
805ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

806 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

A Single Queen Single Worker Honey–Bees Approach to 3-SAT

Hussein A. Abbass
School of Computer Science,

University of New South Wales,
University College, ADFA Campus,

Northcott Drive, Canberra ACT, 2600, Australia,
h.abbass@adfa.edu.au

Abstract

Modelling the behavior of social insects has at-
tracted much research recently. Although honey–
bees exhibit many features that encourage their
use as models for intelligent behavior, up to our
knowledge, no attempt for using honey-bees as
a basis for optimization has been made in the
literature. Some of the features that distinguish
honey–bees are division of labor, communication
on the individual and group level, and coopera-
tive behavior.

This paper presents a novel search algorithm in-
spired by the marriage process in honey–bees.
The algorithm is applied to a special class of
the propositional satisfiability problems (SAT)
known as 3–SAT, where each clause contains ex-
actly three literals. Two versions of the pro-
posed algorithm, which incorporate each a well
known heuristic for SAT, are developed. The two
heuristics employed for each version are GSAT
and random walk. The objective of this paper is
to scrutinize the algorithm and compare its be-
havior on 3–SAT against both heuristics alone.
The analysis is undertaken using two parameters
gleaned from biological concepts; these are, the
colony size and the amount of time devoted for
brood–care.

1 Introduction

Modelling the behavior of social insects, such as ants and
bees, and using these models for search and problem solv-
ing are the context of the emerging area ofswarm intel-
ligence[2]. A successful swarm–based approach to opti-
mization isant colony optimization, where the search algo-
rithm is inspired by the behavior of real ants [2, 5]. This
method proved successful in solving many complex com-
binatorial problems. However, up to our knowledge, there

has not been any attempt to model the marriage process of
honey–bees and use this model for optimization and search.

In this paper, we present an attempt to model the marriage
behavior of honey–bees to produce an optimization search
algorithm, which we callmarriage in honey–bees optimiza-
tion (MBO). The main objective of this paper is to study the
behavior of the MBO algorithm on thepropositional satis-
fiability problem(SAT) as an example of an NP–hard com-
binatorial optimization problem. The type of the SAT prob-
lem used in this paper is called 3–SAT where each clause
(constraint) contains exactly three literals (variables). We
undertake the analyzes using parameters purely inspired
by their biological encounters, which, therefore, will give
some insight into the underlying relation between the bio-
logical and the computational model. Therefore, important
biological parameters that will influence our parameters’
choice are underlined for clarity purposes.

The paper is organized as follows: in Section 2, the mar-
riage process in honey–bees is discussed along with some
background materials and a general version of the MBO al-
gorithm is formulated. We then introduce the 3–SAT prob-
lem in Section 3. The MBO algorithm applied to 3–SAT
is then discussed in Section 4, followed by experimental
setup and results in Section 5. Conclusions are then drawn
in Section 6.

2 Marriage in honey–bees

MBO is inspired by the phylogenetic of sociality in Hy-
menoptera, such as bees, ants, and wasps, and the mating
process in honey–bees. Hymenoptera are normally found
aseusocial insects. Eusocial insects are characterized by
three main features, viz cooperation among adults in brood
care and nest construction, overlapping of at least two gen-
erations, and reproductive division of labor. Insects with-
out these attributes are termedsolitary and those lack one
or two of these attributes are termedpresocial [4]. The
evolutionary steps of eusociality were driven by the contin-

807ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

uous series of nests, starting with entirely solitary colony
to reaching high eusociality. Two sequences can be distin-
guished in establishing this series of nests;subsocial(fa-
milial or altruistic cooperation) andparasocial(mutualis-
tic cooperation) [4]. In the literature of behavioral genet-
ics, the former series is more common than the latter and
is the assumed model in this paper. That is, we will start
with a single queen without broods (ie. solitary colony)
then we evolve the colony - using concepts of marriage in
honey–bees - for several generations to end with a preso-
cial colony. The two main features of presociality appear
in our proposed algorithm as follows:

Overlapping of at least two generationsThe model al-
ways has two generations: the mother and her broods.

Reproductive division of labor Division of labor appears
when the queen specializes in egg laying, and acts
as the only reproductive member in the population,
whereas workers specialize in brood care.

The missing feature to qualify this model to reach euso-
ciality is cooperation among adults, which can be achieved
if we use two or more workers. However, in this paper, we
concentrate on a single worker colony to identify the power
of the MBO algorithm. This point will be discussed later
in the paper.

A colony can be founded in two different methods [4].
The first method is calledindependent founding, where a
colony starts with one or more reproductive females that
construct the nest, produce eggs, and feed the larvae. The
first brood is reared alone until they emerge and take over
the work of the colony. Subsequently, division of labor
starts to take place, where the queen specializes in egg lay-
ing and the workers in brood care. The second method is
calledswarmingwhere the colony is founded by a single
queen (haplometrosis) or more (pleometrosis) in addition
to a group of workers from the original colony. Division of
labor starts from the beginning where queens specialize in
egg laying and workers in brood care. If the colony con-
tains one queen during its life–cycle, it is called amonogy-
nouscolony; otherwise apolygynouscolony. In this pa-
per, we take a swarming presocialapproach assuming a
pleometrosis monogynoushoney–bees colony.

Before we present a summary of the mating–flight and
scrutinize the MBO algorithm, the structure of a nor-
mal honey–bees colony is discussed in the following sub–
section.

2.1 Colony structure

Each normal honey–bees’ colony consists of the queen(s),
drones, worker(s), and broods. Queens represent the main

reproductive individuals in some types of honey–bees -
such as the European Apis Mellifera - and specialize in
egg laying [9]. Drones are the sires or fathers of the
colony. Drones are haploidand act to amplify their moth-
ers’ genome without alteration of their genetic composition
except through mutation. Therefore, they are considered as
agents that propagate one of their mother’s gametes and
function to enable females to act genetically as males.

Workers specialize in brood care and sometimes lay eggs.
Broods arise either from fertilized or unfertilized eggs. The
former represent potential queens or workers, whereas the
latter represent prospective drones.

2.2 The mating–flight

Each bee performs sequences of actions which unfold ac-
cording to genetic, environmental, and social regulations
[12]. The outcome of each action itself becomes a portion
of the environment and greatly influences the subsequent
actions of both a single bee and her hive mates. The mar-
riage process represents one type of action that was difficult
to study because the queens mate during their mating–flight
far from the nest. Consequently, the mating process was
hard to observe.

A mating–flight starts with a dance performed by the
queens who then start a mating–flight during which the
drones follow the queens and mate with them in the air.
In a typical mating–flight, each queen mates with sevento
twentydrones [1]. In each mating, sperm reaches the sper-
matheca and accumulates there to form the genetic pool of
the colony. Each time a queen lays fertilized eggs, she re-
trieves at random a mixture of the sperms accumulated in
the spermatheca to fertilize the egg [10].

2.3 The artificial analogue model

The mating–flight can be visualized as a set of transitions
in a state–space (the environment) where the queen moves
between the different states in the space in some speed and
mates with the drone encountered at each state probabilisti-
cally. At the start of the flight, the queen is initialized with
some energy–content and returns to her nest when the en-
ergy is within some threshold from zero or when her sper-
matheca is full.

In this paper, we will restrict the functionality of workers
to brood care and therefore, a worker is in effect a heuristic
which acts to improve (take care of) the broods. Moreover,
we will assume that the colony has a single queen and a
single worker. This represents the simplest division of la-
bor ever; therefore, one can examine the usefulness of the
algorithm in its simplest form.

A drone mates with a queen probabilistically using the fol-

808 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

lowing equation

prob(Q,D) = e
−∆(f)

S(t) (1)

where,prob(Q,D) is the probability of adding the sperm
of droneD to the spermatheca of queenQ; that is, the prob-
ability of a successful mating,∆(f) is the absolute differ-
ence between the fitness ofD (ie. f(D)) and the fitness of
Q (ie. f(Q)), andS(t) is the speed of the queen at timet.
It is apparent that this function acts as an annealing func-
tion, where the probability of mating is high when either
the queen is still in the start of her mating–flight and there-
fore her speed is high, or when the fitness of the drone is as
good as the queen’s. After each transition in the space, the
queen’s speed and energy decay using the following equa-
tions

S(t + 1) = α ∗ S(t) (2)

E(t + 1) = E(t)− γ (3)

whereα is a factor∈]0, 1[, andγ is the amount of energy
reduction after each transition.

In Figure 1, a generic MBO algorithm is shown. The al-
gorithm starts with initializing the queen’s genotype at ran-
dom. After that, the heuristic is used to improve the queen’s
genotype, therefore preserving the assumption that a queen
is usually a good bee. Afterwards, a set of mating–flights
is undertaken. In each mating–flight, the queen’s energy
and speed are initialized with some value at random. The
queen then moves between different states (ie. solutions) in
the space according to her speed and mates with the drone
she encounters at each state using the previously discussed
function in Equation 1. If a drone is successfully mated
with the queen, his sperm is added to the queen’s spermath-
eca (ie a list of partial solutions). After the queen finishes
her mating–flight, she returns to the nest and starts breed-
ing by selecting a sperm from her spermatheca at random
followed by crossover with the queen’s genome that com-
plements the chosen sperm. This crossover process results
in a brood and we will refer to this type of crossover as
haploid–crossover. Mutation then acts on the brood; there-
fore, if the same sperm is used once more to generate a
brood, the resultant brood will be different because of mu-
tation. This process is followed by applying the worker to
raise (improve) the broods. Afterwards, the queen is re-
placed with the fittest brood if the latter is better than the
former. The remaining broods are then killed and a new
mating–flight starts. In reality, the female broods become
workers or queens and the diploid males are killed. How-
ever, since a worker in our algorithm represents a heuristic
without a genome, all remaining broods are assumed to be
diploid males for simplification. Also, to avoid inbreeding
(since we have a single queen), drones are generated in-
dependent of the queen; therefore they are assumed to be
unrelated.

randomly generate the queen’s chromosome
apply local search to get a good queen
for a pre–defined maximum number of mating–flights

initialize energy and speed
while queen’s energy> 0

the queen moves between states
and probabilistically choose drones

if a drone is selected,then
add its sperm to the queen’s spermatheca

end if
update the queen’s internal energy and speed

end while
generate broods by haploid–crossover and mutation
use the worker to improve the broods
if the best brood is fitter than the queenthen

replace the queen’s chromosome with
the best brood’s chromosome

end if
kill all broods

end for

Figure 1:Optimization by marriage in honey–bees: a sin-
gle queen single worker pleometrosis monogynous model.

3 The propositional satisfiability problem

A general constraint satisfaction problem (CSP) is the
problem of finding an assignment to a set of variables that
satisfies a set of constraints over the domains of those vari-
ables. To formally define a CSP, we introduce the following
notations. “SV

v ” represents an ordered instantiation of a set
of variablesV by substituting corresponding valuesv from
their domainD(V), “0” for not derive, and finally “⊥”
for falsification. We can define a CSP problem formally
as follows: A set of constraintsC over the set of variables
V ∈ D(V) - that isC ⊂ V × V - is satisfiable iff∃ v ∈
D(V), such thatSV

v ∧ C 0 ⊥.

In SAT, the domain of each variable is either true or false,
or equivalently 1 or 0 (ie. V ∈ {0, 1}). Although SAT is
a special case of CSP, any CSP can be mapped to SAT [7].
Many problems in planning and scheduling can be repre-
sented using SAT; therefore solving SAT is a very attrac-
tive research area [6]. However, it is known that SAT is
intractable [11].

In the literature, there are two main streams of techniques
for solving SAT: complete and incomplete techniques [8].
The former use an exhaustive search approach and guaran-
tee a solution if one exists. However, a complete technique
(such as Davis–Putnam) can only handle small problems
[16], after which the time needed to solve the problem gets
beyond any computer capabilities. The latter, although they
do not guarantee convergence to a solution, they are fast
and more suitable for large problems. Therefore, incom-
plete techniques become more attractive, especially with
problems in planning which include thousands of variables

809ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

[13].

The easiness/hardness of solving SAT depends on a phe-
nomena known as “phase transition” [3]. Problems before
the phase transition are easy to solve and those after the
phase transition are mostly unsatisfiable. Hard SAT prob-
lems exist around the phase transition region. A phase tran-
sition is defined by the ratio between the number of clauses
(constraints),l, and the number of literals (variables),n.
For 3–SAT, the phase transition was experimentally found
to be 4.3 [3].

4 MBO for SAT

In this section, the application of the MBO algorithm to the
propositional satisfiability problem is introduced in three
stages. First, the representation of a colony and the means
of calculating the individuals’ fitness are presented in Sec-
tion 4.1. Second, a description of the haploid–crossover
operator is summarized in Section 4.2. Third, the MBO
algorithm applied to SAT is introduced in Section 4.3.

4.1 Representation

A genotype of an individual is represented using an array
of binary values and length equal to the number of literals
in the problem, where each cell corresponds to a literal. A
value of 1, assigned to a cell, indicates that the correspond-
ing literal is true; otherwise it is false. The fitness of the
genotype is the ratio between the number of clauses satis-
fied by the assignment to the total number of clauses in the
problem.

Genotype F itness =
Number of satisfied clauses

Total number of clauses
(4)

A drone is represented using a genotype and a genotype
marker. Since all drones are haploid, a genotype marker
is used to randomly mark half of the genotype’s genes and
leave the other half unmarked; the unmarked genes are the
ones that form a sperm.

Each queen has a genotype, speed, energy, and spermath-
eca (a repository of drones’ sperm). Before each mating–
flight, a queen’s speed and energy are initialized at ran-
dom in the range[0.5, 1] to guarantee that the queen will
fly for some steps. When a mating takes place between
a queen and one of the drones’ sperm in her spermath-
eca, a brood is constructed by copying the unmarked genes
in the drones’ sperm into the brood and completing the
rest from the queen’s genome. A brood has only a geno-
type. The worker represents a heuristic. Two heuristics are
used in this paper; these are GSAT and random walk. For

the description of these heuristics, the reader may refer to
[14, 15].

4.2 Haploid–Crossover

To illustrate the haploid–crossover procedure during a mat-
ing, assume that the drone’s genotype and genotype marker
are as follows:

Genotype 1 1 1 0 0 1 0 0
Genotype–marker u m m u u u m m

where, u and m represent an unmarked and a marked gene
respectively. Therefore, the drones sperm is

1 * * 0 0 1 * *

where * represents a non–existing gene. In reality, genes
exist in pairs, but in our algorithm, we assume that a hap-
loid drone lacks half of its genes because of representation.
Now, assume that the queen’s chromosome is as follows:

0 1 0 0 0 0 1 0

Therefore, the child must have the following chromosome:

1 1 0 0 0 1 1 0

where the genes, which are missing in the drone’s sperm,
are transmitted from the queen.

4.3 The algorithm

The complete MBO algorithm is presented in Figure 2. The
algorithm starts with three user–defined parameters; these
are, the queen’s spermatheca size representing the maxi-
mum number of matings in a single mating–flight, the num-
ber of broods that will be born by the queen, and the amount
of time devoted to brood care signifying the depth of local
search or number of attempts made to improve a solution.

At the start of a run, the queen is initialized at random. The
worker is then used to improve the queen’s genotype. Af-
terwards, a number of mating–flights are carried out. In
each mating–flight, the queen moves between the different
states in the space based on her energy and speed, where
both are generated at random before each mating–flight
starts. At the start of a mating–flight, a drone is gener-
ated at random and the queen is positioned over that drone.
The transition made by the queen in the space is based
on her speed which represents the probability of flipping
each bit in the drone’s genome. Therefore, at the start of
a mating–flight, the speed is usually high and the queen
makes very large steps in the space. While the queen’s
energy decreases, the speed decreases. Subsequently, the
neighborhood covered by the queen decreases. In each step

810 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

made by the queen in the space, the queen is mated with the
drone encountered at that step using the probabilistic rule in
Equation 1. If the mating is successful (ie. the drone passes
the probabilistic decision rule), the drone’s sperm is stored
within the queen’s spermatheca. Each time a drone is gen-
erated, half of his genes are marked at random since each
drone is haploid by definition. Therefore, the genes that
will be transmitted to the broods are fixed for each drone.

After the queen completes her mating–flight, she starts
breeding. For a required number of broods, the queen
is mated with a randomly selected sperm from her sper-
matheca. The worker is then used to improve the resul-
tant brood. After all broods are being generated, they are
sorted according to their fitness. The best brood replaces
the queen if the brood is fitter than the queen. All broods
are then killed and a new mating–flight is undertaken un-
til all mating–flights are completed or an assignment that
satisfies all clauses is encountered.

DefineM to be the spermatheca size
DefineE(t), andS(t) to be the queen’s energy and speed

at timet respectively
Initialize the queen’s genotype at random
use the worker to improve the queen’s genotype
while the stopping criteria are not satisfied

t = 0
initialize E(t) andS(t) randomly between[0.5, 1]

initialize the energy reduction stepγ = 0.5×E(t)
M

generate a drone at random
while E(t) > 0

evaluate the drone’s genotype
if the drone passes the probabilistic condition,and

the queen’s spermatheca is not full,then
add the drone’s sperm to

the queen’s spermatheca
end if
t = t + 1; E(t) = E(t)− γ; S(t) = 0.9 ∗ S(t)
with a probability ofS(t)

flip each bit in the drone’s genotype
end while
for brood = 1 to total number of broods

select a sperm from the queen’s spermatheca at random
generate a brood by crossovering the queen’s genome

with the selected sperm
mutate the generated brood’s genotype
use the worker to improve the drone’s genotype

end for
if the best brood is better than the queenthen

replace the queen with the best brood
end if
kill all broods

end while

Figure 2:MBO for SAT

To illustrate the reason of using a single worker, imagine
that we have two workers, each of them represents a dis-
tinctive heuristic. If the algorithm performs better than
each of these heuristics alone, the question will be whether

this improvement is because of the cooperative behavior
between the two heuristics or because of the way the colony
evolved. Therefore, we run MBO twice; each with a differ-
ent heuristic. When GSAT is used as the heuristic, we will
refer to the algorithm as MBO–GSAT, and when random
walk is used, we will refer to the algorithm as MBO–RWK

5 Experiments

5.1 Experimental setup

The goal of these experiments is to test the behavior of
the algorithm with respect to the colony size, signifying
the number of trial solutions per generation, and amount
of time devoted to brood–care, representing the number of
steps used in local search. As mentioned in Section 2, the
number of matings per flight usually ranges between seven
and twenty [1]. In this paper, we fixed this number to 7. To
have a fair comparison among our experiments, we needed
to guarantee that the number of broods all over a single
run and under any experimental setup is equal. Therefore,
we experimented with 20, 40, 60, 80, and 100 broods per
flight, where the corresponding number of mating–flights
was 120, 60, 40, 30, and 24 respectively. For example,
20 broods per flight times 120 mating–flights will result
in 2400 trial solutions, where the worker will work to im-
prove each of these solutions. Three different time–lengths
devoted to brood–care are taken to be 100, 200, and 300
representing the number of attempts by the worker to im-
prove a brood. The reduction factor of the queen’s speed,
α, is taken to be 0.9 andγ, the reduction step in queen’s
energy contents, is taken to be0.5×E(0)

M , whereE(0) is the
energy at the start of the mating–flight, which is initialized
at random, andM is the spermatheca size which is fixed to
7 as we previously mentioned. The mutation rate is fixed
to 1% in all runs.

A hundred different 3–SAT problems were uniformly gen-
erated. Since the phase transition of a 3–SAT problem oc-
curs at a ratio of 4.3 between the number of clauses and the
number of literals, each of the hundred problems contained
a hundred literals and 430 clauses to maintain the ratio of
4.3. Therefore, all problems are hard and there is no guar-
antee that a solution exists.

In the following two sections, MBO–GSAT and MBO–
RWK are compared against GSAT and random walk re-
spectively. In our implementation, both versions of GSAT
and random walk are the same as the one implemented
within MBO; therefore, implementation efficiencies are
fixed to have a fair comparison.

811ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

5.2 Results and comparisons: MBO–GSAT

In this section, we first scrutinize the behavior of MBO–
GSAT then we compare the results with GSAT itself.

Table 1:The average number of unsatisfied clauses by the
queen’s genotype and the total number of solutions found
according to each colony size for MBO–GSAT.

Number of Percentage of Total number of
broods unsatisfied clauses solutions found

20 1.6± 1.0 17
40 1.8± 1.0 15
60 2.0± 1.1 10
80 2.0± 1.2 8
100 2.2± 1.1 7

In Table 1, the average number of unsatisfied clauses by the
queen’s genotype at the end of each run and the total num-
ber of solutions found are presented, grouped by the colony
size. As we can see from the table, the results are shown
for each number of broods without showing the amount of
time devoted for brood care. The reason for this is that the
results were the same, regardless of the amount of time de-
voted for brood care. This is very interesting and may sug-
gest that the improvement in the algorithm’s performance is
independent of the time devoted for brood care. We cannot
generalize this as we expect that it is problem dependent
and it also depends on the used heuristic. This will be re–
visited in the following section.

An important point in SAT is to identify the best assign-
ment which minimizes the number of unsatisfied clauses.
Some real–life problems (such as in planning and schedul-
ing) are not satisfiable (sometimes called over–constrained
problems), so returning a good assignment that minimizes
the number of unsatisfied clauses is indispensable. In Ta-
ble 1, we present the average number of unsatisfied clauses
by the queen’s genotype in the last mating–flight. It is not
necessary that the last mating–flight is the maximum num-
ber of mating–flights because the algorithm terminates also
when an assignment that satisfies all clauses is found. The
least number of unsatisfied clauses is found with the small-
est number of broods.

Once more, the highest number of solutions found corre-
sponds to the smallest number of broods. This may indi-
cate that a smaller number of broods is better in our test
cases. This result is very interesting because the behav-
ior of the model on SAT is somehow consistent with the
underlying biological model. A monogynous honey–bees’
colony usually contains small number of broods, although
the definition of “small” may vary between the biologi-
cal and computational model. Moreover, since we assume
that the drones are unrelated to the queen, the amount of

inbreeding is small; therefore, a small colony would still
maintain genetic diversity.

To find out whether GSAT alone would have achieved
the best results overall without the additional overhead of
MBO–GSAT, we solved the hundred problems with the
same version of GSAT that we used in our implementation.
The number of trial solutions is set to 2400 (the number
of mating–flights times the number of broods per flight).
Three different search sizes or numbers of flips of 100, 200,
and 300, are used so that they are consistent with the three
times devoted for brood care in our algorithm.

Table 2:The average number of unsatisfied clauses and the
total number of solutions found according to each search
size for GSAT.

Search Percentage of Total number of
size unsatisfied clauses solutions found
100 7.1± 2.1 0
200 4.7± 1.8 1
300 3.6± 1.8 5

In Table 2, we present the total number of solutions found
by GSAT, along with the average number of unsatisfied
clauses for the hundred problems. Similar to MBO–GSAT,
GSAT terminates when a solution is found or when the
maximum number of trials is reached.

Before discussing the results of Table 2, it is worth men-
tioning that the only real difference between MBO–GSAT
and GSAT is in the means trial solutions are generated. In
GSAT, trial solutions are generated at random, whereas in
MBO–GSAT they are generated after the mating–flight us-
ing haploid–crossover, as discussed in Section 4.2, and mu-
tation.

The average number of unsatisfied clauses found by GSAT
ranged from 3.6 to 7.1. This value is much higher than the
worst value of 2.2 found by MBO in Table 1. Moreover, the
number of solutions found by GSAT, as shown in Table 2, is
much lower than the number of solutions found by similar
search sizes using MBO–GSAT. These results emphasize
the importance of the bias introduced by the mating–flight
in generating trial solutions. Centering the trial–solutions
on the queen (by mating the queen with the broods) proved
to be better than re–initializing GSAT at random.

5.3 Results and comparisons: MBO–RWK

Similar to the previous section, we first scrutinize the be-
havior of MBO–RWK then we compare the results against
random walk.

In Table 3, we present the average number of unsatisfied
clauses by the queen’s genotype at the end of each run

812 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Table 3:The average number of unsatisfied clauses by the
queen’s genotype for MBO–RWK.

Search sizeNumber of broods
100 200 300

20 4.0± 2.0 3.2± 1.8 2.9± 1.8
40 4.4± 2.1 3.2± 1.8 2.9± 1.9
60 4.4± 2.2 2.9± 1.9 2.7± 1.7
70 4.3± 2.0 3.1± 1.8 2.8± 1.8
100 4.4± 2.0 3.0± 1.9 2.8± 1.7

grouped by the colony size and amount of time devoted for
brood care. On the contrary to MBO–GSAT, the amount of
time devoted for brood care influenced the performance of
the algorithm. As it can be seen in the Table, the more time
devoted for brood care, the better the performance. This
was not the case in MBO–GSAT and therefore it is hard to
generalize. The behavior of the algorithm is highly influ-
enced with the used heuristic. The best performance ob-
tained with a colony size of 60 and amount of time devoted
for brood care of 300.

Table 4: The total number of solutions found for MBO–
RWK.

Search sizeNumber of broods
100 200 300

20 5 7 8
40 4 8 10
60 4 15 10
80 3 11 12
100 1 8 11

In Table 4, the total number of solutions found are grouped
by the colony size and amount of time devoted for brood.
Once more, the highest number of solutions found corre-
sponds to 60 broods. However, this best performance is
obtained with search size of 200.

Similar to the comparison between MBO–GSAT and
GSAT, we compare the performance of MBO–RWK and
random walk. We solved the hundred problems with the
same version of random walk that we used in our imple-
mentation. Similar to GSAT, the number of trial solutions
is set to 2400 (the number of mating–flights times the num-
ber of broods per flight) and the search size or numbers of
flips are 100, 200, and 300.

The performance of random walk is found consistent, re-
gardless of the search size. The average number of unsatis-
fied clauses is 2.2± 0.9 and the total number of solutions
found is 3 for the three search sizes. Comparing this result
with the performance of MBO–RWK, we find that random
walk is more successful in satisfying the clauses, although

not as successful in finding a solution. MBO–RWK, on
the other hand, is more successful in finding solutions than
random walk alone.

5.4 A summary of the results

A general trend in both versions of MBO is that MBO im-
proved the performance of both heuristics when the latter
are used alone. MBO–GSAT and MBO–RWK, both found
much more solutions than GSAT and random walk alone.
MBO-GSAT also found better assignment than GSAT, al-
though this was not the case for MBO-RWK compared to
random walk. In summary, MBO-GSAT performed the
best among the other three (GSAT, MBO-RWK, and ran-
dom walk), in terms of both the number of solutions found
and the number of unsatisfied clauses achieved by each al-
gorithm.

To summarize, the annealing stage undertaken by the queen
during her mating–flight in conjunction with the use of
haploid–crossover and mutation, proved useful in the set
of SAT problems solved here. In addition, a small to av-
erage number of broods produced better results in our test
examples.

6 Conclusion

In this paper, a new heuristic, MBO, based on the mar-
riage process in honey–bees was introduced. The biolog-
ical motivation and the computational aspects of the algo-
rithm were both discussed. From the analysis of the ex-
perimental results, MBO was very successful on a group
of one–hundred hard 3–SAT problems. The main advan-
tage from our perspective was that the algorithm preserved
many of the underlying biological concepts and achieved
the good performance with parameters taken from real bi-
ological concepts. Moreover, it was shown that MBO–
GSAT performed better than GSAT alone. Also, MBO–
RWK found more solutions than random walk. For future
work, more analysis on the behavior of MBO is required.
Also, applying MBO to a wide range of problems is impor-
tant to elicit those where MBO could be useful.

References

[1] J. Adams, E.D. Rothman, W.E. Kerr, and Z.L.
Paulino. Estimation of the number of sex alleles and
queen matings from diploid male frequencies in a
population of apis mellifera.Genetics, 86:583–596,
1972.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz.Swarm
intelligence: from natural to artificial systems. Ox-
ford Press, 1999.

813ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

[3] S.A. Cook and D.C. Mitchell. Finding hard in-
stances of the satisfiability problem: A survey. In
DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, editors,Satisfiability Prob-
lem: Theory and Applications. American Mathemati-
cal Society, 1997.

[4] A. Dietz. Evolution. In T.E. Rinderer, editor,Bee
genetics and breeding, pages 3–22. Academic Press,
Inc, 1986.

[5] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algo-
rithms and stigmergy.Future Generation Computer
Systems, 16:851–871, 2000.

[6] I.P. Gent and T. Walsh. The satisfiability constraint
gap. Technical Report 702, University of Edinburgh,
1994.

[7] H.H. Hoos. On the run-time behaviour of stochastic
local search algorithms for sat.Proceedings of AAAI,
pages 661–666, 1999.

[8] H.H. Hoos and T. Sẗutzle. Local search algorithms for
sat: An empirical evaluation.Journal of Automated
Reasoning, 24:421–481, 2000.

[9] H.H. Laidlaw and R.E. Page. Mating designs. In T.E.
Rinderer, editor,Bee Genetics and Breeding, pages
323–341. Academic Press, Inc, 1986.

[10] R.E. Page, R.B. Kimsey, and H.H. Laidlaw. Migra-
tion and dispersal of spermatozoa in spermathecae
of queen honey bees: Apis mellifera.Experientia,
40:182–184, 1984.

[11] C.H. Papadimitriou and K. Steiglitz.Combinatorial
optimization: algorithms and complexity. Prentice-
Hall, 1982.

[12] T.E. Rinderer and A.M. Collins. Behavioral genetics.
In T.E. Rinderer, editor,Bee Genetics and Breeding,
pages 155–176. Academic Press, Inc, 1986.

[13] B. Selman and H. Kautz. An empirical study of
greedy local search for satisfiability testing.Proceed-
ings of AAAI, 1993.

[14] B. Selman, H. Kautz, and B. Cohen. Noise strategies
for improving local search.AAAI94, pages 337–343,
1994.

[15] B. Selman, H. Levesque, and D. Mitchell. A new
method for solving hard satisfiability problems.Pro-
ceedings of AAAI, pages 440–446, 1992.

[16] H. Zhang and M. Stickel. Implementing davis-
putnam’s method by tries. Technical report, The Uni-
versity of Iowa, 1994.

814 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Credit Assignment Method for Learning E�ective Stochastic Policies
in Uncertain Domains

Sachiyo Arai and Katia Sycara

The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213 USA

E-Mail: fsachiyo, katiag@cs.cmu.edu

Abstract

In this paper, we introduce FirstVisit Pro�t-

Sharing (FVPS) as a credit assignment pro-

cedure, an important issue in classi�er sys-

tems and reinforcement learning frameworks.

FVPS reinforces e�ective rules to make an

agent acquire stochastic policies that cause

it to behave very robustly within uncertain

domains, without pre-de�ned knowledge or

subgoals. We use an internal episodic mem-

ory, not only to identify perceptual aliasing

states but also to discard looping behavior

and to acquire e�ective stochastic policies to

escape perceptual deceptive states.

We demonstrate the e�ectiveness of our

method in some typical classes of Partially

Observable Markov Decision Processes, com-

paring with Sarsa(�) using a replacing eli-

gibility trace. We claim that this approach

results in an e�ective stochastic or determin-

istic policy which is appropriate for the envi-

ronment.

1 Introduction

In this paper, we present the learning algo-

rithm to address the credit assignment procedure,

which is a very important issue in both classi-

�er systems and reinforcement learning frameworks

[Holland, 1986][Moriarty et al., 1999]. We focus on

the environments that have goals to be attained by

autonomous agents that learn with delayed reward.

This problem can be called a sequential decision prob-

lem, which is de�ned by a set of an agent's sen-

sory observations and a set of actions that map ob-

servations to successor observations. If an agent's

sensory observations provide the complete state of

its environment, the environment can be formulated

as Markov decision processes (MDPs), for which a

number of very successful planning[Barto et al., 1995]

and reinforcement learning[Watkins & Dayan, 1992]

approaches have been developed.

However, in many real environments, such as multi-

agent and distributed control mobile robotics' environ-

ments, only partial information about the state-spaces

can be expected. These environments can be formu-

lated as partially observable Markov decision processes

(POMDPs) where agents su�er from hidden states or

perceptual aliasing (i.e., the agent takes some di�er-

ent environmental states as the same sensory observa-

tion). Therefore, �nding an e�cient method for solv-

ing POMDPs would be a very practical contribution

to creating adaptive agents.

Recent approaches in POMDPs can be classi�ed

into two types. One is called a memory-based

approach[Chrisman, 1992][McCallum, 1995],

which attempts to overcome perceptual aliasing by us-

ing memory to estimate real-state and �nally to �nd

deterministic policies for the environment. The other

is called a memory-less approach[Jaakkola et al., 1994]

[Loch & Singh, 1998][Singh et al., 1994], which can

acquire a stochastic policy to make the agent robust

against perceptual aliasing. Recently, there also is an

intermediate approach[Lanzi, 2000] which introduces

small internal memories, not to construct a model of

the environment but to retain e�ective classi�ers by

combining these memories with a genetic algorithm.

Sarsa(�) using a replacing eligibility trace, pro-

posed in [Singh & Sutton, 1996], is highly regarded in

[Peshkin et al., 1999][Lanzi, 2000][Loch & Singh, 1998]

as a memory-less approach which can work very well

in POMDPs. Unfortunately, their results refer to dif-

ferent testbeds, so we cannot see what the resolvable

sub-class of POMDPs is by this method.

In this paper, we abstract three interesting subclasses

815ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

of POMDPs which bring agents serious confusions and

propose a FirstVisit Pro�t-Sharing (FVPS) approach

to make agents behave robustly in these confusions.

We show the performance of our approach by compar-

ison with Sarsa(�) in an episodic task where there is a

goal within a �nite number of steps from every initial

state. The episodic task is common in the real world,

where we can de�ne a desirable situation as a goal but

cannot de�ne the subgoals.

FVPS is classi�ed as a memory-less approach. Al-

though we use an internal one-dimensional episodic

memory, this memory is not used to construct the

state-transition model but only to discard looping be-

havior and to acquire an e�ective stochastic policy to

escape perceptual deceptive states. Therefore, FVPS

does not cost much computation and memory space.

It is very similar to the Monte-Carlo approach and

Sarsa(1) in that it makes no attempt at satisfying Bell-

man equations relating the values of successive states.

It is di�erent from Monte-Carlo in that the weight1

of rules acquired by our method has no meaning as

the estimation of state-action values, whereas Monte-

Carlo attempts to estimate the value of the state (or

state-action pair in Sarsa(�)) as an averaged reward.

These properties of FVPS not only make an agent be-

have robustly against perceptual aliasing but also save

memory and computation costs by �nding and retain-

ing only rules essential for surviving in the environ-

ment.

In Section 2, we describe our domain, notations, and

related algorithms. Section 3 introduces our approach,

FVPS. An empirical comparison of performance using

two learning approaches, FVPS and Sarsa(�=0, 0.9,

1), is presented via several experiments in Section 4,

and we discuss the applicability and e�ectiveness of

our approach for the real world in Section 5. Finally,

we conclude and summarize our future work.

2 Problem Domain

2.1 Agent Model

The agent is modeled as a reinforcement learning en-

tity engaged in an episodic task in an unknown envi-

ronment, where there are no intermediate subgoals for

which intermediate rewards can be given. (Note: Be-

cause our focus here is on credit assignment, the agent

does not have any genetic algorithm framework.) An

environment is de�ned by a �nite set of state S, the

agent has a �nite set of actions A, and the agent's sen-

1Weight here is similar in meaning to Value in the DP-
based approaches, and Strength in the classi�er systems.

�����
�����

�����
�����

Observation: xt
 (t=1,..,T)

Action: at
(t=1,..,T)

Reward
R(t=T)

P
artially

O
b

servab
le

 U
n

certain
 D

o
m

ain

����������������������
����������������������
����������������������State
Recognizer

Action
Selector

LookUp
Table

����������������������������������
����������������������������������
����������������������������������
Learner :

Credit Assignment
Procedure (FVPS)

Agent

Episodic Memory

St

Figure 1: Agent Model

sors provide its observations from a �nite set X. Each

agent consists of �ve modules: a State Recognizer, a

LookUp Table, an Action Selector, an Episodic Memory

and the Learner, which includes the credit assignment

procedure, as shown in Fig.1.

Initially, the agent observes xt as st, the partially avail-

able state of its environment at time t. An action

is then selected (using a certain exploration method)

from the action set At, which contains all the available

actions at time t. If there is no reward after action at,

the agent stacks the observation-action pair, (xt; at),

into its Episodic Memory, and repeats this cycle un-

til a reward is generated. The observation-action pair

is called a rule in this paper. The process of moving

from a start state to the �nal reward state is called an

episode.

2.2 Target classes of POMDPs

We take �ve mazes, including two test prob-

lems which are treated in [Loch & Singh, 1998], as

shown in Fig.2, to show the typical confusions

which cause improper behavior of the agent. Be-

sides the mazes we treat here, the load-unload

problem[Peshkin et al., 1999] and Woods101, Maze7,

Woods1011
2
, and Woods102 [Lanzi & Wilson, 2000],

which includes confusion type (D), have been used in

researching POMDPs.

Except for maze (A), they include some perceptual

aliasing areas (such as 1a, 1b,..and 26d), which make

the agent fall into the confusion types (B), (C), and

(D). For mazes (B) and Sutton's, a common action

can be e�ective among the same observations, and

for maze (C), there exists another reliable route which

does not include the aliasing area, so a stochastic pol-

icy is not required. Therefore, in mazes of (B), (C) and

Sutton's, a deterministic policy can be found in each

observation, regardless of existing confusions.

However, in maze (D), which includes confusion

type (D), the agent cannot achieve the goal with only

816 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Maze (A): MDP Maze (B) Sutton’s[Loch, 1998] Maze (C) Littman’s[Loch, 1998] Maze (D)
S0

(G)

1 2 3

4 5

6 7 8

9 10 11

13 14 15 16 17

12

18 19 20 21

S0

(G)1b

1a

4 5 6

7 8

9 10

11 13

14 15 16 17

12

18 19 20 21

2a

3a

2b

3b 27 28 2925 3026a 26b 26c 26d

(G)1 2 3 4 5a 5b 6

7a

7b

8 9 10a

10d

12

11b 7c 10c

10b

13a

11a

14

7d

7e

13b 15 16 17 18 19a 20

21 19b 22 23 24 10e 11c

721 11 8

S0

(G)

14 9

18 4a 2a 1a

5a 3a 10

19 15 12 4b 2b 1b

20 16

17

5b 3b 6

13

G

1a

1b

2 3a 4

6a

7b

6b

11 3c

7a

7c

7e

12

3b

3d

5

8

7d

10

13

9

1234567890123456
1234567890123456
1234567890123456
1234567890123456
1234567890123456
1234567890123456

1a 1b

4 3

2 G

S

undesirable
action

desirable
action

Confusion (C)
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456

S 1a

1bG

2

3

right

left

Confusion (D)

��������������
��������������

�������������
�������������

�������������
�������������

��������������
��������������

�������������
�������������

���������������
���������������

: Observation
: Action

 V : Real Value
V_estimated :
 Estimated Value

: Reward

V(3)=7

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

5 steps

1b

2

3 4

V(4)=6
V(1b)=8

V(1a)=2 right

right

left

Vestimated(1) =5

1a

Confusion (B)

 For Types A-D and Sutton’s, the agent can observe its eight neighboring cells and (G) indicates the goal position of each
environment, but the agent cannot observe it as a goal position. In Littman’s environment, the agent can observe its four directions:
up, right,down and left; if G is in one of these four directions, it can observe G as a goal. Maze (A), (B) and (C) have been
reproduced from [Miyazaki and Kobayashi 1999].

�������������
�������������

Deterministic Policies will be found

S0

(G)

4 5 63

7 8

1a

13

15

18 19 20

2b

14

10 11

2a

1b16

9

12

17

21

Stochastic Policies will be required

Figure 2: Target subclasses of POMDPs and their Confusion Types

a deterministic policy. For example, if the agent is

in state 1a, down is a desirable action, but if it is

in state 1b, it needs to move up to reach the goal.

Also, stochastic policies are necessary in Littman's

maze[Loch & Singh, 1998], because the observations

are noisy, with the agent getting the correct obser-

vation only 70% of the time.

2.3 Related Algorithms

There are two types of credit assignment proce-

dures. One is inspired by dynamic programming

(e.g., [Watkins & Dayan, 1992]). The other is in-

spired by Holland's learning classi�er systems (e.g.,

[Grefenstette, 1988]). The former one basically at-

tempts to satisfy Bellman equations relating the val-

ues of successive states (or state-action pairs) to make

an agent behave optimally. The latter one does

not attempt to estimate the value of all rules that

cover the state space, but just accumulates the weight

on successful rules based on the agent's experiences.

These credit assignment procedures are called the boot-

strapped method and the non-boot-strapped method,

respectively. The equivalence between bucket brigade

algorithm, used in the classi�er system[Holland, 1986],

and Q-learning is proved in [Dorigo & Bersini, 1994],

so we can't say that all classi�er systems apply the

non-boot strapped method.

Q-learning by [Watkins & Dayan, 1992](Eq.1) com-

putes by successive approximations a table of all values

Q(x; a). At each time step in the episode n the agent

updates Qn(xt; at) by recursively discounting future

utilities and weighting them by positive learning rate

�. Here (0 < < 1) is a discount parameter. If

there is no immediate reward r, the agent uses r = 0

to update Qn(xt; at).

Q-learning often performs poorly in POMDPs due to
computing by successive approximations. Sarsa(� =
0) also updates the value of the state using suc-
cessive state values, as shown in Eq.2. However,
[Loch & Singh, 1998] demonstrated that Sarsa using
a replacing eligibility trace (as shown in Eq.3) with a
large � value (such as � > 0:9) performs well in some
classes of POMDPs.

Q-learning:

Qn+1(xt; at) (1� �) �Qn(xt; at)

+�(r+ maxb2actionsQn(xt+1; b)) (1)

Sarsa(�):

Qn+1(xt; at) (1� �) �Qn(xt; at)

+�(r+ Qn(xt+1; at+1)) (2)

Replacing Eligibility Trace and Sarsa(�):

1: �t rt + Qn(xt+1; at+1)�Qn(xt; at)

2: �t(xt; at) = 1

3: 8(x 6= xt; a 6= at); �t(x; a) = ��t�1(x:a) (3)

4: 8(x; a);Qn+1(x;a) Qn(x; a) + � � �t � �(x; a)

The eligibility traces are initialized to zero, and in

episodic tasks they are reinitialized to zero after ev-

ery episode. When � = 1 in Sarsa, it is the same

as the Monte-Carlo method[Singh & Sutton, 1996],

which does not attempt to satisfy Bellman equations

817ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

relating the values of successive states. It seems that

using a successive value for state-value estimation is

not e�ective for POMDPs. Here, we should note that

Sarsa(� > 0) requires computation time to update the

whole table of experienced rules, or in the most serious

case, must update all state spaces at each step.

Pro�t-Sharing by [Grefenstette, 1988], used in the

classi�er system, provides a hopeful non-boot strapped

credit assignment method. Pro�t-Sharing is very simi-

lar to the Monte-Carlo method in that it does not uti-

lize successive approximations to compute a table of

all state values. This is an important property which

can make Pro�t-Sharing attractive when one requires

the value of only a subset of the state.

3 Our Approach

3.1 Requirements for Acquiring a Proper

Policy

There are three requirements in the algorithm to make

an agent behave robustly in uncertain domains. The

�rst is that the algorithmneeds to update the weight of

the state independently without using successive state

values. The second is that the algorithm should not

attempt to estimate the value function. This will fail

in POMDPs in which the agent's sensory input is lim-

ited. The value estimation, mapping one value to one

rule, makes no sense when there is no unique value

to an observation. The accumulation of the weight on

successful rules is enough to make policies proper. The

third requirement is that the algorithm must guaran-

tee that the agent will reach the goal within a �nite

number of steps.

Our credit assignment approach is based on Pro�t-

Sharing[Grefenstette, 1988]. The good properties

which FVPS inherits from Pro�t-Sharing satisfy the

�rst and second requirements mentioned above. How-

ever, the Pro�t-Sharing approach does not take the

in�nite loops in the agent's episode explicitly into con-

sideration because the Pro�t-Sharing is assumed to use

in combination with a genetic algorithm which will get

rid of any bad behavior.

FVPS improves on Pro�t-Sharing in that it guarantees

that loops are discarded without evolutionary pres-

sure. In much reinforcement learning research, the tar-

get problems do not contain loops (e.g., board games),

although there are some problems which do contain

loops[Hansen, 1998]. These loops may result in the

agent exhibiting improper behavior with respect to

achieving its goal. In general, it is important to pur-

sue proper policy rather than optimal for POMDPs. A

proper policy is one that is guaranteed to converge on

a solution; i.e., the agent should not become trapped

within in�nite loops in the state machine. To guar-

antee convergence on a proper policy in POMDPs, we

introduce the FirstVisit routine and credit assignment

function.

To illustrate the advantage of this point, consider the

example in Fig. 2 Confusion (B). The state value, V,

represents the minimum number of steps to a reward.

In this example, the highest value of V is 1. The values

of states 1a and 1b, V(1a) and V(1b), are 2 and 8,

respectively. Although these two states are di�erent,

they are perceived by the agent as being the same state

(i.e., state 1). If the agent moves to state 1a and 1b

with equal weight, V(1) = 2+8
2

= 5. Therefore the

value of state 1 is equal to the value of state 3, i.e.,

V(3) = 5. If the agent uses these state values according

to a DP-based algorithm, such as Q-learning (Eq. 1),

it will move left into state 3. Otherwise, the agent

moves right into state 1. This means that the agent

learns the improper policy in which it only transits

between states 1b and 3. If the agent only reinforces

the successful rules without any propagation to other

rules, it can escape this looping behavior caused by

confusion type (B).

3.2 FirstVisit Pro�t-Sharing

Our solution to this problem is very simple. If the cur-

rent observation is the revisited one and the same ac-

tion is executed, the agent does not stack this rule into

the Episodic Memory, since the re-executed rule will

cause a cyclic loop in the agent's route. This routine

does not require any extra memory other than that

used by the current framework of the Pro�t-Sharing

algorithm, where an Episodic Memory is used to accu-

mulate rules until the goal is achieved.

Fig. 3 shows our algorithm. The FirstVisit routine

prohibits the agent from reinforcing the weight of the

rules which make up the loop, and can retain essen-

tial rules for a stochastic policy. Consider the episode

illustrated in Fig. 4(1), which is one example of a gen-

erated decision sequence in the initial stage of learning,

in the maze (C) shown in Fig. 2(C). In this episode,

the sub-sequence (1a; Up) � (9; Down):: � (9; Down)

forms an obviously needless loop; therefore the weight

of (1a; Up) should not be reinforced, while (1b; Up) is

necessary to reach the goal. However, the agent can-

not tell the di�erence between 1a and 1b, so we need

to consider which rule should be retained and which

rule should be removed from the episodic memory.

In FVPS, if the agent �nds the same rule as the ex-

818 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

begin
Initialize W (x; a) arbitrarily and TotalSteps=0.

Repeat (for each episode n)f
do f
- get sensory input xt of the environment ;
- choose at from an available action set At ;
- take action at ;
- FirstVisit Routine (episodicMemory[],
currentStackSize, (xt, at)) ;

- check reward rt ;
- TotalSteps ++ ;
g while (reward ! = 0) ;

if rt = R(> 0) at time T steps then, T=TotalSteps;

8(x; a) in the episodic memory

Wn+1(x; a) Wn(x; a) + R � �T (4)

g until enough number of episodes.
end

FirstVisitRoutine(episodicMemory[],
currentStackSize,(xt ; at)):
begin

initialize pointer pt=0,
do from the �rst rule of episodicMemory[]f
search same rule as (xt; at).
(compare (xt; at) with stacked rule(x; a)pt of
episodicMemory[]; pt++;)
if (xt; at)== episodicMemory[pt=k], break;

g while (pt == currentStackSize);
if found the same rule in the episodicMemory

(pt < currentStackSize) f
retain whole rules of episodic memory,
do not stack executed rule, (xt, at).

g

else f
stack executed rule, (xt, at) into

episodicMemory[].
currentStackSize ++;

g

end

Figure 3: FVPS algorithm

ecuted rule (xt; at) in the episodic memory, it does

not stack to the episodic memory. Finally, each exe-

cuted rule appears only once in the episodic memory

as shown in Fig. 4(2). Even in this method, assign-

ments will be done on needless rules, such as (10; Up)

in maze (C). But FVPS can eliminate these needless

rules by our reinforcement function, R ��TotalSteps(0 <
� < 1), in which the value is small when the length of

the agent's route is long (i.e., the size of TotalSteps is

large). Therefore, the assignment quantity on needless

rules (e.g., (10; UP) in maze (C)) will be smaller than

the one on e�ective rules (e.g., (10; Down)) that make

the length of the agent's route short, thereby causing

only the e�ective rules to be retained. On the other

hand, because both (1; Up) and (1; Down) in maze (C)

are necessary to reach the goal, both rules are retained

(4b, Right)12 (2b, Right)13 (1b, Up)14 G

����
����

����
����

����
����

����
����

(2) Introduce FirstaVisitRoutine :cut the re-executed rules

(1) Uncut Case :

Loop2
 (10, Up)9 (1a, Down)10 (10, Down)11

����
����

����
����

����
����

(1a, Up)4 (9, Down)5 (1a, Up)6 (9, Down) 7 (1a, Down)8

����
����

����
����

����
����

����
����

����
����

(S0, Right)0 (14, Down)1 (4a, Right)2 (2a, Right)3

����
����

����
����

����
����

����
����

Loop1

 (10, Up)9 (1a, Down)10 (10, Down)11

����
����

����
����

����
����

(1a, Up)4 (9, Down)5 (1a, Up)6 (9, Down) 7 (1a, Down)8

����
����

����
����

����
����

����
����

����
����

(S0, Right)0 (14, Down)1 (4a, Right)2 (2a, Right)3

����
����

����
����

����
����

����
����

(4b, Right)12 (2b, Right)13 (1b, Up)14 G

����
����

����
����

����
����

����
����

Figure 4: Example: How to Discard Looping Behavior

in Maze (C)

as e�ective rules. Also, if there exist shorter routes to

the goal without stochastic policies, the agent exploits

these deterministic policies and reinforcement of the

rules for the perceptual aliasing area is precluded. (We

describe this using a concrete example in Section 4.2.)

We claim that this approach brings about the e�ective

stochastic or deterministic policy which is appropriate

for the environment.

FVPS is very similar to the First-visited Monte-Carlo

method[Singh & Sutton, 1996], where the assignment

will be given only to the �rst visited state. However,

the values in the Monte-Carlo method are estimated as

sample averages of observed reward using the Widrow-

Ho� rule (Eq. 5)2, whereas FVPS just piles weight on

successful rules according to trial and error experi-

ences, as shown in Eq.4. It is important that the aver-

ages of observed reward among the aliasing states will

uctuate from episode to episode, and will make no

sense as the value of the observation. One the other

hand, piling up weights on successful rules is simple

and makes agents robust in POMDPs as well.

NewEstimate (OldEstimate

+ StepSize[Target-OldEstimate] (5)

4 Experiments

4.1 Settings

To demonstrate the e�ectiveness of the FVPS ap-

proach, we compared its performance with that of the

Sarsa(�) algorithm on the MDP(maze (A)) and �ve

POMDP problems. (Two of them are taken from

[Loch & Singh, 1998].) We describe aspects of the

empirical results here. In the cases of maze (A) to

maze (D), the agent starts from state S0, as shown in

2StepSize is represented by � in Eq.1 and Eq.2.

819ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

11

12

13

14

15

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al
Sarsa(0)
Sarsa(0.9)
Sarsa(1)
FVPS

8

9

10

11

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

10

20

30

40

50

60

70

80

90

100

110

120

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

5

6

7

8

9

10

11

12

13

14

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

5

10

15

20

25

30

35

40

45

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

 Maze (A) Maze (B)

 Maze (C) Maze (D)

 Sutton’s[Littman, 1994] Littman’s[Littman, 1995]

After 1,000
Episodes

 12.55 (0.20)22.92 (31.88)

After 100,000
Episodes

Average & Standard Deviation of 10 Trials Av.(S.D.)

 12.45 (0.19) 22.89 (33.73)

Sarsa (0)

Algorithm

FVPS

 12.49 (0.24) 22.87 (34.66)

 11.10 (0.06) 17.54 (19.62)

Sarsa (0.9)

Sarsa (1)

After 1,000
Episodes

 30.08 (1.12)39.02 (19.15)

After 100,000
Episodes

Average & Standard Deviation of 10 Trials Av.(S.D.)

 8.79 (0.14) 18.99 (17.20)

Sarsa (0)

Algorithm

FVPS

 8.67 (0.08) 19.30 (18.10)

 8.06 (0.02) 13.98 (16.40)

Sarsa (0.9)

Sarsa (1)

 119.42 (8.32) 118.36 (13.72)

 61.91 (4.50) 70.83 (27.45)

Sarsa (0)

FVPS

 54.08 (2.66) 64.51 (29.91)

 13.24 (0.51) 17.05 (11.35)

Sarsa (0.9)

Sarsa (1)

 382.99 (35.78) 404.86 (63.13)

 100.58 (11.89) 113.25 (53.11)

Sarsa (0)

FVPS

102.79 (10.18)126.98 (71.38)

 15.31 (0.50) 38.74 (34.29)

Sarsa (0.9)

Sarsa (1)

 78.57 (9.67) 95.79 (64.92)

 12.86 (1.16) 42.05 (93.20)

Sarsa (0)

FVPS

 12.67 (0.88) 42.19 (97.19)

 9.45 (0.34) 39.93 (64.42)

Sarsa (0.9)

Sarsa (1)

 83.43 (15.59) 88.43 (13.98)

 39.61 (4.16) 42.95 (15.93)

Sarsa (0)

FVPS

 31.77 (2.75) 38.22 (19.41)

 9.31 (0.26) 14.02 (15.21)

Sarsa (0.9)

Sarsa (1)

Figure 5: Comparisons among FVPS and Sarsa(�)

Fig. 2, while in the cases of Sutton's and Littman's,

it starts from di�erent locations. At each time step,

the FVPS agent selects an action by a roulette wheel

method, where the rate of each action is p(aijx) =
W (x;ai)P

ak2At
W (x;ak)

, while the Sarsa agent uses the Boltz-

mann distribution p(aijx) =
e
Q(x;ai)=TP

ak2At
eQ(x;ak)=T (T =

0:2) to select its action. There are four actions within

the action set, At = fUp;Right;Down;Leftg, except
in Littman's case. Littman's permits an additional ac-

tion, fStayg. The weight (or value) of the rules was

initialized to 10:0 in FVPS and 0:0 in Sarsa. The re-

ward 1000:0 in FVPS and 1:0 in Sarsa is given after

achieving the goal. In the Sarsa case, 0:0 is used to

update at each time step. In all but Littman's case,

the agent can observe its eight neighboring cells and it

cannot see the goal as an entity, which means that the

agent gets the reward when it is in the goal position.

In Littman's case, the agent can observe the relative

four directions: front, back, left and right, and can see

the goal if the goal is in its relative four directions,

although the observations are noisy, with the agent

getting the correct observation only 70% of the time.

The parameters R, �, and T of FVPS are used to

update the weight of each rule in the episodic mem-

ory. In our experiments, the rules which are retained

after the FirstVisit routine will be given the value

R � �T = (1000:0) � (0:8)TotalSteps. The parameters �,

�, and of Sarsa are also used to update the Q-value

of each rule. In our experiments, both the step-size

� and the � values are held constant in each experi-

ment. We followed Loch[Loch & Singh, 1998] to select

820 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Maze (C)
FVPS[%] Sarsa(1)[%]Observation FVPS[%] Sarsa(1)[%]Observation

2 100.0 100.01
53.3

100.0
 46.7

3
60.0

 40.0

34.0
 24.0
 21.0
 21.0

4 100.0

34.0
 24.0
 21.0
 21.0

1
33.3

 33.3

 33.3

 50.0

50.0

FVPS[%] Sarsa(1)[%]Observation

2 100.0

33.3

 33.3

 33.3

FVPS[%] Sarsa(1)[%]Observation
Maze (D)

FVPS[%] Sarsa(1)[%]Observation FVPS[%] Sarsa(1)[%]Observation

1 3
50.0

50.0

94.0

 6.0

50.0

50.0

50.0

50.0

50.0

 30.0
 20.0

 25.0
 25.0 45.0

6 7
 97.0

 3.0 25.0

 29.025.0

26.0

Littman’s [1995]

 : Stay : Up : Right : Down : Left

Figure 6: Policies of FVPS and Sarsa(�) in Uncertain

Areas

these values: � = 0:01, � = 0:9 and 1:0. We searched

over value for these problems and selected = 0:8,

which gave the best performance across all problems.

The evaluation metric is determined by averaging the

number of steps to reach the goal. Experiments consist

of 10 trials, each of which consists of 100,000 episodes.

The lookup table is reset for each trial.

4.2 Results

After every episode, the policy (which is selected by

a roulette method in FVPS and by the Boltzmann

distribution in Sarsa as mentioned in Section 4.1) was

evaluated and the learning curves of all types of mazes

shown in Fig. 2 plotted as shown in Fig. 5. The x-axis

shows the number of episodes and the y-axis shows the

average steps to the goal of 10 trials.

The maze (A) is an MDP, where Q-learning and any

other DP-based algorithms can reach the optimal pol-

icy of 11 steps. Although Sarsa also can reach the op-

timal theoretically, it seems that step-size parameter

� needs to be adjusted to reach it, because Sarsa(� =

0; 0:9; 1) starts to approach the optimal but then gets

farther away from it as episodes are repeated. FVPS

acquired the optimal policy only with the FirstVisit

routine and our reinforcement function, R ��TotalSteps.

The maze (B) includes confusion type (B), where Q-

learning and Sarsa(0) are no longer useful because

of their value estimation method as described in 3.1.

FVPS and Sarsa(� = 0:9; 1) could reach optimal pol-

icy here, although parameter adjustment seems to be

required for Sarsa.

The maze (C) includes confusion type (C), where there

are two routes to reach the goal. One route consists

of 9 steps in total, S0 � 14 � 4a � 2a � 1a � 10 �
4b� 2b� 1b�G, and the other consists of 11 steps in

total, S0� 14� 4a� 5a� 3a� 10� 4b� 5b� 3b� 6�
1b � G. The former route is the optimal one, but to

realize it, the agent must select Down in 1a and Up in

1b, whereas in the latter one the agent does not need

a stochastic policy. Sarsa(� = 0:9; 1) dropped down

here, because its value estimation failed even though

it uses replacing eligibility traces when one observation

requires di�erent actions. As shown in Fig. 6, FVPS

reached the stochastic policy in observations 1 and 3,

and in 2 and 4, the agent acquired the deterministic

policy. That is, FVPS acquired the e�ective policy

that the agent needs.

The maze (D) includes confusion type (D), where there

is no route to reach the goal with only a deterministic

policy and where a stochastic policy is required. The

Littman's maze also has this confusion because of the

noise with the agent's observation. In these environ-

ments, FVPS works best and can reach nearly optimal

policy within the agent's perceptual ability.

5 Discussion

The results demonstrate that FVPS found the proper

policies even in the POMDPs where the currently eval-

uated Sarsa(�) does not show good results. FVPS

performs much better than Sarsa in the environment

where more than one action will be reinforced due to

the aliasing, such as mazes of (C), (D) and Littman's.

In these environments, the update method of Sarsa(�),

in which the values are estimated as sample averages

of observed reward by Eq.5, seems not to work well,

because there is no unique value to be estimated as

the rule value. FVPS, however, just piles the weight

on successful rules according to the agent's trial and

error experiences. This simple method seems to work

very e�ectively in such environments.

We claim that FVPS requires an episodic memory of

moderate size. Only rules which are retained in the

episodic memory would be updated after each episode.

Sarsa(� > 0), on the other hand, requires memory to

keep eligibility traces and computation time to update

all rules at each time step. The size of state spaces

of environments such as those treated in this paper is

very small, so the computation time for updating is

not substantial. But the larger the state space, such

821ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

as in the multi-agent learning environment, the more

serious a problem it might be in practical use.

6 Conclusion

In this paper, we introduce FVPS, a variant of

the Pro�t-Sharing algorithm, and demonstrate its

e�ectiveness within some interesting subclasses of

POMDPs and its minimal memory requirements. We

believe that our method will be easily introduced into

a classi�er system, and can solve over many subclasses

of POMDPs by combining with a certain genetic algo-

rithm. In future work, we will prove the e�ectiveness

of FVPS theoretically and show the powerful results

on more di�cult classes.

Acknowledgement

This research has been sponsored in part by ONR

grant N-00014-96-16-1-1222 by DARPA grant F-

30602-98-2-0138.

References

[Barto et al., 1995] Barto, A.G., Bradtke, S.J., and

Singh, S.P. Learn to Act using Real-Time Dynamic

Programming. Arti�cial Intelligence, Vol.72, Num-

ber 1-2, pages 81-138, 1995.

[Chrisman, 1992] Chrisman, L. Reinforcement learn-

ing with perceptual aliasing: The Perceptual Dis-

tinctions Approach. Proceedings of the 10th Na-

tional Conference on Arti�cial Intelligence, pages

183-188, 1992.

[Dorigo & Bersini, 1994] Dorigo, M. and Bersini, H.

A Comparison of Q-learning And Classi�er Sys-

tems. Proceedings of the 3rd International Confer-

ence on Simulation of Adaptive Behavior, pages 248-

255 1994.

[Grefenstette, 1988] Grefenstette J. J. Credit Assign-

ment in Rule Discovery Systems Based on Genetic

Algorithms, Machine Learning, Vol.3, pages 225-

245, 1988.

[Hansen, 1998] Hansen, E.A. Solving POMDPs by

searching in Policy Space. Proceedings of 14th In-

ternational Conference on Uncertain Arti�cial In-

telligence, 1998.

[Holland, 1986] Holland, J. H. Escaping Brittleness:

The Possibilities of General-Purpose Learning Algo-

rithms Applied to Parallel Rule-Based Sysems. In

R.S.Michalsky et al. (eds.), Machine Learning: An

Arti�cial Intelligence Approach, Vol.2, pages 593-

623, Morgan Kaufman 1986.

[Jaakkola et al., 1994] Jaakkola, T., Singh,S.P. and

Jordan, M.I. Reinforcement Learning Algorithm

for Partially Observable Markov decision Problems.

Advances in Neural Information Processing Systems

7, pages 345-352, 1994.

[Lanzi, 2000] Lanzi, P.L. Adaptive Agents with Rein-

forcement Learning and Internal Memory. Proceed-

ings of 6th International Conference on Simulation

of Adaptive Behavior, pages 333-342, 2000.

[Lanzi & Wilson, 2000] Lanzi, P.L. and Wilson, S.W.

Toward Optimal Classi�er System Performance in

Non-Markov Environments. Evolutionary Compu-

tation, Vol.8(4), pages 393-418, 2000.

[Loch & Singh, 1998] Loch, J. and Singh, S.P. Using

Eligibility Traces to Find the Best Memoryless Pol-

icy in Partially Observable Markov Decision Pro-

cesses. Proceedings of 15th International Conference

on Machine Learning, 1998.

[McCallum, 1995] MacCallum, R. A. Instance-Based

Utile Distinctions for Reinforcement Learning with

Hidden State. Proceedings of 12th International

Conference on Machine Learning, pages 387-395,

1995.

[Miyazaki & Kobayashi, 1999]

Miyazaki, K. and Kobayashi, S. Proposal for and Al-

gorithm to Improve a Rational Policy in POMDPs.

IEEE International Conference on Systems, Man,

and Cybernetics, pages 285-288, 1999.

[Moriarty et al., 1999] Moriarty, D.E., Schultz A.C.

and Grefenstette J.J. Evolutionary Algorithms for

Reinforcement Learning. Journal of Arti�cial Intel-

ligence Research, Vol.11, pages 241-276, 1999.

[Peshkin et al., 1999] Peshkin, L., Meuleau N., and

Kaelbling L. Learning Policies with External Mem-

ory. Proceedings of 16th International Conference

on Machine Learning, pages 307-314, 1999.

[Singh et al., 1994] Singh, S.P., Jaakkola, T. and Jor-

dan, M.I. Learning Without State-Estimation in

Partially Observable Markovian Decision Processes.

Proc. of the 11th International Conference on Ma-

chine Learning, pages 284-292, 1994.

[Singh & Sutton, 1996] Singh, S.P. and Sutton, R.S.

Reinforcement Learning with Replacing Eligibility

Traces. Machine Learning, Vol.22 :1-37, 1996.

[Watkins & Dayan, 1992] Watkins, C. J. H., and

Dayan, P. Technical note: Q-learning. Machine

Learning, Vol.8: 55-68, 1992.

822 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Interactive Evolutionary Computation with Small Population to
Generate Gestures in Avatars

A. Berlanga
Depto de Informática

Univ. Carlos III de Madrid
aberlan@ia.uc3m.es

P. Isasi
Depto. de Informática

Univ. Carlos III de Madrid
isasi@ia.uc3m.es

J. Segovia
Facultad de Informática

Univ. Politécnica de Madrid
fsegovia@fi.upm.es

Abstract

In this article a method is presented to use
Genetic Algorithms with small populations. The
small populations worsen the problem of the
premature convergence due to the small existent
genetic diversity. The incorporation of a weight
that modifies the probability of change of alleles
it will be to avoid the premature convergence.
This technique has been applied to carry out the
design of expressions for avatars.

1 INTRODUCTION

In his book “On the origin of species” Darwin, put
forward, as the engine in the evolution of species, the
struggle of these to obtain the best resources in their
environment. Thus, those living beings that have any
characteristic that allows them to gain advantage over
their counterparts, in food acquisition, reproductive
success, etc. get better chances of surviving and,
consequently, of spreading their genetic code along with
those capabilities which made them superior. The group
of learning techniques that utilize computational models
based on the biological evolution as a key element in their
design and implementation is referred to as Evolutionary
Computation. Genetic Algorithms (Goldberg 1989) was
the main technique of Evolutionary Computation. In this
technique a whole population of structures is maintained,
which evolve according to some specific selection rules
and, by means of the application of certain operators,
referred as genetic operators –such as the recombination
or the mutation operators, for instance— each individual
is given a measurement for his or her fitting to the
environment, named adequacy value, obtained after an
evaluation process. The reproduction focuses on
individuals whose environmental adaptation is higher.
Although they may seem quite simplistic from a
biological evolutionary point of view, this algorithm come
out complex enough to provide a powerful, robust
mechanism for an adaptive search, (Holland 1995).

The key point in the EC paradigm is usually the
evaluation of the individuals. Some times a single
evaluation requires a complex and time expensive
process. Some other times the evaluation is comparative
or subjective. There is not an absolute value of an
individual evaluation, but the final result depends on a
comparison with other individual in the population. It also
could depend on the final result to be produces. In these
last cases and interaction with the user is needed to make
the evaluation. Anyway, the populations have to be
restricted to some few individuals and the canonical
genetic algorithm can not be applied.

In this paper, news operators are proposed to overcome
the problem related to the small population size. The
operators must include devices for the maintenance of
genetic diversity.

2 GENETIC ALGORITHMS

The history of Evolutionary Computation starts with
Genetic Algorithms in the decade of the seventies.
Holland (Holland 1975) was one of the pioneers in its
research. Since then the research on Genetic Algorithms
and their applications have experienced a great boost and
new genetic techniques have developed from Holland’s
original ideas (Mitchell 1996), (Chambers 1995).

Genetic Algorithms do not work directly on the solutions
of a problem, but deal with a codification of such
solutions – a chromosome. The chromosomes make up a
population of coded solutions. The search is based on the
adequacy function as well as on a selection operator,
proportional to the estimate, known as the adequacy
value, which provides such function. The adequacy
function allocates each chromosome an adequacy value.
This value indicates how good or deficient is the solution
represented by that individual. Genetic Algorithms are
responsible for the proliferation of the best adapted
individuals and the disappearing of the worst adapted
ones, (Goldberg 1989), (Mitchell 1996), by
discriminatory applying the genetic operators according to
the adequacy value.

823ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Due to the very little information on the domain that
Genetic Algorithms employ to lead the search, they are
usually applicable to all sorts of problems, specially in
domains with scarce information about the pursued
objective, or in domains which can change over time;
therefore, the genetic search could be sought with certain
periodicity. Some of the applications that were carried out
using Genetic Algorithms required the development of
specific operators that included information from the
domain, which invalidates them as generic solution
methods. However, some genetic operators, specifically
developed for a problem, have proved useful in other
kinds of problems.

Evolution can be seen in a simplified way as a genetic
information transfer process between individuals, (Wilson
1985). This transfer can be summarized in three rules:

� Selection of individuals to be reproduced. The
selection of an individual can occur according to its
adaptation to the environment or to the competition
with other individuals.

� To recombine the genetic information by means of
the crossover operator. This operator preserves the
information of old individuals in the new ones.

� Generation of new genetic information. The mutation
operator carries out this process. Its purpose is to
keep a high degree of genetic diversity within the
population; while the crossover operator merely
recombines genes, mutation creates them.

The power of Genetic Algorithms resides in the global
search that they carry out at the space of solutions. The
major concept that supports the theory of convergence is
that of the scheme, (Stephens et al. 1999). A scheme
describes a set of chains, i.e. solutions, which share
common features. The scheme is defined on the alphabet
of the chromosome chains, plus the symbol “*” which
stands for a “wild card” or substitutive character. A
scheme represents a hyperplane of the search space.

One of the main characteristics of Genetic Algorithms,
implicit parallelism, arises from the concept of scheme.
Every time that a population chain becomes evaluated in
order to estimate its adequacy degree, implicitly the
hyperplanes that represent it are being evaluated as well.
Implicit parallelism implies that the competition among
the different hyperplanes is solved in a parallel manner.
The theory suggests that, using the reproduction and
recombination processes, schemes increase or decrease
their presence in the population, through the population
chains that represent them.

2.1 GENETIC ALGORITHM IN SMALL
POPULATIONS

There are two main fields in which a small population
size is required. One of them are problems in which the
fitness values is measured by a human operator, this fields
is the application of evolutionary computing techniques is
artistic as well as functional design of bidimensional and
tridimensional objects. Their parallel solution exploration
capacity permits genetic techniques to evaluate many
designs, surpassing in this aspect the creativity of many
artists and engineers, (Sims 1991).Biomorphs are the
classical example of the application of evolution to simple
shapes (Dawkins 1986), in this case is the user who
interactively decides which shapes look closer to the
figure of a real insect. Practical applications have been
carried out, such as in the creation of tables, (Bentley
1999). The purpose is to find a table design that follows
the various guidelines: it must have a large and stable
surface at the top, it must contain no floating elements,
and so on. This problem is an example of application to
validate a general-purpose tool in the 3D genetic design
known as GADES (Genetic Algorithm DESigner).
Artistic design, not only applied to graphics but to music
as well, where it uses AECS (Artistic Evolutionary
Computer System) evolutionary techniques, is a
flourishing and promising field (Santos et al. 2000). Static
design has also been applied to many types of procedural
codings (Sims 1993), with purposes of industrial design
(Rowland 2000) or purely artistic (Soddu 2000).

The other kind of problems that require a small
population is those with high computational cost.

In this paper we have tested the method proposed in
problems that interactively the user input a fitness value.
A field of recent application of 3D animated design is
motivated by Internet success in the communication
among people through virtual worlds where each person
can adopt an anthropomorphic figure with which express
feelings and emotions. Thus, it arises the need to bring
forward some form of expressiveness to the gestures,
(Segovia et al. 1999), in order to make communication
easier among fellows or to apply the sign language of the
deaf to avatars (Losson et al. 2000).

All systems applying evolutionary processes require the
incorporation of an evaluation function. Evolutionary
processes can fall into two categories according to the
fitness or adequacy function they use. The adequacy
function can be a predetermined one and thus the
evaluating process is automatically performed for all the
individuals in the population. This is the case of
applications where selection criteria can become clearly
expressed, for instance with functionality criteria. The
problem arises for artistic design, where it is quite
difficult to determine what can be felt as pleasant or

824 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

expressive; there have been formalizing attempts that
used complexity and self-resemblance criteria. For this
kind of problems the so-called ‘interactive evolution’ is
used (Lim et al. 1999), (Unemi 2000); the user provides
the adequacy value, evaluates according to his artistic
criteria which individuals are the best.

This is the position where this paper stands, the
generation of gesture sequences in order to express an
emotional status cannot be carried out without the
intervention of a human being criterion. A generic answer
cannot be given, since, after all, the user is showing his or
her personality.

In this paper a design scheme is introduced, which is
based on genetic algorithms. It permits the carrying out of
an optimal search, minimizing the number of alternatives
to be tried (Holland 1975). In this scheme, each
expression constitutes an individual from a genetic
algorithm; that individual is made up of some genes,
which are each of the gestures, which make up the
expression. Thus, if an individual –an expression– is
made up of 5 gestures, it will have 5 genes; each of one
will contain a value –or allele– that will become the
corresponding gesture.

3 GENERAL SCHEME

When dealing with small populations with genetic
algorithm, two main considerations have to be taken into
account:

1. There is not too much genetic diversity and the
search is restricted to a very small region of the state
space. This makes the process to converge to a bad
result in few generations.

2. Very often a subjective evaluation is needed and a
numerical value is then not useful. In those cases the
canonical scheme has to be change.

To overcome the first restriction a modification of the
mutation operator has been developed. The individual
chromosome incorporates a ‘weight’ for each gene allele
called importance. The significance of a gene allele is a
measure of the changing likelihood; the more important
an allele is, the less likelihood for its changing. When the
user selects an individual its performance will have to
pass on to the next generation, that is to say, its gene
alleles will have to reduce their probability of being
changed. The new allele that substitutes the mutated one
is selected from allele pool of genes, proportional to a
value that measures the primacy of each allele. This
artifice is necessary due to the requirement of a quick
convergence and to the small size of the population.

Another important restriction has mentioned in second
restriction, is imposed by the user’s way of selecting
individuals, with the performance, which satisfy him. This

restriction is the manner in which the user assigns the
fitness value of the individuals in the population. In a
genetic algorithm all the individuals from a population are
applied a fitness function, which allows obtaining the
fitness value. When it is the user who must provide this
value, the process has to be different. The user cannot be
forced to always provide a value to all individuals.
Besides, providing a numerical value can be difficult if
the range is huge. It must always be born in mind that the
user to whom the tool is addressed has no knowledge of
evolutionary computation and the requirement of an
adequacy value assignment must be translated into terms
which he is able to understand. Thus, in the genetic design
tool, the user is asked for a relative selection of the
individual performance, something easier to accomplish.
The general working scheme, when a new population
generation is generated, is shown in Figure 1.

If no individual has been selected, then all the new
genotypes are generated through random mutation; the
process is the same as in the first generation. This process
takes into account the situation in which a user does not
like any individual performance at all, not even slightly
and he wants to initialize the design process.

Figure 1. Scheme of process.

When the user triggers the process of generating a new set
of individuals with selected ones, two cases are
distinguished if there is one or more than one individuals
selected to mate. If there is only one selected individual,
then this is copied on to the next generation and the rest
are generated by means of the mutation of the selected
one, until the population has been completed.

 Individual Selection

New Generation

 Selected > 0Mutate ALL
NO

YES

 Selected > 1
NO

YES

Copy SelectedMutate N-S-1

CrossOver ONE

Deselect Last

S = S + 1

S = 0

825ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

The mutation process alters a gene with a probability
inversely proportional to its significance. The more
important a gene is, the less likelihood of its changing.
This device is necessary in order to ease the convergence
of the algorithm. Due to the small size of the population,
if a classical genetic algorithm were applied, in very few
generations a convergence of the population would occur,
quickly losing many alleles. Importance is associated to
each allele and through genes. It is modified according to
the following equation 1:

 0<<α<1 (1)

If the gene does not mute, then its importance is increased
in a factor of 1/α; if it is altered, then its importance
decreases in an α factor. At this paper the value 0.75 has
been chosen for α.

If it have been selected k individuals, then k-1
chromosomes are generated by crossover and the
remainder by the mutation of the first selected one. The
uniform crossover operator is applied with the probability
for a gene, pg, to pass on to the new individual by means
of the following formula, equation 2:

(2)

Where n is the number of selected individuals to mate and
o is the fitness value of the individual.

The selection of an allele for a new individual’s gene uses
the method of the roulette applied to the genes of selected
individuals. With this modification of the crossover
operator more importance is given to genes than to the
whole chromosome. This imposition arises once again
from the limitation of the population’s size.

4 RESULTS

The problem that this paper tries to clarify has the
originality of generating complex gestures from another
simple ones. The target in animations has usually been the
life-like movement (Lim et al. 1999). In this sense,
realistic movement is already present in simple gestures
aiming at a more complex gesture through expressiveness,
the designed animations which could be used in non-
verbal communication.The application of an evolutionary
tool in order to generate lively gestures in avatars has
already been carried out by various authors (Segovia et al.
1999), but they were static gestures. A design tool was
developed as front-end in order to allow to human evolve
the desired complex gesture of his avatar.

Avatars –virtual beings– try to simulate some specific
behavior within a virtual environment. Each avatar is,
therefore, carrier of a personality. This personality will be
strongly determined by the user who is manipulating the
avatar, but it will also have an essential component
closely related to the avatar expressiveness itself. So, for
instance, a user will be capable of telling the avatar to
react in an aggressive way at a given situation, but he may
think that it is not quite correct the way in which the
avatar expresses that aggressiveness. It seems clear
enough that the avatar’s own expressiveness will
determine its own behavior and that the suitability of the
expressiveness will depend on the user who is handling it.
Therefore, the programming of certain ‘expressiveness’
will be inappropriate in most cases; it should be the user
himself the one in charge of the design of each and every
‘expressiveness’ of his avatar. This personalization plays
a very important part in order for a user to decide on using
an avatar and to really identify with it.

The problem with avatars’ personalization is which
device should be used to develop it. All gesture
configuration mechanisms are extremely complicated and
the user is neither a computer expert, nor a programmer,
nor has he got to carry out a complex design process.
Therefore, a simple, self-contained model of avatar is
needed as well as an applicable gesture design model; a
device that makes the mechanics of gesture generation
transparent.

This is what has led to the development of a design of
gestures at a complete level, but these are simple gestures,
which, linked up can create a great deal of expressions. In
this model an expression is merely a sequence, of no
prefixed length, of simple gestures.

The system is made up of 10 different simple gestures as
a whole; if we consider expressions of an average length
of 5 gestures, then we avail about hundred thousand
different expressions. This scheme has the advantage of
being able to generate a very large number of possible
expressions; but this makes the expression design scheme
very sophisticated: the plain election of gestures is not
possible, due to the enormous number of existing
possibilities.

In order to solve this problem, a design scheme has been
developed, which is based on genetic algorithms. It
permits the carrying out of an optimal search, minimizing
the number of alternatives to be tried (Holland 1975). In
this scheme, each expression constitutes an individual
from a genetic algorithm; that individual is made up of
some genes, which are each of the gestures, which make
up the expression. Thus, if an individual –an expression–
is made up of 5 gestures, it will have 5 genes, each of one

⋅
=+

muted if

mutednot if ,

,)(

/)(
)1(

α
α

tI

tI
tI

∑ =

+−= n

i

g
i

on
p

1

1

826 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

will contain a value –or allele– that will become the
corresponding gesture.

Genetic Algorithm scheme is referred to as exogenous
Genetic Algorithm. In the case of the design of avatars,
there is no such a function to determine which designs are
best or worst; therefore, we lack of a fitness function to
lead the search. In this case we must opt for an endogen
genetic algorithm scheme, in which the system is
producing new solutions only in terms of the surviving
ones. The survival of solutions is determined by the user,
who is the one that indicates which solutions seem better
to him, from among the suggested ones.

Upon entering the system of genetic gesture generation,
the user encounters four avatars placed over four
pedestals, plus a set of different buttons, Figure 4. We
have used the ActiveWorld avatars to generate complex
movements.

The user can perform the following actions:

� Selecting avatars.

Figure ??. Desing tool

� The selection of a particular avatar is done by
clicking with the mouse pointer over it, Figure ??.
The pedestal will display the order in which the
avatar has been selected. It must be remembered that
the selection order is very important, since the
amount of genetic code that avatar pass on to the next
generation goes in terms of their selection order. If a
selected avatar is clicked over, this one loses its
selection and the order of the rest is reestimated.

� Watching an avatar’s gestures. When clicking over a
pedestal, the avatar standing on it shows a sequence
of gestures.

� By clicking over the button “Move”, all avatars make
their gestures, starting from the avatar most to the
right; when this one has finished its movements, it
starts the one to its left, until completion of all
gestures.

� Generating a new population of avatars. When
clicking over the button “New”, a new generation of

gestures is produced. The avatars having new
gestures replace the old ones and no one appears
selected. The avatars’ new gestures are then
displayed.

� Saving the desired gesture and exiting. When the user
clicks over the button “Exit”, then the program
understands that the user has finished the task of
defining a complex gesture. The simple gestures,
which make up the complex sequence of the avatar
selected with number one, are saved inside a file. All
pedestals buttons and avatars associated to the
gesture generation tool disappear. If the user has no
selected avatars, then no file is saved.

All buttons, pedestals and avatars are inserted in
ActiveWorld such that they behave in the same manner
as any other objet would do; the user can move around,
getting closer, going away and turning around all these
components.

It must be emphasized the simplicity of the design; just by
selecting and invoking a new generation the creation of
complex gestures is attained.

The check of the convergence it was verified with the
number of generations that a user needed to obtain the
desired expression. In average eight generations was
needed to obtain the goal movements. This result shows
that the dynamic of the genetic process trades off between
the convergence and the maintaining of the genetic
diversity in order to explore the solutions space.

5 CONCLUSIONS

The restriction in the small number of individuals along
with the peculiarity of being the user who supplies the
adequacy value have made it necessary to add some
variations to the classical genetic operators. The use of a
weight to modify the probability of change an allele
solves the problem of convergence premature in genetic
algorithm with small populations.

This method has proven to be useful in the artistic design.
Other important application could be problems with high
computational cost.

References

Goldberg D.E. (1989) Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison Wesley,
Reading Massachusetts.

Holland J.H. (1995) Hidden order: how adaptation builds
complexity. Reading Massachusetts, Addison-Wesley.

Holland J.H. (1975) Adaptation in Natural and Artificial
Systems. University of Michigan Press.

Mitchell M. (1996) An Introduction to Genetic
Algorithms. MIT Press, Massachusetts.

827ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Chambers L. (1995) Practical handbook of genetic
algorithms. Vols. 1, 2 edited by Lance Chambers, CRC
Press.

Wilson S. (1985) Knowledge growth in an Artificial
Animal. Proceedings of the 1st International Conference
on Genetic Algorithms and their Applications, (pp. 16-
23).

Stephens C., Waelbroeck H. (1999) Shemata Evolution
and Building Blocks. Evolutionay Computation 7(2). MIT
Press. (pp. 109-124).

Sims K., (1991) Artificial Evolution for Computer
Graphics, Computer Graphics, Vol. 25, (4), pp. 319-328.

Dawkins R. (1986) The blind watchmaker, Longman
Scientific and Technical, Harlow.

Bentley P. (1999) From Coffee Tables to Hospitals:
Generic Evolutionary Design, Evolutionary design by
computers, Morgan-Kauffman, pp. 405-423.

Santos A, Dorado J., Romero J., Arcay B., Rodriguez J.
(2000) Artistic Evolutionary Computer Systems,
Proceedings of the Genetic and Evolutionary
Computation Conference Workshop Program, Las Vegas.

Sims K. (1993) Interactive Evolution of equations for
procedural models, The visual computer 9. pp.466-476.
Springer-Verlag.

Rowland D. (2000) Evolutionary Co-operative Desing
Methodology: The genetic sculpture park. Proceedings of
the Genetic and Evolutionary Computation Conference
Workshop Program, Las Vegas.

Soddu C. (2000) Argenia, Art’s Idea as Generative Code,
Proceedings of the Genetic and Evolutionary
Computation Conference Workshop Program, Las Vegas.

Segovia J., Antonio A., Imbert R., Herrero P., Antonini R.
(1999) Evolución de gestos en mundos virtuales,
Proceedings of CAEPIA 99.

Losson O., Cantegrit B. (2000) Generation of Sentences
in Sign Language by a 3-D Expressive Avatar,
Proceedings on Systemics, Cybernetics and Informatics,
SCI 2000, vol 3, Orlando.

Lim I.S., Thalmann D. (1999) Pro-actively Interactive
Evolution for Computer Animation, Proceedings of
Eurographics Workshop on Animation and Simulation,
CAS99, Milan.

Unemi T. (2000) SBART 2.4: an IEC Tool for Creating
2D images, movies and collage, Proceedings of the
Genetic and Evolutionary Computation Conference
Workshop Program, Las Vegas.

828 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Repeated Structure and Dissociation of Genotypic
and Phenotypic Complexity in Arti�cial Ontogeny

Josh C. Bongard Rolf Pfeifer
Arti�cial Intelligence Laboratory

University of Z�urich
CH-8057 Z�urich, Switzerland

[bongard|pfeifer]@ifi.unizh.ch

Abstract

In this paper, a minimal model of ontogenetic
development, combined with di�erential gene
expression and a genetic algorithm, is used to
evolve both the morphology and neural con-
trol of agents that perform a block-pushing
task in a physically-realistic, virtual environ-
ment. We refer to this methodology as arti-
�cial ontogeny (AO). It is demonstrated that
evolved genetic regulatory networks in AO
give rise to hierarchical, repeated phenotypic
structures. Moreover, it is shown that the
indirect genotype to phenotype mapping re-
sults in a dissociation between the informa-
tion content in the genome, and the com-
plexity of the evolved agent. It is argued
that these �ndings support the claim that
arti�cial ontogeny is a useful design tool for
the evolutionary design of virtual agents and
real-world robots.

1 Introduction

In the �eld of evolutionary robotics and arti�cial life,
emphasis is increasingly coming to bear on the ques-
tion of evolvability: that is, how well the arti�cial evo-
lutionary system continually discovers agents or robots
better adapted to the task at hand (Wagner & Al-
tenberg 1996; Kirschner & Gerhart 1998). It is becom-
ing apparent that modularity, at either the genetic or
phenotypic level, or both, is a necessary characteris-
tic of highly evolvable systems (Wagner 1995; Rotaru-
Varga 1999; Calabretta et al 2000).

Developmental geneticists have made clear that
evolved genetic regulatory networks in biological DNA
contain master control switch genes, known as Hox

genes, which orchestrate the transcription of other
genes to grow high-level repeated structure, such as
the segments in D. melanogaster (refer to Gehring &
Ruddle (1998) for an overview). It has been shown in

a dramatic set of experiments (Lewis 1978) that muta-
tions of Hox genes can lead to large-scale but localized
changes in phenotype. It has been argued (Ra� 1996)
that in some cases, di�erentiation and/or duplication
of a feature may allow evolution to co-opt one copy of
the feature to perform a di�erent functional role. This
process is known as exaptation (Gould & Vrba 1982).
A similar mechanism has been shown to have occurred
at the gene level (Ohno 1970).

Riedl (1978) demonstrated that the information con-
tent of a complex organism is many orders of magni-
tude higher than that contained in the genome, and
has argued that the increased complexity arises from
the hierarchical organization of organic units. Ra�
(1996) has pointed out the same principle holds for
the complex processes that take place during ontogeny.
Others have argued (Delleart & Beer 1994) that an in-
direct, developmental genotype to phenotype mapping
allows for arti�cial evolution to discover more complex
phenotypes than is possible with direct mappings.

In this paper we introduce an augmented genetic algo-
rithm, in which the genomes are treated as genetic reg-
ulatory networks. The changing expression patterns
of these networks over time leads to the growth of
both the morphology and neural control of a multi-
unit, articulated agent, starting from a single unit.
We refer to this system as arti�cial ontogeny (AO),
and as is shown in Bongard & Pfeifer (2001), such
a system can be used to evolve agents that perform
non-trivial behaviours in a physically-realistic, virtual
environment, such as directed locomotion in a noisy
environment. It is reported here that in agents evolved
for a block-pushing task, the morphologies exhibit hi-
erarchical, repeated structure. Evolved agents from
previous studies contain repeated structure, however
these studies relied on more direct, parametric encod-
ing schemes (Sims 1994; Ventrella 1996; Komosinski &
Ulatowski 1999; Lipson & Pollack 2000). Conversely,
in studies conducted using developmental encoding
schemes, the agents are relatively simple, and do not
exhibit any higher-order, repeated structure (Delleart
& Beer 1994; Jakobi 1995).

829ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

In the next section the morphologies of the evolved
agents are explained, the di�erential gene expression
model used to grow them, as well as the method by
which neural networks are grown along with the de-
veloping morphology of the agent. The following sec-
tion reports the results of a set of evolutionary runs in
which agents are evolved for a block-pushing task, and
provides some analysis of the resulting phenotypes and
gene expression patterns. The penultimate section dis-
cusses the adaptive potential of the AO system, and
promising areas of future research. The �nal section
provides some concluding remarks.

2 The Model

In this system, there is a translation from a linear geno-
type into a three-dimensional agent complete with sen-
sors, actuatable limbs and internal neural architecture,
such as in Sims (1994), Ventrella (1996), Komosinski &
Ulatowski (1999), Bongard & Paul (2000), and Lipson
& Pollack (2000). However unlike these other meth-
ods, the genotype to phenotype translation described
here takes place via ontogenetic processes, in which
di�erential gene expression, coupled with the di�usion
of gene products, transforms a single structural unit in
a continuous manner into an articulated agent, com-
posed of several units, some or all of which contain
sensors, actuators and internal neural structure.

2.1 Agent Morphology

Each agent evaluated in the physically-realistic simu-
lation is composed of one or more units. For the ex-
periments reported here, spheres are used to represent
these units. By scaling up the number of units used to
construct an agent, increasingly arbitrary morpholo-
gies can be evolved. Each agent begins its ontoge-
netic development as a single unit. Depending on the
changing concentrations of the gene products within
this unit, the unit may grow in size, until the radius
grows to twice that of the unit's original radius. At
this point the unit splits into two units; the radii of
both the parent and child units are then reset to the
default radius.1

Each unit contains: zero to six joints attaching it other
units via rigid connectors; a copy of the genome direct-
ing development of the given agent; and six di�usion
sites. Each of the six di�usion sites are located midway
along the six line segments originating at the centre of
the sphere, terminating at the surface, and pointing

1Although the agent grows through repeated division
of units, and each unit retains a copy of the genome that
directs the agent's growth, the units used in this model
are not to be equated with the biological concept of a cell,
such as in the AES system (Eggenberger 1997), nor are
they equivalent to the units employed in the parametric
models mentioned above. Rather, repeated division is a
useful abstraction that allows for a relatively continuous
transition from a single unit into a fully developed agent
composed of many such units.

north, south, west, east, up and down. Each di�usion
site contains zero or more di�using gene products and
zero or more sensor, motor and internal neurons. The
neurons at a di�usion site may be connected to other
neurons at the same di�usion site, another di�usion
site within the same unit, or to neurons in other units.
Each of the components of a unit are described in more
detail in the following sub-sections.

A newly-created unit is attached to its parent unit in
one of six possible directions using a rigid connector
that maintains a constant distance between the units,
even though one or both of the attached units may con-
tinue to grow in size. The new unit is placed opposite
to the di�usion site in the parent unit with the maxi-
mum concentration of growth-enhancing gene product.
After a unit splits from its parent unit, the two units
are attached with a rigid connector, the ends of which
are located in the centres of the two units. The par-
ent unit is �xed to the rigid connector. The new unit
is attached to the rigid connector by a one degree of
freedom rotational joint. The fulcrum of the joint is
placed in the centre of the new unit. Joints can rotate
between ��

2
and �

2
radians of their starting orienta-

tion. The axis about which a unit's joint rotates is
set perpendicular to the plane described by the parent
unit, the child unit, and the �rst unit to split from the
child unit. If no units split from a unit, that unit's
rotational joint is removed, and the unit is �xed to
the rigid connector it shares with its parent unit. This
precludes the evolution of wheels, in which units ro-
tate about their own centre of mass. Fig. 1 illustrates
the creation and actuation of an agent's joints in more
detail.

The agent's behaviour is dependent on the real-time
propagation of sensory information through its neural
network to motor neurons, which actuate the agent's
joints.

There are three types of sensors that arti�cial evo-
lution may embed within the units of the agent:
touch sensors, proprioceptive sensors, and light sen-
sors. Touch sensor neurons return a maximal positive
signal if the unit in which they are embedded is in
contact with either the target object or the ground, or
a maximal negative signal otherwise. Proprioceptive
sensors return a signal commensurate with the angle
described by the two rigid connectors forming the ro-
tational joint within that unit (refer to Fig. 1). Light
sensor neurons return a signal that is linearly corre-
lated to the distance between the unit in which the
sensor is embedded and the target object in the en-
vironment. The light sensors are not physically simu-
lated, but calculated geometrically.

The agent achieves motion by actuating its joints. This
is accomplished by averaging the activations of all the
motor neurons within each unit, and scaling the value
between ��

2
and �

2
. Torque is then applied to the rota-

830 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

P

2

P
P

0

1 23

0

1

2

3

03

1

[2][1] [3]

Figure 1: Architecture of articulated joints Panels [1]
through [3] depict part of an agent's morphology. In this
hypothetical scenario, unit 1 split from unit 0, and units
2 and 3 split from unit 1. The black squares represent
fused joints; the black circles represent rotational joints.
The fused joints connecting units 2 and 3 to unit 1 are
not shown for clarity. Rotation occurs through the plane
described by the angle between units 0, 1 and 2. Panel
[1] shows the con�guration of the agent immediately af-
ter growth, before activation of the neural network. Unit
1 contains a proprioceptive sensor neuron, which emits a
zero signal. In panel [2], unit 1 has rotated counterclock-
wise, either due to internal actuation or external forces.
The proprioceptive sensor in unit 1 emits a nearly maxi-
mal negative value. In panel [3], the hinge in unit 1 reaches
has rotated clockwise: the proprioceptive sensor now emits
a nearly maximal positive signal. Note that the architec-
ture of the agent's morphology precludes the hinge from
reaching its rotational limits, and the proprioceptive sen-
sor from generating either a maximally negative or positive
signal.

tional joints such that the angle between the two rigid
connectors forming the joint matches this value. The
desired angle may not be achieved if: there is an exter-
nal obstruction; the units attached to the rigid connec-
tors experience opposing internal or external forces; or
the values emitted by the motor neurons change over
time. Note that failure to achieve the desired angle
may be exploited by evolution, and may be a neces-
sary dynamic of the agent's actions. If a unit contains
no motor neurons, the rotational joint in that unit is
passive.

Internal neurons can also be incorporated by evolution
into an agent's neural network, in order to propagate
signals from sensor to motor neurons. Two additional
neuron types are available to evolution. Bias neurons
emit a constant, maximum positive value. Oscillatory
neurons emit a sinusoidal output signal. The summed
input to an oscillatory neuron modulates the frequency
of the output signal, with large input signals producing
an output signal with a high frequency, and low input
signals producing a low frequency output signal.

2.2 Di�erential Gene Expression

Unlike the recursive parametric encoding schemes
mentioned above, each genome in the AO system is
treated as a genetic regulatory network (Kau�man
1993, Jakobi 1995, Eggenberger 1997 and Reil 1999),
in which genes produce gene products that either have
a direct phenotypic e�ect or regulate the expression of
other genes.

For each genome to be evaluated in the population, it
is �rst copied into the single unit from which the even-
tual fully-formed agent develops. The genome is then
scanned by a parser, which marks the site of promo-
tor sites. Promotor sites indicate the starting position
of a gene along the genome. A value in the genome
is treated as a promotor site if the value is below n

l
,

where n is the average number of genes that should
appear within each initial random genome, and l is
the length of genomes in the initial, random genetic
algorithm population. This is done so that, given a
starting population of random genomes, each genome
will contain, on average, the desired number of genes.
In the results reported in the next section, l = 100 and
n = 10, causing values between 0:00 and 0:10 to serve
as promotor site indicators.

Fig. 2 provides a pictorial representation of a genome
directing the growth of an agent. The seven oating-
point values following a gene's promotor site supply
the parameter values for the gene. If the �rst value (P1
in Fig. 2) is less than 0:5, gene expression is repressed
by presence of the gene product which regulates its
expression; otherwise gene expression is enhanced by
presence of its regulating gene product. The second
value (P2 in Fig. 2) indicates which of the 24 possi-
ble gene products regulates the gene's expression. The
third value (P3 in Fig. 2) indicates which of the 24
possible gene products is produced if this gene is ex-
pressed. The fourth value (P4 in Fig. 2) indicates
which of the 6 gene product di�usion sites the gene
product is di�used from if this gene is expressed. The
�fth value (P5 in Fig. 2) indicates the concentration of
the gene product that should be injected into the di�u-
sion site if the gene is expressed. The sixth and seventh
values (P6 and P7 in Fig. 2) denote the concentra-
tion range of the regulating gene product to which the
gene responds. If the concentration of the regulating
gene product to which the gene responds is within this
range, and the gene is enhanced by presence of its reg-
ulating gene product, the gene is expressed; otherwise,
gene expression is repressed. Genes that are repressed
by their regulating gene product are expressed if the
gene product's concentration is outside the denoted
range, and repressed otherwise.

After the genes in the genome have been located, the
originating unit of the agent to be grown is injected
with a small amount of gene product at di�usion site
1. Due to gene product di�usion, a gradient is rapidly
established in this �rst unit, among the 6 di�usion
sites. This is analogous to the establishment of a gra-
dient of maternal gene product in fruit ies, which
leads to the determination of the primary body axis
(Anderson 1984), and breaking of symmetry in early
embryogenesis. It can be seen from Fig. 3 that the
degree of symmetry in evolved agents varies, and is
under evolutionary control.

As the injected gene product di�uses throughout the

831ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

G1 G2 G 3 G 4 G n

0.500.03 (1) (22) (3) (1) 0.37 0.0P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P7

P7

P6

C 2

C 3

C 1

C 4

C 2

C 3

C 1

C 4

TSTS

M M

. . .

Pr

Pr

0.08 (0) (3) (22) 0.91 0.50 0.99(4)

1.0 1.0

Figure 2: Ontogenetic interactions in a developing
agent Two structural units of an agent are shown above,
but only displayed in two dimensions for clarity. For this
reason, only four of the six gene product di�usion sites
are shown; the other two lie at the top and bottom of the
spherical units. The genome of the agent is displayed, along
with parameter values for two genes. The values in paren-
theses indicate that these values are rounded to integer
values. Gene G1 indicates that it is repressed (parameter
P1) by concentrations of gene product 3 (P2) between 0:5
and 0:99 (P6, P7). Otherwise, it di�uses gene product 22
(P3) from gene product di�usion location 4 (P4), indicated
in the diagram by C4. Note that genes G1 and G3 emit
gene products which regulate the other's expression. The
thick dotted lines indicate gene product di�usion between
di�usion sites within a unit; the thin dotted lines indicate
gene product di�usion between units. Both units contain
a touch sensor neuron (TS) and a motor neuron (M) con-
nected by excitatory synapses.

unit, it may enhance or repress the expression of genes
along the genome, which in turn may di�use other gene
products. There are 24 di�erent types of gene prod-
ucts. Two a�ect the growth of the unit in which they
di�use. At each time step of the development phase,
the di�erence between the concentration of these two
chemicals is computed. If the di�erence is positive, the
radius of the unit is increased a small increment; if the
di�erence is negative, the unit does not grow in size.
Thus these two chemicals function as growth enhancer
and growth repressor, respectively. If the radius of a
unit reaches twice that of its original radius, a split
event is initiated. The radius of the parent unit is
halved, the gene product di�usion site with the maxi-
mum concentration of growth enhancer is located, and
a new unit is attached to the parent unit at this posi-
tion. Half of the amounts of all gene products at this
di�usion site are moved to the neighbouring di�usion
site in the new unit. A copy of the genome is assigned
to the new unit. The gene expression patterns of the
parent and child units are now independent, except for
indirect inuence through inter-unit di�usion of gene
products.

There are then 17 other chemicals which a�ect the
growth of the agent's neural network, and are ex-
plained in the next section. Finally, �ve gene products

have no direct phenotypic e�ect, but rather may only
a�ect the expression of other genes. That is, concen-
trations of these gene products at di�usion sites can
enhance or repress gene expression in that unit (like
the other 19 gene products), but cannot modify neu-
ral structure, or stimulate or repress the growth of that
unit.

All 24 gene products share the same �xed, constant
di�usion coeÆcients. For each time step that a gene
emits gene product, the concentration of that gene
product, at the di�usion site encoded in the gene, is
increased by the amount encoded in the gene (which
ranges between 0:0 and 1:0), divided by 100. All gene
product concentrations, at all di�usion sites, decay by
0:005 at each time step. Gene products di�use between
neighbouring di�usion sites within a unit at one-half
this rate. Gene products di�use between neighbouring
units at one-eighth the rate of intra-unit di�usion.

2.3 Neural Growth

Cellular encoding (Gruau 1996) has been incorporated
into our model to achieve the correlated growth of mor-
phology and neural structure in a developing agent.
Cellular encoding is a developmental method for evolv-
ing both the architecture and synaptic weights of a
neural network. The process involves starting with a
simple neural network of only one or a few neurons,
and iteratively or recursively applying rewrite rules
that modify the architecture or synaptic weights of
the growing network.

In our model, for each new unit that is created, includ-
ing the �rst unit, a small neural network is created as
follows: A touch sensor neuron (TS) is placed at di�u-
sion site 1, a motor neuron (M) is placed at di�usion
site 2, and a synapse with a weight of 1:0 is connected
from the sensor neuron to the motor neuron (refer to
Fig. 2). When a unit undergoes a split event, any
neurons at the di�usion site where the split event was
initiated are moved to the neighbouring di�usion site
of the new unit. For example, if a unit splits, and the
new unit is attached near its northern face, all the neu-
rons in the northern di�usion site of the parent unit
are moved to the southern di�usion site in the new
unit. Neurons may also move from one di�usion site
to another within a unit, depending on the concentra-
tions of gene products at those sites. The combination
of these dynamics may lead to the directed migration
of neurons across the units as they divide. As they
migrate, synapses connecting these neurons are main-
tained: although this process is di�erent from the neu-
ral growth cone model (in which biological neurons
innervate distant cells using exploratory synaptic out-
growths (Kater 1990)) and instantiations of this model
(Delleart & Beer 1994; Jakobi 1995), it does allow for
neurons in distant units to remain connected.

Each of the 17 gene products responsible for neural
development correspond to one rewrite operation that

832 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

modi�es local neural structure. At each di�usion site,
two pointers are maintained: the �rst pointer indi-
cates which synapse will undergo any synaptic modi�-
cation operations; the second pointer indicates which
neuron will undergo any neuronal modi�cation oper-
ations. The 17 rewrite rules correspond to serial and
parallel duplication of neurons; deletion of neurons and
synapses; increase and decrease of synaptic weight; du-
plication of synapses; neuron migration within a unit;
changing of the a�erent and e�erent target of synapses;
and changing of neuron type. If the concentration of
one of these 17 gene products at a di�usion site exceeds
0:8, and there is neural structure at that site, the cor-
responding operation is applied to the neural structure
there. Once development is complete, the neural net-
work that has grown within the agent is activated. At
each time step of the evaluation period, the input to
each neuron is summed, and thresholded using the ac-
tivation function 2

1+e
�s
� 1, where x is the neuron's

summed input. Neuron values can range between 1
and �1. Using this neural development scheme, the
AO system is able to evolve dynamic, recurrent neu-
ral networks that propagate neural signals from sensor
neurons to motor neurons distributed throughout an
agent's body.

3 Results and Analysis

The evolutionary runs reported in this section were
conducted using a variable length genetic algorithm;
the genomes were strings of oating-point values rang-
ing between 0:00 and 1:00, rounded to a precision of
two decimal places. A population size of 200 was used,
and each run lasted for 200 generations. All genomes
in the initial random population have a starting length
of 100 values. The mutation rate was set to produce,
on average, random replacement of a single value for
each new genome. Unequal crossover was employed,
which allowed for gene duplication and deletion. Tour-
nament selection, with a tournament size of 2, was
used to select genomes to participate in crossover.

As in Bongard & Pfeifer (2001), agents are evaluated
in a physically-realistic virtual environment using a
commercially available physics-based simulation pack-
age2. Each genome in the population is evaluated as
follows: The genome is copied into a single unit, which
is then placed in a virtual, three-dimensional environ-
ment. A target cube is placed 20 units3 to the north
of the unit; the sides of the cube are 70 units long.
Morphological and neural development is allowed to
proceed, as described in the previous section, for 500
time steps. After the development phase, the neural
network is activated, and the agent is allowed to oper-
ate in its virtual environment for 1000 time steps. The

2MathEngine PLC, Oxford, UK, www.mathengine.com
3Spatial distance in the physics-based simulator is rel-

ative; we treat a `unit' as equal to the default radius of a
newly-created unit.

a) b)

c) d)

Figure 3: Four agent morphologies The block is not
shown in the �gure for the sake of clarity, but lies just to
the left of the agents. The rigid connectors are also not
shown. The white units indicate the presence of both sen-
sor and motor neurons within that unit. The light gray
units indicate the presence of both sensor and motor neu-
rons in that unit, but the one or more motor neurons do
not actuate the rotational joint in that unit either because
there are no input connections to the motor neuron, or
because there is no joint within this unit. The dark gray
units indicate the presence of sensor neurons, but no motor
neurons. The black units indicate the unit contains neither
sensor nor motor neurons.

Figure 4: Results from a typical run. Genome length
was found to be roughly proportional to the number of
genes, and is not plotted.

�tness of an agent is given as
P1000

i=2
n(t(i�1))�n(t(i)),

where n(t(i)) is the northern distance of the centre of
the cube from the origin at time t. Thus the agent is
rewarded for reaching the cube as fast as possible, and
pushing it as far as possible. By making the cube much
larger than the units comprising an agent, we can ex-
ert indirect selection towards large agents: agents must
have a large mass in order to exert a large force against
the cube. Agents a) and b) in Fig. 3 depict the mor-
phologies of the most �t agents from two independent
runs. Agents c) and d) were the most �t agents at
generation 110 and 130 of the run shown in Fig. 4.

In order to detect the presence of hierarchical, re-
peated structure in evolved agents, the local neural
structure within units was used as a signature to dis-

833ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

tinguish between units. For instance in agent a) in
Fig. 3, the two neighbouring units that have lost their
motor and sensory capabilities are repeated twice. In
the right-hand agent, the three most distal units in the
three main appendages have also lost their motor and
sensory capabilities.

The most �t agent from each of the nine evolution-
ary runs was extracted, and the number of motor and
sensor neurons in each unit of each appendage was
counted. The tallies for each unit are reported in Fig.
5. Because the units comprising an agent are orga-
nized as directed trees, appendages can be determined
as follows: for each terminal unit in the agent, traverse
up the tree until a unit is found with more than one
child unit. The units that were traversed, minus the
last one counted, comprise an appendage.

Finally, the gene expression patterns of four units are
reported in Fig. 6. Units a) and c) give rise to ap-
pendages with similar patterns of local neural struc-
ture, and themselves have similar internal neural struc-
ture. Units b) and d) do not give rise to further struc-
ture, and have similar neural structure. This structure
is di�erent from units a) and c). The four units are
indicated in bold in Fig. 5. Units a) through d) all
split from the same parent unit during ontogeny, but
appear at increasingly later times during the agent's
development.

4 Discussion and Future Work

Fig. 4 indicates that no agent is able to push the block
until generation 20; this event is accompanied by a
doubling in the number of genes carried by these more
�t agents. However, the gene complement of agents
does not increase considerably during the rapid �tness
increase which occurs around generation 120. Agents
c) and d) in Fig. 3 indicate that this �tness increase
was accomplished by a radical increase and reorgani-
zation of the agent's morphology and neural control.
This suggests that the AO system is exhibiting that
predicted property of indirect encoding schemes, that
is, large increases in phenotypic complexity4 without
corresponding large increases in genome size.

Fig. 5 indicates that invariably, evolution converges
on agents that exhibit hierarchical repeated structure.
This can be seen most clearly in the �rst agent in
Fig. 5, in which the �rst agent contains three simi-
lar appendages with three distal units each containing
neither motor nor sensor neurons. Moreover, Fig. 5
indicates that genetic changes to local neural struc-
ture can be repeated both within an appendage|as
seen by the deletion of function in the three distal
units|and across appendages|as seen by the triple
deletion of function repeated in three di�erent ap-

4In this context, complexity is simply taken as the num-
ber and organization of units, and variation in local neural
structure within those units.

pendages.5 In other words, agents tend to have ap-
pendages in which local neural structure is repeated
along the length of the appendage, and appendages
themselves are repeated. It is important to note that
this structure|which we, as observers, consider hier-
archical, repeated structure|is the result of the com-
plex, dynamical interplay between the evolved genetic
regulatory networks, the developmental process, and
the selection pressure exerted on the evolving popu-
lation. This suggests that the study of genetic regu-
latory networks should not be conducted in isolation,
but rather in the context of embodied agents evolved
for a speci�c task. This would then give us a clearer
picture of how both natural and arti�cial evolution
shape such regulatory networks over time.

Finally, Fig. 6 indicates that the units that give rise to
similar appendages have similar gene expression pat-
terns, even though they appear at di�erent times dur-
ing ontogeny. Similarly, the gene expression patterns
of two other units, which appear at roughly the same
time as the other two units, correspond. However, the
gene expression patterns are di�erent between these
two pairs of units. This is shown by the expression of
the �rst marked gene in units a) and c), but not in
b) and d); a short expression band for the other three
marked genes appears during late ontogeny in units b)
and d), but not in a) and c). This indicates that, even
though all four of these units originated from the same
parent unit, and at roughly the same time during on-
togeny, the units which gave rise to appendages have
a shared pattern of expression that di�ers from the
pair that does not give rise to appendages. This result
suggests that future studies might uncover one or a
small set of genes that lead to the growth of higher-
order structure when active, but repress such growth
when inactive. These genes would serve as analogues
of Hox genes in biological organisms, and would indi-
cate that such genes are the natural result of evolution
when coupled with ontogeny and di�erential gene ex-
pression. Our future studies will also include more
detailed analysis of the evolved genetic networks.

5 Conclusions

To conclude, this paper has demonstrated that a min-
imal model of biological development, coupled with
a genetic algorithm that allows for gene duplication
and deletion, is suÆcient to evolve agents that per-
form a non-trivial task in a physics-based virtual en-
vironment. Moreover, this system|referred to as ar-
ti�cial ontogeny|is suÆcient to produce hierarchical,
repeated phenotypic structure. In addition, it has been
shown that the inclusion of di�erential gene expression
in arti�cial ontogeny dissociates the information con-

5From visual inspection of these agent's behaviours, it
seems as if these appendages use a whiplike motion, requir-
ing strong actuation at the proximal end and little or no
actuation at the distal end.

834 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Figure 5: Neural composition of nine evolved agents Each symbol indicates the number of motor and sensor
neurons in a structural unit. Neural structure is only reported for units that are part of an appendage. Units comprising
an appendage are linked by gray lines. Gray symbols indicate no rewrite rules have been applied to the neural structure in
that unit; black symbols indicate units in which genetic manipulation of local structure has occurred. The gene expression
patterns of the four units indicated by bold symbols is shown in Fig. 6. Agent 1 corresponds to agent b) in Fig. 3.

tent of the genome from the complexity of the evolved
phenotype.

Both of these properties point to the high evolvabil-
ity of the AO system: both the production of hierar-
chical, repeated organization and the dissociation of
genotypic and phenotypic complexity are necessary if
arti�cial evolution is to prove useful for the design of
robots that solve increasingly complex tasks, the ulti-
mate goal of evolutionary robotics research.

References

J. Bongard and C. Paul (2000). Investigating morpho-
logical symmetry and locomotive eÆciency using vir-
tual embodied evolution. In Proceedings of the Sixth

International Conference on Simulation of Adaptive

Behaviour, pp. 420{429. MIT Press.

J. Bongard and R. Pfeifer (2001). Evolving complete
agents using arti�cial ontogeny. To appear in Proceed-

ings of The First International Workshop on Morpho-

functional Machines, Springer-Verlag, Berlin.

K. V. Anderson and C. N�usslein-Volhard (1984).
Information for the dorso-ventral pattern of the
Drosophila embryo is stored in maternal mRNA. In
Nature 311:223{227.

R. Calabretta, S. Nol�, D. Parisi and G. P. Wagner
(2000). Duplication of modules facilitates the evo-
lution of functional specialization. In Arti�cial Life

6(1):69{84. Cambridge, Mass: MIT Press.

F. Delleart, and R. D. Beer (1994). Toward an evolv-
able model of development for autonomous agent syn-
thesis. In Arti�cial Life IV, 246{257. MIT Press.

P. Eggenberger (1997). Evolving morphologies of sim-
ulated 3D organisms based on di�erential gene expres-
sion. In Proceedings of the Fourth European Confer-

ence on Arti�cial Life, 205{213. Berlin: Springer-
Verlag.

W. J. Gehring and F. Ruddle (1998). Master Control

Genes in Development and Evolution: The Homeobox

Story (Terry Lectures), New Haven: Yale University
Press.

S. J. Gould and E. S. Vrba (1982). Exaptation|a
missing term in the science of form. In Paleobiology

8:4{15.

F. Gruau, D. Whitley, and L. Pyeatt (1996). A com-
parison between cellular encoding and direct encod-
ing for genetic neural networks. In Proceedings of the
First Genetic Programming Conference, 81{89. MIT
Press.

N. Jakobi (1995). Harnessing morphogenesis. Pre-
sented at The International Conference on Informa-

tion Processing in Cells and Tissues, Liverpool, UK.

S. B. Kater and P. B. Guthrie (1990). Neuronal growth
cone as an integrator of complex environmental infor-
mation. In Cold Spring Harbor Symposia on Quan-

titative Biology, Volume LV, 359{370. Cold Spring
Harbor Laboratory Press.

835ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

a)

b)

c)

d)

Figure 6: Gene expression patterns for four units. Dark gray and light gray bands correspond to periods of gene
activity and inactivity, respectively. Four genes are marked by asterisks; the expression pattern of these genes is similar in
units a) and c), but di�erent in units b) and d). The expression times of these genes are darkened for clarity. Genes that
are always on or always o� during ontogeny are not shown. Note the evolved gene families, which have similar expression
patterns.

S. A. Kau�man (1993). The Origins of Order, Oxford,
UK: Oxford University Press.

M. Kirschner and J. Gerhart (1998). Evolvability. In
Proc. Nat. Acad. Sci 95:8420-8427.

M. Komosinski, and S. Ulatowski (1999). Framsticks:
Towards a simulation of a nature-like world, creatures
and evolution. In: Proceedings of 5th European Con-

ference on Articial Life, 261{265. Springer-Verlag.

E. B. Lewis (1978). A gene complex controlling seg-
mentation in Drosophila. In Nature 276:565-570.

H. Lipson and J. B. Pollack (2000). Automatic de-
sign and manufacture of arti�cial lifeforms. In Nature

406:974{978.

S. Ohno (1970). Evolution by Gene Duplication. New
York: Springer Verlag.

R. A. Ra� (1996). The Shape of Life. Chicago: The
University of Chicago Press.

T. Reil (1999). Dynamics of gene expression in an arti-
�cial genome{implications for biological and arti�cial
ontogeny. In Proceedings of the Fifth European Con-

ference on Arti�cial Life, 457{466. Springer-Verlag.

R. Riedl (1978). Order in Living Organisms: A Sys-

tems Analysis of Evolution. Chichester: John Wiley
& Sons.

A. Rotaru-Varga (1999). Modularity in evolved arti�-
cial neural networks. In Proceedings of the Fifth Eu-

ropean Conference on Arti�cial Life, 256{260. Spring-
Verlag.

K. Sims (1994). Evolving 3D morphology and be-
haviour by competition. In Arti�cial Life IV, 28{39.
MIT Press.

D. Terzopoulos, T. Rabie and R. Grzeszczuk (1996).
Perception and learning in arti�cial animals. In Arti-

�cial Life V, 313{320. MIT Press.

J. Ventrella, (1994). Explorations of morphology and
locomotion behaviour in animated characters. In Ar-

ti�cial Life IV, pp. 436{441. MIT Press.

G. P. Wagner (1995). Adaptation and the modular
design of organisms. In: Advances in Arti�cial Life,
317{328. Springer Verlag.

G. Wagner and L. Altenberg (1996). Perspective:
Complex adaptations and the evolution of evolvabil-
ity. In Evolution 50(3):967{976.

836 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

On the inuence of learning time on evolutionary online learning of
cooperative behavior

J�org Denzinger

Computer Science Department
University of Calgary, Canada

Michael Kordt

Fachbereich Informatik
Universit�at Kaiserslautern, Germany

Abstract

We present an online learning approach for
learning cooperative behavior in multi-agent
systems based on invoking an o�ine learning
method as a special action \learn". We apply

this approach to evolutionary o�ine learn-
ing using situation-action-pairs and the near-
est-neighbor rule as agent architecture. For
the application Pursuit Games we show that
the online approach using evolutionary o�-
line learning allows for good success rates for
rather di�erent game variants. Particularly,
we perform experiments highlighting the in-
uence of the time needed for learning and
of the parameters of the evolutionary o�line
method.

Our results show that even a duration of
\learn" which is several times longer than
the usual duration of an agent's actions still
achieves good success rates. The same ap-
plies to rather small values for the key pa-
rameters of the o�ine method. Together, this
suggests that this evolutionary online learn-
ing approach is a very good alternative to the
well-known online approaches based on rein-
forcement learning.

1 Introduction

Achieving cooperative behavior of a group of agents
either requires a careful planning, design and imple-
mentation of the agents by human developers or can
be tackled by using learning techniques. Learning can
either be used in an o�ine manner, which means that
the learning phase is separated from (i.e. before) the
real application phase of the agents, or it can be on-
line, in which case the agents try to adapt their be-

havior during their work on the real application. Evo-
lutionary approaches have already proven to be quite
successful for o�ine learning of cooperative behavior
of agents, as has been demonstrated in Manela and
Campbell (1993), Hayes et al. (1995) or Denzinger and
Fuchs (1996). In these approaches the behavioral pat-
terns of all cooperating agents were evolved together
and the resulting agents were not capable of learning
for themselves, they just consisted of the application
speci�c strategies that then later were applied to solve
the problem. The cited papers show that even a cer-
tain exibility of these strategies, to deal with random
e�ects, is achievable.

For online learning of agents, not many concepts in-
volving evolutionary methods have been proposed so
far. The dominating approach has been to employ re-
inforcement learning techniques, i.e. associating with
each possible action in each possible situation a cer-
tain weight describing the usefulness of the action in
the situation (see Watkins (1989), Wei� (1995) or Tan
(1993)). As in case of evolutionary algorithms, some
random decisions are needed in order to realize the nec-
essary exploration of alternatives during solving the
given task. From the point of view of online learn-
ing, at �rst glance the use of evolutionary methods
with the need to evaluate a lot of di�erent individuals
that are the result of the evolutionary process seems to
promise performance problems, because many individ-
uals will not represent solutions and trying to evaluate
their performance might gravely endanger the solving
of the given task (that has to be interleaved with the
learning process in order to be an online approach).
We will see that this does not have to be the case.

In this paper we will use the o�ine learning approach
presented in Denzinger and Fuchs (1996) together with
the idea of an action \learn" and modeling of other
agents to get an online learning approach for coopera-
tive behavior of agents. An online learning agent will
monitor and remember all occurring situations and the

837ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

actions the other agents performed in these situations
in order to construct models of these other agents. It
will also periodically perform the action \learn" that
results in the agent invoking the o�ine learning ap-
proach. This o�ine learning approach evaluates the
�tness of agent strategies based on a simulation of the
real application and the success of the particular agent
strategy in this simulation. For online learning, the
simulation starts from the situation the learning agent
anticipates to be in after learning and uses the models
of the other agents to predict their behavior.

We applied this online learning approach to variants
of the well-known Pursuit Game and showed that the
approach is capable to solve instances that are not
solvable by o�ine learning (see Denzinger and Kordt,
2000). But before we can apply the approach to more
complex application areas, a more precise study of the
inuence of the time needed for performing \learn"
relative to the execution time of \standard" actions
is needed. And then some experimental evaluation is
necessary to determine if the parameter values of the
o�ine learning approach { like number of individuals
and generations, or length of the simulation { that are
needed to achieve sensible execution times for \learn"
still result in a suÆcient learning quality.

The experiments we present in this paper show that in-
deed the relation between the time needed for perform-
ing \learn" and the execution time of other actions
plays an important role for success, and too much time
needed for \learn" will lead to too much uncertainty
so that learning is not suÆciently successful. On the
other side, we can show that already relatively small
values for the parameters mentioned above achieve �ne
learning results, so that the presented approach to evo-
lutionary online learning is a good, even superior al-
ternative to the non-evolutionary online learning ap-
proaches.

2 Online Learning by O�ine Learning

O�ine learning of cooperative behavior of a group of
agents is intended to produce strategies for all or some
of the agents involved in performing the task to achieve
a certain common goal. O�ine learning takes place be-
fore the agents actually perform this task and usually
involves the exploration of many possible strategies,
their evaluation and then their optimization. During
the exploitation of these learned strategies, i.e. the ac-
tual tackling of the task, no more learning takes place.
So, we can see o�ine learning as a kind of selection
process to �nd the strategies for the individual agents
that, if applied together, achieve the intended common
goal. In this sense, the resulting agents themselves do

not have any learning capabilities.

In contrast, online learning agents are in the process
of performing tasks towards achieving a certain goal.
Therefore learning has to be integrated into these tasks
and combined with the actions that are taken. As a
consequence, timing of actions and learning becomes
a very crucial issue, because there can be actions that
are not reversible. And if later learning leads to the
knowledge that such an action should not be per-
formed in a certain situation, the goal might already
be not reachable anymore. So, the balance between
exploration and exploitation of the learned knowledge
is very crucial and online learning of cooperative be-
havior of agents is a very diÆcult task (if the problem
to be solved is not very simple).

2.1 Our General Method

In general, an agent can be described as a function fAg
that maps situations and the internal state of the agent
to an action (or action sequence) that the agent is ca-
pable to perform. The internal state of an agent con-
tains all its knowledge about the environment, other
agents and itself. This can include goals, plans or ob-
servations. Note that from outside the internal state
usually cannot be observed, so that an observer sees an
agent only as a function fAg;Obs mapping situations to
actions. Also actions might include components that
manipulate the internal state of an agent, and these
components also cannot be observed from outside.

The result of o�ine learning is such a function fAgi
for each agent Agi that was included into the learn-
ing process. In contrast, the function fAg of an online
learning agent contains a component that is respon-
sible for learning (and such a component cannot be
identi�ed in the fAgi resulting from o�ine learning).

Our idea is to realize this component by invoking the
o�ine learning approach and to trigger the use of the
component by introducing a new action \learn". The
o�ine learning approach is based on a simulation of
the real environment the agent is acting in, its most
important part being the simulations (ormodels) of the
other agents. These models are either derived from the
agent's observations of their behavior or from informa-
tion communicated by the other agents to the online
learning agent.

More precisely, an online learning agent performs the

following cycle:

1. acting in the environment (real world) according
to its current strategy for a given amount of time
or until its success is obviously not good enough

2. performing the action \learn":

838 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

(a) generate/update the models of the other
agents

(b) determine the situation safter after perform-
ing \learn"

(c) run o�ine learning approach with safter as
start situation and the models of the other
agents

(d) combine best strategy found by o�ine learn-
ing with current strategy to get a new one

There are several ways to realize each of these steps,
even for a given agent architecture and a given o�ine
learning approach. Problems to be solved are, for ex-
ample, how to determine success during the applica-
tion of the current strategy in the real world, or how
to generate the models for the other agents. There are
also many possibilities for generating a new strategy,
from simply replacing the old strategy with the learned
one over somehow putting old and learned strategy to-
gether to just keeping at the old strategy (if the learned
one does not seem good enough).

In addition to the possibilities and parameters of this
general online learning method, there are also the pa-
rameters of the o�ine learning approach that inu-
ence the online learning. Obviously, the time needed
for o�ine learning will also inuence online learning,
because this time must be known before performing
o�line learning in order to determine safter. There-
fore the o�ine learning method should be realized as
any-time algorithm (see Boddy and Dean, 1988). And
among the parameters of the o�ine learning method
should be the length (in time units) of the simulations
used by it.

2.2 Evolutionary Learning with SAPairs

If we look at the requirements for the o�ine learning
method in 2.1, then evolutionary algorithms in gen-
eral already provide the any-time property. The other
requirements are met by the approach presented in
Denzinger and Fuchs (1996) that is based on proto-
typical situation-action-pairs (SAPs) and the nearest-
neighbor rule (NNR) as agent architecture and a ge-
netic algorithm with sets as individuals and evaluation
of simulation runs as �tness measure.

More precisely, an agent consists of a function fAg that
is based on a set of SAPs. A situation is represented
by a vector of numerical values that describe the envi-
ronment the agent is acting in (including information
about the other agents) and also the necessary infor-
mation about the internal state of the agent. This
means that a situation in a SAP may contain more
information than the situations mentioned in 2.1. The

actions in a SAP are the actions that the agent is able
to perform (without the action \learn") or sequences
thereof.

The agent determines its next action by measuring the
distance between the actual situation and the situa-
tions of all its SAPs. A possible distance measure is
the Euclidean distance, but also other measures can
be used. Then it performs the action of the SAP with
the smallest distance. This is the well-known nearest-
neighbor rule.

This agent architecture is very well suited for learning,
because the strategy of an agent can be easily changed
by adding or deleting SAPs or just changing compo-
nents of an SAP. From the point of view of evolution-
ary algorithms, the agent architecture also has many
advantages, as we will see. In Denzinger and Fuchs
(1996), a genetic algorithm was used to evolve sets of
agent strategies, i.e. a strategy (which is a set of SAPs)
for each agent that needed to learn one. These strate-
gies, when applied together, should achieve a good co-
operative behavior of the agents. The used genetic
operators were picking random SAPs out of the strat-
egy for one agent of two individuals as crossover and
generating a random SAP or deleting a SAP out of a
set as mutation.

For determining the �tness of an individual (which de-
scribes a team of agents), the agents are put to solving
their task (in a limited simulation). If the agents are
able to succeed, the �tness is the number of time units
needed. If the task is not accomplished then for each
time unit t of the simulation a measure of task ful-
�llment mtask(t) is computed and these measures are
summed up. If there are random factors involved in
the simulations then the mean �tness value over sev-
eral di�erent simulation runs is taken as the �tness
of an individual. Important parameters of this o�ine
learning method are the maximal number sapmax of
SAPs of an agent, the maximal number Tmax of time
units in a simulation, the number b of simulation runs
that go into determining the �tness of an individual
and, as usual for a genetic algorithm, the number of
individuals in a population and the maximal number
of generations.

Using this o�ine learning approach for online learning,
we have to learn a strategy for one agent only. Also,
the length of a simulation run can be much shorter
than in the o�ine case (as we will see in our experi-
ments). We might also use a lower sapmax value. The
measures of task ful�llment mtask(t) can be used to
determine the success of a strategy in the real world,
by assuming that the strategy is successful as long as
mtask(ti) gets better from some ti to some ti+k . Com-

839ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

bining strategies realized by SAPs is rather easy by
just combining the sets. Finally, SAPs can also be
easily generated out of an agent's observations of the
other agents. Therefore SAPs (together with NNR)
provide a very good way to model the other agents.

3 The OLEMAS System

The OLEMAS system (OnLine Evolution of Multi-
Agent Systems) instantiates the methods described in
Section 2 for the application area Pursuit Games. In
the following, we will �rst take a closer look on this
application area and then we will describe OLEMAS
in more detail.

3.1 Pursuit Games

The original Pursuit Game was described in Benda
et al. (1985) as four dot-shaped hunter agents trying
to surround and immobilize a dot-shaped prey agent
on an in�nite grid world without any obstacles. All
agents could only perform movements in the horizontal
and vertical directions at the same speed (one square
per time unit). Every agent could see all the other
agents and this was the only kind of \communication"
between the agents. The goal of the game was to de-
velop a set of hunter strategies to win the game against
a prey choosing its moves randomly.

While this original game is considered a toy prob-
lem these days (although a diÆcult one), many vari-
ants have been developed that vary numerous fea-
tures of the game. A large collection of these features
and possible instantiations can be found in Denzinger
and Fuchs (1996). We implemented the possibility to
vary all the features mentioned there in OLEMAS and
added some additional possible instances. For exam-
ple, we do not only have �xed obstacles, but also agents
that play the role of innocent bystanders (or moving
obstacles).

Among the features that raise Pursuit Games from
simple toy problems to abstractions of real world high-
level robot control problems are the shape, speed, and
possible actions of an agent. By letting agents occupy
several squares of the grid representing the world we
introduce additional actions, namely turns, and the
diÆculty of not only being in a certain position but
also needing a certain orientation. Assigning to each
action of each agent an execution time (as multiples of
a basic time unit) also accounts for more reality and
often more diÆculties in achieving the common goal.
The same applies to having the bystanders that ac-
cidentally can help or hinder both hunters and prey
(and that allow for game variants in which predicting

their behavior is essential for winning the game). Nat-
urally, bystanders and prey have their own strategies
and the di�erent possibilities here already produce an
in�nite number of variants. Other features include the
number of agents of all types, the start situation and
the de�nition of what is a winning situation.

3.2 The System

OLEMAS is implemented in C++ and uses Tcl/Tk
and Tix for visualizing the pursuit games. The sys-
tem architecture is depicted in Figure 1. Basis for
the agent architecture are the situation vectors and
the distance measure. A situation vector of an agent
contains each other agent's coordinates relative to the
agent's position (in a �xed order) and its orientation.
If a situation sj contains the coordinates xij and yij of
agent i, 1 � i � n, and its orientation oij (0 = north,
1 = east, 2 = south, 3 = west), then the distance d to

situation sk is computed as

d(sj ; sk) =

nX

i=1

((xij � xik)
2 + (yij � yik)

2 +

((oij � oik)
2mod 8)):

The contribution of the orientation of the agent has
to be taken mod 8 in order to treat di�erent orienta-
tions clockwise and anticlockwise the same. Without
this modi�cation the di�erence oij � oik between oij
= north and oik = east would not be the same as the
di�erence between north and west, which is not our
intention. Since we use the square of the distance, the
results must be modi�ed by mod 8.

For the Evolutionary Learning Component, we have
to de�ne the �tness of an individual, more precisely,
we have to de�ne the function mtask:

mtask(t) =

nX

i=1

Æ(i; t);

where Æ(i; t) is the Manhattan distance that separates
hunter i from the prey at time unit t (or the sum of
the distances to all prey agents if there are more than
one).

OLEMAS is intended as experimental system to eval-
uate all the possible inuences on online-learning by
o�ine learning. Therefore we tried to allow for chang-
ing as many parameters and components as possible.
In addition to the learning time aspect that will be
the subject of the experiments in the next section
and the other parameters already mentioned, we al-
lowed for the easy addition of other agent architectures
and strategies, for �ltering of all the information ac-
cumulated during a run (inuencing the modeling of

840 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Evolutionary

Learning

Component

Simulation

Component

Protocol
Component

User

Visualization
Component

Ag1 Agi Agn

Agents Component

f
i
l
t
e
r

Sim.
Param.

Data for
Fitness

Situation
Actual

Next
Move

Game Variant
Learning :

Off-line On-line
Learning:
Game
Variant

S-A-
Pairs

+
NNR

Models

other

agents

of

Action

learn
On-line Learning: variant + models of other agents to new OLEMAS instance

OLEMAS

Figure 1: OLEMAS: system architecture

other agents) and even for changes in the Evolutionary
Learning Component.

When having online learning agents, the user de�nes a
game variant for the Simulation Component (the \real
world"). With this variant, also the online learning
agents are identi�ed and an initial strategy for each
of them is given (either predetermined, totally at ran-
dom, or the result of performing \learn" as �rst ac-
tion). Then the agents act in the real world until the
�rst online learning agent has to \learn". This is ei-
ther after a �xed number of time units or in between a
minimum and maximum number of time units, deter-
mined by the performance (see Denzinger and Kordt,
2000, for details). The learning agent then generates
SAP-based models for all other agents for which it does
not have more accurate information (i.e. for all agents
that do not communicate their real strategy to it). To
do so, it generates a SAP for each situation observed
so far from the perspective of the other agent (using
the protocol generated by the Protocol Component;
�ltering will be used in future experiments). Then the
models, the current situation and the other parts of
the variant being the real world are passed as a game
variant to a new instance of OLEMAS, more precisely
to the Evolutionary Learning Component of it. There,
�rst the simulation is started to determine the situa-
tion at the end of executing \learn" and then o�ine
learning takes place. The best strategy found will then
be the new strategy for the online learning agent.

4 Experiments

While the experiments described in Denzinger and Ko-
rdt (2000) concentrated on the suitability of the gen-
eral method for online learning of cooperative behav-
ior and established the advantages of this method, we
want to concentrate in this paper on the suitability
of evolutionary algorithms as basic underlying learn-
ing, resp. search, method. Since \learn" is an action,
a learning agent performing it obviously cannot (and
should not) do anything else, which kind of takes this
agent out of the game during learning. So, a �rst im-
portant question is how much time an agent can spend
on learning while still being able to cooperate with the
other agents in achieving the goal of the game. Ob-
viously, here the relation of (game) time units spent
on learning and units necessary for the other actions
is of interest. OLEMAS allows us to de�ne the length
of learning with respect to the real world game freely
and independent from the computing time needed. We
examine this relation in our �rst experimental series.

Although OLEMAS allows us to have two times for
learning (game time and processing time needed), for
later applications it is very important to know if the
processing time can be limited suÆciently, so that, for
example, a robot can have an action \learn" while act-
ing in the real world. This leads to investigating the
parameter values that mainly inuence how much pro-
cessing time is needed to perform \learn", namely the
maximal number sapmax of SAPs in an individual, the
number of individuals in a generation, the number of

841ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Standard H2 P1H1 H3

Figure 2: Shapes of the used agents

generations, and the maximal number Tmax of time
units to be simulated for determining the �tness of an
individual. We examine the inuence of these param-
eters in the experiments of the second series.

4.1 The game variants

The three game variants we selected for our exper-
iments require rather di�erent strategies from the
hunters to be successful, and in all variants random
factors (in the form of random start positions for the
agents) are involved, so that two runs of OLEMAS
with the same variant usually di�er very much. In
all variants we have only one online learning hunter,
because we are interested in the learning time in gen-
eral (for multiple learning agents, see Denzinger and
Kordt, 2000). One single experiment for a variant al-
ways consisted of 100 real world runs and as success
we will report the percentage of successful runs within
the given time limit. In all variants, the time needed
for any action except \learn" was one time unit and
the possible moves of the agents are up, down, left,
right, stay put, and, if the shape makes turns useful,
turn left and turn right (for 90 degrees around the
agent's prede�ned center point). The grid size was 30
� 30 squares for all variants and there are no obstacle
agents.

In variant 1 we have two hunters and one prey. The
prey tries to maximize the distance to the nearest
hunter and it occupies one square only. The �rst
hunter has the shape of H1 in Figure 2 and uses a
�xed strategy, namely trying to come as close to the
prey as possible. The learning hunter has the form of
H2 in Figure 2. The goal situation of this variant is to
immobilize the prey.

In variant 2 we have 4 hunters and 4 preys, all of them
occupying one square only. The prey agents use the
same strategy as the prey in variant 1. While three of
the hunters use the strategy of the non-learning hunter
in variant 1 (forming a pride), the fourth hunter is a
learning one. The goal situation is that each hunter
ocuppies the same square as a prey (no two prey agents
are allowed to occupy the same square), and whenever

0 2 4 6 8 10 12 14 16
Duration of "learn" (in time units)

40

50

60

70

80

90

Su
cc

es
s

ra
te

 (
in

 %
)

Variant 1
Variant 2
Variant 3

Figure 3: Inuence of duration of \learn" on success

a prey is caught in this sense both prey and hunter do
not move any longer.

In variant 3 we have 2 hunters and 1 prey, again. The
prey has the shape of P1 in Figure 2. The non-learning
hunter has standard form and uses the strategy of the
non-learning hunter of variant 1. The learning hunter
has the form of H3 of Figure 2. As in case of variant
1, the goal situation is to immobilize the prey which
tries to stay away from both hunters and boundaries,
thus complicating the hunters' task.

4.2 Series 1

The number of time units spent on learning in con-
trast to the execution time of the other actions obvi-
ously should have some inuence on the outcome of a
game run. This becomes immediately clear if we are
considering game variants in which agents move ran-
domly or in which the learning agent relies on models
of other agents based on observations, thus represent-
ing unsure knowledge. Since the simulation runs start
with the situation that the learning agent expects to
face after having executed \learn", unsure knowledge
or random factors result in an also unsure prediction
of this situation. And the longer the learning takes the
more unsure is the prediction.

But also if we have game variants for which we can
reliably predict the start situation for the simulations,
we expected the execution time for \learn" to have
an impact on the success of hunter teams including an
online learning agent. As Figure 3 shows, we were right
to expect this. All three variants we described above
allow a precise prediction of the situation the agent
will face after learning. Our experiments show for all
variants some decline in the success rate. But this
decline is rather gracious { using 4 to 5 times the time
for learning than for other actions achieves de�nitely
still acceptable results. Even when needing 10 to 12
times the time we are still above 50 percent success

842 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

0 100 200 300 400

Population size (number of individuals)

20

40

60

80

100
Su

cc
es

s
ra

te
 (

in
 %

)

Variant 1
Variant 2
Variant 3

Figure 4: Inuence of population size on success

rate in all variants. If we consider that allotting more
time units for the real world game usually results in
higher success rates (see Denzinger and Kordt, 2000),
then these results indicate that our evolutionary online
learning approach is feasible.

4.3 Series 2

The experiments of series 1 were performed with the
following settings for the parameters that inuence the
processing time needed to execute \learn": The popu-
lation comprised 300 individuals in variant 1 and 100
individuals in all other cases. We de�ned sapmax = 40
for variant 1, sapmax = 20 otherwise. The number of
generations was limited to 15 in variants 1 and 2 and
restricted to 10 in variant 3. Furthermore, we de�ned
Tmax = 35 in variant 1, Tmax = 30 in variant 2 and
Tmax = 50 in variant 3. Although our experiments
so far show that learning can take some time without
reducing the success rate very much, they also show
that di�erent variants can di�er quite a lot in this re-
gard (which we expected and which led to the di�er-
ent initial parameter values for the di�erent variants).
Therefore we examined the inuence of the parame-
ters mentioned above on the success rate in order to
see how processing time can be reduced. Obviously,
reducing the value of each of these parameters reduces
the amount of computation necessary for \learn" and
therefore the needed processing time.

As Figure 4 shows, relatively small populations already
achieve rather good success rates. And an increase in
the number of individuals (beyond 80 to 100 individ-
uals) does not increase the success very much. Since
the number of individuals that are generated during
\learn" has a very large inuence on the needed pro-
cessing time, this is already a very promising result
with respect to using our learning approach in more
realistic applications. The other parameter inuencing
the number of individuals generated during a simula-

0 20 40 60 80 100

Maximum number of generations

70

80

90

Su
cc

es
s

ra
te

 (
in

 %
)

Variant 1
Variant 2
Variant 3

Figure 5: Inuence of number of generations allowed

on success

20 40 60 80 100

Maximum duration of simulation runs (in time units)

40

60

80

100

Su
cc

es
s

ra
te

 (
in

 %
)

Variant 1
Variant 2
Variant 3

Figure 6: Inuence of simulation length on success

tion run is the maximum number of generations. The
inuence of this parameter is depicted in Figure 5. Al-
ready with 25 generations all variants show a success
rate above 70 percent. Then we have rather large vari-
ations for each variant, so that more than 40 genera-
tions seem to be redundant in either case.

The more time units are allowed in the simulation runs
the more processing time is needed to evaluate the �t-
ness of an individual, i.e. an agent strategy. Also, the
further these simulations look into the future the more
online learning changes towards o�ine learning. As
Figure 6 shows, the longer we plan into the future the
better is our chance for success (although we do not
have a steady increase). But 30 time units already
achieve a success rate of over 60 percent for all vari-
ants. And for variants 1 and 2 going above 40 time
units does not increase the success much more. The
relatively bad results for variant 3 are due to the fact
that this variant allows for many situations in which
both hunters are directly near the prey without hav-
ing it immobilized, so that the mtask-values for these
situations are rather good. While this a�ects all exper-
iments with this variant, especially longer simulation
runs su�er from the not very selective �tness values
that are generated for this variant.

843ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

0 20 40 60 80 100

Maximum number of SAPs per individual

60

70

80

90
Su

cc
es

s
ra

te
 (

in
 %

)

Variant 1
Variant 2
Variant 3

Figure 7: Inuence of possible complexity of strategy

on success

The last parameter we want to look at inuences the
processing time needed for executing \learn", because
the more SAPs are in a strategy, the longer it takes to
decide what action to perform in a situation, since the
similarity to each pair from the actual situation has to
be computed. But the number of SAPs per strategy
also determines how complex the strategies can be. If
there are too few SAPs, then each possible strategy
might be too simple. But if there are too many SAPs
then the possibility is much higher to have unneces-
sary or even disturbing pairs. As Figure 7 shows, the
inuence of the complexity of the possible strategies
on the success rate is not easy to describe and the dif-
ferent variants show rather di�erent results. 25 to 35
SAPs achieve for all variants high success rates and
already with only 5 SAPs we are above 60 percent
success rate. But all variants show large variations in
their results, with variant 2 de�nitely having decreas-
ing success as a trend for larger numbers of SAPs. But
this is not exactly surprising. In variant 2 the goal is
to catch several preys and with a high number of SAPs

our evolutionary approach leads to learning SAPs for
catching each of these preys. In the simulations this
is a good trait, because, due to the random factor in-
volved, the �tness is evaluated by several runs. But
in the real world the additional pairs make the hunter
less eÆcient.

5 Conclusion

We presented an online learning approach for achiev-
ing cooperative behavior of agents. It is based on in-
troducing an action \learn" that executes an o�ine
learning method. In our case this method is the evo-
lutionary approach presented in Denzinger and Fuchs
(1996) based on SAPs and NNR. In this paper, our ex-
perimental evaluation concentrated on the relation of
the execution times needed for \learn" and the other
actions. In the area Pursuit Games we showed for

rather di�erent game variants that learning times that
are several times longer than the times needed for per-
forming other actions still achieve good success rates
(for �xed game lengths). We also investigated di�er-
ent values for the key parameters of the evolutionary
o�ine learning method and found that already rather
small values of these parameters achieve good success
rates, again. Since small values for these parame-
ters result in less processing time needed for \learn",
our experiments suggest that our evolutionary online
learning approach can be successfully used in more re-
alistic applications, like cooperating robot teams.

Before tackling such new application areas, in future
work we want to investigate several other problems
and phenomena with our Pursuit Games application.
Among them are improving the evolutionary learn-
ing by getting more information out of the simulation
runs, co-evolution of hunters and preys, and testing the
adaptation capability of online learning agents when
becoming member of already good cooperating teams.
Other future work will be to improve on the modeling
of other agents and to investigate how to better adapt
the intervals between performing \learn". The latter
also focuses on making more use of seeing on- and o�-
line learning as extremes of a spectrum of possibilities
instead of di�erent kinds of learning tasks, which is
suggested by our results.

6 References

M. Boddy and T. Dean (1988). An Analysis of Time-
Dependent Planning, Proc. 7th AAAI, pp. 49{54.
M. Benda, V. Jagannathan and R. Dodhiawalla (1985).
An Optimal Cooperation of Knowledge Sources, Technical
Report BCS-G201e-28, Boeing AI Center.
J. Denzinger and M. Fuchs (1996). Experiments in Learn-
ing Prototypical Situations for Variants of the Pursuit
Game, Proc. ICMAS'96, pp. 48{55.
J. Denzinger and M. Kordt (2000). Evolutionary On-line
Learning of Cooperative Behavior with Situation-Action-
Pairs, Proc. ICMAS-2000, IEEE Press, pp. 103{110.
T. Haynes, R. Wainwright, S. Sen and D. Schoenefeld
(1995). Strongly typed genetic programming in evolving
cooperation strategies, Proc. 6th Intern. Conf. on Genetic
Algorithms, Morgan Kaufmann, pp. 271{278.
M. Manela and J.A. Campbell (1993). Designing good
pursuit problems as testbeds for distributed AI: a novel
application of genetic algorithms, Proc. 5th MAAMAW,
pp. 231{252.
M. Tan (1993). Multi-agent reinforcement learning: Inde-
pendent vs cooperative agents, Proc. 10th Machine Learn-
ing, Morgan Kaufmann, pp. 330{337.
C.J.C.H. Watkins (1989). Learning from Delayed Rewards,
PhD thesis, University of Cambridge.
G. Wei� (1995). Distributed Machine Learning, In�x-
Verlag, Sankt Augustin.

844 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Modular Designer Chemistries for Arti�cial Life

Keith L. Downing

Department of Computer Science

The Norwegian University of Science and Technology (NTNU)

7020 Trondheim, Norway

Tele: (+47) 73 59 18 40

Email: keithd@idi.ntnu.no

Abstract

The vast majority of arti�cial life (alife) sys-

tems lack underlying chemical models that

exhibit both a) realistic relationships be-

tween biomass production/consumption and

energy, and b) strong restrictions on the legal

combinations of atomic units. In many cases,

biomass is simply accumulated resource, oc-

casionally paid for by an energy tax. This

suÆces for many purposes, but when the al-

ife system serves as a testbed for microbio-

logical investigations, more realism is desir-

able. However, real biochemistry is so com-

plex that one naturally turns to the alife dis-

cipline of abstract/arti�cial chemistries for

rich, yet manageable chemical backdrops; but

with little success.

This paper introduces MD-CHEM, a simple

algorithm for generating random chemistries

that a) meet user speci�cations, b) capture

important biomass-energy relations, and c)

easily plug into alife simulators. Runs of

these chemistries in our METAMIC simula-

tor illustrate how a) organisms evolve to ex-

ploit the energetic potential of the chemistry

and environment, and b) chemistries restrict

population density and diversity.

1 Introduction

There exists a sizeable gap between research into ar-

ti�cial chemistries (AC) [7, 16, 3, 2] and arti�cial-life

simulations of higher-level systems such as cells [8] or-

ganisms [15] and ecosystems [9, 5]. In most cases, the

arti�cial chemistry is the arti�cial-life system, exhibit-

ing fascinating emergent structures such as autocat-

alytic sets [11, 10], metabolisms[1] and other interest-

ing molecules and reaction dynamics [7, 4]. Unfor-

tunately, simulations at the chemical level are often

time-consuming, making the inclusion of full-scale AC

processes in populations of hundreds or thousands of

cells rather infeasible.

Higher-level alife systems typically avoid chemistry

completely by relying on a simple mapping between

environmental food sources and the agents' internal

energy reserves, with the biochemical details of that

conversion being largely irrelevant.

However, when alife moves to the microcosmic level,

biochemistry becomes an essential issue for explor-

ing many interesting phenomena. Unfortunately, bio-

chemical interactions are highly complex, making the

simulation of essential metabolic chemistry into a

large-scale research project of its own. Therefore,

there is an acute need for computationally-eÆcient

arti�cial chemistries at this level: modular systems

that embody the essence of biochemistry and enable

the emergence of metabolically diverse individuals, but

without the overhead of full-scale emergent AC simu-

lations running in thousands of cells.

One possible solution is to run a conventional AC un-

til it reaches equilibrium or stable oscillatory behav-

ior and then extract the above-threshold compounds

and frequently-occurring reactions, �lling in gaps to

insure closure. While theoretically possible, the prac-

tical feasibility of this approach is questionable, since

ACs run from scratch often produce either a) only a

few stable surviving compounds, or b) a very large

set of compounds and reactions, any subset of which

will not form a closed reaction topology. In short, we

cannot guarantee that the emergent AC will generate

anything of practical use.

Furthermore, most AC systems, with a few notable ex-

ceptions [13], ignore energy constraints. Hence, they

abstract away two essential aspects of biochemistry:

a) energy yields of reactions, and b) relationships be-

845ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

tween energy and structure/biomass formation. Ener-

getic arguments are crucial to understanding the emer-

gence of biochemical guilds, i.e., groups of microorgan-

isms with diverse (often complementary) metabolisms,

which are the main focus of our alife research [6]

We now introduce an alternative arti�cial chemistry,

the Modular Designer Chemistry (MD-CHEM), which

includes a very simple energy scheme and ties it to

biomass production, thereby supporting emergent bio-

chemical phenomena at the microbial guild level while

avoiding complex simulations at the molecular level.

In a nutshell, MD-CHEM generates random closed re-

action sets of user-speci�ed size and uses statistical

entropy changes to determine energy yields. The com-

plete set (or any subset) can then be easily incorpo-

rated as a metabolism module into a simulated bio-

chemical agent; populations of these agents, often with

diverse metabolisms, can then interact chemically via

di�usive exchanges with a common environment.

This supports various what-if or play-the-tape-again

alife experiments in which the evolutionary processes

are rerun with di�erent underlying chemistries. If sim-

ilar patterns continue to emerge, then general expla-

nations may exist that subsume those involving the

vagaries of biochemistry as we know it.

This paper describes the basics of chemistry genera-

tion in MD-CHEM, followed by examples of chemical-

module usage in our Metabolizing Abstract Microor-

ganism (METAMIC) system.

2 MD-CHEM Basic Mechanisms

MD-CHEM generates arti�cial chemistries by ignor-

ing atomic-level dynamics and choosing random re-

groupings of random reactant sets, constrained only

by user-speci�ed parameters such as the desired num-

bers of compounds and reactions. Hence, the sys-

tem is only weakly constructive, since new compounds

arise stochastically, but not on the basis of any �rst-

principle physical relationships between the atoms,

such as their potentials for bond formation. So chem-

istry construction in MD-CHEM is a purely algorith-

mic (albeit non-deterministic) process, guided not by

an interaction dynamic, but by simple trial-and-error

search for a constraint-satisfying set of compounds and

reactions. The interesting arti�cial life can occur at

the next level, when an MD-CHEM module forms the

basis for interactions between metabolizing cells.

The designer aspect of MD-CHEM is quite simple: a

user speci�es several hard constraints and biases, and

the system then generates a chemistry that meets the

speci�cation and easily plugs into a higher-level alife

simulator.

The key hard constraints are:

1. Na - the number of legal atoms,

2. Nc - the total number of compounds to be gener-

ated,

3. Nr - the total number of reactions to be generated,

4. Nic - the number of initial randomly-generated

compounds,

5. Rcs - the range of legal compound sizes

6. Rrs - the range of reaction sizes, in terms of

the minimum and maximum number of reac-

tants/products.

The essential biases are:

1. Bics - the bias of initial compound sizes. This is a

normalized list of probabilities, one for each legal

size in Rcs, which governs stochastic size choice of

the initial Nic randomly-generated compounds.

2. Brs - the bias of reaction sizes, a probability dis-

tribution for the sizes in Rrs, which a�ects the

stochastic choice of both a) the number of reac-

tants chosen for each random reaction, and b) the

number of product compounds that the reactant

atoms are partitioned into.

The basic algorithm for chemistry generation appears

in Figure 1.

For example, if the atomic set is fa b cg, Rcs = [3, 6],

Rrs = [2, 4], and Nic = 4, then MD-CHEM begins by

generating 4 initial compounds, such as a2b, abc, ac2,

c3, where subscripts denote the number of each atom

and no subscript implies a single atom.

The reaction generator would then take between 2 and

4 of these compounds, with possible duplicates, such

as fa2b, ac2, ac2g, to form the reactant group. All

atoms are then thrown into a set: fa a b a c c a c cg
which is sent to REACT-COMP, where it is randomly

permuted: fc b a c a c a a cg, and partitioned into 2

to 4 subsets: fc b a ! c a ! c a a cg.

Since no inter-atomic relationships are modelled, MD-

CHEM is insensitive to the order of atoms within a

compound and converts it to a canonical form. Hence,

the product group for the above example becomes

fabc, ac, a2c2g. Since the latter 2 compounds are

846 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Program GENCHEM

C = f g; The set of compounds
R = f g; The set of reactions
nc = 0; The size of C

nr = 0; The size of R

RG, PG: reactant product groups.

Initialize C to Nic randomly-generated compounds.

num-attempts = 0

Repeat

RG = random group of compounds from C

Collect all atoms from RG into one set, S

p = e
�ke(Nc�nc)

Nc

known-compound = TRUE

PG = f g;
np = 0; Number of products

Np = random-integer-in(Rcs)

While known-compound and random-number � p

and np < Np

known-compound = �nd-known-compound(S).

if known-compound

Add known-compound to PG.

np = np + 1

Remove atoms in known-compound from S.

End while

If REACT-COMP(S,C,R,RG,PG,Np � np)

Then Add [RG ! PG] to R, and update nr
Else num-attempts = num-attempts + 1

Until nr = Nr or num-attempts � max-attempts

End Program

Procedure REACT-COMP(S, C, R, RG, PG, NP)

; This procedure randomly completes reactions

Randomly permute S.

PG0 = PG

Randomly break S into NP groups

and add each group to PG0

If

All groups in PG0 either:

Form a pre-existing compound, or

Form a new compound that can be

added without nc exceeding Nc

And PG0 6= RG And [PG0 ! RG] =2 R

Then

PG = PG0

Add newly-generated compounds in PG0 to C

Update nc
Return TRUE.

Else Return FALSE.

End Procedure

Figure 1: Algorithmic overview of MD-CHEM

new, MD-CHEM will only add the new reaction if

Nc � nc � 2.

The new reaction is then:

a2b+ 2ac2 =) abc+ ac+ a2c2 (1)

The use of the num-attempts and max-attempts vari-

ables in Figure 1 indicates that GENCHEM makes

a �nite number of attempts to generate Nr reactions.

Note that once nc = Nc, any reaction that generates

additional new product compounds will be rejected in

REACT-COMP . In cases where Nr > 2Nc, or even

Nc � Nr � 2Nc, the algorithm will occasionally time

out before generating Nr reactions.

To remedy this situation, GENCHEM attempts to ex-

tract known compounds from the list of product atoms

prior to calling REACT-COMP, thus decreasing the

number of new compounds introduced by each reac-

tion. It uses the probability p to determine whether

to try to extract one or more known compounds from

S before randomly permuting and partitioning the re-

maining product atoms. In the calculation of p, ke
is the extraction factor, with a typical value between

1 and 2, with lower values implying a higher extrac-

tion probability. A high value of ke is preferable when

Nc � Nr, but it should decrease as Nr �Nc rises.

Regardless of ke settings, the initial size bias, Bics,

is a critical success factor. If the initial compound

set contains too many large compounds, then generat-

ing Nr legal reactions becomes quite diÆcult, partic-

ularly when Rcs and Rrs are small (i.e., tight ranges

of legal reaction and compound sizes). In short, if n

large molecules are chosen as reactants from which m

(m � n) random products of similar size are generated,

then the odds of generating pre-existing compounds

as products diminish rapidly as the size distribution

of those compounds becomes top-heavy. Hence, most

products are new, and REACT-COMP can only suc-

ceed a few times before nc = Nc, after which it will

predominately fail. With a bottom-heavy size distri-

bution, REACT-COMP has a better chance of gen-

erating pre-existing compounds, thus prolonging the

completion of the compound set and maintaining the

exibility to generate new legal reactions.

2.1 Reaction Energies

One critical aspect of MD-CHEM is the association of

energy production and consumption with reactions in

a manner that supports the basic biological fact that

biomass construction demands energy, while biomass

breakdown generally releases energy. At the reaction

level, this translates into a simple qualitative MD-

847ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

CHEM energy principle: building larger compounds

from smaller ones (i.e. anabolism) requires energy

input, while the reverse process (i.e., catabolism) re-

leases energy.

Statistical entropy is the basis of size comparisons be-

tween the reactant and product sets of a reaction.

Entropy essentially measures the evenness and gran-

ularity of the size distribution of molecules: many

small molecules having higher entropy than a few large

molecules; and m molecules of similar size have higher

entropy than m molecules of diverse sizes. The frac-

tional sizes of each compound, fi, relative to the total

number of atoms in the reaction, determine the en-

tropy according to:

kX

i=1

�fi log fi (2)

Thus, in reaction 1, which involves a total of 9 atoms,

the fractional sizes are f1/3, 1/3, 1/3g for the reac-

tants, and f1/3, 2/9, 4/9g for the products, yielding

a reactant entropy of 1.585 and a product entropy of

1.530. Since lower entropy reects higher order, the

reaction exhibits a small degree of structure formation

and is considered endothermic (i.e., energy consum-

ing). MD-CHEM maps entropy di�erences directly

into reaction energies, so this reaction requires 1.585 -

1.530 = 0.055 energy units in order to run. The reverse

reaction is modelled as exothermic, yielding 0.055 en-

ergy units.

When deployed in an arti�cial-life simulator, MD-

CHEM uses the law of mass action [14] to compute

the rates of reactions. To wit, the product of the con-

centrations of the reactants along with a basal reac-

tion constant determine the rate at which reactants

are converted into products and energy is produced or

consumed.

2.2 Catalysts

Catalytic relationships between compounds and reac-

tions arise randomly during the reaction-generation

process. Any compound that appears as both a re-

actant and product in the same reaction is considered

a catalyst (i.e., enzyme). When running a reaction,

MD-CHEM assumes that unless the catalyst is com-

pletely absent (concentration of 0.0), the reaction is

substrate-limited and can proceed as if each catalyst

molecule could instantaneously derive product from re-

actant molecules. Hence, the law of mass action is only

applied to the concentrations of the non-enzymatic

compounds in deriving the reaction rate. Of course,

if the enzyme is completely absent, then the reaction

cannot occur.

To model reaction catalysis, MD-CHEM uses the en-

zyme's molecular weight (i.e., number of atoms) as

a rough estimate of catalytic enhancement, ec. For

exothermic reactions, ec appears as an extra product

in the mass-action derivation of the reaction rate, while

in endothermic reactions, the energy consumption of

the uphill reaction is reduced by a factor of 1=ec.

a2b+ ab2c+ c3 () a2b+ ab2c4 (3)

For example, if ec(ci) = 1 + length(ci) for any cat-

alytic compound ci, then the catalytic enhancement

of reaction 3 is 1+ length(a2b) = 4. Since the left-to-

right reaction is uphill/endothermic, with an entropy

change from 1.571 to 0.881, or 0.69, the catalytic ef-

fect essentially reduces the energy requirement of the

uphill reaction to 0.69/4, or 0.1725. Similarly, the rate

of the right-to-left downhill reaction will be enhanced

by a factor of 4 in any context in which the reaction

runs.

3 Deployment in Arti�cial Life

Simulators

A central motivation behind MD-CHEM is an in-

vestigation into the abstract relationships between

chemistries and the metabolisms that they support,

and hence the biochemical guilds that evolve. A typi-

cal scenario is to generate hundreds or thousands of

di�erent chemistries and test each one in an arti�-

cial life simulation of metabolizing organisms. Those

chemistries on which microorganism communities can

survive are separated from the less supportive variants

to get a general understanding of the life-sustaining

aspects of a chemical system. Furthermore, a com-

parison of the pairings of life-giving chemistries and

their induced microcosms could yield interesting in-

sights into the chemical foundations of di�erent forms

of biochemical guilds.

Consequently, MD-CHEM has been integrated into

our METAMIC (Metabolizing Abstract Microorgan-

ism) system, where it generates a multitude of

chemistries, all of which are tested in simulated pop-

ulations of metabolizing microscopic agents. This sec-

tion provides a brief introduction to METAMIC and

illustrates its usage with MD-CHEM chemistries.

3.1 METAMIC

Each organism in METAMIC is modelled as a cell with

a genetically-determined metabolism, a local chemical

848 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

bu�er, and a semi-permeable membrane that separates

the cell from a global chemical environment. On each

timestep, the agent a) performs its metabolic activi-

ties, with all chemical reactions driven by intracellular

chemical concentrations, and b) exchanges chemicals

via di�usion with the global compartment.

METAMIC employs MD-CHEM chemistries as bases

for all intra- and extra-cellular chemical activity. The

chemical basis for a METAMIC run is de�ned by the

pair (C,R), where C denotes the set of legal com-

pounds, and R the legal reactions.

Each organism's genetic-algorithm (GA) genome en-

codes rT , a subset of R, plus base reaction constants

(within a user-speci�ed range) for each reaction. The

exothermic, rx, and endothermic, rn, reactions are sep-

arated, where rT = rx[rn; together, they compose the
organism's metabolism.

Those compounds that constitute biomass can vary

between organisms, with key restrictions. Any com-

pound declared as biomass cannot di�use into or out

of that organism's cell: all biomass molecules, aside

from those present at birth, result from internal pro-

duction. Two user-de�ned parameters, Nbio and N�

bio
,

specify the maximum number of compounds that an

organism can treat as biomass, and the number of large

compounds in C that are legal biomass constituents.

To choose the biomass compounds, cbio, for an agent,

METAMIC gathers the Nbio largest compounds that

the organism is a net producer of in rT . It then inter-

sects that set with the N�

bio
largest compounds in C

to form cbio. An organism's biomass is then the total

internal mass of all cbio compounds.

In METAMIC's GA, �tness is implicit: if an organ-

ism doubles its birth biomass, then reproduction oc-

curs by asexual splitting, with possible mutation of

both child genomes. Organisms also undergo a form

of double bacterial conjugation by occasionally swap-

ping GA chromosome segments with one another. This

is essentially standard GA crossover, with each indi-

vidual continuing its life, but with a new genome and

metabolism. The same mortality rate pertains to all

living organisms, regardless of age or biomass.

The abstract metabolic process consists of two phases:

catabolism and anabolism. On each timestep, organ-

isms receive an energy request and begin catabolism,

wherein the exothermic reactions, rx, run for the max-

imum of two durations: a) the actual timestep b) the

estimated time needed to generate the required energy

(based on previous energy-production rates of the rx).

If the former exceeds the latter, then an energy surplus

results, thus triggering the anabolic processes (i.e., the

endothermic reactions, rn), which run long enough to

consume the available energy and build structure by

reducing internal entropy.

The current version of METAMIC employs a simple

box model, with all agents residing within a single

global environment, E. For each compound in C, the

user speci�es separate inow and outow rates for E.

All reactions in R are assumed to occur in E, and since

no energy is demanded of E, the energetic fruits of rx
go directly into rn. The user can also specify a con-

stant energy input to the system, which is distributed

among all agents.

3.2 Sample METAMIC Runs

To illustrate the coupling between MD-CHEM and

METAMIC, we ask the former to generate a chem-

istry of 15 compounds and 30 reactions from four

atoms: C, H, O, and N. Also, Nic = 5, Rcs =

[2; 12], Rrs = [1; 3], Brs = f:33; :33; :33g, and Bics =

f:33; :33; :33; 0; : : : ; 0g (biased toward the 3 smallest

sizes). We also specify that for each new reaction, its

inverse is automatically included. Figure 2 displays

the resulting chemistry, CHEM*.

CHEM* is then used as the chemical foundation for a

METAMIC run with a start population of 50 agents,

a maximum population size of 1000, a chromosome

length of 10 reactions (duplicates are ignored), a muta-

tion rate of 0.1 (per gene), and a conjugation fraction

of 0.3, where conjugation occurs every 20 timesteps

and each such episode denotes a generation, and a

mortality rate of .005 (per timestep). For biomass cal-

culations, N�

bio
= 4, and Nbio = 2.

Initial concentrations of all compounds in both E and

the agent cells are 0.01, and the inows to E are 1 mass

unit per timestep of the 4 smallest compounds (CHO,

CNO,N2O, C4) and 0 units for all others. However, no

external energy inputs occur, nor is energy demanded

of the agents for activities other than the running of

their endothermic reactions. E has a volume of 100,000

cubic units, while each cell has a volume of 10 cubic

units.

As Figure 3 illustrates, the population rapidly grows

to the upper bound of 1000, and metabolic diver-

sity increases through all 100 generations. The di-

versity measures are based on the statistical entropy

across the population of 5 di�erent collections: a)

biomass compounds, b) compounds that the cell pro-

duces (net), c) compounds that the cell consumes, d)

exothermic reactions, and e) endothermic reactions.

Detailed analysis of the 1000 metabolisms at gen-

eration 100 reveals the four most common exother-

849ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Compounds:

CHO, CNO, N2O, C4, CH2N , HN2O, HO3 , CN3O2, CH2N2O2,

HN2O4, C5H2N , CH3N2O2, H4NO4, C5N3O2, HN4O5

Reactions: dG #

0: CNO + N2O) CN3O2 1.00 123

1: CN3O2) CNO + N2O -1.00 565

2: N2O + HO3) HN2O4 0.99 330

3: HN2O4) N2O + HO3 -.99 140

4: C4 + CN3O2) C5N3O2 0.97 955

5: C5N3O2) C4 + CN3O2 -.97 40

6: CNO + CN3O2 + HN2O4) CNO + CNO + HN4O5 0.18 174

7: CNO + CNO + HN4O5) CNO + CN3O2 + HN2O4 -.18 50

8: CH2N + CH2N + HN2O4) CH2N2O2 + CH3N2O2 0.53 126

9: CH2N2O2 + CH3N2O2) CH2N + CH2N + HN2O4 -.53 291

10: HO3 + CH3N2O2) CNO + H4NO4 0.11 674

11: CNO + H4NO4) HO3 + CH3N2O2 -.11 68

12: C4 + CH2N) C5H2N 1.00 48

13: C5H2N) C4 + CH2N -1.00 749

14: CH2N2O2) CHO + HN2O -.99 247

15: CHO + HN2O) CH2N2O2 0.99 45

16: CHO + N2O + HO3) CHO + HN2O4 0.69 82

17: CHO + HN2O4) CHO + N2O + HO3 -.69 116

18: HO3 + CN3O2) CNO + HN2O4 0.09 135

19: CNO + HN2O4) HO3 + CN3O2 -.09 152

20: CHO + CH2N2O2) CHO + CHO + HN2O -.69 96

21: CHO + CHO + HN2O) CHO + CH2N2O2 0.69 592

22: N2O + CH3N2O2) CHO + HN2O + HN2O -.73 201

23: CHO + HN2O + HN2O) N2O + CH3N2O2 0.73 364

24: CNO + CN3O2) CNO + CNO + N2O -.67 169

25: CNO + CNO + N2O) CNO + CN3O2 0.67 833

26: CH2N2O2 + HN2O4) CHO + HN2O + HN2O4 -.49 209

27: CHO HN2O HN2O4) CH2N2O2 + HN2O4 0.49 85

28: N2O + HN2O4 + HN2O4) HN2O4 + HN4O5 0.52 240

29: HN2O4 + HN4O5) N2O + HN2O4 + HN2O4 -.52 587

Figure 2: An MD-CHEM random chemistry, CHEM*,

of 15 compounds and 30 reactions, including inverses.

Energy (dG) values are positive (negative) for en-

dothermic (exothermic) reactions. Frequencies (#) de-

note the number of organism' metabolisms in which

the reaction occurs during the 100th (�nal) generation

of a METAMIC run, where the �nal population size is

1000.

mic(catabolic) gene sequences, listed below with reac-

tion indices in parentheses and frequencies in brackets:

1: f1, 13, 29 g[46] 2: f1, 9, 13, 29 g[23]
3: f1, 13 g[20] 4: f13, 29 g[17]

The four most common endothermic (anabolic) gene

sequences are:

1: f4, 10, 21, 25 g[52] 2: f2, 4, 10, 21, 25 g[38]
3: f4, 10, 21, 23, 25 g[33] 4: f4, 10, 25 g[21]

Two of the six possible choices of biomass pairs domi-

nate the population:

1: fC5N3O2, H4NO4 g [494]
2: fC5N3O2, HN4O5 g [390]

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

Generation

P
op

ul
at

io
n−

S
iz

e
0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

Generation

D
iv

er
si

ty

Biomass
Production
Consumption
Anabolism
Catabolism

Figure 3: Evolutionary progression of population size

and metabolic diversity for a METAMIC population

using CHEM* as their underlying chemistry.

All 5 exothermic groups share reaction 13, R13, which

breaks down C5H2N , the largest non-biomass com-

pound. As an interesting asymmetry, note that R13

has a very high frequency(749), whereas its inverse,

R12 has a low count(48). Since no other reactions in-

volve C5H2N , it clearly functions as a primary energy

source with approximately 95% of the population con-

suming it and only 4% producing it.

Similarly, R4, R10, and R25 appear in all 5 popular

anabolic sets, and each forms a very asymmetric pair

with its inverse reaction. Not surprisingly, R4 and R10

produce the two most popular biomass compounds,

C5N3O2 and H4NO4, respectively, while R25 pro-

duces CN3O2, which is a key precursor to C5N3O2 via

R4, and to HN4O5 (the third most common biomass

compound) via R6. The other key reactant in R6 is

HN2O4, which is autocatalytic via R29, a very high

frequency (587) reaction.

So clearly, the evolved choices of reactions and reaction

groups tap the energy- and biomass-producing poten-

tial in CHEM* and the environment, E (where E con-

tributes with a large but �nite supply of C5H2N and

850 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

a replenished supply of the four smallest compounds).

In this case, the result is not a single dominant phe-

notype, but a diverse collection of metabolisms that

may share a few core reactions, but which also perform

complementary biochemical activities, such as produc-

ing HN2O4 from HN4O5 via R29, which enables other

cells to produce HN4O5 from HN2O4 via R28 or R6.

3.2.1 50 Chemistries

The CHEM* example shows how a population evolves

to exploit the underlying chemistry, or, conversely how

chemistry constraints biotic emergence. To further il-

lustrate this connection, METAMIC was run using 50

di�erent randomly-generated MD-CHEM chemistries,

all composed of 15 compounds and 30 reactions. Each

METAMIC run for a given chemistry was repeated 10

times, using di�erent random seeds, with �nal popula-

tion sizes and metabolic diversities averaged and plot-

ted. METAMIC used the same parameter settings as

before, except that the number of generations was re-

duced to 40 and the maximum population size to 500.

The upper graph in Figure 4 shows the 50 chemistries

on the x-axis, sorted by the average population

sizes that they induced (y-axis). About 90% of the

chemistries supported growth, while about 10% con-

sistently yielded population explosions to 500.

In the lower graph of Figure 4, diversity roughly tracks

population size, but note the wide diversity di�er-

ences between chemistries that induce similar popu-

lation sizes. Clearly, the distributions of metabolic

guilds can vary considerably among chemistries that

support the same basic amount of life. So chemistry

is a key determinant of population size and diversity,

but the causal relationships are non-trivial.

4 Discussion

This research is an initial step in using arti�cial life

techniques to better understand the connections be-

tween chemistries and the biological and ecological

structures that they engender. By remaining at the

level of abstract chemistries, thousands of which can

be generated, we avoid heavy biases toward Earth's

biochemistry and can focus on general principles such

as the relationships between energy and structural en-

tropy. The results above are merely illustrations of

how a chemistry generator and an alife simulator can

interact in pursuit of this goal.

Simulations of this sort could enable investigations

into the \inevitability" of certain biological phenom-

ena across a wide spectra of base chemistries. We have

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

Chemistry−Index

P
op

ul
at

io
n−

S
iz

e
0 10 20 30 40 50

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Chemistry−Index

D
iv

er
si

ty

Anabolic
Catabolic

Figure 4: Average results of running 50 di�erent

MD-CHEM chemistries 10 times each in METAMIC.

Chemistries are sorted and indexed based on the av-

erage population size that METAMIC achieved in the

10 runs.

delved deeply into Gaia Theory [12], the premise that

the biota can exhibit control over large-scale geochemi-

cal processes, in trying to understand how these home-

ostatic mechanisms might emerge from a population of

evolving organisms. Since contemporary Gaia models

[17, 6] are extremely abstract, lacking good chemical

and/or genetic modules, the conclusions drawn from

them are highly questionable.

These shortcomings motivated the design MD-CHEM

and METAMIC and their use in Gaian simula-

tions, wherein chemical compounds can a�ect phys-

ical variables (such as temperature), which then af-

fect metabolic rates. MD-CHEM generated 100

life-supporting chemistries, and 21 of these permit-

ted emergent environmental control, a key Gaian

�ngerprint. Many of these 21 chemistries provide

alternate biomass-producing pathways with di�er-

ent energy demands such that organisms can trade

o� metabolic eÆciency for environmental control by

evolving metabolisms that yield less biomass per unit

energy but indirectly regulate ambient physical fac-

851ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

tors.

Three potential MD-CHEM improvements are appar-

ent. First, a model of atomic bonding would provide a

principled basis for reaction generation. Second, as in

most arti�cial chemistries, catalyzation in MD-CHEM

needs a �rmer mechanistic grounding.

Third, a key mechanism in all biochemical systems is

inhibition, the basis for regulation of enzymatic activ-

ity. It may emerge in abstract chemistries via compe-

tition for binding sites, but it rarely does. The simple

mass-action dynamics of MD-CHEM only vaguely sup-

port competition in the sense that if compound A is

a key reactant in reactions R1 and R2, where it binds

to X and Y, respectively, then an increase in X would

accelerate R1, thus draining more A and slowing R2.

But MD-CHEM needs stronger constraints, for exam-

ple, that X has a stronger aÆnity for A than does

Y. Then, important physiological mechanisms, such as

O2 poisoning of anaerobes (due to oxygen's electron-

grabbing tenacity), may arise naturally.

However, all three improvements entail greater chem-

ical detail, for better or worse. Managing these trade-

o�s between abstraction and reduction, while captur-

ing the vital essence of biochemistry, is the primary

challenge to the continued improvement of abstract

chemistries for arti�cial life.

References

[1] Richard J. Bagley, J. Doyne Farmer, and Walter

Fontana. Evolution of a metabolism. In Christo-

pher G. Langton, Charles Taylor, J. Doyne

Farmer, and Steen Rasmussen, editors, Arti�cial

Life II, pages 141{158. Addison-Wesley, Redwood

City, CA, 1992.

[2] Pietro Speroni di Fenizio. A less abstract arti�cial

chemistry. In M. Bedau, J. McCaskill, N. Packard,

and S. Rasmussen, editors, Arti�cial Life VII,

pages 49{53, Cambridge, MA, 2000. MIT Press.

[3] Peter Dittrich. Arti�cial chemistries. Tutorial

held at ECAL'99 (European Conference on Arti-

�cial Life), 1999.

[4] Peter Dittrich and Wolfgang Banzhaf. Self-

evolution in a constructive binary string system.

Arti�cial Life, 4(2):203{220, 1998.

[5] Keith Downing. Euzone: Simulating the emer-

gence of aquatic ecosystems. Arti�cial Life,

3(4):307{333, 1998.

[6] Keith Downing and Peter Zvirinsky. The simu-

lated evolution of biochemical guilds: Reconciling

gaia theory and natural selection. Arti�cial Life,

5(4):291{318, 1999.

[7] Walter Fontana. Algo-

rithmic chemistry. In Christopher G. Langton,

Charles Taylor, J. Doyne Farmer, and Steen Ras-

mussen, editors, Arti�cial Life II, pages 159{209.

Addison-Wesley, Redwood City, CA, 1992.

[8] Chikara Furusawa and Kunihiko Kaneko. Emer-

gence of multicellular organisms with dynamic

di�erentiation and spatial pattern. Arti�cial Life,

4(1):79{93, 1998.

[9] John H. Holland. Hidden Order: How Adapta-

tion Builds Complexity. Addison-Wesley, Read-

ing, Massachusetts, 1 edition, 1995.

[10] Harald Huning. A search for multiple auto-

catalytic sets in arti�cial chemistries based on

boolean networks. In M. Bedau, J. McCaskill,

N. Packard, and S. Rasmussen, editors, Arti�-

cial Life VII, pages 64{72, Cambridge, MA, 2000.

MIT Press.

[11] Stuart A. Kau�man. The Origins of Order. Ox-

ford University Press, Oxford, 1993.

[12] James Lovelock. The Ages of Gaia: A Biography

of Our Living Earth. Oxford University Press,

Oxford, England, 1995.

[13] Bernd Mayer and Steen Rasmussen. Self-

reproduction of dynamical hierarchies in chemi-

cal systems. In C. Adami, R. Belew, H. Kitano,

and C. Taylor, editors, Arti�cial Life VI, pages

123{129, Cambridge, MA, 1998. MIT Press.

[14] Douglas S. Riggs. The Mathematical Approach to

Physiological Problems. MIT Press, Cambridge,

MA, 1963.

[15] Karl Sims. Evolving 3D morphology and behavior

by competition. In R. Brooks and P. Maes, edi-

tors, Arti�cial Life IV, pages 28{39, Cambridge,

MA, 1994. MIT Press.

[16] Yasuhiro Suzuki and Hiroshi Tanaka. Order

parameter for a symbolic chemical system. In

C. Adami, R. Belew, H. Kitano, and C. Taylor,

editors, Arti�cial Life VI, pages 130{139, Cam-

bridge, MA, 1998. MIT Press.

[17] Andrew Watson and James Lovelock. Biological

homeostasis of the global environment: The para-

ble of daisyworld. Tellus, 35B:284{289, 1983.

852 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Evolution of strategies in repeated stochastic games

with full information of the payo� matrix

Anders Eriksson and Kristian Lindgren

Department of Physical Resource Theory, Complex Systems Group

Chalmers University of Technology and G�oteborg University

SE-41296 G�oteborg, Sweden

Corresponding author: K. Lindgren (frtkl@fy.chalmers.se, phone: +46(0)31 - 772 3131)

Abstract

A framework for studying the evolution of

cooperative behaviour, using evolution of �-

nite state strategies, is presented. The in-

teraction between agents is modelled by a

repeated game with random observable pay-

o�s. The agents are thus faced with a more

complex (and general) situation, compared to

the Prisoner's Dilemma that has been widely

used for investigating the conditions for coop-

eration in evolving populations. Still, there

is a robust cooperating strategy that usually

evolves in a population of agents. In the co-

operative mode, this strategy selects an ac-

tion that allows for maximizing the payo�

sum of both players in each round, regardless

of the own payo�. Two such strategies max-

imize the expected total payo�. If the oppo-

nent deviates from this scheme, the strategy

invokes a punishment action, which for ex-

ample could be to aim for the single round

Nash equilibrium for the rest of the (possibly

in�nitely) repeated game.

1 INTRODUCTION

The conditions for cooperative behaviour to evolve

have been the focus in a large number of studies using

genetic programming, evolutionary algorithms, and

evolutionary modelling (Matsuo 1985, Axelrod 1987,

Miller 1989, Lindgren 1992, 1997, Nowak and May

1993, Stanley et al 1993, Lindgren and Nordahl 1994,

Ikegami 1994, Nowak et al 1995, Wu and Axelrod

1995). Most of these studies have used the iterated

Prisoner's Dilemma (PD) game as a model for the in-

teractions between pairs of individuals (Rapoport and

Chammah 1965, Axelrod 1984, Sugden 1986), and in

the PD game cooperation is the action that lets two

players share the highest total payo�. The problem in

the single round PD is that one is tempted to defect

to get a higher score, but when the game is repeated

one usually �nds that various types of cooperative be-

haviour evolves, for example in the form of the Tit-

for-tat strategy (Axelrod 1984).

The basis for cooperation to emerge in these models

is the repeated encounters between players. In \real"

situations one usually meets the other player again,

but seldom in an identical situation. Therefore, we

suggest and analyse a more open game-theoretic prob-

lem as a basis for the interactions between players.

In each round a completely random payo� matrix is

generated, and the players observe the payo� matrix

before choosing their actions. In order to compare this

model with the iterated PD, we introduce a parame-

ter that can continuously change the game from the

iterated PD to the repeated random payo� game.

In this model cooperation is not associated with a cer-

tain action, but rather with how one chooses to act

depending on the structure of the present payo� ma-

trix in combination with how the opponent has acted

in previous rounds. There is a very strong cooperative

strategy in this type of game, namely the strategy that

always plays the action that aims for the highest payo�

sum for the two players, regardless of the own score.

If two such players meet they will, in the long run,

get equal scores at the maximum possible level. The

circumstances for such cooperative strategies to evolve

may be critical, though, and this paper is a starting

point for investigating what strategy types evolve in

this type of open game.

The model presented here is a population dynamics

model with strategies interacting according to their

abundances in the population. The equations of mo-

tion for the di�erent variables (the number of individ-

uals) are thus coupled, resulting in a coevolutionary

system. The success or failure of a certain type of in-

853ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

dividual (species) depends on which other individuals

are present, and there is not a �xed �tness landscape

that is explored by the evolutionary dynamics.

The paper is organised as follows. First we give a brief

presentation of the repeated stochastic game and some

of its characteristics. Then we describe the agents in-

cluding the strategy representation, and how the popu-

lation dynamics with mutations lead to a coevolution-

ary model. In the �nal sections we briey discuss some

preliminary results and directions for future research

within this model framework.

2 RANDOM PAYOFF GAME

The repeated random payo� game used in this study

is a two-person game in which each round is charac-

terized by two possible actions per player and a ran-

domly generated but observable payo� matrix. The

payo� matrix elements are random, independent, and

uniformly distributed real numbers in the range [0; 1].

New payo�s are drawn every round of the game, as in

Table 1.

The agents playing the game have complete knowledge

of the payo�s uijk(t) for both players i 2 fA;Bg and

possible actions j and k for the present round t. Here

all uijk(t) are independent random variables with uni-

form distribution.

The single round game can be characterised by its

Nash equilibria (NE), i.e., a pair of actions such that

if only one of the players switches action that player

will reduce her payo�.1 If

(uA
00
� u

A
10
)(uA

01
� u

A
11
) > 0

or

(uB
00
� u

B
01
)(uB

10
� u

B
11
) > 0; (1)

there is exactly one (pure strategy) Nash equilibrium

in the single round game. This occurs in 3/4 of the

rounds. If this does not hold, and if

(uA
00
� u

A
10
)(uB

00
� u

B
01
) > 0; (2)

there are two (pure strategy) NEs, which occurs in 1/8

of the rounds. Otherwise, there are no (pure strategy)

NEs.

There are a number of simple single round (elemen-

tary) strategies that are of interest in characterising

the game. Assume �rst that there is exactly one NE,

and that rational (single round) players play the corre-

sponding actions. The payo� in this case is max(x; h),

1We assume that no payo� values are identical, so that
Nash equilibria are strict. Rounds for which this does not
hold are of measure zero.

where x and h are independent uniformly distributed

stochastic variables in [0; 1], and this results in an ex-

pectation value of 2=3 � 0:667.

Let us de�ne a strategy \NashSeek" as follows. If

there is only one NE in the current payo� matrix, one

chooses the corresponding action. If there are two NE,

one aim for the one that has the highest sum of the

two players payo�s, while if there is no NE, one opti-

mistically chooses the action that could possibly lead

to the highest own payo�.

A second strategy, \MaxCoop", denoted by C, aims for

the highest sum of both players' payo�s. If two such

players meet, they score max(x1 + h1; x2 + h2; x3 +

h3; x4 + h4) together, where xi and hi are indepen-

dent uniformly distributed stochastic variables in [0; 1],

and this results in an expectation value of sC =

3589=5040� 0:712.

If a player using MaxCoop wants to avoid exploitation,

some punishment mechanism must be added. A new

elementary strategy could be invoked for this, so that if

the opponent deviates from MaxCoop, then the defec-

tor will at the most get the minmax score for the rest of

the game. We call such an elementary strategy \Pun-

ish", denoted by P, and the strategy being punished

will at the most get min(max(x1; x2);max(x3; x4)),

with an expectation value of sP = 8=15 � 0:533.

Other forms of punishment, that are less costly for

both players, are also possible. In Table 2 we show

the expected payo�s between the simple strategies in

this paper. All expected payo�s for the simple strate-

gies were computed analytically.

This illustrates that both players choosing MaxCoop

with punishment correspond to a Nash equilibrium in

the in�nitely (undiscounted) iterated game. In a dis-

counted iterated game, with a probability � for the

game to end in each round, the condition for avoiding

exploitation is 1 + (1 � �)sP =� < sC=�. This means

that if � < (sC � sP)=(1 � sP) = 901=2352 � 0:383,

then both choosing MaxCoop with punishment is a

NE.

In order to be able to illustrate how this model is an

extension of the iterated Prisoner's Dilemma game, we

introduce a stochasticity parameter r (0 = r = 1) that

changes the payo� characteristics from the simple PD

game to the fully stochastic payo�. The r-dependent

payo� matrix is shown in Table 1.

3 EVOLUTIONARY MODEL

We consider a population of N agents, competing for

the same resources. The population is at the limit of

854 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Table 1: Payo�matrix for the stochastic game depend-

ing on the parameter r that brings the game from an

ordinary PD to the fully stochastic game. The sym-

bols �i denote independent uniformly distributed ran-

dom variables in the interval [0; 1], and note that for

r = 1 these form the payo�s of the game.

Action 0 Action 1

Action 0
(1� r) + r�1

(1� r) + r�5

r�2

5

3
(1� r) + r�6

Action 1
5

3
(1� r) + r�3

r�7

1

3
(1� r) + r�4

1

3
(1� r) + r�8

Table 2: Expected payo�s for the simple strategies, for

the row player. The strategies are de�ned in section

3.1.

MaxMax Punish MaxCoop NashSeek

MaxMax 0.600 0.400 0.710 0.619

Punish 0.500 0.400 0.549 0.519

MaxCoop 0.592 0.431 0.712 0.610

NashSeek 0.643 0.443 0.750 0.662

the carrying capacity level of the environment, so the

number of agents N is �xed.

In each generation, the agents play the repeated

stochastic payo� game with the other agents, and re-

produce to form the next generation. The score si

for strategy i is compared to the average score of the

population, and those above average will get more o�-

spring, and thus a larger share in the next generation.

Let gij be the score of strategy i against strategy j,

and let xi be the fraction of the population occupied

by strategy i. The score si is then

si =
X

j

gijxj ; (3)

and the average score s is

s =
X

i

sixi: (4)

We de�ne the �tness wi of an individual as the di�er-

ence between the its own score and the average score:

wi = si � s (5)

Note that this ensures that the average �tness is zero,

and thus the number of agents is conserved. The frac-

tion xi of the population of the strategy i changes as

xi(t+ 1) = xi(t) + dwi xi(t) =

= xi(t) + d (si � s)xi(t); (6)

where d is a growth parameter, and all terms to the

right of the �rst equality sign are evaluated at time t.

When an individual reproduces, a mutation may oc-

cur with low probability. The mutations are described

in detail in section 3.2. In this way, diversity is intro-

duced in the population. In the population dynamics,

this corresponds to a number of mutations per strategy

proportional to the strategies share of the population.

The share of the mutant strategy is increased by 1=N

(corresponding to one individual), and the mutated

strategy loses the same share.

3.1 PLAYERS AND STRATEGIES

In many approaches to evolutionary game-theoretic

models, strategies are represented as deterministic �-

nite state automata (FSA) (Miller 1988, Nowak et al

1995, Lindgren 1997), where each transition conditions

on the action of the opponent. Each state is associated

with an action, and a certain state is the starting state.

In order to calculate the payo�s for a pair of players,

an FSA describing the joint states of the players is

constructed. The expected undiscounted payo�s are

then computed from this FSA.

However, since our games are stochastic, the result of

each action varies between rounds. In this case, a nat-

ural extension is to act according to a simple behaviour

rather than a pure action. In this article, we choose

the behaviours to be deterministic maps from a pay-

o� matrix to an action, and we call these elementary

strategies. In our �rst experiments, the behaviours

available to the agents are MaxMax (M), Punish (P),

MaxCoop (C), and NashSeek (N), described as follows:

� MaxMax: Select the action so that it is possible

to get the maximum payo� for the agent in the

payo� matrix. Greedy and optimistic.

� Punish: Select the action that minimizes the op-

ponent's maximum payo�. Note that this may be

even more costly for the punishing strategy.

� MaxCoop: Assume that the other player also

plays MaxCoop, and select the action that maxi-

mizes the sum of the players' payo�s.

� NashSeek: If there is only one Nash equilibrium,

select the corresponding action. If there are two

Nash equilibria, select the one that gives the high-

est sum of the players' payo�s. If there are no

equilibria, play according to MaxMax (see above).

855ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Agents thus have four possible elementary strategies,

each determining what speci�c action should be chosen

when a certain payo� matrix is observed. We choose

to have only four simple strategies, since we want to

keep our system as simple as possible. The MaxCoop

is a natural member, since it is the optimal behaviour

at self-play. In our choices of the other behaviours, we

have tried to �nd the most interesting aspects of the

game: Nash equilibria, punishment against defection,

and greediness.

Since the agents cannot access the internal state of the

opponent, but only observes the pure actions, we build

an action pro�le by comparing the opponent's action

to the actions that the opponent would have taken,

given that it followed each of the elementary strate-

gies. In this way, a player may determine whether the

opponent's action is consistent with a certain elemen-

tary strategy.

We now construct an FSA strategy representation that

allows for more complex (composite) strategies by as-

sociating di�erent internal states with (possibly) dif-

ferent elementary strategies. In each state, the agent

has a list of transitions to states (including the cur-

rent state). Each transition is characterized by a con-

dition on the opponent's action pro�le. For each ele-

mentary strategy, the agent may require a match or a

non-match, or it may be indi�erent to that behaviour.

The transitions are matched in the order they occur in

the list, and the �rst matching transition is followed.

If no transition matches, the state is retained to the

next step.

When solving for the players' payo�s, we construct the

joint state FSA of the whole iterated game.2 The ex-

pected payo�s from all pairs of behaviours, and the

probability distributions over the set of action pro�les

are precomputed. Since the payo� matrices are in-

dependent stochastic variables, we can compute the

probability distributions of the transitions from each

node in the game FSA by summing over the action

pro�le distribution. It is then straightforward to com-

pute the resulting stationary distribution, and the cor-

responding payo�s.

3.2 MUTATIONS

There are several di�erent ways to change a strategy

by mutations. Since we represent our strategies by

graphs, there are some basic graph changes that are

suitable as mutations.

A graph may be mutated by changing the number of

2A more detailed description is in preparation (Eriksson
& Lindgren 2001).

C N

**F*

**F*

**T*

**T*

Figure 1: Example of a graph playing strategy. The

letters in the nodes stands for the elementary strate-

gies MaxCoop (C) and NashSeek (N), and the black

ring indicates the initial state. The transition denoted

**T* applies only when the opponent's action is con-

sistent with MaxCoop (the third elementary strategy),

but does not care about the other elementary strate-

gies. The transition rule **F* is used when the op-

ponent does not follow the MaxCoop strategy. This

composed strategy is similar to the Tit-for-tat strategy

in that it cooperates by playing MaxCoop if the oppo-

nent played according to MaxCoop in the last round,

otherwise it defects by playing NashSeek.

nodes, changing the connectivity of the graph, or by

changing the labels of the nodes. See Fig. 2 for an ex-

ample mutation. Removing a node constitutes delet-

ing the node, and removing all edges pointing to that

node. Adding a node is made in such a way that the

strategy is unchanged, by splitting an existing node

as follows. A new node is created, and all the edges

leaving the original node are copied to this node. All

self-referential edges of the original node are redirected

to the new node. Finally, a match-all edge to the new

node is added last in the rule list of the original node.

We think that it is important that a strategy may

change in size without changing the behaviour. If a

strategy is at a �tness peak, many mutations that

change the �tness may be needed to reach another

peak, using only the mutations that change the strat-

egy. But if a strategy may grow more complex without

endanger the good �tness, these mutation might bring

it close to other peaks (in terms of using the other

mutations). That genetic diversi�cation among agents

with identical �tness is important has been observed

for example in hill climbing algorithms for satis�ability

(SAT) problems (Selman et al 1992).

Since large random changes in a strategy often are

deleterious, this allows the strategy to grow more com-

plex in a more controlled way. For example, it might

lead to a specialization of the old strategy.

The connectivity of the graph is mutated by adding a

856 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

a
b

N M

CP

a

a

N
M

C P

N
b

b

Figure 2: Example of a neutral mutation of the grey

node, adding a node. Labels a and b are transition

rules. The new node is created with the same links as

the grey node, and all self-links of the grey node are

directed to the new node.

random rule, removing a rule, or by mutating a rule.

Rules are mutated by changing the matching criterion

at one location, or by changing the rule order (since

the rules are matched in a speci�c order, this changes

the probability of a match by that rule). Finally, a

node may be mutated by randomly selecting a di�erent

strategy as a label. After each mutation, we perform

a graph simpli�cation where we remove all nodes that

are unreachable from the start node, in order to keep

the representation as compact as possible.

In our experiments, the most common mutation is the

node strategy mutation. We keep the node addition

and removal equiprobable, so that there is no inherent

preference for strategy growth in the simulation. The

same holds for rule addition and removal. All growth

of the strategies that is observed in the population is

thus due to the competition between strategies, and

the need for complexity that arises as a consequence

of that competition.

4 RESULTS

The model described in the previous sections has been

simulated and analysed in a number of ways. First, we

have made a simple analysis of how the scores between

pairs of elementary strategies depend on the degree of

stochasticity in the payo� matrix, in the range from

the pure PD game to the fully stochastic payo� game.

In Table 2, the results for a number of strategies are

shown. The table shows clearly that there is a possi-

bility for a cooperative behaviour scoring higher than

the short term Nash equilibrium level.

The strategy NashSeekOpt (play optimally against

NashSeek) is identical to the basic Nash-seeking strat-

egy (NashSeek) when there is only one Nash equi-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

P
ay

of
fs

MaxCoop − MaxCoop

NashSeekOpt − NashSeek

NashSeek − NashSeek

PunishOpt − Punish

Punish − Punish

Figure 3: By the stochasticity parameter r, we can

make a continuous transition from a pure Prisoner's

Dilemma game to the fully stochastic payo� matrix.

Here we show the �rst player's score for di�erent pairs

of strategies as functions of r. The strategy PunishOpt

plays optimally against Punish.

librium in the single round game, but plays optimal

against NashSeek in case of no or two Nash equilibria

(and thus exploiting NashSeek).

A player that wishes punish an opponent, may try to

minimize the score for the opponent by playing a Min-

Max strategy, and the opponent's score in that case is

the second lowest curve in Fig. 3. From the �gure we

see that when the game becomes more stochastic there

may be several elementary strategies that can work as

a punishment, and that this allows for punishments of

di�erent magnitudes. In the PD game, of course, the

only way to punish the opponent (in a single round) is

to defect (which is equivalent to NashSeek and Pun-

ish).

In Fig. 4, we show the evolution of the average score in

the population in the case of a fully stochastic payo�

matrix. The score quickly (in a few thousand genera-

tions) increases to the level of the single round Nash

equilibrium, but with sharp drops when mutant strate-

gies manages to take a more substantial part of the

population. After about 20,000 generations, the pop-

ulation is close to establishing a MaxCoop behaviour,

but fails, probably because of the lack of a strong

enough punishment mechanism. A new attempt is

made after 60,000 generations, and here it seems that

a composite strategy using MaxCoop against other co-

operative strategies, but punishing exploiting oppo-

nents, is established.

The noisy behaviour observed in Fig. 4 is an e�ect

of the sub-population of mutants created by the rel-

857ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

0 2 4 6 8 10 12 14

x 10
5

0.8

0.85

0.9

0.95

1

1.05

Generation

P
ay

of
f

NashSeek vs. NashSeek normalized payoff

MaxCoop vs. MaxCoop normalized payoff

Figure 4: The average score in the population is shown

for the �rst 1.4 million generations in the case of a fully

stochastic payo� matrix. Population size is 100 strate-

gies, the growth parameter d is 0.1, and the mutation

rate m is 0.5. The score is normalized to the Max-

Coop level. The thick lines indicate the normalized

levels of MaxCoop vs. MaxCoop (upper) and Nash-

Seek vs. NashSeek (lower). It is clear that the popula-

tion �nds a strategy with MaxCoop, that is resistant

against greedy strategies for many generations.

atively high mutation rate (5%). There may be two

mechanisms involved here. The immediate e�ect is

that many mutants deviate from the MaxCoop strat-

egy which induces all playing against them to switch

to punishment, e.g., NashSeek. A secondary e�ect is

that mutations that remove the punishment mecha-

nism may survive for a while, growing in size by genetic

drift, until a mutant that exploits its lack of punish-

ment enters. Such an exploiting mutant may increase

its fraction of the population at the cost of reducing

both average population score and the size of the ex-

ploited strategy, eventually leading to the extinction

of both of the mutants.

When the population reaches the score level of the

MaxCoop strategy, there are periods when the score

drops drastically down to the Nash level or even

lower. A reasonable explanation is that the punish-

ment mechanism that is necessary in order to estab-

lish the MaxCoop strategies when Nash-seeking strate-

gies are present, is not needed when the Nash-seeking

strategies have gone extinct. By genetic drift, Max-

Coop strategies without a punishment mechanism may

increase their fraction of the population, and then

when a mutant NashSeek enters there is plenty of

strategies for it to exploit, leading to a drop in av-

erage score. But then the MaxCoop with punishment

can start to grow again, resulting in the noisy average

score curve of Fig. 4. Occasionally, if the simulation is

continued, there may be transitions back to the score

level of the single round Nash equilibrium.

5 DISCUSSION

It is clear from the payo� matrix describing the ele-

mentary strategies, that the iterated game (with a suf-

�ciently low discount rate) has Nash equilibria in the

form of both players using a certain form of MaxCoop-

punishment, the most common one being MaxCoop

with NashSeek as punishment.

But it is also clear that there are several strategies

that are playing on equal terms with such a MaxCoop-

punishment strategy. For example, strategies that by

mutation loose their punishment mechanism may en-

ter and increase their fraction of the population by ge-

netic drift. This in turn leads to a population that is

vulnerable to mutants exploiting the cooperative char-

acter of the MaxCoop behaviour, for example by the

NashSeek behaviour. Thus, the Nash equilibrium that

characterises the population dominated by MaxCoop-

punishment is not an evolutionarily stable one, as can

be seen in the simulations. The e�ect is the same as the

one in the iterated Prisoner's Dilemma that makes Tit-

for-tat an evolutionarily non-stable strategy (cf. IPD;

see, for example, (Boyd & Lorberbaum 1987, Boyd

1989)).

The evolution of a population dominated by MaxCoop

(with some punishment mechanism) is not unexpected.

A population of players (using identical strategies) can

always enforce a certain score s�, if this score is larger

than (or equal to) the smallest punishment score sP

and smaller than (or equal to) the maximum cooper-

ation score sC , sP � s
� � sC . This means that the

population can punish a new strategy (mutant) that

enter, unless it adopts the same strategy and plays so

that the score s� is reached in the long run. This ar-

gument follows the idea behind the Folk Theorem that

appears in various forms in the game-theoretic litera-

ture (Fudenberg and Tirole 1991, Dutta 1995).

The repeated game with stochastic observable payo�s

o�ers a simple model world in which questions on the

evolution of cooperation may be investigated. As we

have exempli�ed one may also make a transition from

the simpler Prisoner's Dilemma game by changing a

parameter. The model captures the uncertainties on

which future situations we may �nd our opponents and

ourselves. The model may easily be extended to in-

clude noise in the form of mistakes or misunderstand-

ing, see, e.g., (Molander 1985, Lindgren 1992, 1997).

The extension of the model to a spatial setting is also

858 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

on its way.

References

R. Axelrod (1984). The Evolution of Cooperation.

New York: Basic Books.

R. Axelrod (1987). The evolution of strategies in the

iterated Prisoner's Dilemma. In L. Davis (Ed.) Ge-

netic Algorithms and Simulated Annealing, pp. 32{41.

Los Altos, CA: Morgan Kaufmann.

R. Boyd (1989). Mistakes allow evolutionary stability

in the repeated Prisoner's Dilemma game. Journal of

Theoretical Biology 136, pp. 47{56.

R. Boyd and J. P. Lorberbaum (1987). No pure strat-

egy is evolutionarily stable in the repeated Prisoner's

Dilemma game. Nature 327, pp. 58{59.

P. K. Dutta (1995). A Folk Theorem for Stochastic

Games. Journal of Economic Theory 66, pp. 1{32.

A. Eriksson and K. Lindgren (2001). In preparation.

D. Fudenberg and J. Tirole (1991). Game Theory.

Cambridge, MA: MIT Press.

T. Ikegami (1994). From genetic evolution to emer-

gence of game strategies. Physica D 75, pp. 310{327.

W. B. Langdon (2000). Scaling of �tness spaces. Evo-

lutionary Computation 7(4), pp. 399{428.

K. Lindgren (1992). Evolutionary phenomena in sim-

ple dynamics. In C. G. Langton et al (Eds.), Arti�cial

Life II, pp. 295-311. Redwood City, CA: Addison-

Wesley.

K. Lindgren (1997). Evolutionary dynamics in game-

theoretic models. In B. Arthur, S. Durlauf, and D.

Lane (Eds.) pp. 337-367. The economy as an evolving

complex system II. Addison-Wesley.

K. Lindgren and M. G. Nordahl (1994). Evolutionary

dynamics of spatial games. Physica D 75, 292-309.

K. Matsuo (1985). Ecological characteristics of strate-

gic groups in 'dilemmatic world'. In Proceedings of the

IEEE International Conference on Systems and Cyber-

netics, pp. 1071{1075.

J. Maynard-Smith (1982). Evolution and the Theory

of Games. Cambridge: Cambridge University Press.

J. H. Miller (1989). The coevolution of automata in

the repeated iterated Prisoner's Dilemma. Sante Fe,

NM: Santa Fe Institute working paper pp. 89{003.

P. Molander (1985). The optimal level of generosity in

a sel�sh, uncertain environment. Journal of Conict

Resolution 29, pp. 611{618.

M. A. Nowak and R. M. May (1993). Evolutionary

games and spatial chaos. Nature 359, 826-829.

M. A. Nowak, K. Sigmund, and E. El-Sedy (1995). Au-

tomata, repeated games and noise. Journal of Mathe-

matical Biology 33, pp. 703{722.

A. Rapoport and A. M. Chammah (1965). Prisoner's

Dilemma. Ann Arbor: University of Michigan Press.

B. Selman, H. Levesque, and D. Mitchell (1992), A

New Method for Solving Hard Satis�ability Problems.

Proceedings of the Tenth National Conference on Arti-

�cial Intelligence (AAAI{92), San Jose, CA, pp. 440{

446.

E. A. Stanley, D. Ashlock, and L. Tesfatsion (1993).

Iterated Prisoner's Dilemma with choice and refusal of

partners. In C. G. Langton (Ed.) Arti�cial Life III,

pp. 131{175. Reading, MA: Addison-Wesley.

R. Sugden (1986). The Economics of Rights, Co-

operation and Welfare. Oxford: Basil Blackwell.

J. Wu and R. Axelrod (1995). How to cope with noise

in the iterated Prisoner's Dilemma. Journal of Con-

ict Resolution 39, pp. 183{189.

859ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

�����������	��
�����������������������������������! ��"�$#&%'����(���!�)����#+*-,/.

021436587:9<;>=@?BADCFEG365�HJI�027LK6CF14AM0214N8N89OA8N8PQKJRTSUI�V�7LK6CGWX?YC/ZY365BW[9<3F\^]
_a`QbdcfegcfhLcji)kl_dm�n

o>`Qeqpri�stbueqcdvxwUy�z${Usf|}bjsfh:~:i
�l�u�J�:�6�U��z${Usf|}bjsjhQ~:i��:��i�sf��{U`<v

� H����rh^� S�����e��]�~�bj�t~��U��{Ueqy��^� h:`:eq���J{Usf|�busfh:~:ir� �Li

�M�����L�: �¡¢�

kl`�k>`Oc¤£&wr|qwr`<v¦¥¨§Lcfeq��e}©G{Ucje}w�`+ª4kl£�¥¬«{U§L�
§:sfwr{r�t~Xy�w�s�{®�Lv<`Q{U��e��x¯Yst{6p�iG|qe}`:�±°L{�|qiFbu§¢i�stbuwr`
²³sjwr�:|qiG�´ª�¯>°L²&«¬e�b)bucjhQ�:eqiF�µeq`µcf~:e}b"§Q{U§¢i�sF�@_a`
cf~:i��:vO`�{U��e}�lp�iGsfbjeqwr`�wUy�cj~Qi�¯>°L²¶��eqcje}iGb·��{�`x��i
�LiG|qi�cjiF�wrs�e}`Qbji�sjcjiG�wJp�iGsxcje}��i��¸°L§�iF��eq¹���{�|q|}v��
º i»��wr`Qbje}�LiGs®sfi�§:|�{���eq`Q�¼{¼��iGsuct{Ue}`¤`OhQ�"�¢i�s®w�y
��egcfeqiFb º eqcj~�`:i º w�`:iFbl{Uc¨�Leq½¢iGsjiG`rc¨y�sjiF¾Oh:i�`Q��eqiFb��
¯¿~:i){�eq�¸wUy�cj~Qi)kl£�¥2{�|q�rw�sfegcf~:�Àe�b¿cjw�§:sfwJp<e}�:i
{®��w<wL�[buwr|qh:cje}w�`»¾OhQ{�|qeqcdvX{6pri�st{U�riG�XwJp�iGs$cje}��i��
e�� ir�³cf~:i"{6pri�st{U��ilcf{���i�`!w�y8cf~:i)�¢iGbuc¨bjw�|}hLcje}w�`!e}`
iF{��t~Áegcfi�st{Jcje}w�`Me�b�w�§:cje}��e}©�iF���Â°<iGp�iGsf{�|>bdcfsf{Ucji��
�reqiFb)y�wrs�§:~Qi�sfw���w�`:i/��wL�Leq¹��G{Jcje}w�`»eq`¶sjiF{���cfeqwr`
cfw��t~Q{�`:��iFb�wUy�cf~:il§:sfw��Q|qiG�Ãe}`Qbucf{�`Q��il{�sjileq`<p�iFbd�
cfeq�O{JcjiF���¬¯¿~:i�bucjst{Jcfi��reqiFbl�Leq½¢iGs¨e}`±cf~:i�e}s¬�Li��rsjiGi
w�yY|qwL�G{U|}egcdv º eqcj~/sfiGbj§¢iG��c·cjw�cj~Qi¨§¢wrbjegcfeqwr`/w�y^cj~:i
e}`Qbji�sjcjiG�¢ÄJ�LiG|qi�cjiG�"��eqcje}iGb8{U`Q� º ~Qi�cj~Qi�sBcj~:iGv$��i�iG§
{���wL�Leg¹�iG�@i�|}egcfe}bucl{U`Oc>wrs·`QwUcG�

Å ÆrÇ �L�:È�ÉlÊl¡¢�:ËuÈ Ç

ÌÍprw�|}hLcje}w�`�{Usfv���i�cf~:wL�:b�{Usfi�eq`@��iG`:i�st{U|���{�§Q{U�Q|qi�wUyYsfiG{r��cj�
e}`:�±cfwX�Lv<`Q{���e}���t~Q{U`:�riGb"wUy¨{�`[w�§Lcfeq��e}©G{Ucje}w�`»§Qsjwr�:|qiG�!�
�¨eg½Di�sfi�`Oc º {6v<b8cfw¬cjsfeq�ÃÌÍprw�|}hLcje}w�`Q{�sjv)kl|q�rw�sfegcf~:��b�ª4Ì&klbt«
y�w�s��Lv<`Q{���e}�&§:sfw��:|}i���b8~Q{�b8~Q{6pri³�¢i�iG`�§:sfw�§¢wrbjiG�)wJp�i�sBcj~Qi
|�{�buc³v�iF{Ustb�ª4bji�i)ª4n·st{U`:�ri����GÎ�ÎrÎr«Yy�w�s&{)bu~Qw�sjcÍwJp�i�sfp<eqi º «��8k
��iGv±{�bj§�iF��c$e�b º ~:i�cf~:i�s$e}`Ly�w�sf��{Jcfeqwr`X��w�`:`:iF��cfiG�®cjw�buwr|qh:�
cje}w�`�b�y�w�hQ`Q�!y�w�s¨w�|��Li�s�bdct{U�riGb�w�y³{�§:sfw��:|}i�����{�`���i�hQbuiF�
cjw�¾Oh:e}�t�<|}v�¹Q`Q�/{"��w<wL�xbjw�|}hLcje}w�`�y�wrs³cf~:i�§:sjwr�:|}i��Ï{JyÐcfi�s¿{
�t~Q{�`:��i�wL����hQsjsfiG���
_a`¬cj~Qe}bY§Q{U§¢i�s º iÍi�Ñ<§Q|qwrsjiÍbucjst{Jcfi���e}iGb¢cfwl{U§Q§:|qv�k>`Oc�£&wr|qwr`Ov
¥¨§Lcfeq��e}©G{Jcfeqwr`�ª�kl£�¥¬«�y�wrs�bjw�|}p<eq`Q�¨�Lv<`Q{���e��&w�§Lcfeq��e}©G{Jcfeqwr`
§:sfw��:|}i���b·ª4bji�i¬ª4n·w�`�{U�¢iG{UhY�L�GÎ�Îr�r«��<ª��lwrsje}��w�{U`Q���leQ£·{�sjw��
�GÎrÎ�ÎO«)y�wrs�{�`ÁwJpri�sfp<eqi º wUy)kl£�¥¬«��³¯¿~:i±§Q{�sucfe}��h:|�{Us�cfiGbuc
§:sfw��:|}i�� º iµbdcfhQ�Lv¼e�b�{¶�:vO`�{U��e}�X¯Bsf{6pri�|}eq`:�M°L{U|}iGbj§¢i�sj�
bjw�`�²³sjwr�:|}i��¦ª4¯>°L²·« º ~:i�sfi¨e}`Qbucf{�`Q��iFb·�t~�{U`:�ri¨{Jc>��i�sjcf{Ue}`
e}`rcfi�sfpJ{U|�b¬cj~:sfw�hQ��~Òcj~:i/�:i�|}i�cje}w�`[{�`Q�Xeq`�buiGsucfeqwr`Xw�y¿��egcfeqiFb��

¯¿~:e�b>§:sfw��Q|qiG�¸e�b>�ri�`:iGsf{�|^i�`:wrh:��~!cfwx�¢i)eq`Ocfi�sfiGbucje}`:�/{�bl{
�¢i�`Q�t~:��{�sj�±§Qsjwr�:|qiG�Ó{U`Q�X{U|}|}w º b¨��wL�Leqy�v<eq`:�!cf~:i��Li��rsjiGi
wUy¿�t~Q{U`Q��i�iG{rbue}|qvr��klb${@§:st{���cfe}�G{U|Í{�§:§:|}e}�G{Jcje}w�`Y�Y��wr`Qbue��LiGs
cj~Qi³��{rbuiÍw�y:{·y4{���cfw�sfv º eqcj~"{·Ô�hQ��cfhQ{Jcfeq`:�¨bui�cYwUy:{���cje}p�iÍ��{U�
�t~:e}`:iGbG�x_a`[�G{�bji�w�y¿{@y4{�eq|}h:sfi�eq`Xcf~:i�§:sfw<�:hQ��cfeqwr`µbjvLbdcfi��
eqc·e�bÍ`:iF��iFbjbf{Usfv"cfw�bucf{�suc&{�`xe}`Qbu§¢iG��cje}w�`�cfw�h:s·e}����iF�Le}{UcjiG|qv
cjw��t~:iF�t��{�|q|¢§:sfi�p<e}w�hQbj|qv�{r��cje}p�i¨��{��t~:e}`:iGbG��¯¿~:e�b&��{���iGb&eqc
�¢i�`:i�¹���e�{U|8cjw!��wr`Qbucf{U`Ocf|qv!�<`:w º {/bj~:wrsuc¨cjw�hQs¨y�wrslcf~:i�bui�c
wUy�{���cje}p�i���{��t~:e}`:iGbG�
ÕXi�h�bui���w<�:eg¹QiF�Ò{�`Q�Òi�Ñ<cjiG`Q�LiG�Òbdcfsf{UcjiG��e}iGbly�sjwr��{/§Qsji��
p<eqwrhQblbucjh��Lv@�:w�`:i)�<v�c º w/wUy�cj~:i�{UhLcf~:w�stb º ~:iGsji)cj~:i�sji��
{���cje}w�`�w�y�cj~:i�{U`Oc¨{U|}��wrsjeqcj~Q��b>cjw/{/bue}`:��|}i��t~�{U`:�ri$wUy�cj~Qi
§:sfw��:|}i��	e}`Qbucf{U`���i º {rb³e}`<p�iGbucje}�r{UcjiF��ª���h:`Ocfbf�t~�{�`Q�/Ö±e}�<�
�LiG`Q�Lw�sjyd����×�×:�6«��Í¯¿~:i"w�`:|}v/w�cj~:iGs>�Lv<`Q{U��e��¬w�§Lcfeq��e}©G{Jcfeqwr`
§:sfw��:|}i���b¿cfw º ~:e��t~!kl£�¥2~Q{rb���iGi�`±{�§:§:|}eqiF�@{�sji$sfw�h:cje}`:�
§:sfw��:|}i���b�e}`µ��w����"hQ`:e}�G{Jcfeqwr`®`:i�c º wrsj�Lb º ~:i�sfi�cj~:i�cfsf{UyÐ�
¹���eq`®cj~:i�`:i�c º wrsj�!��wr`Ocje}`Oh�{U|}|qv��t~Q{�`:��iFb�ª4i�� �Q�xª4�¨e&£·{Usfw
{U`��Ø�¨w�sfe}��wQ���FÎ�Î��O«���ª�°L�t~QwOwr`Q�LiGs º w<i�st�i�c®{U|��q���FÎ�Î��O«u«��
¯¿~:i�{U`Ocfb º iGsji"hQbuiF�!cjw@��wr`rcfeq`<hQ{�|q|}v@��iF{�bjh:sfi$cj~:i�cjst{6p�iG|
cje}��i���i�c º iGi�`M§Q{�eqstb�wUy¬`:wL�LiGb�{�`Q�[cf~:e�b�eq`:y�w�sf��{Ucje}w�`Áe}b
hQbjiG�±cjw@h:§¢�Q{Jcji�cf~:i�sfw�h:cje}`:�xct{U�:|}iGb�ª º ~Qe}�t~X��w�`Oct{Ue}`±cj~Qi
§:~:iGsjwr��w�`:i!e}`Ly�w�sf��{Jcje}w�`¢«��¼¯¿~:e�bx{U|}|}w º b"cf~:i®bjvLbdcfi��Ùcfw
{��Q{U§Lc·cjw�`:i º cjst{JÚx�lbjegcfhQ{Jcfeqwr`Qb·�:hLc¿egc>�Lw<iFb³`:w�c·§QsjwJp<e��Li
{U`<vx��iF{U`Qb·y�wrs�sjiF{���cfeq`Q��i�ÑL§:|qe���eqcj|}v�cfwxbue}`:��|}i$�t~Q{U`Q��iGbG�
�¨vO`�{U��e}�/w�§Lcfeq��e}©G{Ucje}w�`Û§:sfw��:|}i���b�{Usfi���wObdc�eq`Ocfi�sfiGbucje}`:�
º ~:iG`Ü�t~Q{�`:��iFb®w�yxcj~:iM§:sfw��Q|qiG��bÒe}`Qbdct{U`Q��iGbXwL����h:sXy�sji��
¾Oh:i�`Ocf|qvM{U`Q�MiF{��t~Ý�t~Q{�`:��i!e�bx`:w�cxcjw<w[|�{Usf��i�bjwµcj~Q{Uc�eqc
e�b�|qe}��iG|qv"cj~Q{Uc�cj~:il`:i º w�§Lcfeq��{�|Qbuwr|qh:cje}w�`Qb º e}|q|���i�e}`xbjw���i
bji�`Qbji!sjiG|}{UcjiG�»cjwXcf~:i�w�|��»wr`:iGbG�M_a`Ácj~:e�b���{rbui�{µbue}��§:|}i
sfiGbucf{Usjc"w�y�cj~:i@{U|}��w�sfeqcj~:� º ~:e��t~»�Le�bj�G{Ust�:b){U|}|·w�|��Ûeq`:y�w�sj�
��{Jcfeqwr`¼{JyÐcjiGs/{[�t~Q{�`:��i!~Q{rbxwL����h:sfsjiF�»��e}��~Oc/`:w�c/��iÒ{
��w<wL�Mbdcfsf{UcjiG��v��_a`QbdcfiG{r���¿��{�eq`Ocfi�`Q{�`Q��i�w�y¬bjw���i�§:sfi�p<eq�
w�h�bu|}v��Li�cjiGsj��e}`:iG���<`:w º |}iG�L�ri¿eq`�cf~:i�y�w�sf�Þw�y�§:~:i�sfw���wr`:i
e}`Ly�w�sf��{Jcje}w�`$bj~:w�hQ|}�¬�¢iÍ�¢i�`:i�¹���e�{U|��B¯Bw¿cj~:e�b^iG`Q�${¿cfsf{r�Li�w�½
�"h�bdc��¢i¨y�wrh:`Q�@�¢i�c º i�i�`/cj~:i$wr§:§¢wrbjeq`:����wO{U|�b³w�yB§:sfiGbji�sfpO�
e}`:�¨§Q~:i�sfw���w�`Qi³e}`Ly�w�sf��{Jcje}w�`�{U`Q�"sjiFbui�cucje}`:�¨i�`:wrh:��~"cjw¬{U|q�
|}w º cj~:i¿{U`OcfbYcjw¨i�ÑL§:|}w�sfi³`:i º sjiG|qiGpJ{U`Oc8{�sjiF{�b^w�y:cj~Qi·bjiG{�sf�t~
bj§Q{���iÍeq`"|}{Ucji�sBegcfi�st{Jcfeqwr`Qb��Bn·{rbuiF�¬w�`¬cf~:e}bB��iG`:i�st{U|�e}�LiF{:� º i
§:sfw�§¢wrbji${U`Q��cjiFbdclcj~:sfi�i)�Leq½Di�sfi�`Oc¨bucjst{JcjiG��e}iGb�{�`Q�!��w����:eq�

860 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

`Q{Ucje}w�`Qb>cj~:iGsjiGwUy�cjw/��{���i"{�`Oc�{U|}��wrsjeqcj~Q��b>��wrsji�buh:eqcf{��:|}i
y�w�s>cj~:i)wr§Lcje}��eq©F{Jcfeqwr`@e}`±�Lv<`Q{���e��¬i�`<p<e}sjwr`:��i�`OcfbG�³Ö�wrsji��
wJp�iGsG� º i¨§:sfw�§¢wrbji>{U`xiG|qeqcje�bdc�bucjst{JcjiG��v"y�w�s·hQbui¨eq`��Lv<`Q{U��e��
i�`<p<e}sjwr`:��i�`OcfbG��kÀbucf{�`Q�:{�sf�Òi�|}egcfe}buc�bucjst{Jcfi���v±y�w�s"{�`rc�{U|q�
��wrsjeqcj~Q��b·e�b·cj~Q{Ucl{U`@i�|}egcfe}buc>{U`Oc�h:§D�:{JcfiGb¿cf~:i¬§:~:i�sfw���wr`:i
pJ{U|}h:iGbleq`�iGp�iGsjv���i�`Qi�st{Jcje}w�`�{r����wrsf�:eq`:��cfw�cj~Qi)��iFbdc¬buwr|qh:�
cje}w�`Òy�w�hQ`Q�®bjw/y4{�sG��n·hLc¬{UyÐcjiGs){��t~Q{�`:��i�wUy&cj~:i�§:sfw��:|}i��
e}`Qbdct{U`Q��i�cj~:i)�¢iGbuclbjw�|}hLcje}w�`�y�w�h:`��@bjw�y4{Us º e}|q|YhQbuh�{U|}|qvx`Qw
|}w�`:�ri�slsfi�§QsjiFbuiG`rc¬{xpJ{U|}e��®bjw�|}hLcje}w�`�cfw/cf~:i�`:i º e}`Qbucf{U`���i��
_a`QbucjiF{���w�y&bue}��§:|}v!y�w�sf��i�cjcje}`:��cf~:i�wr|}�®��iFbdc$bjw�|}hLcje}w�`^� º i
bucjhQ�Lv�{U`�{U|qcjiGsj`�{Jcje}p�i¿{U§Q§:sjwO{��t~ º ~:i�sfi¿cj~:i�wr|}���¢iGbuc³buwr|qh:�
cje}w�`®e}b¬{��Q{U§LcfiG�±bjw�cj~�{Jc¬egc¬��iF��wr��iFb¨{/sjiF{�bjw�`Q{��:|}v/��w<wL�
bjw�|}hLcje}w�`�y�w�s¿cf~:i$`:i º e}`Qbdct{U`Q��i��
¯¿~:i��Q{�bje��"bucjsfhQ��cfh:sji�wUy�cf~:i�{U`Oc�{�|q�rw�sfegcf~:��e}b�§:sfiGbji�`OcfiG�
e}`/°<iG��cje}w�`��:�B_a`/°<iF��cfeqwr` � �rcj~:i�bdcfsf{Ucji��reqiFb8y�w�s&��wL�Leqy�v<eq`Q�
cj~Qi±§:~:iGsjwr��wr`:i�e}`Ly�w�sf��{Jcje}w�`Ý{�sji±�LiFbj��sje}�¢iG��� ¯¿~:i�cfiGbuc
§:sfw��:|}i���b�{�`Q��cj~:i)h�buiF��§�{Ust{U��i�cfi�s¿pJ{U|}h:iGb>{�sji¬§:sfwJp<e}�:iG�
e}`»°<iG��cje}w�`���� º eqcj~Ûcf~:ixsfiGbjh:|qcfb"�:e}bf��hQbfbjiG�µe}`»°<iG��cje}w�`��L�
¯¿~:i$§Q{�§�iGs>��wr`Q��|}hQ�LiFb º egcf~!{�bjh:����{Usfvxeq`±°<iF��cfeqwr`@�Q�

� ���
	 � Ç �¶����ÍÈÍ�QËd� �
�

_a`±cf~:e�b¨bjiG��cje}w�` º i��LiFbj��sje}�¢i"w�`Q|qv@cj~Qi��ri�`:iGsf{�|B{U§Q§:sjwO{��t~
wUy�wrh:s³{U|}��wrsjeqcj~Q�2y�w�s³cj~:i¨¯>°L²��r¯¿~:i¨bdcfsf{Ucji��reqiFbÍ{��Q�LiG��y�wrs
{U§Q§:|qv<e}`:�"eqc¿cjw�cj~:i¬�Lv<`Q{���e���¯>°L²»{�sji¨§:sjiFbuiG`OcjiG�/|}{UcjiGs&e}`
°<iF��cje}w�` � ��kl`rc�{U|}��w�sfeqcj~:��b¬~Q{6pri���iGi�`[{U§Q§:|qe}iG�Xy�wrs$cj~Qi
ª4bucf{Ucje��G«³¯>°L²[§:sfw��Q|qiG�Ü�<v�buiGp�i�st{U|�{UhLcf~:w�stblª�n&hQ|q|}`:~:iGeq��i�s
i�c�{U|��}�"�GÎrÎ�ÎO«��)ª4�¨w�sfe}��wQ�"�GÎ�ÎO��«��)ª4�¨w�sfeq�rw»i�c�{U|����GÎrÎ��r«��
ª4�¨w�sfe}��wÒ{�`Q�»�¬{��"�Q{�sf�LiG|q|�{:�¿�FÎ�Î��r«���ª4�¨w�sfe}��wÒ{�`Q�»�¬{����
�Q{�sf�LiG|q|�{:�³�GÎ�Î<�U«��Íª�°Oc��hLcj©G|qi/{�`Q���>w<wrbG�³�FÎ�ÎO��«��x¥¨h:s){U|}��w��
sfegcf~:�Ày�wrs¿cj~:i)¯>°L²¶y�wr|q|}w º b$ª4�¨w�sfeq�rw�i�cl{U|��q���FÎ�Îr�r«��
_a`®iGp�iGsjv@egcfi�st{Jcfeqwr`±iG{r�t~±wUy�� {U`Octb¨��w�`QbucjsfhQ��ctblwr`:i�cjw�hQs
cj~Qsjwrh:��~Û{U|}|Ícf~:ix�reqpri�`��Á��egcfeqiFb��±°Oct{Usjcje}`:�±{Jc�{!sf{�`Q�Lw��
��eqcdv±{U`X{U`Oc¬�:h:e}|}�:b�h:§µ{/bjw�|}hLcfeqwr`®eqcji�st{Jcfeqpri�|}v!�Ov±{�| º {6vLb
bji�|}iG��cfeq`Q��cj~:i�`:i�ÑOc¬��eqcdv���{�bjiG��wr`�~:i�h:sfe�bdcfe}�"eq`Ly�wrsj��{Ucje}w�`
{�b º i�|}|Í{�b¬§Q~:i�sfw���w�`Qi�e}`Ly�wrsj��{Jcfeqwr`^��²Í~:iGsjwr��w�`:i�eq`:y�w�sj�
��{Jcfeqwr`"buiGsjpriGb^{rbB{�y�w�sf�Øw�y:��i���w�sfv¨�<v¬e}`Q�Le���{Jcfeq`Q� º ~:e��t~
�t~:wre}��iGb º i�sfi$��w<wL��e}`@cj~:i"§Q{�bucG�·¯¿~:i)~:iGh:sje�bucje��¬eq`Ly�wrsj��{U�
cje}w�`Y�Q�Li�`QwUcjiF�@�Ov���������{U`��xcf~:i)§:~:iGsjwr��w�`:i¬e}`Ly�w�sf��{Jcje}w�`Y�
�LiG`:wUcfiG�Á�<v�� �����¿{�sji@e}`Q�Le���{Jcfw�stb�wUy¬~:w º �rwOwL�¶egc/bji�iG��b
cjw®��wJpri�y�sjwr� ��egcdv�!lcfw±��eqcdv#"��!¯¿~:ix~:iGh:sje�bucje���pJ{U|}h:i�e}b
�����%$Ù�'&�(���� º ~:iGsji#(����@e�b�cj~:i!�Le�bdct{U`Q��i��¢i�c º i�iG`¶��egcdv)!
{U`�����egcdv*"Q�
ÕÝeqcj~±§:sfw���{U�:e}|qeqcdv�+ ,�� º ~:i�sfi)×.-/+ ,10¤�$e�bl{�§Q{�sf{���i�cjiGs
wUy�cf~:i¨{�|q�rw�sfegcf~:�!�O{�`x{U`Oc·{Uc·��egcdv*!��t~:w<wrbjiGb�cf~:il`Qi�Ñ<c·��egcdv
"±y�sjwr��cf~:i/bji�c32Øw�y���egcfeqiFb$cf~Q{Jc�~Q{6p�i�`:w�c��¢i�i�`Ûp<e�bueqcjiF�
bjwÛy4{Us º ~:e��t~¼��{JÑLeq��e}©�iFb%4 � �5�7698 4 � ��� 6;: � º ~:i�sfi%<	{U`���=
{Usfi���w�`Qbucf{�`Ocfblcj~Q{Uc$�:i�cjiGsj��e}`:i�cj~:i�sfi�|�{Jcje}p�i�eq`:ÔQh:i�`���i�wUy
cj~Qi"~:iGh:sje�bucje��$pJ{U|}h:iGb¨{U`Q�!cf~:i"§Q~:i�sfw���w�`Qi$p6{�|qhQiGb>wr`�cj~Qi
�LiF��e�bue}w�`±w�yÍcj~Qi�{�`rcF�¬ÕÝegcf~®§:sfw��Q{��:e}|qeqcdvµ�
>�+ , cj~Qi�`:i�Ñ<c
��eqcdv"e�b³�t~Qwrbji�`�{�����w�st�Le}`:��cjw$cf~:i�§:sfw��Q{��:eq|}eqcdv��Le�bdcfsje}�:hLcfeqwr`
wJp�iGs?2»�Li�cjiGsj��e}`:iG�@�<v

@ ���
$ 4 �7�5� 6 8A4 ����� 6 :
B/C�D�E 4 � � C 698 4 � � C 6F:

n·i�y�wrsji��Lw�e}`:�!{/�r|qwr�Q{U|8§:~:iGsjwr��wr`:i"hQ§¢�:{Ucji�bjw���i"w�y³cj~Qi
w�|��M§:~:iGsjwr��w�`:i�e�bxiGp6{�§�wrsf{UcjiF�¶wr`¼{U|}|liF�L��iFbx{��G��w�st�Le}`:�
cjw�� ���HGI ªu�J>LK<«NM�� ��� º ~:iGsji�§Q{Ust{U��i�cfi�sOKµ�:i�cjiGsj��e}`:iGb
cj~Qi�iGpJ{U§¢w�st{Jcje}w�`Òsf{Ucjir��m:wrs¬§:~:i�sfw���wr`:i�hQ§¢�:{Ucji�cj~Qi�{�`Oc
cj~�{Jc/y�wrh:`Q�¼cj~:iÒ��iFbdc!buwr|qhLcfeqwr`¼e}`Ýcj~Q{Uc@�ri�`:iGsf{Ucje}w�`Mh:§L�
�:{UcjiGb>§:~:i�sfw���wr`:i){U|}w�`:��eqcfb¨buwr|qhLcfeqwr`^�Qe�� i��&y�w�s>iGp�i�sfv/��egcdv
!Bbjw���i�{U��wrh:`OcÍwUyD§:~:i�sfw���wr`:i¿e}bÍ{r�:�LiF�"cfw$i�|}i���i�`OclªP!RQS"<«
wUy�cf~:i�§:~:i�sfw���wr`:i"��{JcfsjeqÑ º ~:i�`#"/e�b¨cj~:i�buh�����iFbjbjw�s¨wUyT!
e}`±cj~Qi"cfw�h:sF��¥¨�Qbji�sfp�i$cf~Q{Jc¬§:~:iGsjwr��wr`:i"e�b¬{��:�:iG��cfw�i�Ñ<�
{���cj|}v!c º w!iF�L��iFb¨e}`Q��e}�LiG`Oc�cfw@{@`:wL�Li*!t��¯¿~Qi�{���w�h:`Oc¬wUy
§:~:iGsjwr��w�`:i�{��:�:iG�Xe}bUKV&'���Dcj~Q{Uc)e}bU�7�5� GI �7�5�
W HX K���ÕXi{U|�bjw�{�§:§:|}v�{U`@i�|}eqcje�bdclbucjst{Jcfi���v º ~Qi�sfi�wr`:i¬i�|}egcfe}bucl{U`Oc�h:§L�
�:{UcjiGb�§Q~:i�sfw���w�`Qi·{�|qwr`:�>cf~:i���iFbdcÍbjw�|}hLcje}w�`�cj~�{Jc�~Q{�b��¢i�iG`
y�w�hQ`Q�!buw�y4{UsF�
m:wrs&e}`:eqcje�{U|}eq©F{Jcfeqwr` º i�bji�cN� ���Y$2�'&:ªZ�*>Û�F«Íy�w�s¿iGp�i�sfv�iG�L�ri
ªZ![QS"O«��Á¥¨�Qbji�sfp�ir��cj~Q{Uc�y�wrs�iGp�iGsjvÛ��eqcdv)!¬cj~Qi!bjh:�Ùw�ylcj~Qi
§:~:iGsjwr��w�`:i�pJ{U|}h:iGb¬wr`X{�|q|�e}`Q��e}�LiG`Oc)iG�L�riGb¬e�b$w�`:ir� º ~:e��t~
e�b¿`:wUcl�t~Q{�`:��iF�/�<v�cf~:i$§:~:iGsjwr��w�`:i�h:§D�:{Jcfi��

\]^	 �¡¢�:Ë Ç Ü�<ÈÃ `_ � Ç 	

¯¿~:i�{U`Oc¨{U|}��wrsjeqcj~Q�Àcj~�{Jc º {�b¨�LiGbf��sfe}��iF�!eq`�cf~:i"|�{�buc¨bjiG���
cje}w�`x�G{U`�`:w�c&~Q{�`Q�L|}i�cj~Qil�Lv<`Q{U��e��>¯>°L²��OÕÝ~:i�`x{"�t~Q{U`:�ri
wUyDcf~:il§:sfw��Q|qiG�Üe}`Qbucf{U`���i>wL����h:sfsjiF��eqc&e�bÍ`QiG��iFbjbf{Usfv)cfw)e}`:eg�
cje�{U|}e}©�i�cj~Qix§:~:iGsjwr��wr`:i�eq`:y�w�sf��{Ucje}w�`Òy�w�s$cf~:ix`:i º ��egcfeqiFb��
Ö�wrsjiGwJp�i�sF��egc���e}��~Ocx{U|�buwÒ��i!e}��§¢w�sjcf{�`Oc�cfwX��wL�Leqy�vÛcj~Qi
§:~:iGsjwr��w�`:iµe}`Ly�w�sf��{Jcje}w�`Øy�wrs�cj~:i»w�|��Ø��egcfeqiFb!cj~�{Jc º i�sfi
`:w�c��Li�|}i�cfiG��� ÕXi®�LiFbj��sje}��i!cf~:sfi�i®bucjst{Jcfi���e}iGb�{�`Q�Ý��wr���
�:e}`Q{Jcfeqwr`Qb¨cj~:iGsjiGwUyÍy�wrs¬sjiFbui�cucje}`:�@§Q{Usjc¬wUyÍcf~:i�§:~:i�sfw���wr`:i
e}`Ly�w�sf��{Jcje}w�`eq`ÂsjiF{���cfeqwr`ÝcjwM{Á�t~Q{U`:�ri±wUy"cj~:iµ§:sfw��:|}i��
e}`Qbdct{U`Q��i��Ua�iGbji�cjcje}`:�/e}`Ly�wrsj��{Jcfeqwr`±e�b¨{r�t~:eqiGp�iF�!�Ov!iF¾rh�{U|q�
e}©�e}`:�xcf~:i"§:~Qi�sfw���w�`:i"p6{�|qhQiGb�cfw�bjw���i"�LiG��sfi�ir� º ~:e��t~±i�yÐ�
y�iG��cje}p�iG|qv�sjiF�LhQ��iFb�cj~Qi>eq`:ÔQh:i�`���i>w�yDi�ÑL§�iGsje}i�`Q��i�w�`�cj~Qil�Li��
��e�bjeqwr`Qb�{U`!{U`Oc���{U��iFb·cjw��:h:e}|���{�bjw�|}hLcfeqwr`^�
°Ocfsf{Ucji��reqiFbÍy�wrs·cj~:i¬��wL�Leg¹¢��{Jcfeqwr`/w�yB§:~:iGsjwr��w�`:i¨eq`Ly�wrsj��{U�
cje}w�`®~Q{6p�i)�¢i�iG`±§:sfw�§¢wrbjiG�!�¢i�y�wrsji$cfw���w�h:`OcjiGsf{r��c¨bucf{���`Q{U�
cje}w�`ÒwUy&{�`Oc¬{�|q�rw�sfegcf~:��b���_a`¶ª��¬{U�"��{Ust�Li�|}|}{/i�c${U|��q���FÎ�ÎrÎr«
eqc º {rb�§:sjwr§�wObuiF�[cfwµsjiGeq`:eqcje�{U|}e}©�i!cj~Qi º ~:w�|}i!§:~:i�sfw���wr`:i
��{JcfsjeqÑ º ~:e}|qi$ª�°Oc��hLcf©�|}i>{U`Q�3�>w<wOb��:�FÎ�Î<�U«Bbuh:�r��iFbdcfiG�$cfw¬eq`L�
��sfiG{rbui�cj~Qi�§Q~:i�sfw���w�`Qi�pJ{U|}h:iFb¬§:sjwr§�wrsucfeqwr`Q{Jcfi�|}v@cjw@cj~:iGeqs
�Leq½¢iGsjiG`Q��i"cjw�cf~:i"��{UÑ<e}�"hQ� §Q~:i�sfw���w�`Qi$p6{�|qhQi��¨°<e}��eq|�{Us
cjw�cf~:iGbji${U§:§:sfwr{r�t~:iGb º i¬hQbji${"�r|qwr�Q{U|D§:~Qi�sfw���w�`:i���wL�Leg�
¹��G{Jcje}w�`�bucjst{Jcfi���v º ~Qe}�t~!sfi�e}`:egcfe}{�|qe}©�iFb�{U|}|�cj~Qi$§:~:i�sfw���wr`:i
pJ{U|}h:iGb@�<vMcj~Qiµbf{U��iµ�Li��rsjiGi��b�lw º iGp�iGsG��cf~:e�b!��i�cj~:wL���
º ~:e��t~ º i@�G{U|}|ca�iGbucf{�sucj�a°Ocfsf{UcjiG��v���e�b�|qe}��egcfiG�¶��iF��{�hQbui@eqc
�Lw<iGbx`:wUc�cf{���i�e}`OcjwÛ{��G��w�hQ`rc º ~:iGsji!cf~:i±�t~Q{�`:��i!wUy�cj~Qi
§:sfw��:|}i��Üeq`�bdct{U`Q��il{���cjhQ{�|q|}v"wL����h:sfsjiF���8o¨buh�{U|}|qvr�Ucj~Qi>��wrbuc
i�Ñ<cfi�`Qbjeqpri&sfiGbji�cjcje}`:�¬wUy¢§:~:i�sfw���wr`:i&pJ{�|qh:iFb�bu~Qw�h:|��"�¢i¿§�iGsu�
y�w�sf��iG�Øe}` cj~:i»��|qwObuiµp<e���e}`:egcdvÂwUy�cj~Qi[eq`�buiGsucfiG��ÄU�Li�|}i�cfiG�

861ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

��eqcje}iGbG�¨kÜ��w�sfi)|}w<�G{U|}|qv@w�sfe}i�`OcjiF��h:§D�:{Jcfi�bucjst{JcjiG��v@e}blcj~Qi
� �O�d°Ocjst{Jcfi��rv�� º ~:e��t~ÛhQbjiGb"~:i�h:sfe�bdcfe}����{�bjiG�µe}`Ly�w�sf��{Jcje}w�`Y�
�Le�bdct{U`Q��iGb��¢i�c º i�iG`x��eqcje}iGb³eq`�cf~:e}b&��{rbuir�Ucjw��LiG��e}�Li¿cfw º ~Q{Uc
�LiG��sfi�i�iG¾OhQ{�|qe}©G{Ucje}w�`µe�b)�Lw�`Qixw�`Xcj~Qi/§:~:iGsjwr��w�`:i�pJ{U|}h:iGb
w�`�{U|}|<iG�L�riGbBeq`Q��e}�:i�`Oc�cjw¬{¨��egcdv
"���¯¿~:i � �<�a°<cjst{JcjiG��v���hQbjiGb
§:~:iGsjwr��w�`:i��Q{rbuiF��eq`Ly�wrsj��{Ucje}w�`^�Ue�� i��8cj~:il§:~:i�sfw���wr`:i�pJ{U|q�
h:iFb�w�`¶cj~:i!iG�:��iGbG�ÍcfwÛ�Li�¹Q`Qi!{�`:wUcf~:i�s���w�`Q��i�§Lc�wUy � �Le�bu�
cf{�`Q��i��)�¢i�c º i�iG`/��eqcje}iGbG��Ì³¾OhQ{U|}e}©G{Jcfeqwr`�wUy^§:~Qi�sfw���w�`:i¨pJ{U|q�
h:iFb�e}b·cf~:i�`±{��r{�eq`�§�iGsuy�wrsj��iG�/cjwx{�~:e}��~Qi�sl�LiG��sfi�i�w�`@cj~Qi
iG�:��iGb¿w�y � ��|}wrbji�s�����egcfeqiFb��
k>|}|^cf~:sfi�i)bucjst{JcjiG��e}iGb º w�sf�x�<v��Le�bucjsfeq�:h:cje}`:�x{�sjiFbui�cu�TpJ{U|}h:i
� ����4 ×
	:� 6 cjw)iF{��t~���eqcdv3! º ~:e��t~x�Li�cji�sf��eq`QiGb�cf~:i¨{���wrh:`Oc
wUy8sjiGeq`Qegcfe}{�|qe}©G{Ucje}w�`�cf~:i¬§:~:i�sfw���wr`:i¨pJ{�|qh:iFb·w�`/iF�L��iFb·eq`Q��eg�
�LiG`rc�cfw*!&{��G��wrsf�Le}`:�"cjw�cj~Qi$iG¾OhQ{Jcfeqwr`

� ��� GI ªd�c> � �T« � ��� W � � �
��>Á� ªd�6«

_a`!��{�bjilw�yB{�§:sjwr�:|}i�� º eqcj~!buv<����i�cjsfe��
�O�Tp6{�|qhQiGb·|qe}��i¬ÌÍh:�
��|}e��LiG{�`�¯>°L²��6cf~:i�{6p�iGsf{���i³w�yQcf~:i¿sjiFbui�cu�Tp6{�|qhQiGb¿ª � �7W � �G« &��
e�b)hQbjiG�Xe}`QbdcfiG{r�µwUy � �leq`µiG¾OhQ{Ucje}w�`Ý��y�wrs)��w<�:egy�v<e}`:��cj~Qi
§:~:iGsjwr��w�`:i�pJ{U|}h:i�w�`µcf~:i�iG�:��ix��wr`:`:iF��cje}`:�±��egcfeqiFbA!¨{�`Q�
"��$k>`±e}`Qbji�sjcjiG�Ò��eqcdv#!¿{�| º {6vLb>sfiG��i�e}p�iGb¨{U`±hQ`:��w<�:eg¹�{��:|}i
sfiGbji�cu�TpJ{U|}h:i@wUy � �*$+�r�³sfiGbjh:|qcje}`:�µeq`Ý{U|}|�e}`Q��e��Li�`OcxiF�L��iFb
cjw#!>~�{6pOe}`:�@cj~Qi�e}`:eqcje�{U|Í§Q~:i�sfw���w�`Qi�pJ{U|}h:i�w�y¨�'&:ªZ�H>�F«��
ÕXi º eq|}|^`:w º �LiGbf��sfe}��i$e}`���w�sfi¬�:i�cf{�eq|Y~:w º cf~:i"�Leq½¢iGsjiG`Oc
bucjst{JcjiG��e}iGb¿{�bfbjeq�r`/cf~:i$pJ{U|}h:iGb � � �

���� � 7:EF143±Z^C�KJ7LCG9��¢149<E
¯¿~:iJa�iFbdct{Usjcu�d°Ocjst{Jcfi��rvx{�bfbue}��`Qb·iF{��t~!��eqcdv.!Ícf~:i)bdcfsf{UcjiG��vO�
bj§�iF��eq¹���§Q{�sf{���i�cjiGs������ 4 × Q�� 6 {�b�eqcfb/sjiFbui�cu�TpJ{U|}h:i��·e�� i��
� � $������
_a`	cj~Qi �O�a°<cjst{JcjiG��vr�/iG{r�t~Ï��eqcdv !Xe}b»��e}p�iG`	{2p6{�|qhQi � �
§:sfw�§¢w�sjcje}w�`Q{UcjiÝcfwÜeqcfbM�Le�bucf{U`���iÂy�sjwr� cf~:iØ`:iG{�sjiFbdcÁeq`L�
bji�sjcjiG�¢ÄJ�LiG|qi�cjiG����eqcdvY"��8¯¿~Qe}b��Le�bucf{U`���ic(����� e}b��LiGsje}p�iF�$y�sfw��
�����>eq`�bjhQ�t~�{ º {6v$cf~Q{Jc³{¬~Qeq�r~3���5��eq��§:|}e}iGb³{�~:e}��~ (���5� {�`Q�
cj~�{Jclbf��{U|}e}`:�"cf~:i$~:iGh:sje�bucje��U�r�TpJ{U|}h:iGb¿~�{�b¿`:w�i�½DiG��c�	

(���5� $2�c> ���! �"
��#�M �����

º eqcj~�� �! �" $ H$�%&$�' H)(B $�+* H B-,/.* � ��� , {U`Q�Ûcj~:i!bdcfsf{UcjiG��vO�
bj§�iF��eq¹��³§�{Ust{U��i�cfi�s0��#1��4 × Q�2¶«Ybf��{�|qe}`:�>cf~:i º e}�<cf~�w�y:cj~Qi
�Le�bdct{U`Q��i��a��wr`:i��Ík¤��egcdv�!Ícj~Qi�`!sjiF��iGeqpriGb � � $Ý��{UÑ � ×VQR(����� �
ª4bji�i¬cf~:i¬i�Ñ:{U��§:|}i$e}`!m8e}��h:sfi��F«��
¯¿~:i �<�a°<cjst{JcjiG��vÃhQbjiGbM{Þ�Le�bucf{U`���i��iF{�bjh:sji�Q{�bjiG�Ïwr`
§:~:iGsjwr��w�`:i�eq`Ly�wrsj��{Ucje}w�`[cfwX�G{U|���h:|�{Jcfi/cf~:i@sjiFbui�cu�Tp6{�|qhQiGbG�
¯¿~:i&§:~:i�sfw���wr`:i��a�Le�bdct{U`Q��i�(�3� , �¢i�c º i�iG`)c º wl��eqcje}iGb !�{U`��54
e�bÍ�Q{rbue���{�|q|}v��:i�¹Q`:iF��{�bÍcj~:i¨��{UÑLeq��h:�ÜwJpri�s³{�|q|�§Q{Jcf~Qb76 � ,
y�sfw��`!8cjw84�wUy�cj~Qi¨§:sfwL�LhQ��c&wUy^§Q~:i�sfw���w�`Qi��Tp6{�|qhQiGbÍwr`�cj~Qi
iG�:��iGb^eq`96 � , �B¯Bw�§:sfi�p�iG`OcY{U`<vle}`Q��wr��§Q{Jcfeq�:e}|}egcdv¬�Lh:i�cfw�cj~Qi
bjeq©Gi/wUyl{��Qbjw�|}hLcjixpJ{�|qh:iFb���cf~:i@§:~:i�sfw���wr`:i��TpJ{U|}h:iGb$wr`Ûcj~Qi

0

200

400

600

800

1000

0 200 400 600 800 1000
X−Pos

Y
−

P
os

InsertedDeletedInstance

m8eq�rh:sfiÁ��	L�r�d°Ocfsf{Ucji��rv:	Á¯>°L²¸cfiGbuc±eq`Qbucf{�`Q��i º eqcj~ �¢iGbuc
y�w�hQ`Q�Òbjw�|}hLcfeqwr`<;B��w�`Ocjh:sfiGb¬bj~:w º �Leq½Di�sfi�`Oc$|qiGp�i�|�w�y&sfiGbji�cj�
pJ{U|}h:iGbB��~:e}��~:iFbdc�sfiGbji�c�w<�G��h:stb8`:iG{�sBe}`Qbji�sjcjiF��ÄJ�LiG|qi�cjiF�"��eqcdv��

iG�:��iGb·{Usfi¬bj�G{U|}iG���<v�cj~Qi¨��{JÑLe}�"h:�Ï§¢wrbfbjeq�:|}i�§:~:i�sfw���wr`:i
pJ{U|}h:i¬w�`�{U`@iG�:��iU�>= �!? H6�ÍmQw�sf��{U|}|qvr�

(3� , $¼��{JÑ@�A&B
C

% ?ED F (D @/A+B
��?�F
��= �G? �

m:wrs>cf~:i��G{�bji$wUy�eq`�buiGsucfeqwr`^� º i"bji�c>cf~:i"§Q~:i�sfw���w�`Qi$p6{�|qhQi
wUy¬cf~:i±iG�:��iGb�y�sjwr� cf~:i±e}`QbuiGsucfiG�M��eqcdv¶cjwÛcf~:i�c º w[��|}wrbu�
iGbuc$��eqcje}iGbG��e�� i���cj~Qwrbji º eqcj~®cj~:i�~:e}��~:iFbdc¬pJ{U|}h:i)y�wrs ���5���Dcfw
�>= �!? �LhQsje}`:��cj~:i){�§:§:|}e}�G{Jcfeqwr`@w�yYcf~:e}blbdcfsf{Ucji��rv��:bjeq`���i¬cj~Qi
`:i º ��egcdvX�Lw<iGb$`:w�c)v�i�c)~Q{6p�i�{U`<v±h:cje}|qe�bj{��:|}i�§:~:i�sfw���wr`:i
e}`Ly�w�sf��{Jcje}w�`Y�»ÕÝeqcj~IH��iGeq`Q�Òcf~:i�bui�c�wUy�{�|q|���egcfeqiFb�cj~Q{Uc
{Usfi�eq`�buiGsucfiG�Òw�s)�LiG|qi�cjiG�Û�:h:sje}`:�@cj~Qixbj{���i��t~Q{�`:��ir�^w�`Q|qv
cj~Qi���{UÑLeq��h:�ÞpJ{U|}h:i���{JÑ � D�J (�3�5� e�b�sfiG��wrsjiF�)y�wrs�iG{r�t~���egcdv
!t��ÕÝ~:i�`��"h:|qcje}§:|}eqiF� º egcf~�{�bdcfsf{Ucji��rvO�Tbj§�iF��eq¹���§Q{�sf{���i�cjiGs��K-� 4 ×VQ!2»«�� º eqcj~Xcj~:i�sfiGbjh:|qc¬|}e}��eqcjiF�Òcjwµ�"y�wrs){U§:§Q|qe���{U�
cje}w�`@wUyBiG¾OhQ{Jcfeqwr`Ò�r�Ocj~:e�b¿��e}p�iFb³cf~:i¬sjiFbui�cu�TpJ{U|}h:ily�wrs���eqcdv !L	
� � $L� !S� � ��Q���K#M7(�3��� �r�
��NM O P¢WQP�14A89<NMZ^C�KJ7LCF9���1�9OE
kM��wr�"�:e}`Q{Jcfeqwr`"w�yQcj~Qi·�r|qwr�Q{U| a�iFbdct{Usjcu�d°Ocjst{Jcfi��rv º eqcj~�w�`Qi
wUyYcj~:i¨c º w���w�sfil|}w<�G{U|}|qv�{r��cje}`:�O�r��wrs �<�d°Ocjst{Jcfi��reqiFb&��w�h:|��
�¢i�{r�LpJ{U`Ocf{���i�wrhQb>e}`Ò{�bueqcjh�{Jcje}w�` º ~:i�sfi�bucjsfw�`:��|qwL�G{U|8sji��
bji�cucfeq`Q��`QiG{Us¿cf~:i¬eq`�buiGsucfiG��ÄU�Li�|}i�cfiG�@��eqcje}iGb�e�b¿`:iG��iGbfbj{�sjv�cfw
e}`Q��wrsj§¢w�st{Jcfi){/�t~Q{�`:��i º ~Qeq|}i�{/|qw º i�s¨��|}w��Q{�|YsfiGbji�cucfeq`Q�xe}b
`:iGiG�LiF�ÝcjwÁ��{Ue}`Ocf{Ue}`Ýcf~:iXÔQi�ÑLe}�:eq|}eqcdvMy�w�s�cj~:iµ{U|}��wrsjeqcj~:�
cjwµ�t~Q{�`:��i/cj~:i@��iFbdc�cfw�h:s�y�w�h:`��[��w�sfi@bucjsfw�`Q��|}vÒeqy¨�¢i�`L�
i�¹¢��e�{U|��¯¿~:e�bx��wr�"�:e}`Q{Jcfeqwr`Ý��{U`Á�¢i±sjiF{U|}eq©GiG�¶�<v»~Q{6p<e}`:�
iG{r�t~¼wUy�cj~:iÒc º wÁbucjst{Jcfi���e}iGb�e}`Oprw�|}p�iF�Ý�Le}bucjsfe}�:hLcjiµsfiGbji�cj�
pJ{U|}h:iGb${r����w�st�Leq`Q�/cfw!cj~:iGeqs)sfiGbj§¢iG��cfeqpri�bj�t~:iG��i�{�`Q�Òcj~:iG`

RTS�U0V!WYX[Z0\E] ^`_+a�bcZed�fgfghjiTbkXmlon�p�q8r�] \Y_+a�b0n�Zed/fgfghLiTbkX[ltstu�v:]

862 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

0

200

400

600

800

1000

0 200 400 600 800 1000

Y
-P

os

X-Pos

Instance
Inserted
Deleted

m8eq�rh:sfi���	>¯>°:²ÝcjiFbdc¬e}`Qbdct{U`Q��i º eqcj~ 4#$Þ�����:i�|}i�cjiF�®{�`Q�
e}`QbuiGsucfiG�@��eqcje}iGb>�:i�cjiGsj��e}`:iG� º eqcj~ @ $¼�:�

�t~:w<wrbje}`:��y�w�sÍiF{��t~���eqcdv1!^cf~:i>��{JÑLe}�"h:�ÜwUyDcj~Qi¿c º w$sfiGbji�cj�
pJ{U|}h:iGb¬�Li�cjiGsj��e}`:iG�Ò�<v!cj~:i�c º w@bucjst{Jcfi���e}iGbG�"mQw�sf��{�|q|}v���eqy
cj~Qi�¹�sfbuc)bdcfsf{Ucji��rv��Le}bucjsfe}�:hLcjiFb � � D H {U`Q�±cj~:i�bjiG��w�`Q� � � D S �cj~Qi�` � � $M��{JÑ � � � D H Q � � D S �r�

��+� ��9<9���14A0�ÒCF5B9��¨;�1�CG1�E�C��/ADC
ÕÝ~:iG`:i�pri�s&{"�t~Q{U`:�ri¿cjw"cj~:i>e}`Qbucf{�`Q��ilcj~Q{UcÍcj~:i�{U|}��wrsjeqcj~:�
e�b�sjhQ`:`:e}`:�[w�`MwL����h:stb��&cj~:i®i�|}egcfe}buc�{U`OcF� º ~:e}�t~MiG`Ly�w�st��iFb
cj~Qi��¢iGbuc$buwr|qhLcfeqwr`±y�wrh:`Q�®bjw�y4{UsF�¢`Qw�|}w�`:�ri�s�sjiG§:sfiGbji�`Ocfb¨{
pJ{U|}e}�"buwr|qhLcfeqwr`^�8£&wr`QbuiF¾Oh:i�`Ocj|}v��6eqcY�"h�bdc8��i·�Lsjwr§:§¢iG�${U`��${
`:i º iG|qeqcje�buc·{U`Oc³e�b·�Li�cfi�sf��e}`:iF��{JyÐcjiGsÍcf~:i>¹Qstbuc³egcfi�st{Jcfeqwr`�wUy
{U`OctbY~Q{rb º wrsj�riG�¬w�`)cj~:i¿�t~Q{U`Q��iG�)eq`Qbucf{�`Q��ir�8¯¿~Qi³§¢wrbfbue}�:|}i
|}wrbfbBw�y�e}`Ly�w�sf��{Jcfeqwr`)y�sfw��Þ�Lsfw�§Q§:eq`Q�lcf~:i¿w�|��"�¢iGbuc³buwr|qh:cje}w�`
��{�`Ò�¢ix{U|}|}i�p<e}{UcjiF�Òbjw���i º ~�{Jc$�<v±��w<�:egy�v<e}`:�!cj~:i�y�wrsj��iGs
�¢iGbuc>cjwrh:slbjw�cf~Q{Jc¨egclwr`Q��i){��r{�eq`@v<eqiG|}�:bl{�p6{�|qe���{U`���§Qsji��
bjh:��{U�:|}vµ��w<wL�Ûbuwr|qhLcfeqwr`Ûcjw±cj~:i!�t~Q{U`Q��iG�µe}`Qbucf{�`Q��ir�®ÕXi
hQbji�c º w���sfi�iG�:v®~:iGh:sje�bucje���b¬y�wrs"§¢i�sjy�w�sf��e}`:�!cf~:e}b"��w<�:eg¹:�
��{Ucje}w�`<	Be�«Í{U|}|Q��eqcje}iGbÍcj~Q{Uc º iGsji��LiG|qi�cjiF��y�sjwr�2cj~Qi>eq`�bdct{U`Q��i
{Usfi�{U|�buw$�LiG|qi�cjiF��y�sjwr�¤cj~:ilw�|����¢iGbuc�cjwrh:sF��i�½DiG��cje}p�iG|qv���w�`:�
`:iF��cje}`:�Ûcf~:i�e}s/sfiGbj§¢iG��cfeqpri�§:sfiG�LiF��iGbfbjw�stb�{�`Q�ÝbjhQ����iGbfbuwrsfbG�
e}e�«³cj~Qi¬��egcfeqiFb&cj~Q{Uc º i�sfi¨{r�:�LiF��{�sji¨eq`Qbji�sjcjiF�xe}`Q�Le}p<e}�Lh�{U|}|qv
e}`rcfw@cj~:i�cjwrh:s){Jc¬cf~:i�§:|}{r��i º ~:iGsji�cj~:iGv®��{�hQbji�cf~:i���eq`L�
e}�"h:��eq`Q��sjiF{�bji�e}`X|qiG`:�Ucf~^�x¯¿~:i�cjwrh:s)�Li�sfe}p�iG�®y�sfw��¦cf~:e}b
§:sfwL��iGbfb¿e�b¿cj~:i"`:i º cjwrh:s>wUy8cj~Qi$i�|}egcfe}buc¨{U`OcF�ÍÕÒi���{U|}|�cf~:e}b
��i�cf~:wL�@z¬iGi�§QÌ³|qeqcje�bucG�³£&|qiF{Usf|qvr�<cj~:e�b¿��wL�Leg¹¢��{Jcfeqwr`���{U`@�¢i
��wr�"�:e}`:iF� º eqcj~@cj~Qi)bdcfsf{Ucji��reqiFb¿i�ÑL§:|�{Ue}`:iG�@{U�¢wJp�ir�

� �O	 ���	� 	 �:Ê�

m:wrs$w�h:s¬cfiGbucfb º ix�t~:wObui�bjh:�:§:sfw��:|}i���b¬w�y³cj~Qi/ÌÍhQ��|qe��LiF{U`
¯>°L² e}`Qbdct{U`Q��i���������¶y�sjwr� cj~QiMª�¯>°L²����^e}�:st{Usfv��$�U×r×:�F«��
°<§¢iG��eg¹��G{U|}|qvr�8��×�×�sf{�`Q�Lw�����eqcje}iGb º i�sfi�cf{U�ri�`µ{ º {6v@y�sfw��
cj~Qi��O×�×µ��{U�<e}`:�»h:§¼cj~:iX§:sfw��:|}i�� e}`Qbdct{U`Q��i±cfw[y�w�sf� {

bj§Q{Usfi�§¢w<w�|�wUy¿��eqcje}iGb¬�¢i�y�wrsji�cj~Qi�bucf{�suc¬wUy&cj~:i�{�|q�rw�sfegcf~:�!�
|}iG{6p<eq`Q�¬cj~:i¨eq`Qbucf{�`Q��i º egcf~��U×r×$��eqcje}iGbG���¨h:sfeq`Q�$cj~:i¨sjhQ`�wUy
cj~Qi³{U|}��wrsjeqcj~:�cj~:i&{���cfhQ{U|�§:sjwr�:|}i��e}`Qbucf{�`Q��i º {�b^�t~�{U`:�riG�
i�pri�sfv��leqcjiGsf{Ucje}w�`Qb¬�<v±i�ÑL�t~�{U`:�req`:� 4®��egcfeqiFb¬��i�c º iGi�`Xcj~Qi
{���cjhQ{�|�eq`�bdct{U`Q��i�{�`Q�Òcj~:i�bj§Q{Usfi�§�w<wr|��^e�� i���4X��eqcje}iGb º i�sfi
�LiG|qi�cjiG�Ûy�sjwr��cf~:i/{���cjhQ{�|³e}`Qbucf{U`���i/{�`Q�Xcj~:i@bj{���i�`OhQ���
�¢i�s>w�y���egcfeqiFb¿y�sjwr�Ïcj~Qi)bu§Q{�sji¬§¢w<w�| º i�sfi¬eq`Qbji�sjcjiF���ÍÕÝ~:iG`
�LiF��e��Leq`Q� º ~:e}�t~���egcfeqiFb�cjw)�LiG|qi�cjir��cf~:i¿¹Qstbdc³��egcdvU" º {�b��t~:w��
bji�`{Uc/sf{�`Q�Lwr� {�`Q�Ý{U|}|¨w�cj~:iGs���egcfeqiFb !�{��G��w�st�Le}`:�µcjw¶{
§:sfw��Q{��:e}|qeqcdv[�Le�bdcfsje}�:hLcfeqwr`Á�Li�¹Q`:iF�»�<v)������ � º eqcj~ @ ��iGeq`Q�
{@§Q{Ust{U��i�cji�s�cf~Q{Jc)�Li�cji�sf��eq`QiGb�cj~Qi�sjiG|}{Ucje}p�i�eq`LÔ�h:i�`Q��i�wUy
cj~Qi@�Le�bucf{U`���iGb��¢i�c º i�i�`�!¬{�`Q��"��µ¯¿~:i!��eqcje}iGb"cj~Q{Uc º i�sfi
e}`QbuiGsucfiG� º iGsji¬�t~:wrbji�`�{U`Q{�|qwr��w�h�bu|}v"y�sfw��	cf~:i$bu§�{Usfil§¢wOwr|��
k>`!i�ÑL{���§:|qi¬e�b>bj~:w º `�e}`!mBe}��hQsji)�L�
ÕXi�cfiGbucjiF�¶{�|q|���wr�"�:e}`Q{Ucje}w�`Qb�wUy¨§Q{Ust{U��i�cfi�s�pJ{U|}h:iGb 4I�
� ��QR�VQf���L�r��� � � �U× Qf�U×r×VQ����U×:�r�L{U`�� @ � � × � ×VQt��� ×L�r���lwUcfi
cj~�{Jc�y�w�s94 $Ï�r�Dcj~:i�§Q{Ust{U��i�cji�s @ ~Q{�b¨`:w@i�½DiG��c${�b¨w�`Q|qv
w�`Qi/��eqcdv®e�b)sfi���wJp�iF��Ä6e}`Qbji�sjcjiF����mQw�s)iF{��t~[��wr`L¹Q�rh:sf{Ucje}w�`
ª 4 Q�� Q @ «��Í�F×�cfiGbuc¬sfh:`Qb�w�y·��ÎrÎ�Î�eqcjiGsf{Ucje}w�`Qb º i�sfi��Lwr`:i�ª�e}`
eqcji�st{Jcfeqwr`Î�×r×�×Q��cj~:iµ`:i�Ñ<c!�t~Q{�`:��i º wrh:|��ÝwL����hQs�y�wrs@{�|q|
cjiFbdcfiG���u«��<iG{��t~xbucf{�sucfeq`Q� º egcf~/{)�Leq½Di�sfi�`Oc&st{U`Q�:w��	buh:��bui�c
wUy³��×�×���eqcje}iGbG�>k>|}|8sjiFbuh:|qcfb>cj~Q{Uc º i�sfi$hQbjiG��{�b¨{��Q{rbue�b�y�wrs
��wr��§Q{Usfe}bjw�`@{Usfi${6p�i�st{U�riGb&wJp�iGs&cf~:iGbji��G×�sfh:`QbG�&¥¨`:|}vxcj~Qi
sfiGbjh:|gctb>�Lh:sfe}`:��egcfi�st{Jcfeqwr`Qb � ×r×�×U�T�rÎ�Î�Î º iGsji¬hQbjiG�@cfwx��iG{U�
bjh:sji/cj~:i@§¢i�sjy�w�sf��{�`Q��i�wUy�cf~:i@{�§:§:|}eqiF�»bucjst{Jcfi���e}iGbG��bue}`Q��i
cj~Qi$��iG~Q{6p<eqwrh:s¿wUy8cj~:i){�`rc>{�|q�rw�sfegcf~:�-�Lh:sfe}`:��cj~:i¬¹Qstbuc¿eqcu�
i�st{Jcfeqwr`Qb·e}b>`:wUc�sfi�§:sfiGbji�`Ocf{Ucje}p�i¨y�w�s¿cf~:i$|}{Ucucfi�s>bucf{U�riGbG�
¯¿~:i·§Q{Ust{U��i�cji�sBpJ{U|}h:iGbBy�w�sBcj~Qi·{�`rc�{U|}��wrsjeqcj~Q�Øh�buiF�)e}`)cj~Qi
cjiFbdctb º iGsji3� $-�G×@{U`Octb�� <�$-��� =^$ �L� + ,*$Ü× � Î:��{�`Q�
K3$× � ×��:�8¯¿~:i¨~:i�hQsje�bdcfe}� º i�e}��~Oc&w�y =�$ �)~Q{�b&��iGi�`�hQbuiF�
�<v¶bji�pri�st{U|>{Uh:cj~:wrsfb�ª4i�� �Q�Üª�n·h:|q|}`:~:iGeq��iGs�{Jc/{�|��Ü�GÎrÎ�Îr«��
ª�°<c �hLcf©�|}i"{U`Q� �>w<wOb����FÎ�ÎO��«u«Íy�w�sl¯>°:²��
ÕXi�cjiFbdcfiG�Mcf~:i±§Q{�sf{���i�cjiGsfb � � � � ×�� ��� Qj×�� �VQj×�� ��� Q���� ×:�
y�w�sxcj~:iHa�iFbdct{Usjcu�d°Ocjst{Jcfi��rv��Y��# � � ×�� �VQ��/� ×VQt��� ×VQ[��� ×L�xy�wrs
cj~QiO�O�d°Ocjst{Jcfi���vr��{U`Q� � K � � × �5� Q���� × Q���� �VQf��� ×L��y�w�s¨cj~Qi3�<�
°Ocfsf{Ucji��rv��8k[§Q{�sf{���i�cjiGsBpJ{U|}h:i&wUyQ×:� ×:� º ~:e��t~"e�bBiG¾Oh:e}p6{�|qiG`Oc
y�w�s�{U|}|8bucjst{Jcfi��reqiFb>{U`Q����w�sfsjiFbu§¢w�`��:b¿cjw�`:wUc¬{U§:§Q|qv<e}`:��cj~Qi
bucjst{JcjiG��v�{Jc¿{U|}|�� º {rb&{�|}bjw$cfiGbucjiG�^��mQh:sjcj~:iGsj��w�sfi�� º i¨��wr���
�:e}`:iG�/cj~Qi a�iFbdct{Usjcu�d°Ocjst{Jcfi��rv º eqcj~ ��� � � ×�� ��� Qj×�� �L� º egcf~
cj~QiT�O�¢{U`��U�<�a°Ocfsf{UcjiG��vlh�bue}`:��cf~:i�e}sYsfiGbj§�iF��cfeqpri�§Q{Ust{U��i�cfi�sj�
pJ{U|}h:iGb"{U�¢wJp�i�cjw±�:i�cjiGsj��e}`:ixeqy>buhQ�t~Û{±��w����:eq`�{Jcje}w�`µ��{�`
v<eqiG|}�"��i�cucfi�s�sjiFbuhQ|gctbYcf~Q{U`"cj~:i � §Qh:sji��lbucjst{Jcfi���e}iGbB�<v$egctbuiG|gyd�
m8eq`�{U|}|qvr�Q{U|}|�wUyBcj~:i){���wJpri�bji�cjcje}`:�rb º i�sfi�cjiGbucjiF� º eqcj~�{�`Q�
º eqcj~:wrhLc���i�iG§:e}`:�Ò{Ò��w<�:eg¹QiF�»iG|qeqcji!{U`Oc�{�b��LiFbj��sje}��iF�[e}`
°<iF��cje}w�` � � � {JyÐcfi�s�cf~:i$i�Ñ:�t~Q{�`:��i�wUy���eqcje}iGbG�
n·iGbje}�:iGb·cj~Qi$��iFbdclbjw�|}hLcje}w�`�b·y�w�h:`Q�@�<v�cf~:i){U`Oc>{U|}��wrsjeqcj~:�
º iÒ{U|�bjw»sfiG��wrsf�:iG�Ácj~QiÒ`:wrsj��{�|qe}©�iF�Mi�`Ocjsfw�§<v�� � 4 × Q�� 6
wUy·cj~Qix§:~:iGsjwr��wr`:i���{JcfsjeqÑÒe}`µi�p�iGsjv®egcfi�st{Jcje}w�`Y� º ~:e��t~µe}b
�Li�¹Q`:iG�!{rb

� $ �
�¬|}w�� �

$�
�+* H

$�
�j* H

>c� ���Y|}w���ªP� ���6«

863ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

0.5

2.5−3.0%
3.0−3.5%
3.5−4.0%

1.0−1.5%
1.5−2.0%
2.0−2.5%0.5−1.0%

0.0−0.5%
0.0% 4.0−4.5%

4.5−5.0%
>5.0%

0.75

50 200 7501.0

1

5

25

0.5 1.5 2.01.0

1.0 0.5

1.00.5

0.5 1.0 2.0 5.0

2.01.5

1.0

50 200 750 50 200 750 50 200 750 50 750200

0.750.25

t=1/Frequency t=1/Frequency t=1/Frequencyt=1/Frequency

p=2.0p=0.0

5

1

50 750

25

0.5 200
R

es
ta

rt 1

5

25

0.25

t=1/Frequency
50 200 7502.0 50 200 7505.0

t=1/Frequency t=1/Frequency t=1/Frequency

k=
#C

iti
es

k=
#C

iti
es

k=
#C

iti
es

� �
� �
���
��
�

	 �
� �
���
��
�

m8eq�rh:sfi � 	Ja�i�|�{Jcfeqpri�§�iGsuy�wrsj��{U`���i�wUyca�iGbucf{�sucj�f� �O�l{�`Q���<�Tbucjst{Jcfi���v±y�w�s @ $	×µª�|}i�yÐct«){U`Q� @ $Ï�Xª�sfeq�r~rc�«�{U`Q�µ�Leq½¢iGsjiG`Oc
pJ{U|}h:iGb>wUyt4�{�`Q� �!	³|}wrbfb¿eq`±¾OhQ{�|qeqcdvxw�yBcf~:i)�¢iGbuc>y�w�h:`��@bjw�|}hLcfeqwr`!{6pri�st{U�riG�xwJpri�s¿eqcji�st{Jcfeqwr`Qb � ×r×�×U�T�rÎ�Î�Î"��w���§Q{�sjiF��cjw�cj~Qi
�¢iGbuc>§�iGsuy�wrsj��e}`:��p6{�sje�{U`OcF�

�>wrsj��{�|qe}©�iF�+i�`Ocfsjwr§OvÙ~�{�bÃ��iGi�` hQbjiG�´§:sfi�p<eqwrhQbj|qvÙe}`
ª���hQ`rctbj�t~¶{U`Q�ÛÖ�e��:�LiG`Q�Lwrsuyd�Í�U×r×:�6«¨cjw®~Qi�|}§Ûh:`Q�LiGsfbucf{�`Q�
cj~Qi¬��h:sfsjiG`rc¿bdct{Jcfi�w�y^cj~Qi¬{�`Oc¿{�|q�rw�sfegcf~:�Ãy�w�s�{"�reqpri�`�egcfi�sj�
{Jcfeqwr`^�

 �#�
�Ëd�QËj¡D � �� �uÊl B�:ËuÈ Ç

kÞ��w���§Q{�sje�buwr`!wUy�cj~QiOa�iFbdct{Usjcu�t� �O��{U`Q�#�<�d°Ocjst{Jcfi��reqiFb>y�wrs
cj~QilsfiGbj§�iF��cje}p�il§Q{Ust{U��i�cfi�s&p6{�|qhQiGb³�:iGbf��sfeq�¢iG��e}`�°<iF��cfeqwr` �
e�b¨bj~:w º `®m8e}��h:sfi � ���rhQ�L��e}`:��y�sfw�� � {6p�i�st{U�ri$�:{Usf�<`:iGbfbj�Q�
cj~Qi��¢iGbuc$wJp�iGsf{�|q|8bdcfsf{Ucji��rv�e}b¨cf~:i�cj~:i*�O�a°<cjst{JcjiG��v º eqcj~µ{
§Q{�sf{���i�cjiGs � # $ ��� ×:�ÍiFbu§¢iG��e}{�|q|}vÛy�wrs�{X~:e}��~M�LiG��sfi�i@wUy
§:sfw6ÑLeq��eqcdv�y�w�s�cf~:i"��egcfeqiFb�eq`�buiGsucfiG�!{U`Q�@sfi���wJp�iF���Í¯¿~:iJ�<�
°Ocfsf{Ucji��rv º egcf~1� K $ ��� ×Ò§:sfwJp<e}�LiFb"�rw<w<�Ûcjwµp�iGsjvµ��w<wL�
bjw�|}hLcje}w�`Qb º ~:iG`®�t~Q{U`Q��iGblwL����hQs�¾Oh:e��t�<|qvr�¢e�� i���y�w�s �N$ �U×Q�
¯¿~:i)a�iFbdct{Usjcu�d°Ocjst{Jcfi���vr� º ~:iG`Â�reqpri�`Âi�`:wrh:��~cje}��iÛ{�`Q�
`:w�c!��w�`Ly�sfw�`OcjiF� º egcf~Ø�t~�{U`:�riGb�cf~Q{Jc�{Usfi�cfwOwMbji�p�iGsjir��e}b
{U|�bjw@{��:|qi�cfw@{r�t~:eqiGp�i���w<wL�®bjw�|}hLcje}w�`�b�y�w�s9� � $Ã×�� ���L��k
��wr��§:|qi�cji)sfiGbucf{�sucF�:e�� ir�·h�bue}`:��cf~:i1a�iFbdct{Usjcu�d°Ocjst{Jcfi���v º egcf~� � $2�/� ×:�Fe}bBw�`Q|qv$��wr��§Q{Ust{U�:|}i�cjwlcj~:i&wUcf~:i�s8bdcfsf{Ucji��reqiFb�y�wrs
cj~Qi��G{�bjiGb º ~Qi�sfi>��{U`<v���eqcje}iGb·{Usfi>i�Ñ:�t~Q{�`:��iF���riGp�iG`���iF{Jcu�
e}`:��bjw���i¿wUyQcj~:i¿wUcf~:i�s�bucjst{Jcfi���e}iGb º ~:iG`"cf~:i�v��Lw¨`QwUc�sjiFbui�c
i�`Qw�h:�r~�eq`Ly�wrsj��{Ucje}w�`^��¯¿~:e�b º w�h:|���|qe}��iG|qv�e}`Q��sfiG{rbui�eqy^i�pri�`
��w�sfi���egcfeqiFb º i�sfi)cfsf{�`Qbdy�iGsjsfiG��{rb>cf~:i��t~Q{U`:�riG��§Qsjwr�:|qiG��b
º w�h:|��/�¢iG��w���i){U|}��wrbuc�eq`Q�:i�§¢i�`Q�LiG`Oc>wUy�w�`:i${U`QwUcj~Qi�sF�
klb·y�wrs¿cj~:i$e}`LÔQhQi�`Q��i�w�yYcf~:i$§:sfw6Ñ<e}��egcdvO�TpJ{U|}h:i @ �Le}b>bji�iG��b
cj~�{Jc�cj~Qi)�Leg½Di�sfi�`���i$e}`�cf~:i)bjw�|}hLcje}w�`L�a¾OhQ{U|}eqcdvx{��t~:e}i�priG�x�<v
cj~Qi�e}`Q�Le}p<e}�:hQ{U|�bucjst{JcjiG��e}iGb¨��iF��wr��iFb¬|qiFbjbly�w�s @ $Ü����wr���
§Q{�sjiF�µcjw @ $¦×Q�[m:w�s�cf~:i�|}wL��{�|¿bucjst{Jcfi��reqiFb��Í{Xbdcfsjwr`:��iGs

§:sfw6ÑLeq��eqcdv�w�y^cj~Qi�i�Ñ:�t~Q{U`:�riG�x��egcfeqiFb·e}b·�¢i�`:i�¹���e�{U|D�¢iG��{�hQbji
{$��|}hQbucjiGsÍwUy^��eqcje}iGbÍ��iGeq`:�"eq`Qbji�sjcjiF��w�s³�LiG|qi�cjiF� º eq|}|��G{UhQbji�{
�Le�bdcfsje}�:hLcfeqwr`xwUy^sfiGbji�cj��pJ{�|qh:iFb�cf~Q{Jc·e}b&`:wUc�{�b³�"hQ�t~��Li�§¢i�`L�
�LiG`rc�wr`xcj~Qi�`<h:����iGs¿wUyB��egcfeqiFb���w���§:sfe�bue}`:�)cf~:i$��|}hQbucji�s�{rb
w�`¬cf~:i�e}s8§�wObueqcje}w�`$e}`$cj~Qi³��st{U§Q~�wrs^cf~:i�e}sB�LiG��sfi�i�w�yQ��w�`Q`:iG���
cje}p<egcdvÒeq`Xcf~:i�§:~:iGsjwr��wr`:i���{UcjsfegÑ��x¯¿~:iGsji�y�w�sfi��Y{�|gcf~:w�hQ��~
cj~Qi¨cfsf{�`Qbuy�i�s�wUy8��eqcje}iGb���e}��~Oc���i¬|�{Usf��i��Ocf~:i¬|qwL��{�|^��wr`L¹Q`:i��
��i�`Oc>wUy8cj~Qe}b¨�t~Q{U`:�ri¨��{���iGb¿eqcliF{�bjeqiGs&cfw�eq`���w�sf§¢w�st{Jcji�y�wrs
cj~Qi�|qwL��{�|lbucjst{JcjiG��e}iGbG�¼¯¿~:iHa�iFbdct{Usjcu�d°Ocjst{Jcfi���vr�³~:w º i�pri�sF�
{U|�bjw¨�¢i�`:i�¹:cfb�y�sjwr�Þ{l~Qeq�r~:i�sÍ�LiG��sfi�i·wUy¢§:sjw6ÑLe}��egcdvr�B¯¿~:e�b�e}b
§:sfw��Q{��:|}v/{U�O{Ue}`@�LhQi¬cjw�cj~Qi � �Q{r� ��§:~:i�sfw���wr`:i¬eq`Ly�wrsj��{U�
cje}w�`!�¢i�e}`:����w�sfi)��iG`rcfsf{�|qe}©�iF�xcf~Q{U`@y�wrs�cj~:i)�G{�bji$wUy�iG¾OhQ{�|
�Le�bdcfsje}�:hLcfeqwr`^��{U`Q�±cj~:iGsji�y�w�sfi"iF{�bjeqiGs>cjw@�LiG{�| º egcf~±y�w�s¨cj~Qi
{U`Oc>{U|}��wrsjeqcj~Q�@�
m8eq�rh:sfiJ��bj~:w º b>{���wrsji"�:i�cf{�eq|}iG�±pOe}i º w�y�cj~:i�w�§Lcfeq��e}©G{U�
cje}w�`®��iG~Q{6p<eqwrs>y�w�s¨cj~Qi�e}`Q�Le}p<e}�Lh�{U|�bdcfsf{UcjiG��e}iGbl{�`Q��eqcfb��Li��
§¢i�`Q�LiG`Q��v¶w�`Ácj~Qi�e}sxsjiFbu§¢iG��cje}p�i �:��§Q{�sf{���i�cjiGsfb!ª ��#l��� K �
���Í«¬y�w�s)cj~:i@��{�bji�wUy"ª 4 Q�� Q @ «1$�ªu��QR��×VQf×r«��Be�� i��!y�sfiG¾Oh:iG`Oc
wL����h:sjsfe}`:�±bu��{�|q|¿�t~Q{U`Q��iGbG��_a`[§Q{�sucfe}��h:|�{UsF�Ycf~:i/i�½¢iF��c�wr`
e}`Q��sfiG{rbue}`:�Òcj~:iQ�:��§�{Ust{U��i�cfi�sj��pJ{U|}h:iFb��G{U`Á��i�bji�i�`Y�M¯¿~Qi
�O�a°<cjst{JcjiG��v!w�`Q|qv±bj|qw º |}v!��iF��wr��iFb º w�stbji"e}`±cjiGsj��b�wUy·buw��
|}hLcje}w�`/¾OhQ{�|qeqcdv��<�LiFbu§:eqcji¨sjiFbui�cucfeq`:��{$|}wUc&w�y^§:~:iGsjwr��wr`:i�y�wrs
~:e}��~)pJ{�|qh:iFbYw�y���#l�U{�bBe}bBe}`Q�Le���{JcfiG�$�<v�cj~Qi&iG`rcfsjwr§<vr�a��hQsjpriGb
e}`�m8e}��h:sfic�Q�8_a`���wr`rcfsf{rbdcF�Jcj~Qic�<�a°Ocfsf{UcjiG��v�bj~:w º b�{¬bjeq�r`:egyÐ�
e���{U`Oc�|}wrbfb¿wUy�§�iGsuy�wrsj��{U`���i¨y�w�s � K�� �r�Li�pri�`�cj~:wrh:��~@cj~Qi
i�`Ocfsjwr§OvX��h:sfp�i�e}`Q�Le���{UcjiGb)cj~Q{Uc)cj~Qixeq`���sfiG{�bji�e}`ÛsjiFbui�c)eq`L�
y�w�sf��{Jcfeqwr`xe}b·wr`:|qv���wL�LiGsf{Ucji���mQw�s&cj~:iAa�iFbdct{Usjcu�d°Ocjst{Jcfi���vr�
º i¬bji�i¬o��abj~Q{U§¢iG��§Q{Ust{U��i�cji�sj�a�Li�§¢i�`Q�:i�`Q��vx��h:sfp�iFbÍy�wrs�sji��
bjh:|gcfeq`Q�¨bjw�|}hLcje}w�`"¾OhQ{�|qeqcdv�� º ~:e��t~�bj~:w º b^cj~Q{UcB`:w�c8sfiGbji�cjcje}`:�
i�`Qw�h:�r~±{�b º i�|}|B{rb>sfiGbji�cucfeq`Q��cjw<wx�"h��t~�eq`Ly�wrsj��{Ucje}w�`�~Q{rb

864 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

11000

11500

12000

12500

13000

13500

14000

0 1 2 3 4 5

A
ve

ra
ge

 T
ou

rle
ng

th

Lambda-E

Comparison of Parameter-Settings for Eta-Strategy on (1,50,0)

0
5

10
20
49

11000

11500

12000

12500

13000

13500

14000

0 0.5 1 1.5 2

A
ve

ra
ge

 T
ou

rle
ng

th

Lambda-T

Comparison of Parameter-Settings for Tau-Strategy on (1,50,0)

0
5

10
20
49

11000

11500

12000

12500

13000

13500

14000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 T
ou

rle
ng

th

Lambda-R

Comparison of Parameter-Settings for Restart-Strategy on (1,50,0)

0
5

10
20
49

11200

11250

11300

11350

11400

11450

11500

11550

11600

11650

11700

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
ou

rle
ng

th

Iteration mod 200

Comparison of Parameter-Settings for Eta-Strategy in (1,50,0), Avg Interval

Eta:0.25
Eta:0.5
Eta:1.0
Eta:1.5
Eta:2.0
Eta:3.0
Eta:4.0
Eta:5.0

11200

11250

11300

11350

11400

11450

11500

11550

11600

11650

11700

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
ou

rle
ng

th

Iteration mod 200

Comparison of Parameter-Settings for Tau-Strategy in (1,50,0), Avg Interval

Tau:0.125
Tau:0.25

Tau:0.5
Tau:0.75

Tau:1.0
(Tau:1.25)
(Tau:1.5)
(Tau:2.0)

11200

11250

11300

11350

11400

11450

11500

11550

11600

11650

11700

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
ou

rle
ng

th

Iteration mod 200

Comparison of Parameter-Settings for Restart-Strategy in (1,50,0), Avg Interval

Restart:0.125
Restart:0.25

Restart:0.375
Restart:0.5

Restart:0.625
Restart:0.75

Restart:0.875
(Restart:1.0)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 E
nt

ro
py

Iteration mod 200

Comp of Parameter-Settings for Eta-Strategy in (1,50,0), Avg Interval, Entropy

Eta:0.25
Eta:0.5
Eta:1.0
Eta:1.5
Eta:2.0
Eta:3.0
Eta:4.0
Eta:5.0

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 E
nt

ro
py

Iteration mod 200

Comp of Parameter-Settings for Tau-Strategy in (1,50,0), Avg Interval, Entropy

Tau:0.125
Tau:0.25

Tau:0.5
Tau:0.75

Tau:1.0
Tau:1.25

Tau:1.5
Tau:2.0

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 E
nt

ro
py

Iteration mod 200

Comp of Parameter-Settings for Restart-Strategy in (1,50,0), Avg Interval, Entropy

Restart:0.125
Restart:0.25

Restart:0.375
Restart:0.5

Restart:0.625
Restart:0.75

Restart:0.875
Restart:1.0

m8eq�rh:sfi���	¶k>pri�st{U�ri®¾OhQ{U|}egcdvÝw�y"�¢iGbuc@y�wrh:`Q�Øbuwr|qh:cje}w�` º eqcj~ÂsjiFbu§¢iG��c�cfwM`OhQ�"�¢i�s!wUy"eqcjiGsf{Ucje}w�`Ø{JyÐcjiGs�{¶�t~Q{�`:��i®y�w�sR�O�
°Ocfsf{Ucji��rvÛª�|}i�yÐct«�� �<�d°Ocjst{Jcfi���vÛª���i�`Ocfi�s�«���{U`Q��a�iGbucf{�sucj�a°<cjst{JcjiG��vXª�sfeq�r~rc�«�y�wrs��:eg½Di�sfi�`Oc¬§Q{Ust{U��i�cfi�s¨p6{�|qhQiGbg��#?QL� K Q�� � {�`Q�
cj~Qi³��wr`L¹Q��hQsf{Ucje}w�`�ª 4 Q � Q @ «T$Þªd��QR��×VQj×O«��^¯¿~:i³h:§:§¢i�sYsfw º bj~:w º b^��h:sfp�iGbDw�y:{6p�i�st{U�ri8bjw�|}hLcfeqwr`¬¾OhQ{�|qeqcdv>y�wrsY��iGsuct{Ue}`¬egcfi�st{Jcje}w�`�b
{JyÐcfi�s){!�t~Q{�`:��ir�Dcj~:i���e��:�L|}i�sjw º cf~:ix{6p�iGsf{���iF�!��iG~Q{6p<eqwrs¨y�wrs){!��i�sjcf{�eq`X§Q{�sf{���i�cjiGs�wJpri�s¬{ �T��_a`OcjiGsjpJ{�|��Y{�`Q�®cj~:i�|}w º iGs
sfw º bu~Qw º b·cj~:i)��w�sfsjiFbu§¢w�`Q�:eq`:��i�`Ocjsfw�§<vxpJ{�|qh:iFb·cjw�cj~Qi$��e��:�L|}i)sfw º �

{�`:iG�r{Jcfeqpri$i�½DiG��clw�`@cj~Qi"�Li�sfe}p�iG�!bjw�|}hLcje}w�`Y�·k¨b º eqcj~!cj~Qi
|}w<�G{U|³bucjst{Jcfi��reqiFb��Ycj~:i��:e}���riGbuc)§�iGsuy�wrsj��{�`Q��i��O{Ue}`µ�G{U`µ�¢i
w���buiGsjpriG� º ~:iG`M��w�e}`:�Òy�sjwr�+�Lw�e}`:�µ`:w�cj~:e}`:�Q�&e�� i��ÁhQbjeq`Q�
{±§�{Ust{U��i�cfi�sj��pJ{U|}h:ixw�yl×:� ×:��cfwX�Lwreq`Q�®i�pri�` � h�bdc�{±|}egcjcj|}i��
e�� ir��bji�cjcje}`:� � # $Ã× � ���:�c��KL$	×��q�6���:�D{�`Q� ��� $Ï× �}�F���:�
¯¿~:i���hQsjpriGbBy�w�s�cf~:ica�iGbucf{�sucj�a°Ocfsf{UcjiG��v${U|�buw¬bj~:w º cj~�{Jc�cj~Qi
�Leq½¢iGsjiG`Q��ixy�sjwr��sfiGbji�cucfeq`Q�±{U|}��wObdc"{�|q|³§:~:i�sfw���wr`:i�eq`:y�w�sj�
��{Jcfeqwr`»cfw[{���cfhQ{U|}|}v[sjiFbui�cucfeq`:�Û{�|q|�w�y¨eqcxe}b�iG`:w�sf��w�hQb�e}`
cjiGsj��b¿w�y�bjw�|}hLcje}w�`!¾OhQ{U|}eqcdv º ~:i�`!hQbje}`:��cj~:e�b>bucjst{JcjiG��vr�
klbY��i�`Ocje}w�`:iF�¬eq`"°LiG��cfeqwr`A�Q� º i&{U|�buw>{�`Q{U|}v<©�iG�¨cf~:iÍ§¢i�sjy�w�sj�
��{U`Q��i�wUy^��wr�"�:e}`Q{Ucje}w�`Qb�w�y¢cf~:i>|}wL��{U| �r�8{U`Q�*�<�d°Ocjst{Jcfi��reqiFb
º eqcj~�cj~:i?a>iGbucf{Usjcu�d°Ocfsf{Ucji��rv��YmQw�sÍbjw���i���{rbuiFb��6cf~:e}b³��w����:eq�
`Q{Ucje}w�`$§:sfwJp<e}�LiF����i�cucjiGsBbjw�|}hLcje}w�`�b�cj~�{U`){U`<v¨wUyLcj~Qi³bdcfsf{Ucji��

��e}iGbl��w�hQ|}��{r�t~:eqiGp�i¬�<v/eqcfbji�|qyd��k>`�i�Ñ:{���§Q|qi$w�y8cf~:e�b>e�b�cj~Qi
��wr`L¹Q�rh:sf{Ucje}w�`ª 4 Q�� Q @ « $ ªd��Q[�U× Qj×r«)bu~:w º `¶eq`Mm8eq�rh:sfi �L�
y�w�s º ~:e}�t~ º i)§¢i�sjy�w�sf��iG��{��Q�Legcfeqwr`Q{U|Y§Q{Ust{U��i�cfi�sj��cfiGbucfb·cfw
��{U�ri/{±��w�sfi/§QsjiF��e�bui/{�`Q{U|}vLbue�bG�Ò¯¿~:i@��w�`Ocfw�h:s�|qe}`:iGb�y�wrs
cj~Qi���w����:eq`�{Jcje}w�`®wUyÍcf~:i*�r�>{�`Q��a>iGbucf{Usjcu�d°Ocfsf{Ucji��rv@bj~:w º
cj~�{Jc�cj~:iGsji@{Usfixc º wÒ{UsfiG{rb)e}` º ~:e��t~[�rwOwL�Û§¢i�sjy�w�sf��{U`Q��i
º {�bx{r�t~:eqiGp�iF���¿w�`:i±w�y¬cj~:iG� {XcfsjhQi®��wr�"�:e}`Q{Jcfeqwr` º egcf~� # $��/{U`Q� ��� $¸× � ���L��{U`��Xcj~:ixw�cj~:iGs"wr`:i�� º ~:e��t~Ûe}b
�¢i�cucfi�s�e}`»cfi�sf��b�wUy�bjw�|}hLcfeqwr`¶¾OhQ{U|}eqcdv»{�b º i�|}|>{�b�|}{�sj�ri�sF�
º eqcj~ ��#I� � � Q � �"{U`Q� � � $¤×:��¯¿~:e�b¨bjh:���riGbucfb¿cf~Q{Jc�cj~Qi
�O�a°<cjst{JcjiG��vX�Lw<iGb)`QwUc��¢i�`Qi�¹:c��"hQ�t~^��eqyl{Jc�{�|q|��8y�sjwr���¢i��
e}`:����w����:eq`QiG� º eqcj~#a�iFbdct{UsjcG��m:wrs&cf~:iU�<�a°<cjst{JcjiG��v�wr`xcj~Qi
wUcf~:i�s�~Q{U`�� º i®bji�iÒ{Û§:sfw���e}bje}`:�[{UsfiG{µ|}wL��{JcfiG�Ý{�sjwrh:`Q�
{X��w����:e}`Q{Jcfeqwr`»wUy¨��iF�Le}h:� � K {U`Q� � � p6{�|qhQiGbG�³bu§¢iG��egyÐ�

865ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Combination of Eta- and Restart-Strategy

0
0.25

0.5
0.75Restart 0.5

1.5

2.5

3.5

4.5

Eta

11300

11400

11500

11600

11700

Tourlength

� n��������7h�Zei)n>bTi
	0a�f���X[p�n>ikX[a�p

Combination of Tau- and Restart-Strategy

0
0.25

0.5
0.75Restart 0

0.5

1

1.5

Tau

11300

11400

11500

11600

11700

Tourlength

� ��0S����7h�Zei)n>bTi�	0a�f���X[p�n>ikX[a�p

m8eq�rh:sfi ��	³£&wr�"�:e}`Q{Jcfeqwr`QbÍw�y^cj~Qi¨|}wL��{U| �O�Í{U`Q� �<�d°Ocfsf{Ucji��reqiFb º eqcj~�cj~Qi a�iFbdct{Usjcu�d°Ocjst{Jcfi��rv)y�w�s·cf~:i¨§Qsjwr�:|qiG���T��w�`L¹Q�rh:st{Jcje}w�`
ª 4 Q�� Q @ «T$2ªu��Q[�U×VQf×r«��

11200

11250

11300

11350

11400

11450

11500

11550

11600

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
ou

rle
ng

th

Iteration mod 50

Effect of using KeepElite on Eta:2.0 in (1,50,0), Avg Interval

Eta:2.0
Eta:2.0 with KeepElite

� n������ uEiTb)n>ikh���d
11200

11250

11300

11350

11400

11450

11500

11550

11600

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
ou

rle
ng

th

Iteration mod 50

Effect of using KeepElite on Tau:0.5 in (1,50,0), Avg Interval

Tau:0.5
Tau:0.5 with KeepElite

� ���0S�� u iTb)n>ikh��>d
11200

11250

11300

11350

11400

11450

11500

11550

11600

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
ou

rle
ng

th

Iteration mod 50

Effect of using KeepElite, Restart:0.5 in (1,50,0), Avg Interval

Restart:0.5
Restart:0.5 with KeepElite

� l���� h�Zei)nGbTi�� uEiTb)n>ikh���d

m8e}��h:sfi$� 	³£&w����:eq`�{Jcje}w�`@wUy8cj~Qi$eq`Q�:eqp<e��LhQ{U|^bucjst{Jcfi��reqiFb º egcf~!z¬iGi�§QÌ³|qeqcje�buc·y�wrs¿cj~:i)��w�`L¹���h:st{Jcfeqwr`Òª 4 Q�� Q @ «T$2ªu��Q[�U×VQf×r«��

e���{U|}|}vÛy�w�s�� K $ �/� ×X{U`Q� � � � � × �5� Qf× � �O���L�r��{U`��¶{�|}bjw
y�w�s ��K $Ó×�� ���±{�`Q� ���`$Ó× � � ���L�Û¯¿~<hQb�cj~:i���wr�"�:e}`Q{U�
cje}w�`Ýw�y$cj~:i%�<��{�`Q��a�iGbucf{�sucj�a°<cjst{JcjiG��v[§¢i�sjy�w�sf��bx�¢i�cjcji�s
cj~�{U`xiGegcf~:i�s¿bdcfsf{UcjiG��v"�<v�eqcfbji�|qyd�<{�`Q�x{�|}bjw$��i�cucfi�s·cj~Q{�`�cj~Qi
�O�a°<cjst{JcjiG��vxe}`�cj~:e�b>��{rbuir� � hQbucjeqy�vOe}`:��eqcfb>{�§:§:|}e}�G{Jcfeqwr`^�
m8eq`�{U|}|qvr� º iM��w����:e}`:iG�2cj~:iMz¬i�iG§QÌÍ|}egcfe}bucµ��i�cj~:wL� º egcf~
cj~Qi�e}`Q�Le}p<e}�Lh�{U|¿bdcfsf{Ucji��reqiFb"{rb º i�|}|·{rb$cf~:i@��w����:eq`�{Jcje}w�`�b
wUy¿cf~:i.�O�¨{U`����<�a°Ocfsf{UcjiG��e}iGb º eqcj~µcf~:i a�iFbdct{Usjcu�d°Ocjst{Jcfi���vr�
m8eq�rh:sfiÁ�Øbu~Qw º bÒ~Qw º cj~:e�bµ��wL�Leg¹�iG�Þcj~:iÝ{6p�iGsf{���i[�¢i��
~Q{6p<e}w�sxw�y$cj~:iÒ§:h:sfiÒbucjst{JcjiG��e}iGb º egcf~Ýcj~:iGeqs@sfiGbj§�iF��cje}p�iG|qv
�¢iGbuc��:��§Q{�sf{���i�cjiGs�w�`x��w�`L¹Q�rh:st{Jcje}w�`�ª 4 Q�� Q @ «T$Þªd��Q[�U× Qj×r«��
klb���{�`[�¢i/w���buiGsjpriG���8y�w�s�cj~Qi �O�¬{�`Q��a�iFbdct{Usjcu�d°Ocjst{Jcfi��rv
cj~Qi)��w����:e}`Q{Jcfeqwr`�wr`!{6pri�st{U�rili�`Oct{Ue}|qiF�@{ º w�stbui$bjw�|}hLcje}w�`Y�
º ~:e}|qi�y�w�s�cf~:i*�<�a°Ocfsf{UcjiG��v@cj~:i�i�½¢iF��c$w�`X{6p�i�st{U�ri º {rb¨{�`
e}��§QsjwJpri���i�`OcG��¥¨p�iGsf{�|q|��Jcj~Qi>~:i�hQsje�bdcfe}�¿w�y¢�ri�iG§:eq`Q�){¬��wL�<�
eq¹QiG�!iG|qeqcji){�`rc º {rb¿��iG`:i�¹���e}{�|^w�`Q|qv º ~:i�`@cf~:i)`<h:�"�¢i�slwUy

��eqcje}iGb�4$cj~Q{Uc º {�bBeq`�buiGsucfiG�"{�`Q�"�:i�|}i�cjiF� º {�bB`:w�cBcfwOw�|�{Usf��i
{U`�� º ~Qi�`!cj~Qi$cje}��i$y�w�sl{r�:{U§:cje}`:��cjw�cf~:i)§:sfw��:|}i�� � º {rb
bj��{�|q|��Ø_Ty�cfw<wÛ��{�`<v¶��eqcje}iGb º iGsji!i�ÑL�t~�{U`:�riG���·cj~Qi�`Mcj~Qi
~:iGh:sje�bucje�� º wrh:|}��`:w$|}w�`Q��i�s�§QsjwJp<e��Li>{¬��w<wL��bjw�|}hLcfeqwr`^�r{�`Q�
cj~Qi¬{�`Ocfb º wrh:|}�x¹Q`Q��{"�¢i�cjcji�s>bjw�|}hLcfeqwr`xeq`�cj~Qil¹Qstbuc·eqcjiGsf{U�
cje}w�`�{JyÐcfi�s8cj~:i¿�t~Q{�`:��ir�Y¯¿~:e�b8�G{�bji³e�b8`:wUc��:{U`Q��i�sfw�h�b��6bue}`Q��i
��iGi�§:e}`:��cf~:i)��wL�Leg¹�iG��iG|qeqcje�bdc�{U`Oc º w�h:|��@��i$cf~:i"bf{U��i"{rb
`:w�c��ri�i�§Qeq`:�Òegc�;¿w�`:|}vXcj~:i � `Qi º �±iG|qeqcje�buc�{�`rc º w�h:|��Ûh:§L�
�:{Ucji�cf~:il§:~Qi�sfw���w�`:i���{UcjsfegÑ���¯¿~:ilbjiG��wr`Q����{rbui>e}` º ~:e��t~
��iGi�§:e}`:�@{U`®iG|qeqcje�buc${�`Oc¬�Lw<iFb¨`QwUc¬i�`Ocf{�eq|��¢i�cucfi�s)bjw�|}hLcje}w�`�b
e�b º ~:i�`@cj~Qi$eq`OcjiGsjpJ{�| �&�¢i�c º i�iG`@�t~Q{�`:��iFb·e}b�|}w�`Q��iG`:w�hQ��~
cjw�§¢i�sf��eqc·cj~:i¬{U|}��wrsjeqcj~:�Ãcfw�{��Q{U§Lc¿p�iGsjv º i�|}|Qcfw"cf~:i¨`Qi º
e}`Qbdct{U`Q��i��:{�`Q��cj~:i$�rh:e}�Q{U`Q��i�§QsjwJp<e��LiG���<v/{U`@iG{�sj|}vx��w<wL�
bjw�|}hLcje}w�`�|}iG{r�:b�cfw º {�sf��bucf{U�r`Q{Jcfeqwr`�eq`�cf~:iliG`Q����¯¿~:e�b&�G{�bji
e�b³§¢wUcfi�`Ocje�{U|}|qv��:{�`:��iGsjwrhQbG��{�b³cj~:i¨i�|}egcfe}buc�{U`Oc&bjh:sjp<e}p�iFb�cj~Qi
¹Qstbdc$�ri�`:iGsf{Ucje}w�`Yª�bf«�{U`��®e}`LÔQh:iG`Q��iFb�cj~:i�§Q~:i�sfw���w�`Qi���{U�

866 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

cjsfeqÑD��cf~:i�sfi��<vXsjiFbdcfsje���cfeq`Q��cj~:i@buiF{Ust�t~[bu§�{���ixcjwÒ{±sjiG��e}w�`
cj~�{Jc>e�b¿§�iGsj~Q{�§Qb¿`:w�c>p�i�sfv�§:sfw���e�bue}`:�Q�

� _ÒÈ Ç ¡ �jÊl�<ËdÈ Ç

_a`¼cf~:e�b�§�{U§¢i�sF� º iÒbucjhQ�Le}iG�Øbucjst{JcjiG��e}iGbxy�w�s!~:i�|}§:e}`:�¶{�`Oc
{U|}��wrsjeqcj~Q��b&�LiG{�| º eqcj~@{)~:e}��~Q|qvx�Lv<`Q{���e}�¨¯>°L²��rÕXi���wL�<�
eq¹QiG�!cf~:sfi�i�bucjst{Jcfi��reqiFb�§:sfw�§¢wrbjiG�@y�w�s¨cj~Qi���{rbui"wUy³{/bje}`:��|}i
�t~Q{�`:��i�wUy¿cf~:ix§:sfw��:|}i���eq`�bdct{U`Q��i��!olbjeq`:�±��w����:eq`�{Jcje}w�`�b
{U`��X{!~Qi�h:sfe}bucje���y�w�s"��i�iG§:e}`:�±{@��wL�Leq¹QiF�µi�|}egcfe}buc�{U`OcF� º i
º i�sfi"{U�:|}i$cfw�¹Q`Q���¢i�cjcjiGs�bjw�|}hLcje}w�`�b¿y�w�s¨p6{�sje}w�h�b>§:sfw��:|}i��
��|�{�bfbjiGb�cf~Q{U`¼cj~:iÒ§:h:sfi®bdcfsf{UcjiG��e}iGbx�<vÁcj~Qi���buiG|qpriGbG�2ÕXi
~Q{6pri�{�|}bjw��Le�bdcfeq`:�rh:e�bu~:iF� º ~Q{Jc$cdv<§¢i�wUy�§:sfw��:|}i�����|�{�bfbuiFb
bji�i��Ücjw)y4{6p�w�s º ~:e}�t~xbucjst{Jcfi��rv)y�w�s·�LiG{�|qe}`:� º eqcj~x�t~�{U`:�riGbG�
{U`�� º ~Q{Uc�cdvO§¢i�wUy�§Q{Ust{U��i�cji�s�cfwXh�bui@y�w�s�cf~:i±�Leq½¢iGsjiG`Oc
bucjst{JcjiG��e}iGb·e}`!bjhQ�t~!{���{�bji��
¥¨p�iGsf{�|q|�� º iÝ~Q{6p�i¼bj~:w º `	i���§:e}sje���{�|q|}v2cf~Q{Jc»cj~:i¼|}wL��{�|
bucjst{JcjiG��e}iGb"§�iGsuy�wrsj� ��iFbdc º ~:i�`¶§:sfw��:|}i�� �t~Q{U`Q��iGb"wL����hQs
y�sfiG¾Oh:i�`Ocf|qv�buw¬cf~Q{Jc³cj~:il{�|q�rw�sfegcf~:�Ü�:wOiFb�`:w�c³~Q{6p�i�iG`:w�hQ��~
cje}��ixcfw®sfiGbji�c � �:|qe}`Q�L|}v��®{�`Q�µsjiGw�§Lcfeq��e}©�i/cj~:i�i�`Ocje}sji/eq`L�
bucf{U`���i��ÛmQhLcjh:sfi º wrsj�µ��wrh:|��»��|�{Usfeqy�v º ~Qi�sfi/i�Ñ:{r��cj|}vµcj~Qi
�¢w�h:`Q�Q{UsfvÜ|}eqiFb»�¢i�c º i�iG`-bji�`Qbjeq�Q|qiÂ|qwL��{�|�sfiGbji�cjcje}`:�Þ{�`Q�
��|}w���{U|³sfiGbji�cjcje}`:�Q�Òk>|�buw���cj~:i@bdct{Jcji�wUyl��w�`<p�iGsj�ri�`Q��i�cj~Q{Uc
cj~Qi¬{�`Oc�{�|q�rw�sfegcf~:�Ï~Q{rb·{r�t~:e}i�p�iF�/��w�h:|�����wL�Li�cfi�sf��e}`:i�cj~Qi
e��LiG{�|�bucjsfi�`:��cj~ wUy�sfiGbji�cucfeq`Q�¼eq`¤sfiG{r��cfeqwr`Âcfw{Ý�t~Q{�`:��ir�
�Y{rbdcf|qvr�leqc���e}��~Oc!��iXcf~Q{Jc@cj~:iÛbucjst{Jcfi���e}iGb/y�w�s!sfiGbji�cjcje}`:�
§:~:iGsjwr��w�`:iX��w�hQ|}�¼bjhQ�G��iGbfbuy�h:|q|}vM��iµ{U§Q§:|qe}iG�eq`Ø{»bucf{Ucje��
i�`<p<e}sjwr`:��i�`Oc º ~:iG`®bdct{U�r`Q{Jcfeqwr`@w�y�cj~:i�buiF{Ust�t~!§:sjwL��iGbfb�e}b
e}����e}`:i�`Oc�y�wrs¿cj~:i$iG`rcfeqsfi$e}`Qbdct{U`Q��i¬w�s�§Q{�suctb&w�y8eqcG�

�/9<RT9OKJ9OA83�9<E

n���n&hQ|q|}`:~:iGeq��i�sF�Ya)� m·�c�l{�sucf|���{U`Q� £¨�¿°Ocfsf{�hQbfbÒªu�GÎ�ÎrÎr«��
k �>i º al{U`:�Án·{rbuiF����iGsfbje}w�`ÁwUy�cj~:i®kl`Oc�°<vLbdcfi��+��k
£&w���§:h:cf{Jcfeqwr`Q{U|�°OcjhQ�:v������	��
����������������������������������� �"!
�$�%����
&'���$(*)*�	(%������+-,/. 	³���6� � �:�
Ì>�·n·w�`Q{���iF{Uh^��ÖÛ�·�lwrsje}��w��¿{�`Q�¼���&¯¿~Qi�st{Uh:|�{U©[ªu�GÎ�ÎrÎr«��
0�1 ����243���
5�%�6�7&98:�%�;+-�=<�>?����24@A��
�������B
5�DC ��
E& FG+%&'��� 0�H (�I

5�	2J(���¥lÑOy�wrsf�@o>`Qeqpri�stbueqcdv/²ÍsfiGbfbG���li º�K w�sf�D�
����n·st{U`:�ri¼ªd�GÎrÎ�ÎO«��+ÌÍprw�|}hLcje}w�`�{Usfv{U§:§QsjwO{��t~:iFb!cjw�:vr�
`Q{���e��Xw�§Lcfeq��e}©G{Ucje}w�`Ø§:sjwr�:|}i���b��/{Ábjh:pri�v�� _a` k)��ÕXh
ª�iF��� «��¬Ì·£�£�¥ ÕXw�sf�Lbu~Qw�§@w�`!ÌÍp�wr|qh:cje}w�`Q{�sjvxkl|q�rw�sfegcf~:��b
y�w�s��¨v<`Q{U��e��Û¥¨§:cje}��e}©G{Ucje}w�` ²Ísfw��:|}i���bG�"� � �U�t� � �<�-°L{�`
Ö±{Ucji�w���£·k9	QÖ±w�sf�r{U`@z${UhLy���{�`:`^�
���¬�le/£·{Usfw¼{U`��2ÖÛ�¬�lwrsje}��w2ªu�GÎ�Îr�r«�� k>`Oc �li�c�	2�le�bd�
cjsfe}�:hLcjiF��°Ocfeq�r��i�sf��i�cfe}�Ã£&w�`Ocjsfw�|®y�w�s2£&w����"h:`Qe}�G{Jcje}w�`�b
�>i�c º wrsj�LbG�L�������������G�"!JC ��
E& FG+%&'���M3	��
5�	�6�9&98:�%�;+-�N)*�	(%������+-,
O 	 � �6�6� � ���:�
ÖÛ�¢�lwrsje}��w±ªu�GÎ�ÎO��«���¥¨§Lcfeq��e}©G{Ucje}w�`^� �^iG{�sj`Qeq`:�x{�`Q���l{UcjhL�
st{U|Lk>|}��wrsjeqcj~:��b�ª4eq`�_Tcf{�|qe�{U`¢«���²Í~Q�Ý¯¿~:iFbue�bG���le}§Q{�sucfeq��i�`Ocfw
�LeYÌ³|qi�cucfsjwr`:e}�G{:�L²�w�|}eqcjiG��`:e���w��LeYÖ�e}|}{�`:wQ�L_Tct{U|}v��:§Q§^�q�7�r×Q�

ÖÛ�·�lwrsje}��wÛ{U`��M���·�le$£·{UsfwÝªd�GÎrÎ�ÎO«��Â¯¿~Qi±{U`Oc/��wr|qwr`Ov
w�§:cje}��e}©G{Ucje}w�`!��i�ct{J�T~:i�h:sfe�bdcfe}���&_a`±���D£&wrsj`:ir�QÖÛ�¢�lwrsje}��w��
m·�¿��|}wJp�iGs±ª�iF�:b�� «��P@A� 1 3%Q:����(R&6� # ��
&62S&UT=��
E&'���Q�"����� � �:�
Ö±�F��sf{ º � �>e}|q|��
ÖÛ�)�¨w�sfeq�rwÂ{�`Q� �³� Ö[�$�¬{��"�Q{�sf�:i�|}|}{Ãªd�FÎ�Î��r«�� kl`rcj�WV 	
kba>i�e}`Ly�w�st��iG��iG`Oc��^iF{Usf`:e}`:�®{U§Q§:sjwO{��t~Xcjw±cj~:i�cjst{6p�iG|qe}`:�
bf{U|}iGbj��{�`®§:sfw��Q|qiG�@�"_a`YX����Z+-�-�-Q�&6�[8�(\�W!S]_^`IWa[bdcNe 1 �%� !-
6,
3���
f�%���;��
&'���;���P�����Z!	�%���	��+-�R���g]h�i+-,j&6���_^k��������&6�j8U�¿�����J�
�U�r×:��°L{U`�Ö±{UcjiGwQ��£·k9	�Ö�w�sf�r{�`�z${Uh:y���{�`:`^�
ÖÛ�¢�lwrsje}��w�{U`����Í� ÖÛ���¬{U���Q{Ust�LiG|q|�{�ªd�FÎ�ÎO��«��³kl`Oc¨��wr|qwr`Ov
bjv<bucjiG� 	·kÜ��w<w�§¢i�st{Jcfeqpri�|}iG{�sj`Qeq`:�x{�§:§:sfwr{r�t~�cfw�cj~Qi)cjst{6pO�
i�|}|}eq`:��bj{�|qiFbu��{U`�§:sfw��Q|qiG�@� �l3��m���ne������$(%�i+%
E&'���$(o���\��pd��I
�7��
E&'������� H ����2*�;��
5��
E&'��� � 	�� � �T�r�:�
ÖÛ�D�lwrsje}��w������¢Ö±{�`:e}i�©�©GwQ�D{U`Q��k"��£&wr|qwrsj`Qe&ªd�FÎ�Îr�r«��>¯¿~Qi
k>`Oc�°<vLbdcfi�� 	8¥¨§Lcfeq��e}©G{Jcfeqwr`$�<v�{¬£&w�|}w�`<vlw�yQ£&w<wr§�iGsf{Ucje}`:�
k>�ri�`OcfbG��3����m�qe$������(r 0�H (�
5�	2J(-cs]h���$cG���;QR� Hit �%���;�%
&'+	(
u XB����
�v M�w 	³�UÎU� �����
�Í� ÖÛ�!�¬{U�"��{Ust�Li�|}|}{Q�XÌl� ����¯8{Ue}|}|}{�sf���µ{U`��¦ÖÛ���¨w�sfeq�rw
ªd�FÎ�ÎrÎr«��Mk>`Oc@£&wr|qwr`:eqiFb�y�w�s�cj~QiRV¨h�{��Lst{Jcfe}�@klbfbue}��`Q��iG`Oc
²Ísfw��Q|qiG�@���������������x�W!P
y,$� # ���%����
E&'��������) ��(%�-����+-, 0 �=+%&'�	
 H
z�{ 	¿�G�<�F�t�6�U�:�
ÖÛ����h:`Ocfbf�t~¶{�`Q�[ÖÛ��Ö�e��:�Li�`��Lw�sjy"ª���×�×:�6«��X²Í~:iGsjwr��wr`:i
Ö�wL�Leq¹���{Ucje}w�`!°Ocjst{Jcfi���e}iGb³y�w�s�kl`rc>kl|q�rw�sfegcf~:��b·{�§:§:|}eqiF��cfw
�¨vO`�{U��e}�¨¯>°L²��r¯Bw"{�§:§�iF{Us&eq`/²³sjwL��i�iG�:eq`:�Ob�wUyYÌ³p�wrÕÒwrsj�O�
bj~:w�§QbÁ�U×r×:�Á�Xm8e}sfbuc¶ÌÍhQsjwr§�iF{U`	ÕÒwrsj�Lbj~:w�§Ïwr`ÀÌÍprw�|}hL�
cje}w�`�{UsfvÛ£&wr��§QhLcf{Ucje}w�`[e}`M£&wr�"�:e}`Q{Jcfw�sfe}{�|·¥¨§Lcfeq��e}©G{Jcfeqwr`
ª4Ì³p�wL£&w�§���×�×:�6«����Y{���i"£&w���wQ�Q_Tcf{U|}v��·°<§:sfeq`:�ri�s�� ��£¿°!°<i��
sfeqiFb��
���³Ö�i�sf�<|qir�&ÖÛ�ÍÖ±e}�:�:i�`Q�Lwrsuyd�·{U`Q�^�)�·°L�t~:��iG�t�¼ª��U×�×r×r«��
k>`Oc¶£&w�|}w�`<vÜ¥¨§Lcfeq��e}©G{Ucje}w�`2y�wrs�a�iGbjw�hQsf��i��u£&w�`Qbucjst{Ue}`:iG�
²Ísfw � iF��cÛ°L�t~:iG�:h:|qe}`:��� _a`nX����Z+-�-�-Q�&6�[8�(|�"!}
y,$��~B�%�;�%
&'+
����Q ��p����9��
&'���;��� H ����2B����
f��
&'���h�����=!	�	���%�;+-�A�G~m�P��� # I
�[�:�i��� �¢��Î � �aÎ�×�×Q�8°L{�`�Ö±{Jcfi�wQ��£·k5	QÖ�wrsj�O{U`�z${�hLy���{U`:`Y�
a$�Û°L�t~:w<w�`��Li�s º w<iGsf���¥����>w�|}|�{U`Q��� ���µn&sfhLcfi�`^�¼{�`Q�
�Í� a�w�cj~:�<st{U`Ocj©±ªu�GÎ�Îr�r«��±k>`Ocu�T�Q{�bjiG� �Ywr{r�Ûn·{�|}{�`Q��e}`:��e}`
¯Bi�|}iG��wr���"h:`:e���{Ucje}w�`Qb �li�c º w�sf�<bG�NC Qi�-�;
E&6pd�Nv ��,���p=&'��� z 	
�G�r�J�d�U×<�<�
¯¬�¢°<c �hLcf©�|}i�{U`�� �)� �>w<wrb�ªd�GÎrÎO��«��·_a��§QsjwJpri���i�`Ocfb>w�`!cj~Qi
{U`Oc�bjvLbdcfi�� 	"_a`OcfsjwL�LhQ��eq`Q�±Ö±kB��ª4Ö�_ ��«"{�`rc"bjvLbdcfi��!�!_a`
���Y���B°<��eqcj~µi�c"{�|���ª�iF�:bG� «��`X����=+=rL�"!N
6,��J3	��
5�	������
E&'���;���
�����=!	�	���%�;+-�B���AC ��
& F�+	&'���d@J�	��
E�����d@A�%
 1 �����d(����;QJ~B�%�;�%
&'+
C � 8[����&6
y,j2J(���� � �6�d� �rÎQ�8°<§Qsje}`:��iGsu�f��i�sf|�{U�Q�
¯¬�Y°Oc��hLcj©G|qix{�`Q���"� �>w<wOb�ªu�GÎrÎ�Îr«��\]_CB�lIf]�3"@Ãk>`Oc�°<vLbu�
cjiG�!��>���
E������~B�%�;�%����
E&'��������2*�;��
5�	� 0;H (-
5�%2A(��w)����ÎU�
Î:�7�Q�
¯>°L²Í� �Yeq�:st{Usfv ª��U×�×Q�F«�� ~Ocucf§<	 ÄrÄ º�º�º � e º sF� h:`:eq�
~:iGe}�LiG|q�¢i�sf�Q� �LiJÄ6e º s�ÄU��w���wr§Lc�ÄUbuw�yÐc º {�sjiJÄJ¯>°L² �^_dn¿Î���ÄL�

867ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

���������	��
�����������	���������������� �"!#���$&%'�	!(��!)�*�,+-!.�/!0�&1"�,���,
��2�#3���546��7��8�9���$

:�;=<?>	@	;BADCFE#GH@	;=IKJLA
MONQP�RTSVUXWZY,[V\�]^W�_T\�W�`,WZRTabYXUXP�WZ_QU
c Ydab_TeVWZ]^f�g,_h]^ijW�YdfX]kUml
n abopUXqTajPsr	t9uwvQxby{z=yj|~}T�j��v
qTNjY�_{�?lT�2\�fZ� �hY�aj_TeVWZ]^fZ� W�eVS

� @	;=�(�hI���E��,@������h���
MONQP�RTSVUXWZY,[V\�]^W�_T\�W�`,WZRTabYXUXP�WZ_QU
c Ydab_TeVWZ]^f�g,_h]^ijW�YdfX]kUml
n abopUXqTajPsr	t9uwvQxby{z=yj|~}T�j��v
R�Njo^o^aQ\d�h�2\Zf�� �hYdab_TehW�]�f�� WZeVS

�D�2�j�V�h�����

n W�\�Nb|~W�iQNjo^ijW/U�qhW�P�NQYXRhqTNjo^Nj�jl�ab_	e�\�NQ_{UXY�Njo^opWZY
Nj�sabYXUX]p�	\�]^ajo8\�Y�WZa=U�ShY�WZf'STfX]p_h��Um� N¡]^_{UXWZ�jYda=UXW�e
�QW�_hWZY�abUX]^ijW�RhY�N?\�WZf�f¢W�f��8£¤|~fXlVfmU�W�P¥f/abY�W�STfXWZe¦ajf
U�qhW§\�NQP�P�NQ_¨�QW�_hWZY�abUX]^ijW©W�_T\�NVeV]p_T�6�ªNjY«��NbU�q
��NVeVl�ab_TeD�hYdab]^_¤�¬MONjP��h]^_h]p_T�UXqhW®o^aj_h�jSTaj�jW�f
Nj����NbU�q¥]p_{UXN�a/fX]^_h�jo^W¯£L|°f¢lVf¢UXWZP¬abo^opN=�¯f*�ªNQYFo^]p_h�{|
aj�jW9��W�Um� W�WZ_DUXqhW®�jW�_TNbUml?R	W�Nb�/UXqTW®\�NQ_{UXY�Njo^opWZY
aj_Te8U�qhW�RTabYXU�f Nj�)UXqTW2P�NQYXRhqTNjo^Nj�jl�UXq	a=U¯]pU�\�Nj_V|
U�YXNQo^fZ�'MOY�WZa=U�ShY�WZf/WZijNjo^ijW�e�?l�U�qh]^f�fXl?f¢UXWZP±abY�W
P�NjY�W¯\�NQP�RhopW�²�U�qTab_¥RTYXWZi{]^NjS	f��ONQYX�Krbq	aBi{]^_h��aj_
NQY�eVWZY,Nj�FP�aj�j_h]pUXS	eVW³P�NjY�W�RTajY¢Udf´aj_Te9a�qh]p�QqhW�Y
eVWZ�jY�W�W�Nb�*YXWZ�jSho�abY�]pUmlj�

µ ¶Q·�¸�¹Dº¼»§½6¾'¸�¶hº¼·

u,f�\�NjP�RhSVU�W�Ydf���WZ\�NjP�WsP�NQYXWsR�N=�OWZY¢�ªShoOUXqTWsY�]�\dqh_hWZf�f�Nb�
i?]pYXUXS	abo��ONQYXo�ehf']�f®o^]^P�]pUXW�e¨Nj_ho^lw�?l¿��qTa=U«\Zab_¬��W�eVW�|
fX]p�Q_hWZe9UXNs]p_hq	ab�h]pU´U�qhW�P��³À,N=�¿\�aj_�� W�\�Nj_Tf¢UXY�ST\3U2�	W�abSV|
UX]p�ªSho2ab_TeD\�NQP�RhopW�²ÁeVW�f¢]^�j_TfZr Nj�VÂmW�\3U�f¥aj_TeD\�Y�WZabUXShY�WZf��ªNQY
UXqTW�P8Ã9ÄQ`6i{]^YXUXSTajo¤\�Y�WZa=U�ShY�WZf qTaBijW2��W�W�_�WZijNjo^ijW�e8]^_sfX]^P�|
Sho�a=U�]pNQ_¼Å Æ�NQP�NQfX]p_TfX�?]LÇ¬È�NjU�abY�SV|~ÉFabY��QaTr?xjvjvjv�Ê~rLab_TeHfX]^P�|
Rho^W�Y�Nj��NbUdf2qTaBijW��	WZW�_'W�ijNQopiQWZes�ªNQY�ajSVUXNQP¥a=UX]�\�P�aj_?SV��aj\�|
UXSTYXW§Å £¤]^RTfXNj_�Ç¬Ë#Njo^o�aj\d�KrhxbvjvQv�ÊÌ� c NjUXq6Nb��UXqhW�f¢W¦� NjY��Vf
qTaBiQW´STfXWZesa�eV]pY�WZ\�U�W�_T\�N?eh]p_h���ªNQYOU�qhW�\�Y�WZabUXShY�W,P�NQYXRhqTNjop|
Nj�Ql9ab_Te\�Nj_{UXY�Njo^opWZYZ��Í°_®UXqh]�f/� W�Y�W�U�ShY�_�U�N�UXqhW8fXRh]^YX]pU/Nb�
Å [?]pP¥fZr¤�Z}Q}byBÊ~r]^_9��qh]�\dq9a¥�QY�ajRhq9fmU�YXS	\3UXSTYXW��Îajf�UXqhW��jW�_h|
W�Yda=U�]piQW�WZ_T\�NVeV]^_h�W�iQNjo^ijW�e¦�ªNjY¥\�YXW�a=UX]^_h���NbUXqÁUXqTWH�	NVeVl
ab_	e��hYdab]^_sNb�#i{]^YXUXSTajo¤\�Y�WZa=U�ShY�WZfZ�
ËFY�W�i?]^NjSTfXo^l8�OW�f¢qhN=� WZe�U�qTa=U�ab_HW�iQNjo^SVUX]^Nj_	abY�l�abo^�jNQYX]pUXqhP
Ï�Ð u´Ñ¤STf¢]^_h�2a¯£¤]^_TeVWZ_hP¥aBljW�Y(f¢lVf¢UXW�P Ï £L|°f¢lVf¢UXW�P8ÑLaQf)a,�jW�_h|
W�Yda=U�]piQW®WZ_T\�NVeV]^_h�DNjShUXR�W�YX�ªNjY�P�W�e¡aj_ Ð uÒSTf¢]^_h��a©_hNj_h|
�jWZ_hW�Yda=U�]piQW«W�_	\�NVeV]^_h�¡NQ_Óaj_ÓabShUXNjP¥abUXWZe¬eVWZfX]p�Q_¬RhY�Nj�h|
o^W�P"Å À¯NQYX_?�?l8Ç¨Ë#Njo^o^aQ\d��rVxbvQvh�dÊ~� n W�U�qhW�_�STfXWZe�U�qh]^f,f¢lVf¢|
UXWZP&UXN§WZijNjo^ijW¦\�NjP�Rho^W�²6P�NQYXRTqhNjo^Nj�Q]pW�fs�ªNjY'xj`ÔY�Nj��NbUdf
��]pUXqDP�NbUXNQYX]^Õ�W�eHÂmNQ]p_{U�fZr WZaj\dqD\�NQ_{UXY�Njo^opW�e«�?l¼ab_©NQf�\�]^o^o^ab|
UXNQY�Å À,NjY�_?�{l�W�U,aboÌ�^rTxbvjvT�dÊÌ�OÀ¯W�Y�W��OW/eVW�fX\�YX]^��W/W�²?UXWZ_Tf¢]^Nj_	f

Nb��U�qh]^f��ONQYX�«UXN«Äj`"\�Y�WZabUXShY�WZf¥aj_Te©UXNU�qhW9]^_QU�W��QY�abUX]^Nj_
Nb��_hWZShYdabo)_TW�Um� NjY��?f,ajf,\�Nj_{UXY�Njo^o^W�Ydf��Îu,eVi=aj_QUdab�QWZf¯Nj��_hW�SV|
YdaboT_TW�Um� NjY��?fOabY�W�UXq	a=U UXqhWZl�\Zab_8�QW�_hWZY�abUXW¯P�NQYXW2\�NjP�Rho^W�²
o^N?\�NjP�NbU�]pNQ_�R	a=U¢U�W�Y�_Tf UXq	ab_sSh_T\�NQ_h_hW�\3UXW�esNQf�\�]^opo�a=U�NjYdfOaj_Te
abo^o^N=�0�ªNjY�o^abUXWZYsRTYXNQ�jY�WZf�f¢]^Nj_©UXN©U�qhW®WZijNQopSVU�]pNQ_ÖNj�³P�NjYX|
RhqhNQopNQ�j]^WZf2��]pUXq¦f¢WZ_TfXNjYdf2aj_Te'YXW�aj\�UX]^ijW�\�Nj_{U�YXNQopo^W�Ydf���Í°_{UXW�|
�jYda=U�]p_T�8UXqTW�\�NjP�P¥ab_TeTf,�ªNQY´P�NQYXRhqTNjo^Nj�jlHaj_Te�\�Nj_{UXY�Njo^opWZY
]^_UXqhW8�QW�_hNjUml?R	W8\�YXW�a=UXW�f�a�o^]p_h�=aj�jW8��W�Um� W�WZ_®U�qhW�P�r#o^]p�QW
UXqTWsWZ_T\�NVeV]^_h�®Nb��Å [?]^P�fZr¤��}j}byBÊ~rOaj_Te¼fXqhNQSho^e¼YXW�eVST\�W�eV]�fm|
Y�ShRVUX]^Nj_sSh_TehW�Y¯Y�WZ\�NjP³�T]p_TabUX]^Nj_¤�
£L|°fXl?f¢UXWZP¥f¯qTaBiQW��	WZW�_®STf¢W�eHRhY�W�i?]^NjSTfXopl��ªNjY´UXqTW�eVWZijW�o^NjRh|
P�W�_{U�Nb�´ajY¢U�]k�	\�]^ajoO_TW�ShYdaboÎ_hW�Um�ONQYX�VfZ�®Í°_�Å Æ�]pU�aj_hNTrL��}j}jv�Ê
ab_¿£¤|~fXlVfmU�W�P&Nj_wP¥a=U�YX]�\�W�fH�ÎajfHSTfXWZewUXN§�QW�_hWZY�abUXWUXqTW
\�NQ_h_hW�\3UX]^i?]kUml®P¥a=UXY�]p²�Nb��as_hW�Um� NjY��K�8×Îqh]^f�P�W�UXqhNVeeVN?WZf
_hNjU³_Ta=U�ShYdabo^opl9W�²?UXW�_	e'UXNHU�qhW�\�Nj|ÌWZijNQopSVU�]pNQ_®Nj� P�NQYXRhqTNjop|
Nj�Ql³abo^Nj_T�2��]pUXq�U�qhW¯_hWZShYdaboh\�NQ_{UXY�Njo^opWZYZ�*tHNjY�W�\�NjP�RTabUX]^�ho^W
��]pUXq8NQShYFNjY�]^�j]^_TaboTfXlVfmU�W�P¨Nb�LRhY�NVeVST\�]^_h��a�f¢UXY�]^_h�/Nb�¤�hST]po�e
\�NQP�P�aj_Tehf�]�f�U�qhW¯U�WZ\dqh_T]^Ø{ShW¯Nj�FÅ c N?W�YdfÎÇ¬Æ�Sh]^R	WZYZr)�Z}j}{xZÊÌ�
À¯WZYXW��QYXNQShRh]^_h�Qf Nb��fXl{P��	NQo^fÎ]^_TfX]^ehW2�TY�aQ\d�jW�UdfÎabY�W2S	f¢W�e8U�N
fXR	W�\�]p�ªl�\�Nj_h_hW�\3U�]pi?]pUml§Nb��UXqTW¦_hW�Um� NjY��K�Ù`,YdaB���TaQ\d�?f�U�N
UXqT]^f8fXlVfmU�W�P5ajYXW�UXq	a=U�af¢l?P��	NQo]�f¥STfXWZe¼�ªNjY¥W�aj\dqÁ_hW�SV|
Y�Nj_¤r?��qh]�\dq�o^]pP�]pU�f]pU�f�ab�T]po^]kUml�U�N�f�\�ajopW,UXN�o^ajYX�QW,_hW�Um�ONQYX�VfZ�
Ú´ShY�f¢lVf¢UXWZPÛ\�YXW�a=U�WZf�_TW�Um� NjY��?f³]p_©a9P�W�U�qhNVe¼fX]pP�]^o^ajY�U�N
UXq	a=U�Nj��\�W�o^o^Sho^ajY�WZ_T\�NVeV]^_h�ÖÅ Ü2YXS	abS¤rL��}j}byBÊ~r¯��]pUXq�NQR	WZY�ab|
UXNQY�fHaQ\3U�]p_h�DNQ_�o^]^_h�Vf�]p_Tf¢UXW�aje�Nb��Nj_¡UXqTW¦_hNVeVWZfZr�ajf�]^_
Å £¤Sh�QW�Ç¨[?R�WZ\3U�NjY�r¤�Z}Q}jÝ�Ê~�
g,fX]^_h�6UXqh]�f«fXlVfmU�W�PÞ� WDW�iQNjo^ijWD�	NjUXq¨UXqTW§_hW�STY�ajo8\�Nj_h|
UXY�Njo^o^W�Ydf�ab_TesP�NjY�RhqhNQopNQ�j]^WZf Nb��\�Y�WZabUXShY�WZfO�ªNjY,opNV\�NQP�NbUX]^Nj_)�
n qhWZYXW�ajfKU�qhWF�jWZ_hW�Yda=U�]piQW#W�_T\�N?eh]p_h��Nj�¤Å [?]^P¥f�r)�Z}j}jyBÊQabo^o^N=�¯f
�ªNjY/Y�W�R�W�U�]kU�]pNQ_Nb� fXW��QP�W�_{U�fZr¤]pU³eV]^e'_hNjU�RhY�N?ehST\�W�qh]^W�YdabYX|
\dqh]^WZfLNj�VYXWZ�jSho�abY�]kUmlQ�(Ú´ShY¤�QW�_hWZY�abUX]^ijW*W�_T\�N?eh]p_h�´f¢lVf¢UXW�P¡]^f)a
P�NjY�WßR�N=�OWZY¢�ªSTo{o�ab_T�jSTaj�jWß��]pUXq�opN?NQRTf�rbfXSh�V|~RhY�NV\�WZehShYXW�|Ìo^]^�jW
W�o^W�P�WZ_QUdf�r/R	abYdabP�W�U�W�Ydfsaj_Te�\�Nj_	eV]kU�]pNQ_Tabo�fHab_	e�aQ\dqh]^W�ijW�f
ab_àNQY�ehW�Y§Nj�P¥aj�j_h]pUXSTehW¿P�NjY�WwRTabYXU�fDU�qTab_0U�qhW¬RTYXW�|
i?]pNQSTfá�ONQYX�âNj�áÅ Æ�NjP�NQfX]^_Tf¢�?]LÇ¬È¯NbU�ajYXSh|ÌÉFajYX�{ahrVxbvjvQv�ÊÌr
Å £¤]^RTf¢NQ_sÇÓË#Njo^o^aQ\d�KrVxjvjvQv�Ê(ab_Te'Å [?]pP¥fZr¤�Z}Q}byBÊ~�
Í°_§U�qhW®�ªNjo^opN=��]^_h�¼fXWZ\�UX]^Nj_Tf��OW��TYdfmUsNjSVU�op]^_hW®UXqhWeVWZfX]^�j_
fXRTaj\�W�aj_Te'eVWZf�\�Y�]p��W�UXqhW8\�NjP�R�Nj_hWZ_QUdf�Nb� NjShY/�QW�_hWZY�abUX]^ijW

868 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

eVW�f¢]^�j_�f¢lVf¢UXWZPsrhUXqhWZ_s� W�RhY�WZfXW�_{U�NjShY�Y�WZfXShopU�f�ab_	e8�T_	abo^opl
\�o^NQfXW���]kU�qHa�eh]^f�\�STf�fX]pNQ_saj_Te�\�Nj_T\�opS	f¢]^Nj_sNb�#NjShYÎ� NjY��K�

ã äså�æ®ä�¹©¶{ç±äH·¡¸ ��è çÔä�¸'é¿º«»

Í°_�UXqTWZfXW/W�²VR	WZYX]^P�W�_{U�f,�OW/WZijNQopiQW�a��QW�_hWZY�abUX]^ijW��jWZ_hNbUml?R�W
UXq	a=U�fXR	W�\�]p�TWZf³qhN=�ÓUXN�\�Nj_Tf¢UXY�ST\3U���NbU�qUXqhW�P�NQYXRTqhNjo^Nj�Ql
ab_	e�\�Nj_{U�YXNQopo^W�Y¥Nj�/a«opNV\�NQP�NbUX]^_h�«\�YXW�a=UXSTYXWQ��uê£)]p_	eVW�_V|
P¥aBljWZY�f¢lVf¢UXWZP Ï £L|°f¢lVf¢UXWZP¥Ñ9]^f�STfXWZe¿aQf9U�qhW¼�QW�_hWZY�abUX]^ijW
fXR	W�\�]p�	\�abUX]^Nj_ÁfXlVfmU�W�P±�ªNQY��	NjUXq©�	NVeVl¼aj_TeÁ�hY�aj]p_©ab_Te¼]^f
NjRhUX]^P�]^Õ�W�e��?l2aj_2WZijNQopSVU�]pNQ_TabY�l,ajop�QNjY�]kU�qhP Ï�Ð u´Ñ��Z×ÎqhWOf¢lVf¢|
UXWZPë\�Nj_	f¢]�fmUdf�Nb�KU�qhW¯_hW�Um�ONQYX��ab_Te�P�NjY�RhqhNQopNQ�jl³\�Nj_Tf¢UXY�ST\�|
UXNQYZr#U�qhW�£L|°f¢lVf¢UXW�PÒRTajY�fXW�Y�r*UXqhWsW�iQNjo^SVUX]^Nj_TajYXl'abo^�jNQYX]pUXqhP
ab_	e8U�qhW/Rhq?lVf¢]�\�f�aj_Tes_hW�Um� NjY��8f¢]^P³STo^abUXNjY��

ì E�í î¨ï¥ð��/G�ï8ñ ï�:�ò±ó�ï¥ô�C)õ�ð�öHó³õ�ï¥ð

×ÎqhWP�NjY�RhqhNQopNQ�jl�\�NQ_TfmU�YXS	\3UXNQYsaj_TeÖfX]^P³Sho�a=U�NjY�]^fHa©Äj`
W�²?U�W�_TfX]pNQ_.Nj��U�qhW¿xb`÷� NjY��ë]p_ÛÅ À,NjY�_?�{l�W�U¯aboÌ�pr�xbvjvT�dÊÌ�
×ÎqhW®P�NQYXRTqhNjo^Nj�QlÁ\�NQ_Tf¢UXY�ST\3U�NjY��TSh]po�ehfsa«P�NVeVW�o´�ªY�NjPøa
f¢UXY�]p_h�¬Nb�9�hSh]^o�e�\�NQP�P¥aj_Tehf¦U�N¬a¬£#Ú�Ü�Ú,|~f¢Uml?opWDU�ShYXUXo^W
Å u¯��W�o�f¢NQ_�ÇÓeVW�[VWZf�fXaTrL�Z}jù{xZÊLSTf¢]^_h��a³\�NQP�P�aj_Te8o�ab_T�jSTaj�jW
fX]pP�]^o^ajY¦UXNwU�qTa=UÁNb�9£L|°f¢lVf¢UXWZPúo�ab_h�QSTab�QWZf'�ªNQY¼\�Y�WZabUX]^_h�
Rho�ab_{U�f�Å ËßYXSTfX]^_h�?]pWZ��]^\�Õ�ÇÓ£¤]^_TeVWZ_hP¥aBljW�Y�rK�Z}Q}jv�Ê~��u´f¥UXqTW
UXSTY¢U�opW8P�N=iQWZfZr)�TajY�f�ajYXW8\�YXW�a=U�WZeab_Te'U�qhWZfXW8��WZ\�NjP�W¥UXqTW
P�NjY�RhqhNQopNQ�jl�Nb� UXqhW8\�YXW�a=U�ShYXWQ��×ÎqTW�\�NjP�P¥ab_TeTf�]p_Tf¢UXY�ST\�U
UXqTW¯UXSTY¢U�opW,UXN�P�N=ijW¯�ªNjY�� ajY�e�NjYO�Taj\d�?�ÎabYde�aj_Te�UXN�\dqTab_h�QW
NjY�]^W�_{U�abUX]^Nj_¤rLab_	e9U�qhW�Y�W�ajYXW�\�NQP�P�aj_Tehf´�ªNjY/\�YXW�a=UX]^_h��aj\�|
UXS	a=UXW�e�ÂmNj]^_QUdf��

Ï aQÑ Ï ��Ñ

Ï \�Ñ Ï e	Ñ

û]p�QShY�W��Qü c Sh]po�eV]^_h�¥u¯_TeH[?]^P³STo^abUX]^_h�8uwÄj`¬MOY�WZabUXShY�W

×ÎqhW-\�NjP�P¥ab_TeTf±�ªNjY5UXqh]�fÔo�ab_T�jSTaj�jWýabY�Wjü þ�Åpÿ.þ Ê~ÿpr
f¢UXNjY�W��=YXW�UXY�]pWZijW,UXqhW�\�ShYXY�W�_{U¯f¢U�a=U�W Ï \�NQ_TfX]^f¢UX]^_h��Nb�*UXqhW�\�ShYX|
Y�W�_{U2o^NV\�abUX]^Nj_®aj_Te®NjY�]pWZ_QUda=U�]pNQ_	Ñ�U�Nsaj_Te��ªYXNQPêasf¢U�aQ\d�����
���
	����� Ï�� Ñ3r,Y�W�R�WZabU8UXqTW®WZ_T\�o^NQfXWZeD�ho^NV\d�DNb���hSh]^o�eÖ\�NQP�|
P¥ab_TeTf � U�]pP�WZf����������������=r*P�N=ijWZf2U�qhW�UXSTY¢U�opW��ªNQYX�ÎabYde9]^_
UXqTW�\�ShY�YXWZ_QU�eV]^YXW�\3UX]^Nj_)r)\�Y�WZabUX]^_h��a��TabY�]p�O_hNQ_hW�W�²V]^f¢U�f2NQY
UXYdaBijWZY�fX]^_h�'UXN¦U�qhW�WZ_Te�Nb��U�qhW�W�²?]�f¢UX]^_h�«�TajY�� �!�#"!$������!�=r
�jN?W�fF�TaQ\d��ShR8UXqhW´RTabY�W�_{UONj�KUXqhW�\�ShY�Y�W�_{Uß�TajY��%��&�'���(*),+-&�.0/=r
�ªNjY��ÎabYdeLr	WZ_TeH��]pUXq'a�ÂmNQ]p_{U´��]pUXq®Y�aj_h�jW�v#1�UXNs}jv#1�ab��NjShU
UXqTWß\�ShY�Y�W�_{U32	|°a=²V]^f��4��&�'���(5),+-&�.76jr��ªNjY��ÎabYdeLr�WZ_Te���]kU�q�a*ÂmNj]^_{U
��]pUXq�Ydab_h�QW98�y{z#1*UXN´y{z#1Fab��NjShU)UXqTWO\�STYXY�W�_{U�2	|°a=²V]�f��:+;�=<?>�+
.
@#A r¯�ªNQYX�ÎabYdeLr�W�_	e���]kU�q¡a9ÂmNj]^_QUs��]kU�qÖYdab_h�QW�v#19UXN©}jv41
ab��NjShUFUXqhW´\�ShY�YXWZ_{U�B,|~ab²V]^f��C+;�=<?>�+
.0/ED A rj�ªNQYX�ÎabYdeLrbWZ_Te���]kU�q
a�ÂmNj]^_{U���]kU�q'Ydab_T�jWF8¯}jv#1³U�N�}Qv#1�aj�	NQSVU/UXqhW¥\�ShYXY�W�_{UGB¯|
a=²V]�f��H)JI ÏK� Ñ�rjY�NbUda=UXW qhW�ajeV]^_h� �ML }Qv#1Oab��NjSVU#U�qhW UXShYXUXo^Wjÿ f�2
a=²V]�f����E���=N Ï�� Ñ3r?YXNjU�abUXW¯qhW�ajeV]^_h� �OL 8¯}Qv 1 aj�	NQSVUFU�qhW¯U�ShY¢|
UXo^Wjÿ fG2'a=²V]^f��3(P&��Q+ ÏK� Ñ�rKYXNjU�a=U�W�qhW�ajeV]^_h� �RL }jv41�ab��NjShU,UXqTW
UXSTY¢U�opWQÿ fTS©ab²?]�f��,��<5UJV,+ Ï�� Ñ3rbY�NbUda=UXWßqhWZaQeV]p_T� �WL 8¯}jv41�ab��NjShU
UXqTWFUXSTY¢U�opWQÿ fTSDab²V]^f��H"�(X��"Q$��=<?>�& ÏK� Ñ�rbYXNjU�abUXWFqhW�ajeV]^_h� �WL }jv41
ab��NjShU¤UXqhWßUXShYXUXo^Wjÿ fYBÁa=²V]�f��=aj_TeZ"Q��),NC+-&���.0"�(X��"Q$��=<?>�& ÏK� Ñ�r=YXNj|
U�abUXW/qhW�ajeV]^_h� �[L 8¯}Qv#12ab��NjSVU�U�qhW�UXSTY¢U�opWQÿ f\B¿ab²V]^fZ�
n qhWZ_¥W�ijNQopi?]^_h�/NQf�\�]^o^o^abUX]^_h�/P�NbUXNQY�fZrjaj_Te�_hNbUO_hW�ShYdabo	\�Nj_h|
UXY�Njo^o^W�Ydf�r�U�qhW¼N{fX\�]po^o^abUX]^Nj_��ªSh_T\�UX]^Nj_¿Nj�8aÂmNj]^_{U�]^f®f¢R�WZ\�]k|
�TW�e©aQf�]p_wÅ À¯NQYX_?�?l8W�U,ajo��^rTxbvQvh�dÊ,�?l©ajeheV]^_h�¦aRTajY�ajP�W�|
UXWZY�U�N��!&�'���(*),+7&�.0/=rM�!&�'���(*),+7&�.76jrM+;�=<?>�+
. @4A r�ab_Te]+
�=<?>�+;.0/�D A
UXN©f¢R�WZ\�]k�ªlÁUXqTW®Yda=U�WHNb��NQf�\�]^o^o^abUX]^Nj_§ab_	eD�{l�aQeheV]^_h�¦UXqTW
�ªNjo^o^N=��]p_h�¬Um�ON¨\�NQP�P¥aj_TehfÁUXN¨\�Nj_{U�YXNQo�U�qhW6RhqTajfXWÖNE^*ü
<_N%"���&Q��>�&�.0�a`b>�&�+ Ï�� Ñ3rb]^_T\�YXW�ajfXW�RhqTajfXWßNE^KfXW�U*�?l �cL xjz4d�aj_Te
�E&Q"���&Q��>�&�.0�a`b>�&�+ Ï�� Ñ3r	ehWZ\�Y�WZaQf¢W2RhqTaQf¢W�NE^KfXW�U¯�?l �[L xQz#d��
u¯_W�²VajP�RhopW�Nb�Îa�\�Y�WZa=U�ShY�W�\�Nj_Tf¢UXY�ST\3U�WZe�STf¢]^_h�sUXqT]^f/o�ab_h|
�jS	ab�jW�]�fßfXqhN=��_¥]^_¥�T�QShYXW/�Q��×ÎqhW,fX]p_h�QopW,�TabYO]p_��T�QShY�W��j� a
]�fÎ�hSh]^okU��ªY�NjPëU�qhW/fmU�YX]^_h�	rHef(P&��Q+!ga/Qh9�������������,ga/�hjidrTab_Te�UXqTW
Um� N��TajY/fmU�YXST\�UXShY�W�]p_®�T�QShYXWs�j� �']^f��hST]popU��ªYXNQPsr3ej(X&��Q+!ga/Qh
�������������,ga/�hkikeM��<5UJV,+�ga/�h �������������lg7/�hmid�©×ÎqhWs�T_	abo¯\�Y�WZab|
UXSTYXW']^f�P¥ajeVW®�ªY�NjP UXqhW\�NQP�P�aj_Te§fXWZØ{ShWZ_T\�WQrnek(X&��Q+!ga/Qh
�������������,ga/�hGiceW��<5UJV,+�ga/�hc�������������lg7/�hoiM��&�'���(*),+7&�.0/lga/Qhn������.
�����!�,ga/Qh=rjaj_Te�]�f#f¢qhN=��_³]p_³�T�jShY�W,�Q� \j� û]^�jShY�W´�Q� e³eV]^fXRho�aBlVf
UXqTW�\�Y�WZabUXShY�W8��]pUXq¼UXqhWsaj\3U�STa=U�WZe�ÂmNQ]p_{U�P�N=iQWZeqTajok� |~�ÎaBl
UXqTYXNQSh�jqs]kUdf#ÂmNj]^_{U�Y�aj_h�jWQ�

ì E ì ôqp2õGráï8ðZs ó�ï8ô�C¤õ�ð�öHó�õ�ï¥ð

×ÎqhW¯P�W�UXqhNVe��ªNjY \�NQ_TfmU�YXS	\3UX]^_h��U�qhW¯_hWZShY�ajoT\�NQ_{UXY�Njo^opWZY�f*�ªNQY
UXqTW�ajY¢U�]k��\�]�aboK\�Y�WZa=U�ShY�WZfO]^f�fX]pP�]^o^ajYßU�N�UXqTabU Nj�*\�WZopo^Sho�abY W�_V|
\�NVeV]^_h�9Å Ü2YXS	abS¤rL��}j}byBÊ~rT��]pUXq�Um� N¥P¥ab]^_HeV]5^KW�Y�W�_	\�WZfZ�O×ÎqTW
�TYdfmU�eV]P^�WZYXWZ_T\�W��	W�Um�OWZW�_9U�qh]�f´� NjY���ab_Te�U�qTa=U�Nb�ß\�W�o^opSTo^ajY
W�_	\�NVeV]^_h�9]�f/UXq	a=U�f¢UXY�]p_T�Qf/Nj�Î�TSh]po�e«\�NjP�P¥ab_Tehf³abY�W¥STf¢W�e
]^_TfmU�WZaQe�Nb�LUXY�W�W�fFNj�¤�hSh]^o^e8\�NjP�P¥ab_TeTf�r?abopUXqhNQSh�jq�U�qhW\I�):>�V
ab_	e[Il�QIDNQR	WZY�abUXNQY�f Ï eVWZf�\�Y�]^�	W�e¦o^abUXWZYdÑ/aQehe«aH�TY�aj_T\dqh]^_h�
ab�T]po^]kUml2U�N¯UXqTW f¢UXY�]p_T�QfZ�)×ÎqhW NbUXqTW�Y(eh]5^KW�Y�W�_T\�WO]�f)UXqTabU*�hST]po�e
\�NQP�P�aj_Tehf´NjR�W�Yda=U�W³Nj_�UXqhW�o^]p_h�Vf�\�NQ_h_hW�\3UX]^_h��UXqhW�_hNVeVWZf
ajfÎ��]pUXqHW�eV�jW�WZ_T\�NVeV]^_h�HÅ £)Sh�jW�Ç¨[?R�WZ\3U�NjY�rL�Z}Q}jÝ�Ê)]^_Tf¢UXWZaQe
Nb��NQ_¦UXqhW�_hNVeVWZf³Nb�ÎUXqTW�_hW�Um�ONQYX�K�9u,ehiBaj_{U�ab�QWZf/Nj�¯WZeV�QW

869ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

W�_	\�NVeV]^_h�9abY�W�UXqTabU�a=U�P�NQf¢U�Nj_TW¥op]^_h�']^f�\�YXW�a=U�WZe'��]kU�q¦a
�hSh]^o�e§\�NQP�P¥aj_Te�f¢N¦W�aj\dqD�hSh]^o�e§\�NQP�P¥aj_Te�\�aj_§f¢R�WZ\�]k�ªl
UXqTW¥�OWZ]p�QqQU/U�NHa=U¢Udaj\dq'UXN�U�qTa=U�o^]^_h�®aj_TeLr)ST_hop]^�jW8\�W�o^opSTo^ajY
W�_	\�NVeV]^_h�Tr¤fXSh�V|°f¢W�Ø{ShW�_T\�WZf´Nb�ß�TSh]po�e'\�NjP�P¥ab_	ehf,��]^o^oF\�Nj_h|
f¢UXY�ST\3U´UXqhW�fXajP�W�f¢Sh�h|Ì_hW�Um�ONQYX��]p_	eVW�R�W�_TehW�_{U2Nj�F��qhW�Y�W�]^_
UXqTW/�hSh]^o^e?|ÌUXY�W�W2U�qhW�lsabY�W2o^NV\�abUXWZe¤�
MONjP�P¥ab_	ehf��ªNjYs\�NQ_TfmU�YXS	\3UX]^_h�U�qhW�_hW�Um�ONQYX�¼NjR�W�Yda=UXWHNQ_
o^]p_h�Vf2��W�Um� W�W�_�_hW�ShY�Nj_	f´aj_TeHSTfXW³U�qhW�P�N{fmU2YXW�\�WZ_QU�oplH\�YXW�|
a=U�WZe�op]^_h�8aQfßU�qhW/\�ShY�Y�W�_{U NQ_hWj��tf):>�V�aj_Te IH�!I�NQR	WZY�abUXNQY�fZr
þ Åkÿ#ab_Te©þ Ê~ÿprFajYXW8S	f¢W�eUXN�f¢UXNQYXW�ab_TeY�W�U�YX]^W�iQW¥UXqhWs\�ShY�Y�W�_{U
o^]p_h�nu/\�NQ_Tf¢]�f¢UX]^_h�¯Nb�TUXqhWO�ªYXNQP�|Ì_hWZShY�Nj_¤rZUXqhWOUXNj|Ì_TW�ShY�Nj_�aj_Te
]^_TeVW�²«Nj�¯UXqTW�o^]p_T�¦]p_{UXN®UXqTW�U�Nb|~_hW�ShY�Nj_ Ï �ªNjY���qhWZ_«UXqTW�Y�W
abY�W,P�ShopUX]^RhopW2o^]p_h�Vf ��W�Um� W�W�_�_hW�ShY�Nj_	f�Ñ=u�U�N�aj_Te��ªY�NjP�UXqTW
f¢U�aj\d�K�©×Îqh]^f�fmUdaj\d�¦Nb�2WZeV�QWZf�abo^o^N=�¯f�a®�ªNQYXP±Nj�´�hYdab_T\dqh|
]^_h�8U�N�NV\�\�ShY2]p_'ab_9WZ_T\�NVeV]^_h�kuHab_®WZeV�QW�\�aj_9��W�RhS	f¢qhW�e
Nj_{U�N®U�qhW9f¢U�aj\d�«�ªNjo^opN=� WZe¼�{l©af¢W�ØQSTW�_T\�WsNj��\�NjP�P¥ab_TeTf
ab_	e¥UXqTW�_Ha³R�NjR�\�NQP�P�aj_Te8P¥aj�jWZfßUXqTW2NQYX]^�j]^_Tajo�W�eV�jW´UXqTW
\�STYXY�W�_{U#WZeV�QWÎaj�Qaj]p_¤� û NQY(U�qhW �ªNjo^opN=��]^_h�2op]�f¢UFNb��\�NjP�P¥ab_TeTf
UXqTW2\�ShYXY�W�_{UÎop]^_h�8\�Nj_h_hW�\3UdfF�ªY�NjPë_hWZShY�Nj_Zv¡UXN�_hW�STYXNQ_Ow8�

x eVW�\�Y�WZaQf¢W�|Ì� W�]^�jq{U Ï�� ÑTu�[?Sh�hUXYdaj\3Udf � �ªY�NjP¨UXqTW,� W�]^�jq{U
Nj�¤UXqhW/\�ShYXY�W�_{UÎop]^_h�K�#Í~�)U�qhW/\�ShY�YXWZ_{UOo^]p_h�¥]�f�a�i{]^YXUXSTajo
o^]p_T��rT]kU,\�YXW�a=UXW�f]kU¯��]pUXq�� W�]^�jq{UG8 � �

x eVSTRhop]�\�abUXW ÏK� Ñ�u�MOY�WZa=U�WZfÎa�_hWZ�Öo^]p_h���ªYXNQP _hWZShY�Nj_yv
U�N¥_hW�ShY�Nj_Fw���]kU�q��OWZ]p�QqQU � �

x]^_T\�Y�WZaQf¢W�|Ì� W�]^�jq{U ÏK� Ñ\u®u,ehe � UXN�U�qhW8� W�]^�jq{U/Nb�ÎUXqTW
\�ShYXY�W�_{U2op]^_h�K��Í~�FU�qhW¥\�ShY�YXWZ_{U´o^]p_h��]^f�a8i?]^Y¢U�STabo#o^]p_T��r
]pU,\�Y�WZabUXWZfÎ]pU¯��]pUXq��OWZ]p�Qq{U � �

x o^N?NjR Ï�� Ñcu¼MOYXW�a=UXW�f³a®_hW��ëo^]^_h��ªYXNQPÛ_hW�ShY�Nj_zwêU�N
]pU�fXW�op�*��]pUXq�� W�]^�jq{U � �

x P�W�Y��jW ÏK� Ñou«tHW�Y��jW�f�_TW�ShY�Nj_{vá]p_{UXN_hWZShY�Nj_{w"�?l
\�NjR?l?]p_h��ajopo]p_TRhSVU�fONb�|v¡ajfF]^_hRhShU�f�U�N}w¿aj_Te�Y�W�Rho�aj\�|
]^_h��ajopo*NV\�\�ShYXY�W�_	\�WZf¯Nb�F_hWZShYXNQ_~v¬aQf´aj_9]^_hRhSVU���]kU�q
hWZShY�Nj w8��×ÎqhW¯\�STYXY�W�_{U�op]^_h�³UXqhWZ_¥�	W�\�NjP�W�f*UXqhW � U�q
]^_hRhSVU¯]^_{UXN¥_hWZShY�Nj_yw8�

x _hW�²?U ÏK� ÑTu�MOqTaj_h�jW�f*UXqhW �ªY�NjP�|~_hW�ShY�Nj_�]p_�U�qhW¯\�ShY�Y�W�_{U
o^]p_T�8UXN�]pU�f � U�qHf¢]^�ho^]p_h�	�

x NQSVUXRhShU ÏK� Ñqu¿MOY�WZabUXW�f�ab_¬NjSVU�RhSVU¢|~_hWZShYXNQ_¤r³��]pUXqÓa
o^]p_TWZabY�UXYdab_Tf¢�ªW�Y8�ªSh_T\3U�]pNQ_¤r��ªY�NjP UXqhW®\�ShY�YXWZ_{U8�ªYXNQP�|
hWZShY�Nj¥��]pUXq8� W�]^�jq{U � �#×ÎqhW2\�ShY�YXWZ_{U¢|~op]^_h��\�Nj_{U�]p_?ShW�f
U�N¥�	W��ªY�NjP�_TW�ShY�Nj_yv�UXN�_hWZShYXNQ_Fw��

x RTajYXWZ_{U ÏK� Ñ�u9MOqTab_h�QWZf U�qhW/�ªY�NjP�|Ì_TW�ShY�Nj_�]^_�UXqhW³\�ShYX|
Y�W�_{U�o^]p_h�®UXN9UXqhW � U�q¦]p_TRhSVU¢|~_hWZShYXNQ_¦Nb�ÎUXqTW�\�ShY�Y�W�_{U
�ªY�NjP�|~_hW�ShY�Nj_)�ÁÚ,� UXW�_ÁUXqTW�Y�W���]^opoÎ_hNjU¥�	WHab_©aj\�UXSTajo
o^]p_T����W�Um� W�WZ_�UXqhW¯_TW��©�ªYXNQP�|Ì_hWZShY�Nj_�ab_Te�U�Nb|~_hW�ShY�Nj_)r
]^_���qh]^\dq�\�aQf¢W/a�i?]pYXUXS	aboLo^]p_h��Nb�#�OWZ]p�Qq{U�v�]�fÎSTfXWZeL�

x Y�W�iQW�Ydf¢WnuH`,WZopW�UXWZf´U�qhW�\�ShYXY�W�_{U,o^]^_h�9ab_Te9YXWZRho^aQ\�W�f¯]pU
��]pUXqHa�o^]p_h���ªYXNQP�w¨UXNmv6��]pUXqsU�qhW�fXajP�W/�OWZ]p�QqQU¯aQf
U�qhW/NjY�]p�Q]p_	aboÌ�

a

0.25
�

a

b

0.25
�

0.8
�

ah� �¤�

a

b

3
�0.25

�
0.8
�

a

b

3
�0.25

�
0.8
�

\j� eL�

a

b c

3
�

2
�

0.25
�

0.8
�

0.8
�

a

b c

3
�

2
�

1

0.25
�

0.8
�

0.8
�

WQ� �m�

a

b c

3
�

2
�

d
�e

10.6
�

0.6
�

0.4
�

0.4
�

0.25
�

0.8
�

0.8
�

a

c

3
�

2
�

d
�

0.25
�

0.8
�

0.8
�

0.4
�

0.6
�

1
0.6
�

0.4
�

e

�T� q¤�

û]^�jShY�W�xVüßMONj_	fmU�YXST\�UX]^_h�¥u��¯W�Um�ONQYX�

x fXW�UX|��ªSh_	\3UX]^Nj_ ÏK� ÑTu�MOqTaj_h�jW�f)U�qhWÎUXYdab_	fm�ªWZY#�ªSh_T\3U�]pNQ_�Nb�
U�qhW�U�Nb|~_hW�ShY�Nj_s]^_HUXqhW�\�ShY�YXWZ_{U,op]^_h�KrCw�r	��]pUXq)ü vTrT�ªNQY
fX]p�QP�Nj]�e��L�jrVo^]p_TWZabYJ�hab_	e�xhr?�ªNjY�N{fX\�]po^o^abUXNQYZ�

870 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

x fXRho^]kU ÏK� Ñ%u�MOY�WZabUXW�fLa�_hW��'_hWZShYXNQ_¤r���r���]pUXq�a�f¢]^�jP�Nj]�e
U�Y�aj_Tfm�ªWZY)�ªST_T\3U�]pNQ_¤rjab_	e�P�N=ijW�f¤U�qhW \�ShY�YXWZ_QU*op]^_h���ªY�NjP
v UXNR�àab_	e«\�Y�WZabUXWZf�a9_TW���o^]p_T�«\�Nj_T_hWZ\�UX]^_h�9�ªY�NjP
_hWZShY�Nj_q�wU�N�_TW�ShY�Nj_yw���]kU�q��OWZ]p�QqQU � �

×ÎqhW9fXWZØ{ShWZ_T\�WHNj�2_hW�Um�ONQYX�Vf�]^_©�T�jShY�W9xabY�W�]p_{UXWZYXP�W�eV]k|
a=U�W¯_hW�Um�ONQYX�Vf�]^_8RTajY�fX]p_T�Tr,>;I%(5<_+�g AE� D�hk��)JI%(*<�"Q��+-&Eg7��h ��&�'�&��Q>�&
>;I%(*<_+!g AE� D�h]��)JI%(*<�"Q��+-&Eg-6�h���&�'�&��Q>�&�(P�J�!I3ga/�h�>;I%(5<_+�g AE�K� h���),.
I%(5<�"!��+-&Eg AE� � hF>;I�(*<_+�g A#�K� h���)JI%(5<�"!��+-&Eg AE� � hF��&�'�&��Q>�&WIH����&�NH+!ga/Qh
� &��
U4&Eg7/�h=���,W�Um� NjY��?fHf¢U�ajY¢U9��]pUXqwa�fX]p_T�jo^W¦_hW�ShY�Nj_)ro 	r
��]pUXq�ab_���>�"�<_(_(P��+7���'�ªSh_T\�UX]^Nj_¤r ��qh]�\dqDqTajf¥afX]p_h�QopW�o^]p_T��r
Nb��� W�]^�jq{U8vh� xjzVrO�ªW�W�eV]^_h�UXN¦]pU�fXW�op�mr �T�jShY�W9xV� ah�Ö×ÎqTW9f¢W�|
Ø{ShW�_	\�W�Nb�#]p_{U�W�Y�P�W�eV]�a=UXW�_hW�Um�ONQYX�VfÎa=� U�W�Y�üf>
I�(*<_+!g A#� D�h=r�]^f � �
��)JI�(*<�"Q��+7&�g7��hBr(]^f � �¡��&�'�&��Q>�&�r¤]�fG¢C�=>;I%(*<_+!g AE� D�h~��)JI%(*<�"Q��+7&Eg;6�h
��&�'�&��Q>�&�r/]�f�£4�y(P�J�!I3ga/�hBr³]^f~¤3�F>;I%(5<_+�g AE�K� h���)JI�(*<�"Q��+7&�g AE� � h
>;I%(*<_+!g AE�K� h¥��)JI%(5<�"!��+-&Eg AE� � h Ï ��qT]^\dqY�WZfXShokUdf�]p_'U�qhW8\�ShY�Y�W�_{U
o^]p_h����W�]^_h�³a�i?]pYXUXS	aboTo^]^_h���ªY�NjP¨_hW�STYXNQ_Tf � UXNM£=Ñ�rQ]�f�¦��{aj_Te
a=� U�W�Y � &��;U#&Ega/Qh=rhU�qhW��T_TajoL_hW�Um� NjY��¥]^f,f¢qhN=��_s]^_y§)�
�¯WZShY�Nj_TfÁ]p_�UXqhW�_hW�Um� NjY���abY�W§]p_T]kU�]^ajop]^Õ�W�eëUXN¨ab_�NQSVU¢|
RhSVU�i=ajopShW¥Nj� vT� v�ab_	e®ajYXW�ShRKeha=U�WZefXWZØ{ShW�_{U�]^ajopo^lH�?l®abRh|
Rho^l?]p_h�¿a¡U�Y�aj_Tfm�ªWZY¦�ªSh_T\�UX]^Nj_¨UXN6U�qhW§� W�]^�jq{UXW�eÓfXShPúNb�
UXqTW�]^Y¥]p_hRTSVU�f���]pUXqÁUXqhWZ]pY¥NQSVUXRTSVU�f¥\�op]^RhR�WZeÁUXN®UXqhW�Ydab_h�QW
¨ �j� ×ÎqhW¿eV]P^�WZYXWZ_QU�U�Y�aj_Tf¢�ªW�YD�ªSh_T\�UX]^Nj_TfÖabY�WjüÔaëfX]p�j|
P�Nj]�eLr�S	f¢]^_h��©a � § Ï;ª�«C¬ 	 ¤� �,®H« © ª Ñ��9o^]p_hW�abYJ��ab_	e¨aj_
NQf�\�]^o^o^abUXNjY�� ×ÎqhW§NQf�\�]^o^o^abUXNjY¦P¥aj]p_{U�aj]p_	f¼awf¢U�a=U�W§i=abo^ShWjr
��qh]�\dq§]pUs]^_T\�Y�WZaQf¢W�f8�?l�vh� vh�HW�aj\dq§ShRKehabUXWj�¨Í~U�fsNQSVUXRhShU
]�f®]pU�ff¢U�abUXW©iBajopSTWÁRho^STf'U�qhWÁ� W�]^�jq{U�WZe¿fXShP Nj��]kUdf']p_V|
RhSVUdf¦P¥abRhR�WZe¨U�N¿a�UXY�]^aj_h�jo^W�|~�ÎaBijW«�ªST_T\3U�]pNQ_¨��]pUXqëR�W�|
Y�]pNVe¨y¿ab_Te�a6P�]^_h]pP�ShPÞNj��|���ab_	eÓP¥ab²?]^P³STPÞNb��j�
g,fXW'Nb��aj_ÖN{fX\�]po^o^abUXNQY�]^_T\�Y�WZaQf¢W�f8U�qhW'�h]^aQf�UXN=�ÎabYdehf�_TW�U¢|
� NjY��?f���qhN{f¢W¨NjShUXRhSVUdf¿\�lV\�opW�N=ijWZY�UXqhW�fX]p�QP�Nj]�e?|ÌNQ_ho^l
hW�Um�ONQYX�Vf�STfXWZe]^§Å Æ�NQP�NQfX]p_TfX�?]LÇ¬È�NjU�abY�SV|~ÉFabY��QaTr?xjvjvjv?r
£¤]^RTfXNj_�Ç¬Ë#NQopo�aj\d�KrhxbvQvjv�Ê´�TSVU�]�f�aP�NjY�W�fX]pP�Rho^W9P�NVeVW�o
UXq	ab_�UXq	a=UONj�FÅ [?]^P¥f�r)�Z}j}jyBÊ	��qh]�\dq8qTaQe¥a/i=abY�]pW�Uml³Nj��U�Y�aj_Tf¢|
�ªW�YÎ�ªST_T\3U�]pNQ_Tf¯ab_	e�N{fX\�]po^o�a=UX]^_h��_hW�STYXNQ_Tf��

ì EX¯ ó�ï8î¿�}°�ôq°�ô�:Û�¥ïk±�ò³²�ôq±±��ðZ²O°�ô
×(N�f¢]^P³ShopU�aj_hW�NQSTfXopl³\�YXW�a=U�WÎa/\�YXW�a=U�ShYXWQÿ f*_hWZShYdaboT\�Nj_{UXY�Njo^opWZY
ab_	e�P�NQYXRhqTNjo^Nj�jlQr�UXqhW¯o�ab_T�jSTaj�jWZf(�ªNQYF\�Nj_	fmU�YXST\�UX]^_h�/a2_hW�SV|
Ydabo�_hW�Um� NjY��wab_Te¿�ªNjY¦\�NQ_Tf¢UXY�ST\3U�]p_h�6a¡�	NVeVl¬ajYXWD\�NQP�|
�h]^_hWZe¤� n qhWZ_�RhY�N?\�WZf�f¢]^_h� UXqTWß\�NQP�P¥aj_Te/fmU�YX]^_h�	r�aÎ_hWZShYdabop|
\�NQ_Tf¢UXY�ST\3U�]pNQ_9\�NjP�P¥ab_	eHa�^KWZ\3Udf�U�qhW�\�Nj_Tf¢UXY�ST\3U�]pNQ_�Nb��UXqTW
hWZShY�ajo�\�Nj{UXY�Njo^o^W�Yßaj_Te8a�P�NQYXRhqTNjo^Nj�jl{|°\�NQ_TfmU�YXS	\3UX]^Nj_�\�NQP�|
P¥ab_Te�a�^�W�\3U�f U�qhW�\�NQ_Tf¢UXY�ST\3U�]pNQ_�Nj�)UXqTW/�	NVeVlQrh��]kU�q9a��ªW��
P�NVeV]k��\�a=U�]pNQ_TfZ�ntf):>�V9aj_TeFIH�!I¦NjR�W�Yda=U�NjYdf�rLþ Åpÿ�aj_Teþ ÊÌÿKabY�W
STfXWZe�U�NÖfmU�NjY�W¦ab_Te6Y�W�U�YX]^W�iQWUXqhW¼\�ShY�YXWZ_QU�\�Nj_Tf¢UXY�ST\�UX]^Nj_
f¢U�a=U�Wjr¤��qT]^\dq'_hN=�¬\�Nj_TfX]^f¢U�f2Nj�ßUXqTW8\�ShY�YXWZ_{U2o^]p_T��ab_Te�UXqTW
\�STYXY�W�_{U�opNV\Za=UX]^Nj_�ab_	e�NQYX]^W�_{Uda=UX]^Nj_sNj_�UXqTW/�	NVeVlQ�O×(N��Q]piQW
UXqTW9_hW�STY�ajo,\�NQ_QU�YXNQopo^W�Y¥\�Nj_{UXY�Njo¯Nj�´U�qhW9��NVeVljr�W�aj\dq©UX]^P�W
asÂmNj]^_{U�\�NQP�P�aj_Te Ï ��&�'���(*),+7&�.0/�´µ�!&�'���(*),+7&�.76�´ +
�=<?>�+;. @#A ���
+;�=<?>Q+;.0/�D A Ñß]�fßW�²?W�\�SVU�WZeLr{U�qhW,_hWZShYdabop|~\�NjP�P¥ab_Te���),+*I�),+�ga/Qh
]�f�ajo^fXN�\�ajopo^WZe¤�'×Îqh]�f�NjSVU�RhSVU�_hW�ShY�Nj_«UXqhWZ_Á\�NQ_{UXY�Njo�f/UXqTW
ÂmNj]^_{U,ab_h�QopW�Nj�)UXqTW�aj\3U�STa=U�WZe³ÂmNj]^_{UZ�

Ú´_T\�W�a9f¢UXY�]p_h��Nb���hSh]^o^e¼\�NjP�P¥ab_	ehf�qTaQf���W�WZ_«W�²VWZ\�SVUXW�e
ab_	e«U�qhW�YXW�f¢ShopUX]^_h�\�Y�WZabUXShY�W�]�f¥\�NQ_Tf¢UXY�ST\3U�WZeLrO]kUdf��	WZqTaBi{|
]^NjY]^f W�i=ajopSTabUXW�e¥]p_sa³Ø{STaQf¢]p|~f¢U�abUX]�\¯�?]^_hW�P¥a=U�]^\ZfOfX]^P³Sho�a=U�NjY�r
fX]pP�]^o^ajY(U�N2UXqTabU#S	f¢W�e³�?l�Å £¤]^RTfXNj_�ÇÓË#NQopo�aj\d�KrVxbvjvQv�ÊÌ� û]pYdf¢U
UXqTWO_hWZShYdaboj_TW�Um� NjY��´]�f)STR�ehabUXW�e/UXN�eVW�UXW�Y�P�]p_TWFUXqTW eVW�f¢]^Y�WZe
ab_T�jo^WZf#Nb�KWZaQ\dq¥aj\3U�STa=U�WZe´ÂmNj]^_{UZ�#×ÎqhW�_�U�qhW��?]p_TW�P¥a=U�]^\ZfFabY�W
fX]pP�Sho^abUXW�e�{l\�NQP�RhSVUX]^_h��fXST\Z\�WZf�fX]piQW��ªY�ajP�W�f�Nj�ÎP�N=i?]^_h�
ÂmNj]^_{U�f¥]^_�f¢P¥ajopo,aj_h�jSTo^ajY�]^_T\�YXWZP�WZ_{U�f¥Nj��abU�P�N{fmU�vH¶ vQÝ 1 �
u�� U�W�Y¯W�aj\dqsShRKeha=U�W�UXqhW³f¢UXY�ST\�UXShY�W�]^f U�qhW�_9fXW�UXUXo^WZes�?l�eVW�|
UXWZYXP�]^_h]^_h�/��qhW�U�qhW�YßNjY�_hNjU�UXqhW,\�YXW�a=U�ShYXWQÿ f#\�W�_{UXWZYFNb�KP¥ajf�f
��abo^o�fFNjShU�fX]^eVW´]kUdf��ªN?NbU�RhY�]p_{U aj_Te�UXqTW�_8Y�W�R�WZabUXWZehopl�YXNjU�abUX]^_h�
UXqTW9W�_{UX]^Y�W�fmU�YXS	\3UXSTYXW9aj�	NQSVU8UXqTW9WZeV�QWHNb��UXqTWH�ªN?NbUXRTYX]^_{U
hW�abY�WZf¢U U�qhW�\�WZ{UXW�Y�Nj�(P¥ajf�fÎSh_{UX]^o¤]pU¯]^f,fmUdab�ho^Wj�

ì EP· �¸²�ðO²�î]p2õ�ðZ°�ó0ñ=¹�CLòHC¤õop2îÓC
×ÎqhW«f¢UXY�]p_T�QfsNb���hSh]^o^e6\�NjP�P¥ab_Tehf�ajYXW�jWZ_hW�Yda=U�WZeÖ�{l¡a
\�NQ_{UXW�²?UX|��ªY�W�WQr8RTabYdabP�W�UXY�]^\�£)]p_TehW�_hP¥aBljWZY¢|°fXl?f¢UXWZP Ï ËOvj£¤|
fXl?f¢UXWZP8Ñ3��£¤|~fXlVfmU�W�P¥f/abY�W¥a��QY�ajP�P�abUX]�\�ajo*Y�W���Y�]pUX]^_h�Hf¢lVf¢|
UXWZPÔ]^_QU�YXNVeVS	\�WZe«UXNP�NVeVW�oÎU�qhW��h]pNQopNQ�j]�\�ajo eVWZijWZopNQRhP�W�_{U
Nb�¤P�ShopUX]�\�W�o^o^Sho^ajYONQYX�{ab_h]�fXP�f,Å £)]p_TehW�_hP¥aBljWZYZrL��}jÝQù�ÊÌ��È�Sho^WZf
abY�W�ajRhRho^]pW�e¦]p_ÁRTabYdabo^o^W�oFU�N®ajopoÎ\dqTabYdaj\�UXWZY�f/]^_¦U�qhWsf¢UXY�]^_h�
ÂmSTf¢U�ajf2\�W�o^oFeV]^i?]^fX]pNQ_Tf´qTabRhR�W�_']^_�RTajY�ajopo^W�o*]p_'P³STokU�]^\�W�o^opSV|
o�abY�NjY��Qaj_h]�f¢P¥fZ� û NjY�W�²hajP�RTopWQr?UXqhW�£¤|~fXlVfmU�W�P�r

 �ü�º» �
� ü¼º �

]p�´fmUdabYXUXW�e¦��]kU�q«U�qhWsfXl?P³��Njo\ �r�RhY�N?ehST\�W�f�U�qhW��ªNQopo^N=��]^_h�
f¢UXY�]p_h�{f�r

 �
 ���

 ��� � : �
uwRTajY�ajP�W�UXY�]�\2£¤|~fXlVfmU�W�PÒÅ £)]p_TehW�_hP¥aBljWZYZrK��}4½ByBÊ*]^f,a¥\�o�ajf�f
Nb�2£L|°f¢lVf¢UXW�P¥f�]^_Á��qh]�\dq¼RTYXNVeVST\�UX]^Nj_ÁYXSho^WZf�qTaBiQW�RTajY�ajP�|
W�U�W�Ydf�ab_TeÁabo^�jW��TY�aj]^\¥W�²VRhYXW�fXfX]^Nj_Tf�\�aj_¼��W�ajRhRho^]pW�e«��qhWZ_
RTajY�ajP�W�UXWZY�iBajopSTWZfÎU�N8f¢ST\Z\�W�fXfXNjYdf��FË�ajY�ajP�W�UXWZYÎiBajopSTWZf�\�aj_
abo�fXN8�	W�STfXWZe�]p_�ehW�UXWZYXP�]^_h]^_h����qT]^\dq9RTYXNVeVST\�UX]^Nj_9Y�Sho^W�U�N
abRTRhoplQ� û NQY�W�²habP�Rho^Wjr?U�qhW�ËßvQ£L|°f¢lVf¢UXW�P�r

 Ï�� ÑÎü ÏK�[¾ ��Ñ¿ºÀ ÏK� 8©��Ñ � Ï�� Ñ
 Ï�� ÑÎü ÏK�[Á ��Ñ¿ºÀ Ï v{Ñ
� ÏK� ÑÎü ÏK�[¾ xjÑ¿º � Ï��YÂ xQÑ� ÏK� 8©��Ñ
� ÏK� ÑÎü ÏK�[Á xjÑ¿º � Ï vQÑ

n qhWZ_�fmUdabYXUXW�e���]pUXqO Ï y{Ñ�rjU�qhW,ËßvQ£L|°f¢lVf¢UXWZP¿RhY�N?ehST\�W�f�UXqTW
�ªNjo^o^N=��]p_h�¥fXWZØ{ShWZ_T\�W�Nb�#fmU�YX]^_h�{f�r

 Ï y?Ñ
 Ï ÄQÑ � Ï y?Ñ

 Ï xjÑ � Ï Ä{Ñ � Ï xjÑa Ï ÄQÑ
 Ï ��Ñ � Ï xQÑ � Ï �E¶ zjÑ0 Ï xjÑ � Ï v{Ña Ï xQÑ � Ï ÄQÑ

 Ï vQÑ � Ï v{Ñ � Ï vQÑa Ï ��Ñ � Ï xjÑ � Ï v{Ña Ï �BÑ � Ï xjÑ � Ï �#¶ zQÑa Ï xQÑ
 Ï vQÑ � Ï v{Ñ � Ï vQÑ0 Ï vQÑ � Ï v{Ñ � Ï vQÑa Ï vQÑ � Ï vQÑ � Ï v{Ña Ï �BÑ � Ï xjÑ
 Ï vQÑ � Ï v{Ñ � Ï vQÑ0 Ï vQÑ � Ï v{Ñ � Ï vQÑa Ï vQÑ � Ï vQÑ � Ï v{Ña Ï v{Ñ � Ï vQÑ

871ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

u,ehiBaj_{U�ab�QWZfDNj�¦a�R	abYdabP�W�U�YX]�\¡£¤|~fXlVfmU�W�P abY�W6aëËOvj£¤|
fXl?f¢UXWZPÔ\�aj_¼RhY�NVeVST\�W�a���abP�]po^l«Nj�´fmU�YXS	\3UXSTYXW�f�rF��]pUXqÁUXqTW
fXR	W�\�]p�	\§f¢UXY�ST\3U�ShYXW§\�YXW�a=U�WZe¨�	WZ]p_T�¬eVW�U�W�Y�P�]p_hW�e¨�{lÓUXqTW
f¢U�abYXUX]^_h��RTabYdabP�W�UXW�YdfZ�&[?]^P�]po�abY�oplQr¥RTabYdabP�W�UXW�Ydf'\�ab_¨��W
STfXWZewfXN©UXqTabU�YXWZR	W�a=U�]p_h��R	a=U¢U�W�Y�_TfHNj�¥\�Nj_h_TWZ\3U�]pNQ_TfH��]^opo
qTaBiQW�eh]5^KW�Y�W�_{U³� W�]^�jq{U�fZ��u,_¦W�²habP�Rho^W¥Nb�¯aHËßvQ£L|°f¢lVf¢UXWZP
�ªNjY¯a�_hW�Um�ONQYX�¥]�fZr

Ã v ÏK� v{Ñßü
� v ¾ �#¶ voº Ã � ÏK� vQÑ Ã v ÏK� vc8©��Ñ
� v ¾ vH¶ voº �
	�	 ®(Ï �BÑ Ã � Ï ��Ñ ® 4Ä�£ � © Ï ��Ñ ¬ £JÄJ¦:£ Ï �BÑ

Ã � ÏK� v{Ñßü
� v ¾ �#¶ voº ª�® � -© Ï vl¶ ùQÑ¸¢ «#® � � 4©a£ ÏK� vQÑ�Ä�£JÅ4£JÄ ª £
� v ¾ vH¶ voº � ª0® � -© Ï vH¶ Ý{Ñ�¢ «4® � � 4©a£ Ï vH¶ y?Ñ � Ï xjÑ¡Ä�£�Å:£JÄ ª £
×Îqh]�f/£L|°f¢lVf¢UXWZPê\�Nj_	f¢]�fmUdf2Nb�ßUm� NsRhYXNVeVS	\3UX]^Nj_	f�r¤W�aj\dq'\�Nj_h|
U�aj]p_T]p_h�,Um�ON´\�Nj_	eV]kU�]pNQ_V|°f¢ST\Z\�W�fXfXNjY¤R	ab]^Y�f(ab_Te���qhWZ_�f¢U�ajY¢U�WZe
��]pUXq«Ëßv Ï Ä{Ñ�RhY�N?ehST\�W�f�UXqhW�f¢W�ØQSTW�_T\�W8Nb�Î�ªNjSTY³fmU�YX]^_h�{f�üµ 	r
t\/lg-��hqt A g-6�h#� � r\>;I%(*<_+!g AE� D�hÆ��)JI�(*<�"Q��+7&�g7��h[��&�'�&��Q>�&Zt\/lg-6�h
t A g7/�h#� � r=>;I%(5<_+�g AE� D�h~��)JI%(5<�"!��+-&Eg7��hq��&�'�&��Q>�& >;I%(5<_+�g AE� D�h~��),.
I%(5<�"!��+-&Eg-6�hÇ��&�'�&��Q>�&[(X���QI3ga/QhÈt\/,ga/�hqIl����&�NH+!g7/�h � &��
U4&Eg7/�h#�
ab_	e[¢	r¡>;I�(*<_+�g A#� D�h[��)JI%(*<�"Q��+7&Eg-��h���&�'�&��Q>�&k>;I%(5<_+�g AE� D�h¥��)JI�(*<_.
"Q��+7&�g-6�h~��&�'�&��Q>�&F(P���QI3ga/Qh[�E>;I�(*<_+�g A#�K� hÉ��)JI%(*<�"Q��+-&Eg AE� � h � ��&�.
'�&��Q>�&nIH���!&�NC+�ga/Qh � &��
U4&�ga/�hB��×Îqh]�f2o^aQfmU�]^f�]^_{UXWZYXRhY�W�U�WZe®ajfZü
>;I%(*<_+!g AE� D�h���)JI�(*<�"Q��+7&�g7��hÊ��&�'�&��Q>�&Æ>;I�(*<_+�g A#� D�hË��)JI%(*<�"Q��+7&Eg;6�h
��&�'�&��Q>�&m(X���QI3ga/Qhq>;I%(5<_+�g AE�K� h¥��)JI�(*<�"Q��+7&�g AE� � h�>;I%(*<_+!g AE�K� h¥��),.
I%(5<�"!��+-&Eg AE� � h[��&�'�&��Q>�&MIH����&�NH+!ga/Qh � &��
U4&Eg7/�h=rFab_TeU�qhW�_TW�U¢|
� NjY���UXqTabU¯]kU,\�Nj_Tf¢UXY�ST\3UdfÎ]^f�fXqhN=��_s]p_s�T�QShY�W/xh� q)�

ì E?Ì pWÍ�ï¥ñOö�õo°�ï¥ôq²�ð2ò³²�ñ :Hï¥ðO°�õ�GHî
×ÎqhW�W�iQNjo^SVUX]^Nj_	abY�lsajop�QNjY�]kU�qhP0STf¢W�e9U�N�WZijNQopiQW�£L|°fXl?f¢UXWZP¥f
]�f�U�qhW�f�abP�W�aQf�Å À¯NQYX_?�?l8Ç¬Ë#NQopo�aj\d�KrhxbvQvh�dÊ~�®×ÎqhW�]p_h]pUX]�abo
R�NjRhSho�a=U�]pNQ_�Nj�(£L|°f¢lVf¢UXWZP�f]�fÎ\�Y�WZa=U�WZe¥�?l¥P¥ab�?]^_h��Y�aj_TeVNjP
RhY�NVeVST\3U�]pNQ_ÁY�Sho^WZfZ� Ð ijNQopShUX]^Nj_«U�qhW�_DRhY�NV\�WZWZehf��?l«]pUXWZY�ab|
UX]^ijWZoplDfXW�o^WZ\3U�]p_T�¼a«\�NQopo^WZ\�UX]^Nj_�Nj��]p_Teh]pi?]�eVSTabo�f8��]pUXqÖqh]p�Qq
�hU�_hWZf�f(�ªNjY#RTabY�W�_{Udf(aj_Te/STfX]p_T�,U�qhW�PwU�N´\�YXW�a=UXWÎa¯_TW��«R�NjRV|
Sho�a=U�]pNQ_HNb�F]^_TeV]^i{]�eVSTajo*£¤|~fXlVfmU�W�P¥f¯�?l�abRhRTopl?]^_h�8P³ShU�a=U�]pNQ_
NjY2Y�WZ\�NQP³�h]^_TabUX]^Nj_¤�/tHSVUda=U�]pNQ_®\�Y�WZabUXW�f´a�_hW��¬]p_Teh]pi?]�eVSTabo
�?lH\�NjR?l?]^_h�8U�qhW�R	abY�W�_{U,]^_TeV]^i{]�eVSTajo�ab_TeHP¥aj�{]^_h�sa�fXP�ajopo
\dqTaj_h�jW�U�N9]kU��®MOqTab_T�jWZf/UXqTabU�\�aj_¦N?\Z\�ShY�abY�Wjü³Y�W�RTo^aQ\�]^_h�
Nj_TW¯\�NjP�P¥ab_	e���]pUXq8aj_hNbU�qhW�YJ�jR�W�YXUXSTYX�h]^_h�/U�qhW¯RTajY�ajP�W�UXWZY
UXN�a³\�NjP�P¥ab_Te��?l�aQeheV]^_h�:�bf¢ST�VUXYdaj\�UX]^_h�³a�f¢P¥abo^o�iBajopSTW,U�N
]pU��(\dq	ab_h�Q]p_h��UXqhW�RTajY�ajP�W�UXWZY´W�ØQS	a=UX]^Nj_�UXN�a�RTYXNVeVST\�UX]^Nj_|�
ajeTeV]p_T�:�=ehW�o^W�UX]^_h��a�f¢W�ØQSTW�_T\�W³Nb�F\�NjP�P¥ab_Tehf´]^_�a8fXST\�\�WZf¢|
fXNjYJ�¤NjY/\dqTaj_h�j]^_h�8U�qhW8\�NQ_TeV]pUX]^Nj_®WZØ{STa=U�]pNQ_¤��È¯WZ\�NQP³�h]^_Tab|
UX]^Nj_�U�aj�jWZf¯Um�ON�]p_	eV]pi?]�eVSTajo^fZr ® ��aj_Te ® xVrLajf´RTajYXWZ_QUdf,aj_Te
\�Y�WZabUXW�fONQ_hW/\dqh]^o^es]^_TeV]^i{]�eVSTajo�r � rV�?l�P¥ab�?]^_h��]pU,a�\�NQR{l�Nb�
® ��aj_Te�UXqhWZ_�]^_TfXW�YXUX]^_h�/a/f¢P¥ajopoVRTajY¢U�Nj� ® x,]^_{UXN/]pUZ�#×Îqh]�f�]^f
eVNQ_hW³�?lHY�W�Rho�aj\�]p_h��Nj_hW�f¢ST\Z\�W�fXfXNjY´Nb� � ��]pUXq'a�fXST\�\�WZf�f¢NQY
Nb� ® xVrß]p_TfXW�YXUX]^_h�'a®fXSh�V|°f¢W�Ø{ShW�_T\�W�Nj�´\�NQP�P¥aj_Tehf��ªYXNQP±a
fXST\�\�WZf�f¢NQY´]^_ ® x�]p_{UXN � r(NjY�YXWZRho�aj\�]^_h�sasfXSh�V|°fXWZØ{ShW�_	\�W�Nb�
\�NQP�P�aj_Tehf2]^_'asf¢S	\�\�W�fXfXNjY2Nb� � ��]pUXqa�fXSh�V|°fXWZØ{ShW�_	\�W�Nb�
\�NQP�P�aj_Tehf �ªY�NjP a�fXST\�\�WZf�f¢NQYÎ]p_ ® xh�

Î äså�æ®ä�¹©¶{ç±äH·¡¸ ��è ¹Dä¥ÏÎ½ è ¸ÆÏ

Í°_sUXqh]�f,fXWZ\�UX]^Nj_s�OW/RTYXW�f¢WZ_QU�Y�WZfXShopU�f�]^_�W�ijNQopi?]^_h�¥Äj`wo^NV\�Nj|
P�NbU�]p_h��\�Y�WZabUXShY�WZf´STfX]p_T����NbU�q®N{fX\�]po^o^abUX]^_h��ÂmNQ]p_{Udf2aQf�\�Nj_h|
UXY�Njo^o^W�Ydf/ab_Te'STfX]p_T�9_hW�STY�ajo�_hW�Um� NjY��Vf/ajf�\�Nj_{UXY�Njo^opWZY�fZ�8×(N
W�iQNjo^ijW�\�Y�WZa=U�ShY�WZf,UXqTabU�opNV\�NQP�NbUXW�� W�fXW�U�UXqTW�]^Y´�TUX_hW�fXf2U�N
��W³a��ªSh_T\�UX]^Nj_HNj�*U�qhW³eV]�f¢U�ab_	\�W�P�N=ijW�es�{l�UXqhW�\�Y�WZabUXShY�Wjÿ f
\�WZ_{UXW�Y�Nb�/P¥ajf�f¥opW�fXf8UXqhW®eV]^f¢U�aj_T\�WH�QYXNQSh_Te©R�Nj]^_QUdf8� W�Y�W
eVYdab�Q�jWZeÁabo^Nj_h�®UXqTWH�jY�NjSh_TeRu¦UXqh]�f¥R�W�_TajokUml«WZ_T\�NQShYdab�jW�f
\�Y�WZabUXShY�WZf¥UXN¼WZijNQopiQW�fmU�W�RhRT]p_h�ÁNjY�YXNQopo^]p_T�¦P�NjUX]^Nj_Tf�N=ijWZY
fXop]�eV]^_h��P�NjUX]^Nj_TfZ�

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

fit
ne

ssÐ

generation

generative
non-generative

û]^�jShY�W/ÄhüFÜ2W�_hWZY�abUX]^ijW�iVf��l�,Nj_V|~�jWZ_hW�Yda=U�]piQW Ð _T\�NVeV]^_h�Qf

Ï a{Ñ Ï �	Ñ

û]p�QShY�W2y	üFÈ�WZfXShopU�fÎ��]pUXqq�¯NQ_V|~�jW�_TW�Yda=UX]^ijW Ð _	\�NVeV]^_h�

Í°_h]pUX]�abo^oplÁ�OW�Ydab_©Um� NfXW�Udf�Nb��W�²VR�W�Y�]pP�W�_{Udf�UXN¦\�NQP�RTabY�W
a��QW�_hWZY�abUX]^ijW�WZ_T\�NVeV]^_h�³aj�Qab]^_Tf¢UOa�_TNj_V|~�jWZ_hW�Yda=U�]piQW WZ_T\�NVe?|
]^_h�T�(Í°_�UXqTWZfXWßW�²VR�W�Y�]pP�WZ_QUdf)� WOaQeheVW�e�UXqhWÎ\�NQ_Tf¢UXYdab]^_QU)UXqTabU
\�Y�WZabUXShY�WZf�\�NQSho�e¼_hNjU¥qTaBijWsa'fXWZØ{ShWZ_T\�WsNb�2P�NjY�W�U�qTab_Áy
�TajY�f�]^_�a¥Y�N=�¡UXqTabU´�Îajf¯_TNbU,RTajY¢U´Nb�Fa8\�lV\�opW�ajf¯a¥Y�W�RTYXW�|
fXW�_{U�abUX]^ijW�op]^P�]kU�UXN�Rhq?lVfX]^\Zabo^opl�Rho�abSTfX]^�hopW¥\�YXW�a=UXSTYXW�f,��qh]^o^W
_hNjU RhY�N=i?]^eh]p_h��ab_?l¥f¢q	abRh]^_h�³�T]^aQfQÑ=�F×ÎqhW´WZijNQopSVU�]pNQ_TabY�l�abop|
�jNQYX]pUXqTPÔ� aQf�\�Nj_h�T�jShY�WZe«UXN¦Y�Sh_©��]kU�qDa'R�NjRhSTo^abUX]^Nj_©Nb�
Ò7Ó
ÔmÕoÖ7×aØ#ÙjÚEÛEÔ:Õ�ÜGÝ5Þ!ß¸ß7Ý*ÜnØ#à5Õ�Öaá�×bÕ�Þ!ÖaØ4Õ�à�Öaá�×0â�Ø#ÙQß�áJÔGã-á�Ý5Ô�Öaß

ä á�Ø4à5Úcå,Ù=Þ�Õ�à5Þ!Ø4à5Õ�ÖaÙ�ÚoÕ�Ô:ÚWÖaæ#ÙQÔGÕbÞQá�Ô4ß-Ö7×0Õ�Ý*Ô�ÖYáJÔcÖaæ4Ù¡Õ�à*à5á ä Õ�å4à*ÙÖaá�×0â�Ø#ÙbÞQáJØ#à5Úµå,Ù\Ø4ß7Ù�Úlç

872 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Ï a{Ñ Ï �	Ñ

Ï \ZÑ Ï eTÑ

û]^�jShY�W�zVüFÈ�W�f¢STokUdfÎ��]kU�qHÜ2WZ_hW�Yda=U�]piQW Ð _T\�N?eh]p_h�

�ZvQv8]^_TeV]^i?]^eVS	abo�f¯�ªNQY���vjv¥�QW�_hWZY�abUX]^Nj_Tf´ab_Te�P�NjY�RhqhNjo^Nj�Q]pW�f
qTaQe«ab_«STRhR	WZY�o^]^P�]pU�Nb�´Ä{zbv��TajY�fZ�®×ÎqhW�_hNj_h|Ì�QW�_hWZY�abUX]^ijW
W�_	\�NVeV]^_h�9�Îajf�ajopo^N=�OW�e9U�N9STfXW8ShR¦U�N¦�ZvQvjvjvs�hST]po�e«\�NQP�|
P¥ab_TeTfßab_	e�UXqhW´�jW�_TW�Yda=UX]^ijWÎWZ_T\�NVeV]^_h��STfXWZe8x/RTabYdabP�W�U�W�Ydf
ab_	e¿��z¦RhYXNVeVS	\3UX]^Nj_¡YXSTopW�f�r¯��]pUXq6x¼\�Nj_Teh]kU�]pNQ_V|~fXST\Z\�WZf�fXNjY
RTaj]pYdfK�ªNjY)WZaj\dq�RhY�NVeVST\�UX]^Nj_/Y�ShopWQrZ��]pUXq/W�aj\dq/fXST\�\�WZf�f¢NQYLqTaBi{|
]^_h�8a�P¥a=²V]pP�ShP Nj��xjv��hSh]^o^eH\�NjP�P¥ab_TehfZ�¯��v�UXY�]^ajo^fÎ� W�Y�W
Y�Sh_��]kU�q¦WZaj\dq'W�_	\�NVeV]^_h��Uml?R	WQr*aj_Te®UXqhW8aBiQW�Ydab�jW�Nb� UXqTW
�hUXUXWZf¢U�]p_Teh]pi?]�eVSTaboO�ªNjST_Te«a=U�WZaQ\dq¦�jW�_TW�Yda=UX]^Nj_]�f³RTopNjU¢UXW�e
]^_9UXqTW��QY�ajRhq9]^_9�T�QShYXW�Äh�/×Î� N�]^_TeV]^i{]�eVSTajo^f´W�iQNjo^ijW�e�STfm|
]^_h��UXqhW/_TNj_V|~�jWZ_hW�Yda=U�]piQW´WZ_T\�NVeV]^_h�¥abY�W/f¢qhN=��_s]^_��	�jShY�W�y
ab_	e9�ªNQShY/]p_	eV]pi?]�eVSTajo^f/WZijNQopiQWZe9S	f¢]^_h�sUXqhW8£¤|~fXlVfmU�W�PÙaQf�a
�jWZ_hW�Yda=U�]piQW�WZ_T\�NVeV]^_h�¦abY�W�f¢qhN=��_Á]p_©�T�QShY�W�zh�©Í°_�aQeheV]p|
UX]^Nj_ÁUXN¦RTYXNVeVST\�]p_T�®��aQfmU�W�Y¥\�Y�WZabUXShY�WZfZrFU�qhW9£L|°fXl?f¢UXWZP±W�_V|
\�NVeV]^_h�8RTYXNVeVST\�WZeH\�YXW�a=UXSTYXW�fÎ��]kU�q9�jY�WZabUXW�Y¯fXW�op� |°f¢]^P�]po�abY�]kUml
ab_	e�qTaQe'P�NQYXW�RTajY¢Udfju9UXqhW8aBiQW�Ydab�jW³_{STP³��W�Y�Nj�O�TajY�f�]^_
UXqTW8�hUXUXWZf¢U�\�YXW�a=U�ShYXW�f��Îajf¥��ÝHSTfX]p_T�HUXqhW�_hNj_h|Ì�QW�_hWZY�abUX]^ijW
W�_	\�NVeV]^_h�¥ab_Te'��xjv³��]pUXqsU�qhW�£L|°f¢lVf¢UXWZP�W�_T\�NVeV]p_T�T�
Ú,UXqTW�Y,WZijNQopSVU�]pNQ_TabY�l8Y�Sh_Tf´STfX]p_h�8UXqhW�£L|°f¢lVf¢UXW�P.W�_T\�NVeV]p_T�
� W�Y�WßP¥ajeVWÎ��]pUXq�eV]P^�WZYXWZ_QU*�hU�_hWZf�f*�ªSh_T\�UX]^Nj_Tf#ab_	e�a´qh]^�jqhWZY
ShRhR�W�Y´op]^P�]kU2Nj_sUXqTW�_?ShP³��W�Y´Nb�Fabo^opN=� WZe��TajY�fZ� ×ÎqTW�]p_	eV]k|
i?]^ehSTabo�f]p_��T�jSTYXW2Ý³� W�Y�W´WZijNQopiQWZe8aj�Qab]^_Tf¢U a³�hUX_TWZf�f �ªSh_T\3|
UX]^Nj_8UXqTabUOY�W��ÎabYdeVWZe��ªNQYßqTaBi?]^_h�³\�o^NQfXWZe�o^N?NjRTfO]^_¥UXqhW´P�NjYX|
RhqhNQopNQ�jlnuM /]�f�a�f¢W�ØQSTW�_T\�W Nj�	Y�Njo^op]^_h�2YXW�\3Udab_h�QopW�f(��]pUXqs�ZÝQ}
�TajY�f�� �]�f�ab_�Sh_TeVSho�a=U�]p_T�8f¢WZYXR�W�_{UÎ��]kU�q�ÄQÄj}³�TabYdf�� �]�f aj_
ajfXl?P�P�W�UXY�]^\�YXNQopo^]p_T��\�Y�WZabUXShY�W/��]kU�q�ÄjvQÝ¥�TajY�f��	aj_Te�¢�]^f´a
�ªNjSTY¢|~opWZ�j�QWZe8�Îabo^�?]p_T��\�YXW�a=UXSTYXW���]pUXqHÝQxj}³�TajY�fZ�

Ï a{Ñ Ï �	Ñ

Ï \ZÑ Ï eTÑ

û]^�jSTYXW/ÝhüOÚ,U�qhW�Y´Ú2f�\�]^o^o^abUXNjY¯MOY�WZa=U�ShY�WZf

�¯W�²?U �OWàYdab_øW�²?R�W�Y�]^P�WZ_{U�f \�NjP��h]p_T]p_h�ÛU�qhWê_hWZShYdabop|
hW�Um�ONQYX�'\�Nj	fmU�YXST\�UX]^Nj_¦o�ab_h�QSTab�QW¥�ªY�NjPÛf¢W�\3UX]^Nj_©xV� x���]kU�q
P�NjY�RhqhNQopNQ�jl§\�NQ_Tf¢UXY�ST\3U�]pNQ_�o�ab_T�jSTaj�jW'Nb�8f¢W�\3U�]pNQ_wxh�p�'U�N
W�iQNjo^ijW¯\�YXW�a=UXSTYXW�f���]kU�q8_hWZShY�ajoT\�NQ_{UXY�Njo^opWZY�fZ�(×(N�W�_	\�NjSTY�aj�jW
_hW�Um�ONQYX�Vf¯��]pUXq\�NQP�RhopW�²9eVl?_TabP�]�\�f´UXNsW�iQNjo^ijWjr�]^_TeV]^i{]�eVSV|
abo�fO�OWZYXW´YXWZ� ajY�eVW�e��ªNjYOUXqhW�aBijWZY�aj�jW�_?ShP��	WZYONj�)]p_TRhSVU�fOU�N
qh]�eheVWZ_�Sh_T]kUdf aj_Te¥�ªNQY UXqhW�Ydab_h�QW,]^_�i=abo^ShWZf Nj�¤UXqhW�NQSVUXRhShU
Sh_h]pU�fZ��×ÎqhW8W�iQNjo^SVUX]^Nj_	abY�l�abo^�jNQYX]pUXqhPÙ� aQf�\�NQ_V�T�jSTYXW�e9U�N
Y�Sh_��]kU�q«a�R	NQRhSho�a=UX]^Nj_Nj�2��vjvs]p_	eV]pi?]�eVSTajo^f��ªNQY³a�P¥a=²V]p|
P³STP Nb�FzbvQv��jW�_TW�Yda=UX]^Nj_	f�� Ð ²?R�W�Y�]^P�WZ_{U�fÎ� W�Y�W2Y�Sh_�STfX]p_T�
xbv�RhY�NVeVST\3U�]pNQ_�Y�Sho^WZfZrhÄ�\�Nj_	eV]kU�]pNQ_V|°f¢ST\Z\�W�fXfXNjY RTab]^Ydf aj_Te�x
RTajY�ajP�W�UXWZY�f*�ªNQYßWZaQ\dq¥RhY�N?ehST\3U�]pNQ_�Y�Sho^W��ªNjYO��qh]�\dq8abRhRhY�NB²?|
]^P�abUXWZoplÁqTabop�´U�qhWHY�Sh_Tf�RhY�NVeVST\�W�e©]p_{UXWZYXW�fmU�]p_T�\�YXW�a=U�ShYXW�f
Ð ²hajP�RTopW�f�Nb�ÎW�ijNQopiQWZe'\�Y�WZabUXShY�WZf�abY�W¥f¢qTN=��_']^_'�T�jSTYXWZ½?ü
 ¥qTaQf yQ}�_hW�ShY�Nj_	f aj_Te�P�N=iQWZf �?l��TYdfmU¯f¢UXY�W�U�\dqT]p_h��NjShUÎ]pU�f
abY�P¥f�r(UXqTW�_¦Um��]�fmU�]p_T�9]kUdf���NVeVl'aQf�]pU�\�opN{f¢W�f/ShRUXN�P�N=iQW
fX]^eVWZ� aBlVf�� � qTajf´yT��_hW�STYXNQ_Tf´aj_Te9P�N=iQWZf¯�?ls��abo^o^]p_h�sN=ijWZY
WZaQ\dq¥UX]^P�W´]pUO��YdabR	fßShR�]p_{U�N�a³\�]pYd\�o^W´aj_Te¥Sh_?��YdabRTf�� � qTaQf
x=y�_hWZShY�Nj_Tf¯aj_TesP�N=ijWZf �?l�S	f¢]^_h��UXqTW/Um�ON�o^N=�OWZY¯fXØ{STajYXW�f
ajf2ab_'abY�PáUXN�RTSTf¢q®]kU2�ªNjY��ÎabYde���¢�q	ajf���zbv8_hW�ShY�Nj_	f´aj_Te
P�N=ijW�f��?ls\�Nj]^op]^_h�¥ShRH]^_{UXN�a8\�]pYd\�o^W�UXN�YXNQopo;��aj_Teq£�q	ajf���}
_hWZShYXNQ_TfFaj_Te�P�N=iQWZf��?l�STf¢]^_h��]pU�f�U�ab]^ohU�N�Y�Njo^oh]kU abo^Nj_h��o^]p�QW
a���qhW�WZo��³×ÎqTW�_hW�Um�ONQYX��Nj�ßUXqTW�\�YXW�a=UXSTYXW�]p_®�T�jSTYXWm½?�è¤']^f
fXqhN=��_H]p_��	�jShY�W³ùh�ÎÍ°_9aQeheV]pUX]^Nj_HU�N8�	WZ]p_T�¥��ab]^YXo^lsYXWZ�jSho�abY�r
]pU�f´op]^_hWZajY2fXWZØ{ShWZ_T\�W�Nb�FNQSVUXRhShU�f2abo�f¢N�\�NjY�YXW�f¢R�Nj_	ehf�U�N8UXqTW
o^]p_hW�abY�fXWZØ{ShWZ_T\�W�Nb�*ÂmNj]^_{U�f/]^_]kUdf/P�NjY�RhqhNQopNQ�jlj��Í~U�P�N=ijW�f
�?l¥Um��]�fmU�]p_h�¥]pU�fXW�op�*UXN�YXNQopo¤fX]�eVW��ÎaBlVf��

873ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Ï a{Ñ Ï �	Ñ

Ï \ZÑ Ï eTÑ

Ï W�Ñ Ï ��Ñ

û]^�jShY�WM½?ü¡�,W�ShYdabo|�,W�Um� NjY���MONj_{UXY�Njo^opW�esMOY�WZabUXShY�WZf

é »�¶,Ï´¾'½ËÏjÏÎ¶Vº¼·

u,fOU�qhW�_{STP³��W�YÎNb�)R	abYXU�fO]p_�a�\�YXW�a=U�ShYXW´]p_	\�Y�WZajfXWjr?fXN�eVN?WZf
UXqTW eV]Pê8\�ShopUml�]p_�qTab_	e?|~ehWZfX]p�Q_h]p_T�,a,\�Nj_{UXY�Njo^opWZYL�ªNjY*]pUZ�#×Îqh]^f
fXl?f¢UXWZP �ªNjY�W�iQNjo^i{]^_h�¼ËOvj£¤|~fXlVfmU�W�P¥f�ajSVUXNQP�abUX]�\�ajopo^lÁRTYXNj|
eVST\�WZe'\�Y�WZabUXShY�WZfZr�aj_TeHU�qhW�]^Y�\�NQ_{UXY�Njo^opWZY�fZr	��]pUXq'q?Sh_TeVY�WZeTf
Nb�#RTajY¢Udf aj_Tesi=abY�l{]^_h��eVW��QYXWZWZfÎNj�(Y�W��jSTo^ajYX]pUmlj�
n W9abo�f¢NSTfXWZeÁUXqTWHYXW�f¢ShopU�f8Nb��Nj_hW�W�iQNjo^SVUX]^Nj_	abY�l¦YXSh_�aQf
UXqTW8fmUdabYXUX]^_h��R�NjRTSho^abUX]^Nj_®�ªNjY�aj_hNbU�qhW�Y�Y�Sh_¤r¤U�qhW¥\�Y�WZabUXShY�W
]^_��T�jShY�WFÝh� �/]�fLUXqTWFYXW�f¢STokU¤Nj�?NQ_hWFY�Sh_/f¢WZWZeVW�e���]kU�q�a�RhY�W�i?]p|
NjS	f¢o^l�WZijNQopiQWZe¥\�Y�WZabUXShY�Wj�#×Îqh]�fßP�W�UXqhNVe¥Nj�¤STf¢]^_h��P³ShopUX]^Rho^W
Y�Sh_Tf�Nj�¯W�iQNjo^SVUX]^Nj_¦]�f³NQ_hW8�ÎaBl�U�N9STfXW Ð u,f/U�N�NQRVUX]^P�]pÕZW
ab_	eHW�²VRho^NjY�W/UXqTW�eVW�f¢]^�j_®f¢RTaQ\�W�Nb��UXqTW�]^_hRhSVU/\�Y�WZabUXShY�W�NQY
UXN�\�Y�WZabUXW´\�YXW�a=U�ShYXW�fF��]pUXqsf¢]^P�]po�abY opNV\�NjP�NbU�]pNQ_8fmUml?o^WZfZ�#u,ok|
UXWZYX_	a=UX]^ijWZoplQrja/fX]pP�Rho^W,\�Y�WZabUXShY�W�\�aj_���W,eVW�f¢]^�j_TWZe��?l³qTaj_Te
ab_	e8U�qhW/W�iQNjo^SVUX]^Nj_TajYXl8fXlVfmU�W�P \Zab_�]^P�RTYXN=iQW´ShR�Nj_�]pUZ�

out

out

out

out

out

out

out

out

out

oscsig

sig

sig

sig

sig

sig

sig

sig

sig

sig

sig

0.25−1

0.25 1

1

1

1

1

1

1

1

1

−0.5

−0.25

−0.25

0.25

−1

−0.250.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

−0.5

−0.5

−0.5

−0.5

−0.5

−0.75

−0.75

−0.75

−0.75

−0.75

−0.75

−0.75

û]p�QShYXW/ùTü Ð ijNQopiQWZeZ�,W�ShYdabo|�,W�Um� NjY��

û NQYÎUXqh]�f¯� NjY��8� W�STf¢W�esRTabYdabP�W�U�YX]�\�£L|°f¢lVf¢UXWZP�f�aQf¯a�� aBl
UXN¼]p_T\�YXW�ajfXW9\�NQP�RTopW�²?]pUml©N=ijW�Y��TajfX]^\H£¤|~fXlVfmU�W�P¥fZ�ÓÚ,UXqhWZY
Uml?R	W�f*Nb�T£L|°fXl?f¢UXWZP¥f¤U�qTa=U�\�NQSho^e�qTaBijWO�	WZW�_³S	f¢W�e�abY�WßRhY�Nj�h|
ab�T]po^]^f¢UX]�\�£L|°fXl?f¢UXWZP¥f¦ab_Teë\�Nj_{UXW�²{U«fXW�_TfX]pUX]^ijW§£L|°fXl?f¢UXWZP¥f
Å ËFY�STf¢]^_h�?]^W���]�\�Õ�ÇÓ£)]p_TehW�_hP¥aBljWZYZrK��}j}jv�Ê~� ËßYXNQ�Tab�T]po^]^f¢UX]�\
RhY�NVeVST\3U�]pNQ_HYXSTopW�f,eVN8_TNbU´q	aBijW�a8\�Nj_TeV]pUX]^Nj_�RTabYXUZr	Y�abUXqhWZY
UXqTW�l¦qTaBiQW�P³STokU�]pRho^WHf¢S	\�\�W�fXfXNjYdfZr*W�aj\dq«��]pUXqDa9RTYXNQ�Tab�h]^op|
]pUml§UXq	a=U�]pU���]^opo���W«STfXWZe�U�N�YXWZRho�aj\�W'U�qhW«RhY�WZeVW�\�W�fXfXNjY��
n qh]^opW��jN?NVe®�ªNjY³�QW�_hWZY�abUX]^_h�HaHi=abY�]pW�Uml�Nj��fX]^P�]^o�abY�f¢UXY�ST\�|

874 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

UXSTYXW�f�rTUXqh]�f,fXlVfmU�W�Pá]^f�_TNj_V|°eVW�U�W�Y�P�]p_h]�f¢UX]�\nu���qh]�\dqHP�aj�jW�f
]pUOSh_TfXSh]pU�aj�hopW,�ªNjYÎeVW�iQW�o^NjRh]^_h�³f¢UXY�ST\�UXShY�WZfFUXqTabUO_hWZWZe�U�N³��W
Y�W�|°\�Y�WZa=U�WZe8UXqhW�f�abP�W/WZaQ\dq�U�]pP�WQ�ßu¯_hNjUXqhWZY�� aBl�]p_���qh]�\dq
i=abY�]^abUX]^Nj_�\�aj_���W,ajRhRho^]pW�e³U�N�ab_¥£L|°fXl?f¢UXWZP¬]�f#UXqTYXNQSh�jq�UXqTW
ajeTeV]kU�]pNQ_¦Nb�¯\�NQ_{UXW�²?U��®MONj_{UXW�²{U�f¢WZ_Tf¢]pUX]^ijW8£¤|~fXlVfmU�W�P¥f�W�²?|
abP�]^_hW2UXqhW/\dqTajY�aQ\3U�W�YdfFU�N�U�qhW/o^W�� U,ab_	e�Y�]p�Qq{U Nj�)UXqTW�\dqTabYX|
aj\�UXWZY�UXN8��W�Y�W���Y�]kUXUXWZ_�UXN8eVW�UXW�Y�P�]p_TW���qh]�\dq9f¢ST\Z\�W�fXfXNjYÎU�N
Y�W�Rho�aj\�W,]pUÎ��]pUXq)� n qT]po^W2UXqh]�fÎ\�o�ajf�fONj�(£L|°fXl?f¢UXWZP¥fß]�fÎeVW�U�W�YX|
P�]p_T]^f¢UX]�\brQ_hNbU�qTaBi?]^_h��RTabYdabP�W�U�W�Ydf)Y�WZfXShopU�f#]^_³U�qhW�]^_Tab�h]^o^]kUml
UXN�U�ab�QW�ajeVi=ab_{Udab�jW�Nj��R	abYdabP�W�U�YX]�\OUXW�Y�P�]p_	abo�f�r{f¢ST\dq8aQf#UXqTW
NQf�\�]^o^o^abUXNjYdf´��qhNQfXW�R	abYdabP�W�U�W�Y�f¢R�WZ\�]k�TW�f2UXqhW¥fXR	WZWZe®Nb� NQf¢|
\�]^o^o^abUX]^Nj_¤�,g´f¢]^_h��RTabYdabP�W�U�W�Ydf¯abo�fXN¥qTajf,UXqhW�ajeVi=aj_QUdab�QW/Nb�
abo^o^N=��]p_h��NQ_hW�RhYXNVeVS	\3UX]^Nj_�Y�Sho^W�UXN¥��W�STfXWZe�UXN¥�QW�_hWZY�abUXW�a
\�o�ajf�fONb�¤Nj�hÂmWZ\3Udf��#Í°_�UXqh]�f � aBl�RTajY�ajP�W�UXWZY�fOabY�W,ab_TajopNQ�jNQSTf
UXN�UXqhW2abY��jShP�W�_{Udf�Nb�)a��ªST_T\3U�]pNQ_8]p_�a�\�NQP�RTSVUXWZYßRhY�Nj�QY�ajP
ab_	e�U�qhWÎW�ijNQopShUX]^Nj_³Nj��aj_�£L|°fXl?f¢UXWZPw�	W�\�NQP�W�f#op]^�jWOUXqTW WZijNj|
o^SVUX]^Nj_HNj��a¥\�NjP�RhSVU�W�Y¯RTYXNQ�jYdabP�rhajf�]^_H�jWZ_hW�U�]^\�RTYXNQ�jYdabP�|
P�]p_T�9Å Æ�NQÕZahrK��}j}QxZÊ~�

ë ¾«º¼·w¾ è ½ËÏ ¶hº¼·

u¯_]p_{U�W��jYda=U�WZeøWZ_T\�NVeV]^_h� �ªNjYá�jW�_TW�Yda=UX]^ijWZopl \�Y�WZabUX]^_h�
��NbUXq�\�YXW�a=UXSTYXW�P�NQYXRTqhNjo^Nj�Qlaj_TeÁ_hW�ShYdabo¯\�Nj_{UXY�Njo^o^W�Y�� aQf
aj\dqT]pWZijWZeD�?lDSTfX]p_T�¼W�iQNjo^SVUX]^Nj_	abY�l«UXW�\dqh_h]�Ø{ShWZf�UXN©W�iQNjo^ijW
ËßvQ£L|°f¢lVf¢UXWZP�fZ�"g´f¢]^_h��U�qh]�f®fXlVfmU�W�P�r/UXqTW«P�NjY�RhqhNjo^Nj�Q]pW�f
ab_	eê\�NQ_QU�YXNQopo^W�Ydf§� W�Y�W¬WZijNQopiQWZeá�ªNjY�o^N?\�NjP�NbU�]p_T�.\�Y�WZab|
UXSTYXW�f���MOY�WZabUXShY�WZf2W�iQNjo^ijW�e9STfX]p_T��U�qhW8�QW�_hWZY�abUX]^ijW³WZ_T\�NVe?|
]^_h��P�N=iQWZe���ajf¢UXW�Y*U�qTab_�\�Y�WZabUXShY�WZf*W�iQNjo^ijW�e/STfX]p_h�2U�qhW�_hNj_h|
�jWZ_hW�Yda=U�]piQW¥W�_T\�NVeV]p_T�T��Í°_«\�NQP�R	abY�]^fXNj_'UXN�YXWZo^abUXWZe'� NjY��Kr
UXqTWZfXW�W�ijNQopiQWZe�\�Y�WZa=U�ShY�WZf#\�NQ_Tf¢]�f¢UXWZe�Nb�Kab_�NjYdeVW�Y#Nj��P¥ab�Q_h]p|
UXS	eVW�P�NQYXW2RTajY¢UdfOaj_Te�q	aje�a�qh]^�jqhWZY�eVW��QYXWZW´Nj�)YXWZ�jSho�abY�]pUml
UXq	ab_wÅ [V]pP¥fZr¤�Z}Q}byVrOÆ�NQP�NQfX]p_TfX�?]LÇ¬È�NjU�abY�SV|~ÉFabY��QaTr?xjvjvjv?r
£¤]^RTfXNj_�Ç¬Ë#NQopo�aj\d�KrhxbvQvjv�Ê~�

²����¤I*@:ì¥��<?�(>�<:í«<?I�î�ï
×Îqh]�f�YXW�f¢W�abYd\dqá�Îajf�fXShRhR�NjYXUXWZeÙ]p_"RTabYXU¡�?l0U�qhW¨`´W�|
�ªW�_	f¢W0u,eVi=aj_T\�W�e5È�W�f¢W�abYd\dqÔËFY�NbÂmWZ\�U�fÓu,eVP�]^_h]^f¢UXYda=U�]pNQ_
Ï `,u,È¯ËLu2Ñ�Ü2Ydab_{UZr�`¯u2[hÜ�Ýjvb|~}Q}=|d��|°vjvQvbyT�0×ÎqhW¼ajSVUXqTNjYdf
� NjSho�e9o^]p�QW³U�N�U�qTab_T��UXqhW�P�W�P��	WZY�f2Nb�OUXqhW�` Ð t®Ú�£(ab�¤ü
u�� c ST\�\�]�r Ð �,`´W�ðQNj_h�	r³[K� û]^\�]^\�]�r�Ë#� û ST_hWZfZr�[K�,£)W�i?ljr
À��O£¤]^RTf¢NQ_¤rÎÚ��Ft9W�o^_h]p�KrÎ[K�FÉ,]�fX� aj_Ta=U�qTab_©ab_Te©È/� n a=U¢|
fXNj_¤�

¹{ñ|òQñ � ñTó � ñ �

Å u¯��W�o�f¢NQ_�ÇÓeVW�[VWZf�fXaTrL�Z}jù{xBÊ�u¯��W�o�f¢NQ_¤rÓÀ³�ÁÇ eVW�[VWZf�fXaTr
u��Tu³� Ï ��}jùQxQÑ3�oô,),��+;(P&mõ\&Q� � &�+
��ö=�Ot¦� Í3� ×��TËßYXW�fXfZ�

Å c N?WZY�f�ÇÓÆ�Sh]pR�W�Y�rL�Z}Q}Qx=Ê c N?W�Ydf�r Ð �j��W�YXU÷ð	� n �ÛÇ
Æ�Sh]pR�W�Y�r¤À¯WZYXP¥aj_ Ï �Z}j}{xjÑ�� c]pNQopNQ�j]�\�abo*P�W�UdabRhqhNQY�f�aj_Te
UXqhW�eVW�f¢]^�j_ÓNb��P�NVeVSho�abY¦ajY¢U�]k�	\�]^ajo�_hW�ShYdabo�_hW�Um�ONQYX�VfZ�
t9ajf¢UXWZYZÿ f�U�qhWZfX]^fZrV£¤WZ]^eVW�a³g,_h]piQW�Ydf¢]pUmljrQUXqTWW�¯W�UXqhWZYXo�ab_	ehf��

Å Ü2YXSTajS¤rL�Z}Q}byjÊ/Ü2Y�STabS)r û YløWZeføWZYX]�\ Ï �Z}Q}by?Ñ3�úùM&�),����(jùM&�+
.
������$�ûCö�NH+KVl&�>�<?>ýüY>�<_N4Uÿþ¡&�(_(*),(P�����fN%"Q�J��<_N:Uý��N%��+KVl&
õ\&�N%&�+;<�"��W(U4����<_+KV � ��ËßqT`ýU�qhWZfX]�f�r Ð \�Njo^W��¯NjY�P¥abo^W
[?ShRbøWZYX]^W�STYXW�eVW/£¤lQNj_¤�
Å À¯NjY�_?�?l¥W�U,aboÌ�^r	xbvQvh��Ê�À¯NQYX_?�?ljr�Ü���[K�^r�£¤]^RTfXNj_¤r�À��^r�Ç
Ë#Njo^o^aQ\d��r¥ðT� c � Ï xbvQvh��Ñ�� Ð iQNjo^SVUX]^Nj_áNb�¦�QW�_hWZY�abUX]^ijW
eVWZfX]p�Q_¨fXlVfmU�W�P¥f'�ªNjY¦P�NVeVSho�abY¦RTq{lVfX]^\Zabo¥Y�Nj��NbUdf��&Í°_
� NH+;(� þ¡��NJ� � ��N��j�E�Q��+
<�"�>M��N%���W),+-� � ��+
<���NT�
Å À¯NjY�_?�?l8ÇÓË#NQopo�aj\d�KrVxbvjvT��Ê/À¯NQYX_?�?ljr#Ü2YXWZ�jNjY�l'[L�(Ç0Ë#Njop|
o^aQ\d��r�ðQNjYdehab_ c � Ï xbvQvh��Ñ��³×ÎqhW�ajeVi=aj_QUdab�QWZf´Nb�O�QW�_hWZY�ab|
UX]^ijW��jYdabP�P¥a=UX]�\�ajo(WZ_T\�NVeV]^_h�{f,�ªNQY�Rhq?l?fX]�\�abo�eVW�f¢]^�j_)��Í°_
þ=��N4UE��&�>!>M��N��f'���(*),+;<���N�����ö�þ¡� � I�),+-��+
<���NT�
Å Æ�]kUdab_hN	rL�Z}j}Qv=Ê�Æ�]kUdab_hN	r´À�� Ï �Z}Q}jvQÑ��ë`,W�f¢]^�j_h]^_h�©_hW�STY�ajo
_hW�Um� NjY��Vf,STfX]^_h���jW�_TW�UX]�\�abo^�jNQYX]pUXqhP¥f´��]kU�q�jYdabRhq®�jW�_h|
W�Yda=UX]^Nj_sf¢lVf¢UXWZPs�Gþ¡� � I�(P&��Oû%ö�>�+-& � >3rVy	ü y{Ýh��u?y:½bÝh�
Å Æ�NjP�NQfX]p_	f¢�?]LÇ¬È�NjU�ajYXSV|~ÉFabY��QaTr?xjvjvQv=Ê/Æ�NjP�NQfX]p_	f¢�?]Ìr�t¦�
Ç�È¯NbU�ajYXSh|ÌÉFajYX�{ahrju³� Ï xbvQvjvQÑ�� û Y�NjP�eV]^YXW�\3UXW�e�UXN�NjR�W�_V|
W�_TeVW�e�W�iQNjo^SVUX]^Nj_�]^_9a8\�NQP�RTopW�²sfX]pP�Sho^abUX]^Nj_HP�NVeVW�oÌ�ÎÍ°_
c W�ehabS)r¯t9\�M aQf¢�?]^opoÌr�Ë�aj\d�=abYdeLrÎÇ±È¯ajfXP³STf�fXW�_ Ï�Ð ehf�� Ñ3r
�W��+
< 	f"�<���(�
�< ��&��rTRhR¤�	xj}jÄ�uhxb}Q}h�
Å Æ�NjÕZaTrK�Z}j}{xBÊ/Æ�NjÕ�ahr\ðT�ÎÈ/� Ï ��}j}QxQÑ3� õ9&�N%&�+
<�"�tf�!��UE��� � .
� <_N:U��F��Nz+_VH&cI�����UE��� �}� <_N4U[�a�Z"Q� � I�),+-&��Q>k��ö � &!��Nl>
�a�cN%��+
),�!��(�>�&�(P&Q"�+;<���N	�FtHÍm×¡ËßYXW�fXfZrTM abP��hYX]�eV�QWjrVt9ajf�fZ�
Å £¤]^_TeVW�_TP�aBlQW�Y�rK�Z}jÝQù=Ê/£¤]^_TeVWZ_hP¥aBljW�Y�r)u³� Ï ��}jÝQùQÑ3�¥t9abUXqV|
W�P¥a=U�]^\Zabo*P�NVeVWZo^f,�ªNjY/\�W�o^opSho�abY´]p_{U�W�Ydaj\3U�]pNQ_9]^_®eVWZijW�o^NjRh|
P�WZ_{UZ�bRTajY¢Udf#Í*aj_Te�Í°Í3���,��),��N���(C�0�µô�Vl&Q���!&�+;<�"Q��(��\<���(P��UEö=r
�Zùhü xbùQv�uhxb}j}/aj_TesÄjvjv�u?ÄT��zV�
Å £¤]^_TeVW�_TP�aBlQW�Y�rK�Z}4½=ybÊ/£¤]^_TeVWZ_hP¥aBljW�Y�rju³� Ï ��}4½=y{Ñ3�Ku,eTeV]p_T�
\�Nj_{U�]p_?ShNQSTfL\�NQP�R�Nj_TW�_{U�fKU�N¯£L|m[?lVfmU�W�P¥fZ�=Í°_�È¯NjÕ�WZ_?�	WZYX�	r
Ü��{Ç¬[habo^NjP¥ajaTrQu�� Ï�Ð ehfZ� Ñ�r�
ÈûCö�>�+-& � >dr?£¤W�\3U�ShYXWn�¯NjUXWZf
]p_¥MONjP�RhSVU�W�Y�[V\�]^W�_T\�W´�BzVr=RhR)�=zjÄ�uVÝjùh�B[?RhY�]p_T�jW�YX|~É�W�Y�o^aj�T�
Å £¤]^RTf¢NQ_sÇÓË#Njo^o^aQ\d�KrVxjvjvQv=Ê/£¤]^RTf¢NQ_¤r#À��#ÇáË#NQopo�aj\d�Kr3ðT� c �
Ï xbvQvjv{Ñ3� u,SVUXNQP¥a=UX]�\¨eVWZfX]p�Q_Ùab_	eêP¥ab_?SV��aQ\3UXSTYXWÓNb�
YXNQ�	NjUX]�\´o^]p�ªW��ªNjY�P¥f��¡ù}��+;),��&�rVy{vjÝTü }:½By�uV}4½bùh�
Å £¤Sh�QW�Ç¨[?R�WZ\3U�NjY�r¤�Z}Q}jÝbÊ2£¤ST�jWjr�[VWZab_áÇÞ[?R�WZ\�UXNjY�rH£¤WZW
Ï �Z}Q}jÝ{Ñ3� Ð iQNjo^i?]p_h�¦�QY�ajRhqTf8aj_Te�_hW�Um�ONQYX�Vf¥��]pUXq¡WZeV�QW
W�_T\�N?eh]p_h�	ü9ËFY�W�o^]pP�]^_TabY�l¦Y�W�R�NjYXUZ��Í°_§Æ�NjÕ�ahrfðT� Ï�Ð eL� Ñ3r

T��+-&�.0���!&!�J$�<_N:URt\�!IH&��Q>¥�0�Rõ9&�N�&�+;<�"qtf���!U��!� �µ� <_N:U @:� r
RhR¤�¤�Q��½�uK��xbyT�{[?U�ab_h�ªNjYde c N?Nj�Vf¢UXNjY�Wj�
Å ËFY�STf¢]^_h�?]^W���]�\�Õ�ÇÓ£)]p_TehW�_hP¥aBljWZYZrK��}j}jvbÊ
ËFY�STf¢]^_h�?]^W���]�\�Õjr#Ë#�(Ç0£)]p_TehW�_hP¥aBljWZYZr*u�� Ï ��}j}jv{Ñ3�Êô�Vl&
�W(U#����<_+_V � <�"��W&Q��),+;öZ�a�jtf(P��NH+
>3�ß[?RhY�]p_h�QW�YX|ÌÉ�WZYXo�ab�	�
Å [?]pP¥fZr¤�Z}Q}byjÊ/[?]^P¥f�r¦Æ/ajYXo Ï �Z}Q}by{Ñ�� Ð ijNQopi?]^_h��É,]^Y¢U�STabo
MOYXW�a=UXSTYXW�f��/Í°_Èû � õcõ����Wt�� @�� þ¡��N���&���&�N�"Q&µtf�!��"Q&Q&Q��.
<_N4U�>dr	u¯_h_?STajo(MONj_V�ªWZYXWZ_T\�W�[?WZYX]^WZfZrVRhR¤�¤�BzJuhxjxV�

875ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

A Collective Genetic Algorithm

Thomas Miconi

thomas.miconi@lip6.fr
LIP6

8 rue du Capitaine Scott
75015 Paris, France

Abstract

We take a look at the problem of collective
evolution, and set the following goal : designing
an algorithm that could allow a given population
of agents to evolve incrementally, while they are
performing their (possibly collaborative) task,
with nothing more than a global fitness function
to guide this evolution. We propose a simple
algorithm that does just that, and apply it to a
simple test problem (aggregation among animats
controlled by feed-forward neural networks). We
then show that under this form, this algorithm
can only generate homogeneous systems. Seeing
this as an unacceptable limitation, we modify our
system in order to allow it to generate
heterogeneous populations, in which semi-
homogeneous sub-populations (i.e. sub-species)
emerge and grow (or regress) naturally until a
stable state is reached. We successfully apply
this modified algorithm to a very simple toy-
problem of simulated chemistry.

1 INTRODUCTION

1.1 PROBLEM STATEMENT

We are looking for an algorithm that could allow us to
evolve populations of (possibly heterogeneous) agents,
under the following conditions :

1. Global fitness function : we can only evaluate the
global performance of the population, and have
no way to evaluate directly the individual
performance of each agent.

2. On-line evolution : we want this evolution to occur
“on-line”, incrementally, in an open-ended

fashion. The population must evolve
continuously over time, while it is performing its
task, so that it can adapt to changes in the
environment : evolution should not happen in a
separate simulation environment, but during the
actual “lifetime” of the population.

3. Generality : We want to have a very general
method, which could be applied to a wide range
of agent types, without any assumption about
their nature or inner mechanics.

Requirement 1 stems from the fact that in many collective
behaviour problems, when the population must be
evaluated after its global result, it may very difficult (or
impossible) to reliably share the estimated fitness among
the agents. Requirements 2 and 3 are highly desirable if
the algorithm is to be used for all kinds of real-world
problems.

Note that there is in fact an inclusive-OR relation between
requirements 1 and 2 : if we have a reliable individual
evaluator, then we should be able to scrap condition 1 and
still use our algorithm to reap the benefits of incremental
evolution. On the other hand, if we do not need open-
ended evolution, we might still use the first part of the
algorithm for evaluation purpose and apply it to a
classical reproduction scheme.

1.2 RELATED WORK

Evolution is intrinsically a collective process between
many intermixing genotypes. Its efficiency as a search
technique has been demonstrated analytically, by
Holland’s Schema Theorem (Holland, 1975; Goldberg,
1989), and empirically, by uncountable applications.
However, it is overwhelmingly used as an optimisation
technique for individual agents.

There have been numerous attempts at collective
evolution, though. The one that inspired our work was
(Zaera et al, 1996)’s evolutionary breeding of fish-like

876 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

animats to perform various simple collective tasks
(dispersion, aggregation, flocking). The system was quite
rigidly constrained, however : all animats were strictly
identical, and evolution occurred in a classical GA-like
process : generate, evaluate, reproduce, then start again,
each phase being applied to the whole population.
Heterogeneity or open-ended evolution were not
considered.

One remarkable achievement in collective evolution is
(Luke, 1998)’s generation of soccer players for the
Robocup environment (Kitano et al, 1995). The author
was able to evolve competitive teams of soccer players
through an adapted version of Genetic Programming
(Koza, 1990). There also was an attempt at building
heterogeneous teams, which failed due to lack of time :
because of the enormous search space (even though it had
been significantly reduced through massive use of
domain-specific knowledge), and because of the delays
imposed by the Robocup server software, the GP runs
took days to produce successful results. Of course,
incremental, real-time evolution was out of the question.

Incrementality and open-endedness in collective evolution
is best exemplified by the SAGA paradigm (Harvey,
1992). A succinct definition of it could be : “incremental,
open-ended evolution of variable-length genotypes”.
Lifelong evolution and adaptation to ever-growing
complexity in the environment are explicit goals of
SAGA. Furthermore, incremental adaptation of a nearly-
converged population (“quasi-species”) in a growingly
complex environment is also described as a potential
alternative to the “all-out space search” of traditional GA.
However, SAGA was not designed with collective
behaviour in mind : agents are supposed to be evaluated
one at a time. The notions of “population” and “species”
apply only at the genotype level : the actual, phenotypic
agents that are produced are essentially autistic.

Perhaps closest to our work is Alastair Channon’s Geb
world (Channon & Damper, 1998), in which simple
animats with a very limited action repertoire (move, kill,
reproduce) are supposed to evolve towards ever more
complex behaviours. Being highly influenced by SAGA,
this work uses nearly-converged species as a way of
preserving and expanding “evolutionary emergence”, i.e.
the capacities and features that have been evolved.
However, this work leans much more on artificial life
than on artificial intelligence, in that there is no such thing
as a fitness function : animats are selected solely on their
aptitude to survive and reproduce. Trying to constrain this
system in order to make it perform even a very simple
task is (as we have painfully learned) extremely difficult.

To the best of our knowledge, no single work has ever
been proposed to meet all the requirements expressed in
our problem statement, even less so with heterogeneous
populations.

2 THE BASIC COLLECTIVE GENETIC
ALGORITHM

2.1 EVALUATION

Any genetic algorithm requires an evaluation phase. We
stated that our only evaluation method is a global fitness
function that assesses the performance of the whole
population. However, for GA-like selection, we must give
a “mark” to each agent, or at least we must be able to
compare any two agents within the population.

To do this, we use a very simple rating scheme : the score
of an agent is determined by the behaviour of the system
when that agent is not present. In other words, to evaluate
an agent’s usefulness, we temporarily “remove” it from
the system, and we evaluate the remaining population. If
that agent had a positive influence on the performance of
the population, the global fitness will naturally decrease
when we remove that agent. Similarly, if that agent had a
negative impact on the overall performance, the global
fitness will increase after it is removed. To put it briefly :
the higher the fitness of the remaining population, the
lower the usefulness of the removed agent.

In other words, to evaluate an agent we:

1. “Remove” that agent from the population (that
is, we prevent it from exerting any influence on
other agents, or on the global score of the
population).

2. Evaluate the score of the remaining population.

3. Give that score to the currently evaluated agent,
as a negative score (i.e. the lower, the better).

This evaluation system is pretty much an independent
sub-algorithm in its own right, which can be used in any
situation where one needs to evaluate the usefulness of
each individual agent through global evaluation.

One advantage of it is that it does not only consider the
immediate “productivity” of that particular agent : it takes
into account the indirect effects this agent may cause by
its mere existence. Some agents may not be directly
productive, but their activity may indirectly contribute to
an increased overall productivity (“helper” agents). On
the other hand, some agents may be have a neutral
behaviour by themselves, and yet be very damaging for
the population as a whole (e.g. agents that “stand in the
way” of others, preventing them from performing their
task). An individual evaluator cannot see this, but our
evaluation system can detect it, and reward (or punish)
these agents accordingly. Those features make this
method remarkably suitable for the generation of
collaborative systems.

2.2 REPRODUCTION

Having a tool to measure each agent’s impact on the
system, we can use it to drive the evolutionary process
through reproduction and crossover. However, it should
be clear that this “individual fitness” cannot be used for a

877ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

classical GA algorithm, where evaluation and
reproduction are applied separately to the whole
population at every generation. Our evaluation of each
agent’s score only holds within a given context, and that
context is the rest of the population; if we change other
agents’ behaviour, this score will become obsolete and
will have to be re-calculated. Evaluation and reproduction
can therefore not be performed separately : if the system
is to be modified it must be progressively, step by step,
agent after agent.

Our reproduction scheme is the following: At every
round, we :

1- Choose two agents randomly within the population

2- Evaluate each one in turn by the method described
above.

3- Create an offspring through one-point crossover
between the two chosen agents (this actually
creates two children; we select one of them
randomly).

4- Replace the agent with the highest negative score
(i.e. the less useful agent) by this offspring

This cycle is the collective genetic algorithm proper. It
may be seen as an extension of the tournament selection
method for classical GAs. There can be several variations
on it, some of which may bring very interesting results.
We will examine one of them in more detail in the
following sections.

We can see that this algorithm is fundamentally
incremental. There is no such thing as a “generation” : the
population changes gradually over time, while being
constantly evaluated - that is, while constantly performing
its task. This fits remarkably well in an open-ended
evolution scheme.

3 APPLICATION

Note : All the software described in this paper is available
at http://miriad.lip6.fr/~miconi .

Let us see how this algorithm can be applied to a simple
evolutionary problem : the evolution of aggregation
among a population of animats.

3.1 THE PROBLEM

This experiment takes place in a 2-D toroidal world,
where simple animats roam freely. These animats are
controlled by classical three-layer feed-forward neural
networks. The weights of these networks are real numbers
in the [-1; 1] domain.

The networks have four inputs : North, East, South, West.
Each of these inputs is stimulated according to the

number of other animats in the corresponding direction.
The degree of stimulation caused by each animat is
proportional to its distance:

Figure 1: The 4 input zones for animat A. Animat B will
cause a strong stimulation on input South, while animat C

will cause a lower stimulation on input West

The middle layer has twelve neurons. They perform a
summation of their inputs, and apply a sigmoid function
to it, before sending the result to the output neurons.
There are only two output neurons : one gives the vertical
speed of the animats, and the other one gives the
horizontal speed. Of course the output values (contrarily
to input values) can be negative.

This aggregation problem was successfully addressed by
(Zaera et al., 1996) in a more classical way, at the
population level : all animats in one given simulation
round had the same genotype, and thus the same network.
Those populations were evaluated, and the global score
was attributed to this genotype. Other genotypes were
evaluated in the same fashion, and a traditional GA was
applied to these genotypes.

In our experiment, the global evaluator is simply the total
sum of the distances between each animat and all the
other ones. Evolution occurs in the way described above :
an individual is chosen randomly and “removed” from the
population (which actually means that other animats
cannot see it, and it is not taken into account for the
global evaluation). The population is evaluated globally,
by calculating the distances between every pair of animats
(except for the currently evaluated animat), during 100
timesteps. This score (which is in fact a negative score, as
it gives a measure of the global fitness when this animat is
not present) is attributed to this animat. The process is
repeated with another randomly-selected animat. Then the
scores are compared, and the animat with the higher score
(i.e. the less useful one) is replaced by the offspring of the
two evaluated animats. The offspring is created through
one-point crossover, “spiced” with a mutation rate

878 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

varying between 0,5% and 2% for each run. Mutation is
performed by increasing or decreasing a weight by some
random amount between 0 and 0,5 (all weights being
comprised in the [-1; 1] range). We use a very small
population (10 animats).

3.2 RESULTS

At the beginning of the experiment, animats wander
randomly through the toroidal space.

Figure 2: Initial setting

But after a few thousands of rounds (remember there is no
such thing as a “generation” in this algorithm : a round
means two evaluations and one reproduction),
aggregation occurs.

Fig. 3: Animats move in tight flock

All runs led to successful aggregation. However,
significant differences have been found in the time it
takes to achieve this aggregation, and in the stability of
this aggregation afterwards. The mutation rate seems to
have an important role, which is not very surprising given
the small size of the population. For example, the
following run was performed with a mutation rate of
0,5%:

Fig. 4: Fitness curve, 0,5% mutation rate : successful
aggregation. The x-axis indicates the number of

evaluations.

On the other hand, the following run (performed with a
mutation rate of 0,66%) led to “absolute aggregation” : all
the animats eventually settled on a very small zone, and
stopped moving. This result represents the optimal
solution for this problem :

Fig. 5: 0,666% mutation rate; after a semi-stable
aggregation phase, the fitness curve becomes confounded
with the x-axis : the animats are totally aggregated and

motionless.

3.3 TOWARDS HETEROGENEOUS SYSTEMS

We have shown that our algorithm can solve a simple

879ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

problem of collective evolution quite efficiently.
However, under its present form, it exhibits one specific
feature that is quite disturbing in that it imposes a strong
restriction on the systems that can be produced.

Evolution occurs through massive cross-over (and
marginally through mutation) between different
genotypes. This means that after some period of time,
there will be a general trend of convergence between all
the genotypes. They won’t be perfectly identical, and will
keep changing, but at equilibrium state they will
essentially share the same properties. This effect is
regarded as a harmful in traditional GAs, and maintaining
the diversity of the population has been a primary concern
since the beginning of evolutionary computation (see
Schraudolph & Belew, 1992). However, in our case,
convergence is not necessarily a bad thing : it means that
the population has successfully adapted to its
environment. This is one of the traits this algorithm shares
with SAGA (see above) : convergence is not an
undesirable effect that should be prevented, it is the
natural outcome of evolution and adaptation.

However, this imposes a strong limit to our system as it
stands : it can only generate functionally homogeneous
systems, where all animats converge to share similar
traits. It can therefore not handle situations in which
several different types of agents in the population are
required : stable heterogeneous system are intrinsically
beyond the reach of this algorithm in its basic form.

We want to go beyond that. We want our algorithm to be
able to generate stable heterogeneous systems, where
different species emerge, coexist and collaborate. By
“emergence”, we mean that we expect to find
simultaneously the characteristics of those species, and
the proportion of each species within the population. Both
tasks should be done in parallel, with no other guidance
than global evaluation.

We found that this could be achieved very simply,
through a modification of the reproduction process.

4 HETEROGENEOUS SYSTEMS

4.1 ENHANCEMENT OF THE BASIC
ALGORITHM

Let us recapitulate the main steps of the algorithm under
its present form :

1- Choose an individual randomly in the
population.

2- Remove it from the population and evaluate the
global behaviour of the population without this
agent. Store the result as the agent’s “negative
score”. Put the agent back into the population.

3- Choose another agent in the population.

4- Same as 2, with this newly selected agent.

5- Replace the agent with the highest “negative

score” by the offspring of the two chosen agents.

We will not change this basic organisation. However, we
will add a restriction on the reproduction mechanism.
This restriction will not be enforced in step 5 (crossing-
over), but in step 3, that is, the choice of the second
mating agent.

To do this, we specify that agents must be numbered, that
is, each agent must be given a unique index number at
initialisation time. The attribution is totally arbitrary. For
example, if the agents are to be stored in an array, each
agent could be given its rank in the array as an index. The
only requirement is that this index must not change
throughout the whole duration of the experiment.

These indices are circular, that is, if there are N agents,
the successor of agent N is agent 1. This allows us to
define a distance over the agent space : the distance
between two agents is the absolute value of the difference
of their indices. The distance between agents 4 and 6 is 2,
the distance between agents 9 and 6 is 3, the distance
between agents N-1 and 2 is 3, etc.

This being done, we are ready to enforce the following
constraint on the reproduction process : reproduction can
only occur between agents within a given distance. That
is, agent M can only reproduce with agents within the
[M-r; M+r] range, where r is the “reproduction radius”,
the maximal radius within which reproduction is allowed.

In our algorithm, this will be enforced as follows : at
every round, the first agent to be evaluated is still chosen
randomly, but the second agent is chosen within a limited
range around that first agent. For example, if the
reproduction radius r is 5 and the first selected agent is
agent 2, then the second agent will be chosen within the
[N-3; 7] range.

What are the consequences of this restriction ? To answer
this question, we must study what happens when an agent
is evaluated. If the evaluation yields a bad result, this
agent is eliminated and replaced with a new one (although
this new agent still has some genetic material borrowed
from the old one through crossing-over). If the evaluation
result is good, the agent will remain unchanged, and
propagate its genes around it through its offspring.

But since reproduction can only take place within a
limited range, this means that this propagation will first
happen within the immediate vicinity of that agent. In
other words, if a very good agent appears somewhere, it
will quickly propagate its genes to its neighbours, leading
to a concentration of genes around it. Those neighbours,
in case they gain an evolutionary advantage from those
acquired genes, will in turn pass them to their own
neighbours. This means that outstanding agents will
initiate a gene percolation process, leading to the
emergence of groups of agents sharing similar genes and
similar traits - i.e. the emergence of species.

This gene percolation process will go on until two species

880 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

of agents (let us call them A and B) come to meet with
each other; that is, until a boundary emerges, with A-
agents on one side, B-agents on the other side, and a
mixture of both in the middle. At this point, suppose one
agent of type A is first selected for evaluation, followed
by an agent of type B. These evaluations will tell us
whether the system needs more agents of type A, or more
agents of type B, and gene propagation will occur
accordingly : the most useful agent will be preserved,
while the other one will be replaced by a mixture of both.

In other words, useful genes will first be concentrated into
species, then will percolate from neighbour to neighbour
until they “collide” with another species. Then, the
boundary will fluctuate, and the “territory” of each
species will be determined by its relative usefulness in
comparison to others', until an equilibrium is reached. We
have achieved our goal : evolving heterogeneous system
through global evaluation alone.

4.2 APPLICATION

We will apply this enhanced version of the algorithm to a
very simple chemistry-like toy-problem.

We have a pool of N cells, each of which produces a
particular type of molecule according to its genotype. All
cells have a 4-genes genotype, where each gene can have
the value (allele) 0, 1 or 2.

We know that three types of cells, Pa, Pb and Pc
(genotypes : 0000, 1111 and 2222), produce respectively
the molecules A, B and C. We state that these molecules
react together in the following way :

A + B = 2 * P + Z

P + Z = Nil

C + Z = Nil

In other words : the reaction of A and B produces two
molecules of product P, plus one molecule of byproduct
Z. Z is a corrosive, and can therefore react with the P
molecules and annihilate them. But C can reduce this
effect by annihilating the Z molecules.

The problem is the following : generating a pool of cells
that maximizes the quantity of product P. We can see that
the global fitness function may be expressed as follow :

f = Np - max((Nz - Nc), 0)

= 2*min(Na, Nb) - max((min(Na, Nb), 0)

where Nx is the number of molecules of product X in the
current output. Since P- and Z-molecules can only be
produced through the reaction of a A-B pair, the number
of P-/Z-molecules that can be produced is proportional to
min(Na, Nb), i.e. the maximum number of A, B pairs

available.

We use the same process as before : we evaluate two
agents by “removing” them (i.e. not taking them into
account in the evaluation of the production), and replace
the one with the highest “negative score” by an offspring
created through one-point crossover. There is no
mutation.

At the beginning of the experiment, all cells have a
random genotype.

1001

2021

1220

1020

0122

...

But after a few seconds, the population converges towards
a less chaotic state :

2222

2222

2122

2222

2111

1111

1111

...

Analysis of the resulting population shows the
proportions of each genotype fluctuate within a short
range around the following equilibrium :

Na ~= Nb ~= Nc ~= 33 ~= N/3

The fact that this solution is optimal can be quickly
verified by the reader for a small value of N (eg if N=12,
it is easy to see that the global fitness function reaches a
maximum for Na = Nb = Nc = 4).

4.3 ADAPTATION

The system has found an optimal solution to a simple
problem involving the generation of a heterogeneous
system. This was our main requirement. However, we
would want to check whether the system meets another
important requirement that was specified at the beginning
of this discussion : adaptability. If the conditions of the
environment change brutally, will the system be able to

881ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

adapt its solution accordingly ?

To assess the adaptability of the system, we modify our
experimental settings in the following way : we specify
that after T timesteps (T being large enough to reach
equilibrium state), the reaction between A and B
becomes:

A + B = P + 2 * Z

That is, the reaction of A and B yields only one molecule
of product P and two molecules of by-product Z. All other
equations are unchanged. The global fitness function thus
becomes :

f = Np - max((Nz - Nc), 0)

= min(Na, Nb)- max((2*min(Na, Nb) - Nc), 0)

which means a much tougher environment, since the
reaction yields twice as much corrosive Z-molecules as
desirable P-molecules.

This drastic altering of the pseudo-chemical rules does
have an impact on the system. As soon as this
modification in the rules occur, the proportions of each
genotype change and quickly converge towards a new
equilibrium :

Na ~= Nb ~= 25 = N/ 4

Nc ~= 50 = N / 2

Once again, it is easy to verify the optimality of this
solution for a small value of N : if N = 12, the fitness
function clearly reaches a maximum with Na = Nb = 3
and Nc = 6. The optimum that is reached under these
harder conditions is of course much lower than the
previous one. Those results are clearly indicated in the
fitness curve :

Fig. 6: Fitness curve of the population : the sharp drop
corresponds to the change in the pseudo-chemical rules
(Note : despite the impressive figures on the x-axis, the
whole experiment described in this curve took about ten

seconds on a PII-366MHz laptop computer)

5 CONCLUSIONS

We have designed an algorithm through which we can
apply collective incremental evolution to a population of
(possibly heterogeneous) agents, by using a global,
explicit fitness function alone. It is abstract enough to be
used in a broad variety of situations, with virtually any
kind of agents. To our knowledge, no other technique has
been proposed to date, which fulfils all these
requirements.

However, while this algorithm is able to solve the very
simple problems that we have used as a test bed, further
(and tougher) testing is obviously needed. Our current
goal is to design larger experiments in order to assess the
behaviour of our system when confronted to harder
problems. We are currently working on collaborative
foraging, with both homogeneous and heterogeneous
populations. In the longer run, we plan to apply this
system to physical agents, e.g. collectivities of robots
such as those described in (Drogoul & Picault, 1999).

Besides testing, further work also includes experimenting
with variations on the basic evolutionary process : “gross
evaluation” (in which several agents are removed from
the population at each evaluation) might be a way to
speed-up the initial phase of evolution. Different
reproduction schemes could be used. The sensitivity of
the algorithm in regard to internal parameters is also
being studied : population size, for example, may
represent a trade-off between diversity and efficiency,
while evaluation time is clearly a trade-off between
efficiency and accuracy. These investigations could lead
to a significant improvement of our system.

882 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

References:

(Channon & Damper, 1998) “Perpetuating Evolutionary
Emergence”, A.D. Channon and R.I. Damper.
Proceedings of the Fifth International Conference on
Simulation of Adaptive Behavior (SAB ’98).

(Drogoul & Picault, 1999) “MICRobES: Vers des
Collectivités de Robots Socialement Situés”, A. Drogoul
and S. Picault. Actes des 7èmes Journées Francophones
Intelligence Artificielle Distribuée et Systèmes Multi-
Agents (JFIADSMA'99).

(Goldberg, 1989) “Genetic Algorithms in Search,
Optimization and Machine Learning”, D. E. Goldberg.
Addison-Wesley, Reading, Massachussets, USA.

 (Harvey, 1992) “Species Adaptation Genetic Algorithms:
A Basis for a Continuing SAGA”, I. Harvey. Proceedings
of the First European Conference on Artificial Life.

 (Holland, 1975) “Adaptation in Natural and Artificial
Systems”, J. Holland. University of Michigan Press, Ann
Arbor, USA.

(Kitano et al, 1995) “Robocup: The Robot World Cup
Initiative”, H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda
and E. Osawa. Proceedings of the International Joint
Conference on Artifical Intelligence (IJCAI-95) Workshop
on Entertainment and AI/Alife.

(Koza, 1990) “Genetic Programming: A paradigm for
genetically breeding populations of computer programs to
solve problems”, J.R. Koza. Technical Report STAN-CS-
90-1314, Dept. of Computer Science, Stanford University.

(Luke, 1998) “Genetic Programming Produced
Competitive Soccer Softbot Teams for RoboCup97”, S.
Luke. Proceedings of the Third Annual Genetic
Programming Conference (GP ’98).

(Schraudolph & Belew, 1992) "Dynamic Parameter
Encoding for Genetic Algorithms”, N.N. Schraudolph and
R.K. Belew. Machine Learning Journal, vol. 9, n. 1, 9-22.

(Zaera et al, 1996) “(Not) Evolving Collective Behaviours
in Synthetic Fish”, N. Zaera, D. Cliff and J. Bruten.
Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior (SAB ’96).

883ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Understanding the Role of Learning in the Evolution of Busy Beavers:
a Comparison Between the Baldwin Effect and a Lamarckian Strategy

Francisco B. Pereira1,2, Ernesto Costa2
1Instituto Superior de Engenharia de Coimbra, Quinta da Nora, 3030 Coimbra, Portugal

2Centro de Informática e Sistemas da Universidade de Coimbra, Polo II, 3030 Coimbra, Portugal
{xico, ernesto}@dei.uc.pt
phone: +351 239790000

Abstract

In this paper we study how individual learning
interacts with an evolutionary algorithm in its
search for good solutions to the Busy Beaver
problem. Two learning strategies, the Baldwin
Effect and Lamarckian learning, are compared
with an extensive set of experiments. Results
show that the Baldwin Effect is less sensitive to
specific issues concerning the definition of the
learning model and it is more effective in
adjusting its learning power to maximise the
search performance of the evolutionary
algorithm. Some insight about the specific role
that evolution and learning play during search is
also presented.

1 INTRODUCTION
Evolution and learning are the two major forces that
promote the adaptation of individuals to the environment.
Evolution, operating at the population level, includes all
mechanisms of genetic changes that occur in organisms
over generations. Learning operates at a different time
scale. It gives to each individual the ability to modify its
phenotype during its life in order to increase its adaptation
to the environment and, hence, its chance to be selected
for reproduction. In standard evolutionary computation
(EC) optimisation, learning has usually been implemented
as local search algorithms. These methods iteratively test
several alternatives in the neighbourhood of the learning
individual trying to discover better solutions. At the end
of the learning process, the quality of an individual will
be, not only the measure of its initial fitness, but also of
its ability to improve, which leads to a better
understanding of the fitness landscape. In our research we
are interested in studying how learning and evolution may
be combined in computer simulations.
In this paper we use the Busy Beaver (BB) problem as the
testbed to study the above-mentioned interactions. In
1962, Tibor Rado proposed this problem in the context of
the existence of non-computable functions [13]. It can be
defined as follows: suppose a Turing Machine (TM) with
a two-way infinite tape and a tape alphabet={blank, 1}.
The question Rado asked was: what is the maximum

number of 1’s that can be written by a N-state halting TM
when started on a blank tape? This number, which is a
function of the number of states, is denoted by ∑(N). A
TM that produces ∑(N) non-blanks cells is called a Busy
Beaver. The BB is considered one of the most interesting
theoretical problems and, since its proposal, has attracted
the attention of many researchers. Some values for ∑(N)
and the corresponding TMs are known today for small
values of N. As the number of states increases, the
problem becomes harder and, for N≥5, there are several
candidates that set lower bounds on the value of ∑ (N).
To prove that a particular candidate is the N-state BB we
must perform an exhaustive search over the space of all
N-state TMs and verify that no other machine produces a
higher number of ones. This is extremely complex due to
the halting problem. In the original setting, the problem
was defined for 5-tuple TMs. One of the main variants
consists in considering 4-tuple TMs. In the next section
we present a formal definition of the BB problem for both
variants.
The search space of the BB problem possesses several
characteristics, such as its dimension and its complexity,
that make it extremely appealing to the EC field. We
performed some empirical analysis on the topology of the
landscape and verified that, in different areas of the search
space, there are small groups of neighbour valid solutions
to the BB problem. The size of these groups and the
quality of the TMs that compose them varies but,
nevertheless, they tend to be surrounded by large low
fitness areas composed by invalid solutions. The
combination of these factors makes the space highly
irregular and very prone to premature convergence. The
first attempt to apply EC techniques to the BB problem
was reported by Terry Jones [6], who used a genetic
algorithm to search for specific instances of the 5-tuple
BB. In 1999, our research group obtained a remarkable
success in our first effort to apply EC algorithms to the
4-tuple variant of the problem [8]. Several new lower
bounds were set, leading to a large increase in the
productivity of 6 and 7-state 4-tuple TMs.
Following our research interests, in a previous work [12]
we studied the influence that two different learning
models had in the performance of an evolutionary
algorithm when seeking for solutions to the 4-tuple BB.

884 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

The difference between the two models concerned the
number of modifications that they were allowed to
perform in the structure of the TM in each learning step.
We presented results of several experiments performed
within a Lamarckian framework and showed that, given
the complexity of the search landscape, a learning
procedure that is able to perform several modifications in
the structure of the individual in each learning step is
most beneficial.
In this paper we study the behaviour of the two learning
models with a different strategy, known as the Baldwin
Effect, and compare the results with the ones previously
obtained with the Lamarckian framework. In recent years
both strategies have been usefully applied in several
experiments and its impact has been studied in various
domains [1], [2], [3], [5], [14], [16]. Here we present a
detailed set of tests performed in a very complex search
landscape. Our goal is to try to understand the role that
evolution and learning play during the search process. We
also would like to establish some concrete rules to
determine, under which conditions, does learning really
provide help to evolution in its task of sampling the space.
The structure of the paper is the following: in the next
section we present a formal definition of the BB problem.
In section 3 we describe our evolutionary model,
including the learning procedures used. Section 4
comprises some experimental details about the
simulation. In section 5 we present results of the
experiments performed and analyse them. Finally, in
section 6, we review the main conclusions of this work.

2 THE BUSY BEAVER PROBLEM
A deterministic TM can be specified by a sextuple
(Q,Π,Γ,δ,s,f), where: Q is a finite set of states, Π is an
alphabet of input symbols, Γ is an alphabet of tape
symbols, δ is the transition function, s ∈ Q is the start
state and f ∈ Q is the final state [17]. The transition
function can assume several forms. The most usual one is:

δ: Q×Γ → Q×Γ×{L,R}
where L denotes move the head left and R move right.
Machines with a transition function with this format are
called 5-tuple TMs. A common variation consists in
considering a transition function of the form:

δ: Q×Γ → Q×{Γ∪{L,R}}
Machines of this type are known as 4-tuple TMs. When
performing a transition, a 5-tuple TM will write a symbol
on the tape, move the head left or right and enter a new
state. A 4-tuple TM either writes a new symbol on the
tape or moves its head, before entering the new state.
The original definition of the BB [13] considered
deterministic 5-tuple TMs with N+1 states (N states and
an anonymous halt state). The tape alphabet has two
symbols, Γ={blank, 1}, and the input alphabet has one,
Π={1}. The productivity of a TM is defined as the
number of 1’s present, on the initially blank tape, when
the machine halts. Machines that do not halt have

productivity zero. ∑(N) is defined as the maximum
productivity that can be achieved by a N-state TM. This
TM is called a Busy Beaver.
In the 4-tuple variant, productivity is usually defined as
the length of the sequence of 1’s produced by the TM
when started on a blank tape, and halting when scanning
the leftmost one of the sequence, with the rest of the tape
blank. Machines that do not halt, or, that halt on another
configuration, have productivity zero [4]. Thus, the
machine must halt when reading a 1, this 1 must be the
leftmost of a string of 1’s and, with the exception of this
string, the tape must be blank. In our research we focus on
the 4-tuple variant.

δ By blank By one
Q New State Action New State Action
1 5 1 f 1
2 4 0 7 R
3 4 1 6 L
4 3 1 4 R
5 2 R 3 L
6 1 0 7 L
7 1 R 5 0

Figure 1: A seven-state 4-tuple TM and its corresponding
transition table. The blank symbol is represented by 0.

3 EXPERIMENTAL MODEL

3.1 REPRESENTATION
In the experiments reported in this paper we are searching
for good candidates for the 4-tuple BB(7). Without loss of
generality we consider Q={1,2,3,4,5,6,7,f}, set 1 as the
initial state and f as the final state. Since Γ={blank, 1}, the
essential information needed to represent a potential
solution is reduced to the state transition table. Figure 1
shows a 4-tuple TM with 7 states (plus the halting state f)
and its state transition table. To codify the information
contained in the table we use an integer string with 28
genes (4 genes per state) with the following format:

New
State Action New

State Action

State 1

By blank By 1

... New
State Action New

State Action

State N

By blank By 1

34

5

6

1

0,1

1,0

1,L

1,R

1,L

1,R

0,R

1,L

0,1

0,0
0,R

0,1
7

1,1

0,0

f

2

885ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

3.2 SIMULATION AND EVALUATION
To evaluate an individual we simply decode the
information from the chromosome and then simulate the
resulting TM. Due to the halting problem we must
establish a limit for the maximum number of transitions
(MaxT). Machines that don’t halt before this limit are
considered non-halting TMs. To assign fitness we
consider the following factors in decreasing order of
importance:
• Halting before reaching the predefined limit for the

number of transitions;
• Accordance to the 4-tuple rules [4];
• Productivity;
• Number of used transitions;
• Number of steps made before halting.

We consider all these factors to assign fitness because we
intend to explore differences between “bad” individuals.
With this fitness function a TM that never leaves state 1 is
considered worse than another one that goes through 3 or
4 states, even if both are non-halting machines and have
the same productivity. In some preliminary experiments
this approach proved to be more effective than using
productivity alone as fitness.

3.3 LEARNING MODELS
After evaluation an individual might be selected for
learning. In this research we present results from
experiments performed with two local search procedures.

Random Local Search (RLS).
Given a current TM (machine that was built with the
information encoded in the chromosome of the individual
selected for learning) perform the following actions:
1. Select one transition T used in the simulation of the

current TM.
2. Randomly modify the action performed by transition

T1.
3. Evaluate the resulting TM.
4. If the fitness of the resulting TM is equal or higher than

the fitness of the current TM, then the resulting TM
becomes the current one.

5. If the maximum number of steps has been equalled
stop learning. Otherwise go to 1.

In each learning step RLS performs one modification in
the structure of the TM, accepting it if it does not lead to a
decrease in the fitness of the individual. Changes are
limited to actions performed by transitions. To ensure that
this restriction is not biasing results, we performed some
additional experiments enabling RLS to change either
actions or new states and verified that there is no
significant variation in the outcomes.
The most important difference between RLS and Multi
Step Learning (MSL) is that, with this second model, in

1 Possible actions for one transition: write blank, write 1, move left or
move right.

each learning step an individual performs 2 or 3 changes
in its structure. An algorithmic description of MSL
follows:

Multi Step Learning (MSL).
Given a current TM (machine that was built with the
information encoded in the chromosome of the individual
selected for learning) perform the following actions:
1. Select one transition T1 used in the simulation of the

current TM and that does not lead to the final state.
2. Randomly modify the action performed by transition

T1.
3. With a probability of 0.5 randomly modify the state to

where transition T1 leads. The final state is not
considered as a possibility when selecting the new
destiny.

4. Let S be the state to where T1 leads. Select, with equal
probability, one transition T2 from state S.

5. Randomly modify the action performed by transition
T2.

6. Evaluate the resulting TM.
7. If the fitness of the resulting TM is equal or higher than

the fitness of the current TM, then the resulting TM
becomes the current one.

8. If the maximum number of steps has been equalled
stop learning. Otherwise go to 1.

Modifications in the structure of the TM are done in
components that are directly connected, starting with the
action of one transition, then the destiny state of the
transition (it changes with 0.5 probability) and, finally,
the action of one of the transitions from this state. With
MSL, an individual has the possibility to jump to a point
in space that is not so close to its current position.

3.4 LEARNING STRATEGIES
There are two different ways to combine evolution and
learning in adaptive systems, inspired in two biological
theories. We will test both learning strategies with each
one of the models proposed.

3.4.1 Lamarckian Learning
Lamarckian theory of evolution claims that phenotypic
characteristics acquired by individuals during their
lifetime are somehow encoded in their genes and directly
inherited by their descendants. Even though this theory
proved to be wrong in biological systems, the idea has
been usefully applied in several experiments in the EC
field. In our experiments, when using a Lamarckian
strategy, at the end of the learning period, all changes
induced in the current TM are coded back to the genotype
of the learning individual.

3.4.2 The Baldwin Effect
Baldwin proposed a non-Lamarckian view of evolution,
where acquired characteristics could only be indirectly
inherited. This process, known as the Baldwin Effect,

886 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

occurs in two steps [15]: first, phenotypic plasticity
allows an individual to adapt to successful changes. These
changes lead to an increase in the fitness of the individual
and so it will tend to proliferate in the population. Given
sufficient time, a characteristic that was once learned may
become innate. To ensure that this last step, known as
genetic assimilation, occurs we use equation 1 to assign
fitness to an individual x that just finished its learning
period.

Where:
• F(x): Final fitness assigned to individual x;
• FL(x): Raw fitness of the individual after learning

(fitness of the current TM at the end of the learning
period);

• Max_Steps: Maximum number of steps of the learning
process;

• Improv: Number of steps of the learning period that
conducted to an increase in the fitness of individual x;

• α: Constant representing the cost of learning. In the
experiments presented in this paper it has value 0.1.

A detailed analysis of the conditions that are required for
genetic assimilation to occur are beyond the scope of this
work (consult [10] for such a discussion). In this paper it
suffices to say that, if we do not perform the modification
codified by equation 1, there will be no difference
between the fitness of individuals who innately contain
the genetic information about areas of increased fitness
and individuals that are able to learn this trait during
lifetime. This flattening of the space around optima
removes the evolutionary pressure of the simulation. In
experiments with a Lamarckian strategy this modification
is not required because all changes induced by learning
are directly encoded in the genotype.

4 EXPERIMENTAL SETTINGS
The experiments presented concern the search for the
4-tuple BB(7). The settings of the evolutionary algorithm
are the following: Number of evaluations: 200,000,000;
Population Size: 500; Elitist Strategy; Tournament
Selection with tourney size 5; Single Point Mutation;
Mutation rate: 0.025; Graph Based Crossover; Maximum
graph crossover size: 4; Crossover rate: 0.7; MaxT
(Maximum number of transitions): 100,000.
Graph based crossover was presented in [11]. It was
designed to work with individuals with a graph-like
structure and to manipulate them in a way that is
consistent with its representation. The main idea of this
operator is the exchange of sub-graphs between
individuals. Maximum graph crossover size defines the
number of states belonging to each sub-graph. Results
presented confirmed that, in this domain, it clearly
outperforms classical crossover operators. In experiments
with learning we make use of another parameter, the
Learning Rate (LR), which is defined as the probability of

an individual being subject to learning. With this
parameter it is possible to restrict the number of
individuals that learn in each generation. We present
results from experiments with 5 different values: {0.1,
0.25, 0.5, 0.75, 1.0}. During learning the number of steps
performed by an individual is set to 10 and remains fixed
for all experiments. Each step counts as one evaluation.
The initial population is randomly generated and for every
set of parameters we performed 30 runs with the same
initial conditions and different random seeds. Even
though values for different settings were set heuristically
we performed some tests with other values and verified
that, within a moderate range, there was no significant
difference in the outcomes.

5 RESULTS
In this section we present results from two distinct sets of
experiments: the first one includes experiments performed
with Lamarckian learning and the second one experiments
performed with the Baldwin Effect. Each set comprises
10 different experiments: 5 using the RLS learning model
and another 5 using the MSL learning model. The only
difference between experiments using the same learning
model is the LR value. Additionally, we present results
from one experiment where individuals do not learn
during evolution (NoLearn) to serve as a comparison
measure.
In tables 1 and 2 we present, for all different experiments,
the productivity of the best individual of the final
generation, in each one of the 30 runs. Table 1 presents
results concerning experiments with the Baldwin Effect,
whilst table 2 has results from experiments performed
with Lamarckian learning. In both tables the column
labelled NoLearn presents results from the experiment
where individuals did not learn. Before the application of
EC techniques to the 4-tuple BB(7), the productivity of
the best known candidate was 37 [7]. We adopt this
pre-EC record as the threshold of minimum quality and
focus our attention in runs that were able to find TMs
with higher productivity. A brief perusal of the results
shows that EC techniques enabled the regular discovery
of good solutions. With all settings it was possible to find
TMs with productivity > 37. The results obtained also
suggest that the solution space for the 4-tuple BB(7) is not
continuous in terms of productivity. We were able to find
a few TMs with productivity around 100 and then we
found several TMs with productivities that range between
161 and 164. This discontinuity is also visible in the
5-tuple variant of the problem [9].
Focusing our analysis in the last two rows of each one of
the two tables it is possible to see that, in a diversity of
situations, both learning strategies were able to help
evolution. There are, however, important distinctions that
require a detailed analysis. With Lamarckian learning,
only experiments with the MSL model were able to
outperform the NoLearn algorithm in a consistent way. A
standard evolutionary approach found TMs with
productivity > 37 in 10% of the runs (3 out of 30 runs).

1) (equation
StepsMax

ImprovxFxF L)
_

1()()(∗−∗= α

887ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

With RLS only one LR value (LR=0.25) was able to
marginally obtain a better result. At the contrary, results
obtained by some experiments with the MSL model are
clearly better than those obtained by RLS model and the
standard evolutionary algorithm. With LR=0.1, 20% of
the runs were able to find TMs with productivity > 37 (6
out of 30 runs). This percentage is even slightly higher
when LR=0.25. Then, as the LR value increases, the
advantage of Lamarckian learning experiments decreases.
It is not surprising that the performance decreases as the
value of LR increases. Since it re-encodes all changes
back to the genotype, Lamarckian learning is a very
strong mechanism and it pushes the search very fast to a
local optimum. Given the complex landscape that we are
dealing with, this effect is even magnified. The
considerable advantage of MSL over RLS within a
Lamarckian framework is, probably, due to the ability that
the first model has to perform several modifications in the
structure of the learning individual in each learning step.
This gives to experiments with a Lamarckian strategy a
higher chance of escaping from local optima. This
situation was analysed in detail in a previous work [12].
Results achieved with the Baldwin Effect present two
important distinctions. The first one is that the variation in
results obtained by experiments using different learning
models (RLS or MSL) is less significant. The Baldwin
Effect took advantage of both models to improve the
performance of the evolutionary algorithm, even though
results with MSL are somewhat better. The other
important difference is that the variation of the LR value
does not seem to produce dramatic variations in the
performance of the search algorithm. With just one
exception (RLS model, LR = 1.0), all other experiments
using the Baldwin Effect were able to outperform the

results obtained by the standard evolutionary algorithm.
This suggests that the behaviour of an EC algorithm that
uses the Baldwin Effect is more robust and less
dependable on specific learning issues (such as the kind
of model employed or the learning rate).
Even though differences are not so evident as they are
with Lamarckian learning, there is, nevertheless, a small
advantage of MSL over RLS. When searching for
solutions in highly irregular landscapes, giving to learning
individuals the possibility to enlarge their neighbourhood
region (this region includes all points to where an
individual is allowed to jump in just one learning step)
seems to provide them an important advantage. This
advantage is particularly visible in experiments that use
strategies that are prone to premature convergence, such
as it is the case of Lamarckian learning.
In addition to increasing the likelihood of finding
promising solutions, learning also helps evolution to
discover them earlier in the search process. In tables 3 and
4 we present the periods in the simulation when TMs with
productivity > 37 were found. In table 3 results concern
experiments using the Baldwin Effect, whereas in table 4
they concern experiments with Lamarckian learning. It is
possible to see that both learning strategies were able to
consistently find promising TMs before 100 million
evaluations. The NoLearn experiment only started to find
such machines after this point. Moreover we can see that
the main difference in efficiency between the Baldwin
Effect and Lamarckian learning occurs before 50 million
evaluations. In the period ranging from 1 to 50 million
evaluations, experiments with the Baldwin Effect found
19 promising TMs. In the same period experiments with
Lamarckian learning only found 10 TMs with
productivity > 37.

Table 1: Productivity of the best individual of the final generation for each one of the 30 runs. Results concern
experiments performed with the Baldwin Effect.

 Baldwin Effect
 Random Local Search (RLS) Multi Step Learning (MSL)

NoLearn
0.1 0.25 0.5 0.75 1.0 0.1 0.25 0.5 0.75 1.0

<= 35 12 14 22 17 19 25 16 16 20 23 21
36-37 15 11 4 8 6 4 8 7 3 3 4

38-160

Pr
od

uc
tiv

ity

of
 th

e
be

st

T
M

161-164 3 5 4 5 5 1 6 7 7 4 5

Table 2: Productivity of the best individual of the final generation for each one of the 30 runs. Results concern
experiments performed with Lamarckian learning.

 Lamarckian Learning
 Random Local Search (RLS) Multi Step Learning (MSL)

NoLearn
0.1 0.25 0.5 0.75 1.0 0.1 0.25 0.5 0.75 1.0

<= 35 12 18 17 22 21 20 16 22 19 22 19
36-37 15 12 9 7 6 8 8 1 7 6 8

38-160 1

Pr
od

uc
tiv

ity

of
 th

e
be

st

T
M

161-164 3 1 4 1 3 2 5 7 4 2 3

888 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Table 3: Period in the simulation when TMs with productivity > 37 were found. Results concern experiments performed
with the Baldwin Effect and are divided over 6 temporal intervals.

 Baldwin Effect
 Random Local Search (RLS) Multi Step Learning (MSL)

NoLearn
0.1 0.25 0.5 0.75 1.0 0.1 0.25 0.5 0.75 1.0

0-1
1-10 1 1 1 2 1

10-50 1 2 2 3 3 3 2 2 1
50-100 2 1 1 1 1 2 2 1 2

100-150 2 1 1 1 1 1 Ev
al

ua
tio

ns

(M
ill

io
ns

)

150-200 1 1 1 1 2 1
 Totals 3 5 4 5 5 1 6 7 7 4 5

Table 4: Period in the simulation when TMs with productivity > 37 were found. Results concern experiments performed
with Lamarckian learning and are divided over 6 temporal intervals.

 Lamarckian Learning
 Random Local Search (RLS) Multi Step Learning (MSL)

NoLearn
0.1 0.25 0.5 0.75 1.0 0.1 0.25 0.5 0.75 1.0

0-1
1-10 1 1 1 1

10-50 1 2 3 1 1 1
50-100 1 1 1 2 3 2

100-150 2 1 1 2 1 Ev
al

ua
tio

ns

(M
ill

io
ns

)

150-200 1 1 1 1 1 1
 Totals 3 1 4 1 3 2 6 7 4 2 3

Results from tables 3 and 4 confirm that, despite
variations in efficiency, learning is really helping
evolution in its search for good solutions for the BB
problem. We would like to determine now some
conditions that are required for such help to take place.
We collected some results from the experiments that
clarify what might be happening during the search process
and in what way do evolution and learning interact. In
tables 5 and 6 (respectively for the Baldwin Effect and
Lamarckian learning experiments) we present the
contribution of evolution and learning to the discovery of
new best individuals during simulation. Contribution from
evolution includes all new best individuals generated by
crossover and/or mutation and contribution from learning
includes all new best individuals that result from the
application of one learning model. Contributions from
each one of experiments are divided over 5 temporal
intervals. We focus our analysis in the periods that range
from 1 million to 100 million evaluations since,
considering tables 3 and 4, this is the interval where
learning experiments showed to be most advantageous.
Looking to the results shown in tables 5 and 6, there are
two important features that are common to experiments
with better performance. The first one is the number of
improvements obtained by evolution. If we take as
comparison measure the number of improvements
obtained by the standard EC algorithm (NoLearn) we see
that most of the Baldwin Effect experiments were able to

achieve a similar number of improvements due to
evolution. In a considerable number of settings this value
is even superior, which is a remarkable result, especially
if we consider that a large number of evaluations is
devoted to learning (e.g., in experiments with LR=0.1 half
of the evaluations are spent in the learning process). This
result reveals that learning is not preventing evolution
from sampling the space. At the contrary, it is supporting
evolution in this task, improving the rate at which new
best solutions are found by crossover and mutation. Also,
with the Baldwin Effect strategy, there is no significant
difference in the number of improvements due to
evolution obtained in similar experiments that use each
one of the two models. This result confirms our previous
conclusion that this strategy is able to take advantage
from both learning models to improve its search
performance.
On the other way results obtained by Lamarckian learning
present significant variations. There is an important
disparity between the number of improvements due to
evolution presented by experiments with different
learning models and LR values. In agreement with our
previous analysis the larger number of improvements is
seen in experiments with the MSL model and LR≤0.5.
The second important feature concerns the relative weight
of learning in the process of discovering new best
solutions. Values in parenthesis in the columns labelled

889ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Learn represent the percentage of all improvements that
were due to learning in the corresponding period. For both
learning strategies there seems to be an inverse
relationship between the weight of learning in discovering
new best solutions and the performance of the search
algorithm: experiments that obtain better results tend to
present a moderate weight in improvements due to
learning. This correlation is valid for all settings, even
though there is a natural increase in the weight of learning
in experiments that have a higher LR value. Most of the
experiments with the Baldwin Effect are able to maintain
the weight of learning at a moderate level, which explains
the consistent results obtained. It is, nevertheless, visible
that in experiments with the MSL model the weight of
learning is smaller than in the ones that use the RLS
model (for an equivalent LR value). This might justify the

slight advantage presented by experiments with MSL over
RLS within the Baldwin Effect framework.
In experiments performed with the Lamarckian strategy
the weight of learning is always superior to the value
obtained in similar conditions by the Baldwin Effect. In
accordance to our hypothesis, lowest values are found
precisely in experiments that obtained better results. This
correlation suggests that it is evolution that should guide
the search process. It is, nevertheless, important to keep a
moderate exploitation pressure performed by a learning
procedure, since results show that this pressure enables
the early discovery of good solutions. A different scenario
occurs if the percentage of improvements due to learning
is too high. In this situation learning acts as the primary
guiding force of the search process and evolution plays a
secondary role.

Table 5: Contributions from evolution (Ev. columns) and learning (Learn columns) to the improvement of the best
solution during simulation. For each experiment, results presented are the sum of 30 runs. Results are divided over 5
temporal periods. Values in parenthesis in the columns labelled Learn represent the percentage of all improvements from
that period that were due to learning. Results concern experiments performed with the Baldwin Effect.

 Periods of the Simulation
Evals. (Millions) 0-1 1-10 10-50 50-100 100-200

 Ev. Learn Ev. Learn Ev. Learn Ev. Learn Ev. Learn
NoLearn 1096 146 93 27 43

RLS 0.1 863 179 (17) 126 17 (12) 74 22 (23) 21 10 (32) 29 4 (12)
RLS 0.25 614 353 (36) 170 35 (17) 47 8 (15) 35 15 (30) 29 9 (24)
RLS 0.5 479 497 (51) 159 86 (35) 87 31 (26) 25 17 (40) 32 24 (43)

RLS 0.75 379 597 (61) 166 77 (31) 84 60 (42) 54 23 (30) 28 16 (36)
RLS 1.0 249 642 (72) 136 90 (40) 65 35 (35) 12 14 (54) 24 18 (43)
MSL 0.1 850 90 (10) 166 8 (5) 87 9 (9) 28 7 (20) 22 2 (8)

MSL 0.25 813 167 (17) 173 25 (13) 150 24 (14) 37 9 (20) 32 5 (14)
MSL 0.5 613 263 (30) 154 24 (14) 83 14 (14) 26 4 (13) 37 12 (25)

MLS 0.75 533 320 (38) 147 20 (12) 61 15 (20) 35 7 (17) 23 5 (18)
MSL 1.0 433 382 (47) 124 40 (24) 91 27 (23) 17 5 (23) 45 11 (20)

Table 6: Contributions from evolution (Ev. columns) and learning (Learn columns) to the improvement of the best
solution during simulation. For each experiment, results presented are the sum of 30 runs. Results are divided over 5
temporal periods. Values in parenthesis in the columns labelled Learn represent the percentage of all improvements from
that period that were due to learning. Results concern experiments performed with Lamarckian learning.

 Periods of the Simulation
Evals. (Millions) 0-1 1-10 10-50 50-100 100-200

 Ev. Learn Ev. Learn Ev. Learn Ev. Learn Ev. Learn
NoLearn 1096 146 93 27 43

RLS 0.1 669 302 (31) 110 42 (28) 44 13 (23) 30 13 (30) 31 22 (41)
RLS 0.25 464 418 (47) 91 71 (44) 32 31 (49) 19 17 (47) 16 12 (43)
RLS 0.5 376 600 (62) 59 103 (64) 25 55 (69) 25 16 (39) 4 10 (71)

RLS 0.75 236 617 (72) 39 99 (72) 33 72 (69) 13 28 (68) 3 7 (70)
RLS 1.0 212 768 (78) 44 108 (71) 14 42 (75) 16 48 (75) 4 14 (78)
MSL 0.1 798 222 (22) 141 50 (26) 86 28 (25) 45 14 (24) 17 12 (41)

MSL 0.25 506 316 (38) 95 61 (39) 53 39 (42) 37 19 (34) 25 26 (51)
MSL 0.5 365 505 (58) 86 69 (45) 47 44 (48) 30 23 (43) 12 14 (54)

MLS 0.75 327 506 (61) 84 102 (55) 49 58 (54) 6 10 (63) 14 19 (58)
MSL 1.0 231 572 (71) 53 91 (63) 40 50 (56) 30 33 (52) 12 30 (71)

890 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Since learning in this context is, by definition, a local
procedure, search will most likely end up in the nearest
local optimum. From the set of results presented it is
possible to conclude that the Baldwin Effect strategy does
not prevent evolution from sampling the space and it is
more effective in adjusting its learning power to avoid
premature convergence. Conversely, the Lamarckian
strategy is not able to control this pressure. In the
experiments we performed, it required specific conditions
in what concerns the learning model and LR value to
achieve competitive results. In most of the situations, it
forced the EC to converge prematurely to some
sub-optimal early discovered area.

6 CONCLUSIONS
In this paper we studied the interactions that exist
between evolution and learning when searching for good
solutions for the BB problem. We presented results of
several experiments performed with two different learning
strategies, the Baldwin Effect and Lamarckian learning. A
careful analysis of the results allowed us to identify some
conditions that should be met to maximise search
performance: evolution should be the primary force
responsible for sampling the landscape, although a
moderate contribution from a learning procedure is very
important to help evolution in its task. Experimental
results also revealed that the Baldwin Effect strategy is
less sensitive to specific issues concerning the definition
of learning and it gives to the EC algorithm the possibility
to maintain the diversity of the population, while
exploiting the neighbourhood of areas already sampled by
evolution. Additionally, results suggest that local search
procedures with a considerable degree of freedom in what
concerns the definition of local neighbourhood are more
adapted to highly irregular landscapes.

Acknowledgments
This work was partially supported by the Portuguese
Ministry of Science and Technology, under Program
POSI.

References
1. Arita, T. and Suzuki, R. (2000). Interactions Between

Learning and Evolution: The Outstanding Strategy
Generated by the Baldwin Effect, In Bedau, M.,
McCasKill, J., Packard, N. and Rasmussen, S. (Eds.),
Proceedings of Artificial Life VII, pp. 196-205.

2. Ackley, D. and Littman, M. (1994). A Case for
Lamarckian Evolution. In Langton, C. (Ed.), Artificial
Life III, pp. 3-10, Addison-Wesley.

3. Belew, R. and Mitchell, M. (1996). Adaptive
Individuals in Evolving Populations: Models and
Algorithms, Santa Fe Institute in the Sciences of
Complexity, Vol. XXVI, Addison-Wesley.

4. Boolos, G., and Jeffrey, R. (1995). Computability and
Logic, Cambridge University Press.

5. Hinton, G. E. and Nowlan, S. (1987). How learning
can guide Evolution. Complex Systems, 1, pp. 495-502.

6. Jones, T. and Rawlins, G. (1993). Reverse
Hillclimbing, Genetic Algorithms, and the Busy
Beaver Problem. In Forrest, S. (Ed.). Proceedings of
the 5th International Conference on Genetic
Algorithms (ICGA-93), pp.70-75, Morgan Kaufmann.

7. Lally, A., Reineke, J. and Weader, J. (1997). An
Abstract Representation of Busy Beaver Candidate
Turing Machines, Technical Report, Van Gogh Group,
Rensselaer Polytechnic Institute.

8. Machado, P., Pereira, F. B., Cardoso, A. and Costa, E.
(1999). Busy Beaver: The Influence of Representation.
In Poli, R., Nordin, P., Langdon, W. and Fogarty, T.
(Eds.). Proceedings of the Second Workshop on
Genetic Programming (EuroGP-99), pp. 29-38,
Springer-Verlag.

9. Marxen, H. and Buntrock, J. (1990). Attacking Busy
Beaver 5, Bulletin of the European Association for
Theoretical Computer Science, Vol. 40.

10.Mayley, G. (1997). Landscapes, Learning Costs, and
Genetic Assimilation. Evolutionary Computation, Vol.
4(3), 213-234.

11.Pereira, F. B., Machado, P., Costa, E. and Cardoso, A.
(1999). Graph-Based Crossover: a Case Study with the
Busy Beaver Problem. In Banzhaf, W., Daida, J. Eiben,
A. E., Garzon, M., Honavar, V., Jakiela, M. and Smith,
R. E. (Eds.), GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference, pp.
1149-1155, Morgan Kaufmann.

12.Pereira, F. B. and Costa, E. (2001). The Influence of
Learning in the Evolution of Busy Beavers. To appear
in the Proceedings of EvoLEARN2001.

13.Rado, T. (1962). On non-computable functions, The
Bell System Technical Journal, V. 41(3), pp. 877-884.

14.Sasaki, T. and Tokoro, M. (1999). Evolving Learnable
Neural Networks Under Changing Environments with
Various Rates of Inheritance of Acquired Characters:
Comparison of Darwinian and Lamarckian Evolution,
Artificial Life, Vol. 5, No. 3, pp. 203-223.

15.Turney, P., Whitley, D., and Anderson, R. (1997).
Evolution, Learning and Instinct: 100 Years of the
Baldwin Effect, Evolutionary Computation, Vol. 4(3),
iv-viii.

16.Whitley, D., Gordon, S. and Mathias, K. (1994).
Lamarckian Evolution, the Baldwin Effect and
Function Optimization. In Davidor, Y., Schwefel, H. P.
and Manner, R. (Eds.), Parallel Problem Solving from
Nature(PPSN III), pp. 6-15. Berlin: Springer-Verlag.

17.Wood, D. (1987). Theory of Computation, Harper &
Row, Publishers.

891ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

E�ects of Swarm Size on Cooperative Particle Swarm Optimisers

F. van den Bergh and A.P. Engelbrecht

Department of Computer Science

University of Pretoria

South Africa

fvdbergh@cs.up.ac.za, engel@driesie.cs.up.ac.za

Abstract

Particle Swarm Optimisation is a stochastic

global optimisation technique making use of

a population of particles, where each particle

represents a solution to the problem being

optimised. The Cooperative Particle Swarm

Optimiser (CPSO) is a variant of the original

Particle Swarm Optimiser (PSO). This tech-

nique splits the solution vector into smaller

vectors, where each sub-vector is optimised

using a separate PSO. This paper investi-

gates the e�ect of swarm size on the CPSO,

showing that the CPSO does not exhibit the

same general trend as the original PSO.

1 INTRODUCTION

The particle swarm optimiser, �rst intro-

duced in [Eberhart and Kennedy, 1995], has

proven to be a useful global optimisation

algorithm, with applications in neural net-

work training [Engelbrecht and Ismail, 1999],

[van den Bergh and Engelbrecht, 2000], func-

tion minimisation [Shi and Eberhart, 1999],

[Shi and Eberhart, 1998] and human tremor analysis

[Eberhart and Hu, 1999].

The Cooperative Particle Swarm Optimiser (CPSO,

or split swarm) is a recent modi�cation to the original

PSO algorithm leading to a signi�cant reduction in

training time [van den Bergh and Engelbrecht, 2000,

van den Bergh and Engelbrecht, 2001]. The coopera-

tive approach increased the number of adjustable pa-

rameters in the PSO algorithm signi�cantly. This pa-

per studies the e�ect the number of particles in the

swarm has on the CPSO algorithm, also providing re-

sults for the original PSO for reference.

Section 2 provides a brief description of the basic PSO,

with Appendix A listing the complete algorithms. Sec-

tion 3 briey outlines the expectations for the experi-

ments described in Section 4, the results of which are

provided in Section 5. The paper is concluded with

some �ndings and directions for future research in Sec-

tion 6.

2 PARTICLE SWARM

OPTIMISERS

The PSO, like a Genetic Algorithm, is a population

based optimisation technique, but the population is

now called a swarm.

Each individual i has the following attributes: A cur-

rent position in search space, xi, a current velocity, vi,

and a personal best position in search space, yi. Dur-

ing each iteration each particle in the swarm is updated

using (1) and (2). Assuming that the function f is to

be minimised, that the swarm consists of n particles,

and r1 � U(0; 1), r2 � U(0; 1) are elements from two

uniform random sequences in the range (0; 1), then:

vi := wvi + c1r1(yi � xi) + c2r2(ŷ � xi) (1)

xi := xi + vi (2)

yi :=

�
yi if f(xi) � f(yi)

xi if f(xi) < f(yi)
(3)

ŷ 2 fy0;y1; : : : ;yng j f(ŷ)
= min(f(y0); f(y1); : : : ; f(yn))

(4)

Note that ŷ is therefore the global best position

amongst all the particles. The value of each di-

mension of every vi vector is clamped to the range

[�vmax; vmax] to prevent the PSO from leaving the

search space. The value of vmax is usually chosen to

892 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

be k�xmax, with 0:1 � k � 1:0 [Eberhart et al., 1996].

Note that this does not restrict the values of xi to the

range [�vmax; vmax]; it only limits the maximum dis-

tance that a particle will move during one iteration.

The variable w in (1) is called the inertia weight ; this

value is typically set up to vary linearly from 1 to near

zero during the course of a training run. Larger val-

ues for w result in smoother, more gradual changes in

direction through search space. Toward the end of the

training run smaller inertia coeÆcients allow particles

to settle into the minimum.

Acceleration coeÆcients c1 and c2 also control

how far a particle will move in a single itera-

tion. Typically these are both set to a value of

2 [Eberhart et al., 1996], although assigning di�erent

values to c1 and c2 sometimes leads to improved per-

formance [Suganthan, 1999].

Appendix A lists the algorithm for the origi-

nal PSO. Two other algorithms are also pro-

vided: the `split' PSO and the `hybrid' PSO

[van den Bergh and Engelbrecht, 2001].

The split algorithm (Figure 2) takes the n-dimensional

solution vector and breaks it into n one-dimensional

components. Each component is then optimised by a

separate PSO. The error function is evaluated using a

vector formed by concatenating the components from

the n swarms to again form an n-dimensional vector.

The hybrid algorithm (Figure 3) combines a standard

PSO with a split PSO, sharing information at the end

of each iteration.

3 PARTICLE SWARM SIZE

The experiments performed below were designed to

study the behaviour of three di�erent versions of the

particle swarm optimiser by varying the number of

particles allocated to each swarm.

The swarm size is a critical parameter in the original

PSO algorithm | too few particles will cause the al-

gorithm to become stuck in local minima, while too

many particles will slow down the algorithm.

Assume that a simulation will run over I iterations,

using an n-dimensional function. The number of Er-

ror Function Evaluations (EFEs) will be equal to the

product of the swarm size, P , and the number of iter-

ations, thus E = I � P . This equation holds for the

original PSO algorithm.

To compare the plain PSO to the split (and thus

also hybrid) swarms, the number of EFEs must

be kept constant. The number of EFEs in the

split swarm is given by E = I � P � n (see

Appendix A, [van den Bergh and Engelbrecht, 2000,

van den Bergh and Engelbrecht, 2001]).

Thus, for a �xed number of EFEs, a choice has to be

made, either choosing a larger swarm (more variety) or

having more iterations. It is clear that more iterations

will eventually improve the quality of the solution, as

long as the whole swarm does not get stuck in a lo-

cal minimum | this follows from the fact that the

position yielding the lowest error so far is stored, so

that evaluating the function at the best particle in the

swarm yields a strictly non-increasing sequence.

Knowing that a large number of iterations will improve

the quality of the solution, the problem is now to �nd

the optimal balance between the number of iterations

(I) and swarm size (P) for a �xed value of E. The ex-

periments in the next section will test di�erent types

of swarms using varying swarm sizes, where the num-

ber of iterations is calculated using I = E=P for the

plain swarm, I = E=(n � P) for the split swarm and

I = E=((n+ 1)� P) for the hybrid swarm.

4 FUNCTIONS

The following functions were used during testing:

The Sphere function:

f0(x) =

nX
i=1

x2i (5)

The Rosenbrock (or banana-valley) function:

f1(x) =

nX
i=1

�
100(xi+1 � x2i)

2
+ (xi � 1)

2
�

(6)

Scha�er's f6 function:

f2(x) = 0:5�

�
sin
p
x2 + y2

�2
� 0:5

(1:0 + 0:001 (x2 + y2))
2

(7)

The generalised Rastrigin function:

f3(x) =

nX
i=1

�
x2i � 10 cos(2�xi) + 10

�
(8)

The generalised Griewank function:

f4(x) =
1

4000

nX
i=1

x2i �
nY
i=1

cos

�
xip
i

�
+ 1 (9)

893ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Table 1: Parameters Used During Experiments

Function n domain stop

f0 30 100 0.01

f1 30 30 100

f2 2 100 0.00001

f3 30 5.12 100

f4 30 600 0.1

These functions represent a mixture in terms of the

correlation between the variables used. For example,

the Sphere and Rastrigin functions are completely un-

correlated, and thus the variables can be optimised

independently. The Griewank function is highly cor-

related (because it includes a product of all the terms),

whereas the Rastrigin and Scha�er functions fall some-

where in between.

Table 1 contains the parameters used to obtain the re-

sults below. The `domain' column in the table speci�es

the domain size from which the initial random parti-

cles are selected. The `stop' column lists the threshold

used as a stopping criterion on the second set of tests,

corresponding to the results in Tables 3, 5, 7, 9 and

11.

Two types of experiment were performed: A �xed it-

eration experiment, reporting the �nal error and a test

to determine how quickly a certain error threshold can

be reached.

plain/split/hybrid: A swarm using c1 = 2:0, c2 =

2:0, w decreases linearly over time, and vmax is

clamped to the domain (refer to Table 1). The

algorithm stops when the maximum number of

error function evaluations (EFEs) have been used,

�xed at 2� 10
5
.

plainB/splitB/hybridB: A swarm using c1 = 2:0,

c2 = 2:0, w decreases linearly over time, vmax is

clamped to domain. The algorithm stops when

the error drops below the `stop' value listed in

Table 1. Note that the values speci�ed in this

table correspond to the values used by Eberhart

and Shi [Eberhart and Shi, 2000]. Each experi-

ment consisted of 500 runs.

Due to the di�erent structure of the CPSO algorithms

(split and hybrid) it is not possible to compare them

to the original PSO based on the number of itera-

tions that the algorithm performed. Instead, the num-

ber of times that the function under consideration has

been evaluated is measured, as this corresponds to the

amount of `work' done. This unit is expressed as the

number of Error Function Evaluations, or EFEs.

5 RESULTS

Table 2: Sphere (f0) After 2� 10
5
EFEs

Type P Mean

plain 5 5.7283e�07 � 4.38e�07
10 4.5000e�19 � 7.04e�19
15 4.7235e�24 � 5.99e�24
20 1.1770e�26 � 1.32e�26
25 3.7339e�26 � 7.16e�26
30 9.0862e�26 � 8.52e�26

split 5 1.0939e�55 � 1.66e�55
10 3.4251e�90 � 6.71e�90
15 1.6621e�80 � 2.31e�80
20 2.0411e�63 � 1.71e�63
25 6.0312e�52 � 1.03e�51
30 2.4475e�44 � 2.53e�44

hybrid 5 1.5972e�56 � 3.12e�56
10 9.2974e�88 � 1.82e�87
15 1.4860e�76 � 2.88e�76
20 3.3054e�60 � 5.62e�60
25 3.8156e�50 � 7.10e�50
30 9.2566e�45 � 4.54e�45

Table 3: Sphere (f0) Computational Complexity

Type P N Iters EFEs Time

plainB 5 500 14694.5 73476 0.778

10 500 7717.3 77178 0.817

15 500 5357.7 80374 0.851

20 500 4159.1 83193 0.880

25 500 3420.3 85521 0.906

30 500 2922.8 87700 0.931

splitB 5 500 273.5 41108 0.091

10 500 148.3 44633 0.088

15 500 104.4 47198 0.090

20 500 81.8 49406 0.093

25 500 68.0 51390 0.095

30 500 57.6 52269 0.099

hybridB 5 500 113.9 17729 0.046

10 500 87.4 27253 0.064

15 500 71.8 33599 0.076

20 500 61.2 38268 0.085

25 500 53.1 41498 0.092

30 500 47.4 44543 0.101

Tables 2, 4, 6, 8 and 10 conform to the following for-

mat: The `type' column lists the algorithm used, the

`P' column the number of particles per swarm and the

894 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Table 4: Rosenbrock (f1) After 2� 10
5
EFEs

Type P Mean

plain 5 1.0296e+02 � 1.10e+01

10 5.1942e+01 � 4.62e+00

15 4.1858e+01 � 3.39e+00

20 3.8880e+01 � 3.03e+00

25 4.2280e+01 � 3.26e+00

30 4.3518e+01 � 3.31e+00

split 5 3.3706e+01 � 2.93e+00

10 2.0797e+01 � 2.32e+00

15 1.2553e+01 � 1.63e+00

20 1.0304e+01 � 1.40e+00

25 1.0964e+01 � 1.56e+00

30 1.1049e+01 � 1.60e+00

hybrid 5 8.0058e+00 � 8.24e�01
10 7.7328e+00 � 6.52e�01
15 1.0439e+01 � 1.31e+00

20 9.4816e+00 � 1.40e+00

25 1.0479e+01 � 1.49e+00

30 1.1758e+01 � 1.73e+00

Table 5: Rosenbrock (f1) Computational Complexity

Type P N Iters EFEs Time

plainB 5 385 15409.6 77051 1.466

10 447 8380.2 83808 1.333

15 455 5910.5 88665 1.369

20 463 4589.2 91794 1.383

25 460 3784.5 94625 1.429

30 470 3237.7 97146 1.435

splitB 5 495 206.7 31083 0.181

10 499 102.8 31012 0.166

15 500 67.7 30694 0.160

20 500 44.3 26902 0.139

25 500 34.6 26346 0.136

30 500 27.6 25252 0.131

hybridB 5 498 110.2 17174 0.106

10 499 60.1 18787 0.109

15 500 45.9 21570 0.122

20 500 36.1 22696 0.128

25 500 28.9 22801 0.129

30 500 23.2 22026 0.130

Table 6: Scha�er (f2) After 2� 10
5
EFEs

Type P Mean

plain 5 2.8397e�04 � 1.47e�04
10 0.0000e+00 � 0.00e+00

15 0.0000e+00 � 0.00e+00

20 0.0000e+00 � 0.00e+00

25 0.0000e+00 � 0.00e+00

30 0.0000e+00 � 0.00e+00

split 5 1.7458e�02 � 1.18e�03
10 1.6827e�02 � 1.15e�03
15 1.6970e�02 � 1.21e�03
20 1.7530e�02 � 1.23e�03
25 1.6337e�02 � 1.15e�03
30 1.7342e�02 � 1.21e�03

hybrid 5 6.0146e�03 � 4.22e�04
10 4.8884e�03 � 4.35e�04
15 4.9378e�03 � 4.35e�04
20 4.5638e�03 � 4.35e�04
25 4.4222e�03 � 4.34e�04
30 4.2799e�03 � 4.32e�04

Table 7: Scha�er (f2) Computational Complexity

Type P N Iters EFEs Time

plainB 5 475 9575.6 47881 0.064

10 494 4610.9 46115 0.055

15 495 3252.7 48798 0.057

20 499 2462.4 49258 0.056

25 499 1977.5 49449 0.056

30 500 1670.1 50119 0.057

splitB 5 44 2189.9 21905 0.175

10 51 1186.7 23743 0.164

15 46 697.9 20949 0.163

20 41 531.6 21280 0.163

25 48 473.8 23717 0.160

30 43 368.5 22137 0.161

hybridB 5 211 6090.1 91364 0.183

10 261 2265.1 67976 0.139

15 260 1413.4 63639 0.132

20 243 1008.1 60532 0.134

25 277 865.7 64986 0.126

30 269 706.1 63615 0.127

895ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

Table 8: Rastrigin (f3) After 2� 10
5
EFEs

Type P Mean

plain 5 4.4038e+01 � 1.02e+00

10 3.8128e+01 � 8.31e�01
15 3.5212e+01 � 7.25e�01
20 3.4109e+01 � 7.14e�01
25 3.2252e+01 � 6.80e�01
30 3.0904e+01 � 6.42e�01

split 5 0.0000e+00 � 0.00e+00

10 0.0000e+00 � 0.00e+00

15 0.0000e+00 � 0.00e+00

20 0.0000e+00 � 0.00e+00

25 0.0000e+00 � 0.00e+00

30 0.0000e+00 � 0.00e+00

hybrid 5 4.9852e�02 � 1.95e�02
10 0.0000e+00 � 0.00e+00

15 0.0000e+00 � 0.00e+00

20 0.0000e+00 � 0.00e+00

25 0.0000e+00 � 0.00e+00

30 0.0000e+00 � 0.00e+00

Table 9: Rastrigin (f3) Computational Complexity

Type P N Iters EFEs Time

plainB 5 498 13059.3 65299 1.001

10 500 6741.8 67423 1.013

15 500 4529.4 67950 1.022

20 500 3469.9 69409 1.043

25 500 2797.6 69954 1.052

30 500 2383.8 71531 1.078

splitB 5 500 1.8 363 0.003

10 500 0.8 381 0.003

15 500 0.1 432 0.004

20 500 0.0 545 0.004

25 500 0.0 666 0.006

30 500 0.0 786 0.006

hybridB 5 500 2.5 465 0.004

10 500 0.8 390 0.003

15 500 0.1 436 0.004

20 500 0.0 546 0.005

25 500 0.0 667 0.006

30 500 0.0 787 0.008

Table 10: Griewank (f4) After 2� 10
5
EFEs

Type P Mean

plain 5 3.8076e�02 � 5.10e�03
10 2.6663e�02 � 2.62e�03
15 2.0078e�02 � 1.91e�03
20 1.7960e�02 � 1.89e�03
25 1.5639e�02 � 1.55e�03
30 1.4775e�02 � 1.64e�03

split 5 2.6151e�02 � 2.55e�03
10 2.2604e�02 � 2.14e�03
15 2.4547e�02 � 2.46e�03
20 2.3048e�02 � 2.31e�03
25 2.1116e�02 � 2.30e�03
30 2.1320e�02 � 2.44e�03

hybrid 5 4.1690e�02 � 3.63e�03
10 2.5982e�02 � 2.56e�03
15 2.4354e�02 � 2.33e�03
20 2.4916e�02 � 2.53e�03
25 2.3362e�02 � 2.45e�03
30 2.1860e�02 � 2.22e�03

Table 11: Griewank (f4) Computational Complexity

Type P N Iters EFEs Time

plainB 5 457 14639.4 73200 1.498

10 489 7639.5 76401 1.410

15 495 5289.9 79356 1.436

20 494 4088.5 81779 1.483

25 499 3368.4 84222 1.507

30 499 2875.7 86286 1.545

splitB 5 494 222.1 33367 0.335

10 494 114.1 34341 0.335

15 489 78.1 35293 0.356

20 491 59.0 35632 0.352

25 492 46.9 35425 0.346

30 489 38.9 35295 0.353

hybridB 5 456 98.0 15254 0.201

10 484 68.1 21228 0.168

15 490 53.2 24913 0.176

20 495 43.3 27084 0.178

25 488 37.4 29286 0.207

30 498 32.3 30346 0.195

896 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

`Mean' column the average error after 2 � 10
5
EFEs,

followed by the 95% con�dence interval width.

The original PSO algorithm, called `plain' here, ex-

hibits the expected behaviour for the Sphere, Scha�er,

Rastrigin and Griewank functions, where the average

�nal error decreases as the number of particles per

swarm is increased. This is in part due to the fact

that adding more particles results in more starting po-

sitions, increasing the probability of having particles

in suitable positions for �nding the minimum of the

function.

The Rosenbrock function appears to behave somewhat

erratically, with the error decreasing up to 20 particles,

and then increasing again. Even over 500 simulation

runs sampling error remains a possibility which cannot

be completely disregarded here.

Split swarm behaviour is more interesting, with only

the Rosenbrock and Griewank functions exhibiting

typical behaviour | the error decreasing with an in-

crease in the number of particles per swarm. The

Sphere function exhibits a strongly decreasing trend

as the number of particles per swarm (pps) increases,

with the exception of the 5 pps case. Scha�er's func-

tion, tested with only two dimensions, is the Achilles'

heel of the split swarm, not only producing large errors

but also behaving erratically as the number of parti-

cles is increased. It is currently thought that the split

swarm performs better on higher-dimensional func-

tions, preferably functions with little correlation be-

tween its variables. Rastrigin's function, on the other

hand, is the split swarm's forte, resulting in a perfect

error of zero for all pps values tested.

The performance of the split swarm is superior to that

of the plain swarm on three of the functions tested

(Sphere, Rastrigin, Rosenbrock), comparable on the

Griewank function and worse on the Scha�er function.

Part of the improved performance can be attributed to

the fact that the split swarm generates more particles

`on-the-y' by combining the particles from the di�er-

ent swarms (see Figure 2), forming between 5 � 30 =

150 and 15 � 30 = 450 particles, if the function is

tested with 30 dimensions. For more details on this al-

gorithm, see [van den Bergh and Engelbrecht, 2001].

By combining features of both the split and the plain

swarm, the hybrid swarm produces some interesting

results as well. A decrease in error is observed for the

Scha�er and Griewank functions when increasing the

number of particles per swarm. The variables of these

two functions are strongly correlated, thus the plain-

swarm component contained in the hybrid algorithm

dominates, resulting in the same behaviour pattern as

observed with the plain swarm. The Sphere and Ras-

trigin functions exhibit behaviour similar to the split

swarm, with a few outliers at 5 pps distorting the Ras-

trigin results. The Rosenbrock function shows an in-

crease in error as the number of particles per swarm is

increased, behaviour that is not fully explained by ei-

ther the plain or the split component of the algorithm.

These �xed-iteration tests provide an idea of the qual-

ity of the solutions that the di�erent algorithms can at-

tain on the benchmark problems, given an equal num-

ber of function evaluations. No analysis of variance

tests were performed, as the homoscedasticity assump-

tion was not satis�ed, nor were the data points from

a Gaussian distribution, as they tended to cluster at

the lower bounds.

Tables 3, 5, 7, 9 and 11 should be interpreted as fol-

lows: The `N' column indicates the number of simula-

tion runs that successfully reached the error threshold

(out of a maximum of 500), followed by columns listing

the average number of iterations and the average num-

ber of EFEs required to reach the threshold. The last

column lists the average time needed per simulation

run, in seconds.

This second set of tests give an indication of the speed

with which the algorithms cross an error threshold,

thus lower values are better. In this test it is possible

that the simulation run could not reach the threshold

within 2�10
5
EFEs; such cases were omitted from the

calculation of the average number of EFEs required.

For the plain swarm, the trend appears to be that in-

creasing the number of particles per swarm results in

an increase in the average number of EFEs required to

reach the threshold. The number of EFEs did not vary

much within a problem. Fewer particles per swarm

increased the likelihood that some of the simulations

would not reach the threshold. This behaviour is in

line with the �ndings of the �xed-iteration tests above,

so that more particles per swarm leads to better per-

formance, at the cost of using more EFEs on average to

reach the same threshold. From this one can conclude

that a larger number of particles per swarm should

be used for the plain swarm, preferably more than 20

particles.

The split swarm exhibits the expected increase in the

number of EFEs for the Sphere and Rastrigin func-

tions, while the Rosenbrock function shows a decrease.

The decrease experienced with the Rosenbrock func-

tion hints at a sensitivity to the initial positions of

the particles in the swarm, where larger swarms have

a higher probability of including better starting po-

sitions. Lastly, the Griewank and Scha�er functions

897ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

show almost no trend, the Scha�er results being some-

what erratic. Note that the split swarm rarely reached

the error threshold on the Scha�er test.

Overall, the split swarm reached the threshold signif-

icantly faster than the plain swarm, with the trouble-

some Scha�er function being the only case where it

failed to reach the threshold consistently.

Hybrid swarm performance follows the same pattern

as the plain swarm, thus an increase in the number of

EFEs results as the number of particles is increased.

This applies to all functions but the Scha�er function,

which is again somewhat erratic. Note that the num-

ber of EFEs required to reach the threshold for the

Scha�er function was larger than that of either the

plain or the split swarm. The hybrid swarm man-

aged to reach the threshold in at least half of the ex-

periments, a considerable improvement over the split

swarm.

With the exception of the Scha�er function, the hy-

brid swarm reached the threshold faster than the plain

swarm, and even faster than the split swarm on all but

the Scha�er and Rastrigin (marginal di�erence) func-

tions.

6 CONCLUSIONS AND FUTURE

WORK

Some questions about the optimal number of particles

per swarm can now be answered. For the plain swarm

it appears that larger swarm sizes improve the quality

of the solution, but it also increases the number of

EFEs required to reach a speci�c error threshold.

The split swarms appear to have a far smaller optimal

choice of between 5 and 20 particles per swarm. This

can be explained by looking at the algorithm for the

split swarm (Figure 2, Appendix A). The algorithm

forms solution vectors by combining di�erent vectors

from di�erent swarms, e�ectively creating more `vari-

ety' out of fewer particles. Thus a total of 300 di�erent

vectors (actually, 30 sets of vectors where each set of

10 vectors will di�er in only one of the 30 components)

will be formed for a 30-dimensional function, assuming

10 particles per swarm. The equivalent plain swarm

will only have 10 di�erent vectors. This explains why

the split swarm has a `sweet spot' for the swarm size |

the point where the optimal balance between variety

and the number of iterations is reached.

The hybrid swarm has range of about 5{10 for uncorre-

lated functions, but behaves more like the plain swarm

for correlated functions (e.g. Scha�er and Griewank).

The plain swarm will also have a `sweet spot', but this

will probably be at a swarm size of more than 30, at

which point it will not be able to compete with the

split or hybrid swarms in terms of speed.

Note that the optimal number of particles per swarm

will depend on the function, but from the results it

appears that the split swarm (and thus to some extent

the hybrid swarm) requires fewer particles than the

plain swarm.

This paper addresses the e�ect of one of the parame-

ters in the split swarm architecture, namely the num-

ber of particles per swarm. The e�ect of the other

variables, like the inertia coeÆcient or the acceleration

coeÆcients still remains to be investigated. For now,

the values that work well for the plain swarm have

been used; more experiments have to be performed to

check whether these values are still good choices for

the split swarm.

References

[Eberhart and Hu, 1999] Eberhart, R. C. and Hu, X.

(1999). Human Tremor Analysis Using Particle

SwarmOptimization. In Proceedings of the Congress

on Evolutionary Computation, pages 1927{1930,

Washington D.C, USA.

[Eberhart and Kennedy, 1995] Eberhart, R. C. and

Kennedy, J. (1995). A New Optimizer using Particle

Swarm Theory. In Proceedings of the Sixth Interna-

tional Symposium on Micro Machine and Human

Science, pages 39{43, Nagoya, Japan. IEEE Service

Center.

[Eberhart and Shi, 2000] Eberhart, R. C. and Shi, Y.

(2000). Comparing Inertia Weights and Constric-

tion Factors in Particle Swarm Optimization. In

Proceedings of the Congress on Evolutionary Com-

puting, pages 84{89.

[Eberhart et al., 1996] Eberhart, R. C., Simpson, P.,

and Dobbins, R. (1996). Computational Intelligence

PC Tools, chapter 6, pages 212{226. Academic Press

Professional.

[Engelbrecht and Ismail, 1999] Engelbrecht, A. P. and

Ismail, A. (1999). Training product unit neural net-

works. Stability and Control: Theory and Applica-

tions, 2(1{2):59{74.

[Shi and Eberhart, 1998] Shi, Y. and Eberhart, R. C.

(1998). A Modi�ed Particle Swarm Optimizer.

In IEEE International Conference of Evolutionary

Computation, Anchorage, Alaska.

898 ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

[Shi and Eberhart, 1999] Shi, Y. and Eberhart, R. C.

(1999). Empirical Study of Particle Swarm Opti-

mization. In Proceedings of the Congress on Evolu-

tionary Computation, pages 1945{1949, Washington

D.C, USA.

[Suganthan, 1999] Suganthan, P. N. (1999). Particle

Swarm Optimizer with Neighbourhood Operator. In

Proceedings of the Congress on Evolutionary Com-

putation, pages 1958{1961, Washington D.C, USA.

[van den Bergh and Engelbrecht, 2000] van den

Bergh, F. and Engelbrecht, A. P. (2000). Cooper-

ative Learning in Neural Networks using Particle

Swarm Optimizers. South African Computer

Journal, (26):84{90.

[van den Bergh and Engelbrecht, 2001] van den

Bergh, F. and Engelbrecht, A. P. (2001). A Coop-

erative Approach to Particle Swarm Optimisation.

IEEE Transactions on Evolutionary Computing.

Currently under review.

A PSO Algorithms

Create and initialise an n-dimensional PSO : S

repeat:

for j 2 [1::M] :

if f(S:xj) < f(S:yj)

then S:yj = S:xj
if f(S:yj) < f(S:ŷ)

then S:ŷ = S:yj
endfor

Perform updates on S using eqns. (1{2)

until stopping criterion is met

Figure 1: Pseudo Code for the Plain Swarm Algorithm

de�ne

b(j; z) � (S1:ŷ; : : : ; Sj�1:ŷ; z; Sj+1:ŷ; : : : ; Sn:ŷ)

Initialise n 1-dimensional PSOs : Si; i 2 [1::n]

repeat:

for i 2 [1::n] :

for j 2 [1::M] :

if f(b(i; Si:xj)) < f(b(i; S:yj))

then S:yj = S:xj
if f(b(i; Si:yj)) < f(b(i; Si:ŷ))

then Si:ŷ = Si:yj
endfor

Perform updates on Si using eqns. (1{2)

endfor

until stopping criterion is met

Figure 2: Pseudo Code for the Split Swarm Algorithm

de�ne

b(j; z) � (S1:ŷ; : : : ; Sj�1:ŷ; z; Sj+1:ŷ; : : : ; Sn:ŷ)

Initialise n one-dimensional PSOs : Si; i 2 [1::n]

Initialise an n-dimensional PSO : P

repeat:

for i 2 [1::n] :

for j 2 [1::M] :

if f(b(i; Si:xj)) < f(b(i; S:yj))

then S:yj = S:xj
if f(b(i; Si:yj)) < f(b(i; Si:ŷ))

then Si:ŷ = Si:yj
endfor

Perform updates on Si using eqns. (1{2)

endfor

Select random k � U(1;M) � P:yk 6= P:ŷ

P:xk = b(1; S1:ŷ)

for j 2 [1::M] :

if f(P:xj) < f(P:yj)

then P:yj = P:xj
if f(P:yj) < f(P:ŷ)

then P:ŷ = P:yj
endfor

Perform updates on P using eqns. (1{2)

for i 2 [1::n] :

Select random k � U(1;M) � Si:yk 6= Si:ŷ

Si:xk = P:ŷi
endfor

until stopping criterion is met

Figure 3: Pseudo Code for the Hybrid Swarm Algo-

rithm

899ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS

	0711.pdf
	INTRODUCTION
	THE BUSY BEAVER PROBLEM
	EXPERIMENTAL MODEL
	REPRESENTATION
	SIMULATION AND EVALUATION
	LEARNING MODELS
	LEARNING STRATEGIES
	Lamarckian Learning
	The Baldwin Effect

	EXPERIMENTAL SETTINGS
	RESULTS
	CONCLUSIONS
	
	Acknowledgments
	References

