponding genetic 
parameter settings.  First, the number of values state 
vectors may have can be very large.  Second, the AGA 
must know the optimum genetic parameters for each state 
vector.   
To reduce the number of state vector values, a set of sub-
ranges are defined for each real-valued component of a 
state vector.  In this paper, three ranges: high, medium 
and low, are defined for each state vector component, and 
each range is assigned a representative value, called a 
parameter level. If the ranges and distributions of the state 
vector components are known a priori, the levels can be 
readily specified. Otherwise, random individuals can be 
generated and evaluated to determine sample values for 
each component of the state vector.  The second problem 
is to determine the correlation between state vector levels 
and optimal parameter values.  This was accomplished in 
the present work by learning during execution of the 
genetic algorithm. 

2 RELEVANT WORK 
 Many attempts have been made to identify optimum 
values for the control parameters used in genetic 
algorithms.  Initial work by DeJong suggested ideal 
values for population size and probabilities for crossover 
and mutation based on how the values performed on the 
now standard DeJong test suite (DeJong, 1975).  These 
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suggestions were more finely tuned by Grefenstette 
(Grefenstette, 1986) who employed a “meta-level genetic 
algorithm” to optimize six control parameters of another 
GA, including population size, crossover and mutation 
rates, selection and replacement strategies, and fitness 
scaling (Grefenstette, 1986). However, both of these 
findings yielded static parameter values for the entire run, 
but the optimal setting for the control parameters is likely 
to change as the run progresses.  In contrast, our AGA 
continually adjusts the parameters during runtime to 
produce the most positive growth.  
Several strategies have been developed to provide 
adaptive parameters that change during an algorithm’s 
execution.  There are two general approaches: co-
evolutionary methods that encode the parameters into the 
chromosomes and allow them to evolve with the solutions 
and learning rule methods that continually evaluate the 
performance of the operators and adjust their values 
accordingly (Tuson, 1995).  In co-evolutionary methods, 
individuals with poor operator settings are weeded out of 
the population. Bäck showed some success by encoding 
the mutation operator into the chromosome.  The 
mutation rate adapted to the theoretical optimum for the 
problem considered (Bäck, 1992).  Similar methods for 
adjusting crossover rate and point have shown limited 
performance improvements (Tuson, 1995). The AGA 
method presented here reduces overall run time required 
to find a solution by up to 66%.  
One well-known learning rule method is the adaptive 
operator fitness developed by Davis (Davis, 1989). The 
adaptive algorithm records the parent and operator for 
each offspring chromosome.  When an offspring is better 
than the current best chromosome, the operator used in its 
creation is credited in proportion to the improvement in 
fitness.  Discounted proportions of this reward are allotted 
to the operators that produced the offspring’s parents, 
grandparents, and so on.  After an interval of generations, 
the probability of an operator is recalculated based on its 
previous fitness and credits received over the most recent 
interval.  This method proved effective at enhancing 
performance of a GA on certain problems (Davis, 1989). 
Another variation of this adaptation method designed by 
Julstrom updates the probability of an operator after every 
generation (Julstrom, 1995).  Operator probabilities are 
computed entirely from the operator’s most recent 
contributions to the algorithm’s performance as measured 
by how many offspring it produced that are better than the 
population median.  This method also showed some 
improvement in solving certain problems, including the 
traveling salesman problem (Julstrom, 1995).  However, 
some suggest that the rate of adaptation of the parameters 
might not match the rate of adaptation of the population—
that it takes too much time for the most effective 
operators at a certain point to build up the fitness that 
increases their probability to the optimum level (Mitchell, 
1999). Our work attempts to eliminate the delay by tying 
parameter values to the current state of the population. 

3 DESIGN APPROACH 
We hypothesized that the performance of a genetic 
algorithm during a given generation is dependent on the 
distribution of the population in the fitness landscape and  
the values of the algorithm’s control parameters in that 
generation.  Three characteristics—the level of diversity 
among the population individuals, the diversity of their 
fitness’, and the rate of change of the fitness—seem to 
reveal important information about the state of population 
in the fitness landscape.  Based on this, the notion of a 
state vector was defined as follows: 
The three components of a population state vector, (∆Fm, 
σf, σp), are 

 ∆Fm, the fitness velocity is the rate of change of the 
best fitness over a specified number of consecutive 
generations,  
σ2

f, the fitness variance is the statistical variance of 
the fitness values of the entire population, and  
σ2

p, the population variance is a measure of 
population diversity determined by the hamming 
distances among the chromosomes of the top N 
individuals. 

Of the many control parameters used in a genetic 
algorithm, three parameters were selected here: crossover 
probability (Pc), mutation probability (Pm), and the 
power fitness scaling factor (α) used to control selection 
pressure. The values of these three parameters, 
(Pc, Pm, α) are called a control vector. 
Two mechanisms were used to represent the mapping 
between population state vectors and control parameter 
values.  One approach used a table, and the other used a 
set of rules. In each case, the ranges of the state vector 
components were partitioned into high, medium and low 
subranges in order to reduce the size of the state vector 
table to 33 = 27 entries, and the number of rules, to 27.  
The subranges ranges of state vectors were estimated by 
running a sample population for a limited number of 
generations and recording the population’s state vectors 
after each generation.  This data was sorted and 
partitioned into three subranges.  
In the table-based approach, the mapping between state 
vectors and GA control parameter values is maintained in 
a state vector table, where each entry is a control vector.  
In the rule-based approach, the control parameter values 
are quantified to high, medium and low values, resulting 
in only 27 possible control vectors.  For each of the 27 
state vectors, a rule specifies the best control vector.  An 
example rule is “if the state vector is (medium, low, high) 
then set the control vector to (medium, low, medium). 
 
In both approaches, the adaptive algorithm has a training 
phase, followed by an execution phase.  During the 
training phrase, the state table or rules are developed, and 
during the execution phase, the algorithm uses the table or 
rules to search for a solution.   A training phase consists 
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of a number of training epochs.  A training epoch 
consists of a number of generations of the genetic 
algorithm.  The execution phase simply continues the 
search without further adaptation of the table or rules.  

3.1 TABLE-BASED TRAINING 
State vector table training uses a table having an entry for 
each of the twenty-seven possible state vector 
combinations with each entry representing a control 
vector.  Each control vector was initialized to (.95, .01, 1). 
The initial crossover and mutation probabilities are the 
optimum values determined by Grefenstette’s meta-level 
GA experiments (Pc=0.95 and Pm=0.01) (Mitchell, 
1999).  The power scaling factor, α, was initialized to 1 
for no scaling.  During a table training epoch, the 
algorithm maintains two copies of the current 
population—a constant population (C) and a test 
population (T).  Initially, the constant population is 
equivalent to the test population, and the state vector is 
calculated for the common population. Population C uses 
the control vector listed in the current state vector table, 
while population T uses parameter values that have been 
randomly varied from those given in the state vector table.  
Then, each population is subjected to N generations of 
evolution. Once the two populations have evolved for N 
generations, the population with the higher average fitness 
is saved as population C and its control vector is entered 
into the state vector table. This process of evolving 
populations C and T, determining which has higher 
fitness, and updating the state vector table with new 
control vectors, is repeated for a selected number of 
training epochs. Through this procedure of modifying 
control vectors and evaluating their effectiveness, the GA 
can fine-tune the control vectors to values that will yield 
the most desirable fitness growth. 

3.2 RULE TRAINING 
Rule training uses a n expanded state vector table to 
determine the control vectors for the various population 
state vectors.  The expanded table has a set of 27 entries 
for each state vector, with each entry corresponding to a 
possible rule consequent, such as a (medium, low, 
medium) control vector.  The value of each entry is the 
probability that that consequent is optimal for that state 
vector.  Initially, all entries for a state vector are 1/33.  
During training, a control vector (rule consequent) is 
selected probabilistically from the expanded table for the 
given state vector of the population.   A training epoch is 
then run with this control vector and the probabilities of 
the entries for the state vector are adjusted based on the 
rate of change in fitness.  If the rate of change of the 
fitness increased compared to that of the immediately 
previous generation, then the entry for the last 
combination applied is increased for that state vector.  
Since some changes, such as an increase in mutation, 
might not produce immediate gains in fitness, but instead 
offer improvement over the long-term, the entry of each 
of the last few combinations applied are also increased for 

their respective state vectors. Entries of the other 
combinations for those state vectors are decreased equally 
to punish unsuccessful combinations. The sum of entries 
for a given state vector are constrained to be unity, so the 
entries may be thought of as probabilities of selecting a 
parameter combination given a population state.  Also, no 
entry in the table was permitted to fall below a specified 
minimum so each control vector has some probability of 
being selected in any generation.  At the end of the 
training period,  the rules used during the execution phase 
are formed by taking the control vector having the highest 
entry for the given state vector as the consequent of the 
rule.  

4 EXPERIMENTS AND RESULTS 
A number of preliminary experiments were run on 
convenient problems to get a sense of useful ranges for 
the number of generations per epoch and the number of 
training epochs that should be used in the training phase.  
It appeared that large numbers of epochs were beneficial, 
but that epochs should have few generations.  
Experiments were also run to determine suitable 
subranges for high, medium and low classification of the 
state vectors. 
The evaluation experiments were performed on a 450 
MHz Pentium III machine with the adaptive and non-
adaptive genetic algorithms on DeJong’s test suite 
(DeJong, 1975).  These functions are shown in Table 1. 
Three of the functions implemented represent one aspect 
of a difficult fitness landscape: the solution to DeJong’s 
second function lies on a very sharp ridgeline, the solution 
to DeJong’s third function lies at the bottom of a three 
dimensional stair-like surface, and the solution to 
DeJong’s fourth function lies at the top of a paraboloid 
whose surface is distorted by Gaussian noise.  DeJong’s 
first function is a paraboloid and is intended to be simple. 
 

Table 1.  DeJong Functions 
 

Function Mathematical Expression 

1    f1(x) = i=1to3Σxi
2 

2    f2(x) = 100(x1
2-x2)2+(1-x1)2 

3    f3(x) = i=1to5Σ[xi] 

4    f4(x) = i=1to30Σixi
4 + N(0,1) 

 

4.1 TABLE-BASED AGA EXPERIMENTS 
Using the simple AGA, we ran a series of tests on each 
function.  For each DeJong function, 51 random initial 
populations were run with both the AGA and the non-
adaptive GA.  In each pair of runs, both GA’s started with 
the same initial population, as well as the same initial 
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control parameter values: Pc=0.95 and Pm=0.01, and 
α=1.  Each run used 100 training epochs of one 
generation each.  Table 2 shows how the AGA improved 
over the non-adaptive GA, both in number of generations 
and run time required to find a solution. The second 
column of the table shows the average percentage 
reduction in the number of generations required to find a 
solution with the adaptive algorithm. For each case, the 
total number of generations was reduced by at least 50%. 
The standard deviation of the reductions are given in the 
third column.  The average time reductions with the 
adaptive algorithm are shown in column 4. Runtime 
reductions are also shown because the AGA training time 
is not reflected in the number of generations.  The average 
run times were reduced on most functions, but actually 
increased in one case. In addition to improved average run 
times and solution generations, the AGA produces more 
reliable and consistent results across all test seeds.  In all 
cases, the standard deviation of both run time and 

generations-to-solution is much smaller than in the non-
adaptive GA. The final column shows the percentage of 
the run time that was spent in the training generations.  
For most function this was relatively small, but became 
significant in Function 3. 
In Figures 1-4 below, the runtimes in seconds required for 
the non-adaptive GA to reach a solution are plotted 
against the those for the AGA.  Each point represents one 
of the 51 the initial populations used.  For Function 1 and 
2 the adaptive algorithm is clearly faster for nearly all the 
initial populations tested.  Figure 3, however, shows that 
the adaptive algorithm is as liable to be slower as it is to 
be faster on Function 3, which has the simplest fitness 
landscape.  On the fourth function, the adaptive algorithm 
is marginally faster in most cases, but is clearly faster in 
others. From these experiments, the AGA performs best 
when faced with a complex problem—this can be 
attributed to the overhead inherent to the simple training 
method. 

 
 

Table 2. Percentage Reduction in Generation and Run Time Yielded by AGA over GA 
 

Function Avg. Generations σ. of Generations Avg. Run Time σ of Run Time Training Time 
DeJong 1 76.0 67.7 56.1 45.1 11.4 
DeJong 2 81.3 81.7 66.1 69.7 9.6 
DeJong 3 63.3 54.6 -3.4 25.8 44.5 
DeJong 4 54.8 59.0 19.9 32.4 7.5 

 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 1.  Table-Based Runtimes on Function 1. 
 
 

 
  

Figure 2. Table-Based Runtimes on Function 2. 
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Figure 3. Table-Based Runtimes on Function 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Table-Based Runtimes on Function 4. 

4.2 RULE-BASED AGA EXPERIMENTS 
The quantified control parameter values used to form the 
27 control vectors were defined based on the earlier 
experimental results.  They are given in Table 3 below. 
 

Table 3.  Control Parameter Values 
 

Parameter Value Pc Pm α 
High 0.95 0.95 4 

Middle 0.50 0.50 1 
Low 0.05 0.05 0.25 

 
In the rule-based approach, a training epoch consisted of 
one generation. To begin training, each entry in the state 
table held was initialized to 0.037 (= 1/33). For each 
training epoch, the state vector was determined from the 
population and the control vector was selected 
probabilistically for the next generation. If the rate of 
change of the best fitness had increased compared to that 
of the immediately previous generation, then the entries 
for each of the last ten parameter choices were increased 
by 0.05.  Entries for the other parameter values for those 
states were decreased equally to provide this reward.  
However, no probability was decreased below 0.005.  So, 
no control vector ever evolved a probability beyond 0.87.   
At the end of training, the rules were compiled using the 
control vector with the highest probability for each state 
vector.  Once the training was complete, the algorithm 
continued executing using the learned rules. The training 
generations were included in the count of the total number 
of generations required to reach a solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 5.  Rule-Based Generations on Function 2. 

 
 

The rule-based AGA was tested extensively on only two 
of the DeJong problems, Functions 1 and 2.  Results from 
the rule-based AGA were compared with those from the 
standard non-adaptive GA, where both algorithms started 
with identical initial populations.  For each function the 
AGA was run with 250, 500, 750, and 1000 training 
epochs/generations, but 500 generations appeared to yield 
the best training, so those results are presented here.  
Since the training generations required no additional 
computation time compared to the normal generations, the 
running time is directly proportional to the number of 
generations required to reach a solution. 
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Figure 6.  Rule-Based Generations on Function 1. 
 
On Function 2, the saddle, the AGA reduced the number 
of generations required to solve the problem by 74% over 
the non-adaptive GA, that is, an average of 961 
generations compared to 3693 generations.  The run time 
reduction on this problem is slightly better than the 
reduction experienced with the table-based AGA.  The 
results of these runs are shown in Figure 5.  However, on 
Function 1, the AGA performed 85% more generations 
than the non-adaptive GA, as shown in Figure 6. On this 
problem, the AGA required an average of 9236 
generations to reach a solution, while the non-adaptive 
GA solved it in an average of only 1226 generations.  The 
rule-based approach even failed to solve the problem from 
initial populations that presented no challenge to the non-
adaptive GA.  The rule-based AGA also performed 
relatively poorly on Functions 3 and 4. 
The rule-based AGA did evolve rules for each of the 27 
states.  Some typical rules that were learned are shown in 
Table 4. Some of the rules seem to be valid, such as 
increasing the mutation rate when population variance, 
fitness variance, and fitness rate of change are all low.  
However, the rules evolved only proved effective in 
solving one of the four functions.  It fared well on the 
most difficult of the four problems, but much worse on 
the others. 
The relatively poorer performance of the rule-based 
algorithm is not altogether surprising.   Both approaches 
develop a mapping from 27 state vector ranges to 27 
control vectors.  The table-based approach allows the 
learned control vectors to be fine tuned, whereas the rule-
based approach leads to coarsely quantified values.  In 
addition, the  rule-based approach did less exploration 
than the table-based approach during training, since the 
table-based approach evolved two populations during that 
time. 

Table 4.  Example Control Parameter Rules Learned 

State Vector Control Vector 
∆Fm σ2

f σp Pc Pm α 
Low Low Low Low High Low 
Med. High Low Med. High Low 
Low High Med. Med. Med. Med. 
Low Low High High Low High 
Med. Low High Med. Low Med. 
Low High High High Low Low 
Low Low Low Low High Low 
Low Low High High Low High 

 

5 CONCLUSIONS 
The concept of a state—and its relationship to the fitness 
landscape—as applied to the population of an adaptive 
genetic algorithm, does appear related to the appropriate 
genetic control parameters needed to find a solution 
optimally.  Although our more successful training method 
was not complex, it produced significant performance 
increases over its non-adaptive cousin.  Further research 
need to be done in a method for deciding when an 
adaptive versus a non-adaptive approach should be 
applied.  That is, the algorithm need to be able to adjust 
its training plan.  Also, the poor results on some functions 
with the rule-based method needs to be diagnosing more 
accurately.  
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j¦��jz^p]�`aqiViV�^pY[Z9§&^p]X��qirlZeWp]OZe�
��T"~pTmrI�a���9¨B^kY[�©`aZ[YeT"T
Z

`atw�w]iTmt©�U`w�ª�p�p�p����}U`i{����(��ud�

«¬9®p¯w°i±�²�¯

�³]iT"c´�w^kqiµirzT·¶w�dZeYeWp]G�wTm�¸Tm]Go
^w�wjz]ih¹�[o-|iTm\1T
µGWk��T��º^p]ºZ[|iT»SU�U�)\1^przTmo"qirlT¼j¦�½�wT��[o"Y[jzµ�Tm�¾�
SU^pqiµGrlT
¶a��Z[Y-W=]G�wT��¿Tm]Go
^w�wjz]ihk�ÀW=rzrz^ycÁZ[|iTÂYeT"VwÃ
YeTm�[T"]OZeW=Z[jz^p]Ä^p_�\�^kY[T¥�[o-|iTm\�WyZeW¼Z[|GWp]Å��jz]ihkrlT
¶
��Z[Y-W=]G�iTm�ªT"]Xo
^w�wjz]ihk��o
^p]OZ-W=jz]ijl]GhÁZ[|iTÆ�[Wp\1T
]aqi\2µXTmY�^p_(µijlZe�m�Ç{?|ij¦�1W=rzrl^yc���¤g�(��Z[^È�[TmW=Y-o-|
\1^pYeT�T
É�o"jlTm]kZerltk�!f��wV�T"Yejl\1T"]OZ-�:�[|i^yc&T��Ê_ËWp��Z[T"Y
jz]ijlZ[j¦W=r���T�W=Y-o-|½µat½�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�ÌTm]Go
^w�wjz]ihk�
Ze|GW=]¼c�jlZ[|Í�[jl]GhprzT·¶a��Z[Y-W=]X�wTm�ÇhpT"]G^p\1Tm�m�»�IWyZ[TmYm�
|i^yc�T"~kT"Y��Îjl]OZ[TmYd¶w�dZeYeWp]G�Co"^p]G��Z[Y-W=jz]OZe�7T"\1TmY[hkT
Ze|GWyZÏY[T��wqGo
T!Z[|iT8T
É�o
jzT"]Xo
tÀ^=_:�[TmW=Y-o-|���{ITmo-|wÃ
]ij¦ÐOqiTm��Z[^ÑWprlrzT"~aj¦WyZ[TÈZe|iTÇo"^p]G��Z[Y-W=jz]OZe��W=YeTÌ�wj¦�dÃ
o"qG�[�[Tm���½}(�[T©^p_UWÊ�i^pqiµirzT·¶w�dZeYeWp]G�wT��ÈT"]Go"^a�ijl]ih
Wprlrz^yc����[jl\1VirzTÒjz\1VirlTm\1T"]OZeW=Z[jz^p]�^p_wZ[|iT&jl]a~pTmYe�[jz^p]
hkT"]iT"Z[j¦o©^kVXTmYeW=Z[^kYm�Ç��Tm�[qirsZ-����|G^ycÓZ[|GW=Z�|ijlhk|iT"Y
Y-WyZeTm��^p_Bjl]a~pTmYe�[jz^p]�rlT�Wp�ÏZe^�TmWpY[rzjlTmY(�wj¦�[o"^y~pTmY[t�^p_
|ijzhp|�ÔiZ[]GTm�e�&Wp]G��jz]Go
YeTmWk��T���o
^k]O~kT"YehpTm]Go
T�^p_�Z[|iT
V�^pViqGrzW=Z[jz^p]©Z[^yc?W=Y-�i��jsZ��
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�ÜZ[|iTm\1T©^p_U\:qXo-|Çc�^pYe�8jz]ÇTm~p^krlqwZejl^k]GW=YetÈo
^p\1ViqiZeWyZejl^k]
j¦��Z[|GTÊWp�G�wjsZejl^k]¼^=_Ýjz]Go
YeTmWk��T��rlTm~pT"r¦��^p_�µijl^krl^khpj¦o"Wpr�Y[T�W=rlÃ
j¦��\)jz]OZ[^¼\1^w�wT"r¦�m�,fB�iW=\1VirzTm���dZ-W=Y[Z�µGWpo-�ÍW=Z�Z[|iTÈ~pTmY[t
�iW�c�]!^p_BZ[|GT:ÔGTmrz�Þc�jsZe|Ê��^O��Tm]aµXTmY[hXß �(T"~p^krlqiZ[jz^p]!^p_B\�^w�aÃ
T"r¦��^=_U�[jz]ihprzT·¶wo
T"rzrzTm�Ì^kY[hOW=]ij¦��\��©àË��^O��Tm]Oµ�T"YehG����ápâa�=ãÝWp]G�
�8T"jz]Oµ�T"YehGß ��o
^k\1ViqwZ[TmYÒ�[jl\2qirzW=Z[jz^p]�^=_¾Wgrljz~ajl]Gh�o
T"rzr�àË�ÊTmjl]wÃ
µ�T"YehG���máO�=�kãPW=]X��o
^p]OZejl]aqiT�Ze|iYe^pqihk|1Z[^�YeTmo"T"]OZBZ[jz\1Tm�&c�jsZe|
Z[|GT�\1^w�wT"rzrljz]ihÊ^=_(µijz^prz^phkjzomW=rB\1T�o-|GW=]ij¦�[\1�2��qXo-|ÇWp�2hpTm]iT
T
�wViYeTm�e�[jl^k]�àËägTm]i]iT��wtÜWp]G�,�9�[µ�^pYe]��Ê�=�k�p�pµXãÑàå�2ß �(T"jzrlr
W=]X�¼��tkWp]��(�=�k�p�kã�àæäÝW=YehpqiViZeWi���p�p�p�Oã1W=]G�ÀZeYeWp]G�[VX^O��^k]G�
àæ`wjl\�ç^pT���W=]G�!§&^O�dZ-Wi�G�=�k�p�Oã·�
uv]ÊWÏ�[jl\1jzrzWpYU~kT"jz]��¾c&T2ViYe^pV�^k�[T2W©]iT"c�Tm]Go
^w�wjz]ih��[o-|GT"\1T
µGWk��T��È^p]8Z[|iTÏ�wT"^��wtaYejlµ�^p]aqGo"rlTmjzo1Wpo"jz�¼àæSU�U�Uã�\�^krlT�o
qirzTp�
S9�(�Ój¦�9Z[|iT�VGY[jz\�W=Yet!�dZe^pY-W=hpT�YeT"V�^k�[jsZe^pYetÏ^p_�hkT"]iT"Z[j¦o�jl]wÃ
_x^pYe\�WyZejl^k]Ìjl]½µGjl^krl^khpj¦o"W=r&o
T"rzr¦�"�!è�^O�dZ2^=_�Z[|GT�Z[jz\1Tp��T�Wpo-|

S9�(�Ó\1^przTmo"qirzT2Z-W=�kTm�9Z[|GT1_x^pYe\A^=_&Zdc&^�o"^p\1VirzT"\1T"]OZeWpY[t
��Z[Y-W=]G�i�©àxV�^przta]OqXo
rzT"^=Zejz�iTm�-ãÝc�^pqi]G�Èjz]OZ[^8W!�w^pqGµirlT©|iT"rzjl�é�
uv]ÍT"ê�T�o·Zm��Z[|ij¦��\1T�W=]G��Z[|GW=ZÏS9�(��\�^krlT�o
qirzTm�©�dZe^pYeT�Z[|GT
�eW=\1TÞVijzTmo"Tm��^=_:jz]w_x^pYe\�WyZejl^k]Zdc�jzo"Tp�Î{?|iTÞµ�T"]iT"ÔiZÏZ[|GW=Z
S9�(�»hkW=jz]G�Ò_xY[^k\ÎµXTmjl]ih��w^pqGµirlT
¶a��Z[Y-W=]G�iTm�1j¦��W�Y[T��wqGo·Zejl^k]
^=_�T"YeYe^pY-�Òjz]ÏZ[|iT���Z[^kY[T���hkT"]iT"Z[j¦oUjz]w_x^kY[\�WyZejl^k]��
��T��wqGo
jz]ih9Z[|GT�]OqG\:µ�T"Y�^=_éT"YeYe^pY-�IomW=qG�[Tm�2µatÝZ[|iTmY[\�WpraëGqGo·Ã
Z[qXWyZ[jz^p]X�Òj¦�?WÝZeWk����Ze|GWyZ?jz��]iT�o
T��[�eW=Yet�Wk�BZe|iT9Y[T���qirlZ&^p_�Z[|GT
Vi|atw��j¦o"�P^p_GZ[|GT�YeTmWprac&^kY[r¦�¾��uåZB�w^aT���]i^=Z��=jl]�hpTm]iT"Y-W=rì�yW=ViVGrlt
Z[^2o
^p\1ViqiZ[T"Y���jz\:qGrzW=Z[jz^p]G�Ò^pYBTm~p^przqwZejl^k]GW=Yet:o
^k\1ViqwZeW=Z[jz^p]��
�8TÝqG��qXW=rzrlt�]iTmTm�©Z[^1\�W=�kT9Wp]©T"ê�^kY�Z?Ze^�jz]OZ[Ye^w�wqGo
TgTmY[Ye^pY-�
W=]X�ÊY-W=]X�w^p\1]iT��[�m��{?|ij¦��c�^pqir¦�È��qGhphpT��dZgZe|GWyZ:\1^w�wTmrlrzjl]Gh
�w^kqiµirzT��dZeYeWp]G�i��jl]��[jl\2qir¦WyZ[T��©S9�(��jz��]G^=Z�qG�[T
_xqirì�
�8TÇµiqijzrlZ8W¼µijz^prz^phkjzomW=rzrltÑjl]G�[VijzY[T��Â\1^a�iT"r�^=_�WÍ�[jl]ihkrlT
¶
o
TmrlrzTm�^kY[hOW=]ij¦�[\íàËägTm]i]iT��wtp����ápákîkãÏàËägTm]i]iTm�itWp]G�Ñ�9��Ã
µ�^pYe]����p�p�k�pWkã
�©§&T"rzrÒ�[jl\2qirzW=Z[jz^p]G��c&TmY[T1T"~k^prz~pT��Ê�[^!Wp�9Ze^
ÔG]G�Êo
Tmrlr¦�(WpµirlT:Z[^©rljz~pT2jl]ÞW©��jz\:qGrzW=Z[Tm�!T"]a~ajlYe^p]i\1Tm]kZ��(�(�
WÊVGW=Y[Z�^p_�Z[|Gjz��c�^pYe�8c�T��wT"~kT"rz^pV�Tm�ÇWÊ�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�
T"]Xo
^w�wjz]ihG�8�UqGY:\1^=Zejl~yWyZejl^k]G�2c&TmY[T�T"�aVGrl^kYeW=Z[^pYetÊWp]G�Èc�T
W=jz\1Tm��Z[^�µ�Tg_ËW=jlZ[|w_xqGr�Z[^1µijz^prz^phktp�
uåZ9Z[Y-W=]G�[VijzY[T��¾�é|i^yc&Tm~pTmYm�XZ[|GW=ZUZe|ij¦�Ý�w^pqiµGrlT
¶a��Z[Y-W=]G�wT���T"]wÃ
o
^w�wjz]ihÝViYe^y~ajz�iTm�2Zdc&^Ýµ�T"]GT
ÔiZ-�Ò^pZ[|iTmY�Z[|GWp]�jl]Xo
YeTmWp�[Tm�1��ZeW=Ã
µijzrljlZdt2Z[|GW=Zm�a^=_�o
^kqiY-��Tk�=jz�Ò]i^=Z�T
�w|ijzµijlZ[Tm�1jz]�^kqiYB\1^w�wT"rPàËWp�
c�T2�w^©]i^=Z9\�^w�wTmrIY-W=]X�w^p\7Z[|GT"Ye\1Wpr�ëXqGo·ZeqGWyZejl^k]G��Ze^©Wp]Ot
��Z[Ye^p]ih��wT"hkY[TmT�ã·ï?àxjbãÒc&TU_x^pqi]X��Z[|XWyZ��w^pqiµGrlT
¶a��Z[Y-W=]G�wT��1T"]wÃ
o
^w�wjz]ihO��Wprlrz^ycÍW2µiY[^OWp�wTmY�Wp]G��_ËWk�dZeT"Y��[TmW=Y-o-|�^p_�Z[|iTgViYe^pµiÃ
rzT"\+��VXWpo
T1Ze|GW=]¥��jz]ihprzT·¶w�dZeYeWp]G�wT��ÞTm]Go
^w�wjz]ihk�2o
^k]kZ-W=jz]ijz]ih
Z[|GT:�[Wp\1TÝ]OqG\:µ�T"Y(^p_�µijsZ-�"ð�W=]G�ÌàËjljbã�W��[jz\�VGrlT�jz\1VirzT"\1T"]wÃ
ZeW=Z[jz^p]2^=_wZ[|GT�jz]a~pTmYe�[jl^k]ÝhpTm]iT
ZejzoÒ^pV�T"Y-WyZ[^kY�j¦�PVX^O�[�[jlµGrlT�c�jsZe|
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�ÝTm]Go
^w�wjz]ihO�IWp]G�ÝqG�[T&^p_iZ[|Gjz�P^pV�T"Y-WyZe^pYIjl]wÃ
o
YeTmWk��T���o"^p]a~pTmY[hkT"]Go"TB^=_wZe|iT?VX^kViqir¦WyZ[jz^p]�Z[^9|ijlhk|iT"YIÔiZe]iTm�e�"�
ñ�^yc�T"~kT"Y��mqX��jz]ihUWU�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�gT"]Xo
^w�wjz]ih(Tm~pT"]OZeqGW=rzrlt
o"WpqG�[Tm�ÒWk�i�wjlZ[jz^p]GWprXo"^p]G��Z[Y-W=jz]OZe��Ze^:T"\1TmY[hkT�µXT"Zdc&TmT"]�hkT"]iT��
^p]ÇZ[|iT���Z[Y-W=]G�i�m�È{?|iT©T"ê�T�o·Z�^=_�Ze|iTm�[T�o
^p]X�dZeYeWpjl]OZe�2j¦��Ze^
�[rl^ycÂZe|iT���T�W=Y-o-|��Ý�ÊT1�wj¦�[o"qG�e�U\1T"Z[|i^w�i�9Ze^ÏWprlrzT"~aj¦WyZ[T2Z[|GT
ViYe^pµirzT"\���omW=qG�[Tm�©µat�Z[|iTÝjz]OZ[TmYd¶w�dZeYeWp]G��o"^p]G��Z[Y-W=jz]OZe�m�
{?|iT1YeTm��Z9^p_BZ[|iT�VXW=V�T"Ygjz�9^kY[hOW=]ij¦��T��!Wp�U_x^krlrz^yc��"�:uv]8�[Tmo
Ã
Z[jz^p]Ì��Z[|iT�\1^krlT�o
qir¦W=Ygµijz^prz^phkt�^=_&\1^krlT�o
qirzTm�gjz]a~p^prz~pT��!jz]
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Z[|GT9��Z[^kYeWphpT�^p_�hpTm]iT
Zejzo(jl]w_x^kY[\�W=Z[jz^p]�j¦��jl]OZ[Ye^w�wqGo"Tm�¾����T"�aZ
Z[|GT1�i^pqiµirzT·¶w�dZeYeWp]G�wT��!T"]Xo
^w�wjz]ihÏWp]G�ÊjsZ-�g^pV�T"Y-WyZ[jz^p]Êc�jsZe|
hpTm]iT
Zejzo½^pV�T"Y-WyZ[^kYe�ÌàËjl]Xo
rzqG�wjz]ihÍjz]O~kT"Y-��jz^p]�ã�j¦�Þ�iTm�eo
Yejlµ�Tm�¾�
ni^krlrz^yc�jz]ih�Z[|Gjz��c�T�T
�iWp\�jz]iT�Z[|iT��w^pqGµirlT
¶a��Z[Y-W=]G�ÈTm]Go
^w�aÃ
jz]ih�c�jlZ[|ÊY[T���V�Tmo
Z(Z[^Ï�[o-|GT"\�WyZ-W�Y[TmViYeTm�[T"]OZ[T��¾�(nPjl]XW=rzrlt�c�T
ViYeTm�[T"]OZ�YeTm�[qirsZ-�g_x^pYÝT"�wVXTmY[jz\1T"]OZe��o"^p\1VGWpY[jz]ih���jz]ihkrlT�Wp]G�
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm��T"]Xo
^w�wjz]ihk�&W=]G�1T"�aV�T"Yejz\�Tm]OZe��Ze|GWyZ�~�WpY[t
Z[|GTÝYeW=Z[Tg^=_Pjl]a~pTmYe�[jz^p]��
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��jl^krl^khpj¦o"Wpr=o
T"rzr¦��qG�[T�Zdc�^��ajl]G�G��^=_w\�Wpo"Y[^k\1^przTmo
qGrlT�Ze^(�dZe^pYeT
hpTm]iT
ZejzoÒjl]i_x^pYe\1W=Z[jz^p]�ïISU�U�»àæ�wT"^��wtaY[jzµ�^p]aqGo
rzT"j¦oBWko
j¦�Gã�Wp]G�
���U� àËY[jzµX^k]aqGo
rzT"j¦o�Wpo"jz�Xã(àæ��rzµXTmY�Z-�ÒT"Z�W=rì�z����ápá��Oã·�PfÒWko-|�^=_
Z[|GTm�[T�VX^krlta]aqGo
rzT"^pZ[j¦�wTm�B|GW�~pT��wjlêéT"YeT"]OZBqG�[Tm��jz]�o
Tmrlr¦��c�|ij¦o-|
j¦�BYeT
ëGT�o·Z[T��1µat2o-|GWpYeWko·Z[TmY[j¦��Z[j¦o"��^=_éZe|iT"jzYÒ\1^przTmo"qir¦W=YÒ�[|GW=V�Tp�
SU^pqiµirzT·¶w�dZeYeWp]G�wT��8S9�(�Üj¦�ÝZ[|GT�V�T"Ye\1Wp]iT"]OZ2��Z[^kY[T�^=_�hpT"Ã
]iT"Z[j¦o�jl]w_x^kY[\�W=Z[jz^p]jl]ÀZe|iTÞo
Tmrlrì�ÑS9�(�<\1^krlT�o
qirzTm�1hkqijz�iT
Z[|GTÞµiqijzr¦�wjl]Gh½^=_�VGWpY�Zejzo"qir¦W=Y����U� \1^przTmo"qirzTm��µatWpo
Z[jz]ih
Wp�ÞWÇZeT"\1Vir¦WyZeTp�+`ajl]GhprzT·¶a��Z[Y-W=]X�wTm�����(� \�^krlT�o
qirzTm��^k]
Z[|GTÌ^=Z[|GT"Y�|GWp]G�»WpY[TÈqG�[Tm�»ViYejl\�WpY[jzrltÍZ[^µiqijzrz��ViYe^=ZeT"jz]
\1^przTmo"qirlT��"��µ�^=Z[|¼Wk��WÞZeT"\1Vir¦WyZeT�Z[^ÌhpqGjz�wTÏZe|iT!o
YeTmW=Z[jz^p]
^=_?ViYe^=ZeT"jz]G��àx\1T��[�[T"]ihkT"Y����U�(�-ãÝW=]X�8Wk�Ý���(� o"WyZ-W=rztw�dZ-�
àb_x^kY1T
�iW=\1VirzTp�&Y[jzµX^O��^k\1Tm�-ã·�Ç��^=Ze|À�(�(�,W=]G�¥SU�U�<W=YeT
rz^p]ih1qi]aµiY-W=]Go-|GTm�©VX^krlta\1T"Y�o-|GWpjl]X�&^p_P]aqGo"rlTm^=Zejz�wT��"�
��qXo
rzT"^=Zejz�iTº\1^krlT�o
qirzTm�Âo
^k]G�[jz��Z�^p_ÀW��¶wo"W=Yeµ�^p]A�[qihkWpY
µ�^pqi]G��Z[^�W�Vi|i^O��VG|GWyZeT(\1^przTmo"qirlT�àb_xYe^p\ºZ[|GT���XomW=YeµX^k]�^=_
Z[|GT���qihOW=Y·ãÒWp]G�ÏW:µGWk��T�àË^p]©Z[|iT�� � o"W=Yeµ�^p]Xã
���(qGo
rzT"^pZ[j¦�wTm�
W=YeT�µ�^pqi]G��Z[^phkT
Ze|iT"Y�Ze^�_x^kY[\ÎW=]����U�Í\1^przTmo"qirzT�^pYÒS9�(�
��Z[Y-W=]G�ÞµOt!W©Vi|i^O��VG|i^w�wjlT��dZeT"Ygµ�^p]G�ÊµXT"Zdc&TmT"]ÞZ[|iT� � omW=Y[Ã
µ�^p]8jl]ÞZ[|iT��[qihkWpYU^p_&^p]GT2]aqGo"rlTm^=Z[j¦�wT1W=]G�ÞZ[|GT1� � o"W=Yeµ�^p]
jz]¥Ze|iT���qGhkW=Y1^p_(Z[|GT�]iT
�aZ�]aqGo
rzT"^pZ[j¦�wTp�¼{?|iT�Vi|G^k�[Vi|GWyZeT
VGWpY�Z�^p_gZ[|iT!]aqGo"rlTm^=Zejz�wT!_x^pYe\1��VGW=Y[Z�^=_gZe|iTÞVi|G^k�[Vi|i^w�wjlÃ
Tm��Z[TmY(µ�^p]G���9{?|iT���qGhkW=Y9W=]G�!Vi|i^k�[Vi|GW=Z[TÝ_x^kY[\7Ze|iT:µGWko-�OÃ
µ�^p]iT2^=_�Z[|GT2���U�Å\1^przTmo"qirzT�^pY9SU�U� ��Z[Y-W=]G��c�|Gjlr¦�dZ9Z[|GT
µGWk��TUT"]Go"^a�iTm�ÒZ[|iT9hpTm]iT
Zejzo(jl]w_x^kY[\�W=Z[jz^p]���S9�(��\1^przTmo
qGrlT��
qG�[T�_x^pqGY&�wjlê�TmY[Tm]OZ&µGWk��T��"ïPWp�wTm]ijl]GT:àË�9ã·�ahpqGWp]ijz]iT�àæ¤Ýã
�ao"tOÃ
Z[^O��jz]iT�àå§?ã?^pY�Z[|ata\�jz]iTÏàË{�ã·�����(�Å\1^przTmo
qGrlT�����qGµG�dZejsZeqwZ[T
Z[|GTÒZe|Ota\1jz]iTÒc�jlZ[|�W=]i^pZ[|iTmYP�[jl\1jzrzWpY�µGWk��Tkï�qiY-Wpo"jlr�àË}Uã
�=S(qGT
Z[^2o
^p\1VirzT"\1Tm]kZ-W=Yet2µXWp�[T�VGW=jzYejl]ih�Wk�wT"]Gjl]iTUjz�&WyZ[Z[Y-Wpo·ZeTm��Ze^
Z[|ata\1jl]GT�àË^pYgqiY-Wpo"jlrbã(Wp]G�ÊhpqGWp]ijl]GT2j¦�gWyZ�ZeYeWko·ZeTm��Ze^�o
tOZ[^pÃ
�[jl]iTk�({?|iT�^kYe�iT"Y(^p_B�wjsêéT"YeT"]OZ9µGWp�[Tm�UW=rz^p]ih1Ze|iT:µGWko-�aµX^k]iT
j¦��W=YeµijsZeYeWpY[tk�
��]Â���U�¸\�^krlT�o
qirzTÈo
^p]X��j¦�dZ-�Ï^=_�WÀ�[jl]ihkrlTÈo-|GWpjl]�^=_:]aqwÃ
o
rzT"^pZ[j¦�wTm�»qG�[jl]Gh Ze|iTº�[qihOW=Y��é¶aS�¶w��¶OYejlµ�^k�[Tp� S(qGTÅZe^
o
^k\1VirlTm\1T"]OZeWpY[t�VXW=jzY[jz]ihÂµXT"Zdc&TmT"]ÎµGWk��T��Èjl]ÎZe|iTÍ���(�
\1^przTmo"qirlT&��|i^kY�ZIrl^wo"WprpYeT"hkjl^k]G�¾^=_i��Z[YeqGo·ZeqiYeTÒW=Yejz�[Tp�I��Wk��T���jz]
Z[|GTUo-|GWpjl]�WpY[T�W=Z�Z[Y-Wpo
Z[T���W=]G�1YeT"ViqGrz�[Tm��_xYe^p\º^p]iTUW=]i^pZ[|iTmY
o"WpqG�[jl]ih©Z[|GT�\1^krlT�o
qirzT:Ze^�Z-W=�kT2^k]ÞVGWpY�Zejzo"qirzWpYÝo
^p]i_x^pYe\1W=Ã
Z[jz^p]X�"�
���U���?Z[|GT"]��U|GWp��WÇ�iqGW=rÝ��Z[YeqGo·ZeqiY[TkïÇW=]Ñjl]w_x^kY[\�W=Z[jz^p]GWpr
Wp�[V�Tmo·Z�o"^p\1ViYejz�[jl]Gh©Ze|iT�µGWk��T��UjlZ:o
^k]OZeW=jz]G�mðIWp]G�ÈWÏ��Z[YeqGo
Ã

Z[qGYeWprÒWp�[VXT�o·Z:�wqGT1Z[^�Z[|GT1_x^pr¦�wjl]Gh�^=_�Z[|iT�\1^krlT�o
qirzTp��{?|GT
��Z[YeqGo·ZeqiYeWprXWk��V�Tmo
Z&W=rzrl^yc��Ò���(�Ñ\�^krlT�o
qirzTm�BZ[^�|XW�~pT(W�omWyZ[Ã
W=rztOZ[j¦o�ViYe^pV�T"Y[Zdtp�Âni^pY�T
�iW=\1VirzTp���[^p\1T!���(�A\1^przTmo
qGrlT��
W=YeT1W=µirzT�Z[^���VGrlj¦o
T1^=Ze|iT"Y��(�(�Î\1^przTmo"qirlT��"���(Z[|GT"YÝ���(�
\1^przTmo"qirlT��"�y�[qGo-|�Wp��Z[|iTÒYe���U�½ViYeTmo"qiY-��^kY�^=_������������! #"$�&%'�
�(�)�&�*"$+-,)�/.102�½W=YeT�W=µirzT�Ze^8�[Virzjzo"TÏ�[TmÐOqiTm]Go
T��2_xY[^k\¸Z[|iTm\2Ã
�[T"rz~pTm�BqG��jz]ih�Wg\1Tmo-|XW=]ij¦��\Îo"WprlrzTm�1�[T"rl_¦¶a�[Virzjzo"jl]ih�àì¤gW=Y-�w]iTmY
T
Z(Wpræ�z�¾�mákái��ã·�
{?|iT���Z[YeqGo·ZeqiY[TÏ^=_(Z[|iT�S9�(�,\1^przTmo"qirlTÏc?Wp�1�wT
ZeT"Ye\1jl]iT��
µat8àË�8W=Ze�[^p]!Wp]G�!§&Y[j¦o-�é���má3=�Oã·�&S9�(�Åjz�(ViYeTm�w^k\�jz]GWp]kZerlt
_x^pqG]G�Þjz]Êo"T"rzrz�9jz]ÊWÏ�w^pqGµirlT
¶a��Z[Y-W=]G�iTm��_x^kY[\���W=rlZ[|G^pqihk|ÞjlZ
T
�wj¦�dZ-�:jz]½^pZ[|iTmY�_x^pYe\��ÝZe|iY[^kqihp|G^pqwZ�Ze|iT�o
T"rzr?o
two
rzTp�Þ{?|GT
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�1_x^kY[\¿o"^p]G�[j¦�dZ-�&^p_�Zdc�^�o-|GWpjl]X�Uàæ�dZeYeWp]G�i�-ã
^=_w]aqGo"rlTm^=Z[j¦�wT���TmWko-|Ý��jz\1jlr¦W=Y�Z[^(���U���mµiqwZIqX��jz]ih�Ze|iT&�[qihkWpY
�é¶wS�¶i��¶a�iT"^��wtaY[jzµX^O��T?jz]G��Z[TmWk��^=_�YejzµX^O��Tk��{?|GTU��Z[Y-W=]G�i�&W=YeT
µ�^pqi]G��Z[^9TmWko-|Ý^=Z[|GT"YPqG��jz]ihgo
^k\�VGrlTm\�Tm]OZeW=Yet9µGWp�[TÒVGWpjlYejz]ih
W=]X�Þc�jz]G�8jl]OZe^�W��i^pqiµirzT1|iT"rzjl�é��f&Wpo-|ÊµGWp�[T1jl]ÌW��dZeYeWp]G�
VGWpjlY-�¾c�jlZ[|�jlZe�Po
^k\�VGrlTm\�Tm]OZeW=Yet(µXWp�[TÒWyZ�Ze|iT&�eW=\1T�V�^k�[jsZejl^k]
jz]�Z[|iT2^=Z[|GT"Y(��Z[Y-W=]G����{?|ij¦��\1T�W=]G��Z[|GW=Z(^p]iT���Z[Y-W=]X��\1W�t
µ�T©o
^k\1VirlT"Z[TmrltÌ�wT"Z[T"Ye\1jl]GTm�È_xYe^p\�Z[|iTÏ^=Ze|iT"Y��dZeYeWp]G�¼àxµat
ZeWp�ajl]ih1jlZe��o"^p\1VirzT"\1T"]OZ·ã·�
uåZ�jz�Ijl\1V�^pY[ZeWp]kZPZ[^U]i^=ZeTÒZe|GWyZIZ[|iT?�w^kqiµirzT·¶a��Z[Y-W=]X�wTm����Z[YeqGo
Ã
Z[qGY[TÊ^=_�SU�U�Aj¦��WÇo
^p\1VirzT
ZeT"rzt¼�wjsêéT"YeT"]OZ�o
^p]Xo
T"ViZ�Z[|GWp]
�wjzVirz^pj¦�wtg^pYPVX^krltaVirz^pj¦�wtp�P��^prztaVirl^kjz�itU�wT�W=r¦��c�jlZ[|:Z[|iT&]OqG\2Ã
µ�T"Y�^=_Xo"^pVijzTm�I^=_GS9�(�À\1^przTmo"qirzTm�?àx^kYPo-|iYe^p\1^O��^k\�T��eã
����T
Ã
hkWpYe�irlT��[��^p_�Ze|iT(]aqi\2µXTmYÒ^p_¾o"^pVijzTm�B^=_�o-|iYe^p\1^k�[^p\1Tm�m�=T�Wpo-|
S9�(�Ä\1^przTmo"qirzTg��Z[jzrzr�|GWp��Zdc�^��dZeYeWp]G�i�m�
S9�(�<hkqijz�iTm�1Ze|iT!o
YeTmW=Z[jz^p]À^=_Ý���(�,\1^przTmo"qirzTm��µat¥Wko·Z[Ã
jz]ih2Wk�&WÏàËo"^p\1VirzT"\1T"]OZeWpY[t1µGWk��TUVGW=jzYejl]ihaã�ZeT"\1Vir¦WyZ[Tk��{?|ijz�
ViYe^wo
Tm�e��^=_�Y[T�Wp�wjz]ih9Z[|GT�µGWp�[Tm�I_xYe^p\Å^k]iT��dZeYeWp]G�2^=_¾W9S9�(�
\1^przTmo"qirlT!àæo"WprlrzTm�4�����#%65&7��*. ,8�9.:+;%éãgj¦�:Wko"o"^p\1Virzjz�[|iTm�ÊqG�[jl]Gh
ViYe^=ZeT"jz]�W=]G�©���(�»\�Wpo-|ijz]iTmY[tk�PS9�(��j¦�&YeTmWk�1^p]irzt�jz]�Z[|GT
� � ¶! � �wjzY[T�o·Z[jz^p]�àËjlTk�=Z[|GT�� � omW=YeµX^k]:Ze^yc�WpYe�i�IZe|iT< � o"W=Yeµ�^p]
^=_&Z[|iT��wTm^��wtOYejzµX^O��T���qihOW=Y-�eã(W=]G�Þ]aqGo
rzT"^pZ[j¦�wTm�ÝWpY[T�Wp�i�wT��
Z[^�Z[|iT2hpYe^yc�jl]ih��(�(��\1^krlT�o
qirzT�^p]�Ze|iT2�=��Tm]G�¾�({?|iT���� ¶
 � �wjzY[T�o·Z[jz^p]Ì^p_(W!��Z[Y-W=]G�8j¦�:^kViVX^O��jlZ[T�Z[|GW=Z:^=_�Ze|iT�^pZ[|iTmY
��Z[Y-W=]G�9µ�Tmo"WpqG�[T�^=_aZ[|iTÒc�W�t(Z[|iTÒ��Z[Y-W=]X�i��W=rzjzhp]9Z[|iTm\���Tmrl~kTm�m�
Z[|aqG����Z[Y-W=]G�i�:W=YeT�Y[T�Wp�8jz]½^pViV�^k�[jlZ[T��wjzYeTmo·Zejl^k]G�m�!{?|ijz�:jz�
W=]Ïjz\�V�^pY[ZeWp]OZ(��qiµiZ[rzT
Zdt�Ze|GWyZ�c�Tgjl]Go"rlqX�wTÝjl]�^kqiY�\1^a�iT"rì�
S9�(�7jz��WÞ�i^pqiµirzT·¶w�dZeYeWp]G�wT��Ì\1^przTmo
qGrlT©ViY[jz\�W=YejlrztÊZ[^8Y[T"Ã
�wqGo"T�Z[|iT�]aqi\:µ�T"Y�^p_GT"YeY[^kYe��\�Wp�wT��wqiYejz]ihUYeT"VGrlj¦o"W=Z[jz^p]:Wp]G�
Z[Y-W=]X�[o"Y[jzVwZ[jz^p]��:�Î~pTmY[t�rz^yc�T"YeY[^kYUY-WyZeT2j¦�Ýo
YeqGo"jzWprI_x^kYg^pY[Ã
hkWp]ij¦��\���µ�TmomW=qG�[T�TmY[Ye^pY-�Ýrzjl\1jlZ:Z[|GT©]aqi\2µXTmY:^=_�T��[�[T"]OZejzWpr
ViYe^=ZeT"jz]G�ÝW=µirzT�Z[^�µ�T�T"]Go"^a�iTm�ÈW=]G�ÞZ[|aqG�ÝZ[|iT�o"^p\1VirzT
�wjsZdt
^=_PZ[|GTÝ^pYehkW=]Gjz�[\��
{?|iT!�w^kqiµirzT·¶w�dZeYeWp]G�wTm�¥�dZeY[qXo·Z[qGY[T�^=_ÝS9�(�,\1^przTmo"qirlT��1jz�
�[jlhk]ijsÔ�o"W=]OZ�µXT�o"W=qX��T�àxjbãBjlZ�\�Wp�pTm��S9�(�»\�^kY[TUY[^kµiqG��Z�Wp]G�
��ZeW=µGrlT�Ze|GW=]����U��ðOàxjzj¦ã�jsZ�V�T"Ye\1jsZ-�¾Ze|iTBYeT"VirzjzomWyZejl^k]U^p_wS9�(�
W=]X��Z[|iT�YeTmÐOqijzYeTm�2ViY[^a^p_xY[T�Wp�wjz]ihg\1Tmo-|GWp]ijz�[\��"ðaW=]X�ÏàËjljzjbã�jlZ
W=rzrz^yc���W1YeT"VXW=jzY�\1T�o-|GW=]ij¦�[\ÓZ[^�^kVXTmYeW=Z[T9Z[|GW=Z�qG�[Tm�?jz]kZ-Wpo
Z
��Z[Y-W=]G�i��Wp��WÞZ[T"\1Vir¦WyZeT�_x^kY:Ze|iT�o
^pYeYeTmo·Zejl^k]½^pY�YeT"VGWpjlY2^=_
Z[|GT8Wk�[�[^wo
j¦WyZ[T��¼�iW=\�WphpTm�¼��Z[Y-W=]X�¾�º{?|GTÊYeT"VGWpjlY©\1Tmo-|GW=Ã
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Reading direction

Reading direction
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nPjlhkqiYeTÑ�pï ��]ÅT"�iW=\1VirzT¥^p_�Z[|iTÀVi|atw��j¦o"Wpr2r¦W�tp^kqwZÊ^p_�W
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�8T"]Xo
^w�wjz]ihG�!{?|iTÏ�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�8T"]wÃ
o
^w�wjz]ih�o
^k]G�[jz��Ze�?^p_�W��[jl\1VirzTÝµijlZ(�dZeY[jz]ih�o"WprlrzTm�©Ze|iT$5*� +;��� �
5*�9� �#% � �Ò�Ä�[Tmo
^k]G���dZeYeWp]G�8àbZ[|GT 7-+#" ,��!�
� � 5*�9���;% � ã�j¦��omW=rlÃ
o
qGrzW=Z[Tm��_xYe^p\ÅZ[|iTU�dZe^pYeTm�1�dZeYeWp]G��µat�ZeWp�ajl]ihÝjlZe�Ò^p]iT��Bo
^k\�Ã
VirzT"\1T"]OZ��B{?|iT��dZeYeWp]G�i��WpY[T9Y[T�Wp�©jl]�^kViVX^O��jlZ[TÝ�wjzYeTmo·Zejl^k]G�m�

]ij¦��\ jz�?jz\1VX^kY�Z-W=]OZ�µXT�o"W=qX��TUZ[|i^kqG�eW=]G�i��^p_IµGWk��T���WpY[T9rz^k��Z
_xYe^p\<TmWko-|ÊS9�(�º\1^przTmo"qirlT�TmWko-|Ê�iW�tÏ_xYe^p\ �[VX^k]OZeW=]GT"^pqX�
�wT�W=\1jl]XWyZ[jz^p]�Wp]G�1�wT"ViqGY[jz]GWyZejl^k]�o"W=qX��T��2µat:Z[|iTmY[\�W=riëGqGo·Ã
Z[qXWyZ[jz^p]X�ÝàË��rzµ�T"Y[Ze��T"Z(W=rì�l����ápá��Oã·�
{?|iT���TÒZ[|iYeT"TBµ�T"]GT
ÔiZ-��_xYe^p\Â�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�w]GTm�e��W=YeTBViYejlÃ
\�W=Yejlrzt�o-|GW=Y-Wpo
Z[T"Yej¦�dZejzom��^=_�Ze|iT:VG|Otw�[jzom�(^p_�Z[|iT�YeTmW=rIc&^kY[r¦�
W=]X�!T
�wj¦�dZUZ[^ÏY[T��wqGo"T�Z[|GT2TmY[Ye^pY-��jz]ÞhpTm]iT
Zejzo2jz]w_x^pYe\�WyZ[jz^p]��
{?|iTmt��w^�]i^=Z�W=VGVXT�W=Y&Z[^1µXTgqG�[T
_xqGré_xY[^k\¿W2o"^p\1ViqwZeT"Y��eo
jlÃ
T"]Xo
T�^kYÝT"~p^krlqiZ[jz^p]GWpY[tÞo"^p\1ViqwZ-WyZejl^k]ÌVXTmYe�[VXT�o·Zejl~kT�� ^pqGY
hpTm]i^p\1T���W=YeTÊ��Z[qGYe�wt¼Wp]G�¼c�TÞ]iTmTm�Ze^¥\�W=�kTÞW=]ÑT
êé^pY[Z
Z[^�jz]OZ[Ye^w�wqGo
TÝjz]G��ZeWpµijlrzjlZdt©W=]X�©TmY[Ye^pY-�?Y-WyZ[|GT"Y?Z[|XW=]ÏZ[|iT:Y[T"Ã
~pTmYe�[Tp�

� �+Ø�Ù�� ��Ø	��¯�
���ÍØÒÚ�¬ ��������¯w°i± × Ù��IÙ
��� × Ø����

�UqiY�\1^w�wT"rI^=_�W��w^pqGµirlT
¶a��Z[Y-W=]G�iTm�©hpT"]G^p\1Tg|GWp��µ�T"Tm]�jl]wÃ
�[VijlYeTm�!_xY[^k\,Z[|iT���Z[YeqGo·ZeqiYeT2^p_ÒZ[|GT1S9�(�º\1^przTmo"qirzTp�2{?|GT
Zdc�^�\1Wpjl]½W=Z�ZeY[jzµiqwZeTm��jlZ2\1^w�wTmrz��_xY[^k\¹S9�(�ÜW=YeT!àxjbãgZ[|GT
Zdc�^�o"^p\1VirzT"\1T"]OZeWpY[t���Z[Y-W=]X�i�"ðwWp]G�ÊàËjljbã&Z[|GTU_ËWko·Z?Z[|XWyZ�Z[|GT
��Z[Y-W=]G�i��WpY[T9YeTmWp�©jz]Ï^kViV�^k�[jsZeTg�ijlYeTmo
Z[jz^p]G�m�
�8T�~ajlTmc Ze|iT�o"^p\1\1^p]irztÊqX��T��ÈµijsZ��dZeY[jz]ih�hpTm]i^p\1T1_xYe^p\
Z[|GT���jz\1VirlT(¤g�¼Wk��WÝ��jz]ihkrlT���Z[Y-W=]G�¾�p\:qGo-|1rzjl�kT?W9\1^przTmo"qirzT
^=_����U���
�À�w^pqiµGrlT
¶a��Z[Y-W=]G�wT��gT"]Go"^w�wjl]Gh:àË�[T"TÒÔGhpqiYeT(��ã¾qG�[Tm�PW(�[jz]ihprzT
µijlZ2��Z[Yejl]ihX��{?|ij¦�ÝµijlZ2�dZeY[jz]ihX��Z[TmY[\1T��ÞZe|iT 5*� +;��� � 5-�����;% � �
YeT"ViYeTm�[T"]OZe�1^k]iT�^=_gZe|iTÞ��Z[Y-W=]G�i�1^p_gZ[|iTÞS9�(� \�^krlT�o
qirzTp�
{?|iT���Z[^kY[T�����Z[Y-W=]G�©jz��Y[T�Wp��_xY[^k\¿µijlZ(�:Ze^�µijlZ����
� �[Tmo"^p]G�Ç�dZeYeWp]G�¼àËomW=rzrlT��ÈZ[|iT 7-+#" ,��!�
� � 5*�9���;% � ã�jz�:Z[|GT
^p]GTm�(o"^p\1VirzT"\1T"]OZ(^p_�Z[|iT2�dZe^pYeTm����Z[Y-W=]G�¾��{?|Gjz�U�dZeYeWp]G��jz�
YeTmWp�Ïjz]�Z[|iT:^pViV�^k�[jsZeT��wjzY[T�o·Z[jz^p]ÏZe|GW=]�Ze|iT:��Z[^pYeTm����Z[Y-W=]G���
��ZeW=Y[Z[jz]ih�WyZ�µGjsZ��¥Z[|GY[^kqihp|ÊZ[^�µijlZ:�i�©�(�gZe|iT�o
^k\1ViqwZ[T��
��Z[Y-W=]G�9j¦��o
^k\�VGrlT"Z[T"rztU�iT
Z[TmY[\1jz]iTm�9_xYe^p\ÑZ[|iT&�dZe^pYeTm�g�dZeYeWp]G�
jlZ�]iT"T��©]G^=Z�µXTÝVG|Otw�[jzomW=rzrlt©�dZe^pYeTm�¾�
{?|iT?Ze^=ZeWprwhpTm]i^p\1Tp�=Z[|iTmY[T"_x^pYeTp�pWprlrz^yc���Wpo"o"Tm�e�PZ[^9Zdc�j¦o
T?Z[|GT
]aqi\:µ�T"Y?^p_IµijlZe�&Z[|XW=]�W=YeT9Wko·Z[qXW=rzrlt���Z[^pYeTm������jlZe�?W=YeT9Y[T�Wp�
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genes and/or operons.

A bit string

is the underlying
representation for

a double-stranded encoding

and on top is encoded

nPjlhkqiYeTÄ�iï ��Tm~pT"r¦�^=_Ì��Z[YeqGo·ZeqiY[TÄc�jlZ[|Gjl]7Z[|GTÅ�w^pqGµirlT
¶
��Z[Y-W=]G�wT��ÈT"]Go"^w�wjl]GhG�!��Z:Ze|iT�rz^yc�Tm��Z�rlTm~pT"r&Z[|GT�T"]Go"^w�wjl]Gh
qG�[Tm�9W��[jl\1VirzT:µijlZÝ�dZeY[jz]ihG�UniYe^p\7Z[|ij¦�UµijsZÝ��Z[Yejl]ih�c&T2hpT"]iÃ
T"Y-WyZeT�Zdc�^:��Z[Y-W=]G�i�m�Ò�U]OZ[^ÝZe|ijz��Vi|atw�[jzomW=ré�dZe^pY-W=hpT�c�T(^y~kT"Y[Ã
r¦W�t�W:rl^khpj¦o"W=rXT"]Go"^w�wjl]Gh:qG�[jl]Gh2�[^p\1T(r¦W=]ihkqGW=hkT�^=_�hkT"]iT��Ò^kY
^pV�T"Ye^p]X�"�

��ZeW=Y[Z[jz]ih�_xYe^p\7jz]G�wT
����^p_�Z[|iT��dZe^pYeTm����Z[Y-W=]G�©Z[|GY[^kqihp|�Ze^
jz]G�wT
� ���ÒZe|iT"]¥_xY[^k\ jz]G�wT
� �Ñ^=_UZ[|iT�o"^p\1ViqwZeTm��dZeYeWp]G�
µGWko-��Z[^1jz]G�wT
���i��{?|aqG�m�GW=rzr��dZe^pYeTm�©µijlZe��WpY[T9qG�[Tm�©Zdc�jzo"Tp�
��^khpj¦o"WprwhpT"]GTm�BWpY[T�Tm]Go
^w�wT��1^p]OZ[^gZe|iT�Y-W�cÇµijlZ���Z[Y-W=]G�G��qG�dÃ
jz]ih:Wgr¦W=]ihkqGW=hkT�àË�[T"T?ÔGhkqiY[T9�pã·��{?|iT�r¦W=]GhpqGWphpT��[|i^pqir¦��qG�[T
µirz^wo-�a�I^=_�o
^p]OZejlhkqi^pqG�IµijlZe��Wp�IZe^p�pTm]G�m��uv]�Ze|iT�T
�wVXTmY[jz\1T"]OZe�
YeT"V�^pY[Z[Tm��jl]�Ze|ij¦�&VXW=V�T"Y�c&TUT"\1Virz^ytpTm��µirl^wo-�w�B^p_�_x^pqGY&µijlZe�
àx]GjlµiµGrlT��eã©W=]G�ÑWÇ��Z[Y-W=]G�rzT"]ihpZ[|Í^p_��k�k�ÌµijlZe�m�º��WpY�Zejzo"qwÃ
r¦W=Y��wT
Z-W=jzrz��^p_�Z[|iT�r¦W=]ihkqGW=hkT�qG�[Tm�ÇZ[^8T"]Xo
^w�wTÏhpT"]GTm�1W=YeT
qi]ijz\1VX^kY�Z-W=]OZ&Wp]G�1�wT"V�T"]G��o
rz^k�[T"rzt�^p]1Ze|iT�ViYe^pµirzT"\ µXTmjl]Gh
�[^prz~pTm���
ñ�^yc�T"~kT"Y��kWp]Ot�hpTm]i^p\1j¦o�r¦W=]ihkqGW=hkT�qG��T����[|i^pqir¦��\1T"T"ZÒZdc�^
o
^k]G�wjlZ[jz^p]G��_x^pY�jlZ�Z[^�µ�T�T
êéTmo
Z[jz~pTpï�àËj¦ã?Z[|iT��[T"\�W=]OZejzom��^=_�W
hpTm]iT�jz]1Z[|iT�r¦W=]ihkqGW=hkT?\:qG��ZÒ]i^pZBµXT(W9_xqG]Go·Zejl^k]�^=_éjsZ-�Brz^ao"jæð
W=]X�ÀàËjljbã9Ze|iT�rzWp]ihpqXW=hpT��[|i^pqGrz�8T"]X��qiYeT�Z[|GW=ZÝZ[|iT�hpT"]G^p\1T
o
^k]OZeW=jz]G�?]i^k]a¶ao"^w�wjl]Gh�WpY[T�Wp�m�
§&^p]X�dZeYeWpjl]OZe�!µXT"Zdc&TmT"] àæo
^p\1VirzT"\1Tm]kZ-W=Yetiã�hpTm]iTm��^k]ÄZ[|GT
��Z[^pYeTm�ÇW=]G�¥o
^p\1ViqiZ[Tm�À��Z[Y-W=]G�i��W=Yej¦��TÏ�wqiYejl]ih8T"~k^przqwZ[jz^p]��
{?|iT���TÄo
^k]G��Z[Y-W=jz]kZ-��wT"hkYeWk�wTÑZe|iTÄV�T"Y[_x^pYe\1Wp]Go
T�^=_8Z[|GT
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�ÏT"]Xo
^w�wjz]ihG�({?|GT�Zdc�^�o
^p]X�wjsZejl^k]G�(WpµX^y~kT
T"]X��qiYeT9Z[|GW=Z�Z[|iT���TÝo"^p]G��Z[Y-W=jz]OZe��W=YeT9�pT"ViZ�Z[^�W�\�jz]ijz\:qi\��
uv]»Z[|iTÌT"�aV�T"Yejz\�Tm]OZe��c�jlZ[|Ä�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�ÍTm]Go
^w�wjz]ihO�
jz]ÊZe|ij¦�gVGW=V�T"YÝc�T1qG��T��ÊWp]Ê^kVXTmY[^k]ÊT"�wViY[T��[�[jz^p]Þr¦W=]GhpqGWphpT
c�|ij¦o-|»V�T"Ye\1jsZ[Z[T��ÑYeT"hkqirzW=Z[jz^p]ÑWp]G�»T
�wViYeTm�e��jz^p]Í^p_2hkT"]iT��
àËägTm]i]iT��wtÌW=]G��9��µ�^pYe]��B�=�k�p�=µ�ã·�Ê{?|Gjz�2rzWp]ihpqXW=hpT�^aomo"W=Ã
�[jl^k]iTm�ÝW�o"^p\1VirzT
�g�wta]GW=\1j¦o�Vi|iTm]i^=ZdtaV�Tp��µiqwZIZ[|iT&\�T�o-|GW=]iÃ
j¦o"�P^=_X�i^pqiµirzT·¶w�dZeYeWp]G�wT��ÝT"]Go"^w�wjl]Ghk��W=YeTÒ]i^pZ��iT"V�T"]G�wTm]OZ�^k]
�[qGo-|�W:o"^p\1VirzT
�1rzWp]ihpqGWphpT�Wp]G��Vi|iTm]i^=ZdtaV�Tp��uåZ&j¦�&T"]OZ[jzY[Tmrlt
V�^k�e��jzµirzTUZe^2Tm\1Virl^yt�W1�[jl\1VirzT"Y?r¦W=]ihkqGW=hkT(Ze|GWyZ"!dqG��Z���V�Tmo"jsÃ
ÔGT���Z[|iTghpTm]iTm�gàËjlTk�wc�jsZe|©]i^1YeT"hkqirzW=Z[jz^p]�^kY?^pV�T"Ye^p]G�-ã�_x^kY�W
��ZeWyZejzo1àË^pY�]i^k]iT
�wj¦�dZeT"]OZ-ã�Vi|GT"]i^pZdtOV�Tp�
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fÒWko-|¿µijlZ¼jl]ÜZ[|iT�µijlZÍ�dZeY[jz]ihºY[TmViY[T���Tm]OZ[jz]ih Wº�w^pqGµirlT
¶
��Z[Y-W=]G�wT���T"]Go"^a�ijl]ihj¦��YeTmWp�»Zdc�j¦o
Tk�Ý^p]Go"TÈWk��jlZe�[T"rl_1Wp]G�
^p]Xo
T�Wk�ÝjsZ-�2o"^p\1VirzT"\1T"]OZ��!{?|iT�µijlZ2c�jzrlr&\1^k��Z:ViYe^pµGWpµirlt
|GW�~kT:W��wjlêéT"YeT"]OZU\1TmWp]ijz]ih�^p]ÞTmWpo-|Ê�dZeYeWp]G��µXT�o"WpqG��T2jsZ9jz�
YeTmWp�Êjz]ÞZe|iT�Y[Tm~pTmYe�[T2�wjzYeTmo·Zejl^k]8Wp]G�8|GWp�gW��wjlê�TmY[Tm]OZ:o
^p]iÃ
Z[T"�aZ�µ�TmomW=qG�[T�^=_(Z[|iTÏ��qiYeYe^pqi]G�ijl]ihÞµijsZ-�©àËc�|ij¦o-|¥W=YeT�Wprz�[^
o
^k\1VirlTm\1T"]OZ[T��ÏWp]G�ÏY[T�Wp�Ïjz]©Ze|iT�YeT"~kT"Y-��T�ã·�Bni^kY�T
�iW=\1VirzTp�
�[qiViV�^k�[TUZe|GWyZ�Ze|iT���Z[^pYeTm�Ï��Z[Y-W=]G�Ïo
^k]kZ-W=jz]G��Z[|GTÝµijsZ(��Z[Yejz]ih
� �k�m�G����W=]X��Ze|GWyZPZ[|ij¦��µijlZ�VGWyZ[Z[T"Ye]:YeT"VGY[T���Tm]kZ-��Ze|iT������
	���
�
���
��� Z[^p�kT"]!jz]�Ze|iT:hkT"]i^k\�j¦o�r¦W=]GhpqGWphpTp��{?|GT2�eW=\1T:µijlZe�
^p]�Ze|iT�o
^k\�VGqwZ[T�����Z[Y-W=]X��WpY[T�YeTmWp�1Wk� � �i���p����c�|ij¦o-|1\1W�t
YeT"ViYeTm�[T"]OZ�W��wjsêéT"YeT"]OZ?Z[^k�pTm]©jz]ÏZ[|iTÝr¦W=]ihkqGW=hkTp�
uåZ�j¦��VX^O�[�[jzµirlTk�aZ[|iTm]��i_x^kY�µijlZe�?_xYe^p\ Z[|iTÝY-W�cÑµijlZ(��Z[Yejl]ih�Ze^
VGWpY�Zejzo"jlVGW=Z[T�jl]8qiV8Z[^©Zdc�^©hkT"]iT��Ý��jz\:qirlZeWp]iT"^kqG�[rlt�W=]X�!Ze^
|GW�~kT�qiV�Ze^�Zdc�^��wjlê�TmY[Tm]kZ9\1TmW=]Gjl]ihO�"�(�ÊT��[W�t � , � + ����+
� ��%8�*5�µ�TmomW=qG�[T�Z[|GT�µijlZe�2\1W�tÊµXT©VGW=Y[Z�^=_�W�]G^p]a¶wo
^w�wjz]ih
YeT"hpjz^p]©^=_PZ[|iTÝhkT"]i^k\1Tp�
{?|iT�_ËWko·Z&Z[|GW=ZÒµijlZe�Ò_xY[^k\ÅZe|iT(Y-W�c¥µGjsZ?�dZeY[jz]ihÝ\�W�t2VXW=Y[Z[j¦o
jlÃ
VGW=Z[T�jz]gZdc&^�hkT"]iT��¾��jz\:qirlZeWp]iT"^kqG�[rltUjz��WprlrzqiYejl]Gh�µiqwZ�Ze|iT"YeT�jz�
W�V�^k�e��jzµirzT:�wY-W�c�µGWpo-�éï�o
^p]X�dZeYeWpjl]OZe��µXT"Zdc&TmT"]�Ze|iT2��Z[Y-W=]G�G�
W=Yej¦��T8�wqiYejl]ih¥T"~k^przqwZ[jz^p]ÑWk�©�[T"rzTmo
Z[jz^p]¼ZeY[jzTm�©]i^pZÏ^k]irltÀZe^
�[^prz~pT�Ze|iT�ViY[^kµirzT"\<V�^k�[Tm�!µGqwZgWprz�[^�Ze^�ÔX]G�ÞµGjsZÝVGW=Z�Z[TmY[]X�
Z[|XWyZ�T"]Xo
^w�wTghpTm]iTm�?^k]©µ�^=Ze|!�dZeYeWp]G�i�m�

� ��� × �¾¯iÛ�²���� ��°i±P¯aØÒ°G®��¥Ûd¯ 

¼ØÒÚ�¬ ����� �&¯w°i± × Ù���Ù�� × ²éØ�Ù(Û × �Ò®

{?|iT���ZeW=]X�iW=Y-��hkT"]iT"Z[j¦oÒ^kVXTmYeW=Z[^pY-�I^=_�o"Y[^O�[�[^y~pTmY�W=]X�:\2qwZeW=Ã
Z[jz^p]©W=YeT(�dZejlrzr¾W=ViVGrlj¦o"WpµirlT(Z[^��w^pqiµGrlT
¶a��Z[Y-W=]G�wT��1T"]Go"^w�wjl]Ghk�m�
�(�Ic�T"rzræ��Ze|iTÒZdc�^(��Z[Y-W=]G�G��jz]�Ze|iT&�w^kqiµirzT·¶w�dZeYeWp]G�wTm�gTm]Go
^w�aÃ
jz]ih�V�T"Ye\�jlZ9W���jz\1VirlT2µijz^prz^phpj¦o"Wprlrzt�VGrzWpqG��jzµirzTÝ_x^pYe\:qGrzW=Z[jz^p]
^=_PZ[|GTÝjl]a~pTmYe�[jz^p]�^kVXTmYeW=Z[^pY��
uv]½�[jl]ihkrlT
¶a��Z[Y-W=]G�iTm�!Tm]Go
^w�wjz]ihO�Ýrljz�pT1Ze|i^k�[T�^=_bZeT"]ÈqG�[Tm�Èjz]
Z[|GT½��jz\1VirlTÇ¤g�:��\:qiZeWyZejl^k]»j¦��\1^w�wT"rzrzTm�»µOtÑëGjzViVijz]ih¼W
µijlZ�YeWp]G�w^k\�rzt�c�jlZ[|Èrl^ycÅViY[^kµGW=µGjlrzjsZdtk���Î�[jl\1jzrzWpY��[o-|GT"\1T
j¦��Tm\�VGrl^ytkTm�c�jlZ[|»�i^pqiµirzT·¶w�dZeYeWp]G�wT��T"]Go"^a�ijl]ihO�"�Å�¼jsZe|
�[\1WprlréViYe^pµXW=µijzrljlZdt�W�µijsZ?^p]©Z[|GT9��Z[^kY[T�����Z[Y-W=]G��jz�&ëGjzViV�Tm�¾�
�¼|iTm]ÈZ[|ij¦�:^womo
qiY-�9Z[|iTÏo
^kY[YeTm�[VX^k]G�wjz]ih�µijlZ:^p]ÈZe|iT�o
^k\�Ã
ViqwZeTm�Í��Z[Y-W=]X�jz�ÏW=r¦��^½o-|XW=]ihkTm�¾ïÊZ[|iT8o
^k\�VGqwZ[T��Í�dZeYeWp]G�
W=rzc?W�ta�(Y[Tm\�W=jz]G�UZ[|iT�o
^k\1VirlTm\1T"]OZ9^p_BZ[|GT1��Z[^kY[T��Þ��Z[Y-W=]G���
fB~kT"YetÝ\:qwZ-WyZejl^k]�Tm~pTm]kZBW=ê�T�o·Ze�PZdc�^gµijlZe�m�k�[^UZe|iT�\:qiZeWyZejl^k]
Y-WyZ[T��[|i^kqirz�8µ�T�|GWprl~kTm�ÊZ[^Þo"^p\1V�T"]G�eWyZeTp��uv]ÈZe|iT�T"�aV�T"YejlÃ
\1T"]OZe��jl]ÏZ[|Gjz��VXW=V�T"Y�c�T���T"Z�Ze|iT�\2qwZeW=Z[jz^p]ÏYeW=Z[TÝWyZ(�G� �k�=
c�|ij¦o-|�\:qwZ-WyZ[T��Ï��µGjsZ-�?jl]�TmWko-|Ï��Z[Y-W=]X��^k]ÏW�~kT"Y-W=hpTk�
��]at�YeTmo
^k\:µijz]GW=Z[jz^p]�W=rzhp^kY[jlZ[|i\ Z[|GW=ZU\�W�tÏµXT1W=ViVGrljzTm�ÏZe^
�[jl\1VirzTgµijsZ���Z[Yejl]Ghk�gàË�[jl]GhprzT·¶a��Z[Y-W=]X�wTm��T"]Go"^a�ijl]ihO�eãÒ\�W�t�µ�T
qG�[Tm�8c�jlZ[|Ì�w^pqGµirlT
¶a��Z[Y-W=]G�ÊT"]Xo
^w�wjz]ihk�m�©§&Y[^O�[�[^y~pTmY(j¦��W=ViÃ
VirzjlT��ÌZe^ÞZe|iTÏ��Z[^kY[T��½��Z[Y-W=]G�Ç^=_�Zdc�^ÞVGWpY[Tm]OZ2hpTm]i^p\1T��2Wk�
]i^kY[\�W=rì� �U]Go"T�Z[|iT8�dZe^pYeTm���Z[Y-W=]G�i��|GW�~pT�µ�T"Tm]ÍYeTmo
^k\�Ã
µijz]iTm���XZe|iT2o"^p\1ViqwZeTm�!��Z[Y-W=]X�Ï_x^pY9TmWpo-|�jz]G�wjz~ajz�iqGW=rPjz�U�wT
Ã
Z[TmY[\1jz]iTm���Ï�U�Ýc�jsZe|Ì\:qwZ-WyZejl^k]���Ze|iT�o"Y[^O�[�[^y~pTmYUY-WyZeT�\1W�t

µ�T�YeTm�iqGo
T��ÝZ[^UZeWp�pT?Wpomo
^pqG]kZP^=_iZe|iT�_ËWpo
ZPZe|GWyZPZdc�^9��Z[Y-W=]G�G�
W=YeTÝWyêéTmo
Z[Tm�©jz]G�dZeTmWk�©^p_I^k]iTp�
uv]Ç^kqiY1T
�wV�T"Yejl\1T"]OZ-�2c�TÏqG��T��½Y-W=]G�i^p\+]aqi\:µ�T"Y-�2hpT"]GT"Y[Ã
WyZeTm�!_xY[^k\,Wp]!T
�wV�^p]iTm]OZ[j¦W=r��wj¦�dZeY[jzµiqwZejl^k]ÇàxVGWpYeWp\1T
Z[TmY[j¦�[Tm�
^p]¥Z[|GT�o"Y[^O�[�[^y~pTmY:Y-WyZeT�ã�Z[^8ÔG]G�ÇZ[|iT!�ijz��ZeWp]Go
T��2µ�T
Zdc�T"Tm]
�[qGo"o"Tm�e��jz~pTÇo"Y[^O�[�[^y~pTmY�VX^kjl]OZe�Ê^p]�Z[|iTÀ�dZeYeWp]G��W=]X�ÂZ[|iTm]
o
Ye^k�e�[Tm��^y~pTmYBµXT"Zdc&TmT"]�Ze|iTm�[T(V�^pjz]OZe�m�P{?|Gjz��W=rzhp^kY[jlZ[|i\º|GWk�
W(�[jz\�jzr¦W=Y�T"ê�T�o·ZIZ[^�Zdc�^y¶aVX^kjl]OZIo"Y[^O�[�[^y~pTmYm�"µiqwZ�\�^kY[TÒVX^kjl]OZe�
W=YeT:V�^k�e�[jlµirzTp��`ajz]Go"T2c�T:YeTmWk��µijlZe�9_xYe^p\,^pqiY9hpTm]i^p\1T��(jz]
µirz^wo-�a��^=_a_x^pqGYm��c�T�_x^pY-o
TÒo"Y[^O�[�[^y~pTmYéZ[^�^womo
qiYI^p]irztUµ�T
Zdc�T"Tm]
µirz^wo-�ÄµX^kqi]G�iWpY[jzTm�m� �ÊT¼o-|i^O��TÀW»o"Y[^O�[�[^y~pTmY�YeW=Z[T¥Z[|GW=Z
tajlTmrz�iTm�Ï^p]�W�~pTmYeWphpT�_x^kqiY�o
Ye^k�e�[^y~pT"Y&VX^kjl]OZ-��VXTmY�hpTm]i^p\1Tp�
uv]À^pqiY1T"]Xo
^w�wjz]ih8�eo-|iTm\�Tk�Òc�|iTmY[TÏhpTm]iTm�1WpY[TÏ]i^=Z1_x^kYeo"Tm�
Z[^8µ�T"hpjz]WyZ1ViY[T��[o"Y[jzµ�Tm�½rz^wo
jì�Bc�T©]i^pZ[j¦o
TÏZ[|XWyZ�o
Ye^k�e��^y~kT"Y
Z[Tm]G�i�:Z[^�_x^kYeo"T�hpTm]iTm�ÝZ[^Ê��ZeWpY�Z:W=Z2T"�wWko·ZerltÊZ[|iT©�[Wp\�T�jl]wÃ
�wT"�ÇVX^O��jlZ[jz^p]À^y~pTmY�W8V�^pViqGrzW=Z[jz^p]À^=_Ujz]G�wjz~ajz�iqGW=r¦�"�{?|GW=Z
j¦�"�Go"Y[^O�[�[^y~pTmYÒ_x^kYeo"Tm��WprlrzT"rzTm�?Ze^�µXTÝrz^wo"W=Z[Tm��W=Z�T
�iWpo
Z[rzt�Z[|GT
�eW=\1Tgrl^wo
qX�?^p]ÏZ[|iTÝhkT"]i^k\1Tp�
uv]a~pTmYe�[jl^k]!j¦�9W©hpTm]iT
Zejzo�^kVXTmYeW=Z[^pY(Z[|GW=Z�o-|GW=]ihkTm�(Z[|iT1rzjl]G�kÃ
W=hkT�^=_�hpTm]iTm��^p]8Z[|iT�hpT"]G^p\1Tp��{?|GWyZ2jz�m�IjlZ2o-|GWp]ihpT��gZ[|GT
^pY-�wTmY[jz]ih�^p_BZ[|GT�hkT"]iT��"�2�(_?o
^kqiYe�[Tp��Ze|ijz�ÝomW=]Ê^p]irzt�^wo"o
qGY
jl_IZe|iTÝ��Tm\1Wp]OZ[j¦o"��^=_IZ[|iTÝhkT"]iT���WpY[Tm]�ß Z�W:_xqi]Go
Z[jz^p]�^=_IZ[|iTmjlY
rz^ao"qG�m�
{?|iT�jz]a~pT"Y-�[jl^k]¥hkT"]iT"Z[j¦o�^pV�T"Y-WyZ[^kY�|GWp��|GWp�WÌo-|iT�ÐkqGT"YeTm�
VGWk�dZ:jz]¥¤g�ÓYeTm�[TmWpYeo-|��©uåZ�c�Wk�gÔGY-�dZ2�iTm�eo
Yejlµ�Tm�ÈµatàËñ�^krsÃ
r¦W=]G�¾����ápáO�pã·�9uv]!Ze|iT1��jz\1VirlT�¤g����Ze|iT1\�T�W=]ijz]ih©^=_ÒhkT"]iT��
j¦�9�iT"V�T"]G�wTm]OZg^k]!Ze|iT"jzYÝVX^O��jlZ[jz^p]�����^©Z[|iT�jz]O~kT"Y-��jz^p]Þ^pV�T"Y[Ã
WyZe^pY(omW=]i]G^=ZUjz\1\1Tm�wj¦WyZeT"rzt©µ�T:qG�[Tm���(ñ�^krlr¦W=]G���GZe|iT"YeT
_x^kY[Tk�
\1^w�wjsÔXTm�Í|Gjz�©T"]Go"^w�wjl]GhÀ�eo-|iT"\1TÞZ[^Ç|G^pr¦�ÍVGWpjlY-��^p_:hpTm]iT
jz]G�wT
�ÈW=]G�8hkT"]iT�àx^kYÝµijlZ-ã·�©{?|iT�µijlZe��o"^pqir¦�8]i^ycÅµ�T�VXTmY�Ã
\:qiZ[Tm�8c�jlZ[|i^kqwZ�rz^k�[jl]ih©Z[|GT"jzYÝ\�T�W=]ijz]ihX�1ñ(^yc&Tm~pTmYm�¾c�|iTm]
o
Ye^k�e�[^y~pT"Y©W=]G�¼jz]a~pTmYe�[jl^k]Íc�T"YeTÊo
^k\:µijz]iT��¾�(hkT"]iT��©o"^pqir¦�
µ�TÞ�wqiVirzj¦o"WyZeTm�À^pY�rz^k��Z�T"]OZejlYeT"rzt½_xYe^p\@Z[|iT�hkT"]i^k\�Tk�Ñ{I^
W�~p^kjz��Z[|ij¦�"�Xo
Ye^k�e��^y~kT"YBc?Wp�?o
^k]G��Z[Y-W=jz]iTm�1Ze^1^aomo
qiY?^k]irlt�^k]
hpTm]i^p\1T��?c�jsZe|ÏhkT"]iT��?jl]©Z[|GT��[Wp\�Tg^kYe�wTmYm�
àæ¤9^krz�iµXTmY[hX�:�mákîpáOã1Y[TmVX^kY�Z-��Ze|GWyZ�T�W=YerltT
�wV�T"Yejl\1Tm]kZ-��µat
�?W=hkrlTmtÇqG�[jl]GhÌjl]a~pTmYe�[jz^p]À]iT"T��wTm�ÀZe^½Y[qG]_x^pY�rz^p]ihkT"Y�µ�T
Ã
o"WpqG�[T�Ze|iTÏo"^p]G��Z[Y-W=jz]OZ2^k]½Z[|GT�o"Y[^O�[�[^y~pTmY�^pV�T"Y-WyZe^pY2T
êéTmo·Ã
Z[jz~pTmrlt½_x^pY-o
Tm�¥W8\:qGo-|¥rl^yc�T"Y�o
Ye^k�e�[^y~pT"Y:YeW=Z[Tp�À��^ÈhpYeTmW=Z
YeTm�[qirsZ-��_xYe^p\,jz]a~pT"Y-�[jl^k]Ïc�T"YeT�_x^kY�Ze|Go
^k\1jl]ih�µiqwZ9Z[|ij¦�9\1W�t
|GW�~kT�µXTmT"]©µXT�o"W=qX��T�VGY[^kµirlTm\��Òc�T"YeT�]i^pZ��[qwÉ�o
jzT"]OZ[rzt�]i^p]iÃ
rzjl]iT�W=Y�àì¤9^pr¦�wµ�T"YehG�?�mákîpákã
�©uv]a~kT"Y-��jz^p]8|GWp�2W=r¦��^�µ�T"Tm]ÇW=ViÃ
VirzjlT��©Z[^1^pY-�wT"Yejz]ih2VGY[^kµirlTm\��"�
uv]a~pTmYe�[jl^k],^aomo
qiY-�Íjz]�o"T"rzrz�»c�|iTm] µX^pZ[|A��Z[Y-W=]X�i�Í^p_ÇW
\1^przTmo"qirlTÝ^p_�S9�(�ÂµGY[T�W=��jz]�Zdc&^1Vir¦Wpo"Tm�Ýàì¤gW=Y-�w]iT"Y�T"Z(W=rì�l�
�mákái��ã·�2{?|GT1��Z[Y-W=]X�i�gjl]ÊZ[|GT�µiY[^k�pTm]�_xYeWphp\1T"]OZ�àxµ�T
Zdc�T"Tm]
Z[|GT©µiYeTmWp�ÊV�^pjz]OZe�-ã�YeT"\�Wpjl]½µ�^pqG]G�ÈZ[^khpT"Z[|iTmY��wqGT�Z[^ÊZ[|GT
WyZ[Z[Y-Wpo
Z[jz^p]G�Èµ�T
Zdc�T"Tm]ÅZe|iTÍo
^k\�VGrlTm\�Tm]OZeW=Yet�µGWk��TVGWpjlY-�m�
{?|iTmY[T�W=YeTB^p]irzt9Zdc&^(c�W�tw�¾Ze|GWyZIZ[|iT�µiYe^p�kT"]9_xYeWphp\1T"]OZP\1W�t
µ�T(YeT�!d^pjz]iT��¾ïITmjsZe|iT"YÒZ[|iTU�[Wp\�T(c�W�t2jsZ�c�Wk��^pYejlhkjl]XW=rzrlt�o
^p]iÃ
]iT�o·Z[T��½^kY:Ye^=ZeW=Z[T��ÈZ[|iYe^pqGhp|Í��îp����rzW=Z[TmYeWprlrztp�8{?|iT�r¦WyZ[Z[T"Y
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D E

HA

Genes read in order:

After Inversion

A F G D E B C H

F

G

C

B

D E

F

G

A

B

C

Before Inversion

Genes read in order:

A B C D E F G H

Stored
Strand

Computed
Strand

H

Break Point

Break Point

nPjlhkqiYeT��Gïg{?|GT�T"ê�T�o·Z�^p_ÒZ[|GT�jz]a~pTmYe�[jl^k]Þ^kVXTmYeW=Z[^pY9^p]ÊZ[|GT
^pY-�wTmY[jz]ihÞ^p_UhkT"]iT��"�¼�U]½Z[|GTÏrzT
_bZ�j¦��Z[|GTÏjz]OZeWko·Z��w^pqGµirlT
¶
��Z[Y-W=]G�wT��ÏhpT"]G^p\1T�c�jlZ[|�hpTm]iT�^kYe�wTmY[jz]ih��wj¦��VGrzW�tkTm�ÏµXTmrl^ycÝ�
�U]�Ze|iTgY[jzhp|OZ&Z[|iTghpTm]i^p\1TU|GWp��µ�T"T"]Ïjz]O~kT"Y[Z[T���WyZ�Z[|iT9Zdc�^
µiYeTmWp�ÝVX^kjl]OZe�m��¤9T"]iT���jl]2Z[|iT�jz]a~pTmY�ZeTm��YeT"hkjl^k]:|GW�~kT&\1^y~kTm�
_xYe^p\<^p]GT���Z[Y-W=]G�!Z[^©Z[|iT1^pZ[|iTmYgWp]G�ÞZ[|iT�^pY-�wT"Yejz]ih�^p_ÒZ[|GT
hpTm]iTm�?|XWp��o-|GWp]ihpT���Wp��W1YeTm�[qirlZm�

\1T
Ze|i^w�Þ^p_&YeTmWyZ[ZeWko-|i\1T"]OZ9YeTm�[qirlZe�9jz]8Wp]Êjz]a~pT"Y-�[jl^k]���uåZÝjz�
]i^pZ?V�^k�e�[jlµirzTg_x^pY?Ze|iT9_xYeWphp\1T"]OZ?Z[^1µ�TÝY[T !d^pjz]iTm�©jl_PjlZ(��VGjl]G�
�mîk� � W=Ye^pqG]G�ÌZe|iT�Wy�wjz�1VXW=Y-W=rzrlTmrÒZe^ÊZe|iT!��Z[Y-W=]G�i��àæWp�1^pViÃ
V�^k�[Tm�ÏZ[^�rzW=Z[T"Y-W=rzrztwã�µ�TmomW=qG�[TÝZe|iT2��Z[Y-W=]G�Ï]iTmTm�i��Z[^ � Y[qG] �
jz]©Ze|iT:�eW=\1TÝ�wjzY[T�o·Z[jz^p]ÏZe|iY[^kqihp|G^pqwZ�jlZe��Tm]OZ[jzY[TgrzT"]ihpZ[|½àxjzTp�
� � ¶! � ã
�
¤9T"]GTm�9c�|i^przrztÏjz]!Ze|iT�µiY[^k�pTm]�_xYeWphp\1T"]OZ�àË^pY9jl]a~kT"Y[Z[Tm�!Y[T"Ã
hpjz^p]�ã&WpY[Tg\1^y~pT���_xYe^p\¿^k]iT���Z[Y-W=]G��Z[^1Z[|GTÝ^=Z[|GT"Y��Puv]ÏZe|ijz�
c?W�tp�BZe|iT�^pY-�wTmY�^p_UZe|iT�hpTm]iTm�1j¦��o-|GWp]ihpT��¾�¤9Tm]iTm��Z[|GW=Z
�[VGW=]�Ze|iTgµiYeTmW=��V�^pjz]kZ-�?W=YeTU�wj¦��YeqiVwZeTm�©W=rlZ[|i^kqihp|�]G^=Z&]GTmo·Ã
Tm�e�eW=Yejlrzt¥�wT��dZeY[^ytkTm�¾�ÄnPjzhpqiYeTÞ�ÌjzrlrzqG��Z[Y-WyZeTm��Ze|iTÞT"ê�T�o·ZÏ^=_
hpTm]iTm��_xYe^p\ÜW=]Ïjl]a~pTmYe�[jz^p]��
ni^kY[\2qir¦WyZ[jz^p]7^=_ÊZ[|iTÄjz]a~pTmYe�[jl^k] ^kVXTmYeW=Z[^pYÀ_x^kYÑ�w^pqGµirlT
¶
��Z[Y-W=]G�wT��T"]Go"^w�wjl]Ghk�©jz�Ï�dZeYeWpjlhk|OZ�_x^pYec?W=Y-�¾�Ä�(�©c�jsZe|ÍZ[|GT
o
Ye^k�e�[^y~pT"Y�Wp]G�\:qwZ-WyZejl^k]¼^pV�T"Y-WyZ[^kYe��o-|XW=]ihkTm��WpY[T�\�Wp�iT
^p]Grlt�Z[^ÑZ[|iT��Z[^pYeTm�Å�dZeYeWp]G�ÄµiqwZÌW=YeT½YeT
ëGT�o·ZeTm��^k]ÄZ[|GT
o
^k\1ViqwZ[T��Ç��Z[Y-W=]G���½{?c&^8µiYeTmW=�ÈV�^pjz]OZe�2_x^pY2Z[|iT���Z[Y-W=]G�G�
W=YeT�o-|i^O��Tm]Èqi]ijl_x^pYe\�rztp�Ê{?|iT�µijlZe�2^p]ÈZe|iT©��Z[^kY[T��Ì�dZeYeWp]G�
µ�T
Zdc�T"T"]ÈZe|iTm�[T�µiYeTmWp�ÞV�^pjz]OZe�:WpY[T�VGrzWko
Tm�Èjz]ÌZe|iT�YeT"~pTmYe�[T
^pY-�wTmYm�ÍnPjz]GW=rzrlt¥TmWko-|¥µijlZ�µ�T
Zdc�T"Tm]¥Ze|iT�µiYeTmWp�½VX^kjl]OZ-��jz�

Before
Inversion

0001 0011 0100 0111 1011 1001

1110 1100 1011 1000 0100 0110

1 3 4 7 B 9

7 3 D 1 2 6

stored strand

computed

break points

0001 1101 1110 0010 1100 1001

Negate 0001 0010 0001 1101 0011 1001

After
Inversion

0001 0010 0001 1101 0011 1001

1110 1101 1110 0010 1100 0110

1 2 1 D 3 9

7 B 7 4 3 6

Reverse

nPjlhkqiYeT �Gï�{?|iTgWpo
Z[jz^p]�^p_�Z[|GTUjz]a~pT"Y-�[jl^k]�W=rzhp^pYejlZ[|i\ÓWp��W=ViÃ
VirzjlT���Ze^�W���|G^pY[Z��eW=\1VirzT9�w^kqiµirzT·¶w�dZeYeWp]G�wTm��T"]Go"^a�ijl]ihX����Z
Z[|GTgZ[^pV�j¦����|G^yc�]�Ze|iTgZdc&^���Z[Y-W=]G�G�?µXT"_x^pYeT9jz]a~pTmYe�[jl^k]©Wp]G�
Z[|GT�~yW=rzqiT�^p_�TmWpo-|È_x^kqiY:µGjsZ1µirz^ao-�é�!��T"rz^ycºZ[|ij¦�m��Z[|iT©Y[T"Ã
hpjz^p]Þ^=_�Z[|GT���Z[^kY[T��!�dZeYeWp]G��µ�T
Zdc�T"Tm]�Z[|iT�µiYeTmWp�ÏV�^pjz]OZe�Ujz�
YeT"~pTmYe�[Tm���Ê��T"�aZ2Ze|iTÏo"^p\1VirzT"\1T"]OZ1^=_�Ze|iT©µGjsZ-�2j¦�2ZeWp�pT"]��
��Z?Z[|iTÝµ�^=Z[Z[^k\ÓZ[|iTgÔX]GW=r���ZeW=Z[Tg^=_IZ[|iTghpTm]i^p\1Tgj¦����|i^yc�]��

YeT"Vir¦Wpo"Tm�Íc�jlZ[|�jlZe�Ï^p]iT���o
^p\1VirzT"\1Tm]kZ�� {?|iTÌo
^k\1ViqwZ[T��
��Z[Y-W=]G��omW=]�Z[|iTm]�µ�T9YeTmWk�¾��nIjzhpqGY[T �:jzrlrzqG��Z[Y-WyZeTm�ÒZ[|iTÝW=rzhp^pÃ
YejsZe|i\��
�(�Uc�jlZ[|Êo"Y[^O�[�[^y~pTmYm�wc�T:Tm]G�[qiY[T:Z[|GW=ZUµiYeTmWp�©V�^pjz]OZe�UrljzT:^k]
Z[|GTU_x^kqiY�¶OµijlZ�µ�^pqG]G�iW=YejzTm�9àx^=_P^pqiY�jz\�VGrlTm\�Tm]OZeWyZejl^k]�^p_�Z[|GT
jz]O~kT"Y-��jz^p]2^pV�T"Y-WyZe^pY·ã��[^9Z[|GW=Z�Z[|iT?Ze^p�pTm]2µGrl^wo-�w��W=YeT&\1^y~kTm�
Y-WyZ[|GT"Y�Ze|GW=]!\1^y~kTm��W=]G�Þ�wjz�[YeqiVwZ[T��¾��{?|ij¦�"��|i^yc�T"~kT"Y��G�wT
Ã
V�T"]G�i��^p]©Z[|iTÝTm]Go
^w�wjz]ih�qG�[Tm�¾�

� �?² 
�� �º±P¯a± ± × Ù ¼ØÒÚ(¬<� �����&¯w°i± × Ù���Ù
� × ²éØ�Ù(Û × �

uåZ2j¦�2jl]OZ[TmY[T��dZejl]Gh!Z[^ÊT
�iW=\1jz]iT�Ze|iT©YeT"r¦WyZejl^k]G�[|ijlVÌµ�T
Zdc�T"Tm]
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�:T"]Go"^a�ijl]ihO��W=]G���eo-|iT"\�WyZ-Wi��¤g�(�B�[TmWpYeo-|
qG�[jl]GhÞ�[o-|GT"\�WyZ-WÌàËñ�^krlr¦W=]X�¾�?�mápáO�pã
�Ï� hpT"]G^p\1T�ViYe^y~ajz�wT��
�eW=\1VirzT�~�WprlqGTm�1_x^kY�Z[|iT!ÔiZ[]iT��[��_x^pY�Wprlr�Ze|iTÞ�eo-|iT"\�W=ZeWÈjlZ
YeT"ViYeTm�[T"]OZe�m�
ni^kY9W©��jz]ihkrlT
¶a��Z[Y-W=]G�wT���T"]Go"^w�wjl]Gh�^=_BrzT"]Gh=Z[| �Ìc�jsZe|ÞT�Wpo-|
�wT"Z[Tmo
Z[^kY�WpµirlT©Z[^ÞZeWp�pTÏ^p]��ÌW=Z�Z[YejzµiqwZ[TÏ~yW=rzqiTm�:_xYe^p\¸Z[|GT
�[T
Z����&Z[|GT"YeT!W=YeT����¥VX^O�[�[jlµGrlT�Tm]Go
^w�wjz]ihk��Wp]G��à��
	¼��ã �
�eo-|iT"\�WyZ-Wi�PfÒWpo-|2�dZeY[jz]ih(jz]�Ze|iT���jz]ihkrlT
¶a��Z[Y-W=]G�wT��gT"]Go"^w�wjl]Gh
YeT"ViYeTm�[T"]OZe�gàËjlTk�G�[Wp\1VirlT���Z[|iTgÔGZ[]iT��[��^p_eã����©�[o-|GT"\�WyZ-Wi�
§&^p]X��j¦�wT"Y2W!��jz\1jlr¦W=Y��w^pqGµirlT
¶a��Z[Y-W=]G�iTm�8T"]Go"^w�wjl]GhÞ�[o-|GT"\1T
c�jlZ[|���Z[Y-W=]G�i�!^=_�rlTm]ih=Ze| ���+��hkWpjl]��ÝTmWpo-|Ä�wT"Z[T�o·Z[^kYÞjz]
Z[|GTÈ��Z[Y-W=]X�i�Ï\1W�tZ-W=�kT8^k]Ñ^k]iTÈ^=_��¼W=Z�ZeY[jzµiqwZeT8~yWprlqiT��"�
�Ao"^p\1VirzT"\1T"]OZ-W=YetÇVGWpjlYejl]Gh½\:qG��Z�T"�aj¦��Z©µ�T
Zdc�T"T"]¼\1Tm\2Ã
µ�T"Y-�Ò^p_���[^�Ze|GWyZ�Z[|iTgWyZ[Z[YejlµGqwZ[TU~�WprlqGTU^k]�Z[|iTgo
^k\1ViqwZ[T��

402 GENETIC ALGORITHMS



��Z[Y-W=]G�Ï\�W�t�µ�T:�wT"Z[T"Ye\1jl]GTm�¾��{?|iT:o"^p\1VirzT"\1T"]OZ-W=Yet�VGW=jzY[Ã
jz]ih©�[|i^pqGrz��\�WpVÞW=rzrI~yWprlqiT���_xYe^p\ �ÓµXWpo-�Ïjl]OZ[^�Z[|iT1�eW=\1T
�[T
Zm��ni^kY�Z[|iT�|ataV�^=Z[|GT
Z[j¦o"Wpr(�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�¥T"]Go"^w�wjl]Gh
Z[|GT"YeT�WpY[T�Wprz�[^ ���¥�wjz��Z[jz]Go
Z�hpTm]i^p\1Tm�m�{?|ijz�1j¦�1µ�Tmo"WpqG�[T
Z[|GT:T"]OZejlYeTÝhpTm]i^p\1T�j¦�(�wT"Z[TmY[\1jz]iTm��^k]irzt�_xYe^p\ÜZ[|iT��dZe^pYeTm�
��Z[Y-W=]G�¾�
{?|iTmY[TÞWpY[Tk��|i^yc�T"~pTmYm�?\1^pYeTÞ�eo-|iT"\�W=ZeW½Wk�[�[^wo
j¦WyZ[T��c�jsZe|
Z[|Gjz��Tm]Go
^w�wjz]ihG�¿{?|GT8]aqi\2µXTmY�^=_2�eo-|iT"\�W=ZeWÇWk�[�[^wo
j¦WyZeTm�
c�jlZ[|ÓZe|iT���Z[^kY[T��Ó�dZeYeWp]G�Îj¦�½Ze|iT»�eW=\1TÑWk�½_x^kY¥�[jl]ihkrlT
¶
��Z[Y-W=]G�wT���T"]Go"^a�ijl]ihO�"�¹`wo-|iT"\�W=ZeW~yW=rzqiTm��_x^pY�Ze|iTÇo
^k\�Ã
ViqwZeTm�Ê�dZeYeWp]G�¾��Z[|i^kqihp|���\�W�tÏµXT�T"jlZ[|GT"YUZ[|iT1o
^k\�VGrlTm\�Tm]OZ
^=_1Ze|iTÇ\�WyZ-o-|ijz]ihÍ~yW=rzqiTÇ^k]ÂZ[|iTÀ�dZe^pYeTm�Â��Z[Y-W=]G�Â^kY!Z[|GT
� �i^p]�ß Z�o"W=YeT��Ê~yW=rzqiTp�¼{?|iT�]aqi\2µXTmY�^=_Ý�[o-|iTm\�WyZeWG�BZe|iT"]��
_x^pY��i^pqiµirzT·¶w�dZeYeWp]G�wT���T"]Xo
^w�wjz]ihk�?j¦��à � 	Í��ã � ���é�
{?|iT1]aqi\:µ�T"Yg^p_��eo-|iT"\�WyZ-W�YeT"VGY[T���Tm]kZeTm�ÞµOt�^k]iT��w^pqGµirlT
¶
��Z[Y-W=]G�wT���hpTm]i^p\1T2jz�go"Wprzo"qir¦WyZ[T��!�[jl\1jzrzWpY[rztp�g��^k�[jsZejl^k]G��^k]
µ�^=Z[|½��Z[Y-W=]X�i�g\�W�t!ZeWp�pT1Ze|iT � �i^p]�ß Z:o"WpY[T �©~yWprlqiT�^kYÝZ[|GT
Wpo
Z[qGWpr�WyZ[Z[YejlµGqwZ[T�~yWprlqiTgZe|GWyZUjz�(^p]ÏZ[|iT2�dZeYeWp]G�¾��`w^©���w���é�
^pY�� � �é�=�eo-|iT"\�WyZ-W(WpY[T&Y[TmViY[T���Tm]OZ[Tm��µOt�WU�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�
hpTm]i^p\1Tk�
{PW=µirzTU����qG\�\�WpY[j¦��T���Ze|ij¦��jl]w_x^kY[\�W=Z[jz^p]:Wp]G�:o"^p\1VGW=YeTm��Z[|GT
]aqi\:µ�T"Y-�U^=_Ò�eo-|iT"\�WyZ-W�µ�T
Zdc�T"T"]Ê��jz]ihprzT·¶w�dZeYeWp]G�wT��©Tm]Go
^w�aÃ
jz]ihk�m���w^pqiµGrlT
¶a��Z[Y-W=]G�wT��ÈT"]Go"^w�wjl]Ghk�:Wp]G�½�[jl]GhprzT·¶a��Z[Y-W=]X�wTm�
T"]Xo
^w�wjz]ihk�?^p_IZdc�j¦o
T9Z[|GTÝrlTm]ih=Ze|��
{?|iTÊT
êéTmo·ZÏ^=_gZ[|GTÊhkT"]iT"Z[j¦o�^pV�T"Y-WyZe^pY-��^p]Í�eo-|iT"\�W=ZeWÈ_x^kY
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W½hkT"]i^k\1TÞ�w^pqGµirlTÞZ[|ij¦�©rlTm]ih=Ze|�� {?|iT8�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�
T
�wV�T"Yejl\1Tm]kZ�qG�[Tm�©Zdc�^��dZeYeWp]G�i�?^=_ �k�k�:µijlZe��TmWpo-|��
`ajz]Go
TÈZe|iT½T"ê�T�o·ZÞ^p_2Ze|iTÌhpTm]iT
ZejzoÈ^kVXTmYeW=Z[^pY-�Ï^p]Ä�[jl]ihkrlT
¶
��Z[Y-W=]G�wT��¿Tm]Go
^w�wjz]ihk�¥j¦�¼�wjsêéT"YeT"]OZÀZ[^Î�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�
T"]Xo
^w�wjz]ihk�m�½jlZÂj¦�Ä�wjlÉ�o
qirlZÂZ[^,o
YeTmWyZeTºWp]AT"�aV�T"Yejz\�Tm]OZ
Z[|XWyZ�_ËWpjlYerzt¥o
^k\1VGW=YeTm���[jz]ihprzT·¶w�dZeYeWp]G�wTm�ÀTm]Go
^w�wjz]ihk��c�jsZe|
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�©T"]Go"^w�wjl]Ghk�m���U��W2ÔGY-�dZ(WpViViYe^��ajz\�WyZejl^k]��
c�T��w^pqGµirlT��8Z[|iT�\:qwZ-WyZ[jz^p]½Wp]G�Ìo
Ye^k�e�[^y~pT"YgY-WyZeTm�g_x^kY�Z[|GT
�[jl]ihkrlT
¶a��Z[Y-W=]G�iTm�8T
�wV�T"Yejl\1T"]OZ-�"��{?|iT�jz]a~pTmYe�[jl^k]È^pV�T"Y-WyZ[^kY
c?Wp�8]i^=ZÈV�T"Ye\�jlZ�ZeTm� _x^pY8Ze|iT¼�w^pqiµGrlT
¶a��Z[Y-W=]G�wT���T"�aV�T"YejlÃ
\1T"]OZm�9Wp�©c&TÈ�wj¦�Í]i^pZ©jz\1VirlTm\1T"]OZ�Wp]»Wp]GW=rz^phkqiT!jz]ÍZ[|GT
�[jl]ihkrlT
¶a��Z[Y-W=]G�iTm��o"^w�wjl]GhG�
{?|iT�ÔGZ[]iT��[��_xqi]Go
Z[jz^p]ÑWp]G�¼W=rzr(^pZ[|iTmY�VGW=Y-W=\1T"Z[T"Y-��WpVGW=Y[Z
_xYe^p\+o
Ye^k�e��^y~kT"YÝY-WyZeTp��\:qwZ-WyZejl^k]½YeW=Z[Tk��T"]Go"^a�ijl]ih8�[o-|GT"\1T
W=]X�©��Z[Y-W=]G�©rzT"]ihpZ[|�c&TmY[T9Ze|iT��[Wp\1TU_x^kY�W=rzr¾T
�wV�T"Yejl\1T"]OZ-�"�

nPjlhkqiYeT �VGrl^pZe�IZ[|iT?W�~pTmYeWphpTPÔiZe]iTm�e��W=]G�:\1W=�wjl\2qi\�ÔiZ[]iT��[�
_x^pY�Z[|iT���TÞT
�wVXTmY[jz\1T"]OZe�m�Ä��rlZ[|i^kqihp|Ze|iTm�[T!YeTm�[qirlZe���[|i^yc
^p]Grlt1^p]GTUYeqi]��ac�T(Y-W=]�\�W=]at�Z[Yej¦W=r¦�&Wp]G��Ze|iTm�[TUYeTm�[qirlZe��W=YeT
YeT"ViYeTm�[T"]OZeW=Z[jz~pTk�
��]ÀT
�wVir¦W=]XWyZ[jz^p]¥jz�1]GTmo
T��[�eW=Yet8_x^pY1Ze|iT��wTmo"Y[T�Wp�[Tm�2jl]W�~OÃ
T"Y-W=hkT�Wp]G�Ê\1W=�wjl\2qi\<ÔiZe]iTm�e�g~yW=rzqiTm�m��{?|ijz�gj¦�ÝW�o-|GW=Y-Wpo
Ã
Z[TmY[j¦��Z[j¦o1^=_ÒZe|iT�µ�^a^=Ze��Z[Y-W=VGVijl]GhÏVGY[^kµirlTm\���{?|iT�¤g�ºÔG]G�i�
hpTm]i^p\1T���Z[|XWyZ&VGY[^y~aj¦�wT�Z[|GTUo
Tmrlré�[jl\2qirzW=Z[jz^p] 5*�����#�
� � .:��5�_x^kY
rzjl~ajz]ih!jz]ÌZ[|iT©T"]a~ajlYe^p]G\�Tm]OZm�Þ`OZeYeW=Z[T"hkjlT��Ý\�W�tÊµ�T�ÔGZ2jz]ijsÃ
Z[j¦W=rzrztÑµiqwZÊhp^ � �[^pqGY �¥^y~pTmY!Wrl^k]ihpTmY�Z[jz\�T¥Wp��Ze|iTÇo
Tmrlr
o-|GWp]ihpT��"�Ý��TmomW=qG�[T2o"T"rzrz�gW=YeT � _xY[^��"Tm] ��c�|iTm]!Ze|iT"jzY���jz\:qiÃ
r¦WyZ[T���Zejl\1TÝTm]G�i��Wp]G��µ�TmomW=qG�[TÝW2_x^pYe\¿^=_�T"rzjsZejz�[\ j¦�?qG�[Tm�¾�
�[qGo-|��dZeYeW=Z[TmhpjzTm��ViYe^w�wqGo"TÌÔiZÊVXW=YeT"]OZe��Ze|GWyZ8jz�e�[qiT½c�TmW=�
ViYe^phkT"]atp�Þ{?|GT�\�Wy�wjz\:qi\¹ÔiZe]iTm�e�1�wTmo"Y[T�Wp�[Tm�Ýc�|iTm]Ç�[qGo-|
jz]G�wjz~Oj¦�wqGWprz�?Tm~pTm]kZeqGW=rzrzt�rlT�W�~pTUZ[|iTÝV�^pVGqirzW=Z[jz^p]��
uv]ijlZ[j¦W=rzrltk�ÒZe|iT�W�~pTmYeWphpT�ÔiZe]iTm�e��_x^pY1Ze|iT��w^pqGµirlT
¶a��Z[Y-W=]G�iTm�
T
�wV�T"Yejl\1Tm]kZ�jz�2|ijzhp|iTmY�Wp]G�ÌhkY[^yc��g_ËWk�dZeT"Y2Z[|GWp]½T"jlZ[|GT"Y�^=_
Z[|GT��[jl]GhprzT·¶a��Z[Y-W=]X�wTm�9T
�wV�T"Yejl\1Tm]kZ-�"��fB~kT"]OZ[qXW=rzrltk�m|i^yc�T"~kT"Y��
Z[|GT?W�~kT"Y-W=hkT�ÔiZ[]iT��[��~yWprlqiT��P^=_iZe|iT���jz]ihprzT·¶w�dZeYeWp]G�wT��ÝT
�wV�T"Y[Ã
jz\�Tm]OZe��^pqiZe��Z[YejlV2Z[|iT��i^pqiµirzT·¶w�dZeYeWp]G�wT���hpTm]i^p\1T��"�P{?|iT?jl]wÃ
o
YeTmWk��TUjl]ÏW�~pTmYeWphpT�ÔiZe]iTm�e��^=_�Ze|iTÝ��T�o
^k]G���[jl]GhprzT·¶a��Z[Y-W=]X�wTm�
T
�wV�T"Yejl\1Tm]kZ�àxZ[|iT�^k]iT?c�jsZe|�hkT"]i^k\1T&^p_XrzT"]ihpZ[|�îp�k��µijlZe�-ãPjz�
\:qXo-|:��rz^yc�T"Y�Ze|GW=]�Z[|iT&ÔGY-�dZ���jz]ihprzT·¶w�dZeYeWp]G�wT��gT
�wVXTmY[jz\1T"]OZm�
{?|iTÄjz]ijlZ[j¦W=r!_ËWk�dZ»jl]Go"Y[T�Wp�[TÂjl]<W�~pTmYeWphpT»ÔiZ[]GTm�e�¼^=_ÈZ[|GT
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�gT"�aV�T"Yejz\�Tm]OZI��qGhphpT��dZ-�¾Ze|GWyZIZ[|iT&jl]Go"Y[T�Wp�[T
jz]©�eo-|iT"\�WyZ-WÝ_xYe^p\ºZ[|GT9�w^kqiµirzT·¶w�dZeYeWp]G��j¦�&~yWprlqGWpµirzTUWyZ�Z[|GT
µ�T"hpjz]i]ijz]ihÀc�|iT"]»Z[|GTÌ¤g��j¦��T
�wVirz^pYejl]ih¥\�W=]at¼^pVwZejl^k]G�m�
��W=Z[TmYm��|i^yc�T"~kT"Y��ÒZe|iTÊ��Z[Ye^p]GhÌY[TmrzW=Z[jz^p]G�[|ijzVÀµ�T
Zdc�T"Tm]¼Z[|GT
��Z[Y-W=]G�i��omW=qG�[Tm��Ze|iTÞ¤g�7Z[^½��ZeWprlr(µXT�o"W=qX��T�^=_9Z[|GT�T
�aZ[Y-W
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nPjlhkqiYeT iï¹��Tm�[qirsZ-�_xYe^p\³Wp] T
�wV�T"Yejl\1Tm]kZÑo"^p\1VGWpY[jz]ih
�[jl]ihkrlT
¶a��Z[Y-W=]G�iTm�ÝhkT"]i^k\�T��IZ[^Ý�w^pqGµirlT
¶a��Z[Y-W=]G�iTm��hkT"]i^k\1Tm�m�
�BW=rzqiT���_x^pY�W�~pT"Y-W=hkT&Wp]G�1\�Wy�wjl\2qi\�ÔGZ[]iT��[�&W=YeT���|i^yc�]�_x^kY
TmWko-|Ì�ajl]G�½^=_�hpTm]i^p\1Tk�Þ{?|iT©�[jz]ihprzT·¶w�dZeYeWp]G�À��rzjl]iT��:YeT"ViÃ
YeTm�[T"]OZ�WÌ��jz]ihprzT·¶w�dZeYeWp]G�wT��½hpTm]i^p\1T�^=_��k�k�ÞµGjsZ-�"���[jl]ihkrlT
¶
��Z[Y-W=]G�Ï��j¦��W:hkT"]i^k\1TUc�jlZ[|�îp�k�:µijlZe��Wp]G���i^pqiµirzT·¶w�dZeYeWp]G�
j¦��WÊ�w^pqGµirlT
¶a��Z[Y-W=]G�iTm�ÌTm]Go
^w�wjz]ih8c�jsZe| �k�k��µijlZe�1jz]ÇT�Wpo-|
��Z[Y-W=]G�¾�

o
^k]G��Z[Y-W=jz]kZ-��Z[|GW=Z�]iTmTm�ÀZ[^Ìµ�T!^kVwZ[jz\1jz�[Tm�¾�Â�<µ�T"]iT"ÔXo
j¦W=r
\:qiZeWyZejl^k]�^k]�^p]GTU��Z[Y-W=]G�¾�O_x^kY&T"�wWp\1VirlTk�a\1W�t�omW=qG�[TUW2�wT
Ã
��Z[YeqGo·Zejl~kT�\:qwZ-WyZejl^k]�^p]�Ze|iT(^pZ[|iTmY&��Z[Y-W=]G����{?|GT9¤g�Í\2qG��Z
V�T"Y[_x^pYe\7jlZe�9^kVwZ[jz\1jz�eWyZejl^k]Þc�jlZ[|!Ze|iT1o
^p]X�dZeYeWpjl]OZUjz\1VX^O��T��
µat�Z[|GTÝY[TmrzW=Z[jz^p]G�[|ijzV©µ�T
Zdc�T"Tm]©Ze|iT���Z[Y-W=]G�i�m�
{?|ij¦��T"ê�T�o·Z(j¦���[jl\1jzrzWpY�Z[^�Ze|GWyZ(�iTm�eo
Yejlµ�Tm��µatÊàæäÝW=qwêé\�W=]��
�mákáp�Oã�jz]È|ijz�����@\1^w�wTmrB^=_?Y[qGhphpT���ÔiZe]iTm�e�Ýr¦W=]G�G�[omW=V�Tm�m�
äÝW=qiê�\�W=]1\1^w�wT"r¦��hkT"]i^k\�T��Bo
^k]G�[jz��Z[jz]ihg^=_��7hpTm]iTm�m�P{?|GT
ÔiZe]iTm�e�&o"^p]OZ[YejzµiqwZ[jz^p]�^=_�TmWko-|�hpTm]iTU�wTmVXTm]G�i��^p]�jsZ-��Tmrs_�Wp]G�
� ^=Z[|GT"YghpTm]iTm�U^p]ÞZ[|iT1hpTm]i^p\1Tk�:fB~k^przqwZ[jz^p]!^p_ÒhpTm]i^p\1T��
o
^k\1ViY[j¦�[Tm�?��TmrlT�o·Zejl^k]ÏWp]G��\2qwZeW=Z[jz^p]Ï^=_PhpT"]GTm��c�jsZe|�]i^1Y[T"Ã
o
^k\:µijz]GW=Z[jz^p]����U���Ç�¾W�\1TmWk��qGY[T2^=_BZe|iT1T"Vij¦�dZ-WyZejzo2jl]OZeT"Y[Ã
Wpo
Z[jz^p]G�m�Gjz]Go"Y[T�Wp�[Tm��Z[|GT�ÔiZe]iTm�e��r¦W=]G�G�[omW=V�TÝµXT�o
^p\1T���\1^pYeT
YeqihphkTm�¾���¼|iTm]��Ájz�2�i�PZ[|GT�rzWp]G�i�eo"WpVXT�o"^p]G�[j¦�dZ-�Ý^=_�^p]GT
hprz^pµXW=r�V�TmW=�é����ZÝZ[|GT�^=Z[|GT"Y�Tm]G�Þ^p_&Ze|iT��eo"W=rzTp��c�|iT"YeT��
j¦�	��
»�p��Z[|iT�r¦W=]X�i�[omW=V�T1jz�g_xqGrlrztÊY-W=]X�w^p\���Ze|iT�]aqi\:µ�T"Y
^=_9rl^womW=r�^pViZ[jz\1WÊj¦��T
�aZ[YeT"\1TmrltÌr¦W=YehpT�W=]G�ÇZ[|GTÏ|GT"jzhp|OZ�^=_
Z[|GT&ÔGZ[]iT��[��V�TmWp�a���iTmo
YeTmWk��T���Ze^yc�WpYe�G��Ze|iT�W�~pT"Y-W=hkT�ÔiZe]iTm�e�"�
�(�IZe|iT&]aqi\2µXTmY�^=_ijz]kZeT"Y-Wpo
Z[jz^p]G�IµXT"Zdc&TmT"]2hpT"]GTm�Ijl]Go"Y[T�Wp�[Tm�m�
äÝW=qiê�\�W=]��[W�tw�IZ[|XWyZ � ^kVwZ[jz\1jz�eWyZejl^k]2o"Wp]�W=Z�Z-W=jz]2^k]irltÝTm~pTmY
V�^O^kY[TmY�o
^k\�VGY[^k\�j¦�[Tm� �i��{?|ij¦��jz�?T"�iWpo·Zerlt�Z[|iTÝVGY[^kµirlTm\¿c�T
_ËWpo"Tp�g��T"r¦WyZejl^k]G�[|ijlVX��µ�T
Zdc�T"T"]ÞhpT"]GTm�U^p]Þ�[jl]GhprzT·¶a��Z[Y-W=]X�wTm�
hpTm]i^p\1T��ÝW=YeT2Ze|i^k�[T1jl\1V�^k�[Tm�8µat�Z[|GT�hpTm]i^p\1j¦o2r¦W=]GhpqGWphpT
W=]X�ÂZ[|iT¥ViYe^pµirzT"\ jsZ-��Tmrs_d�ÆS(^kqiµirzT·¶w�dZeYeWp]G�wTm�ÂhkT"]i^k\1Tm�m�
|i^yc�T"~kT"Y��aWk�i�©Z[|iT�Wk�i�wjlZ[jz^p]GWpr�o
^k]G��Z[Y-W=jz]kZ?^=_PZ[|GT:o
^k\�VGrlT"Ã
\1T"]OZeWpY[t�\1W=Zeo-|ijz]ih1µ�T
Zdc�T"T"]���Z[Y-W=]G�i�m�
{I^yc�WpYe��Ze|iTU��ZeWpY�Z�^=_�Ze|iT(Yeqi]G�ÒZ[|iT9T
�wV�T"Yejl\1Tm]kZ?qG�[jl]Gh�Z[|GT
îp�k�µijlZÊ��jz]ihkrlT
¶a��Z[Y-W=]G�ÎàË�[jz]ihprzTÇ��Z[Y-W=]G�Ä�pã�ÔG]G�i�Ê|ijzhp|iTmY
\�Wy�wjz\:qi\/ÔiZe]iTm�e�À~yW=rzqiTm�Àµ�T
_x^pYeT»Z[|iTÂ��|G^pY[Z[T"Y�[jl]ihkrlT
¶

��Z[Y-W=]G�¾� ñ�^yc�T"~kT"Y8Z[|iT»��|i^kY�ZeT"Y½�[jl]GhprzT·¶a��Z[Y-W=]X�ÅT"�aV�T"YejlÃ
\1T"]OZ�T"~kT"]OZ[qXW=rzrlt�ÔG]X�i�Ýjz]G�wjz~Oj¦�wqGWprz�gc�jlZ[|È|ijzhp|GT"YgÔiZe]iTm�e�"�
{?|iT:�i^pqiµirzT·¶w�dZeYeWp]G��T
�wV�T"Yejl\1Tm]kZ9W=r¦��^1ÔG]X�i��ÔGZUjz]G�wjz~Oj¦�wqwÃ
W=r¦��T�W=Yerltk��{?|ij¦�(�[T"Tm\���Z[^©��qiVGVX^kY�Z�Ze|iT:YeT"r¦WyZejl~kTÝ]OqG\:µ�T"Y-�
^=_��eo-|iT"\�WyZ-W2Wk�[�[^wo
j¦WyZeTm��c�jlZ[|�hkT"]i^k\�T��?^=_�TmWko-|�ZdtaVXTk�
ñ�^yc�T"~kT"Y���Z[|iT�W�~kT"Y-W=hpTBÔiZ[]iT��[��^p_GZe|iT���jz]ihprzT·¶w�dZeYeWp]G�wT��ÝT"]wÃ
o
^w�wjz]ih�c�jsZe|�Ze|iTgrl^k]ihpTmY��dZeYeWp]G�!àË�[jz]ihprzTÝ�dZeYeWp]G�©�kãÒo"rljz\:µG�
�[rl^yc�T"Y¾Ze|GW=]�Z[|GW=ZI^=_aZe|iT&�[|i^pY[Z[TmYI��Z[Y-W=]G��àæ��jz]ihkrlTÒ��Z[Y-W=]X�1��ã·�
{?|ij¦�U�[qihkhpTm��Ze��Z[|GW=Z9W=rlZ[|G^pqihk|�ÔiZUjz]G�wjz~ajz�wqXW=r¦�UWpY[TÝ_x^kqi]G�¾�
Z[|GT(V�^pViqir¦WyZejl^k]�Wp�&WÝc�|i^krlT9o"W=]G]i^=Z&o"^p]a~pTmY[hkT?^p]OZ[^ÝZe|iT"\��
{?|iTmY[T�\�W�t8µXT©Z[|GY[TmT�Y[T�Wp�[^p]G�Ý_x^pY2Z[|ij¦�:T"ê�T�o·Z�ï!àxjbãgZ[|GTm�[T
ÔiZÝjz]G�wjz~Oj¦�wqGWprz�U\�W�t�T"]Go"^w�wT���Z[Y-WyZeT"hkjlT���c�jlZ[|È��|i^kY�ZUZ[TmY[\
µ�T"]iT"ÔiZe�©àxjz]½c�|ij¦o-|ÈomWp�[T�c&T�c&^kqirz�8T"�aV�Tmo
Z�Z[^!�[T"T�\1W=�aÃ
jz\:qi\¹ÔiZe]iTm�e�:~yWprlqiT��2�iTmo
YeTmWk��T�Wk�ÝZe|iT"tÌW=YeT�ëGqX��|iT��Ì^pqiZ
^=_?Ze|iT�V�^pViqGrzW=Z[jz^p]Xã
ð(àxjzj¦ãÝZ[|iT©rl^k]ihpTmY�hpTm]i^p\1T���W=YeT�\1^pYeT
�[qG�[o"T"VwZejlµGrlT2Z[^ÏµiYeTmW=�yWphpTÝ_xYe^p\,\:qiZeWyZejl^k]ÊWp]G�!o
Ye^k�e�[^y~pT"Y�ð
^pY1àxjzjzj¦ã9W©rl^k]ihpTmYUhkT"]i^k\�T�|GWk��Ze|iT1Y[^a^p\7Ze^�o"Y[T�WyZeT:\1^pYeT
hpTm]iTm��2��Z[Y-WyZeT"hpjzTm�gàË\�^O�dZ�^p_Ic�|ij¦o-|�W=YeTgVX^a^pY·ã·�
��qi]X��c&TmY[T�Wprz�[^g\1Wk�wTÝàxµiqiZÒ]i^=ZÒ�[|i^yc�]�|iT"YeT�ãIc�jlZ[|�\2qwZeW=Ã
Z[jz^p]�W=]G�2o
Ye^k�e��^y~kT"Y�Y-WyZeTm��_x^pYIZ[|iT?�[jl]ihkrlT
¶a��Z[Y-W=]G�iTm�ÝT"�aV�T"YejlÃ
\1T"]OZe�PZe|iT?�[Wp\�T?Wp�I_x^kYIZe|iT��w^pqGµirlT
¶a��Z[Y-W=]G�iTm�ÝT"�aV�T"Yejz\�Tm]OZ
àxjzTp��|GWprl~kTm�Gã
�P{?|GT��[jl]GhprzT·¶a��Z[Y-W=]X�gT
�wVXTmY[jz\1T"]OZe�PV�T"Y[_x^pYe\1Tm�
T"~kT"]ÏµXT"Z�ZeT"Y�Ze|iT"]��
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����±I¯���Ø	� ÖO× 	���°G®aÛdØ ×

�UqiY?]iT"�OZ(�[T
Z�^p_IT
�wV�T"Yejl\1Tm]kZ-��_x^wo
qG�e��T���^k]�Ze|iTÝjl]a~kT"Y-��jz^p]
^pV�T"Y-WyZe^pY��Ò�8T:Y-W=]�T
�wV�T"Yejl\1Tm]kZ-��qG�[jl]Gh��wjlê�TmY[Tm]kZUYeW=Z[Tm��^=_
jz]O~kT"Y-��jz^p]�����rzrw^=Ze|iT"Y�VGWpYeWp\1T
Z[TmYe�Ic�T"YeTBZ[|GT��[Wp\�T&_x^pY�T�Wpo-|
T
�wV�T"Yejl\1Tm]kZ��Ý�(�9jl]ÞZ[|iT�ViYeT"~ajz^pqG�UT
�wV�T"Yejl\1T"]OZ-�9o"T"rzrP�[jz\2Ã
qir¦WyZejl^k]G�?c&TmY[T9T"~k^prz~pT���Z[^1rzjl~kTgjl]�W1��jz\1VirzT9Tm]a~OjzYe^p]i\1T"]OZ��
{?|iYeT"TºT
�wV�T"Yejl\1T"]OZ-�Âc&TmY[TÎo
^k]G�wqGo
Z[Tm��c�jlZ[|¸jl]a~kT"Y-��jz^p]
Y-WyZ[T��B�i�a�i�z� gWp]G���i� �i��fÒWko-|�YeW=Z[T�j¦�BZe|iT�ViYe^pµXW=µijzrljlZdt2Z[|GW=Z
WghpTm]i^p\1T�j¦�Bjz]a~pT"Y[Z[T��¾���¼YeW=Z[T�^p_¾�g\1T�W=]G�BZ[|GW=ZÒjl]a~kT"Y-��jz^p]
�w^aTm�(]i^=Z9^wo"o
qGYm�(SU^pqGµirlT
¶a��Z[Y-W=]G�iTm��hpTm]i^p\1T��"�X^=_Òo
^kqiY-��Tk�
c�T"YeT9qX��T���jz]ÏZ[|iTÝT"�aV�T"Yejz\�Tm]OZe�m�
nPjlhkqiYeTÏâ8hpY-W=VG|G��Ze|iT�W�~pTmYeWphpT�Wp]G�Ç\�W=�ajz\:qG\¸ÔiZ[]iT��[�[Tm�
_x^pY�Z[|iT���TÞT
�wVXTmY[jz\1T"]OZe�m�Ä��rlZ[|i^kqihp|Ze|iTm�[T!YeTm�[qirlZe���[|i^yc
^p]Grlt1^p]GTUYeqi]��ac�T(Y-W=]�\�W=]at�Z[Yej¦W=r¦�&Wp]G��Ze|iTm�[TUYeTm�[qirlZe��W=YeT
YeT"ViYeTm�[T"]OZeW=Z[jz~pTk�
{?|iT©T
�wVXTmY[jz\1T"]OZe�:VXTmY�_x^kY[\1T��Ìc�jsZe|ÌZ[|GT � µ�^a^=Z-�dZeYeWpViVijz]ih
ViYe^pµirzT"\ �9��|G^yc½qG�PZ[|XWyZ�Z[|iT?ViYe^pµGrlTm\�jz��o-|XW=Y-Wpo·ZeT"Yejz�[Tm�gµat
|ijzhp|ÞÔiZ[]iT��[�U_x^kqi]G�!T�W=Yerlt�µiqiZ9Ze|iT"]Ê]i^=ZÝ\2qGo-|!jz\�VGY[^y~kTm�
qiV�^p]ÈàxT"�wo"T"VwZ?V�T"Ye|GW=VG�&_x^kY?��Z[Y-WyZeT"hkjlT���Z[|XWyZ���TmT"\ÎZe^2|GW�~kT
�[|i^pY[Z1Z[T"Ye\ hOW=jz]¥µiqiZ�rl^k]ihpTmY1Z[T"Ye\ ViYe^pµGrlTm\1�1jzTp�Òc�|iT"YeT
Z[|GTÝ\1W=�wjl\2qi\ÓÔiZe]iTm�e��YeTm�wqGo"Tm��WphkW=jz]Xã
�
{?|iT�jz]a~pTmYe�[jl^k]�T
�wVXTmY[jz\1T"]OZe�(��|i^yc�Zdc�^�\�W=jz]�Y[T���qirlZe�mïUàËj¦ã
c�jlZ[|ijz]½Ze|iT�_xY-W=\1Tmc&^kY[�8^=_�Ze|iTÏµX^a^=Z-�dZeYeWpViVijz]ihÞVGY[^kµirlTm\��
Z[|GT�\�Wy�wjl\2qi\ ÔiZ[]iT��[�B~�WprlqGTm�ÒWpY[T�_x^kqi]G�1TmWpY[rzjzT"YBc�|iTm]1qG�dÃ
jz]ih�|ijzhp|iTmY�YeW=Z[T���^=_�jl]a~kT"Y-��jz^p]�ðXW=]G�Èàxjzjbã�Z[|iT:T
�wVXTmY[jz\1T"]OZe�
c�jlZ[|�|ijzhp|iTmYBY-WyZ[T���^=_¾jz]a~pT"Y-�[jl^k]2ViYe^w�wqGo"Tm�1|ijzhp|iTmYÒW�~pTmYeWphpT
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Avg Fitness 0
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nPjlhkqiYeTÒâiï�¤9Y-W=Vi|��[|i^yc�jz]ih�W=]:T
�wVXTmY[jz\1T"]OZ�qG�[jz]ih(�wjlê�TmY[Tm]OZ
Y-WyZ[T��?^=_Pjl]a~pTmYe�[jz^p]��

ÔiZe]iTm�e��T���\�T�W=]ijz]ihÞZ[|GW=Z1o"^p]a~pTmY[hkT"]Go"T�Z[^ÊZ[|iTÏ\�Wy�wjz\:qi\
ÔiZe]iTm�e��T��?c�Wk��_ËWp��Z[TmY�c�jsZe|Ï\1^kY[Tgjz]O~kT"Y-��jz^p]��
uv]a~pTmYe�[jl^k]ÑV�T"Ye\:qwZeTm�ÏZe|iTÈhpT"]G^p\1TÌW=]G�Ñ_ËW�~p^kqiYe�Ï�[|i^pY[Z[TmY
hpTm]iTm�1àæ��jz]Go
T1rz^p]ihkT"Y9^p]iT��gW=YeT��wj¦�[Y[qiViZ[Tm�Xã·�:uåZÝj¦�9]i^=ZÝjz\2Ã
\1Tm�wj¦WyZeT"rztÏo"rlT�W=Y��iZe|i^pqihk|���c�|Ot©Z[|Gjz�U��|i^kqir¦��jl]Xo
YeTmWp�[TgZ[|GT
o
^k]a~pT"YehpTm]Go
T&^=_XZ[|iT�V�^pViqGrzW=Z[jz^p]�c�jsZe|i^pqwZÒ�[jzhp]ijlÔXo"Wp]OZ[rztÝjl]wÃ
o
YeTmWk��jz]ih:Z[|iT9\�Wy�wjl\2qi\ÓÔiZe]iTm�e�m����TmY[|XW=VG�ÒZ[|iT9\�Wy�wjz\:qi\
ÔiZe]iTm�e��|GWk����qXo-|ÏW��[\�W=rzr�Y[Tmhpjz^p]©Z[^�jz]Go
YeTmWk��T9jz]kZe^1Z[|GW=Z(jlZ
�[jl\1VirztUj¦�[]�ß ZP�wjz�eo
TmY[]GjlµirzTp�I{?|ijz��T
�wV�T"Yejl\1T"]OZ�|GWk�¾ViYe^w�wqGo
T��
_ËW�~p^kqiY-W=µirzT�Y[T���qGrsZ-�"��µiqiZ©\1^pYeT�_ËW�~p^kqiY-W=µirzT�T
�wVXTmY[jz\1T"]OZe�
qG�[jl]Gh½WÈ|GW=Y-�wT"Y1ViYe^pµGrlTm\@c�jlZ[|¼\1^pYeT��dZ-W=hpT���Z[^ÈÔG]X�wjl]Gh
Z[|GT�\�Wy�wjl\2qi\�ÔGZ[]iT��[�&W=YeT�]GTmo
T��[�eW=YetÝ_x^kYÒW=]1T
�wVir¦W=]XWyZ[jz^p]��

� � Ø × ² �[Ú(®aÛdØ × ®

{?|ij¦��VGWpVXTmY�ViY[T���Tm]OZe��W]iT"c�µijz^prz^phpj¦o"Wprlrzt¼jz]G��VGjlYeTm�»T"]wÃ
o
^w�wjz]ihÑ�eo-|iTm\�TÇµGWp�[Tm��^p]ÂZe|iT¥�i^pqiµirzT·¶w�dZeYeWp]G�wT���S9�(�
\1^przTmo"qirlTk� {?|GT¿�w^pqiµGrlT
¶a��Z[Y-W=]G�wT�� Tm]Go
^w�wjz]ih<�[o-|GT"\1T
µ�^O^O�dZ-��Ze|iT8]OqG\:µ�T"YÏ^=_2�eo-|iT"\�W=ZeWÈZe|GWyZ�\�W�t¥µ�TÊYeT"VGY[T"Ã
�[T"]OZ[T��c�jsZe|ÍWÌhpjz~pTm]À]aqi\2µXTmY�^p_9µijlZe�m��Ze|OqX��jz]Go
YeTmWk��jz]ih
Z[|GT8µGY[T�Wp�aZe|»W=]X�ÍT
É�o"jlTm]Go
t¼^p_2��T�W=Y-o-|��¿ñ�^yc�T"~kT"Y���Z[|GT
�w^kqiµirzT·¶a��Z[Y-W=]X�wTm�¥T"]Go"^w�wjl]GhÇ�[o-|GT"\1T�jz�©WÌ�w^pqGµirlT�T��whpT��
�[c&^kYe�¾� �¼|ijzrz��Z©Ze|iT8]OqG\:µ�T"YÏ^=_2�eo-|iT"\�W=ZeW½�[TmWpYeo-|iT��jz�
r¦W=YehpT"Y���o
^k]G��Z[Y-W=jz]kZ-��T"\1TmY[hkTÞµ�T
Zdc�T"T"]ÍZ[|iT8�dZeYeWp]G�i��Z[|GW=Z
Wp�G��Ze^1Z[|iT�o"^p\1VirzT
�wjsZdt�^=_�Ze|iTÝViYe^pµirzT"\ÜµXTmjl]Gh1�[^prz~pT��¾�
{?|iT��w^kqiµirzT·¶w�dZeYeWp]G�wTm�ÊT"]Xo
^w�wjz]ih��[o-|iTm\1T�^=êéT"Y-�9Zdc&^�Wp�wÃ
~yW=]OZeWphpT���^y~pTmYIWU��jz]ihprzT·¶w�dZeYeWp]G�wT��UTm]Go
^w�wjz]ihXïÒàxjbã¾Ze|iT�]OqG\2Ã
µ�T"Y(^p_B�[o-|iTm\�WyZeW�Z[|GW=ZUW=YeTÝY[TmViYeTm�[T"]OZ[T��©µatÏTmWko-|�hpT"]G^p\1T
j¦��\:qGo-|¼r¦W=YehpTmYmð�Wp]G�Äàxjzj¦ã�WÈµijl^krl^khpj¦o"Wprlrzt½jz]G��VGjlYeTm�W=rzhp^pÃ
YejsZe|i\¸_x^pY�Z[|GT©jz]a~pT"Y-�[jl^k]½hpTm]iT
Zejzo©^pV�T"Y-WyZe^pY:j¦�1��jz\1VirzT�Ze^
jz\�VGrlTm\�Tm]OZm�È{?|iT©jz]Go"Y[T�Wp�[T�jl]Ç]OqG\:µ�T"Y�^=_(�eo-|iT"\�WyZ-W�_x^kY
�w^kqiµirzT·¶a��Z[Y-W=]X�½T"]Xo
^w�wjz]ihk�1hkjl~kTm��Z[|GT�hpT"]GT
Z[j¦o�W=rzhp^kY[jlZ[|i\
\1^pYeT&jz]w_x^kY[\�WyZejl^k]�Ze^9qX��T?W=]G��W=rzrz^yc���_ËWk�dZeT"YB�[TmW=Y-o-|�^p_GZ[|GT
ViYe^pµirzT"\7��VXWpo
Tk�Ò¤9Y[T�WyZeT"Y�Y-WyZ[T��?^=_�jl]a~kT"Y-��jz^p]Ïc&TmY[TÝ�[|i^yc�]
Z[^Êjl]Xo
YeTmWp�[T1Z[|GTÏo"^p]a~pTmY[hkT"]Go"T�^p_(W!V�^pViqGrzW=Z[jz^p]���µiqwZ�Z[|GT
YeTmWp�[^p]X�Ò_x^kY?Z[|ij¦��YeT"\�W=jz]Ïqi]Go
rzTmWpYm�

�8TÏ|ataV�^=Z[|GTm�[jz�[T�Ze|GWyZ�Z[|GTÏ\�W !d^pY��wY-W�c�µGWpo-�8^=_(qX��jz]ihÈW
�w^kqiµirzT·¶a��Z[Y-W=]X��T"]Xo
^w�wjz]ih9�eo-|iTm\�T�j¦�PZ[|GW=ZPZe|iT��dZeYeWp]G�i�Pjz\2Ã
V�^k�[T½WÀ_xqiY�Ze|iT"YÊo
^p]X�dZeYeWpjl]OZ�^p]�Z[|GT½hpTm]iT
ZejzoÌWprlhk^pYejsZe|i\�ï
\1^w�wjsÔ�o"WyZejl^k]Â^=_2jz]w_x^kY[\�WyZejl^k]»^k]Â^p]iTÌ��Z[Y-W=]G��\�W�tÑWp�wÃ
~pTmYe�[T"rzt½WyêéTmo
Z�jl]i_x^pYe\1W=Z[jz^p]À^p]ÀZ[|GT�^=Z[|GT"Y���Z[Y-W=]G�¾�Í{?|GT
o
^k]G��Z[Y-W=jz]kZ-���wTmo"Y[T�Wp�[T(Ze|iT�Y-WyZeT9^p_�o"^p]a~pTmY[hkT"]Go"TU^p_�W�V�^pVwÃ
qir¦WyZejl^k]��

� � Ú�¯iÚ�° ���ÆØB°��

niqGY�Ze|iT"YÍYeTm�[TmWpYeo-|Üc�jsZe|,^=Z[|GT"YÍViYe^pµGrlTm\1�m�Þjz],VGW=Y[Z[j¦o
qiÃ
r¦W=Y��dZ-W=]G�GW=Y-�ÌZ[T��dZ�ViYe^pµGrlTm\1�m�Òj¦��Y[T�ÐOqijlYeTm�½Z[^Ì�wT"Z[T"Ye\1jl]GT
c�|iT"Z[|iTmYgZ[|iT1|ataVX^pZ[|iT���j¦�9\�Tm]OZ[jz^p]iT��Þjz]ÞZe|iT1rzWk�dZÝ�[Tmo·Zejl^k]
��ZeW=]X�i�"� �ÊT8]iTmTm�Ze^ÇqG�[TÊ�w^kqiµirzT·¶w�dZeYeWp]G�wTm�Tm]Go
^w�wjz]ihO�
jz]ÞViYe^pµirzT"\���Z[|GW=ZgWpY[T�]G^=ZgT"~p^krl~ajz]ih 5*�����#�
� � .:��5·�9{?|GW=ZUj¦�"�
c�|iTmY[T?Ze|iT�ÔiZe]iTm�e�Bj¦��]i^pZ&Wg\1^y~Ojz]ihgZ-W=YehpT
ZBWp]G�1c�|iT"YeT?Z[|GT
qi]w_x^kY�Zeqi]GW=Z[Tg��jlZ[qGW=Z[jz^p]�^p_�|ijzhp|irzt1ÔiZ���^krlqwZejl^k]G�&ViY[^w�wqXo
jz]ih
V�^O^kY�^=ê¾��VGY[jz]ih��w^aTm�?]i^pZ�T
�wj¦�dZ��
uå_d�ijz]G�wTmTm�¾�aZe|iTÝjl]OZeT"Y�¶a��Z[Y-W=]G��o"^p]G��Z[Y-W=jz]OZe�?W=YeTgW2VGY[^kµirlTm\��
W�~yW=YejzT
Zdt�^p_BW=ViViYe^kWko-|iTm��Ze^��wT�o
YeTmWp�[TgZ[|Gjz�(T
êéTmo·Z9ViYeTm�[T"]OZ
Z[|GT"\���Tmrl~kTm�mï&àËj¦ãÒWg|ijlhk|iT"YÒYeW=Z[T�^p_�jz]a~pT"Y-�[jl^k]�ðkWp]G� ��^kY�àxjzj¦ãBW
�[VGW=Y-��TmY��wT"]X��jlZdtÊ^p_�hpTm]iTm��àËVXTmY[|XW=VG�2o"W=qX��T��ÈµOt8W!�wjlê�TmY�Ã
T"]OZÏhpT"]G^p\1jzo�r¦W=]GhpqGWphpT�^pY©rl^k]ihpTmY�hpTm]i^p\1T��eã
�Â�(]i^=Ze|iT"Y
Z[T�o-|i]ij¦ÐOqiT�\�W�t!|iT"rzV�ï�qX��T1Ze|iT��w^pqGµirlT
¶a��Z[Y-W=]G�iTm�!Tm]Go
^w�aÃ
jz]ih�^p]Grlt�WyZ�Ze|iT2��ZeWpY�ZU^=_�T"~k^przqwZ[jz^p]�c�|iTmY[TgZe|iT:jz]Go"Y[T�Wp�[Tm�
µiYeTmWk�aZ[|�^p_Ò��T�W=Y-o-|Ïj¦�UqG��T"_xqirì�U��_bZeT"Yg��^k\1TÝZ[jz\1Tp��_x^pr¦��Z[|GT
��Z[Y-W=]G�i�(^pqwZ9jl]OZe^�W�rz^p]ihkT"YU�[jz]ihprzT·¶w�dZeYeWp]G�wTm�ÏTm]Go
^w�wjz]ih�Ze^
T"rzjz\�jz]GW=Z[TgZ[|GTÝjl]OZ[TmYd¶w�dZeYeWp]G��o"^p]G��Z[Y-W=jz]OZe�m�
{?|iT���jz]ihprzT·¶w�dZeYeWp]G�9T
�wV�T"Yejl\1T"]OZ-�IWprlc?W�tw����TmT"\�Z[^UVXTmY�_x^kY[\
µ�T
Z�ZeT"YÝZe|GW=]8Ze|iT��w^pqGµirlT
¶a��Z[Y-W=]G�ÞT
�wV�T"Yejl\1T"]OZ���µiqwZ:S9�(�
j¦��W��w^kqiµirzT·¶a��Z[Y-W=]X�wTm�Ïo
^w�wjz]ihG�&�¼|atÏ�[|i^pqGrz�Ïµijz^prz^phkt�qG�[T
W=]:jl]w_xTmY[jz^pYP��^krlqiZ[jz^p] �Ï`aqiYeT"rzt(Ze|iT?W=]G�[c&TmY�rzjlT���jz]ÝZ[|GT&^pZ[|iTmY
µ�T"]iT"ÔiZ:^=_��w^kqiµirzT·¶a��Z[Y-W=]X�wTm�8o
^w�wjz]ihk�m�IZ[|iT�^k]iT1Z[|GW=Z:|GWk�
]i^�W=]XW=rz^phpqGT:jz]Ê^kqiYÝ\1^a�iT"rì��{?|GW=ZÝjz�m�¾Z[|XWyZÝZdc�^Ï��Z[Y-W=]G�G�
T"]X��qiYeT�hpYeTmWyZeT"Yg�dZ-W=µijzrzjsZdt�^p_ÒZ[|GT1S9�(�Î\1^krlT�o
qirzT�Wp]G�ÊY[T"Ã
�wqGo"T�Z[|GT�T"YeY[^kY�YeW=Z[Tp����T"Ye|GWpVG�PZ[|iT(jl]OZ[TmYeo"^p]i]GTmo·ZeTm�w]GTm�e��^=_
Z[|GT��dZeYeWp]G�i��jz��Ze|iTÝViYejzo"Tgµijl^krl^khpt1VGW�tw��Z[^1µiqGjlr¦��o
^p\1VirzT
�
^pYehkWp]ij¦��\��m�

����� ��° � × ² ��®

��rzµ�T"Y[Ze�m�é��Y-W�tp��T
ZgW=rì�Pà��mápá��Oã
��� +#0 �-7 �!0 �#��	 .:+#0 + �  +�
 �(�)�
� �&010 �Ç¤gW=YerzWp]G�½�Òqiµirzjz�[|ijz]ihG�B�(T"cÓ¨B^kY[�é��Z[|GjlY-�½T��wjsÃ
Zejl^k]��

¤gW=Y-�w]iTmYm��f���G�z��`wjl\1\1^p]G�m��èÌ��X�z��Wp]G�Ì`a]aqG��ZeWp����S2�I���
à��mápáG��ã
��� �*.1%'7&. ,'02�*5 +�
�� �&%'�&�9.:7�5·��k^p|G]¼�¼jlrzT"t��
`a^k]G�m�wT"jzhp|OZ[|�Tm�ijsZejl^k]��

¤9^pr¦�wµ�T"YehG�=S2�pf��wà��mápîkákã
��� �&%'�&�9.:7��<0 � +#�*.1�(�/" 5 .1%��8�-�;��7 ���
� ,'��.1" .����;�9.:+;% �#% � � ��7-�/.1%8�! �-�;�*%6.1% � �Å�U�i�wj¦��^k]a¶
�8Tm�[rlTmtp�

406 GENETIC ALGORITHMS



ñ�^krlr¦W=]X�¾� X�Gñ���à��mákák�pã
� � � � ,8� �;�9.:+;% .1%�� �#� �!���;0 �#% � �<���
��. ��7&.:�#0 �� 5*� �&" 5-�¹è�ud{¸�BYeTm�e�"�:§�Wp\:µiYejz�ihpTp��èÞWp��Ã
�eWpo-|aqG�[T
Z[Ze�m�aÔGYe��Z�è�ud{»ViY[T��[��T��wjsZejl^k]��

äÝW=YehpqGVwZeWG�mñ��aàæ�p�p�k�kã·�={?|GTBhpTm]iT
ZejzoBo"^w�wTÒW=]X�9Z[|iT&hpT"]G^p\1T
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Abstract

Multi-way partitioning is an important ex-
tension of two-way partitioning as it provides
a natural and direct model for many parti-
tioning applications. In this paper, we pro-
pose a hybrid genetic algorithm for k-way
partitioning. The algorithm includes an ef-
�cient local optimization heuristic which is
not based on the bisection method. It con-
siderably outperformed existing k-way parti-
tioning algorithms.

1 Introduction

Partitioning is an important problem that arises in
various �elds of computer science, such as sparse ma-
trix factorization, VLSI circuit placement, and net-
work partitioning. Good partitioning of a system not
only signi�cantly reduces the complexity involved in
the design process, but can also improve the timing
performance as well as its reliability [2] [14].

Let G = (V;E) be an undirected graph, where V rep-
resents the set of vertices and E represents the set of
edges. k-way partition is a partitioning of the vertex
set V into k disjoint subsets. A k-way partition is said
to be balanced if the di�erence of cardinalities between
the largest and the smallest subsets is at most unity. In
this paper, we consider only balanced partition. The
cut size of a partition is de�ned to be the number of
edges whose endpoints are in di�erent subsets of the
partition. The k-way partitioning problem is the prob-
lem of �nding a k-way partition with the minimum cut
size. A two-way partition is often called bisection or
bipartition.

Since the k-way partitioning problem is NP-hard [15]
even for k = 2, and �nding good approximation solu-
tions for general graphs or planar graphs is also NP-

hard [4], attempts to solve partitioning problems have
concentrated on �nding heuristics which will yield ap-
proximate solutions in polynomial time. Among such
methods are the Kernighan-Lin algorithm (KL) [17],
the Fiduccia and Mattheyses algorithm (FM) [10], sim-
ulated annealing (SA) [15] [18], tabu search (TS) [1]
[9] [22], large-step Markov chain (LSMC) [20] [11], and
genetic algorithms (GA) [5] [6] [7] [13] [19] [23] [26].

Traditionally most k-way partitioning algorithms have
been based on bipartition. Two representative ap-
proaches in this context are the pairwise approach and
the recursive one. The pairwise approach starts with
an arbitrary k-way partition. It picks two subsets at
a time from the k subsets and performs bipartition-
ing to reduce the cut size between the two. A well-
known heuristic is the Pairwise KL (PKL), which was
suggested in [17]. Figure 1(a) shows the pairwise ap-
proach. The other recursively bipartitions the target
graph until we have k subsets. A representative heuris-
tic is the Recursive KL (RKL) [24] [25] [5]. Figure 1(b)
shows the recursive approach. These heuristics using
bipartition for k-way partitioning have several draw-
backs. They focus on the current partitions without
considering entire partitions, which makes the search
rather \local," as shown in Figure 1(a) and Figure
1(b).

Another method is a direct extension of the 2-way FM.
Since FM is based on a sequence of single vertex move-
ments, whereas KL is based on a vertex pair swap, FM
is more appropriate for extension to k-way partition-
ing. A k-way partitioning algorithm based on the 2-
way FM heuristic is often referred to as k-FM [8]. In
the 2-way FM, each vertex can move only to the op-
posite subset. In the k-way partitioning problem, each
vertex has k�1 possible destination subsets. k-FM al-
lows movement of any vertex to any of the k�1 subsets.
This approach enables vertices to move between any
arbitrary subsets such that it assists \global" changes
in the current con�guration, as showed in Figure 1(c).
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(a) pairwise (b) recursive (c) direct

Figure 1: Three k-way partitioning approaches

Sanchis [25] showed that the direct multi-way parti-
tioning approach obtained better solutions compared
to the recursive approach for random networks.

We use a variation of k-FM in our hybrid GA. For con-
ventional k-FM algorithms, each subset has to main-
tain k � 1 buckets because each vertex is associated
with k� 1 subsets. This requires k(k� 1) buckets and
O(k �N) space, where N denotes the total number of
vertices. Our algorithm uses one global bucket list. In
this case, O(k �N) space is required as usual, but the
bucket is maintained like the 2-way FM. We observed
that tie-breaking strategies perform di�erently upon
di�erent graphs. We designed the genetic algorithm
in such a way that attractive tie-breaking strategies
survive through evolution. We also allow the violation
of the balance criterion for more exible search, which
also turned out to contribute toward the improvement.

The remainder of this paper is organized as follows.
Section 2 summarizes the Fidducia and Matteyses al-
gorithm and provides our local optimization heuristic
for the k-way partitioning problem. Detail of the hy-
brid GA optimization is described in Section 3. We

present experimental results in Section 4 and state our
conclusions in Section 5.

2 The Heuristic for k-way

Partitioning

2.1 Fidducia and Matteyses Algorithm

(FM)

The FM algorithm is a local-optimization heuristic for
graph bisection. Starting with an initial bisection, FM
moves a vertex at a time from one subset to another

in an attempt to minimize the cut size.

Let P be one side of a bisection for G = (V;E). For
vertices v 2 P , we denote by gv the cut size reduction
when vertex v moves to the opposite side. The ver-

tex to be moved is chosen on the basis of the balance
criterion and its e�ect on the cut size of the current bi-
section. If we do not consider the balance criterion, all
vertices will eventually migrate to one side except the

lowest-degreed vertex. To prevent the vertex-moving
process going into an in�nite loop, each vertex is locked
after movement and can not move any further. Only
unlocked vertices are allowed to move. A pass contin-
ues choosing vertices and moving them until all ver-
tices are locked or any further move violates the bal-
ance criterion. After all moves have been made, the
best partition encountered during the pass is taken as
the output of the pass.

2.2 Extended FM Algorithm

Sanchis [25] extended the FM algorithm for the k-
way partitioning. The algorithm considers all possi-
ble moves of each vertex from its home subset to any
of the others. It maintains k(k � 1) gain bucket lists.
We simpli�ed the algorithm to use one global bucket
list. Each vertex occupies an entry with the largest
gain among the k � 1 gains. This reduces the run-
ning time to �nd the best move from k(k�1) buckets.
Bucket operations such as addition or deletion of an
entry occur in the one bucket. So the bucket can be
maintained like the 2-way FM algorithm.

Our Extended FM (EFM) algorithm is given in Figure
2. It has two phases, MoveVertex and MakeBalance.
In MoveVertex, for each vertex, the algorithm calcu-
lates gains for the k � 1 subsets and stores the best
subset with corresponding gain. Then the algorithm
selects the vertex which has the highest gain among
the vertices whose movements do not violate the bal-

ance requirement. After we move the vertex, we adjust
gains that are a�ected by the movement and lock it. If
there is no more vertex to move, we undo the sequence
of movements at the time that the gainsum is maximal.
We continue this until there is no improvement. Then
the result of MoveVertex passes into MakeBalance.

The result of MoveVertex may not balance the par-
tition. In this case, we adjust each subset size for
the balance in MakeBalance. MakeBalance is similar
to Movevertex. The only di�erence is that MakeBal-
ance focuses on subsets whose sizes are surplus or de-
�cient. MakeBalance selects a vertex from a surplus
subset and moves it to a de�cient subset. At the end
of MakeBalance, the k-way partition satis�es the bal-
ance. The nomenclature for the algorithmMoveVertex

and MakeBalance is described in Figure 3.

In the MoveVertex of Figure 2, lines 2 through 6 com-
pute the gains for all vertices. Each loop of lines 8
through 17 chooses a vertex, moves and locks it. In

lines 18 and 19, we �nd a sequence that maximizes the
gainsum and undoes the remaining sequence of move-
ments to obtain the smallest cut size in a pass. In
the MakeBalance, in lines 1 through 5 we �nd vertices
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in surplus subsets, calculate the gains of the moves to
de�cient subsets. Lines 6 through 11 choose a vertex,
move and lock it. If every subset satis�es the bal-
ance, MakeBalance returns the balanced partition and
a pass is terminated.

2.3 Tie-Breaking Strategies

Two kinds of ties occur when the algorithm maintains
a global bucket list. First, while the algorithm calcu-
lates gains for k� 1 subsets we may get the same gain
for more than one subset. Two tie-breaking strategies
were used in this case. One is where we choose a subset
which has the smallest index (SMALL). The other is
one in which we give preference to the subset to which
a vertex moved most recently (RECENT).

There is another type of tie; there may exist more
than one vertex in the max gain bucket. Hagen et al.

[12] observed that the LIFO management of gain buck-
ets yields considerably better solutions than FIFO and
Random bucket management for the 2-way FM heuris-
tic. We, however, observed that this phenomenon is
not consistent in our multi-way partitioning.

In the bipartition with LIFO management, neighbors
of the recently moved vertices have a higher chance of
winning a tie break. Hence LIFO management deals

with clusters e�ectively. However, this is not the case
in LIFO management for the k-way partitioning prob-
lem when k is greater than 2. Since there are k � 1
candidate subsets for moving, it is not easy to concen-
trate an one or two subsets. Moreover, an arbitrary
subset has a limit in inhaling a cluster unless some
vertices do not move out.

We combined Random and LIFO management. First,
we try to use LIFO management. When the last ver-
tex moved to the subset P , and the vertex at the front
of the max gain bucket is ready to move to P , we move
the vertex to P regardless of the balance criterion in
an attempt to move the vertex along with its neigh-
bors. If the front vertex is not headed for P , we use
the Random management. we call this tie-breaking
rule Combined management. We examined the perfor-
mance of LIFO, Random, and Combined management.
The experimental results are in Table 1. One can ob-
serve that Combined management overall shows better
results than LIFO and Random bucket management.

Hereafter, we refer to SMALL+Combined manage-
ment as EFMA and RECENT+Combined manage-
ment as EFMB.

Extended FM (G, P )
// P : a given initial subset;
repeat f

P  MoveVertex(G, P );
P  MakeBalance(G, P );

g until (stopping condition)

MoveVertex(G, P )
1. do f
2. for each v 2 V f
3. 8i = 1; 2; : : : ; k; calculate gv[i];
4. gv  max1�i�k gv[i];
5. add v to FreeList;
6. g
7. i  0
8. do f
9. Choose a vertex v 2 FreeList s.t.

gv is maximal;
10. Find a 2 f1; 2; : : : ; kg that maximizes gv[a];
11. Move v to subset a and lock v;
12. Adjust gains that are a�ected by

v's movement;
13. Remove v from FreeList;
14. i++;
15. �i  gv;
16. g until ( FreeList is empty )

17. Find l 2 f1; : : : ; ig that maximizes
P

l

j=1
�j ;

18. undo the sequence of movements from l + 1 to i;
19. g until ( There is no improvement )

MakeBalance(G, P )
1. for each v 2

S
f Vi j jVij > jVijorgg f

2. 8j 2 f i j jVij < jVijorgg, calculate gv[j];
3. gv  max

j

gv[j];

4. add v to FreeList2;
5. g
6. do f
7. Choose a vertex v 2 FreeList2 s.t.

gv is maximal;
8. Find a 2 f1; 2; : : : ; kg that maximizes gv[a];
9. Move v to subset a and lock v;
10. Adjust gains that are a�ected by v's movement;
11. g until ( Every subset satis�es the balance )

Figure 2: Extended FM Algorithm

Vi : subset i,
S
1�i�k

Vi = V

jVijorg : original size of Vi

gv[i] : the gain of moving vertex v to subset i
gv : the maximum among gv[i]'s for all i = 1; : : : ; k
�i : the gain of ith movement in MoveVertex

Figure 3: The nomenclature for the EFM
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Create initial population of �xed size;
do f

Choose parent1 and parent2 from population;
normalization(parent1,parent2 );
o�spring  crossover (parent1,parent2 );
EFMA(o�spring) or EFMB(o�spring)

according to the probability;
replace (population,o�spring);

g until (stopping condition);
return the best solution;

Figure 4: The Genetic Extended FM algorithm for
multiway partitioning (GEFM)

2.4 Time Complexity

The FM algorithmuses a bucket list structure to main-
tain the gains of vertices. The complexity of the FM
algorithm is O(jP j) where P is the number of pins in a
circuit graph (hypergraph). Since the graphs used in
our experiments do not have hyperedges (edges with
more than two endpoints), the time complexity of the
FM algorithm is O(jEj).
The time complexity of the Sanchis algorithm [25] is
O(k � jEj �l �(log k+lp)) where p is the maxdegree of the
graph. l comes from the concept of \level gain." If we
ignore the concept of level gain, the time complexity is
O(k � jEj � log k). The fact that the Sanchis algorithm
maintains k(k�1) bucket lists causes additional load in
the processing. The term log k comes from the main-
tenance of the heap for keeping the max gain vertex.
In our algorithm, we easily �nd a max gain vertex in
the one bucket. Hence the term log k can be removed
and our implementation of k-FM takes O(k � jEj).

3 Hybrid Genetic Algorithm

A genetic algorithm starts with a set of initial solutions
(chromosome) which are called a population. This
population then evolves into di�erent populations over
a number of iterations. At the end the best member
of the population is returned by the algorithm as the
solution to the problem. If we add a local improve-
ment heuristic, typically after mutation, we say it is
hybridized and a GA with this scheme is called a hy-
brid GA. Our hybrid genetic algorithm is described
in Figure 4. We used the general structure of hybrid
steady-state genetic algorithms. In the following, we
denote the framework by GEFM.

� Encoding : A k-ary string for each chromosome to
represent a k-way partition is used. For example,
if the ith vertex belongs to subset j, the value of

the ith gene is j.

� Initialization: First, p chromosomes are cre-
ated. Each chromosome keeps a balanced par-
tition scheme. We set the population size p to be
50 in GEFM.

� Selection: The roulette-wheel-based proportional

selection scheme is used. The probability that
the best chromosome is chosen was set to four
times higher than the probability that the worst
chromosome is chosen.

� Crossover and Mutation: We normalized the par-
ents before crossover. This was done in [19] and
helps maintain consistency between the two par-
ents. We used a �ve-point crossover operator.
After crossover, chromosomes are usually not bal-
anced. We start at a random point on the chromo-
some and adjust the gene values to the right until
the balance is satis�ed. This has some mutation
e�ect, so we do not add any speci�c mutation.

� Local Optimization: Since the merits of EFMA
and EFMB for the k-way partitiong problem can
di�er according to the graph, we used EFMA
and EFMB together. At the begining, one of
EFMA and EFMB is chosen as a local optimiza-
tion heuristic with identical probability by the ge-
netic algorithm. If EFMA is chosen and the o�-
spring tuned by EFMA replaces a solution tuned
by EFMB, we increase the probability that EFMA
is chosen. The opposite case for EFMB is handled
in the same manner. Formally, the probability
that EFMA is chosen is A=A+B where A and B

are the numbers of solutions tuned by EFMA and
EFMB, respectively. In fact, A + B is the size
of the population. In this way, we are relieved
of the choice of an appropriate local optimization
heuristic depending on di�erent graphs.

� Replacement : If it is superior to the closer parent
in Hamming distance, the o�spring replaces the
closer parent, if not,the other parent is replaced if
the o�spring is better. If not again, the worst in
the population is replaced.

� Stopping Condition: For stopping, we use the
number of consecutive fails to replace one of the
parents. We set this number to be 50 in GEFM.

4 Experimental Results

4.1 The Test Set and Test Environment

Before showing the experimental results, we �rst in-
troduce the benchmarks used in this experiment. The
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Table 1: Cut sizes of Experiments with tie-breaking strategies

LIFO Random Combined
Graph

Best1 Average2 Best3 Average4 Best5 Average6

G500.20 4080 4109.78 4077 4105.97 4066 4091.54
G1000.2.5 349 366.25 352 373.73 343 360.23
U500.40 5381 5518.51 5362 5478.48 5391 5474.34
U1000.05 193 240.87 213 257.14 164 203.32
reg500.20 230 240.94 226 239.61 228 239.94
reg5000.0 2004 2068.62 2016 2082.61 1929 2017.65
cat.5252 565 670.24 632 729.45 593 677.94
rcat.134 91 92.23 91 92.50 91 92.42

grid5000.50 751 873.05 792 961.80 702 750.60
w-grid100.10 128 129.49 128 129.20 128 130.03

1. The best cut size of 1,000 runs with LIFO bucket management
2. The average cut size of 1,000 runs with LIFO bucket management
3. The best cut size of 1,000 runs with Random bucket management
4. The average cut size of 1,000 runs with Random bucket management
5. The best cut size of 1,000 runs with Combined bucket management
6. The average cut size of 1,000 runs with Combined bucket management

graphs are composed of eight random graphs and eight
geometric graphs with the number of vertices ranging
from 500 to 1,000, eight random regular graphs, eight
caterpillar graphs, and eight grid graphs with the num-
ber of vertices from 134 to 5,252. They are described
in [15] [5] [3]. These graphs have also been used in a
number of other papers on graph partitioning [1] [26]
[21]. The di�erent classes are briey described below.

1. Gn:d : A random graph on n vertices, where an
edge is placed between any two vertices with prob-
ability p chosen so that the expected vertex de-
gree, p(n� 1), is d.

2. Un; d : A random geometric graph on n vertices
that lie in the unit square and whose coordinates
are chosen uniformly from the unit interval. There
is an edge between two vertices if their Euclidean
distance is t or less, where d = n�t2 is the ex-
pected vertex degree.

3. regn:b : A random regular graph on n vertices
each of which has degree 3, and for which the
optimal bisection size is bwith probability 1�o(1),
see [3].

4. cat:n : A caterpillar graph on n vertices, with
each vertex having six legs. It is constructed by
starting with a straight line (called the spine),
where each vertex has degree two except for the
outermost vertices. Each vertex on the spine is
then connected to six new vertices, the legs of the
caterpillar. With an even number of vertices on
the spine, the optimal bisection size is 1. rcat:n
is a caterpillar graph with n vertices, where each
vertex on the spine has

p
n legs. All caterpillar

graphs used here have an optimal bisection size of
1.

5. gridn:b : A grid graph on n vertices and whose
optimal bisection size is known to be b. w-gridn:b
denotes the same grid but the boundaries are
wrapped around.

We conduced tests on 32-way partitioning. A C lan-
guage program was used on a Pentium III 866MHz
computer with Linux operating system. It was com-
piled using GNU's gcc compiler.

4.2 Experimental Results

We �rst examine the performance of the suggested lo-
cal optimization heuristics, EFMA and EFMB, against
the well-known partitioner MeTis [16]. Then we show
the experimental results of the hybrid GA. Since the
hybrid GA uses the local optimization heuristic as an
engine, it is obvious that the hybrid GA would perform
better than the local optimization heuristic. One may
ask how the genetic process a�ected the performance.
We thus examine the e�ectiveness of genetic search by
comparison with multi-start local optimizations with
comparable time budgets.

Table 2 shows the results on 32-way partitioning.
EFMA, EFMB, and MeTis are compared. The statis-
tics of EFMA and EFMB are from 1,000 independent
runs; so the average results are fairly stable. Since
MeTis is a deterministic algorithm, it is not possible
to obtain more than one solution; thus, each result of
MeTis is from a single run. The bold-faced numbers
indicate the best average result from among the three
algorithms. MeTis is much faster than the other algo-
rithms. On average, EFMB performed best; however,

for some graphs, MeTis had the highest performance.

The genetic algorithm(GEFM) signi�cantly improved
the performance of EFMA and EFMB. However,
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Table 2: The Results of 32-way Partitioning

MeTis EFMA EFMB
Graph

Average1 CPU2 Best3 Average3 CPU2 Best3 Average3 CPU2

G500.2.5 205 0.02 187 199.78 0.29 185 195.63 0.37
G500.05 695 0.02 643 661.08 0.45 640 654.52 0.55
G500.10 1675 0.02 1602 1619.56 0.77 1597 1616.37 0.94
G500.20 4189 0.06 4065 4094.65 1.73 4066 4091.54 2.03
G1000.2.5 363 0.02 348 368.31 0.83 343 360.23 0.91
G1000.05 1318 0.03 1262 1297.54 1.44 1243 1277.35 1.57
G1000.10 3558 0.05 3426 3457.37 2.45 3408 3446.12 2.98
G1000.20 8035 0.15 7898 7944.29 4.81 7886 7936.50 5.63
U500.05 211 0.01 121 141.39 0.37 121 142.68 0.54
U500.10 697 0.03 540 572.53 0.74 544 571.73 0.87
U500.20 2060 0.01 1841 1893.49 1.55 1848 1894.81 1.58
U500.40 5752 0.03 5378 5476.21 2.69 5391 5474.34 2.88
U1000.05 209 0.01 150 194.90 0.86 164 203.32 1.29
U1000.10 745 0.04 614 693.36 1.81 605 688.80 2.20
U1000.20 2761 0.05 2428 2512.68 3.65 2425 2511.51 3.91
U1000.40 8314 0.09 7443 7590.90 7.03 7437 7593.25 7.25
reg500.0 247 0.01 223 240.54 0.38 221 234.34 0.39
reg500.12 248 0.01 225 238.39 0.37 221 233.11 0.38
reg500.16 251 0.03 225 240.88 0.37 223 235.46 0.38
reg500.20 272 0.01 232 246.29 0.38 228 239.94 0.38
reg5000.0 1878 0.09 2044 2133.55 54.26 1929 2017.65 13.07
reg5000.4 1861 0.09 2033 2136.11 53.79 1929 2019.07 13.33
reg5000.8 1883 0.08 2041 2140.41 53.72 1951 2022.45 13.21
reg5000.16 1848 0.10 2034 2134.30 54.31 1942 2018.52 13.42
cat.352 87 0.01 85 87.23 0.16 85 94.63 0.20
cat.702 68 0.01 59 76.75 0.35 86 112.15 0.56
cat.1052 92 0.01 88 104.21 0.75 143 168.39 0.91
cat.5252 102 0.09 168 221.90 14.90 593 677.94 15.43
rcat.134 95 0.01 91 92.18 0.04 91 92.42 0.05
rcat.554 178 0.01 159 162.10 0.14 159 185.39 0.33
rcat.994 33 0.02 31 34.28 0.17 32 246.74 1.45
rcat.5114 531 0.15 476 559.36 4.36 687 1038.22 31.53
grid100.10 117 0.01 108 110.56 0.04 108 110.43 0.04
grid500.21 263 0.03 223 236.96 0.34 220 236.44 0.41
grid1000.20 340 0.03 320 336.33 0.95 317 335.04 1.19
grid5000.50 740 0.06 700 758.42 9.46 702 750.60 12.03
w-grid100.20 138 0.01 128 130.05 0.04 128 130.03 0.05
w-grid500.42 292 0.01 267 280.37 0.36 267 279.32 0.39
w-grid1000.40 419 0.04 389 403.16 0.98 388 401.34 1.13
w-grid5000.100 911 0.07 850 897.79 10.35 837 890.26 11.82

1. From single run
2. CPU seconds on Pentium III 866MHz
3. From 1,000 runs

GEFM took on average 350 times more than a sin-
gle run of EFMA or EFMB. It is not clear how critical
the genetic search is to the performance improvement.
Thus, we compared GEFM with multi-start versions
which ran local optimization heuristics on 350 random
initial solutions and returned the best solution. Table
3 shows the experimental results. The results show
that, given a comparable length of time, the genetic
search algorithm considerably outperformed the multi-
start heuristics.

5 Conclusions

In this paper, we extended the 2-way Fiduccia and
Mattheyses algorithm for the multi-way partitioning

problem. A distinctive feature of our algorithm is that
it used LIFO and Random bucket management in con-
junction and it could sometimes violate the balance
criterion to obtain better results. By attempting di-

rect k-way partitioning and allowing more freedom to
vertex movements, our heuristics improved the solu-
tion quality.

The genetic algorithm used both EFMA and EFMB as
the local optimization. The merits of these were com-
bined in the GA framework; GA adaptively chooses
the local heuristic that is suitable for the current graph
in the process of generation. The comparison between
multi-start heuristics and GEFM showed the e�ective-
ness of the genetic process.

Our local heuristics can be used in other stochastic
methods such as tabu search [22] [9] [1] and large-step
Markov chain [20] [11].
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Table 3: The Results of 32-way Multi-Start and GEFM

EFMA Multi-Start EFMB Multi-Start GEFM
Graph

Best1 Average2 CPU3 Best1 Average2 CPU3 Best4 Average4 CPU3

G500.2.5 184 188.02 103.64 184 185.72 143.49 180 184.71 98.38
G500.05 640 645.26 159.55 635 640.48 225.30 627 636.39 184.48
G500.10 1593 1600.14 265.95 1593 1597.82 402.38 1574 1586.54 356.45
G500.20 4069 4070.20 606.62 4065 4066.80 420.57 4037 4048.69 872.27
G1000.2.5 338 348.68 302.40 339 342.48 408.74 316 326.97 391.45
G1000.05 1260 1268.50 523.23 1240 1252.46 692.12 1217 1227.93 731.17
G1000.10 3411 3424.52 880.49 3403 3414.32 1182.79 3360 3374.09 1403.28
G1000.20 7902 7905.80 1648.19 7892 7895.60 1848.07 7829 7839.91 2950.90
U500.05 118 122.68 129.26 118 123.00 204.50 115 120.75 156.04
U500.10 539 545.12 260.92 540 545.10 341.00 533 542.09 171.44
U500.20 1833 1846.86 527.99 1839 1847.00 618.10 1834 1845.75 371.32
U500.40 5382 5391.40 928.39 5376 5388.00 955.51 5366 5391.24 742.39
U1000.05 150 159.52 304.17 159 167.08 510.51 132 147.16 615.77
U1000.10 615 625.12 620.92 607 619.20 800.20 578 592.07 1069.63
U1000.20 2407 2430.72 1235.64 2402 2423.68 1355.78 2376 2396.31 1268.35
U1000.40 7420 7437.80 2421.13 7419 7432.40 2445.41 7381 7420.02 1814.45
reg500.0 222 225.92 134.17 220 222.86 137.07 221 226.03 97.46
reg500.12 221 224.90 129.69 220 221.92 134.75 218 222.83 96.11
reg500.16 222 226.98 128.99 220 223.68 133.81 221 224.80 95.09
reg500.20 227 231.72 131.56 224 228.24 133.90 225 231.53 96.01
reg5000.0 2017 2042.10 13473.76 1922 1941.83 5464.18 1690 1724.71 7630.20
reg5000.4 2018 2038.46 13580.24 1937 1947.80 5486.99 1692 1735.19 7828.20
reg5000.8 2025 2046.66 13324.79 1922 1947.70 5468.50 1709 1757.39 8308.68
reg5000.16 2026 2045.04 13260.26 1927 1946.27 5472.89 1691 1732.20 7685.04
cat.352 85 85.00 58.39 85 86.80 70.17 85 85.18 65.05
cat.702 57 60.32 128.62 83 87.18 197.15 55 59.00 141.88
cat.1052 83 87.76 277.63 137 142.98 319.83 76 90.47 219.26
cat.5252 162 167.37 5429.72 582 596.85 5304.24 161 193.21 3763.69
rcat.134 91 91.00 12.91 91 91.00 16.65 91 91.00 15.62
rcat.554 159 159.00 49.82 159 159.00 114.20 159 159.00 82.46
rcat.994 31 31.60 61.25 32 38.30 512.03 31 31.21 29.60
rcat.5114 475 481.52 1400.33 613 700.34 10626.14 483 488.09 3696.32
grid100.10 108 108.16 14.45 108 108.04 15.92 108 108.65 10.79
grid500.21 220 223.42 119.09 219 222.28 143.07 211 219.09 102.11
grid1000.20 316 319.98 325.43 318 319.76 406.37 316 318.97 244.60
grid5000.50 689 702.38 3389.93 684 699.54 3783.01 658 672.98 3345.94
w-grid100.20 128 128.00 14.18 128 128.00 16.34 128 128.26 18.37
w-grid500.42 262 267.70 125.71 263 266.68 137.42 256 263.47 118.52
w-grid1000.40 386 389.06 358.63 387 388.60 376.70 386 388.26 216.84
w-grid5000.100 837 849.58 3874.54 828 845.70 4274.58 811 825.27 3654.44

1. The best of 17,500 runs
2. Average of 50 runs, each of which is the best of 350 runs
3. CPU seconds on Pentium III 866MHz
4. From 100 runs

tems at Seoul National University.
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Abstract

We propose a new hybrid genetic algorithm for MAX CUT

graph partitioning. The algorithm includes a new local op-

timization heuristic with a new type of gain as the primary

measure for vertex movement. We also present empirical

comparisons of our algorithm with well known algorithms

for graph partitioning. The suggested algorithm showed

signi�cant improvement over GW-SA, a state-of-the-art

MAX CUT partitioning algorithm.

1 Introduction

It is of fundamental importance in combinatorial op-

timization to partition the vertices into two disjoint

subsets of nearly equal size such that the sum of edge

weights with two edge endpoints in di�erent sets (cut

size) is maximized or minimized. Given an undirected

graph G = (V;E) with edge weights (wij)(i;j)2E ,

the maximum cut graph partitioning problem (MAX

CUT) is that of �nding a subset S � V which maxi-

mizes the sum of edge weights in the cut (S; V nS).

Every graph has a �nite number of cuts, so one can

�nd the minimum or maximum weight cut in a graph

by an exhaustive search that enumerates the sizes of

all the cuts. This is not a practical approach for large

graphs which arise in real-world applications since the

number of cuts in a graph grows exponentially with the

number of vertices. Although we can solve the min-

cut problem without balance requirement in polyno-

mial time using the maxow-mincut algorithm [FF62],

we have no such fortune when it comes to the MAX

CUT problem. There is no known way to solve the

problem optimally other than by exhaustive enumera-

tion. The MAX CUT problem is one of Karp's original

NP-complete problems [Kar72] and has been known

to be NP-complete even if the problem is unweighted

[GJS76], i.e., wij = 1 for every (i; j) 2 E.

Since there is no algorithm that guarantees an optimal

solution, a typical approach to solving such a problem

is to �nd a �-approximation algorithm that delivers

a solution at least � times the optimal value in poly-

nomial time. Sahni and Gonzales [SG76] presented a
1
2 -approximation algorithm for the MAX CUT prob-

lem. Their greedy algorithm iterates through the ver-

tices and decides which placement (S or V nS) max-

imizes the cut of vertex vi with respect to vertices

v1 to vi�1. Since [SG76], a number of researchers

have presented approximation algorithms for the MAX

CUT problem [Vit81] [PT82] [HV91] [HL95], but no

progress has been made. For more than twenty years

a factor of 0.5 has been the best known polynomial

time performance guarantee for the MAX CUT prob-

lem. A recent algorithm by Goemans and Williamson

(GW) [GW95] guarantees a factor of 0.878 of the op-

timum. The signi�cant improvements are due to the

techniques of positive semide�nite programming and

randomized rounding. However, solving semide�nite

programming is computationally expensive. Homer

and Peinado [HP97] gave a parallelized version of GW.

The MAX CUT problem has applications in various

�elds. It has been observed that one of the phases

(the layer assignment problem) in the design process

for VLSI chips and printed circuit boards can be re-

duced to the MAX CUT problem [BGJR88] [Pin84].

One of the most famous applications of the problem

comes from a classical application to statistical physics

[BGJR88]. It is concerned with the exact determina-

tion of a minimal energy con�guration of a spin glass

under no exterior �eld and under a continuously vary-

ing exterior magnetic �eld. For a comprehensive sur-

vey of the MAX CUT problem, refer to [PT93].

In this paper, we suggest a new hybrid genetic algo-

rithm for the MAX CUT graph partitioning. We focus

on the local improvement for GA. As a local optimiza-

tion engine for the hybrid GA, we use a variation of

the traditional framework of the Fiduccia-Mattheyses

algorithm [FM82]. We compare the hybrid GA against
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some algorithms in the literature: the Goemans-

Williamson algorithm, the Fiduccia-Mattheyses algo-

rithm, and some variants of the FM algorithm.

In Section 2, we summarize the Goemans-Williamson

algorithm and the Fiduccia-Mattheyses algorithm. In

Section 3, we describe new local improvement algo-

rithms for the MAX CUT problem. A hybrid genetic

algorithm is described in Section 4. In Section 5, we

present our experimental results. Finally, we present

our conclusions in Section 6.

2 Previous Works

2.1 Goemans-Williamson Algorithm (GW)

A randomized version of the greedy algorithm of Sahni

and Gonzalez [SG76] can be stated as follows. Given

a graph, generate cuts according to the uniform distri-

bution. By linearity of expectation, the expected cut

size under this distribution is half the sum of all edge

weights, and thus at least half the size of the optimum

cut.

Goemans and Williamson [GW95] improved this fac-

tor from 0.5 to 0.878 by generating cuts from a more

sophisticated distribution. Each vertex is represented

by a jV j-dimensional unit vector vi. The �rst step of

their algorithm (called GW) is to �nd a vector con�g-

uration, i.e., a set of jV j vectors in RjV j which solves

maxZv =
1

2

X
i<j

wij(1� hvi; vji)

subject to jjvijj2 = 1 8vi 2 V (1)

where h�; �i is the inner product. A near-optimal so-

lution for (1) can be found in polynomial time using

a semide�nite programming algorithm and incomplete

Cholesky decomposition.

The second step of the GW algorithm is to uniformly

generate random hyperplanes through the origin. A

hyperplane, given by its normal vector n, separates the
vectors into the two disjoint sets L = fvi : hvi; ni � 0g

and R = fvi : hvi; ni < 0g. This de�nes a cut. The

analysis of Goemans and Williamson shows that the

expected cut size under this distribution is at least

0.878 times the size of the optimum cut.

2.2 Fiduccia-Mattheyses algorithm (FM)

The de facto benchmark graph partitioning algorithm

for almost 25 years has been the famous local search

heuristic by Kernighan and Lin (KL). The KL algo-

rithm [KL70] proceeds in a series of passes. During

each pass, the algorithm improves on an initial solu-

tion by swapping pairs of vertices to create new solu-

tions. Since there is a restriction in subset size, KL

maintain balance by swapping equal-sized subsets of

vertices. Fiduccia and Mattheyses [FM82] provided a

KL-inspired algorithm which allows unbalanced parti-

tions to some degree and reduces the time per pass.

The main di�erence between KL and FM lies in the

fact that a new partition in FM is derived by moving a

single vertex, instead of KL's pair swap, and in FM's

eÆcient data structure.

Let (A;B) be an initial solution of G = (V;E). We

de�ne the gain of a vertex v to be the cut-size reduc-

tion by moving v to the opposite set. FM selects one

vertex that has the highest gain and moves it to the op-

posite side. At the beginning of a pass, all vertices are

unlocked. After moving a vertex, the vertex is locked

for the rest of the pass. FM iteratively moves unlocked

vertices until all vertices are locked. The best partition

during the pass is returned as a new solution. Another

pass starts with this new solution. The algorithm ter-

minates when one or a few passes fail to �nd a better

solution. Due to eÆcient gain bucket management, a

pass of FM can be completed in O(jEj) time.

3 Proposed Algorithms

3.1 A Variation of FM (MAX-FM)

We use a variation of the FM implementation and its

gain bucket data structure. It may be recalled that

Kernighan and Lin developed a heuristic procedure

for mincut partitioning of a graph into two equal-sized

subsets. In contrast, our goal is to �nd a maxcut with

no restriction on the size of the resulting partition.

We start with a randomly generated initial partition.

Then we try to improve the partition by moving a ver-

tex. Since there is no restriction on the partition size,

it is not necessary to swap vertices or to alternately

select a vertex in each partition. In practice, the size

of each partition is nearly balanced even without any

e�ort to adjust the balance.

Let (A;B) be an initial partition of G = (V;E). De�ne
the gain or general gain gv of a vertex v to be the cut-
size increase by moving v to the opposite set. Formally,

gv = indegree(v)� outdegree(v)

where indegree(v) is the weight sum of edges incident

to vertices in the same set, and outdegree(v) is the

weight sum of edges incident to vertices in the oppo-

site set. When a series of passes are terminated, the

partition which has the maximum cut size is returned.
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do f

Compute gv for every vertex v 2 V ;
Make two gain lists for each a 2 S and b 2 V n S;
Q = �;
for i = 1 to jV j � 1 f

Choose vi 2 V �Q such that gv
i
is maximal;

Q = Q [ fvig;
if vi 2 S then

for each v 2 S � Q adjacent to vi

gv = gv � 2 wv
i
v ;

for each v 2 V n S � Q adjacent to vi

gv = gv + 2 wv
i
v ;

else if vi 2 V n S then

for each v 2 S � Q adjacent to vi

gv = gv + 2 wv
i
v ;

for each v 2 V n S � Q adjacent to vi

gv = gv � 2 wv
i
v ;

g

Choose k 2 f1; 2; : : : ; jV j � 1g to maximize
P

k

i=1

gv
i
;

Move all the vertices in the subset fv1; v2; : : : ; vkg
to their opposite side;

g until (there is no improvement)

Figure 1: The FM algorithm for MAX CUT

The structure of the variation of the FM algorithm is

given in Figure 1.

3.2 MAX Lock-Gain Based Algorithm

(MAX-LG)

We proposed the Lock-Gain based algorithm (LG)

[KM00]. LG showed a dramatic performance im-

provement for mincut partitioning on sparse geometric

graphs and caterpillar graphs which have some unit

clusters. We de�ne the lock gain lv of the vertex v to

be the gain by moving the vertex only with respect to

the locked vertices.

The lock gain considers the �xed part of the gain since

locked vertices do not move any more. That is, the

general gain gv consists of two types of gain: �xed gain
and changeable gain. The lock gain based heuristic

gives preference to unchangeable gain over changeable

gain. For the MAX CUT partitioning, we rede�ne the

lock gain lv to be the cut-size \increase" instead of

cut-size reduction.

3.3 MAX Ratio-Gain Based Heuristic

(MAX-RG)

MAX-RG uses the sum of the lock gain and general

gain in an appropriate ratio as the measure for select-

ing a vertex to move. We de�ne the ratio gain rv of

vertex v to be the sum of the general gain and lock

gain with some ratio, i.e.,

rv = gv + �� lv

where � 2 f0; 1; : : : ; Dmaxg andDmax is the maximum

vertex degree in the graph. Since MAX-LG works well

for sparse graphs, we use a large ratio for the sparse

graph. The density of a graph is de�ned by the average

vertex degree:

Æ(G) =

PjV j

i=1 deg(vi)

jV j

where deg(vi) is the degree of vertex vi 2 V . MAX-

RG has the same framework as MAX-FM except for

the measure used for vertex selection.

It starts with a random initial solution and improves

on it through a number of passes. At the beginning of

a pass, every vertex is unlocked and the lock gain is set

to zero. The ratio gain is equal to the general gain. We

choose the vertex v which has the maximum ratio gain.

Once a vertex v is chosen, it is assumed to move to

the opposite side and becomes locked. After a vertex

is locked, the lock gains and general gains of its adja-

cent vertices are adjusted. The moving process is iter-

ated until a sequence of vertices V = (v1; v2; : : : ; vjV j)
is decided. The algorithm then �nds a subset of V ,
X = fv1; v2; : : : ; vkg such that

Pk

i=1 gvi is maximized,

and moves the subset X . Note that although the ver-

tices v1; v2; : : : ; vjV j are determined on the basis of ra-

tio gains, the �nal set X is chosen by general gains.

The acquired solution becomes an initial solution for

the next pass. It continues until there is no improve-

ment.

3.4 Tuning of Ratio Factor

For the local search heuristic algorithm, we experi-

mented with many graphs having various ratios of lock

gain and general gain. If � = 0, rv is equal to the

general gain gv and the algorithm works exactly like

MAX-FM. When � = 1, the algorithm considers gen-

eral gain and lock gain equally. The main di�erence

fromMAX-LG is that MAX-RG considers general gain

as well as lock gain, simultaneously. When � is big-

ger, the algorithm worked well on the sparse graphs,

but produced some degradation on the dense graphs.

If � = Dmax, then rv is bound to the lock gain and

the algorithm works exactly like MAX-LG. The experi-

mental observations above are consistent with [KM00],

where LG worked well on sparse graphs with some unit

clusters.

In the �rst experiment, we �xed the ratio factor � to

be in inverse proportion to the density of a graph G
as follows:

� =

�
b�=c � bÆ(G)=c; if � > Æ(G)

0 ; otherwise.
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In our experiment, we set � to 40 and  to 10. In

the hybrid GA, instead of adjusting the ratio factor �
manually, we set � to be a part of the chromosome for

GA. Initially, the ratio factor � is randomly generated

in the range of the above. As the population converges,

a reasonable factor for the solution will survive. We

select the � that has the largest �tness sum in the

population.

3.5 Implementation

We use the bucket data structure to maintain two sep-

arate ratio gain lists. This data structure allows con-

stant time selection of a vertex and fast gain update

after each move. Since every general gain and lock

gain is an integer in the range [�Dmax; Dmax], every

ratio gain is also an integer in the range [�(� + 1) �

Dmax; (� + 1) �Dmax]. This makes possible the eÆ-

cient bucket management of ratio gains. At the begin-

ning of a pass, all vertices are inserted into the bucket

of their general gain value. For each step in the pass,

a vertex is selected in a bucket and deleted from the

bucket. After the vertex moves to the opposite side,

the gains (general gain, lock gain, and ratio gain) of

unlocked vertices adjacent to the moved vertex are up-

dated. The update of a vertex is carried out by remov-

ing it from its ratio gain bucket and inserting it into the

bucket of its new ratio gain value. If one of these in-

serted vertices has a new ratio gain that is larger than

the current max ratio gain, then the pointer to the max

ratio gain (denoted by MaxRatioGain) is replaced by

this new value. If the bucket list with MaxRatioGain

becomes empty, then the MaxRatioGain is decreased

until it indexes a non-empty bucket.

4 A Hybrid Genetic Algorithm

The general structure of hybrid steady-state genetic

algorithms is used. The population size is set to �fty

and other parameters are described in the following.

� Encoding: A chromosome corresponds to a parti-

tion (S; V nS) of the graph G = (V;E). The num-

ber of genes in a chromosome is equal to jV j+ 1.

Each gene corresponds to a vertex in the graphs.

A gene has value zero if the vertex is on the set

S, otherwise its value is one. The (jV j+1)th gene

corresponds to a ratio factor �. For other GAs

that do not tune the ratio factor �, the number

of genes is jV j.

� Initialization: The algorithm �rst creates �fty ini-

tial solutions at random.

� Selection: We assign to each chromosome in the

population a �tness value calculated from its cut

size. We use a proportional selection scheme.

� Genetic operators: A crossover operator creates a

new o�spring by combining parts of the two par-

ents. In our experiments, we use crossover with

�ve cut points and no mutation.

� Local optimization: After crossover, we apply a lo-

cal optimization on the o�spring. We use MAX-

FM, MAX-LG, and MAX-RG as the local opti-

mization.

� Replacement: After generating an o�spring and

applying a local optimization, the GA replaces a

member of the population with the o�spring. We

�rst try to replace one of the parents [Cav70]; the

o�spring tries to �rst replace the more similar par-

ent, measured in bitwise di�erence and, if it fails,

then it tries to replace the other parent. Replace-

ment is done when the o�spring is superior to one

of its parents. If the o�spring is worse than both

parents, we replace the worst member of the pop-

ulation (Genitor-style replacement [WG88]). This

combination of preselection [Cav70] and Genitor-

style replacement [WG88] was used in [BM94] and

showed good performance.

� Stopping condition: We use the number of con-

secutive fails to replace one of the parents as a

stopping condition [BM94]. We set this number

to be twenty in our algorithm.

5 Experimental Results

5.1 Test Beds and Test Environment

In this section, we describe our experiments and

present the results for various graphs including neg-

ative edge weights. The types of graphs on which

we experimented are graphs used by Johnson et al.

[JAMS89], sparse random graphs used by Homer and

Peinado [HP97], and graphs derived from circuit de-

sign problems.

� Gn:d : A random graph on n vertices, where an

edge is placed between any two vertices with prob-

ability p independent of all other edges. The prob-
ability p is chosen so that the expected vertex de-

gree, p(n� 1), is d.

� Un:d : A random geometric graph on n vertices

that lie in the unit square and whose coordinates

are chosen uniformly from the unit interval. There
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Table 1: Comparison of GW and MAX-FM

GW MAX-FM GW-SA MAX-FM-GA
Graphs Best CPU Best Average CPU Best Average CPU Best Average CPU

G500.2.5 564 1806 571 557.70 0.00 568 566.6 2541.4 574 572.92 2.20
G500.05 980 1839 1003 984.01 0.00 995 987.4 2598.6 1008 1006.44 3.24
G500.10 1687 1582 1733 1707.97 0.01 1706 1695.0 2354.4 1735 1733.25 4.84
G500.20 3291 1666 3386 3347.10 0.01 3312 3303.0 2454.0 3390 3387.60 9.33
G1000.2.5 1150 10488 1162 1138.58 0.01 1164 1155.0 13489.4 1173 1167.58 6.31
G1000.05 1982 7048 2034 2001.70 0.01 1996 1990.8 10025.6 2053 2047.68 9.94
G1000.10 3578 9415 3688 3637.92 0.02 3603 3591.6 12452.0 3703 3695.95 18.23
G1000.20 6537 15778 6711 6635.45 0.05 6575 6557.0 19430.4 6729 6722.36 25.58
U500.05 885 1503 897 889.41 0.00 898 895.4 2290.2 900 899.22 2.43
U500.10 1520 2396 1540 1527.73 0.01 1537 1531.2 3200.0 1546 1543.39 4.49
U500.20 2731 2641 2778 2759.65 0.01 2752 2742.4 3499.2 2783 2780.92 7.68
U500.40 5107 4879 5180 5151.28 0.03 5135 5125.8 5893.6 5181 5180.58 15.09
U1000.05 1673 7970 1705 1685.24 0.01 1702 1699.0 11232.2 1709 1704.21 6.63
U1000.10 3005 12871 3052 3028.99 0.01 3037 3027.2 16166.6 3071 3063.73 12.99
U1000.20 5623 21857 5723 5686.93 0.04 5661 5652.8 27582.6 5736 5730.41 31.41
U1000.40 10391 67936 10556 10492.62 0.09 10444 10414.4 73497.6 10560 10556.11 68.01
R1000 3558 11503 3675 3618.49 0.02 3605 3584.8 13820.2 3687 3679.91 17.75
R2000 7030 104328 7235 7157.81 0.07 7063 7051.0 111198.8 7308 7289.49 77.44
R3000 8356 617542 10863 10765.34 0.13 8488 8419.2 680640.8 10987 10950.28 163.30
R4000 11092 134669 14460 14341.70 0.19 11158 11132.4 157872.0 14626 14584.90 264.69
R5000 13351 290451 17988 17836.34 0.26 13440 13402.2 320128.8 18202 18146.35 392.11
R6000 15580 96836 21624 21474.62 0.34 15755 15673.2 144868.6 21937 21864.62 557.89
R8000 19639 73321 28684 28518.51 0.50 20399 20168.8 152606.4 29140 29030.74 874.96
via.c1n 5868 7659 6132 5700.57 0.01 6150 6015.6 18369.0 6150 6148.38 5.96
via.c2n 6954 11855 7074 6585.28 0.01 7026 6982.8 28869.2 7098 7087.56 7.55
via.c3n 6640 27182 6802 6029.28 0.01 6856 6737.2 56270.2 6898 6818.32 12.01
via.c4n 9954 27268 10020 9120.26 0.02 10062 10038.0 64484.2 10098 10078.20 11.02
via.c5n 7686 18507 7848 7070.39 0.01 7854 7810.8 45189.4 7956 7883.52 11.54
via.c1y 7284 4379 7746 7622.55 0.01 7728 7546.8 13714.6 7746 7746.00 2.23
via.c2y 7728 5991 8226 8089.36 0.01 8226 8120.4 19785.8 8226 8226.00 2.66
via.c3y 8055 4476 9502 9347.55 0.03 9453 9105.6 26692.0 9502 9502.00 4.88
via.c4y 10890 4661 12516 12377.07 0.03 12516 11882.4 28318.8 12516 12516.00 4.03
via.c5y 8940 3578 10248 10018.18 0.03 10236 9864.0 21534.2 10248 10248.00 5.50

The GW results were acquired from 1 run.

The MAX-FM results were acquired from 1,000 runs.

The GW-SA results were acquired from 5 runs, with 1,000 steps per run.

The MAX-FM-GA results were acquired from 100 runs.

is an edge between two vertices if their Euclidean

distance is t or less, where d = n�t2 is the ex-

pected vertex degree.

� Rn : A sparse random graph in which the edge

probability is set to p = 10=n, where n = jV j.
This was used in [HP97], corresponding to ran-

dom graph class C in Goemans and Williamson

[GW95].

� via.c : A graph derived from VLSI problems. It

includes negative edge weights. This was used in

[HP97].

All programs were run on Pentium III 500MHz com-

puters with Linux operating systems.

5.2 Performance

Table 1 shows the performance of GW and MAX-FM.

GW-SA is a simulated annealing algorithm which uses

GW's results as initial solutions. MAX-FM-GA is a

genetic algorithm which uses MAX-FM as the local op-

timization engine. As a local search heuristic, MAX-

FM outperformed GW for most graphs. Due to the

burden of matrix computation, GW took at least or-

der of 105 times more than MAX-FM. In [HP97], GW

was improved by combining with simulated annealing

[KGV83] for some graphs, which is consistent in this

experiment. MAX-FM-GA clearly outperformed the

others.

Table 2 compares the performance of MAX-FM, MAX-

LG, and MAX-RG. MAX-RG overall performed best

among them. For sparse random graphs of [HP97],

MAX-LG performed best.

Table 3 gives a comparison of hybrid GAs. MAX-LG-

GA and MAX-RG-GA performed comparably well.

MAX-FM was not comparable with MAX-LG and

MAX-RG as a local optimization heuristic as well

as in the context of hybrid GAs. Table 3 also con-

tains the generations which equals the number of local-

optimization calls. It is notable that the hybrid GAs

are much faster than a single run of GW (see Table 1).
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Table 2: Comparison of MAX-FM, MAX-LG, and MAX-RG over 1,000 Runs

MAX-FM MAX-LG MAX-RG
Graphs Best Average CPU Best Average CPU Best Average CPU

G500.2.5 571 557.70 0.00 574 566.30 0.01 574 567.44 0.01
G500.05 1003 984.01 0.00 1004 989.62 0.01 1007 993.72 0.01
G500.10 1733 1707.97 0.01 1732 1710.29 0.02 1732 1713.40 0.02
G500.20 3386 3347.10 0.01 3386 3349.28 0.03 3385 3350.94 0.04
G1000.2.5 1162 1138.58 0.01 1168 1155.83 0.04 1171 1158.19 0.02
G1000.05 2034 2001.70 0.01 2042 2018.93 0.05 2043 2022.39 0.03
G1000.10 3688 3637.92 0.02 3691 3651.05 0.07 3695 3652.87 0.07
G1000.20 6711 6635.45 0.05 6702 6642.57 0.13 6705 6641.90 0.15
U500.05 897 889.41 0.00 900 896.48 0.02 900 897.13 0.01
U500.10 1540 1527.73 0.01 1543 1534.86 0.02 1546 1536.39 0.02
U500.20 2778 2759.65 0.01 2780 2765.04 0.03 2781 2768.75 0.04
U500.40 5180 5151.28 0.03 5180 5156.03 0.06 5180 5161.13 0.06
U1000.05 1705 1685.24 0.01 1710 1704.57 0.07 1711 1705.24 0.03
U1000.10 3052 3028.99 0.01 3070 3052.01 0.07 3068 3054.22 0.06
U1000.20 5723 5686.93 0.04 5731 5703.59 0.11 5732 5711.36 0.15
U1000.40 10556 10492.62 0.09 10553 10506.85 0.22 10556 10512.46 0.22
R1000 3675 3618.49 0.02 3676 3634.23 0.06 3675 3635.25 0.07
R2000 7235 7157.81 0.07 7270 7205.67 0.27 7269 7199.88 0.25
R3000 10863 10765.34 0.13 10930 10847.63 0.60 10908 10838.24 0.50
R4000 14460 14341.70 0.19 14547 14463.10 1.04 14534 14446.82 0.80
R5000 17988 17836.34 0.26 18010 18000.70 1.64 18067 17974.96 1.11
R6000 21624 21474.62 0.34 21787 21685.87 2.40 21762 21651.97 1.50
R7000 25395 25212.08 0.42 25588 25470.04 3.19 25554 25403.97 2.02
R8000 28684 28518.51 0.50 28940 28814.26 4.56 28897 28768.24 2.40
via.c1n 6132 5700.57 0.01 6150 6133.76 0.02 6150 6146.15 0.02
via.c2n 7074 6585.28 0.01 7098 7081.46 0.02 7098 7094.03 0.03
via.c3n 6802 6029.28 0.01 6898 6874.79 0.04 6898 6877.08 0.04
via.c4n 10020 9120.26 0.02 10098 10091.86 0.03 10098 10096.96 0.04
via.c5n 7848 7070.39 0.01 7956 7925.02 0.03 7956 7941.74 0.04
via.c1y 7746 7622.55 0.01 7746 7743.59 0.02 7746 7743.69 0.05
via.c2y 8226 8089.36 0.01 8226 8224.98 0.02 8226 8224.79 0.06
via.c3y 9502 9347.55 0.03 9502 9496.49 0.04 9502 9498.42 0.09
via.c4y 12516 12377.07 0.03 12516 12515.66 0.04 12516 12514.77 0.08
via.c5y 10248 10018.18 0.03 10248 10239.16 0.04 10248 10234.62 0.10

6 Conclusions

We have studied methods of improving the perfor-

mance of algorithms to solve the maximum cut graph

partitioning problem.

First, we found an improvement by using the ratio

gain as the primary measure for vertex movement. By

adjusting the ratio factor, we could obtain better re-

sults. Second, by combining with the framework of

genetic algorithms, we achieved further improvement.

In GA, we attempted to adaptively determine proper

ratio factors in an appropriate time. Finding a good

strategy for adjusting the ratio will be a useful subject

for further study.

Our local optimization heuristic algorithm can be com-

bined with other meta-heuristics such as SA [KGV83],

tabu search [Glo89], LSMC [MOF91], etc. We believe

that our algorithm will likely lead to improvement on

existing results in those frameworks, as it has done in

the framework of GA. Experimentation with respect

to these methods is left for future study.

Acknowledgments

We would like to thank M. Peinado for providing us

with benchmark graphs and the source code of GW-

SA.

This research was supported in part by KOSEF

through Statistical Research Center for Complex Sys-

tems at Seoul National University.

References

[BGJR88] F. Barahona, M. Grotschel, M. Junger, and
G. Reinelt. An application of combinatorial op-
timization to statistical physics and circuit lay-
out design. Operational Research, 36:493{513,
1988.

[BM94] T. N. Bui and B. R. Moon. A genetic algo-
rithm for a special class of the quadratic as-
signment problem. The Quadratic Assignment
and Related Problems DIMACS Series in Dis-
crete Mathematics and Theoretical Computer
Science, 16:99{116, 1994.

[Cav70] D. Cavicchio. Adaptive Search Using Simulated
Evolution. PhD thesis, University of Michigan,
Ann Arbor, MI, 1970. Unpublished.

[FF62] L. R. Jr. Ford and D. R. Fulkerson. Flows in
Networks. Princeton University Press, 1962.

421GENETIC ALGORITHMS



Table 3: Comparison of MAX-FM-GA, MAX-LG-GA, and MAX-RG-GA

MAX-FM-GA MAX-LG-GA MAX-RG-GA
Graphs Best Average Gen Best Average Gen Best Average Gen

G500.2.5 574 572.92 568 574 573.98 340 574 573.96 365
G500.05 1008 1006.44 590 1008 1007.23 392 1008 1007.68 451
G500.10 1735 1733.25 539 1735 1733.42 395 1735 1734.05 452
G500.20 3390 3387.60 561 3390 3388.81 533 3390 3389.28 641
G1000.2.5 1173 1167.58 736 1173 1170.37 381 1173 1170.90 424
G1000.05 2053 2047.68 852 2053 2048.23 461 2054 2048.97 536
G1000.10 3703 3695.95 826 3703 3697.20 552 3702 3697.43 643
G1000.20 6729 6722.36 909 6730 6722.94 654 6729 6723.74 772
U500.05 900 899.22 427 900 900.00 250 900 900.00 295
U500.10 1546 1543.39 511 1546 1545.13 337 1546 1545.09 350
U500.20 2783 2780.92 553 2783 2781.44 377 2783 2782.33 498
U500.40 5181 5180.58 485 5181 5180.24 399 5181 5180.68 484
U1000.05 1709 1704.21 538 1711 1710.85 285 1711 1710.86 258
U1000.10 3071 3063.73 667 3074 3071.05 434 3073 3070.87 431
U1000.20 5736 5730.41 711 5737 5733.41 437 5737 5734.09 490
U1000.40 10560 10556.11 741 10560 10556.97 490 10560 10557.58 608
R1000 3687 3679.91 831 3685 3682.42 581 3687 3682.72 634
R2000 7308 7289.49 1270 7307 7300.01 821 7308 7299.25 933
R3000 10987 10950.28 1435 10991 10972.55 733 10989 10962.63 871
R4000 14626 14584.90 1594 14649 14608.74 742 14628 14590.93 683
R5000 18202 18146.35 1801 18212 18186.21 790 18203 18160.22 825
R6000 21937 21864.62 2100 21953 21921.14 921 21957 21897.99 1004
R7000 25735 25670.34 2257 25771 25730.46 881 25757 25694.30 780
R8000 29140 29030.74 2353 29142 29102.38 892 29143 29053.01 730
via.c1n 6150 6148.38 710 6150 6150.00 150 6150 6150.00 198
via.c2n 7098 7087.56 725 7098 7098.00 143 7098 7098.00 196
via.c3n 6898 6818.32 792 6898 6898.00 200 6898 6898.00 275
via.c4n 10098 10078.20 658 10098 10098.00 111 10098 10098.00 178
via.c5n 7956 7883.52 830 7956 7956.00 251 7956 7956.00 272
via.c1y 7746 7746.00 216 7746 7746.00 105 7746 7746.00 140
via.c2y 8226 8226.00 197 8226 8226.00 100 8226 8226.00 133
via.c3y 9502 9502.00 220 9502 9502.00 158 9502 9502.00 170
via.c4y 12516 12516.00 166 12516 12516.00 100 12516 12516.00 122
via.c5y 10248 10248.00 292 10248 10248.00 138 10248 10248.00 142

Data from 100 runs.

\Gen" means the average number of generations.

[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear-
time heuristic for improving network partitions.
In 19th Design Automation Conference, pages
175{181, 1982.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer.
Some simpli�ed NP-complete graph problems.
Theor. Comp. Sci., 1:237{267, 1976.

[Glo89] F. Glover. Tabu search - part i. ORSA journal
on Computing, 1:190{206, 1989.

[GW95] M. X. Goemans and D. P. Williamson. Im-
proved approximation algorithms for maximum
cut and satis�ability problems using semidef-
inite programming. Journal of the Associ-
ation for Computing Machinery, 42(6):1115{
1145, 1995.

[HL95] T. Hofmeister and H. Lefmann. A combinato-
rial design approach to maxcut. Proceedings of
the 13th Symposium on Theoretical Aspects of
Computer Science, 1995.

[HP97] S. Homer and M. Peinado. Design and perfor-
mance of parallel and distributed approxima-
tion algorithms for maxcut. Journal of Parallel
and Distributed Computing, 46:48{61, 1997.

[HV91] D. J. Haglin and S. M. Venkatesan. Approxima-
tion and intractability results for the maximum

cut problem and its variants. IEEE Trans. on
Computers, 40:110{113, 1991.

[JAMS89] D. S. Johnson, C. Aragon, L. McGeoch, and
C. Schevon. Optimization by simulated anneal-
ing: An experimental evaluation, part 1, graph
partitioning. Operations Research, 37:865{892,
1989.

[Kar72] R. M. Karp. Reducibility among combinatorial
problems, pages 85{103. Plenum Press, New
York, 1972.

[KGV83] S. Kirkpatrick, C. D. Jr. Gelatt, and M. P. Vec-
chi. Optimization by simulated annealing. Sci-
ence, 220(4598):671{680, 1983.

[KL70] B. Kernighan and S. Lin. An eÆcient heuristic
procedure for partitioning graphs. Bell systems
Technical Journal, 49:291{307, 1970.

[KM00] Y. H. Kim and B. R. Moon. A hybrid genetic
search for graph partitioning based on lock gain.
In Genetic and Evolutionary Computation Con-
ference, pages 167{174, 2000.

[MOF91] O. C. Martin, S. W. Otto, and E. W. Fel-
ten. Large-step markov chains for the traveling
salesman problem. Complex Systems, 5(3):299{
326, 1991.

422 GENETIC ALGORITHMS



[Pin84] R. Y. Pinter. Optimal layer assignment for in-
terconnect. Journal of VLSI Computing Sys-
tems, 1:123{137, 1984.

[PT82] S. Poljak and Z. Tuza. A polynomial algo-
rithm for constructing a large bipartite sub-
graph, with an application to a satis�ability
problem. Canadian Journal of Mathematics,
34:519{524, 1982.

[PT93] S. Poljak and Z. Tuza. Maximum cuts and
largest bipartite subgraphs, volume 20. Amer-
ican Mathematical Society, 1993.

[SG76] S. Sahni and T. Gonzalez. P-complete approxi-
mation problem. Journal of the Association for
Computing Machinery, 46:48{61, 1976.

[Vit81] P. M. Vitanyi. How well can a graph be n-
colored? Discrete Mathematics, 34:69{80, 1981.

[WG88] D. Whitley and J. Kauth. Genitor. A di�erent
genetic algorithm. In In Rocky Mountain Con-
ference on Arti�cial Intelligence, pages 118{
130, 1988.

423GENETIC ALGORITHMS



Benchmark Problem Generators and Results for the Multiobjective
Degree-Constrained Minimum Spanning Tree Problem

Joshua D. Knowles and David W. Corne

Department of Computer Science, University of Reading, UK
J.D.Knowles@reading.ac.uk, D.W.Corne@reading.ac.uk
FAX: +44(0) 118 975 1994, TEL: +44 (0) 118 931 8983

http://www.rdg.ac.uk/�ssr97jdk

Abstract

Finding a minimum-weight spanning tree
(MST) in a graph is a classic problem in op-
erational research (OR) with important ap-
plications in network design. In this pa-
per, we consider the degree-constrained mul-
tiobjective MST problem, which is NP-hard.
We present several di�erent parameterized
problem generators for producing MST in-
stances with di�erent problem features, in-
cluding any number of objectives, varying
degrees of convexity and non-convexity in
the Pareto front, and edge weight combina-
tions that mislead greedy approaches. As
well as being useful for the OR community,
these generators are well-suited to provide
problems to form part of a wider (evolu-
tionary) multiobjective test problem suite,
where constrained and NP-hard combinato-
rial problems are sometimes poorly repre-
sented. Fifteen instances are generated using
the presented methods, and benchmark re-
sults on these instances for a multiobjective
EA, AESSEA, are presented. These are com-
pared with results from two di�erent non-EA
methods. All of our problem instances, gen-
erators, and solution sets will be made avail-
able for use by other researchers.

1 Introduction

For many years, minimum spanning tree (MST) prob-
lems have been of great interest to the operational re-
search community. More recently, the multiobjective
minimum spanning tree (mc-MST)1 problem, in which
there are multiple weights de�ned on each edge, and

1It is often called the multi-criterion MST, hence mc-
MST.

which is NP-hard, has become subject of increasing
interest. Several papers on this subject [3, 5, 14] have
proposed approximate polynomial algorithms, and ex-
act methods, for tackling the problem. With growing
interest in the evolutionary algorithm (EA) commu-
nity in multiobjective optimization, it seems likely that
this application should now become the focus of more
EA approaches also. The �rst genetic algorithm (GA)
for the mc-MST (in which a Pr�ufer number encoding
is used) was proposed by Zhou and Gen [15]. The
problems used to test their algorithm were, however,
very simple and could be much better solved using
good exact methods [14] (smaller problems), or heuris-
tic approximation methods [3, 5] (larger problems).
Nonetheless, some variants of the mc-MST may not
be easily or e�ciently solved by exact methods. One
example is when the number of objectives is greater
than two. It is then relatively straightforward for a
multiobjective EA to be applied, whereas some exact
methods [14] and heuristics have only been developed
for the bi-objective case. Furthermore, when other
constraints need to be incorporated then this may be
achieved relatively easily in an evolutionary algorithm
but not in some of the pure heuristic approaches. Un-
fortunately, these more di�cult problems are not gen-
erally available and have not yet been considered in
algorithm studies.

In order to aid in the further development of good evo-
lutionary algorithms and other metaheuristics for a full
range of variants of the mc-MST, it would be useful
to have a collection of parameterized problem gener-
ators to provide benchmark problems that could be
used in comparative studies. In this paper we present
such a collection of simple problem generators that can
provide problems with correlated and anti-correlated
weights (which critically a�ect the shape of the Pareto
front, and therefore the applicability of di�erent meth-
ods), problems with large regions that have no so-
lutions on the convex hull of the Pareto front, and
problems which are di�cult to solve when a degree
constraint is additionally imposed. All of the gener-
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ators can generate problems of di�erent sizes, with a
di�ering degree of sparsity, and with any number of
objectives (except for the concave graph generator).

The generators proposed may also be used for testing
the general strengths and weaknesses of multiobjec-
tive EAs, as part of a wider test problem suite. Much
progress has been made recently in improving the va-
riety, di�culty, and actual use of, test problem suites
by researchers in the evolutionary multiobjective op-
timization (EMO) community. However, there is still
a shortage of parameterized combinatorial problems,
constrained problems, and problems with large num-
bers of objectives. The generators proposed here can
provide problems with all these features, separately as
well as together.

In this paper, the di�erent generators are used to pro-
vide an initial set of 15 di�erent problem instances,
each with just two objectives. These instances are then
tackled using a multiobjective EA called AESSEA,
which is described in detail in a recent paper by us [9],
where it was used to solve some much simpler random-
weight mc-MST problems. The AESSEA results are
also compared with an enumerative algorithm (smaller
problems) and a polynomial-time iterated heuristic ap-
proach (larger problems) to provide the �rst bench-
mark results over a wide range of mc-MST problem
types with constraints. All of the problem instances,
generators, and results sets are available for others to
use by e-mail contact with the �rst author.

The remainder of the paper is organized as follows:
Section 2 de�nes the mc-MST problem and a degree-
constrained variant. In Section 3, the di�erent prob-
lem generators are described. Section 4 then describes
AESSEA, the encoding and operators used, and the
other non-EA algorithms. Section 5 provides details
of the experimental method including all parameter
settings, and describes the statistical method used to
analyze the results. Section 6 presents the results, and
Section 7 concludes.

2 Multiobjective Degree-Constrained
Minimum Spanning Tree Problem

A spanning tree of an undirected, connected graph,
G = (V;E), is a subgraph T = (V;ET ); ET � E that
contains all vertices in V and connects them with ex-
actly jV j � 1 edges, so that there are no cycles. If G
is complete, then the set S of spanning trees T of G
has jSj = jV jjV j�2 members. If each edge (i; j) 2 E
has K > 1 associated non-negative real numbers, rep-
resenting K attributes de�ned on it and denoted with
wi;j = (w1

i;j ; w
2
i;j ; : : : ; w

K
i;j), then the mc-MST problem

may be de�ned as:

\minimize" W = (W 1;W 2; : : : ;WK)

with W k =
X

(i;j)2ET

wk
i;j ; k 2 1::K (1)

where the term `minimize' is in quotation marks to
indicate that it may not be possible to �nd a single
solution that is minimal on all the components of W.
Instead, one is required to �nd a set of spanning trees
S� � S, called the Pareto optimal set, with the prop-
erty that:

8T �
2 S� � 6 9T 2 S � T � T � (2)

where T � T �
() 8k 2 1::K � W k

� W k�
^ 9 k 2

1::K � W k < W k�. The expression T � T � is read as
T dominates T �, and solutions in the Pareto optimal
set are also known as e�cient or admissible solutions.

If there is, in addition, a constraint d on the maximum
vertex degree in the spanning tree, then the problem is
called the multiobjective degree-constrained minimum
spanning tree (mcd-MST) problem.

3 Problem generators

We propose generators for the following types of non-
Euclidean problems:

Random Random (uncorrelated) integer or real
number weighted graphs;

Correlated: Random correlated real number
weighted graphs;

Anti-Correlated: Random anti-correlated real
number weighted graphs;

M-Correlated: Correlated real number weighted
graphs with high vertex degree in the underlying
MST;

Concave: Real number weighted graphs that have a
large concave region in their Pareto front.

All of the above can be generated as either sparse
graphs, or complete graphs. We consider only com-
plete graphs in this paper. Similarly, all but the con-
cave graphs can be generated with an arbitrary num-
ber of objectives, K, although here we restrict our at-
tention to bi-objective problems only.

Random

The random graph generator simply sets each com-
ponent of each edge weight vector to a value drawn
from a uniformly random distribution within some
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range, U(min;max). In this paper we do not con-
sider graphs of this type but we have already shown [9]
that our AESSEA algorithm using a direct coding and
specialized operators is superior to the AESSEA al-
gorithm using a Pr�ufer encoding [12, 15] on problems
of this type. Here we restrict our attention to more
di�cult problem types.

Correlated and Anti-Correlated

The correlated (and anti-correlated) graphs are gen-
erated by using the algorithm given in Figure 1. The
procedure takes the required correlation � 2 [�1; 1]
as an argument and returns a weight vector of K
weights where the �rst component is drawn from a
uniform distribution, and all subsequent weights are
either positively or negatively correlated with respect
to the �rst component, and lie within the same range
of values. Note that since the correlation exists be-
tween the �rst and each other component of the weight
vector, a correlation of j�j exists between all pairs of
components wk ; wl k; l 2 2::K. The correlation be-
tween the components of a weight vector a�ects the
shape of the associated Pareto front of the MST prob-
lem of the graph. A zero correlation gives a smooth,
convex Pareto front with a fairly constantly varying
gradient along its length. In contrast, a large positive
correlation gives a convex Pareto front with more of a
discontinuous change in the gradient. With a correla-
tion approaching +1, the front becomes smaller until
in the limit, it will only contain one optimal point.
With a strong negative correlation, the front is convex
but approaches a straight line or at surface in objec-
tive space as the correlation approaches -1. Because of
this there tend to be a large number of non-supported
e�cient solutions (those that do not lie on the con-
vex hull of the Pareto front). This shape of Pareto
front might make it di�cult for methods based on the
use of weighted sum aggregation of objectives, to �nd
a good approximation to the Pareto front since they
tend to �nd it di�cult to discover non-supported so-
lutions, and also rely on a changing gradient in the
Pareto front to �nd a good range of points on it.

M-Correlated

The M-Correlated graph generator is based on a graph
generator developed by us [6] for producing `mislead-
ing' or M-graph problems for the standard (single-
objective) d-MST problem, and combining this with
the correlated graph generator described above. The
M-Correlated graphs are designed to be particularly
di�cult to solve when a low maximum vertex degree
constraint must be satis�ed.

Algorithm: Gen correlated wts

� 2 [�1; 1] is the correlation, provided by the user
� is the o�set, calculated from �
 is the variation, calculated from � and �
U(min;max) is a uniformly distributed random devi-
ate 2 [min;max)

if (� � 0)
�  1=2(1� �)
  �

else

�  1=2(1 + �)
  � � �

foreach edge (i; j) 2 E
w1
i;j  U(0; 1)

foreach objective k 2 2::K
wk
i;j  �w1

i;j + � +  U(�1; 1)

Figure 1: An algorithm for generating a graph with
correlated weight vectors

In theory, the maximum vertex degree of a MST in
a graph of random edge weights is jV j � 1. However,
in practice, when reasonably large uniformly random
weight graphs are generated, the maximum vertex de-
gree of the graph's MST rarely exceeds four or �ve.
Due to this fact, some researchers [1, 10] have devel-
oped methods for generating biased random graphs
where the graphs' MSTs have a high maximum ver-
tex degree. Knowles and Corne [6] further developed
the graph generator of Boldon et al. to bias the edge
weights in such a way as to mislead any algorithm that
greedily chooses edges of low weight in an attempt to
grow a low-weight spanning tree. The M-graph gener-
ator, as it is called, requires four parameters to be set:
jV j the number of vertices in the graph;
f the number of vertices with large degree;
ld the lower bound on the degree of

large-degree vertices; and
ud the upper bound on the degree of

large-degree vertices,

with the constraints that f:ud < jV j and ld < ud .
The generator has two main stages. In the �rst stage
a spanning tree that will be the MST of the graph is
formed. In the second stage other edges are added to
form a graph of the required density. The �rst stage
begins by forming f di�erent `star' graphs with the
degree of each star centre vertex chosen uniformly at
random in [ld; ud]. These disconnected components
are then connected by adding f � 1 edges at random,
to form a tree. The set of connected vertices, VT , in
the tree will have fewer than jV j members, so that
the tree is not spanning. To span the whole graph,
additional vertices in V n VT , not in any of the stars,
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will be added. However, �rst the edges in the (non-
spanning) tree formed so far, are all assigned uniformly
random weights in [0; �). Next, all remaining uncon-
nected vertices are connected to the tree by adding an
edge between them and exactly one of the star centre
vertices. The weight of these edges is assigned a uni-
formly random weight in [�; �). Additional edges are
then added between any pair of non-adjacent vertices,
until the graph reaches the required density of connect-
edness. The weights assigned to these additional edges
are uniformly random in [�; !] for any pair of vertices
where both are members of VT , and uniformly random
in [ ; !] for all other vertex pairs. If the weight pa-
rameters are set so that 0 < � < ��  < ! then the
resulting graph will be a misleading graph, that is the
graph's structure will successfully mislead algorithms
that favour choosing low-weight edges. This can be
understood by �rst noticing that the edges incident
to the vertices in V n VT have two di�erent ranges of
values. Those edges whose other incident vertex is a
star-centre have a low weight, whereas all others have a
high weight. However, often a greedy-style algorithm
will be forced to choose the higher weighted edge to
connect these vertices because in earlier choices it will
favour the edges that are incident to a star centre ver-
tex (because these have the lowest range of weights in
the graph) thereby causing the star centre vertex to
reach its maximum allowed degree, and so preventing
the connection of it to one of the vertices in V n VT .
Because  � � this will lead to a heavier graph, over-
all.

To make a multiobjective version of an M-graph, we
use the M-graph procedure to set the weights of the
�rst component of all the edge weight vectors. The
others components of the edge weight vectors are then
set using the correlation procedure outlined above. If
a large positive correlation is used then the graph will
be misleading in all of its components, and it will be
di�cult for a greedy approach to �nd a low-weight
solution if the degree constraint is much lower than
the parameter ud.

Concave

The Concave problem generator can only be used to
make bi-objective problems at present. It works by
setting the edge weights of three `special' vertices (la-
belled 1, 2, and 3) in such a way that a large con-
cave region in the Pareto front will result. If we re-
strict all edge weights to lie in [0,1], then the weights
that can be used are the following: W0;1 = (�; �),
W0;2 = (0; 1 � �), and W1;2 = (1 � �; 0). All other
edges are Wi;j = (U(�; �);U(�; �)) for i; j > 3 and
Wi;j = (U(1 � �; 1);U(1 � �; 1)) if i xor j � 3, with
i; j 2 V , � a small positive value of the order of 1=jV j,
� < � � 1 � �, and U(min;max) giving a uniformly
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Figure 2: A plot showing true nondominated points
on a 25 vertex concave problem

random deviate in [min;max].

An example of (an approximation of) the Pareto front
of a concave graph problem is given in Figure 2. The
graph has 25 vertices and the values of the parameters
for generating it were: � = 0:05 and � = 0:2.

4 Algorithms

In a recently submitted paper [9], we studied the per-
formance of two di�erent encodings within a multi-
objective evolutionary algorithm called AESSEA, on
the mc-MST problem without degree-constraints. In
that work, it was found that a mixed method based
on a decoder-style encoding for initialization, and a
direct encoding with specialized crossover and muta-
tion operators was superior to the Pr�ufer encoding, in
the same evolutionary algorithm. We also concluded
in the paper that for un-constrained random-weight
problems, a simple approach based on iterating Prim's
algorithm [11] for di�erent weighted-sum aggregations
of the objectives in the given mc-MST, actually pro-
duces results that are far better than the Pr�ufer en-
coded evolutionary algorithm, and about the same as
the mixed encoded evolutionary algorithm, but in far
less time. However, we also noted that for various con-
strained problems and for situations where the Pareto
front may contain many non-supported solutions, the
Prim's algorithm approach would fail to perform well.

Our aim here is to test those ideas by applying
AESSEA with a mixed encoding to a range of degree-
constrained problems with di�erent shaped Pareto
fronts and once again we compare our results with
our iterated mcd-Prim algorithm procedure, and also
against a complete enumeration of the space on the
smaller 10-vertex problems. The algorithms mcd-Prim
and AESSEA are described briey below, including
the encodings and operators used in the latter.
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Algorithm mcd-Prim

Prim's algorithm [11] is a well-known polynomial
time constructive algorithm for solving the (single-
objective, unconstrained) MST problem. It can be
adapted to the d-MST by changing it so that at each
step, in its construction of a tree, it checks for a degree-
constraint violation before adding in the next edge.
We call this constrained version of Prim's algorithm,
d-Prim. Of course, since d-MST is NP-hard, d-Prim
does not guarantee an optimal solution.

For tackling the mcd-MST, a multiobjective version
of d-Prim is easily devised. By simply replacing the
vector of edge weights in the graph by a weighted sum
scalarization of them, optimization can be carried out
in one `direction' of the objective space. In mcd-Prim,
this procedure is iterated for many di�erent weightings
of the objectives, giving a whole range of solutions
approximating the Pareto front.

The scalarization of the objectives is achieved by re-
placing the vector weights de�ned on each edge in
G by a scalar weight b formed by taking the inner
product of a normalized scalarizing vector, �, and w,
b = �:w. To obtain di�erent weightings, we use ev-
ery normalized scalarizing vector, �, with components
equal to l=s; l = 0::s where s is a parameter controlling
the number of di�erent vectors that will be generated.

This gives

8
>:s+K � 1

K � 1

9
>; di�erent, evenly distributed,

scalarizing vectors. For each di�erent � vector, the
constrained version of Prim's algorithm (d-Prim) is ap-
plied.

For a large number of di�erent scalarizing vectors (in
our experiments we set s = 1000, giving 1001 di�erent
� vectors), mcd-Prim may generate an approximation
to S�, the set of Pareto optimal spanning trees, that is
satisfactory in many cases. However, with a low degree
constraint the algorithm may not generate many (or
any) optimal solutions on a single run. Therefore, it
may be useful to run the algorithm several times with
a di�erent start vertex. In the experiments reported
below, we always run mcd-Prim �ve times, each with
a di�erent start vertex.

AESSEA

The multiobjective evolutionary algorithm, AESSEA,
is based closely on procedures already de�ned for the
Pareto archived evolution strategy (PAES) [7], and is
described more fully in [9]. AESSEA is a steady-state
EA, that is, only one new solution is evaluated per
`generation'. It keeps a set of non-dominated solutions
in an archive, and uses this set of solutions to estimate
the quality of newly generated solutions. The algo-
rithm is elitist in the sense that parents and o�spring

compete, but the overall selection pressure of the al-
gorithm is not too strong since selection for mating is
purely random, and o�spring only replace one of their
parents, rather than the weakest member of the popu-
lation. Some testing of this algorithm and comparison
with PESA [2] suggest that it is both an e�ective and
computationally e�cient, multiobjective EA.

RPM decoder encoding

The randomized primal method was put forward in [6]
(where it is described in detail) as an encoding for
solving the d-MST problem using any metaheuristic
search method. It is a decoder type of representation,
that is the chromosome encodes for choices that are
made when a constructive algorithm builds a tree. The
problem with this type of encoding is that it does not
exhibit good locality, and it has super-linear growth
in complexity for linear increase in the graph size jV j.
However, it is good for initialization where it used only
a small number of times.

Direct encoding and operators

The direct encoding and operators used in AESSEA
are multiobjective versions of those put forward by
Raidl in [13] for the d-MST problem. We describe
how these operators were adapted for the mcd-MST
problem in detail in [9]. In summary, the operators
are adapted so that they bias the choice of edges to-
wards those that are the minima on some weighted-
sum single objective evaluation of the multiobjective
tree weight. The weights in the weighted-sum are also
encoded for by the chromosome and are subject to mu-
tation and crossover. The method ensures that good
solutions are found across the whole Pareto front.

5 Experimental method

Generated problems

Three graphs for each of the problem types: Cor-
related, Anti-Correlated, M-Correlated, and Concave
were generated; one each at sizes of 10, 25, and 50
vertices, giving 12 graphs in all, from which 15 prob-
lems are created by setting degree constraints of 3 on
all of the problems, and an additional, lighter degree
constraint of 5 on the three M-correlated problems.

The correlations for the Anti-Correlated graphs,
10vAC, 25vAC, and 50vAC were set at -0.7. For the
Correlated graphs, 10vC, 25vC, and 50vC, the corre-
lation was set at 0.7. For the M-Correlated graphs the
correlation was also set at 0.7, and the other parame-
ters were f = 1; 2; 5, ld = 6; 6; 7, ud = 8; 10; 9, for the
10vM-C, 25vM-C, and 50vM-C, respectively. There is
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no correlation between the edge weight components in
the concave graphs, and the other parameters used
for generating these graphs were � = 0:1; 0:05; 0:03
and � = 0:25; 0:2; 0:125 for the 10vConc, 25vConc and
50vConc graphs respectively.

Algorithm parameters and experiments

The parameters used for AESSEA are given in Table 1.
AESSEA is run 30 times independently on each of the
15 problems and the nondominated archive returned
by it from each run is stored for statistical analysis,
and comparison with the non-EA approaches. For each
problem, mcd-Prim is run 5 times with a di�erent start
vertex, and the combined nondominated solution set
is stored. On the ten-vertex problems we also use an
enumerative procedure to give us the entire true Pareto
front for comparison.

Parameter AESSEA

population size, jP j 200

nondominated solutions
archive size, arcsize 200

initialization method RPM

mutation type edge-mutation

crossover type edge-crossover

total number of function
evaluations, num evals 20k/50k/50k

# of grid squares used
for `crowding' strategy [7] 1024

Table 1: Parameter settings for AESSEA. The three
�gures for number of evaluations relate to the three
di�erent problem sizes, 10, 25, and 50 vertices, respec-
tively

Statistical Analysis of Data

When a multiobjective EA or other approximate
method is run on a multiobjective problem, it returns a
set of (mutually nondominated) solutions that approx-
imate the true Pareto optimal set. Each of the solu-
tions also has an image in the multi-dimensional objec-
tive space, consisting of an objective vector. The set
of objective vectors approximate the true Pareto front.
How well the discovered objective vectors (points) ap-
proximate the true Pareto front is usually more im-
portant than the proportion of the Pareto optimal
solutions that have been found. But measuring the
quality of an approximation to the Pareto front is not
a straightforward problem because several dimensions
of quality in an approximation can be identi�ed. Cou-
pled with this problem is the need for some statistical
analysis of the performance of the (stochastic) approx-

imate method over multiple runs, to provide useful
summarising data for the expected performance of the
algorithm.

Our methods rely on a technique developed by Fon-
seca and Fleming [4], and later implemented and ex-
tended by us [7]. The technique relies on the notion
that the nondominated points from any approxima-
tion to a Pareto front de�ne a surface (called the at-
tainment surface), that divides up the objective space
into a region that is dominated by the discovered non-
dominated points, and a region that is not dominated
by them. Over multiple runs, an approximate algo-
rithm will generate multiple di�erent attainment sur-
faces. By sampling the distance of these surfaces from
an origin at many di�erent angles, one can obtain sta-
tistical information about the expected position of the
attainment surface along each di�erent angled direc-
tion (or sampling line). For example, one can calcu-
late the median attainment surface, or the quartile
attainment surfaces of an algorithm. One can also
compare directly the whole distribution of positions of
the attainment surfaces obtained from multiple runs
of two or more di�erent algorithms. This is particu-
larly useful when comparing the performance of two or
more EAs (e.g. see [7]). Here, where we just have bi-
objective problems, our �rst method is to simply plot
the median attainment surface of AESSEA and com-
pare it with the combined nondominated points found
by mcd-Prim.

The second method is quantitative. For a single algo-
rithm's sets of nondominated points, the method �rst
computes (a sampling of) the attainment surfaces as
above, and then calculates the (sampled) median and
quartile surfaces. Now, to convert these surfaces into
a simple �gure of merit, the size of the dominated
region of the surfaces can be calculated. For a bi-
objective minimization problem (as we have here) this
is simply the area above and to the right of the at-
tainment surface up to some bounding rectangle. How
the bounding rectangle is best set is open to debate.
Here we calculate the weight of the worst feasible so-
lution (heaviest spanning tree) for each of the objec-
tives in turn, giving us a point (z1, z2) that is used
as the upper right corner of our bounding rectangle.
(The points were calculated using Prim's algorithm
set to maximize). In our results we report the abso-
lute (unnormalized) size of the dominated region of
the median surface, and (to get an idea of the varia-
tion over di�erent independent runs), the interquartile
dominated region size. One disadvantage of this ap-
proach is that concave regions of the Pareto front are
under-represented in the statistics. This is seen in the
results section where there is a seeming di�erence in
the results shown by viewing the plots and by the nu-
merical results, for the concave graph problems.
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6 Results

Problem Total size Median (Interqt)
Enum mcd-Prim AESSEA

10vAC 21.3837 20.4108 21.357 (0.0032)
25vAC 246.256 245.175 (1.428)
50vAC 1240.27 1224.07 (7.6)
10vC 36.0955 35.3919 35.7672 (0)
25vC 363.233 363.329 (0.109)
50vC 1868.59 1869.3 (3.52)

10vM-C-d3 26.8362 23.6895 26.8342 (0)
25vM-C-d3 281.923 343.892 (0.55)
50vM-C-d3 1302.33 1493.89 (3.17)
10vM-C-d5 40.0389 35.3428 40.0365 (0)
25vM-C-d5 345.62 384.511 (0)
50vM-C-d5 1496.8 1615.49 (4.56)

10vConc 37.3255 37.0848 37.2367 (0)
25vConc 334.694 334.644 (0.354)
50vConc 2122 2118.39 (1.67)

Table 2: Size of the median and interquartile dom-
inated regions for 30 runs of AESSEA, and the total
combined size of the dominated region found using �ve
runs of mcd-Prim. For the ten-vertex problems the
true size of the dominated region is represented by the
results of the Enumeration algorithm
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Figure 3: AESSEA's quartile attainment surfaces, and
mcd-Prim's combined discovered vectors, on the 50
vertex correlated problem with degree constraint 3

From the results given in Table 2, we can see that
mcd-Prim performs very well compared to AESSEA
on the correlated and anti-correlated problems, and is
considerably faster (but see Figure 3 for further help
visualizing the Pareto fronts discovered). However, on
the M-correlated graphs it clearly struggles. This is as
expected because on these problems the degree con-
straint has a real e�ect on the di�culty of �nding good
solutions. We can see that AESSEA is clearly supe-
rior here; observe the size of the region discovered by
it, compared to the enumeration method on the 10
vertex M-correlated problem for both d=3 and d=5.
This is further shown in a plot given in Figure 4. Fi-
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Figure 4: AESSEA's quartile attainment surfaces, and
mcd-Prim's combined discovered vectors, on the 50
vertex M-correlated problem with degree constraint 3
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Figure 5: Nondominated points found from 5 runs
of mcd-Prim, and the median attainment surface
achieved by AESSEA. Note how AESSEA �nds points
in the concave region of the Pareto front

nally, on the (larger) concave problems, it appears that
mcd-Prim does better than the AESSEA but in fact is
unable to �nd any solutions in the concave region of
the Pareto front. Its larger dominated region is due to
it �nding the very edge of the Pareto Front, which the
EAs do not achieve on every run. This is illustrated
in a plot showing the median attainment surface for
AESSEA, and the points found from 5 runs of mcd-
Prim is given in Figure 5.

7 Conclusion

We have presented a number of graph generators that
can produce a range of challenging graph types for the
mcd-MST problem. The generators can be used to
make problems for the OR community to test exact
and heuristic approaches to the mc-MST, and for gen-
erating benchmark problems to form part of broader
test problem suites for evaluating multiobjective EAs.
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We have shown that on some problems it may not be
necessary to use an evolutionary algorithm or other
metaheuristic technique for tackling these problems,
because a simple, iterative approach | mcd-Prim |
can provide very good results in a fraction of the
time. However, we have also demonstrated that for
certain problems with constraints that are di�cult to
meet, an evolutionary algorithm, AESSEA, does ob-
tain superior results. Furthermore, AESSEA is able to
�nd points in the non-supported regions of the Pareto
front, as was clearly demonstrated using the concave
graph generator. In real problems of interest to the
telecommunications industry, the number and variety
of constraints that must be met will necessitate the use
of evolutionary algorithms similar to that investigated
here.

In our future work we will investigate the performance
of a memetic algorithm, M-PAES [8], on these prob-
lems. Although M-PAES has been shown to perform
well on other problems, it seems likely that in this ap-
plication, a local-search element would be particularly
useful. We base this conjecture on the observation
made by Ehrgott and Klamroth [3] that from a sample
of 50 random instances of a random weight bi-objective
MST problem, all of them were ergodic with respect to
a single exchange operator (although they prove this
will not always be true). In light of this, we predict
that further advances in tackling these di�cult con-
strained mc-MST problems will come from techniques
that incorporate a strong local search element, as used
in M-PAES.
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Abstract

In this paper we show how a simple inher-

itance mechanism is capable of learning the

best local search to use at di�erent stages of

the search. In our work an individual is com-

posed by its genetic material and its memetic

material. The memetic material speci�es the

strategy the individual will use to do local

search in the vicinity of the solution encod-

ed in its genetic part. A simple vertical in-

heritance mechanism is enough to provide a

robust adaptation of behavior. This result s-

pans from a simple OneMax problem, to NK-

landscapes and the TSP.

1 INTRODUCTION

In this paper we introduce a Memetic Algorithm (MA)

in which the local search (a meme) employed by each

individual is learnt during evolution. An individual is

composed of its genetic material and its memetic ma-

terial. The memetic material speci�es the strategy the

individual will use to do local search in the vicinity of

the solution encoded in its genetic part. A simple ver-

tical inheritance mechanism, as used in self-adaptive

genetic algorithms and evolutionary strategies, is e-

nough to provide a robust adaptation of behavior. We

begin by illustrating the viability of the adaptive mech-

anism with two experiments where the GA adapts to

use suitable mutation probabilities. With our method

any meme, that is any mutation rate, is accesible with

equal probability from any other one. This can not be

achieved by a binary or gray encoding using multiple

bits[1][17] nor with a real value encoding attached to

the normal genes [8]. Also, by using this mechanism,

the control of which memes to use is a distributed one.

Furthermore, memes themselves can be modi�ed by an

adequate mechanism. For a detailed review of opera-

tor adaptation refer to [18]. This is then expanded to

a MA where the memes represent local search algo-

rithms. In the memetic algorithms literature authors

have spent a considerable amount of research assess-

ing, e.g., how deep the local search should be and how

often[7]. Land[13] used the concept of \sni�s" to try

to gauge which individuals should go through a local

search phase and with how much intensity. In [6] the

authors developed a systemic model of Global-Local

search hybrids that shed some light on the optimiza-

tion of those algorithms. Carrizo et.al. in [5] employed

several local searchers within the same MA to solve

quadratic assignment problems. Moreover, to the best

of our knowledge, just a few papers[19][10] have ap-

peared where the choice of which local search to ap-

ply was left to the evolutionary process itself. It is in

this spirit that this work is done.

2 THE MEMETIC ALGORITHM

AND THE SIMPLE

INHERITANCE MECHANISM

In this section we will describe the underlying GA ar-

chitecture used in our experiments. An individual is

composed of genetic material plus a meme allele.The

genetic part was the representation of the potential so-

lution. There wereM memes available to be expressed

by an individual, that is to say we treat our memes as

categorical rather than ordinal entities. For the One-

Max and NK-Landscapes Problems memes represent-

ed mutation strategies. In this case they were not as-

sociated with any local search process so we can regard

our memetic algorithms as an adaptive GA. In the case

of the TSP, memes were chosen from a range of local

search strategies, embodying a fully edged MA. The

mutation process of an individual involves mutating

its meme and its chromosome. The meme is mutat-

ed accordingly to a small innovation rate IR by ran-
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domly choosing a meme number from the distribution

U(1;M). The IR takes a value in the range [0; 1]. A

value of 0 means that there is no innovation and hence

if a meme allele is lost it will not be re-introduced in

the population. A value of 1 speci�es an extremely

explorative meme policy where all the di�erent strate-

gies implied by the available M memes will be equally

used and no emergent properties are expected to arise.

After that, the mutation strategy given by the meme

is expressed. This mutation strategy speci�es the kind

of genetic mutation (One Point mutation or Bit Wise

mutation) and the probability of applying it to the

chromosome. The innovation rate guarantees a mini-

mum level of exploration of the memetic space. For an

innovation rate of IR, a population size of � and a u-

niform distribution of meme mutations U(1;M), even

the worst meme can be reintroduced to the popula-

tion with a frequency of Pr = IR��

M
per generation.

Crossover is based on the following pseudocode:

Individual_Level_Crossover(parent1, parent2)

BEGIN

IF(both parents carrie the same meme}

Cross parents genetic material.

Inherit common meme to offspring.

ELSE-IF (parent1.fitness()==parent2.fitness())

/* the two parents have different memes */

/* but their fitness are comparable hence */

/* a random choice is made */

Cross parents genetic material.

Choose a meme randomly from any of the two parents.

Inherit selected meme to offspring.

ELSE

/* parents don't share memes nor fitness values */

/* hence the fittest individual */

/* imposes its meme preference */

Cross parents genetic material.

Choose meme from fittest parent.

Inherit the chosen meme to offspring.

END

The �rst phase involves the standard chromosome

crossover, while the second phase performs the verti-

cal propagation of the memes in the following way. If

two individuals share the same meme then this meme

will be inherited to the o�spring. If the memes they

carry are di�erent, then the meme of the �ttest parent

is propagated. Finally, if memes are di�erent but the

�tnesses are equal, then a random choice between both

memes will be done and the selected one will appear

in the o�spring. The memetic phase of the crossover is

kept identical in the three problems. The �rst phase of

chromosome crossover are di�erent; for the OneMax u-

niform crossover with probability 0.7 was used, for the

TSP DPX with probability 0.6 was used. In the case

of NK-Landscapes no chromosome crossover was em-

ployed. As we said before an individual consists of its

chromosome and its meme. This meme speci�es a s-

trategy that is composed of both an operator and its

probability of being applied. These composed memes

are called `memeplexes' (see for example [3]). In the

�rst two experiments presented the meme encoded a

�xed mutation operator with variable probabilities for

the binary problems, while for the TSP the meme rep-

resented variable local searchers with a probability of

being applied �xed at 1.0 .

3 EVOLUTIONARY ACTIVITY

WAVE AND MEME

CONCENTRATION GRAPHS

In order to examine the evolutionary and adaptive

properties of memes in our system we will use the ap-

proach of Bedau et.al. [2]. We are interesting in ob-

serving the adaptive signi�cance of the search strate-

gies coded by the memes. We de�ne the concentration

c of meme i at time t as the number of individuals in

the population that carry this meme. We denote this

value by ci(t). It is hypothesized that since memes are

carried alongside genes, those strategies that confer a

selective advantage to the genes (i.e. they represent an

eÆcient local search) will proliferate. Moreover, this

proliferation is going to be reected as an increase on

those meme's concentration. The meme concentration

ci(t) is a crude measurement of a meme success be-

cause it doesn't give information about its continual

usage since it �rst appeared in the population. Some

memes might have a low concentration at a given time

but disappear or take over the population in the next

few generations. To account for such phenomena the

evolutionary activity (E.A.) a of meme i at time t is

de�ned by:

ai(t) =

� R
t

0
ci(t)dt if ci(t) > 0

0 otherwise
(1)

When the evolutionary activity of a meme is plotted,

the slope of the curve represents the concentration

ci(t) of meme i. In that way, an increase in the s-

lope indicates an increasing use of a given meme (it

is spreading fast in the population). An almost at

curve points out a meme that is having less survival

value than its competitors. In this kind of graph is

usual to distinguish a wave of activity when a meme

that has been successful for many generations disap-

pears.

4 THE OneMax AND NK-Landscapes

In this section we describe several experiments per-

formed to understand the behavior and the feasibility

of adapting memes in a population of evolving indi-

viduals. We will describe and analyze the results of

several experiments on two di�erent, yet related, prob-
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lems: OneMax Problem and NK-Landscapes[9]. The

OneMax problem consists of achieving an all ones bit

string of length n starting from a randomly initialized

population. The NK-Landscapes are binary problems

of length n where genes participate in epistatic inter-

actions. The number of genes with which any other

gene interacts depends on K.

Furthermore, in the case of OneMax, in generation 370

(out of 1000) the problem was changed from maximiz-

ing the number of `ones' to that of maximizing the

number of `zeroes'. This change in the �tness func-

tion provides a dynamic environment where individu-

als (genes and memes) were tested against very di�er-

ent situations. At the beginning of the run the popu-

lation was randomly initialized, with both genes and

memes set randomly. After the environment transition

the evolving population was faced with a new problem

(that of ZeroMax instead of ones). In practice this

was equivalent to restarting the experiment but with

a non-random population. In this way we were able

to study the behavior of our approach under three dif-

ferent regimes: A random starting one and its adapta-

tion towards an optima, a transient state with a biased

(converged) initial population, and a �nal converged s-

tate. Thirty runs were made with a generational GA

with no elitism. Deterministic binary tournament was

used to select parents. The population size was 50.

Uniform crossover was used with a probability of 0.7

. The 11 memeplexes speci�ed a one point mutation

together with its `per individual' probability of being

used. The mutation probabilities were in the range

[0:0; 1:0]. For this experiment IR = 0:1. In �gure 1 we

plot the average of the mutation probabilities in the

memes that exist at time t in the population. Also the

average �tness achieved by the population is shown.

The dominating meme corresponds to a 0 mutation

probability. This meme is successful because it pre-

serves whatever the evolutionary system achieved. At

the �tness transition it is wiped out and memes that

represent high mutation rates take over the popula-

tion (memes with mutation probabilities of 0.6, 0.8 and

0.9). When the new problem, ZeroMax, is 50% solved

(i.e. half the allele values are optimal) those memes

rapidly disappear and again strategies that represen-

t low mutation rates dominate the population. From

the graph in �gure 1 we can see that at the beginning

of the run, when the population is randomly initialized

and the goal is to maximize the number of ones, the

average mutation probability expressed by the memes

is around 0.5. At the �tness transition and because the

population is biased towards all ones, the system tunes

to a much higher average mutation: 0.7 . When the

system starts to maximize the number of ones on aver-
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Figure 1: In (a) Average mutation rate expressed by the
individuals in the population at time t. The mutation rate
is de�ned by the meme each individual keeps, higher meme
number means higher mutation rate. Average �tness is
in solid line. Fitness transition is at generation 370. (b)
Average meme concentration in the system at the �tness
transition. Memes with higher numbers dominate (high
mutation rates)
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age half the bits will be properly set. After achieving

an average �tness of at least 50%, mutations become

deleterious and selection works against mutation. On

the other hand, when the system switches to maximiz-

ing the number of zeroes, the majority of allele values

are suboptimal, so with high probability mutating a

bit will give a selective advantage. Thus, those memes

which correspond to a higher probability of achieving

this advantage will ourish until the mean density of

zeroes is greater than 50%. Furthermore the expan-

sion of the high mutation rates is longer than the one

at the beginning of the run. In �gure 1(b) the aver-

age meme concentration can be seen. The patterns

of concentration at the start of the search and dur-

ing the �tness transitions di�er from each other (not

shown here). During the �tness transition memes with

even higher mutation rates are favored and it takes

longer for their concentrations to decrease. This ex-

periment demonstrates the ability of a system with

simple meme encoding to adapt, even though (unlike

other approaches) memes are not treated as continous

or ordinal entities. A theoretical model of this method

can be seen in [16].

5 ADAPTATION AND PHASE

TRANSITIONS IN PARAMETER

SPACE

In the previous sections we described the main archi-

tecture of our adaptive GA and we showed that it was

capable of tracking changes in the environment by ap-

propriately tuning the mutation rates of the evolution-

ary search. We also conducted a series of experiments

with NK-Landscapes to assess if our system was able

to adapt the mutation rates in more complex settings.

In [14] the authors explore a phase change in search

when a parameter � reaches a certain critical value on

some NK-Landscape problems . In their experiments

the authors focused on Simulated Annealing (SA) as

a local search algorithm, although a very special SA:

the temperature was kept equal to zero at all times.

The underlying operator, a bit-ip, was parameterized

with � , a per bit mutation rate. In their paper the

authors show experimentally that the quality of the

search follows an s�shape curve when plotted against

� making evident a change in phase. We wanted to ex-

plore whether the same kind of phenomenon arises in

a GA and, if indeed this was the case, if our adaptive

mechanism was able to select mutation rates compa-

rable to those before the demeliorating transition.

As a �rst step we ran extensive simulations of the

GA behavior with di�erent bit rate mutations cover-

ing a wide range of values. The same GA as before

was used but with a zero probability of crossover and

100 generations. A set of experiments was done with

N = 40 and K 2 [0; 15]. For each K three land-

scapes were created and 10 runs made on each land-

scape. This was repeated for 29 mutations rates in

f0:0005; 0:0010; : : : ; 0:0045g
S
f0:005; 0:010; : : : ; 0:10g.

In the upper part of �gure 2 we can see the results

obtained1. The GA is sensitive to the per bit mutation

probability, there is a change in behavior at � = 0:01.

When � is further increased a swift loss of performance

occurrs. This critical value �c is very close to the theo-

retically predicted error threshold[15] for �nite asexual

populations:

��
S
=

ln�

�
�

2 �
p
� � 1

� �
p
S

+
2 � ln� �

p
� � 1

�2 �
p
S

(2)

where S is the population size, � is the genome length,

� is a \selective ratio" that gives a rough measure of

�tness superiority of the master sequence. In our ex-

periments S = 50; � = N = 40 and � = 2:0, the

resulting ��
S
= 0:0103.
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Figure 2: Up: Fitnesses achieved under di�erent muta-
tion rates for varying K averaged over 30 runs. Note the
sharp decrease in �tness for mutations higher than 0.01.
Down: Evolutionary activity of memes representing the
same range of mutation probabilities as above. Note the
fast decrease in activity for those memes above 0.01.

Once we knew that the phenomenon was present in

GAs, we needed to check if the mechanism proposed

here was capable of avoiding e�ective mutation rates

equivalent to those greater than ��. In our experiment

we used 50 individuals per generation, the GA was a

1For clarity we show here just a few K that span the
range studied
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generational one and the memes encoded per bit mu-

tation rates in the range described above and a zero

probability of crossover. The problems used were as

in the exhaustive experiments. In the lower part of

graph 2 we see the evolutionary activity of memes, as

de�ned by equation 1, for K in the same range as be-

fore. The graph shows the activity for generation 100.

Memes were associated with the range of probabilities

with which the exhaustive runs were performed. We

can see that the adapting GA was able to distinguish

between memes before and after the ��. This is shown

by the rapid decrease in evolutionary activity for those

memes lying beyond 0:01. A second important con-

clusion that we can draw is that this simple adaptive

mechanism is sensitive enough to be able to discrim-

inate between a large set of alternatives (29 in this

case) and it allows the emergence of e�ective muta-

tion rates that avoid been trapped after ��. In �gure

3 we plot, for di�erent K, the best �tness obtained

from all of the exhaustive runs of the standard GA,

the �tness of the adaptive GA and the �tness of the

standard GA after the transition. As it can be seen

in the graph the adapting GA, by di�erentially propa-

gating memes that are before and after the transition,

can sustain �tness values comparable to the optimal

ones. As K increases, the gap between the adaptive

and the optimal value decreases, while the gap with the

values after the transition gets larger. Another obser-

vation is that the transition is not sharp for K � 4,

con�rming Macready's et.al. �ndings [14]. Important

to note is the fact that the best �tnesses obtained for

the standard GA (before and after the transition) were

obtained with di�erent mutations rates and involved

30x29 runs. The adaptive version achieves its results

just with 30 runs.
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� = 0:0103. The values on
this curves are averaged over 30 runs

6 ADAPTING THE BEST MEME

FOR THE TSP

In the previous sections we showed that a simple verti-

cal inheritance of memes was capable of performing an

eÆcient adaptation of behavior for the dynamic One-

Max and NK-Landscapes. In this part of the work we

applied the same principle to learn which is the best

meme to employ during di�erent stages of the search

for TSP. The TSP consists on �nding the minimum

length closed circuit among all the cities of a prede-

�ned set. The circuit should touch each city only once.

We used 24 di�erent memes, each meme de�nes the

acceptance strategy, the underlying basic move and

the number of iterations to use during the local search

stage. There were two acceptance strategies, namely

�rst-improvement and best-improvement. Three basic

moves were considered 2�exchange, 3�exchange and
4 � exchange. The �nal property of a meme was the

number of times the acceptance strategy was going to

be iterated employing the basic move. We can repre-

sent a meme M by the three values that speci�es its

basic move(M), its acceptance strategy(FB) and its

number of iterations(I): MeFBbIn. The range of e

was f2; 3; 4g implying a 2�exchange, 3�exchange or

4 � exchange. To specify a �rst-improvement accep-

tance strategy b was set to 1, and when b = 2 then the

meme used a best-improvement acceptance strategy.

Finally, n gives the number of iterations drawn from

the set f1; 3; 6; 9g. Because our goal in this paper is to

see if this simple memetic system can learn the best

meme to use and not to discover the best meme for a

particular TSP instance, we assume that the execution

cost of all of the 24 memes is equivalent. The reader

should note that the memes with b = 2 require greater

computational cost than their counterparts b = 1. Fur-

thermore, except for the 2� exchange (for which the

neighborhood explored by the acceptance strategy was

complete), just a sample of the induced neighborhood

was considered for the other moves. For all the experi-

ments run the probability of mutation was 0.4, that of

crossover 0.6 and the innovation rate was set to 0.125.

The crossover used was DPX and the mutation opera-

tor the double-bridge move. The underlying GA was a

generational GA with a (50; 200) strategy with a tour-

nament size of 4. The architecture of the MA was,

according to [11], a D = 4 MA, that is, local search

was executed independently of mutation and crossover

in a separate stage. The probability of local search (ex-

pressing the meme) was 1. The encoding used was a

permutation encoding.

We �rst ran a set of experiments (one for each of the 24

memes), each consisting of 30 trials, where the whole
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population used the same meme, that was �xed during

the complete run. The goal of this experiment was to

obtain a ranking of memes for the di�erent instances.

We then ran an adaptive MA where the meme alleles

were evolved. The graph in 4(a) shows the evolution of

�tness over time for di�erent memes on the lin318.tsp

instance from TSPLIB. The reader must keep in mind

that the memes were executed within the underlying

MA described above.

An ANOVA analysis of the average over 30 runs for

the best tour in each experiment shows that the curves

are (with 95% con�dence level) di�erent. The ANO-

VA, together with the post-hoc t � test, provide a

sound ranking of the various memes. As can be seen

in �gure 4(a) the MultiMeme MA, that is, the memet-

ic algorithm for which the adapting process was en-

abled, was able to closely follow the performance of

the best meme. It achieves this by favorably select-

ing the memes that produce the best increment in

�tness. This is shown by the evolutionary activity

graph in �gure 4(b). The same results, with statis-

tical signi�cance, were obtained for other instances

of di�erent size and nature: eil76.tsp, lin105.tsp and

mnpeano44.tsp. We ran extensive experiments with

a MultiMeme MA where the memes available were

of the form MeFB1In with e 2 f2 � exchange; 3 �
exchange; 4� exchangeg and n 2 f1; 3; 6; 9g. The al-
gorithm was able to positively select the best meme

and to match the performance of the best one (with

statistical signi�cance). As the size of the instances

increased the memes were more easily di�erentiated,

and MultiMeme was able to track the curve of the

best meme. For the instances studied the evolutionary

activity diagrams show2 that while the evolutionary

search is not yet stagnated and the search is progress-

ing, just one or two evolutionary waves are conspic-

uous, while the other memes remain under spurious

activity. The use of an IR > 0 means that memes

have non-zero background activity even if they are

actually selected against (see section 2). When the

search is converging towards local optima then several

memes become neutral to each other and the evolu-

tionary waves starts to develop. From our experiments

it turns out that the best meme for all the instances

was M2FB1I9 and the second best M2FB1I6. This

is not surprising since those memes perform 9 and 6

iterations respectively based on the complete neigh-

borhood of a 2 � exchange while for the remaining

moves the neighborhood was sampled. This fact led

us to design an experiment where the memes involved

where the same as before except that the �rst best

2Only the graph for lin318.tsp is shown due to space
limitations

and the second best were not allowed to appear in the

population. This MA will be called multiMeme-b. The

results are shown in �gure 5(a) for instance lin318.

After analyzing the results obtained, we observed that

multiMeme-b was able to track and follow the curve of

the best meme for the instance mnpeano44.tsp, how-

ever it fails to do so for lin105.tsp and lin318.tsp.

In the later case the best meme, that is, the meme

that at the end of the run produces the best �tness

was M2FB1I3. The algorithm fails to select this

one in favor of M4FB1I9;M3FB1I9;M3FB1I6 and

M4FB1I6. The reason for this behavior is simple to

state: it pays for an individual to carry the meme that

produces the maximum increase in �tness at any giv-

en point in time. Given that the individuals have no

foresight of which is going to be the best �tness at the

end of the run3, the meme that produces the behav-

ior with the steepest increase in �tness (decrease in

tour length) is favorably selected. However, as gener-

ations go by, the relative payo� of the di�erent memes

change. In the case of the TSP the reason for this

dynamic payo� is rooted in the so called \Big Valley"

structure. In Boese's work [4] it is shown that the

TSP shares with other commonly studied NP-Hard

combinatorial optimization problems a globally con-

vex structure of the set of local minima, where the

local minima are points in the landscapes de�ned by

di�erent local search heuristics. The author shows

that tours found by better heuristics are on average

closer to each other in terms of distance4 to the opti-

mal solution, giving rise to the \Big Valley" metaphor.

The gradient of improvement for the di�erent memes

changes during evolution while approaching a local op-

timum (eventually a global optimum). The adaptive

MA, through its simple inheritance model is sensitive

to this changes. Looking at the graph (b) in �gure

5 we can see that the evolutionary wave of meme

M4FB1I9 is becoming almost at. As explained in

the previous sections this means that the selective ad-

vantage of carrying this meme is decreasing. Also,

we can see that waves of evolutionary activity arise

for memes M3FB1I9;M3FB1I6;M2FB1I3. Trac-

ing back the origins of these waves it is possible to

note that they match the time when the correspond-

ing curves in graph (a) to the left surpass the curve of

multiMeme-b. Three vertical bars are marked in the

graph with x1; x2; x3. Moreover, the longer the sim-

ulation, the closer the gap between the curve of the

best meme and the multiMeme-b approach. The same

behavior was notice for the instance lin105.tsp. The

3The system is not teleological.
4Distance here is actually measure as the number of

links that di�erentiate two tours
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Figure 4: (a) Performance of di�erent MAs when memes varies. Just the curves for the �rst-improvement strategy
are shown. It is possible to see how the MultiMeme MA follows closely the performance of the best meme. In (b) the
evolutionary activity of the MultiMeme MA is shown

reader should also note how the suppression of the best

and second best memes alters the evolutionary activity

diagram by comparing �gure 4(b) and 5(b).

7 CONCLUSIONS

In this paper we showed how a simple vertical inheri-

tance mechanism is enough to adapt the behavior of in-

dividuals in a memetic algorithm under di�erent prob-

lems. Individuals have access to a set of memes that

represent di�erent search strategies. The evolutionary

mechanism ensures that memes that are useful will be

selected and spread in the population. Our approach

di�ers from others (i.e. [19]) in that we are learning

the association between an individual an a memeplex

and not a vector with the particular characteristics

of a given meme in a set of memes. Hence, the di-

mensionality of the problem is much smaller. From

an engineering point of view this is a sound approach

because we can allow memes to change using any al-

gorithm that we �nd suitable, i.e., we can run a GA to

de�ne the memes themselves. By isolating the struc-

ture of a meme from its phenotypic action in the genes

we are facilitiating the search in both genes and memes

spaces. We tried our MA under three di�erent scenar-

ios. The dynamic OneMax problem showed that the

adaptive MA was able to track changes in the envi-

ronment, i.e. the �tness function, by triggering high

mutation rates. We saw that for the NK-Landscapes

the adaptive mechanism was robust enough to adapt

to the edge of the transition after which mutation rates

become pernicious. It was able to express an almost

optimal mutation and to track closely the optimal �t-

ness achieved by exhaustive runs. In the case of the

TSP we are able to conclude that the adaptive MA is

capable of selecting the memes that provide the best

performance at any given moment of time. As a by

product of this paper we were able to show that the

phenomena described by Macready et.al. for simulat-

ed annealing [14] is also present in GAs. The memes

exploited in this paper were, accordingly to [11], stat-

ic memes. We are currently running experiments with

adaptive memes like those of [12]. Self adapting memes

for the Protein Folding Problem will be studied soon.

References

[1] T. Back. Self adaptation in genetic algorithms.

In F. Varela and P. Bourgine, editors, Towards a

Practice on Autonomous Systems: Proceedings of

the First European Conference on Arti�cial Life,

pages 263{271. MIT Press, 1992.

[2] M. Bedau and N.H.Packard.Measurement of Evo-

lutionary Activity, Teleology and Life, volume 98-

03-023. Addison-Wesley, 1992.

[3] S. Blackmore. The Meme Machine. Oxford Uni-

versity Press, 1999.

[4] K. Boese. Models For Iterative Global Optimiza-

tion. Ph.D. Thesis, UCLA Computer Science De-

partment, 1986.

[5] J. Carrizo, F. Tinetti, and P. Moscato. A com-

putational ecology for the quadratic assignmen-

t problem. In Proceedings of the 21st Meeting

438 GENETIC ALGORITHMS



100 200 300 400 500

#Generations

1e+05

2e+05

T
ou

r 
L

en
gt

h

GA
M2FB1I1
M2FB1I3
M3FB1I1
M3FB1I3
M3FB1I6
M3FB1I9
M4FB1I1
M4FB1I3
M4FB1I6
M4FB1I9
MultiMeme-B

Tour Length Vs #Generations (30 runs averaged)
GA, single-Meme and multi-Meme compared

X1

X2

X3

0 100 200 300 400 500 600 700

#Generations

1.0e+00

5.0e+01

5.0e+02

5.0e+03

5.0e+04

E
vo

lu
tio

na
ry

 A
ct

iv
ity

M2FB1I1
M2FB1I3
M3FB1I1
M3FB1I3
M3FB1I6
M3FB1I9
M4FB1I1
M4FB1I3
M4FB1I6
M4FB1I9

Evolutionary Activity Vs #Generations (30 runs averaged)
Best and second best memes are not present

X1 X2 X3

(a) (b)

Figure 5: (a)Zoom-in in the performance graph. MultiMeme-b is a MA with all the memes available except the �rst best
and second best. In (b) the evolutionary activity of the MultiMeme-B MA is shown

on Informatics and Operations Research, Buenos

Aires, 1992. SADIO.

[6] D. Goldberg and S. Voessner. Optimizing global-

local search hybrids. In W. Banzhaf, J. Daida,

A. Eiben, M. Garzon, V. Honavar, M. Jakaiela,

and R. Smith, editors, GECCO-99: Proceedings

of the Genetic and Evolutionary Computation

Conference. Morgan Kaufmann, 1999.

[7] W. E. Hart. Adaptive global optimization with

local search. Ph.D. Thesis, University of Califor-

nia, San Diego, 1994.

[8] R. Hinterding, Z. Michalewicz, and T. Peachey.

Self-adaptive genetic algorithms for numeric func-

tions. In Proceedings of Parallel Problem Solving

from Natur - PPSN IV, 1996.

[9] S. Kau�man. The Origins of Order, Self Orga-

nization and Selection in Evolution. Oxford Uni-

versity Press, 1993.

[10] N. Krasnogor. Co-evolution of genes and memes

in memetic algorithms. In A. Wu, editor, Proceed-

ings of the 1999 Genetic And Evolutionary Com-

putation Conference Workshop Program, 1999.

[11] N. Krasnogor and J. Smith. Memetic algorithms:

Syntactic model and taxonomy. submitted to The

Journal of Heuristics. Available from the authors.

[12] N. Krasnogor and J. Smith. A memetic algo-

rithm with self-adaptive local search: Tsp as a

case study. In Proceedings of the 2000 Genetic

and Evolutionary Computation Conference. Mor-

gan Kaufmann, 2000.

[13] M. Land. Evolutionary algorithms with local

search for combinatorial optimization. Ph.D.

Thesis, University of California, San Diego, 1998.

[14] W. Macready, A. Siapas, and S. Kau�man. Crit-

icality and parallelism in combinatorial optimiza-

tion. 1995. to appear in Science.

[15] G. Ochoa and I. Harvey. Recombination and error

thresholds in �nite populations. Foundations of

Genetic Algorithms - 5, 1999.

[16] J. Smith. Modelling gas with self adaptive muta-

tion rates. In GECCO-2001: Proceedings of the

Genetic and Evolutionary Computation Confer-

ence. Morgan Kaufman, 2001.

[17] J. Smith and T. Fogarty. Self adaptation of muta-

tion rates in a steady state genetic algorithm. In

Proceedings of the Third IEEE International Con-

ference on Evolutionary Computing, pages 318{

323. IEEE Press, 1996.

[18] J. Smith and T. Fogarty. Operator and parame-

ter adaptation in genetic algorithms. Soft Com-

puting, pages 81{87, 1997.

[19] H. Terashima-Marin, P. Ross, and M. Valenzuela-

Rendon. Evolution of constraint satisfaction s-

trategies in examination timetabling. In GECCO-

99: Proceedings of the Genetic and Evolutionary

Computation Conference, 1999.

439GENETIC ALGORITHMS



Evolutionary Algorithms in Control Optimization:
The Greenhouse Problem

Thiemo Krink

EVALife Group

Dept. of Computer Science

University of Aarhus, Denmark

krink@daimi.au.dk

Rasmus K. Ursem

EVALife Group

Dept. of Computer Science

University of Aarhus, Denmark

ursem@daimi.au.dk

Bogdan Filipi£

Dept. of Intelligent Systems

Joºef Stefan Institute

Ljubljana, Slovenia

bogdan.�lipic@ijs.si

Abstract

In recent years, evolutionary algorithms

(EAs) have been applied to a variety of dy-

namic optimization problems. In control op-

timization, dynamic problems are character-

istically dominated by the feedback between

the controller and the controlled system.

Most studies in this �eld are rather prag-

matic and many principal issues in control

optimization have not been addressed yet.

In this paper, we studied the performance

of various control strategies regarding the in-

vestment of computation time in number of

generations versus population size. Further,

we investigated the evaluation of candidate

solutions in respect to their changing �tness

over time. Our experiments showed that

both aspects were signi�cant factors for the

optimization performance. As a benchmark

control problem, we implemented a simpli�ed

model of a crop producing greenhouse, where

the objective was to maximize the pro�t. The

�tness landscapes generated with this simu-

lator showed that previously suggested test

case generators cannot model realistic con-

trol problems.

1 INTRODUCTION

The ultimate goal of an optimization technique is its

application to real-world problems. Typically, real-

world optimization problems are characterized by con-

straints, multiple objectives, and dynamic properties.

In particular control problems are notoriously dynamic

due to the feedback between the controller and the con-

trolled system. Therefore, the applied optimization

technique should be able to continuously search for

the best solution. Evolutionary algorithms (EAs) and

other adaptive search techniques, such as simulated

annealing, ful�ll this requirement. However, EAs have

the additional advantage that they maintain a popu-

lation of solutions throughout the run rather than just

a single solution. Thus, the search for new solutions

can take advantage of the diversity of the population

and the competition between the individuals. Each

available candidate solution o�ers a starting point for

discovering new ways to treat the problem given what-

ever change has occurred. Therefore, the optimiza-

tion process does not have to rely on a single starting

point only, and new solutions do not have to be re-

computed from scratch. For reasonably small changes

of the problem, some individuals in the present popu-

lation are likely to be in close vicinity of optima in the

next generation.

There are four main issues to consider regarding opti-

mization in control problems:

First, computation time is a critical factor. In most

cases, the optimization technique is applied to a sim-

ulator before its solutions are transferred to the real

system. Realistic simulators of systems, such as indus-

trial production control or vehicle steering control, are

usually complex and evolutionary optimization may

take days on state-of-the-art computers. An example

is the complex simulation of the temperature �eld in

a slab of continuously cast steel, which has to be com-

puted to evaluate the �tness of each candidate solution

for the controller (Filipi£ and �arler, 1998). This limits

the experimental feasibility regarding population size

and number of generations. Furthermore, the time

needed for the �tness evaluation of a candidate solu-

tion can be a serious limitation regarding real-time ap-

plications. In so-called direct optimal control (Fogarty

et al., 1995), an EA continuously evolves the settings

of the control parameters, i.e., the EA is not tuning

or evolving other controllers such as a PID or a fuzzy

controller. Such an online-evolution process faces the

problem that the longer it takes to compute new solu-

440 GENETIC ALGORITHMS



tions the more the �tness landscape can change in real

time, which makes the problem increasingly harder.

Therefore it is of critical importance to achieve an

optimal balance between the number of evaluations

and the required computation time as well as between

the population size and the number of generations per

time-step.

Second, in contrast to dynamic observation problems,

in control problems there is feedback between the con-

troller and the system. Each control action conse-

quently a�ects the shape of the �tness landscape. In

other words, the search for the optimal control a�ects

the problem.

Third, control has to be robust. A typical problem

in hardware control is the drift of material parame-

ters due to machinery wear-out and sensitivity to en-

vironmental changes, such as temperature, light, and

humidity (Filipi£ and Juri£i¢, 1993).

Finally, the pure performance output of the system

is often inappropriate to serve as a �tness evaluation,

but rather the design of the �tness function itself is of

critical importance for the success of the optimization

(Filipi£ et al., 1999).

We suggest three main classes of control problems: (i)

state stabilization (e.g. constant electricity supply of

a power plant), (ii) system-to-system interaction (e.g.

'arms-race' with another system, such as pest control

versus a crop pest), and (iii) pro�t maximization (e.g.

market-oriented production optimization in a factory).

In this paper, we investigated control optimization

strategies in pro�t maximization by the example of

a simulated crop producing greenhouse. In this set-

up, we experimented with di�erent control strate-

gies, which were based on the evaluation of a limited

amount of candidate solutions per simulated system

time-step.

Our motivation for the design of the greenhouse simu-

lator was that there are hardly any appropriate bench-

mark tests or test case generators for control prob-

lems until today. An exception in state stabilization

is the pole-balancing problem (Karr, 1991), which is

a well-known standard problem that is relatively easy

to implement. Classic benchmark tests in numerical

optimization, such as the Rastrigin or De Jong func-

tions, are usually simple and static. In control prob-

lems, the demands on the optimization process are

very di�erent and performance results from experi-

ments with simple static functions are of little use due

to the issues outlined above. Also the recently sug-

gested test case generators (TCGs) for dynamic en-

vironments (e.g. (Branke, 1999; Morrison and Jong,

1999; Grefenstette, 1999)) are insu�cient to mimic

control problems. Their main weakness is that they

arbitrarily distort the landscape over time by mov-

ing or bouncing peaks. Not surprisingly, it remains

unclear how much and in which way these landscape

distortions would resemble characteristics of real-world

problems. Another major limitation of these TCGs re-

garding control problems is that they cannot simulate

the feedback between the control and the system, i.e.,

that the search a�ects the change of the landscape.

Moreover, the frequency and degree in which �tness

landscapes are changed over time is speci�ed by inde-

pendent parameters, whereas in real systems the speed

of changes between two successive control actions is

mainly a�ected by the time it takes to evaluate the

candidate solutions. For reasonable test cases, a real-

istic interaction between the speed of changes and the

evaluation of individuals is essential, since the speed

ultimately determines the success of the optimization

process, see e.g. (Ursem, 2000).

These limitations of previously suggested TCGs have

been recently addressed by a study of two of the au-

thors and other collaborators (Ursem et al., subm).

The result of this study was a new test-case simula-

tor language that supports the modeling of dynamic

test case problems by simulation of real-world sys-

tems. The main idea was to create a tool that allows

to model instances of time-varying �tness landscapes

by the performance output of a modeled system. As

an example, the control problem of a crop producing

greenhouse was implemented, which we adopted and

re�ned in this study. In contrast to the earlier paper,

our main intention with the present paper was to fo-

cus on the principle issue of the design of the control

strategy.

The remaining sections of the paper are structured as

follows: In Section 2, we present a general design of

benchmark control problems. Afterwards, in Section

3, we introduce the greenhouse model with all its com-

ponents and parameters. Section 4 contains the results

of our preliminary experiments with a set of control

strategies for production control optimization, and �-

nally, in Section 5, we discuss the results of this study.

2 DESIGN OF BENCHMARK

CONTROL PROBLEMS

Control problems in engineering are often represented

by the interaction between the controller and the con-

trolled system (Figure 1). Here x(t) represents the in-
ternal state of the system at time t, u(t) is the control
signal, and y(t) is the output from the system.
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y(t)
SystemController

u(t)

State: x(t)

Figure 1: Controller and the system being controlled.

Further, it is often necessary to model the environ-

ment that surrounds the system if it, in addition to

the controller, a�ects the system (see Figure 2).

y(t)
SystemController

u(t)

State: x(t)

Environment

State: z(t)

Figure 2: Model for controller, system, and environ-

ment.

The representation of a system requires to identify all

variables that are either a part of the system or in�u-

ence it indirectly. Further, the type and range of each

variable (control, system, or environment) needs to be

determined. It is not always clear where to draw the

line between control, system, and environment; how-

ever, the following simple rules can be used to catego-

rize variables into one of the three classes.

1. Control variables are variables that can be set by

the controller, e.g., outlet of a valve.

2. System variables are directly a�ected by the con-

trol variables, but also through interactions with

other variables. For instance, the level in a rain-

water tank.

3. Environment variables represent components that

in�uence the system, but are not directly a�ected

by the control variables, e.g., amount of rainfall.

The time-varying system and environment states can

often be modeled by di�erence equations of the form

xi(t+ 1) = xi(t) + �xi(t) (1)

where �xi(t) usually depends on other variables of the
controller, the system, and the environment.

2.1 TECHNICAL ASPECTS

As stated in the introduction, the application of EAs

to control problems has the side-e�ect that the search

changes the problem. Hence, the candidate solutions

in a population have to be evaluated from the same

starting state. Consequently, the entire state of the

simulator has to be stored and restored between eval-

uations. After all candidate solutions within one time-

step have been evaluated, one solution, usually the

best, controls the system for a number of simulation

steps. From this state on the process is repeated. Fig-

ure 3 illustrates an abstract scenario where four control

settings are evaluated for three time-steps. The best

setting is then used to control the system one time-

step.

0

System
State
Space

1 2 3 4 5

Initial state

best control setting

Sim. time

0

System
State
Space

1 2 3 4 5 Sim. time

Initial state

best control setting

0

System
State
Space

1 2 3 4 5 Sim. time

Initial state

best control setting

Figure 3: Example of state space exploration at sim-

ulation time t = 0, t = 1, and t = 2. Thin lines

represent control settings exploration of the current

time-step, thin dotted lines are previous explored con-

trol strategies, and thick lines are actual control as it

was performed by the selected control setting.

3 THE GREENHOUSE MODEL

As a benchmark test for our study, we implemented a

simple simulator for a crop producing greenhouse. The

production is controlled by heating, injection of CO2,

ventilation, and optional use of arti�cial light. All pro-
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duced crops are sold at a time-varying market price.

The objective is to maximize the pro�t, i.e., to maxi-

mize the production while minimizing the expenses of

heating, CO2, and electricity.

The simulator consists of three types of interacting

variables and can store and restore the state before

the �tness evaluations. The implemented model only

represents a simpli�ed subset of the components found

in real greenhouses; however, it still illustrates inter-

esting characteristics of greenhouse control.

The model consists of the following variables:

Control variables:

uheat � Heating. uheat 2 [0; 1]
uvent � Ventilation. uvent 2 [0; 1]
uCO2

� CO2 injected. uCO2
2 [0; 1]

ulight � Arti�cial light. ulight 2 [0; 1]

System variables:

xitemp � Indoor temperature. xitemp 2 [�20; 60]
xCO2

� CO2 level in the greenhouse. xCO2
2 [0; 5]

xcrop � Amount of harvested crop. xcrop 2 [0;1]

Environment variables:

zotemp � Outdoor temperature. zotemp 2 [�20; 60]
zsun � Sunlight intensity. zsun 2 [0; 1]
zpcrop � Price for crops. zpcrop 2 [6:75; 7:25]
zpheat � Price for heating. zpheat 2 [1:25; 1:75]
zpCO2

� Price for CO2 gas. zpCO2
2 [1:75; 2:25]

zpelec � Price for electricity. zpelec 2 [0:75; 1:25]

During the simulation, each system variable is updated

using Equation 1 (constants are listed in Table 1). A

step in the simulator corresponds to 15 minutes, i.e.,

a day consists of 96 steps.

The indoor temperature is changed by

�xitemp = k1 � uheat + k2 � zsun +

(k3 + k4 � uvent)(zotemp � xitemp)

where k1 is the temperature increase due to heating,

k2 is the increase from sunlight radiation, k3 is the

minimal heat exchange with the environment, and k4

is the exchange rate when ventilation is used.

The change in indoor CO2 level is modeled by

�xCO2
= �k5 ��xcrop + k6 � uCO2

+

(k7 + k8 � uvent)(k9 � xCO2
)

where k5 is the CO2 consumption by the plants, k6
is the increase due to injected CO2, k7 is the mini-

mal CO2 exchange with the environment, k8 is the ex-

change by ventilation, and k9 is the atmospheric CO2

level.

The crop production per time-step is somewhat more

complex. The actual growth per time-step is modeled

as a percentage of the optimal growth, i.e., the growth

under optimal conditions of temperature, light, and

CO2 level. The change in crop growth is

�xcrop = k10 � min(Gtemp; Glight; GCO2
)

where k10 is the maximal amount of produced crops.

The min-function models that plant growth is limited

by the smallest �growth-percentage�. For instance, if

Gtemp = 0:73, Glight = 0:35, and GCO2
= 0:98, then

the current production is at 35%. The impact of these

variables on growth is described by growth transfer

functions. They are illustrated in Figure 4. The trans-

fer function for temperature models an optimal growth

temperature of 30 degrees Celsius with a near optimal

range of 25 to 35 degrees. The intervals from �20
to 0 degrees and 45 to 60 degrees do not allow any

growth. In fact, the plants die and have to be re-

planted if the indoor temperature is not between 0 to

45 degrees. In this case, no production is possible for

30 days (�xcrop = 0). The transfer function for the

CO2-level models a saturation e�ect. The light trans-

fer function maps both sunlight and arti�cial light to

a production percentage, which is also modeled as a

saturation relationship.

The pro�t in a time-step is calculated as follows:

pprofit = zpcrop ��xcrop � (zpheat � uheat +

zpCO2
� uCO2

+ zpelec � ulight)

Real weather data were available for the environment

variables zotemp and zsun (see Figure 5). The data rep-

resent a typical year in Denmark. The subset corre-

sponding to March was used in the simulations. March

in Denmark has days with both freezing and non-

freezing temperatures. The prices were updated every

7-14 days (randomly determined) and set to a random

value in the variable's interval (rounded to steps of

0.05).

Table 1: Constants for �-functions.

k1 = 0:5 k2 = 0:3 k3 = 0:005 k4 = 0:1
k5 = 0:15 k6 = 0:5 k7 = 0:05 k8 = 1
k9 = 3:0 k10 = 3:0

4 EXPERIMENTS AND RESULTS

The objective in the experiments was to test trade-o�s

between population size and number of generations us-

ing the previously described direct control strategy.
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March in Denmark.

We implemented a classic GA to evolve the four con-

trol settings of the greenhouse simulator. For this,

we used real-valued vectors, arithmetic crossover, and

Gaussian mutation to evolve the four control settings.

Probability of crossover pc = 0:9, probability of muta-

tion pm = 0:5, and variance � = 0:5. The search space
was discretized, such that uheat, uvent, and uCO2

had

steps of size 0.01, whereas the arti�cial light ulight had

three settings 0, 0.5, and 1.

Each solution was evaluated by simulating eight steps

(2 hours) using the control setting encoded in the

genome. The pro�t achieved in each time-step was

recorded and used to calculate the �tness. Two �tness

calculation functions were tested, i) sum of pro�t

Fitsum(I) =

8X

i=1

pprofit[i] (2)

and ii) weighted sum of pro�t

Fitwei(I) =

8X

i=1

w[i] � pprofit[i] (3)

where w = [1:0; 0:875; 0:75; :::; 0:125] and pprofit[i] de-
notes the recorded pro�t in the i-th measurement in

the simulation. The second evaluation methods �rates�

near future pro�t higher than pro�ts of a more distant

future.

The total number of evaluations provides a basis for

comparison. To examine the trade-o� between pop-

ulation size and number of generations, we kept the

total number of evaluations constant. Two series of

experiments were performed; one with 200 evaluations

and one with 400. The tested trade-o� settings are

listed in Table 2.

Table 2: Test cases for trade-o�s between population

size and generations before update.

# Evals Pop size # Generations

200 200 1

100 2

50 4

25 8

400 400 1

200 2

100 4

50 8

The results from the experiments are listed in Table 3.

Figure 6 shows the average daily pro�t for 200 evalua-

tions (popsize=100, # generations=2) for both �tness

methods.

Figure 7 illustrates two typical �tness landscapes

where uheat is plotted vs. uCO2
. The variables uvent

and ulight were set to constant values according to the

currently best individual to allow a 3D visualization of

the �tness landscape.
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Table 3: Mean and standard error of total pro�t (av-

erage of 100 runs).

Pop size # Gen Pro�t Std. error

2
0
0
E
v
a
lu
a
ti
o
n
s

S
u
m

200 1 39943.73 � 63.79

100 2 40097.91 � 63.20

50 4 40149.43 � 70.40

25 8 40115.95 � 56.60

W
ei
g
h
t 200 1 39778.90 � 65.29

100 2 39846.94 � 69.85

50 4 39908.78 � 68.19

25 8 39748.82 � 57.88

4
0
0
E
v
a
lu
a
ti
o
n
s

S
u
m

400 1 39912.91 � 60.25

200 2 40203.79 � 58.29

100 4 40028.13 � 60.55

50 8 40068.30 � 60.86

W
ei
g
h
t 400 1 39706.74 � 62.06

200 2 39778.89 � 60.19

100 4 39881.62 � 58.54

50 8 39790.53 � 60.86

Sum
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Figure 6: Average of daily pro�t in March with 200

evaluations (popsize=100, # generations=2) for sum

and weighted sum �tness. Average of 100 runs.

5 DISCUSSION

In this paper, we investigated di�erent strategies for

control optimization by the simulation example of

pro�t maximization in a crop producing greenhouse.

One of the issues that we examined was how to design

the �tness function, such that it estimates the quality

of a solution in respect to its impact in the near future.

The control strategy calculating the �tness as the sim-

ple sum of all pro�ts over the look-ahead time yielded

better results than the strategy using a weighted sum

to give greater priority to pro�ts in the near than the

distant future. This was particularly the case when

the pro�t was high because of bene�cial weather condi-
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Figure 7: Two typical �tness landscapes. Plots illus-

trate the control variables uheat versus uCO2
. The vari-

ables uvent and ulight were set to constant values ac-

cording to the currently best individual to allow a 3D

visualization of the �tness landscape. Diamonds rep-

resent the individuals (i.e. the genotypes) of the GA

population.

tions. Overall, weather conditions tightly constrained

the achievable pro�t, i.e., cold weather with almost no

sunlight required an inevitably higher investment in

heating and electricity for the arti�cial light.

Regarding the time critical problem of �tness evalua-

tions, our results show that the performance of the

investigated strategies with di�erent investments in

population size versus generations (see Table 2) were

rather small. The investment strategies with more

than one generation evaluation per time-step turned

out to be superior compared with strategies based on

only one generation and a maximum number of indi-

viduals. However, there was no conclusive ranking pat-

tern among strategies that were evaluated more than

one generation. Furthermore, doubling the number of

evaluations from 200 to 400 did not yield any signi�-

cant improvements.

Regarding the greenhouse benchmark test, we found

that the generated �tness landscapes resembled a fun-

damentally di�erent dynamic behavior than what can

be simulated with previously suggested dynamic TCGs

(e.g. (Branke, 1999; Morrison and Jong, 1999; Grefen-
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stette, 1999)). This result con�rms our very recent

study on a new test case generator language for dy-

namic problems (Ursem et al., subm). The greenhouse

�tness landscapes turned out to be simple tilted planes

when the optimization process was far from the opti-

mum (see Figure 7, bottom). Indeed, this result is

not surprising if one considers that a controller can

only set control variables within a certain limited range

and the target value may only be reached after some

time. For instance, to heat up a freezing cold room

with a radiator, the best possible setting is to turn

up the heat regulator to its maximum until the tem-

perature approaches a pleasant level. Only at this

point, the radiator control needs to be more sophis-

ticated. In general, control problems require simple

means when the current system state is far from the

target state. In multiple dimensions this means that

if one or more parameters are poorly controlled then

the entire landscape will be tilted in these parame-

ter dimensions. Further, �tness landscapes at more

interesting system states turned out to be unimodal

with characteristic ridges (see Figure 7, top) rather

than multimodal, cone-shaped peaks as suggested by

earlier dynamic TCGs. Characteristically for control

problems, the search for optimal control a�ected the

transformations of the �tness landscape, which is an-

other property that cannot not be simulated by earlier

dynamic TCGs. Although our current implementation

of the greenhouse simulator is very simple and pre-

liminary, the principle characteristics of the resulting

landscapes re�ect what we would expect from realistic

dynamic landscapes in control optimization. However,

so far the simulator does not pose a very challeng-

ing control optimization task. Delay factors, such as

a gradual warming-up of the heating system or the

rather slow di�usion of the CO2 gas, would make the

control problem harder and more realistic.

Apart from the greenhouse model as a representative

for pro�t maximization problems, it would be impor-

tant to investigate instances of the other two suggested

control problem domains (state stabilization and sys-

tem to system interaction) in the future. Furthermore,

it would be interesting to make an elaborate perfor-

mance comparison between a classic GA and more ad-

vanced techniques, such as Multinational GAs (Ursem,

1999), Religion-based EAs (Thomsen et al., 2000), or

mass extinction techniques (Krink et al., 2000; Green-

wood et al., 1999), which clearly outcompete classic

GAs in numerical benchmark tests. The ability of

Religion-based EAs and so-called SOC mass extinc-

tion EAs to maintain a much higher population diver-

sity than the classic GA (Thomsen and Rickers, 2001)

might turn out to be of particular bene�t in control op-

timization. Moreover, it remains an open question how

well other search heuristics, such as hill climbers, like

next ascent, steepest ascent, and simulated annealing

(Davis, 1987), would cope with control optimization

compared to EAs. Also regarding the control strategy

there are still open questions related to the design of

the �tness function in respect to the quality evaluation

of a candidate solution over time. One interesting pos-

sibility would be the implementation of self-adaptive

look-ahead strategies. Clearly, the present paper is

only a �rst and preliminary attempt to tackle these

questions and further research in this area will be re-

quired.

Acknowledgements

The authors would like to thank the Danish Research

Council, the Ministry of Education, Science and Sport

of the Republic of Slovenia, and the Institute for Ad-

vanced Study, Berlin, for �nancial support.

References

[Branke, 1999] Branke, J. (1999). Memory enhanced

evolutionary algorithms for changing optimization

problems. In Angeline, P. J., Michalewicz, Z., Schoe-

nauer, M., Yao, X., and Zalzala, A., editors, Pro-

ceedings of the Congress of Evolutionary Computa-

tion, volume 3, pages 1875�1882, Washington D.C.,

USA. IEEE Press.

[Davis, 1987] Davis, L., editor (1987). Genetic Algo-

rithms and Simulated Annealing. Research Notes in

Arti�cial Intelligence. Pitman Publishing, London.

[Filipi£ and Juri£i¢, 1993] Filipi£, B. and Juri£i¢, D.

(1993). An interactive genetic algorithm for con-

troller parameter optimization. In Albrecht, R. F.,

Reeves, C. R., and Steele, N. C., editors, Proceedings

of the International Conference on Arti�cial Neu-

ral Networks and Genetic Algorithms ANNGA '93,

pages 458�462, Innsbruck, Austria. Springer-Verlag.

[Filipi£ et al., 1999] Filipi£, B., Urban£i£, T., and

Kriºman, V. (1999). A combined machine learning

and genetic algorithm approach to controller design.

Engineering Applications of Arti�cial Intelligence,

12(4):401�409.

[Filipi£ and �arler, 1998] Filipi£, B. and �arler, B.

(1998). Evolving parameter settings for continuous

casting of steel. In Proceedings of the 6th Euro-

pean Congress on Intelligent Techniques and Soft

Computing EUFIT'98, volume 1, pages 717�721,

Aachen, Germany. Verlag Mainz.

446 GENETIC ALGORITHMS



[Fogarty et al., 1995] Fogarty, T. C., Vavak, F., and

Cheng, P. (1995). Use of the genetic algorithm for

load balancing of sugar beet presses. In Eshelman,

L., editor, Proceedings of the Sixth International

Conference on Genetic Algorithms, pages 617�624,

San Francisco, CA. Morgan Kaufmann.

[Greenwood et al., 1999] Greenwood, G. W., Fogel,

G. B., and Ciobanu, M. (1999). Emphasizing ex-

tinction in evolutionary programming. In Angeline,

P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and

Zalzala, A., editors, Proceedings of the Congress of

Evolutionary Computation, volume 1, pages 666�

671, Washington D.C., USA. IEEE Press.

[Grefenstette, 1999] Grefenstette, J. J. (1999). Evolv-

ability in dynamic �tness landscapes: A genetic al-

gorithm approach. In Angeline, P. J., Michalewicz,

Z., Schoenauer, M., Yao, X., and Zalzala, A., ed-

itors, Proceedings of the Congress of Evolutionary

Computation, volume 3, pages 2031�2038, Washing-

ton D.C., USA. IEEE Press.

[Karr, 1991] Karr, C. L. (1991). Design of an adap-

tive fuzzy logic controller using a genetic algorithm.

In Belew, R. and Booker, L., editors, Proceedings of

the Fourth International Conference on Genetic Al-

gorithms, pages 450�457, San Mateo, CA. Morgan

Kaufman.

[Krink et al., 2000] Krink, T., Thomsen, R., and

Rickers, P. (2000). Applying self-organised critical-

ity to evolutionary algorithms. In Schoenauer, M.,

Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo,

J. J., and Schwefel, H.-P., editors, Parallel Problem

Solving from Nature � PPSN VI, volume 1, pages

375�384, Paris, France. Springer.

[Morrison and Jong, 1999] Morrison, R. W. and Jong,

K. A. D. (1999). A test problem generator for

non-stationary environments. In Angeline, P. J.,

Michalewicz, Z., Schoenauer, M., Yao, X., and Za-

lzala, A., editors, Proceedings of the Congress of

Evolutionary Computation, volume 3, pages 2047�

2053, Washington D.C., USA. IEEE Press.

[Thomsen and Rickers, 2001] Thomsen, R. and Rick-

ers, P. (2001). Introducing spatial agent-based mod-

els and self-organised criticality to evolutionary al-

gorithms. Master's thesis, University of Aarhus,

Denmark.

[Thomsen et al., 2000] Thomsen, R., Rickers, P., and

Krink, T. (2000). A religion-based spatial model for

evolutionary algorithms. In Schoenauer, M., Deb,

K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J.,

and Schwefel, H.-P., editors, Parallel Problem Solv-

ing from Nature � PPSN VI, volume 1, pages 817�

826, Paris, France. Springer.

[Ursem, 1999] Ursem, R. K. (1999). Multinational

evolutionary algorithms. In Angeline, P. J.,

Michalewicz, Z., Schoenauer, M., Yao, X., and

Zalzala, A., editors, Proceedings of the Congress

of Evolutionary Computation (CEC-99), volume 3,

pages 1633�1640, Washington D.C., USA. IEEE

Press.

[Ursem, 2000] Ursem, R. K. (2000). Multinational

GAs: Multimodal optimization techniques in dy-

namic environments. In Proceedings of the Second

Genetic and Evolutionary Computation Conference

(GECCO-2000), volume 1, pages 19�26, Las Vegas,

USA. Morgan Kau�mann Publishers.

[Ursem et al., subm] Ursem, R. K., Krink, T., Jensen,

M. T., and Michalewicz, Z. (subm). Analysis and

modeling of control tasks in dynamic systems. IEEE

Transactions on Evolutionary Computation.

447GENETIC ALGORITHMS



Adaptive Evolvability via Non-Coding Segment Induced Linkage

C.-Y. Lee
Department of Mechanical Engineering

California Institute of Technology
cinyoung@caltech.edu

E.K. Antonsson
Department of Mechanical Engineering

California Insitute of Technology
erik@design.caltech.edu

Abstract

In this paper, the evolvability, or “the abil-
ity of a population to produce fitter variants
than any yet existing” [1], of a genetic algo-
rithm is adapted during runtime by evolving
good linkage characteristics. This adaptive
linkage is induced by a variable length non-
coding segment representation. It is expected
that the adaptation of linkage will improve
search efficiency due to the emergence of well
linked, or modular, genetic code. Results of
the non-coding representation are compared
with those of a standard representation on a
set of Royal Road functions.

1 INTRODUCTION

While the origins of life have been dated to roughly
3.5 billion years ago, multicellular organisms did not
appear until 2.5 billion years later. Approximately
half a billion years after this event, or roughly 500
million years ago, a rapid proliferation in the variety
and complexity of organisms (as observed from the
fossil record) occurred in what is now called the Cam-
brian explosion. This sudden increase in evolutionary
development has been partially attributed to the ac-
quisition of hierarchial modules into the genome [2].
The presence of genetic modules that code for inde-
pendent attributes allows for rapid experimentation of
new body types (e.g., variation of eye or limb num-
ber); since, rather than having to evolve completely
new body parts, genetic modules can be reused or ex-
ploited. So, in a sense, the newer modular genetic
codes can be considered to be more evolvable than the
previous non-modular, genetic codes. Altenberg pro-
vides a more precise definition of evolvability as “the
ability of a population to produce variants fitter than
any yet existing” [1].

The concept of evolvability is central to the design
of evolutionary algorithms because a minimum level
of evolvability is required for convergence to any ex-
trema. For example, recall the problem of computer
program synthesis by evolutionary methods. Early ap-
proaches represented programs as strings of letters and
generated new programs through random variation of
the letters. This approach has little or no evolvability,
since fitter variants of functional programs are found
with near zero probability. In contrast, Koza’s genetic
programming (GP) approach represented programs as
trees and used subtree crossover to generate offspring
programs. Such an approach has the requisite evolv-
ability to produce fitter variants as demonstrated by
GP’s many successes. It is apparent that evolvabil-
ity is a characteristic governed by the highly inter-
related choice of representation and search operators
(since they determine how new variants will be cre-
ated). Moreover, once a a suitable level of evolvability
has been attained through intelligent choice of repre-
sentation and search operators, it is desirable to have
the population’s evolvability increase during runtime
to improve search efficiency.

In this paper, a novel, adaptive representation based
on non-coding segments is developed to address the is-
sue of adapting a population’s evolvability in a genetic
algorithm. The remainder of the paper introduces this
development and is organized to: (i) review previous
related work, in particular the use of non-coding seg-
ments in genetic algorithms, (ii) develop a new variable
length non-coding segment representation, (iii) present
results of a genetic algorithm implementing the non-
coding segment representation on a set of Royal Road
functions, and (iv) conclude with a summary and dis-
cussion of future work.
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2 PREVIOUS WORK

A tremendous amount of work exists on the adapta-
tion of evolvability (although, not always classified in
this sense) and is too extensive to be thoroughly dis-
cussed here. A small sample of previous work is pre-
sented for illustration. A classic example of adaptive
evolvability in evolutionary algorithms is the imple-
mentation of self-adaptive mutation operators in evo-
lution strategies [3]. In this case, the mutation oper-
ator adapts its step size, or, equivalently, the radii of
its search neighborhood, in accordance with the per-
formance landscape. Conversely, messy genetic algo-
rithms (mGAs) adapt evolvability through the use of
an adaptive representation [4]. Genes in a mGA are
tagged with a gene marker that allows reordering of
genes, which, in turn, allows good linkages to develop
within the chromosome. Linkage is defined here as the
probability that two genes will remain together after
crossover. A good linkage would then keep two re-
lated genes tightly linked so that they would remain
together after crossover has occurred. In all GAs, ad-
jacent genes are more tightly linked than non-adjacent
genes. By allowing the adjacency of genes to change,
mGAs can find better linkage characteristics. How-
ever, in contrast to nature, linkage between genes in
mGAs (and canonical GAs, for that matter) are fixed
and equal (i.e., the probability of dirsuption between
any pair of genes is constant and equal to that of any
other pair with the same separation). The occurrence
of linkage variation in nature has been partially at-
tributed to the presence of non-coding segments, or
’junk’ DNA, in biological genomes [5].

2.1 NON-CODING SEGMENTS

In nature, the majority of DNA in an organism is non-
coding, meaning that it is not transcribed into RNA
for protein synthesis. The reasons for non-coding DNA
are not well known. It has been hypothesized that non-
coding DNA prevent the destruction of good build-
ing blocks (such as genes) during recombination since
crossover is more likely to occur in a region of non-
coding DNA [5]. Furthermore, genes with little or no
non-coding regions between them will have tight link-
ages. Thus, modular genetic structures can develop
as a result of the variability in non-coding segment
length. This premise of modularity, a hallmark of in-
creased evolvability, has led to several studies on the
utility of non-coding segments in genetic algorithms.

Levenick, Forrest, and Wu all implement similar non-
coding segment representations in which a fixed num-
ber of non-coding bits are inserted between coding bits
within the chromosome [6, 7, 8, 9]. In each work, the

representation is tested on modular fitness functions
whose modules, or building blocks, are known. This a
priori knowledge allows the experimenters to place the
non-coding segments between adjacent modules and
observe the effectiveness of such an approach. How-
ever, these experiments do not address the issues of
proper non-coding segment placement and length – or,
how one might determine good linkage characteristics
without a priori knowledge. The work developed in
this paper addresses these issues by introducing vari-
able length, non-coding segments and is discussed in
the subsequent section.

The work done by Lobo on compressed introns in a
linkage learning genetic algorithm has some interesting
parallels to the current work [10]. In addition, it would
be remiss not to mention Levenick’s follow up to his
previous work [11] or the numerous investigations of
non-coding segments in genetic programming, which
are not cited here.

3 VARIABLE LENGTH
NON-CODING SEGMENTS

A new chromosome representation is developed in
which non-coding segments separate adjacent genes.
This representation is an extension of the work first
introduced in [12] and implemented in [13]. As op-
posed to the bit string approach taken by Levenick,
Forrest, and Wu, non-coding segments are encoded as
real numbers.

The new representation is presented by example. The
following 4 bit chromosome

1 0 1 1

has a non-coding segment representation given as

0.1 1 0.05 0 0.5 1 0.5 1 0.1

where the italicized genes are non-coding segments
that indicate the width of separation between the
non-italicized, coding genes. The coding genes have
no length, so the total chromosome length is sim-
ply the sum of non-coding segments. For exam-
ple, the above chromosome has a total length of
(0.1+0.05+0.5+0.5+0.1)=1.25. As opposed to encod-
ing the widths between adjacent coding genes, the non-
coding segments can be made to encode the cumula-
tive gene length up to the following coding gene. This
equivalent representation is shown for the preceding
chromosome as

0.1 1 0.15 0 0.65 1 1.15 1 1.25
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Such a cumulative length representation permits a
mapping of the coding genes where the location of
each gene is given by the preceding non-coding seg-
ment. This representation scheme is introduced as it
is more amenable to the crossover operator described
below, which is a straightforward extension of canoni-
cal recombination operators.

Rather than choosing a range of gene indices over
which to swap, a range of length values between zero
and the total length is chosen. For example, say that
the crossover range is chosen as 0.2 to 0.7. Then, the
second and third genes are swapped between parent
chromosomes since they are the only genes located in
the range 0.2 to 0.7. Moreover, ranges such as 0.7 to
0.2 are valid due to the adopted cyclic chromosome
structure. Because the crossover operator chooses the
range endpoints from an uniform distribution over zero
to the total length and if the non-coding segment
lengths vary between genes, gene linkage will also vary
between genes. This is easily observed in the above
chromosome, where the first and second genes, which
are separated by a length of 0.05, are more tightly
linked than the third and fourth genes, which are sep-
arated by a length of 0.5.

Although this representation allows the encoding of
different linkages between genes, there is no mech-
anism for adapting linkages, or non-coding segment
length. A simple adaptation operator is introduced
and described in the following. Prior to recombina-
tion, the non-coding segments of the first parent are
perturbed by addition of a Gaussian random variable
with zero mean and small variance, which is empiri-
cally chosen as 0.1. The hypothesis is that if the par-
ent chromosome exhibits good linkage characteristics
along with the correct coding genes, the chromosome
will have a higher probabiliy of survival than chro-
mosomes without good linkage characteristics. It is
believed that these chromosomes will maintain good
building blocks more often than other chromosomes,
providing the needed advantage for offspring survival.

4 TESTING THE VARIABLE
LENGTH NON-CODING
SEGMENT REPRESENTATION

4.1 SEARCH PROBLEM

As with Forrest and Wu, a series of Royal Road func-
tions are used to test the non-coding segment represen-
tation. The Royal Road functions are a set of functions
with levelled fitness functions that have increasingly
complex modules. These functions are useful in study-

l = 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 1 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 1 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

l = 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 1 1

l = 2 1 1 1 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 1 1 1

l = 3 1 1 1 1 1 1 1 1

Figure 1: Royal Road function modules.

ing whether and how modules (or building blocks) are
searched.

The Royal Road functions used here have 64 bits. The
length of each module is 8 ∗ 2l where l indicates the
level of the module and is between 0 and 3; hence,
module lengths are 8, 16, 32, or 64. Each level has
64/(8 ∗ 2l) = 23−l modules that have no overlapping
genes. Each module consists entirely of 1’s and has
an associated fitness value if contained within a chro-
mosome. The total chromosome fitness is the sum of
these module fitnesses. From this description, it can
be seen that an efficient search should construct the
low level modules before advancing to the higher level
modules. Hence, observation of how and when mod-
ules of a certain level are created gives an indication of
the search algorithm’s ability to handle chromosomes
with modular fitness functions.

Three different module fitness functions are used. The
first is the flat fitness function where all modules have
a fitness of 1, regardless of module length or level. The
second uses a power fitness function where the module
fitness depends on the level and is given by 3l+1. The
final fitness function is exponential and equates module
fitness to module length.

For clarity, all fifteen modules are shown in Figure 1
where each gene in the figure is shorthand for an 8 bit
string and ∗ is the “don’t care” symbol.

4.2 GENETIC ALGORITHM DETAILS

The genetic algorithm implements the developed non-
coding representation. Consequently, each chromo-
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some has 129 genes, 64 of which are coding and 65
of which are non-coding. Chromosomes of the seed
population are randomly initialized by choosing each
coding gene as 1 or 0 with equal probability. The non-
coding segments are chosen such that each coding gene
lies within the range 0 to 2. Population size is either
64 or 128. A standard roulette wheel selection strategy
is applied in which the best individual produces two
offspring, on average, per generation and the worst in-
dividual produces no offspring.

Crossover is applied with 100% probability, with the
aforementioned non-coding segment perturbations be-
ing applied prior to recombination. The offspring of
the recombination are then subjected to mutation,
which flips each coding gene with 2/64 probability.
Termination of the genetic algorithm occurs either
when a chromosome with the maximum fitness is found
or when 1500 iterations have been completed.

4.3 RESULTS

Results are presented for the three different Royal
Road functions implementing flat, power, or exponen-
tial fitness functions with population sizes of 64 or 128
individuals. In addition to testing the previously de-
scribed GA, a standard 2 point crossover GA is tested
along with a GA whose non-coding genes are fixed
length, but take advantage of the known modular-
ity (i.e., non-coding segments have length 0.1 within
modules and length 0.8 between modules). For nota-
tional convenience, results are referred to by a 3 sym-
bol code. The first symbol (f , p, or e) indicates the
type of fitness function. The second symbol is a num-
ber, indicating whether the results are for the variable
length non-coding representation (1 ), standard 2 point
crossover (2 ), or fixed length non-coding representa-
tion (3 ). The final symbol is either 64 or 128, which
denotes the population size.

Each genetic algorithm was run 300 times. The per-
formance of the GAs are shown in Table 1. Median
indicates the median generation at which the maxi-
mum fitness was found. Average is the average gener-
ation for convergence to the optimal fitness and σ is
the respective standard deviation. Miss indicates the
number of trials that did not find the optimal fitness
within 1500 generations.

Note that for all fitness functions and population sizes
the average performance of the non-coding represen-
tations are nearly as good or better than the stan-
dard representation. The median performance further
corrobates this observation. However, all the perfor-
mance distributions have large and overlapping stan-
dard deviations. This calls into question whether the

Table 1: Convergence Results
Median Average σ Miss

f1-128 353.5 429.8933 264.0272 1
f2-128 362.0 430.0567 265.5854 2
f3-128 356.5 426.3967 267.9843 10
f1-64 471.5 550.9100 311.1517 9
f2-64 499.0 585.4533 319.6713 15
f3-64 522.5 575.0600 314.1377 18
p1-128 385.5 450.4100 260.6045 4
p2-128 408.0 479.4133 291.4831 3
p3-128 365.0 441.8167 266.3116 6
p1-64 504.0 579.1567 317.0786 13
p2-64 501.0 573.2200 336.1498 14
p3-64 499.5 572.9800 308.7154 9
e1-128 404.0 473.8300 303.6770 10
e2-128 416.0 483.5033 286.0967 8
e3-128 392.0 468.1733 288.2384 3
e1-64 490.0 566.4633 322.9292 12
e2-64 497.5 565.4500 306.1123 10
e3-64 487.5 556.5233 303.6279 12

non-coding representation does indeed perform better
than the standard representation. In fact, by observ-
ing that the median is significantly lower than the av-
erage in every case, it is known that the distribution is
heavily skewed to values below the average. The large
standard deviation can then be attributed to the rel-
atively few runs that took excessive amounts of time.
Figure 2 depicts this graphically as a histogram of the
number of runs per convergence time for f1-128, which
is representative of all the other GA results. Thus, the
general trend that non-coding representations perform
more efficiently appears correct. Moreover, the vari-
able length non-coding representation performs nearly
as well or better than the fixed length non-coding rep-
resentation. This indicates that the variable length
non-coding representation is able to find appropriate
linkage characteristics.

Plots of the average generation at which the GA first
discovers a module of a given level are shown in Fig-
ures 3 through 5. These results were averaged over
150 runs; hence, the difference in discovery generation
of the third level module and the convergence results
listed in Table 1. Notably, the only large differences
in these graphs occur in the final level, where the non-
coding representations routinely match or outperform
the standard representation.

The question remains of whether the non-coding repre-
sentations evolve the correct linkages, or modularity.
Figure 6 shows typical results of evolved non-coding
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Figure 2: Distribution of number of runs per convergence
time for f1-128.
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Figure 3: Average number of generations to level discov-
ery. Flat fitness function.
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Figure 4: Average number of generations to level discov-
ery. Power fitness function.
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Figure 5: Average number of generations to level discov-
ery. Exponential fitness function.
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Figure 6: Normalized gene lengths at discovery of different
levels for one run of p1-128.

lengths, where the normalized gene lengths are shown
for the first occurrence of the module of the given level.
Also, for ease of interpretation, the gene lengths are
differentiated according to subsequent modules (i.e.,
each block of ‘.’ and ‘+’ is a module). The zero level
gene length obviously will not have the correct mod-
ularity (since it is very likely that a level 0 module
occurs in the initial population), and the results re-
flect this. As the levels increase beyond zero, the gene
lengths have some semblance to the actual Royal Road
modules, with tighter clusterings within the known
modules.

5 CONCLUSION

In this paper, a variable length non-coding segment
representation has been developed with the goal of
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adapting evolvability through improved linkage char-
acteristics. Preliminary results indicate that this rep-
resentation is able to outperform a standard represen-
tation on a set of Royal Road functions. In addition,
the developed non-coding representation is able to per-
form as well as a fixed length non-coding representa-
tion that has the known modularity built in. Fur-
thermore, the evolved modularity (as observed by the
intra-module clustering of gene locations) in the devel-
oped representation closely replicates the modularity
of the known Royal Road building blocks. This im-
plies that the developed representation can be used
not only to improve the performance of standard ge-
netic algorithms, but also to determine a rough idea
of the modularity of an a priori unknown modular fit-
ness function. Perhaps by observing the distribution
of evolved modules in multiple runs, the actual mod-
ularity can be inferred. This is a topic of continuing
research. More importantly, though, the developed
representation needs to be applied to more problems
to determine its effectiveness in adapting evolvability.
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Abstract

Grouping problems arise in many industrial and
medical applications; examples include bin
packing, workshop layout design, and graph
colouring. This type of problem has been
successfully handled using grouping Genetic
Algorithms. However in problems where there
are perhaps thousands of objects to be grouped, a
standard Genetic Algorithm approach can run
into problems. For example with a Chromosome
consisting of thousands of genes and with a
sizeable population, each population becomes a
burden on the resources of a computer, and
crossover becomes a very time consuming
operation. Within this paper, we present a
method for decomposing a large number of
objects into mutually exclusive subsets where
within-group dependencies are high and
between-group dependencies are low. The
method uses an Evolutionary Algorithm
approach but where the whole population is a
solution to the grouping problem rather than
considering many candidate solutions. This
reduces the resource overheads during computer
implementation and the results are promising
when compared with a Hill Climbing and a
clustering based approach applied to simulated
email log file data.

1 INTRODUCTION

There are many practical applications involving the
partition of a set of objects into a number of mutually
exclusive subsets, for example [Venugopal92] looks into
the grouping problem when applied to manufacturing cell
formation. The objective is to optimise a metric defined
over the set of all valid subsets, and the term grouping has
been often used to refer to this type of problems.
Examples of typical grouping applications include bin
packing, workshop layout design, and graph colouring.
Much research has been done on the grouping problem in

different fields, and it was established that many, if not all
grouping problems, are NP-hard [Garey79]. Any
algorithm that is guaranteed to find the global optimum
will therefore run in exponential time to the size of
problem space, and a heuristic or approximate procedure
is normally required to cope with most real-world
problems. A variety of techniques have been proposed to
develop this procedure including traditional clustering
algorithms, Hill Climbing and Evolutionary Algorithms.
These techniques utilise a metric that takes relationships
or dependencies between objects into account, and
partitions them into a number of mutually exclusive
subsets.

1.1 GROUPING PROBLEMS

This type of problem has been successfully handled using
a special type of Genetic Algorithm [Holland75,
Michalewicz98] called a Grouping Genetic Algorithm
[Falkenauer98]. However in problems where there are
perhaps thousands of objects to be grouped, a standard
Genetic Algorithm approach can run into problems. For
example with a Chromosome consisting of thousands of
genes and with a sizeable population (needed for the
Grouping Genetic Algorithm to perform efficiently), each
population becomes a burden on the resources of a
computer, and crossover becomes a very time consuming
operation. Within this paper, we present a method for
decomposing a large number of objects into mutually
exclusive subsets where within-group dependencies are
high and between-group dependencies are low. The
method uses an Evolutionary Algorithm approach but
where the whole population is a solution to the grouping
problem rather than considering many candidate solutions
and thus reducing the resource overheads during
computer implementation. The results are compared with
a Hill Climbing  algorithm and a clustering based
approach applied to simulated email log file data.

We are in contact with a large commercial company and
have been made aware of the challenging problem of
optimally allocating users to electronic mail servers. This
paper documents a feasibility study which makes use of
simulated email data based upon our experiences with a
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number of smaller email systems. This simulated data
represents the frequencies of messages being sent
amongst users in such a corporate email network. Here
the aim is to find an arrangement of users (objects) on a
number of servers (groups) in order to minimise network
traffic. The long-term goal is to extend this work to a
substantial real world email environment.

1.2 PREVIOUS WORK

In [Tucker01], various heuristic and evolutionary methods
were compared for grouping Multivariate Time Series
(MTS) variables in order to break up a high dimensional
MTS into several, lower dimensional MTS. In [Swift01],
the most successful of these methods, Falkenauer’s
Grouping Genetic Algorithm [Falkenauer98], was applied
to visual field and chemical process datasets with up to
seventy-six variables. However, if the dataset to be
decomposed contains hundreds or thousands of variables,
the burden upon computer resources would make the
search infeasible.

2 METHODOLOGY

This section discusses the methodology we use to tackle
the problem of large scale grouping problems.

2.1 OVERVIEW

It is assumed that there exists a square matrix, say F,
containing positive integers fij representing the strength of
a relationship between object i, indexed by the row, to
another object j, indexed by the column (see Figure 1).
For example, these could represent the number of
messages sent between two users on an email system.

This relationship matrix can then be used to assign each
object to the required groups. The number of groups can
either be some fixed number or within a predefined
interval. Section 3.1 details the simulated dataset this

method can be used to solve, and will detail the groups
and the nature of the matrix F.

The general outline of the methodology is as follows:
given the relationship matrix F and the number or range
of the groups, an algorithm is applied that iteratively
changes some random starting representation of the
groups. This is done by applying a metric to judge the
worth of the groups using the matrix F. The intention is
that each iteration should improve the value of the groups
until the arrangement is judged worthwhile.

2.2 REPRESENTATION

In order to represent candidate arrangements, a population
of variable length lists was used to represent the
allocation of an object to a group. For example, if these
objects are to be partitioned into five groups then there are
five lists representing each group containing the ID of
each object allocated to that group; this is illustrated in
Figure 2.

Note that ki is the number of objects in group i and that
the sum of each ki is equal to the number of objects being
grouped. Note also that it is trivial problem to extend this
representation so that the number of groups falls within
some range, for example between 7 and 21 groups.
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Figure 2. The Representation for Five Groups

2.3 FITNESS

The metric that we now describe makes use of the
relationship matrix by considering the strength between
two objects irrespective of direction. This means that only
n(n+1)/2 elements need to be stored rather than the full
table, where n is the number of objects. The evaluation
metric, which we define below, is used to group objects
together where they have strong mutual relationship and
to separate them into different groups where the
relationship is low.

The metric works as follows: each group is scored on how
well the objects within it relate with each other. The
metric is essentially the summation of a sub-metric
evaluated on each group. The sub-metric works by
creating all of the unique pairings between each of the
objects in a group. It subtracts one if a pair does not have
a relationship; otherwise the sub-metric is incremented by
the amount of messages sent between the pair. This value
is modified for each pair (for each group).

f11 f21 f31 fn1

f12 f22 f32 fn2

f13 f23 f33 fn3

f1n f2n f3n fnn

F  =

To Object

Fr
om

 O
bj

ec
t

Figure 1. The Frequency Table used to Score Candidate
User Arrangements.
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Let n be the number of objects and {x1...xn} be each object
to be partitioned. Let G be the list of servers and m =
� (the number of groups). Let gi be the ith member of

the list G where 1 ������� and let ki = �i . The notation
gij refers to the jth element of the ith list of G. G is

restricted such that �
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It is clear to see that in all cases m ���. The evaluation
metric for any fixed list G, EM(G), is defined as follows:
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A similar metric has been analysed and utilised
successfully in [Tucker01] to group MTS variables (the
objects) based on cross correlation (the relationship
matrix F). This paper also contains proofs that the metric
behaves in a way that is appropriate to the problem.

2.4 THE ALGORITHMS

For the experiments, a simple Hill Climb operator, several
variants of an Evolutionary Algorithm and a clustering
method were used. These are described in the remainder
of this section.

2.4.1 The General Algorithm

Both the Hill Climb and the Evolutionary Algorithm
make use of a general algorithm. This algorithm is an
iterative process whereby an operator is applied
repeatedly to try and improve the fitness of the current set
of groups. It takes as input the frequency matrix, F, the
maximum number of function calls, MaxCalls, the
number of object, n, and the number of groups, m:

Input: F, MaxCalls, n, m
1 Randomly assign the n objects

to m groups
2 i=0
3 Do
4 Apply Operator to groups
5 i=i+1
6 While (i<MaxCalls)
Output: m groups of objects

2.4.2 The Hill Climb

The Hill Climb simply moves one object at random from
a randomly selected group and places it into another
randomly selected group. The fitness of the two groups
are compared before and after the operation and if an
improvement is found, the amended groups replace the
original.

Input: F (the frequency matrix)
1 Randomly select 2 parent

groups: p1, p2
2 Clone p1, p2  to generate 2 new

children groups: c1, c2
3 Randomly select an object in

group c1
4 Move the object into c2
5 Calculate fitness of c1, c2

using equation 1 and F
6 If children’s total fitness >

parent’s total fitness Then
7 Replace parents with

children
8 Else
9 Delete children
10 End If
Output: p1, p2 or c1, c2 according to

combined fitness (step 6)

2.4.3 The Evolutionary Algorithms

All variations of these algorithms use Uniform Crossover
to randomly select two parents and generate two new
empty children groups, one for each parent. Each parent
then assigns each object within it to its own child group
with the probability based on the value of the current
crossover rate, wi. Otherwise, the object is assigned to the
other child.

Input: F, i (the ith object)
1 Randomly select 2 parent

groups: p1, p2
2 Generate 2 new Empty children

groups: c1, c2
3 For each parent
4 For each object within

the parent
5 Place object into the 

corresponding child (i.e.
c1 for p1) with a
probability equal to the
current Crossover Rate
parameter, wi, otherwise
place the object in the
other child

6 End For
7 End For
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8 Calculate fitness of c1, c2
using equation 1 and F

9 If children’s total fitness >
parent’s total fitness Then

10 Replace parents with
children

11 Else
12 Delete children
13 End If
Output: p1, p2 or c1, c2 according to

combined fitness (step 8)

Note that step 8 will allow for the event where one child
group may have a lower fitness than its parent but still be
chosen because the total child fitness is greater.

The effect of Crossover Rate on efficiency was
investigated. Experiments were carried out which kept
this value fixed and also allowed it to vary depending
upon the number of function calls that had been applied
so far. Two versions of this variable Crossover Rate were
used and calculated as in equations 4 and 5.

MaxCalls

iminmax
maxwi

×−−= )( (4)

MaxCalls

iminmax
minwi

×−+= )( (5)

where min is the lower limit for the Crossover Rate, max
is the upper limit, and i denotes the number of function
calls so far.

When the algorithm makes use of equation 4, we will
refer to the variant as "Max-Min" since the rate starts off
equal to max when function calls are equal to zero and
decreases linearly until it reaches min when function calls
equal MaxCalls. We will refer to "Min-Max" where
equation 5 is used (the opposite is true) and when the rate
is held constant, we will refer to the variant as "Fixed".

2.4.4 Partitioning Around Medoids

Standard clustering methods [Jain99] can be used to
arrange n records into m groups. There are many such
techniques such as K-Means clustering and hierarchical
methods. However the difference between these
techniques and the problem being solved in this paper is
that only the distances between the n objects are available.
However one clustering method that can work on such
distance matrices is a method called Partitioning Around
Medoids (PAM) [Kaufman87, Struyf97]. PAM will be
used in this paper as a comparison to the methods
presented. PAM works by firstly selecting m out of n total
objects that are the closest (according to the distance
matrix) to the remaining (n-m) objects. The fitness of
these medoids is calculated by placing the remaining
(n-m) objects in a group according to the nearest medoid

and summing up all of the distances of the group
members from this medoid.

These m selected objects are the initial medoids. A
Swapping procedure is then applied until there is no
improvement in fitness. Swapping involves generating all
of the possible medoid and non-medoid pairs, evaluating
the fitness of each pair, and then performing the swap that
improves fitness the most. The algorithm is documented
below.

Input: F, Iterations, n, m
1 Construct m Initial Medoids,

dj that minimise ∑
=

n

i
id j

f
1

2 For i = 1 to Iterations
3 For all object pairs, (i,j),

where i is a medoid and j is
not a medoid

4 Perform the i, j swap 
which decreases the
fitness the most

5 End For
6 End For
7 Allocate each medoid to a new

group
8 Allocate the non-medoids to

their nearest medoid
Output: m groups

A variation on this algorithm will also be looked at where
any improvement during the Swapping phase will be
judged according to the metric defined in equation 1. We
will call this method PAM-M (Metric).

3 EXPERIMENTS

Experiments were carried out to compare the efficiency of
the different algorithms. This involved running several
repeated experiments over the Hill Climb and the
Evolutionary Algorithms (with the differing Crossover
Rates). The average learning curve for each of these
experiments was then calculated. PAM and PAM-M will
also be included in the comparison and each is applied
only once since they are deterministic. All experiments
have been tested using synthetic data which is motivated
by a class of real world problem and is described in the
next section.

3.1 THE TEST DATASET

Large companies with multiple offices and several
thousand staff have complex network and server
infrastructures. In order to keep maintenance and upgrade
costs to a minimum these structures need to be carefully
designed and implemented. They then need to be
monitored to assess areas for optimisation. A critical part
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of every corporate IT infrastructure is the internal email
environment. Often, these mail networks are distributed
across multiple sites with each site hosting multiple
servers, and each server hosting several hundred users
who, in turn, may themselves be distributed across several
smaller satellite offices. It is suggested that a more
rigorous process should be adopted to determine the
configuration of users and servers. Mail systems do
provide data on mail routing which can then be analysed
by standard mail administration tools. Usually this
happens within the mail product itself, to trace the path of
an individual message or to check out all incoming or
outgoing mail for an individual. However, this
functionality falls far short of the level of data analysis
needed to establish efficient groupings.

The dataset that is the focus of this paper is a set of
simulated electronic mail message frequencies from a
single office consisted of 250 people across 5 mail
servers. The frequency matrix F described in section 2.1
indicates how many messages were sent between two
people, i.e. element fij represents how many messages
were sent from person i to person j. Simulated data has
been used initially to demonstrate that the method is
sound; the next step (as will be discussed in section 5)
will be to extend this work to real data. Our experiences
with real data have shown that the frequency matrix F is
usually around 95% sparse (i.e. 95% of the cells are zero),
with a mean size of 5.0 messages and a standard deviation
of 15.0 for the non-zero elements.

The objective is to minimise network traffic (generated by
messages between users on different servers) by grouping
users who communicate frequently onto the same server.
The value of the fitness function reflects this requirement
by rewarding groups where there is a lot of
communication between members, and penalising groups
where there is no communication.

3.2 RESULTS

This section documents the experiments involved in
comparing the performance of the six methods (three
Evolutionary, one Hill Climb and two PAM-based) on the
250-user synthetic dataset. Figure 3 shows the six
methods in terms of their fitnesses against function calls.
However, the two PAM methods appear as straight lines
representing the final fitness because one iteration does
not correspond directly with a function call. The four
stochastic methods are averaged over ten experiments to
give an indication of their general performance. Table 1
displays the fitness of the discovered groups for all
methods investigated, again the stochastic methods are
averaged.

The stochastic methods are allowed to run for 300 000
function calls, whereas the clustering methods are run for
100 iterations. The max and min parameters for the
Evolutionary Algorithms were found to be most efficient
when max = 0.995 and min = 0.95. This is discussed
further in section 4.3.

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 50000 100000 150000 200000 250000 300000

Function Calls

F
it

n
es

s

Fixed
Max-Min
Min-Max
PAM
PAM-M
HC

Figure 3. The Fitness of the Six Methods Plotted against
Function Calls

As can be clearly seen, the Hill Climb appears very
efficient within the first few thousand function calls.
However as the algorithms progress, the Evolutionary
Algorithms catch up. In fact the Max-Min variant soon
overtakes the Hill Climb and converges to a much higher
fitness. The Fixed Uniform Crossover variant is slower to
converge than the Hill Climb but after approximately
170 000 function calls the two curves meet and remain
virtually the same. The worst performance of the
stochastic algorithms is obviously the Min-Max variant
which performs poorly throughout.

Table 1. The Final Fitness of the Discovered Groups
for Each Algorithm

Algorithm Final Fitness

Evolutionary Algorithm
(Fixed Uniform Crossover)

12183.7

Evolutionary Algorithm
(Max-Min Crossover)

12392.0

Evolutionary Algorithm
(Min-Max Crossover)

11996.6

Hill Climb 12162.0
PAM 4652

PAM-M 6253

Within table 1, the first four methods have a fractional
fitness because they have been averaged over ten
experiments. It is evident that the final groupings for the
PAM methods compare very poorly to the other methods,
particularly the standard PAM which does not make use
of our metric.
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4 DISCUSSION

This section considers the results that have been observed
within this paper.

4.1 PAM AND PAM-M

The standard PAM method revolves around finding a
medoid that can be considered to be the best "centre" of a
group. Objects that are not medoids are placed into groups
according to their closest medoid. Unfortunately, in the
email application being considered, a group’s suitability is
judged not on how closely related a member is to a central
point but how closely related each member is with its
co-members. Because the email data is not the same as a
distance matrix, as used by most clustering methods, a
situation could arise where object A being close to object
B and object B being close to object C does not
necessarily imply that A is close to C. In fact, with email
datasets, the opposite could easily be true.

PAM-M performs relatively better than the standard PAM
method (with a 34% increase in fitness). This is most
likely due to using the metric in equation 1 that takes into
account all possible relationships within a group during
the Swap phase.

4.2 HILL CLIMB

The Hill Climb makes use of small alterations within the
grouping arrangement. These appear to be very effective
in rapidly homing in on a good approximate allocation of
objects. However, as can be seen in the experimental
results as the function calls increase, the fitness grinds to
a halt and does not improve any further. It was observed
that the point at which this occurred varied a great deal
from experiment to experiment, sometimes reaching a
very good fitness and sometimes levelling out at a very
early stage. This is likely to be due to the problem of
encountering local maxima in the search space where the
only way to improve the current grouping is by
performing two or more alterations concurrently, before
checking for an improvement in fitness.

4.3 THE EVOLUTIONARY ALGORITHMS

The best values for the max and min parameters were
found to be higher than expected at first (min being 0.95
and max being 0.995). However, this makes sense in that
as the number of objects to be grouped increases (the size
of n) the less likely it will be that closely related objects
within a group will be kept together.

The three algorithms varied a great deal in performance.
The worst is the Min-Max method where the crossover
rate varied from the lower bound to the higher bound.
This was unexpected as it was originally thought that
larger and clumsier recombinations would be useful at the
beginning to rapidly locate favourable sub-groups. This
would be followed by smaller changes as the experiment
progressed in order to fine-tune the discovered groups. In

fact, it was found that the opposite was true and the Max-
Min variant performed far more favourably.

A reason for the high efficiency of the Max-Min method
could be due to the early formation of sub-groups through
small precise changes, behaving like schema within a
standard Genetic Algorithm [Goldberg91]. As the
Crossover Rate decreases, it is more likely that these
sub-groups will be moved around as whole units since
they are recombined with other sub-groups into complete
groups which reflect the data more closely.

5 FUTURE WORK

The work presented in this paper represents the first
attempt at a large grouping problem. The 250 simulated
users represent a small sized office, in fact real world data
often consists of tens of offices, each with thousands of
users. The next stage will be to apply this work to a single
office (a grouping problem involving thousands of
objects) and then many offices (a grouping problem
involving tens of thousands objects). Additionally the
number of servers, fixed at five within this paper, should
be made variable, which will require a modification to the
Evolutionary Algorithm, involving perhaps the
incorporation of another operator to split a group into two
smaller groups. Limits will also need to be imposed on
the maximum and minimum members of a group,
reflecting the practical constraints that exist on the server
hardware. For example, if a server has too many users
allocated to it, it may function abnormally slow, and if
there are too few users allocated to a server, then that
server is under used and therefore not cost effective.

Focusing on the Evolutionary Algorithm itself, one of the
more interesting parts of the work has been the selection
of the Crossover Rate, wi. It is known through the many
experiments carried out during this project that the
weights can be dependent on the number of objects, n.
Also it is thought that the weights should be
individualised for each server rather than being the same.
One approach that will be looked into is whether the
weights can be learnt during the execution of the
algorithm, and adapt to how a particular groups fitness
has been improving. Such an approach has been
implemented successfully in many Evolutionary
Programming implementations [Bäck93], so perhaps a
technique such as self-adapting parameters [Bäck96]
could be modified appropriately.

6 CONCLUSIONS

In this paper we have discussed the problems inherent in
grouping large numbers of objects where the
relationship/distance matrix does not behave in the
manner typical of conventional clustering problems. The
aim of this paper has been to demonstrate that a
minimalist Evolutionary Algorithm (where the population
is the solution) is best suited to this family of grouping
problems, especially when the number of objects is large.
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The results clearly show that a clustering based method
falls down due to relying upon the notion of a centre point
to a group which may not even exist. Conversely, we have
demonstrated that Hill Climbing suffers from the classic
problem of local maxima on such large problems. The
Evolutionary Algorithms suffer from neither of these
setbacks and it was discovered that the best variant made
use of a variable crossover rate, contrary to what was
expected.

These promising results lead us to believe that the
approach adopted within this paper will extend to a class
of high-dimensional real world grouping problems where
other traditional methods will not be appropriate.
Examples include grouping email users on servers,
clustering related genes using DNA micro-array data, and
grouping multivariate time series variables as in industrial
process and medical domains.
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Abstract

This paper illustrates the application of evo-

lutionary algorithms (EA) to data mining

problems. The objectives are to demonstrate

that EA can provide a competitive general

purpose data mining scheme for classi�cation

tasks without constraining the knowledge

representation, and that it can be achieved

reducing the amount of time required using

the inherent parallel processing nature of EA.

Experiments were performed with GALE, a

�ne-grained parallel evolutionary algorithm,

on several arti�cial, public domain and pri-

vate datasets. The empirical results suggest

that EA are competitive and robust data

mining schemes that scale up better than

non-evolutionary well-known schemes.

1 INTRODUCTION

Data mining with EA has to work with two main is-

sues. The �rst one deals with the knowledge represen-

tation used by the algorithm for data mining. There

is a wide range of choices. EA can evolve if-then rules,

s-expressions, grammars or decision trees. Unfortu-

nately, EA are usually tailored for the given dataset

to be mined and the knowledge representation evolved.

The second issue is common to all knowledge discovery

algorithms: how the algorithm scales up with respect

to the size of the search space being explored (time

complexity).

Some of the most representative data mining tasks

are classi�cation, clustering or dependence model-

ing, among others. This paper focuses its e�orts on

classi�cation problems. Classi�cation schemes using

EA like GABL [De Jong and Spears, 1991] or XCS

[Wilson, 1995] are well known. They are all ap-

proaches that use Genetic Algorithms to mine datasets

evolving sets of descriptive rules. Genetic Program-

ming [Koza, 1992] has also been used to evolve s-

classi�ers, induction trees or classi�ers based on if-

then rules. All these approaches use di�erent knowl-

edge representations to solve the data mining prob-

lem. In fact, it is diÆcult to obtain a robust knowl-

edge independent scheme for all sort of datasets. On

the other hand, all of them usually share time con-

strains when they are used for data mining because

they are designed for serial processing, and mining

datasets becomes time-consuming. Parallel process-

ing can reduce the amount of time needed to mine

datasets [Freitas and Lavinston, 1998].

This paper presents GALE, a �ne-grained parallel EA

for data mining. It overcomes the two points dis-

cussed above. The classi�cation scheme presented is

independent of the knowledge representation evolved.

This means that it is a general purpose classi�ca-

tion scheme designed for evolving whatever is needed,

sets of if-then rules, grammars or decision trees, for

instance, not being tailored for any prede�ned knowl-

edge representation or dataset. The second point is

that it exploits parallel processing and spatial relations

among individuals, reducing the amount of time re-

quired for mining the dataset. Section 2 discusses some

related work. Section 3 describes GALE in detail. Sec-

tion 4 presents the experimental evaluation on twelve

di�erent datasets comparing GALE to well-known

classi�er schemes like IB1 [Aha and Kibler, 1991],

IBk [Aha and Kibler, 1991], C4.5 [Quinlan, 1993],

PART [Frank and Witten, 1986], Naive Bayes

[John and Langley, 1995], and SMO [Platt, 1998]. We

also compare the results of GALE with other EA.

Finally, section 5 summarizes our �ndings, discussing

some conclusions and further work.
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2 RELATED WORK

Recently there is a growing interest for data min-

ing using evolutionary computation. EA have mined

datasets looking for patterns indicative of time series

[Povinelli, 2000], oblique datasets for complete and

accurate rule sets [Wilson, 2000] and decision trees

[Cant�u-Paz and Kamath, 2000], or datasets for depen-

dence modeling [Flockhart, 1995, Araujo et al., 1999].

Although they are all data mining tasks, the output

knowledge is di�erent in each work, being often tai-

lored for the given problem. This usually leads to

highly speci�c algorithms. Mining real-world datasets

means working with attributes that are categorical,

numeric, textual, etc. Thus, the point is that the

data mining scheme should not constrain the knowl-

edge representation. For instance, constraining the

evolved knowledge to work only with categorical at-

tributes narrows the scope of application of the data

mining scheme.

Data mining with evolutionary computation tends to

be time-consuming when mining large datasets. Par-

allel Genetic Algorithms (PGA) have been used to

overcome the genetic search versus real time problems

[Pettey et al., 1987]. There are two di�erent ways to

classify PGA, among others. The �rst one uses the

population as reference (population parallelism), while

the second one classi�es PGA measuring the degree

of parallelism on �tness computation (�tness paral-

lelism). Population parallelism can be roughly divided

in two classes: coarse-grained [Pettey et al., 1987] and

�ne-grained [Manderick and Spiessens, 1989] parallel

algorithms. The coarse-grained approach (islands

model) runs multiple populations in parallel. Among

other things, when using a coarse-grained PGA one

must decide the number and size of the populations

(demes), the rate of migration (how often populations

exchange individuals) and the destination of this mi-

grants [Cant�u-Paz, 1999]. Instead, the individuals of

the population of a �ne-grained PGA (cellular or dif-

fusion model [Whitley, 1993]) are usually placed on

a planar grid, where selection and crossover are re-

stricted to small neighborhoods, exploiting the mas-

sive parallel processing available. Fitness parallelism

[Araujo et al., 2000] divides PGA in control or appli-

cation parallelism and �tness computation parallelism.

The �rst one exploits parallelism in the application of

genetic operators (such as selection, crossover and mu-

tation), while the second one exploits inter-individual

parallelism (parallelizing the �tness computation of an

individual). The last one just makes sense on data

mining problems where large datasets must be ex-

plored, although they might maintain serial bottle-

necks that bound the speedup they can achieve (Am-

dahl's law [Hwang, 1993]).

PGA have reduced the amount of time

spent by EA to solve all kinds of prob-

lems. They have been applied to func-

tion optimization [Spiessens and Manderick, 1991]

[Gordon and Whitley, 1993], combinatorial opti-

mization [M�uhlenbein, 1989], dependence modeling

[Flockhart, 1995, Araujo et al., 2000], or classi�er sys-

tems [Robertson, 1987].

3 GALE

Genetic and Arti�cial Life Environment (GALE) is

a classi�er scheme based on �ne-grained parallel ge-

netic algorithms. GALE was �rstly introduced in

[Llor�a and Garrell, 2000a], being designed for solving

classi�cation tasks. This section describes GALE fo-

cusing on the parallel evolutionary model, and how it

can evolve di�erent knowledge representations for the

classi�cation task.

The knowledge representation used for solving a

classi�cation problem can bound the classi�cation

performance and the understanding of the out-

put knowledge obtained along the learning process

[Witten and Frank, 2000]. For instance, induction

trees can mine orthogonal datasets, but they have to

be modi�ed to mine oblique data. These changes in

knowledge representation inuence the classi�cation

performance, as well as the learning algorithm used.

Evolutionary algorithms can overcome knowledge de-

pendence providing an uni�ed classi�cation scheme for

data mining.

3.1 CLASSIFIER SCHEME FOR DATA

MINING

GALE uses a 2D grid for spreading spatially the evolv-

ing population. Each cell of the mesh contains either

one or zero individuals; thus, for instance a 32�32
grid contains up to 1024 individuals, each one placed

on a di�erent cell. Each individual is a complete solu-

tion to the classi�cation problem, in fact, each individ-

ual represents the knowledge that describes the mined

dataset. Genetic operators are restricted to immediate

neighborhood of the cell in the grid. The size of the

neighborhood is r. Given a cell c and r = 1, the neigh-

borhood of c is de�ned by the 8 adjacent cells directly

connected to c. Thus, r is the number of hops that

de�nes the neighborhood. Every cell in GALE runs

the same algorithm in parallel, without any sequential

control, which summarizes as follows:
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initialize the cell

evaluate classification performance of

individual in cell

REPEAT

merge among neighborhood

split individual in cell

evaluate classification performance

of individual in cell

survival among neighborhood

UNTIL <some end-criterion>

The initialization of each cell builds a random indi-

vidual. Not all the cells contain individuals, thus

they can be full (with one individual) or empty. If

a cell is not empty, its individual is evaluated us-

ing the dataset to be mined. The �tness function

used in this paper is very simple, fit(ind) =
�
c

t

�2
[De Jong and Spears, 1991], where c is the number of

correctly classi�ed instances and t the number of in-

stances of the dataset. Next, the evolutionary cycle

starts. Merge crosses the individual in the cell with

one individual randomly chosen among its neighbor-

hood, with a given probability pm. Merge generates

only one individual that replaces the individual in the

cell, as later explained. Then, split is applied with a

given probability ps � fit(ind). Split copies and mu-

tates the individual in the cell. The new individual

is placed in the cell of the neighborhood with higher

number of neighbors (occupied cells), or if all cells in

the neighborhood are full, in the cell that contains the

worst individual. The last step in the evolutionary cy-

cle, survival, decides if the individual is kept for the

next cycle or not, as explained in the following para-

graph. The cell repeats this process until the individ-

ual classi�es correctly all the instances of the dataset

or a certain amount of cycles are run.

The survival step decides if an individual is kept in

the cell for the next cycle or not. This process uses

the neighborhood information. If a cell has up to one

neighbor then the probability of survival of the indi-

vidual is p0;1
s
(indc) = fit(ind). Else if a cell has seven

or eight neighbors then p
7;8

s
(indc) = 0, where the in-

dividual is replaced by the best neighbor. In the rest

neighborhood con�gurations, an individual survives if

and only if fit(ind) � �
nei

+ksr��nei; �nei is the av-

erage �tness value of the occupied neighbor cells, and

�nei their standard deviation. ksr is a parameter that

controls the survival pressure over the current cell.

3.2 KNOWLEDGE REPRESENTATION

The evolutionary model of GALE is independent

on the knowledge representation evolved. In this

paper, GALE evolves one of the three available

knowledge representations: if-then rules, instance

sets and instance-based decision trees. GALE ob-

tains sets of if-then rules using the codi�cation pre-

sented in [De Jong and Spears, 1991], merging indi-

viduals with two-point crossover operator and split-

ting with a mutation operator based on bit inver-

sion. Instance sets are small arti�cially evolved sets

of instances that describe the set of mined instances

[Llor�a and Garrell, 2001], based on nearest neighbor

algorithms. Merge also uses two-point crossover, and

splitting is done using mutation based on generat-

ing some new values for genes randomly. The last

evolved knowledge representation is based on instance-

based decision trees [Llor�a and Garrell, 2000b], codi-

�ed as dynamic trees. The genetic operators used are

the basic ones proposed in the Genetic Programming

[Koza, 1992] literature.

3.3 SPEEDUP ANALYSIS

Throughout, GALE is a �ne-grained parallel model

for data mining, independent of the knowledge rep-

resentation used. As a parallel processing algorithm,

the theoretical degree of scalability, or speedup, is a

useful measure. In order to compute the theoretical

speedup equations, we need to obtain the time com-

plexity equations of both a general-purpose evolution-

ary algorithm for data mining (GABL) and GALE. In

the model equations n is the population size, k the

number of iterations of the evolutionary algorithm, l

the number of instances in the dataset, r the size of

the neighborhood, and p is the number of processors

used. The time complexity equations for GABL are:

ta = k � tloop

= k (teval + tsel + tcross + tmut)

= k (tclsnl + tcopyn logn+ txalgpxn+ tmalgpmutn)

= kn (�1l + �2 logn+ �3)

(1)

where tcls is the time of classifying an instance, tcopy
the time of copying an individual, txalg the time of

the crossover algorithm, and tmalg the time of the mu-

tation algorithm. Once we have the time complexity

equations of a serial evolutionary algorithm for data

mining, ta 2 O (kn (l + logn)), we need the model of

GALE. To obtain these equations we assume that each

cell of GALE contains one individual, being mapped

on a di�erent processor, n = p. Each processor is

connected to its neighbors in the grid with a latency

of O(1). Beneath this assumptions, the equations for
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GALE can be calculated as follows,

t
r

b
=

1

p
nk � tcell

=
1

n
nk � tcell

= k (teval + tmerge + tsplit + tsurvival)

= k

�
tclsl + tralgpm + tsalgps + tcopy (2r + 1)

2

�

= k

�
�1l + �2 (2r + 1)

2
+ �3

�
(2)

where tcls is the time of classifying an instance, tcopy
the time of copying an individual, tralg the time of

the merge algorithm, and tsalg the time of splitting.

Thus, if r = 1 (minimizes communication e�orts) then

t
1

b
2 O (kl). Finally, the speedup equation becomes:

s
1 =

ta

t
1

b

=
kn (l + logn)

kl
= n

�
1 +

logn

l

�
� n (3)

The speedup equation shows that it grows linearly to

the number of processors used, avoiding the serial bot-

tleneck selection based on roulette. Equation 2 also

shows that the time for mining a data set using GALE

does not depend on the population size, it is just a lin-

ear function of the number of instances and iterations.

4 TEST SUIT

The test suit designed for evaluating the classi�ca-

tion performance of GALE consists of several datasets

and machine learning algorithms. This fact lets us

study the performance of GALE using statistical tools,

like strati�ed ten-fold cross-validation runs and paired

t-tests [Witten and Frank, 2000]. The time perfor-

mance analysis of GALE as a parallel processing al-

gorithm is beyond the scope of this paper, being part

of the further work.

4.1 DATASETS

In order to evaluate the performance of GALE on prac-

tice, we performed experiments on twelve datasets.

Datasets can be grouped up to three kinds of di�erent

datasets: synthetic, public and private. The datasets

and their characteristics are listed in table 1.

We used two synthetic datasets to tune the learn-

ing algorithms, because we knew their solutions in

advance: MX11 is the eleven input multiplexer, and

TAO is a dataset obtained from sampling the TAO

�gure using a grid. Public datasets are obtained

from UCI repository [Merz and Murphy, 1998]. We

chose nine datasets from this repository. They

are: breast-w, glass, ionosphere, iris, led,

pima-indians, sonar, and vehicle. These datasets

contain categorical and numeric attributes, as well

as binary an n-ary classi�cation tasks. Finally, we

also used two private datasets from our own repos-

itory. They deal with diagnosis of breast cancer,

biopsies [Llor�a and Garrell, 2000a], and mammograms

[Llor�a and Garrell, 2000b]. Biopsies is the result of

digitally processing biopsy images, while mammograms

uses mammographic images.

4.2 CLASSIFIER SCHEMES

As well as GALE algorithm described above, we

also run seven additional classi�er schemes on the

previous datasets. We want to compare the re-

sults obtained by GALE with the ones obtained us-

ing well-known non-evolutionary classi�er schemes.

They belong to di�erent learning theories, coded

into the Waikato Environment for Knowledge Analy-

sis (WEKA) [Witten and Frank, 2000] (available from

http://www.cs.waikato.ac.nz/ml/weka). We also

compare the results with some related evolutionary ap-

proaches. Non-evolutionary classi�er schemes are:

1. 0-R: predicts the majority class in the training

data. This scheme can be useful for determining

a baseline performance as a benchmark for other

learning schemes [Witten and Frank, 2000].

2. IB1 (1-NN): uses a simple distance measure to

�nd the training instance closest to the given test

instance, and predicts the same class as this train-

ing instance. If multiple instances have the same

(smallest) distance to the test instance, the �rst

one found is used [Aha and Kibler, 1991].

3. IBk (k-NN): extends IB1 using a distance mea-

sure to �nd the k training instances closest to

the given test instance. It predicts the major-

ity class of the k recovered training instances

[Aha and Kibler, 1991].

4. C4.5 revision 8: it is based on tree induction.

Using the training instances, it induces a decision

tree. C4.5r8 is the result of a series of improve-

ments to ID3 [Quinlan, 1986] that include meth-

ods for dealing with numeric attributes, missing

values and noisy data [Quinlan, 1993].

5. PART: induces if-then rules for the given train-

ing instances [Frank and Witten, 1986]. PART

obtains rules from partially built decision trees.
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Table 1: Datasets used for the experiments.
Dataset Instances Missing Noise Numeric Nominal Classes

Values (%) (%) attributes attributes

1 Biopsies 1027 0.0 n.a. 24 - 2
2 Breast-w 699 0.3 0.0 9 - 2
3 Glass 214 0.0 0.0 9 - 6
4 Ionosphere 351 0.0 0.0 34 - 2
5 Iris 150 0.0 0.0 4 - 3
6 LED 2000 0.0 10.0 - 7 10
7 Mammograms 216 0.0 n.a. 21 - 2
8 MX11 2048 0.0 0.0 - 11 2
9 Pima-indians 768 0.0 0.0 8 - 2
10 Sonar 208 0.0 0.0 60 - 2
11 TAO 1888 0.0 0.0 2 - 2
12 Vehicle 846 0.0 0.0 18 - 4

6. Naive Bayes: predicts the class for test instances

using statistical learning. The core of the system

uses the Bayes' rule of conditional probability to

achieve the prediction [John and Langley, 1995].

7. SMO (SVM): implements the sequential mini-

mal optimization algorithm for training a sup-

port vector classi�er using polynomial kernels

[Platt, 1998]. It only performs binary classi�ca-

tion tasks.

4.3 RESULTS

GALE was run using the same parameters for all

datasets. The grid was 64�64 (r = 1) with a 80%

of occupied cells after initialization. Other parame-

ters were set to pm = 0:4, ps = 0:01, and ksr = �0:25.
The maximum number of iterations was 150. The non-

evolutionary classi�er schemes used the default con-

�guration provided by WEKA. Tables 2 and 3 show

the percentage of correct classi�cations, averaged over

strati�ed ten-fold cross-validation runs. The same

folds were used for each scheme. For the LED dataset

GALE was run using hold-out with a training set of

2000 instances and a test set of 4000 instances. The

knowledge representation used in GALE is marked in

table 3. A ? marks that GALE evolved if-then rules, y
marks instance-based, and z stands for instance-based
decision trees.

Table 3 lists the results achieved by GALE. It also

marks non-evolutionary schemes with a Æ if they

show a signi�cant improvement over the correspond-

ing GALE results, and with a � if they show a sig-

ni�cant degradation. Throughout, we speak of results

being \signi�cantly di�erent" if the di�erence is sta-

tistically signi�cant at the 1% level according to a

paired two-sided t-test, each pair of data points con-

sisting of the estimates obtained in a strati�ed ten-fold

cross-validation run (for the two learning schemes be-

ing compared). Table 3 also lists the results of paired

two-sided t-tests with a signi�cant level at 10%, just

for illustration. Table 4 summarizes the performance

of the di�erent methods compared with each other.

Numbers indicate how often the method in the row

signi�cantly outperforms method in the column. Fi-

nally, table 5 presents the performance ranking for the

classi�er schemes on the test suit.

The results listed in table 4 show that all the classi�er

schemes clearly outperform the baseline performance

obtained by 0-R. GALE obtains signi�cant improve-

ments when compared to IB1, PART, Naive Bayes

and SMO. There is no signi�cant improvement when

GALE is compared to IBk and C4.5r8, although GALE

clearly outperforms them in the overall ranking, table

5, where GALE ends in �rst place. The �rst place ob-

tained by GALE shows that it is a robust model for

data mining across di�erent domains.

Recently other evolutionary classi�er schemes have

been applied to data mining. XCS [Wilson, 2000]

performs mining on oblique data, been called XCSI.

XCSI obtains a mean performance of 95.5�2.89
on the breast-w, very similar to 95.7�2.23 ob-

tained by GALE. Inducing oblique decision trees

has also been done using evolutionary strate-

gies (OC1-ES) and genetic algorithms (OC1-GA)

[Cant�u-Paz and Kamath, 2000]. Among other UCI

datasets, OC1-ES and OC1-GA were run using

pima-indians and iris. Although the results came

from a �ve-fold cross-validation experiment, OC1-

ES obtains 73.7�1.4 and 96.3�1.5 on each dataset,

while OC1-GA obtains 73.9�1.3 and 93.6�1.3. GALE
outperforms both systems in pima-indians dataset

(75.65�5.02), being overcame (95.33�3.22) by OC1-

ES and OC1-GA in iris dataset.
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Table 2: Experimental results of the non-evolutionary classi�ers for data mining: percentage of correct classi�-

cations and standard deviation from strati�ed ten-fold cross-validation runs.

Dataset 0-R IB1 IBk C4.5r8 PART NaiveBayes SMO

1 Biopsies 51.61�0.60 83.15�3.15 82.76�4.29 80.04�4.75 79.06�3.27 78.58�5.53 86.36�2.99

2 Breast-w 65.51�1.13 95.99�1.45 96.70�1.39 95.42�1.60 95.28�2.15 95.99�2.27 96.71�1.69

3 Glass 34.66�2.45 66.35�10.93 66.35�10.93 65.89�10.42 69.15�10.00 47.19�8.95 -

4 Ionosphere 64.10�1.09 86.89�4.86 86.32�5.50 89.74�5.02 90.88�3.56 81.76�8.14 87.74�6.22

5 Iris 33.33�0.00 95.33�3.22 95.33�3.22 95.33�3.22 95.33�3.22 94.66�2.81 -

6 LED 10.45�n.a. 62.40�n.a. 74.95�n.a. 74.90�n.a. 75.12�n.a. 74.85�n.a. -

7 Mammograms 56.01�2.94 62.92�12.42 65.27�6.28 64.81�6.35 62.03�4.16 64.81�7.66 67.12�7.37

8 MX11 49.90�0.12 78.61�3.96 99.80�0.25 99.90�0.20 100.00�0.00 61.91�2.65 61.57�2.98

9 Pima-indians 65.10�0.96 70.31�3.42 73.83�5.33 73.05�5.22 72.66�5.02 75.39�6.81 76.69�4.60

10 Sonar 53.36�3.50 87.50�9.71 82.69�10.37 71.15�8.49 73.08�10.76 67.31�10.82 77.40�8.52

11 TAO 49.78�0.16 96.13�1.13 95.97�1.39 95.07�2.02 93.64�2.75 80.77�1.81 83.58�2.25

12 Vehicle 25.06�0.53 69.50�5.30 69.73�5.90 73.64�5.26 72.57�4.61 46.21�5.71 -

Table 3: Experimental results and statistical analysis of GALE for data mining: percentage of correct classi�-

cations, standard deviation, and results of paired two-sided t-tests across the non-evolutionary classi�ers. Each

GALE result is marked with the knowledge representation used; a ? for rule sets, a y for instance sets, and a z
for instance-based decision trees.

0
-R

IB
1

IB
k

C
4
.5
r
8

P
A
R
T

N
a
iv
e
B
a
y
e
s

S
M
O

G
A
L
E

0
-R

IB
1

IB
k

C
4
.5
r
8

P
A
R
T

N
a
iv
e
B
a
y
e
s

S
M
O

Dataset two-sided paired t-test (p=0.1) two-sided paired t-test (p=0.01)

1 Biopsies � � � � Æ 83.64�1.61z � �

2 Breast-w � 95.70�2.23z �

3 Glass � � - 64.95�9.38y � � -
4 Ionosphere � � � � � 91.46�4.99z �

5 Iris � - 95.33�3.22y � -
6 LED - - - - - - - 74.97�n.a.? - - - - - - -
7 Mammograms � 66.66�11.55y

8 MX11 � � � � � 100.00�0.00? � � � �

9 Pima-indians � � 75.65�5.02y � �

10 Sonar � � � 81.73�9.94y � �

11 TAO � � � � 95.50�1.03y � � �

12 Vehicle � Æ Æ � - 68.79�3.78y � � -

Table 4: Results of paired one-sided t-tests (p=0.01): number indicates how often method in row signi�cantly

outperforms method in column.
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0-R - 0 0 0 0 0 0 0
IB1 10 - 0 1 2 6 2 0
IBk 11 2 - 1 1 5 2 0
C4.5r8 11 1 0 - 0 4 2 0
PART 11 1 0 0 - 5 2 0
NaiveBayes 11 0 0 0 0 - 0 0
SMO 8 2 1 1 2 3 - 1
GALE 10 2 0 0 1 7 2 -
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Table 5: Ranking of performance of the di�erent classi�er schemes on the test suit.
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0-R 8 8 7 8 7 7 8 8 8 8 8 7 7.66 8
IB1 3 3 2 5 1 6 6 5 7 1 1 4 3.66 4
IBk 4 2 2 6 1 3 3 4 4 2 2 3 3.00 2
C4.5r8 5 6 4 3 1 4 4 3 5 6 4 1 3.83 6
PART 6 7 1 2 1 1 7 1 6 5 5 2 3.66 4
NaiveBayes 7 4 6 7 6 5 5 6 3 7 7 6 5.75 7
SMO 1 1 - 4 - - 1 7 1 4 6 - 3.12 3
GALE 2 5 5 1 1 2 2 1 2 3 3 5 2.66 1

5 SUMMARY AND CONCLUSIONS

Evolutionary Algorithms have proved to be useful

tools for data mining. In this paper, we present a

general purpose evolutionary classi�er scheme for data

mining (GALE). Usually classi�er schemes for data

mining are tailored for a knowledge representation that

�ts the dataset to be mined, constraining the scope of

the scheme. GALE is not bounded to this constrain

because it is knowledge independent, thus it can evolve

if-then rules, instance sets, or instance-based decision

trees. Another important point in data mining is the

real time spent in the mining process. Evolutionary

algorithms tend to be time-consuming. GALE can re-

duce the amount of real time required exploiting �ne-

grained parallel processing. The classi�er scheme is

based on spatial neighborhood relations on a 2D grid,

where local genetic operators and massive parallel �t-

ness computation are de�ned. The time complexity

of GALE is independent of the population size, being

only bounded by the number of iterations and the size

of the dataset to be mined, O (kl).

GALE and other seven well-known classi�er schemes

were run using twelve di�erent datasets. The obtained

results show that GALE, although its simplicity, is a

competitive classi�er scheme for data mining. Results

also show its robustness when applied to very di�er-

ent datasets compared to other classi�er schemes, in-

cluding evolutionary ones. Nevertheless, these results

are only a �rst step into the data mining tasks. Fur-

ther work includes a deeper analysis of the behavior of

GALE on other data mining tasks, as well as a deeper

study of the time performance of the parallel process-

ing done by GALE.

Acknowledgments

The authors would like to thank the support provided

by CIRIT and Fondo de Investigaci�on Sanitaria -

Instituto Carlos III- (under grant numbers 1999FI-

00719 and FIS-00/0033-2), as well as the support of

Enginyeria i Arquitectura La Salle to our research

group. We are also grateful to Ian H. Witten and Eibe

Frank for providing their codes on-line, and to all the

people who donated the datasets. Finally, we want to

thank Erick Cant�u-Paz for his useful comments during

the preparation of this paper.

References

[Aha and Kibler, 1991] Aha, D. and Kibler, D. (1991).
Instance-based learning algorithms. Machine Learning,

Vol. 6, pages 37{66.

[Araujo et al., 1999] Araujo, D. L., Lopes, H. S., and Fre-
itas, A. A. (1999). A Parallel Genetic Algorithm for Rule
Discovery in Large Databases. In IEEE Systems, Man

and Cybernetics Conference, volume III, pages 940{945.

[Araujo et al., 2000] Araujo, D. L., Lopes, H. S., and Fre-
itas, A. A. (2000). Rule Discovery with a Parallel Ge-
netic Algorithms. Workshop on Data Mining with Evolu-

tionary Computation held in GECCO2000, pages 89{92.

[Cant�u-Paz, 1999] Cant�u-Paz, E. (1999). Topologies, Mi-
gration Rates, and Multi-Population Parallel Genetic
Algorithms. Genetic and Evolutionary Computation

Conference (GECCO99), pages 91{98.

[Cant�u-Paz and Kamath, 2000] Cant�u-Paz, E. and Ka-
math, C. (2000). Using Evolutionary Algorithms to In-
duce Oblique Decision Trees. Genetic and Evolutionary

Computation Conference (GECCO2000), pages 1053{
1060.

[De Jong and Spears, 1991] De Jong, K. A. and Spears,
W. M. (1991). Learning Concept Classi�cation Rules
Using Genetic Algorithms. In Proceedings of the Twelfth

International Joint Conference on Arti�cial Intelligence,
pages 651{656. Morgan Kaufmann Publishers.

[Flockhart, 1995] Flockhart, I. W. (1995). GA-MINER:
Parallel Data Mining with Hierarchical Genetic Al-

467GENETIC ALGORITHMS



gorithms (Final Report). Technical Report EPCC-
AIKMS-GA-MINER-REPORT 1.0, University of Edin-
burgh.

[Frank and Witten, 1986] Frank, E. and Witten, I. H.
(1986). Generating Accurate Rule Sets Without Global
Optimization. In Proceedings of the 15th International

Conference on Machine Learning, pages 152{160. Klu-
ber.

[Freitas and Lavinston, 1998] Freitas, A. A. and Lavin-
ston, S. H. (1998). Mining Very Large Databases with

Parallel Processing. Kluwer Academic Publishers.

[Gordon and Whitley, 1993] Gordon, V. S. and Whitley,
D. (1993). Serial and Parallel Genetic Algorithms as
Function Optimizers. In Proceedings of the 5th Inter-

national Conference on Genetic Algorithms, pages 177{
183. Morgan Kaufmann Publishers.

[Hwang, 1993] Hwang, K. (1993). Advanced Computer

Architectures: parallelism, scalability, programability.
MacGraw-Hill.

[John and Langley, 1995] John, G. H. and Langley, P.
(1995). Estimating Continuous Distributions in
Bayesian Classi�ers. In Proceedings of the 11th Con-

ference on Uncertainty in Arti�cial Intelligence, pages
338{345. Morgan Kaufman Publishers.

[Koza, 1992] Koza, J. R. (1992). Genetic Programing: On

the Programing of Computers by Means of Natural Se-

lection (Complex Adaptive Systems). MIT Press.

[Llor�a and Garrell, 2000a] Llor�a, X. and Garrell, J. M.
(2000a). Automatic Classi�cation and Arti�cial Life
Models. In Proceedings of Learning00 Workshop.

[Llor�a and Garrell, 2000b] Llor�a, X. and Garrell, J. M.
(2000b). Evolving Hierarchical Agents using Cellular
Genetic Algorithms. In Proceedings of the Genetic and

Evolutionary Computation Conference, (GECCO2000),
page 868. Morgan Kaufmann Publishers.

[Llor�a and Garrell, 2001] Llor�a, X. and Garrell, J. M.
(2001). Inducing partially-de�ned instances with Evo-
lutionary Algorithms. In Proceedings of the 18th Inter-

national Conference on Machine Learning (to appear).

[Manderick and Spiessens, 1989]
Manderick, B. and Spiessens, P. (1989). Fine-Grained
Parallel Genetic Algorithms. In Proceedings of the 3rd

International Conference on Genetic Algorithms, pages
428{433. Morgan Kaufmann Publishers.

[Merz and Murphy, 1998] Merz, C. J. and Murphy, P. M.
(1998). UCI Repository for Machine Learning Data-
Bases [http://www.ics.uci.edu/�mlearn/MLRepository.
html]. Irvine, CA: University of California, Department

of Information and Computer Science.

[M�uhlenbein, 1989] M�uhlenbein, H. (1989). Parallel Ge-
netic Algorithms and Combinatorial Optimization. In
Proceedings of the 3rd International Conference on Ge-

netic Algorithms, pages 416{421. Morgan Kaufmann
Publishers.

[Pettey et al., 1987] Pettey, C. B., Leuze, M. R., and
Grefenstette, J. J. (1987). A Parallel Genetic Algorithm.
In Proceedings of the 2nd International Conference on

Genetic Algorithms, pages 155{161. Lawerence Erlbaum
Associates Publishers.

[Platt, 1998] Platt, J. C. (1998). Fast Training of Sup-
port Vector Machines using Sequential Minimal Opti-
mization. Advances in Kernel Methods - Support Vector

Learning.

[Povinelli, 2000] Povinelli, R. J. (2000). Using Genetic Al-
gorithms to �nd Temporal Patterns Indicative of Time
Series Events. Workshop on Data Mining with Evolu-

tionary Computation held in GECCO2000, pages 80{84.

[Quinlan, 1986] Quinlan, R. (1986). Induction of decission
trees. Machine Learning, Vol. 1, No. 1, pages 81{106.

[Quinlan, 1993] Quinlan, R. (1993). C4.5: Programs for

Machine Learning. Morgan Kaufmann Publishers.

[Robertson, 1987] Robertson, G. G. (1987). Parallel imple-
mentation of Genetic Algorithms in a Classi�er System.
In Proceedings of the 2nd International Conference on

Genetic Algorithms, pages 155{161. Lawerence Erlbaum
Associates Publishers.

[Spiessens and Manderick, 1991] Spiessens, P. and Mand-
erick, B. (1991). A Massively Parallel Genetic Algo-
rithms: implementation and �rst analysis. In Proceed-

ings of the 4th International Conference on Genetic Al-

gorithms, pages 279{285. Morgan Kaufmann Publishers.

[Whitley, 1993] Whitley, D. (1993). Cellular Genetic Al-
gorithms. In Proceedings of the 5th International Con-

ference on Genetic Algorithms, page 658. Morgan Kauf-
mann Publishers.

[Wilson, 1995] Wilson, S. W. (1995). Classi�er Fit-
ness Based on Accuracy. Evolutionary Computation,
3(2):149{175.

[Wilson, 2000] Wilson, S. W. (July, 2000). Mining Oblique
Data with XCS. IlliGAL Report No. 2000028.

[Witten and Frank, 2000] Witten, I. H. and Frank, E.
(2000). DataMining: practical machine learning tools

and techniques with Java implementations. Morgan
Kaufmann Publishers.

468 GENETIC ALGORITHMS


