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Abstract

State justification is one of the most time-
consuming tasks in sequential Automatic
Test Pattern Generation (ATPG). For states
that are difficult to justify, deterministic al-
gorithms take significant CPU time without
much success most of the time. In this work,
we adopt a hybrid approach for state justi-
fication. A new method based on Genetic
Algorithms is proposed, in which we engi-
neer state justification sequences vector by
vector. The proposed method is compared
with previous GA-based approaches. Signif-
icant improvements have been obtained for
ISCAS benchmark circuits in terms of state
coverage and CPU time.

1 Introduction

With today’s technology, it is possible to build very
large systems containing millions of transistors on
a single integrated circuit. Designing such large
and complex systems while meeting stringent cost
and time-to-market constraints requires the use of
computer-aided-design (CAD) tools. Increasing com-
plexity of digital circuits in very large scale integra-
tion (VLSI) environment requires more efficient algo-
rithms to support the operations performed by CAD
tools [1]. Testing of integrated circuits is an impor-
tant area which nowadays accounts for a significant
percentage of the total design and production costs of
ICs. For this reason, a large amount of research efforts
have been invested in the last decade in the develop-
ment of more efficient algorithms for the Automatic
Test Pattern Generation (ATPG) for digital circuits
[2]. In order to obtain acceptably high quality tests,
design for testability (DFT) techniques are in use [3].
The first technique, called full-scan design, can be used

to reduce the sequential test generation problem to a
less difficult combinational test generation problem. In
this technique, all memory elements are chained into
shift registers so that they can be set to desired val-
ues and observed by shifting test patterns in and out.
In large circuits however, this technique adversely af-
fects the test application time as all the test vectors
have to be scanned in and out of the flip-flops. More-
over, all of the memory elements may not be scanable
in a given circuit [4]. In order to alleviate the test
complexity, a second technique, called partial-scan de-
sign, is employed. This involves scanning a selected
set of memory elements. Both these methods can add
10-20% hardware overhead. In case of a full scan de-
sign, a combinational test generator can be used to
obtain tests. However, a sequential test generator is
necessary in case of a partial scan or no-scan design
[4]. The goal in this work is to use Genetic Algo-
rithms (GAs) for generating sequences that will help
the Automatic Test Pattern Generator (ATPG) in de-
tecting more faults by reaching specific states. GAs
are very well suited for optimization and search prob-
lems [5]. Several ATPGs have been reported which
use genetic algorithms for simulation-based test gen-
eration. A good comparison is given in [3]. The main
advantage of GA-based ATPGs, as compared to other
approaches, is their ability to cover a larger search
space in lower CPU time. This improves the fault cov-
erage and makes these ATPGs capable of dealing with
larger circuits. On the other hand, the main draw-
back consists in their inability to identify untestable
faults [2]. Deterministic algorithms for combinational
circuit test generation have proven to be more effec-
tive than genetic algorithms [6]. Higher fault cover-
ages are obtained, and the execution time is signifi-
cantly smaller. However, state justification using de-
terministic algorithms is a difficult problem, especially
if design and tester constraints are considered [7]. In
simulation-based ATPGs, the search proceeds in the
forward direction only. Hence there are no backtracks
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and state justification is easier as compared to deter-
ministic ATPGs. In this work, a hybrid state justifi-
cation approach is proposed, where both deterministic
and genetic-based algorithms are employed. In eval-
uating this approach, we will conduct experiments in
which a deterministic test generator will be employed
initially. Untestable faults will be identified. The
states which could not be reached in this phase, will
be attempted in a genetic phase for state justification.
Since Genetic Algorithms have been used successfully
for combining useful portions of several candidate so-
lutions to a given problem [5], we will try to genetically
engineer sequences which justify the leftover states. In
[8], Genetic Algorithms have been used for state jus-
tification. The length of the sequence was a function
of the structural sequential depth of the circuit, where
sequential depth is defined as the minimum number
of flip-flops in a path between the primary inputs and
the farthest gate. In case of feed-back loops, the struc-
tural sequential depth may not give a correct estimate
of the number of vectors required for justifying a given
state. Thus, if a state requires longer justification se-
quence, it will not be justified. The approach also does
not take into account the quality of intermediate states
reached and evaluates a chromosome only on the basis
of the final state reached. In this work, we will use
an incremental approach in which the length of the se-
quences will be dynamic. State justification sequences
will be genetically engineered vector by vector. Even if
some state remains unjustified after the genetic phase,
the best sequence obtained in a given number of gen-
erations will be viewed as a partial solution. The de-
terminisitc ATPG will be seeded with this sequence
so that it may become able to reach previously un-
visited regions of the search space. The remainder of
this paper is organized as follows: Section 2 discusses
application of genetic algorithms to sequential ATPG.
In Section 3, genetic-based state justification is pre-
sented. Experimental results are given in Section 4.
Section 5 concludes the paper.

2 Sequential ATPG and Genetic
Algorithms

The goal of sequential circuit ATPG using the single
stuck-at fault (SSF) model is to derive an input vec-
tor sequence such that, upon application of this input
vector sequence, we obtain different output responses
between the fault-free and faulty circuits. The SSF
model is an abstraction of defects in a circuit which
cause a single line connecting components to be per-
manently stuck either at logic 0 or logic 1 [9]. In this
work, we assume the SSF model.
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2.1 Complexity of sequential ATPG

Sequential ATPG is a much more complex process
than combinational ATPG due to signal dependencies
across multiple time frames [10]. It has been shown
in [11] that the test generation problem for combina-
tional circuits is NP-complete. The search space is of
the order of 2", where 'n’ is the number of inputs. For
sequential circuit ATPG, the worst-case search space
is 9™, where m is the number of flip-flops. This expo-
nential search space makes exhaustive ATPG search
computationally impractical for large sequential cir-
cuits [4]. In the last years, one of the main goals of
researchers was to develop effective algorithms for se-
quential circuit test pattern generation [12]. A lot of
work has been done in the area of sequential circuit
test generation using both deterministic and simula-
tion based algorithms. The bottleneck in determin-
istic algorithms is line justification and backtracking.
In simulation-based approaches, no backtracking is re-
quired but their quality in terms of fault coverage is
generally lower [12]. It can however be improved with
the help of GAs which are very well suited for opti-
mization and search problems.

2.2 Using GA in Sequential ATPG

Genetic Algorithms work by analogy with Natural Se-
lection as follows. First, a population pool of chro-
mosomes is maintained. The chromosomes are strings
of symbols or numbers. They might be as simple as
strings of bits - the simplest type of strings possible.
The chromosomes are also called the genotype (the
coding of the solution). These chromosomes must be
evaluated for fitness. Poor solutions are purged and
small changes are made to existing solutions. The gene
pool thus evolves steadily towards better solutions. In
this work, we have used a Simple Genetic Algorithm
as given in [13]. Several approaches to test genera-
tion using genetic algorithms have been proposed in
the past [2], [6] - [8], [12], [14] - [21]. Fitness functions
were used to guide the GA in finding a test vector or
sequence that maximizes given objectives for a single
fault or a group of faults. However, hard-to-test faults
often could not be detected. GAs were used in dif-
ferent phases of the test generation process. In [15],
[6] and [16], GA-based test generators were developed
which used logic simulation for fitness evaluation. A
fault simulator was used in [17] [18], and [19] for com-
puting the fitness. The fitness functions were biased
towards maximizing the number of faults detected and
the number of fault effects propagated to the flip-flops.
Several genetic parameters were experimented with in
[17] and [20]. The fault coverage improved by more
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than 40% for some benchmark circuits. These genetic-
based ATPGs were however, not successful in propa-
gating fault effects to the primary outputs. Moreover,
they were unable to identify redundant faults. Hence,
hybrid techniques were proposed in [7], [8], [12] [14]
and [21].

3 Genetic-based State Justification

State justification is the most difficult task in sequen-
tial ATPG. Storing the complete state information for
large circuits is impractical. Similarly, keeping a list
of sequences capable of reaching each reachable state
is also infeasible. State justification is therefore per-
formed by using a GA. In [7] and [8], deterministic
algorithms were used for fault excitation and propa-
gation, and a GA was used for state justification. Se-
quences were evolved over several generations. The
fitness of each individual was a measure of how closely
the final state reached matched the desired state. A
chromosome was represented by a sequence of vectors.
Candidate sequences were simulated starting from the
last state reached at the end of the previous test se-
quence. The objective was to engineer a test sequence
that justified the required state. If a sequence was
found which justified the required state, the sequence
was added to the test set. In this work, we use GA
for traversing from one state to another. Individual
vectors are represented by chromosomes in the popu-
lation and genetic operators are applied at individual
bit positions. Deterministic ATPG is run for every
target fault. First, the fault is activated and propa-
gated to a primary output. Next, state justification is
attempted. If the required state is justified by the de-
terministic ATPG, then the derived sequence is fault
simulated and all detected faults are dropped from
the faultlist. Otherwise, our GA-based algorithm at-
tempts to justify the required state. A block diagram
of the methodology is shown in Figure 1.

We have proposed an evolutionary meta-heuristic for
the state justification phase. A flowchart of the heuris-
tic used is shown in Figure 2.

3.1 Encoding of the chromosome

In our work, a chromosome represents a single vector.
Each character of a chromosome in the population is
mapped to a primary input. A binary encoding is used
in this implementation.

1021

Select Target Fault

Run deterministic

Fault simulate

generated sequence Fault detected

f—Yes:

No

Justify state using
Genetic Algorithm

Figure 1: A block diagram of the methodology.

3.2 Fitness Function

Fitness function is the most important parameter of
the GA. A solution is considered to be better than an-
other if its fitness is higher. Each vector (chromosome)
is logic simulated to give the state reached. This state
is compared with all the flip-flop assignment values of
the target state. The fitness f(v;) of a vector v; is
computed as follows:

m(si,s;)
B(s;)

flvi) =

where s; is the state reached by vector v;, s; is the
target state and m(s;, s;) are the number of matching
specified bits in s; and s;. B(s;) gives the number of
specified bits in s; (i.e. those which are not ’x’).

3.3 Crossover and Mutation

One-point uniform crossover as mentioned in [22] has
been used in this work. In one-point uniform crossover,
an integer position is randomly selected within a chro-
mosome. Each of the two parents are divided into two
parts at this random cut point. The offspring is then
generated by catenating the segment of one parent to
the left of the cut point with the segment of the sec-
ond parent to the right of the cut point. Mutation
produces incremental changes in the offspring by ran-
domly changing values of some genes. In this work,
mutation corresponds to flipping a randomly selected
bit.
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Figure 2: A flowchart of the algorithm used.

3.4 Forming a new generation

A generation is an iteration of GA where individu-
als in the current population are selected for crossover
and offsprings are created. Due to the addition of off-
springs, the size of population increases. In order to
keep the number of members in a population fixed, a
constant number of individuals are selected from this
set for the new generation. The new population thus
consists of both members from the initial generation
and the offsprings created. In this work, we have used
a one-change strategy as described below.

3.4.1 (n+1) selection strategy

In this strategy, we change one chromosome in every
generation. One crossover is performed in every gener-
ation. If the child is more fit than the worst member of
the previous generation, it is introduced into the pop-
ulation. Hence, we select the best n-1 members from a
population of n, and the worst member gets replaced

EVOLUTION STRATEGIES

if its fitness is less than the fitness of the offspring.

3.5 Traversing from a state to a state

The algorithm is run for a fixed number of generations.
If the state reached is the desired state, the algorithm
stops and picks the next state from the list. However,
if the algorithm is unable to reach the desired state, it
picks the best chromosome found until then and adds
it to the test set. Since the state reached is nearer in
terms of the Hamming distance to the desired state,
it is probable that it will help the ATPG in reaching
the required search space and detecting the associated
fault. The following parameters are used to guide the
search.

3.5.1 Tabu List Size

To prevent the algorithm from visiting recently visited
states, we propose a Tabu List containing the last vis-
ited states. The length of this list is a user-defined
parameter. On reaching a state, the algorithm looks
into the Tabu list. If the state reached is present, the
next fit vector is chosen and its fitness is evaluated.

3.5.2 Backtrack limit

When all the chromosomes in the population are un-
able to reach a new state, (a state which is not in the
Tabu List), we move to a previously visited state. This
is termed as backtracking. We impose an upper limit
on this parameter and the algorithm stops searching
for a state when this parameter exceeds.

3.5.3 Nlimit parameter

The algorithm traverses at least Nlimit number of
states before it gives up the search for the desired state.
If the fitness of the currently visited state is less than
the average fitness of the last Nlimit states, the al-
gorithm stops further searching of the desired state;
otherwise the search is continued.

3.6 Removing the reached states from the
list of desired states

Once a sequence is generated by the algorithm, we
compare the states reached by the sequence with the
list of desired states. All the desired states reached
by the sequence are removed. This prevents us from
searching again for those states which we have already
reached while searching for some other target state.
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4 Experimental Results and
Discussion

In this work, we have compared our state justification
technique in which we use GA for traversing from a
state to a state, with the one proposed in [7][8]. In [8],
GA has been used in state justification and sequences
are genetically engineered. GA has been applied on
a sequence of vectors as opposed to individual vec-
tors in our case. We have used five ISCAS89 bench-
mark circuits [23] and four re-timed circuits given in
[10] for which which HITEC [24] requires very large
CPU times. A list of target states was obtained for
hard-to-detect faults in each of the circuits. We have
experimented with several parameters and found that
in general, a population size of 16, a generation limit
of 400, backtrack limit of 10 and tabu list size of 15
gave the best results. Better results were obtained for
an Nlimit value which was 1.5 times the number of
flipflops present in the circuit. A roulette wheel selec-
tion scheme as given in [6] gave the best results. The
weakest chromosome in the population was replaced by
a new chromosome in every generation. Hence, the av-
erage and best fitness of the population monotonically
increased in every generation as shown in Figure 3 for
one of the reached target states. One-point crossover
was used with a probability of 1 and mutation rate was
kept at 0.01. In Figure 4, we show the state traver-

1.2 4
1,
§ 0.8 4/—/
g 061 _ geesel | s g, Fitness
02 —— Best Fitness
0 TTTTTTITTTTITTT T TITTITIT T I T T T
S NM O WO AN
o a4 N M M

No. of generations

Figure 3: Average and best fitness vs. number of gen-
erations.

sal for one of the states that has been reached by the
algorithm. It can be seen that we progress towards
better states in terms of the hamming distance as the
algorithm runs for more iterations. Less fit states are
reached if we we are unable to reach a better state
because of the Tabu restriction. Moreover, we move
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towards the best state among all alternatives, even if
that state is worse than the current state. This helps
in avoiding the local minima. The example is for one
of the target states of s1488 circuit.

12 -
1,
0.8 -
0.6
0.4 -
0.2 -
O TTITTIITTTITT T I T T T TI I TIT T T TT T a7

s N0 N d N M
- <4 N 0O M <

States Traversed

Fitness

Figure 4: State traversed vs the fitness of reached
states for a target state of s1488 circuit.

The parameters proposed in [8] were 32 chromosomes
and 8 generations. The number of vectors in each chro-
mosome was 4 times the sequential depth of the circuit.

To compute the fitness of chromosomes, we have used
the logic simulator of HOPE [25]. The experiments
were run on SUN ULTRA 10 stations and the results
were obtained as shown in Table 1.

The first column in the table shows the circuit name.
In the second and third columns, the number of flip-
flops (FFs) and the number of target states respec-
tively is given for each circuit. The states reached and
CPU time obtained by our algorithm are mentioned
in the next two columns. For comparison purposes we
ran the algorithm proposed in [8] for several number
of generations and the results are shown in the next
columns.

It can be observed from the results that the number of
desired states reached by our technique are more than
those reached by the technique used in [8] for all the
circuits. Furthermore, our proposed technique reached
a higher number of states than [8] in 8 out of 9 cases
even when the latter was run for greater amount of
CPU time.

5 Conclusion

In this work, we have proposed a new state justification
technique based on GA which engineers the sequence
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our approach approach in [§8] approach in [8]
Name # of | Target | states | time(sec) | gens | states | time(sec) | gens | states | time(sec)
FF | states | reached reached reached

s1423 74 135 61 335 8 50 2743 50 61 3953

s3271 116 45 20 1229 8 15 1664 100 18 2390

$3384 183 102 56 8124 8 31 3794 200 42 16411

s5378 179 524 113 29274 8 45 3133 100 48 225160

s6669 239 32 30 1664 8 23 1701 50 24 2289
scfRjisdre 20 267 48 803 8 25 501 100 31 5196
s832jcsrre 31 57 8 139 8 7 120 100 7 2170
s510Rjcsrre | 30 114 16 163 8 12 61 100 13 504
sb10Rjosrre | 32 114 16 181 8 9 62 100 13 583

Table 1: Comparison of the two techniques

vector by vector. This is in contrast to previous ap-
proaches where GA is applied to the whole sequence.
The drawback of previous approaches lies in their in-
ability to justify hard-to-reach states because of fixed-
length sequences. Moreover, they do not take into ac-
count the quality of intermediate states reached and
evaluate a chromosome only on the basis of the final
state reached. We propose dynamic length sequences
in this work and the fitness measure takes into account
all the states reached by the sequence. The approach
has been compared with previous approaches and im-
provements in reached states and CPU time have been
demonstrated.
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Abstract

The evolution strategy with neighborhood at-
traction (EN) is a new combination of self-
organizing maps (SOM) and evolution strate-
gies (ES). It adapts the neighborhood rela-
tionship known from SOM to ES individuals
in order to concentrate them around the op-
timum of the problem.

In this paper, detailed investigations on the
robustness of the EN were performed on a
variety of well-known optimization problems.
The behavior of the EN was compared to that
of several other known variants of ES such as
ES with mutative step control, ES with co-
variance matrix adaptation, differential evo-
lution and others. In this test series, it was
shown that EN is much more robust than the
other ES variants.

1 INTRODUCTION

Evolution strategies with Neighborhood attraction
(EN) are a combination of two different kinds of prob-
lem solvers: Evolution strategies (ES) and artificial
neural networks, i.e. self-organizing maps (SOM), to
be more precise.

ES were developed in the late 1960s by Rechenberg and
Schwefel and later improved (see [Rechenberg, 1994],
[Schwefel, 1995] and [Béck et al., 1997]). Their main
application is the optimization of real-valued multi-
parameter problems. They directly use the informa-
tion of the quality of a potential solution of the func-
tion to be optimized. ES work on a population P
of potential solutions (individuals a) by manipulating
these individuals with evolutionary operators.

A special class of neural networks - the self-organizing

Andreas Zell
University of Tiibingen
Department of Computer Science - WSI-RA
Sand 1, D-72076 Tiibingen, Germany
zell@informatik.uni-tuebingen.de

Figure 1: EN: Transfer of the SOM neighborhood onto
ES individuals

maps (SOM) - were developed in the 1980s by Ko-
honen [Kohonen, 1995]. The neurons of a SOM are
organized in a neighborhood relationship, e.g. a two-
dimensional grid. Learning takes place by adapting
the weight vectors of the neurons (and thereby the
neurons’ positions in the problem space) according to
a learning rule which incorporates the neighborhood
relation defined among the neurons.

The idea behind EN is to transfer the neighborhood
and the learning rule defined for SOM neurons onto
the individuals of an ES (see fig. 1). Using this neigh-
borhood concept in the new EN, better EN individuals
can attract their worse neighbors and thus, the indivi-
duals will be concentrated around the optimum.

Previous benchmark tests were performed on a num-
ber of optimization tasks which could be solved
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by EN as well as by many conventional ES (cf.
[Huhse and Zell, 2000]). The main focus was on the
convergence velocity of the EN, and it could be shown
that — especially for small populations — the per-
formance of the EN is equivalent to or even better
than comparable conventional ES on those benchmark
problems.

This paper investigates the robustness of the EN. The
focus lies on difficult optimization tasks which often
cause problems to conventional ES. A test bed of many
difficult optimization tasks was set up, and the reliabil-
ity of the EN is compared to several different variants
of ES like ES with mutative step control, ES with co-
variance matrix adaptation, differential evolution, and
others. The experiments show that the EN has an ap-
parently better robustness than the other ES variants
on most of the tested optimization tasks.

A short description of the EN is given in section 2.
The optimization problems used as a test bed for our
investigations are described in section 3. Section 4
shows the test series that were performed on EN and
the ES variants, and the results are discussed in section
5. Detailed information on the test functions can be
found in the appendix.

2 EVOLUTION STRATEGY WITH
NEIGHBORHOOD ATTRACTION

The individuals which are unordered in conventional
ES, have neighborhood relations in the EN. The neigh-
borhood between the u parent individuals is consti-
tuted by arranging them in an orthogonal, elastic grid.
As known from SOM, each individual can be identi-
fied by its fixed grid position, and two individuals are
neighbors if they are directly connected on the grid
(see fig. 2, left).

Figure 2: Left: Neighborhood grid between the parent
individuals; all grey individuals are neighbors of the
black individual.

Right: Division of the problem space into hyper-cubes;
during initialization one individual is placed randomly
into each hyper-cube
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The dimension d, of the grid depends on the dimen-
sion d, of the problem space and on the number p of
the parent individuals (i.e. the number of the indivi-
duals constituting the grid). The grid is calculated in
the following way: First, p is divided into its prime
factors; eg. p =100 = 2-2-5-5; ny = 4 is the
number of the factors f;. If the number ny of the
factors is smaller than the dimension of the problem,
then the grid dimension is set to ng. Otherwise, the
smallest primes are multiplied until the number of fac-
tors is equal to the problem dimension. Thus, it holds:
dy < dp. Inside the neighborhood grid the individu-
als are arranged according to the factorization. E.g.
for p = 100 and a problem dimension d, = 10, the
grid dimension is d; = 4 and f; = 2 individuals are in
the first dimension, f = 2 individuals in the second,
f3 = 5 individuals in the third and f; = 5 individuals
in the fourth.

Because of the orthogonality of the grid the neigh-
borhood is easily determined. The left and the right
neighbor of one individual a; can be determined in-
dependently for each dimension. E.g. for dimension
d = 1 the two neighbors of a; with the grid coordi-
nates

a; = (ao, a1, az,...,a,) are
an, = (ag,a1 —1,as,...,a,) and
an, = (ag,a1+1,a9,...,a,).

Figure 3: Neighborhood attraction in EN

In contrast to conventional ES and SOM, the ini-
tial values of the object variables of the EN indivi-
duals are not assigned randomly. Rather, the problem
space is divided into equally sized hyper-cubes, each
of them corresponding to one grid position (see fig. 2,
right). The object variables of the associated indivi-
dual are initialized with equally distributed random
values within the ranges of its hyper-cube.

As is customary in ES, the EN individuals are evalu-
ated using the fitness function.

The EN-specific evolutionary operator — the neighbor-
hood attraction — manipulates the EN individuals ac-
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cording to one learning step in a SOM. Every parent
individual ap is attracted to its best neighbor ap; and
thus becomes the offspring ap (see figure 3). The ob-
ject variables Zo of the offspring are calculated accord-
ing to equation 1 and the neighborhood relations are
retained unchanged.

_‘o:fpﬁ-(s-(i"Nb—fp) (1)

Here, Zp is the object variables vector of the parent
and Znyp is its best neighbor. The parameter § de-
fines the strength of the attraction along the differ-
ence vector and Zo denotes the object variables of the
offspring.

If the parent individual ap is considered better than
all its neighbors an; (j = 1...g, g is the number of
neighbors) a ”simple conventional” mutation (referred
to as ES-mutation here) is performed. A offsprings are
generated according to 2.

ﬁmut,l = -/\7(0, ]-) I = 1...)
dmin = m1n(||.i"p - fNJ”) j =1 g (2)
_ 1
Seff = ﬁdmin
To;, = Tp+Seff -Umut; ¢ = 1l...n

n is the number of object variables.

The effective step size s.ys is determined by the recip-
rocal number of object variables ! and by the distance
dmin to the nearest neighbor. Thus, a mutation which
jumps over a neighbor and an entanglement of the grid
becomes less likely. During the contraction of the grid
the effective step sizes decrease due to the influence of

dmin-
Recombination is not explicitly used.

For details, please see [Huhse and Zell, 2000].

3 TEST FUNCTIONS

An extensive test bed of optimization tasks was con-
stituted to permit thorough investigations on the ro-
bustness of the EN.

On the one hand, the functions used for previous test
series [Huhse and Zell, 2000] were incorporated (fi,
f2, f6, fos f15, f21). These functions include uni-modal
and multi-modal functions as well as symmetric and
non-symmetric ones, and they were also used e.g. in
[de Jong, 1975], [Bick, 1992] and [Schwefel, 1995]. On

according to [Rechenberg, 1994], who proposes for his
basic algorithm for a (11 A) -ES to make the length of
the mutation vector independent of the number n of vari-
ables by generating the normally distributed vector ele-

ments with the mean zero and with the variance o = ﬁ
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most of these test functions almost all ES variants and
also the EN converged.

On the other hand, special focus was set on very diffi-
cult test functions which are known to cause problems
to many optimization tasks. E.g. f5 (Shekel’s fox-
holes) consists of a wide plateau with many steep and
narrow holes embedded as local minima, where the in-
dividuals might get caught. fa3 [Galar, 1991] consists
of a plateau with one local maximum, connected to
the global maximum by a single saddle. The varying
dimensions of each test function are indicated in the
appendix.

e fi: Sphere model

o fy: Generalized Rosenbrock’s function
o f5: Shekel’s foxholes

o fs: Schwefel’s double sum

o fo: Ackley’s function

e fi5: Weighted sphere model

e fi17: Fletcher and Powell

* fig:
® fig:
o fy0: Shekel-10
® for:
o fo3:
o fyy: Kowalik

Shekel-5

Shekel-7

Griewangk

Galar

4 TEST SERIES

For each function of the test bed the EN was compared
to the following ES variants:

e ES with uncorrelated self adaptation (uncorre-
lated)

e ES with covariance matrix adaptation (CMA) ac-
cording to [Hansen and Ostermeier, 1996]

e ES with mutative step control (named MSR, by
[Rechenberg, 1994])

e ES with derandomized self adaptation (derand)
[Ostermeier et al., 1993]

e ES without self adaptation (off)
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e ES with self adaptation adopted from differential
evolution (diffevol) [Price and Storn, 1995]

The following parameter settings were used for the EN:
Size of the individual grid p = 100, attraction factor
6 = 0.0011, and the number of offsprings per parent
generated during ES-mutation A = 2.

For all ES variants, a (10,100)-strategy without re-
combination was used. These settings were chosen
because they are known to be practicable for many
optimization tasks. Furthermore A = 100 corresponds
to the grid size of the EN, which means, that the num-
ber of function evaluations which are calculated in one
generation of EN corresponds to that of one generation
of ES.

We developed a special EN simulation program to
perform the test series. For the comparision tests
we used EvA, a simulation program for Evolutionary
Algorithms which was developed in the same group
[Wakunda and Zell, 1997).

A simulation run was stopped when the convergence
value was reached or when the algorithm stagnated.
Focus was not on the number of function evaluations
but on the best function value reached. Every run was
repeated 30 times with different random seeds. Then
the best fitness values reached were averaged out and
the standard deviation was calculated. The graphical
representations below show for the different strategies
(abscissa) the average of the best fitness values and
the standard deviation added to and subtracted from
that average (ordinate). 2 For clarity, the optimum of
each test function is plotted as a thin line.

Not all test series can be represented graphically here.
For the test functions f1, fs, fo, fi5 almost all strate-
gies were equally reliable in finding almost always the
optimum. Only the differential evolution ES had some
problems.

The more interesting results for the difficult functions
which could not be solved by some strategies are shown
below:

For function f5, only EN was totally reliable (fig. 4).
All other strategies were frequently trapped in one of
the local optima.

For function fi7, most strategies achieved good results
(fig. 5). Uncorrelated ES, CMA-ES and derandomized
ES found the optimum with only small variance, the

2Only one standard deviation was calculated for better
and worse results. Note: The subtracted standard devia-
tion does not imply that there were results better than the
optimum. It is only shown to facilitate the comparision of
very similar results, like CMA, derand, and EN in fig. 5.
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Figure 4: Function f5, min(f5(£)) =0
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Figure 6: Function fis, min(fis(Z)) = —10.1532

other variants had some more problems. Again, only
EN showed no problems in the optimization.
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Figure 8: Function faq, min(f2q(Z)) = —10.5364

Also for fis, EN is the most robust strategy (fig. 6).
It stagnated only once, and compared to the other
strategies, EN was clearly the best.

The test series for fi9 and foo led to similar results
(fig. 7, fig. 8): EN was the only strategy which was
able to always find the optimum. All other strategies
stagnated repeatedly.

The same holds for the maximization problem fo3 (fig.
9). EN always found the global optimum, while the
other strategies often climbed on the local maximum,
and one strategy (differential evolution ES) did not
even leave the plateau from where the search started.

The test series with function fa4 shows varying results
(fig. 10). The best strategies are EN, CMA-ES, and
derandomized ES. CMA-ES and EN are almost equal,
derandomized ES performs a bit worse.

F5 is the only test function where EN was outper-
formed by other strategies (fig. 11). While uncor-
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Figure 9: Function fa3, max(f23(Z)) = 2.00686
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Figure 10: Function fa4, min(f24(£)) = 0.0003075

‘f2 —
optimum -—-----—-
15

05 |

best fitness

-05

-1 1 1 1 1 1 1 1
uncorrelated CMA MSR derand off diffevol EN
self adaptation

Figure 11: Function fa, min(f2(Z)) =0

related ES, MSR-ES, derandomized ES and even ES
without self adaptation (off) converged always, EN
had problems as well as CMA-ES and differential evo-
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Figure 12: Function fo;, min(f21(%)) =0

lution ES.

F5, is a quite difficult test function which could not
be optimized reliably by any strategy (fig. 12). Com-
paring the averages of the best function values found,
EN is the second best strategy after CMA-ES.

5 CONCLUSIONS

The robustness of the new EN strategy — Evolution
strategy with Neighborhood attraction — was investi-
gated in exhaustive test series using a large test bed
of optimization tasks and many ES variations for com-
parision.

Only for one of the thirteen test series, some of the ES
variants were more robust than EN, i.e. other strate-
gies were able to optimize the test function more often
than EN. For all test series, the EN was able to find
the optimum in at least 90% of the test runs. For
most of the test series, the EN converged always (for
all seeds), and for many optimization tasks, EN was
the only strategy that was able to converge always,
while all other ES variants repeatedly stagnated in lo-
cal optima.

It could be shown that the EN is much more robust
than other ES-variants, especially for difficult, multi-
modal functions.

For further work it is conceivable to incorporate the
mechanism of EN into other existing, elaborated ES
to improve these. A combination of e.g. CMA and
EN could be quite promising.
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A TEST FUNCTIONS

A.1 f;: Sphere model

[de Jong, 1975]

GED I H
~512<z; <5.12; dim =10
min(f;) = f1(0,...,0) =0

A.2 f5: Generalized Rosenbrock’s function

[de Jong, 1975]

F(#) = X5 (100« (@i — 22) + (2 — 1)?)
—512<7; <5.12; dim =10
min(fy) = fo(1,...,1) =0

A.3 f5: Shekel’s foxholes

[de Jong, 1975]

1
f5(Z)

(aij)

-32-16 0 16 32-32--- 01632
-32-32-32-32-32-16--- 3232 32

K =500 fs(ayj,az5) mcj =
—65.536 < z; < 65.536: dim = 2
min(fs) = fs(—32, —32) ~ 0.998004

zi—a;;)®

1 25 1
R D YTy

A.4 fs: Schwefel’s double sum
[Schwefel, 1981, Schwefel, 1995] (function 1.2)
— n i 2 T

fe(@) =220 (Zj:l 371') =z Az
—65.536 < z; < 65.536; dim =10
mln(fﬁ) = f6(07 te 70) =0

A.5 fy: Ackley’s function

[Ackley, 1987

fo(@) = —a-exp (=by/L - TIL, 22)
—exp (L .30, cos(c-z;)) +a+e
a=20; b=0.2;
—32.768 < z; < 32.768 ;
min(fg) = fo(0,...,0) =0

c=2r

dim = 10
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A.6 fi5: Weighted sphere model i A7) ci || fio(® = A())
11444401 ~10.4028
2l1|1]1|1]02]| -508767
hwefel, 1
[Schwefel, 1988] 3/8|8|8|8]02 -5.1288
Fis(@) =0 i - 22 40666604 -275186
. 503(713|7|04| -2.76589
PAZS @i <5125 dim =10 6|29 2|9|06| -1.83708
min(fis) = f15(0,...,0) =0 715053303 -3.72275

min(flg) = flg((], ey 0) = —10.4029

A.7  fi7: Fletcher and Powell A.10  fs: Shekel-10
[Fletcher and Powell, 1963] [T6rn and Zilinskas, 1989]
=\ __ m 1
fir(8) = XL, (Ai — Bi(2))? F0(@) = = X% GoamyE—amyT T
A; =30 (aij sinay + by cos ay) m =10

n . <z; < ; m =
B; = 37i_(aijsinx; + bij cosx;j) 0<z <105 dim=4

a;j,bij € [—100,100] (equ. distr. randoms) i AQD) ¢ || f20(@ = AQ))
aj € [-7,7] (equ. distr. randoms) 1j4)414)4 101 -10.5363
2 |1 1 1 1 0.2 -5.12847
—m <y <w; dim=4 3188 |8] 8 |02 -5.17562
; 4 |6 6 |6 6 (04 -2.871
min = a,Qg,...,0,) =0
(17) = frales, ) 5 (3] 7 3] 7 |04] -2.80662
6 |29 (2] 9 |06 -1.85892
7151 5 (3] 3 |03 -3.83364
A.8 fiz: Shekel-5 88| 18| 1 |07| -167525
916 2 (6] 2 |05 -2.42083
. 1 . . . -2.42652
[Torn and Zilinskas, 1989] 0]7]36]7]36]05 05
f18(Z) = — E:il (Q,A(i))(fl,A(i))T+Ci min(fao) = f20(0,...,0) = —10.5364
m=35
0<z:<10; dim=4 A.11 f51: Griewangk
i A0) & | Fis(@=40) [Térn and Zilinskas, 1989]
114|14(4]4]0.1 -10.1532
21111102 -5.0552 fr(F) =1+ Ly 2 7 eog( 2
3/8|8|8|8|02]| -510076 21(%) b X ot Il cos (3)
4166|6604 -2.68284 d =200
513713704 -2.6304

—100.0 < z; < 100.0; dim = 10
min(f21) = f21(0, ey 0) =0

min(flg) = flg((), ey 0) = —10.1532

A.12 fy3: Galar
A.9 fi9: Shekel-7
[Galar, 1991]

[T6rn and Zilinskas, 1989 f23(F) = (exp(—522) + 2exp(—5(1 — 21)?))
f1o(@) = = Xiz1 m=ame-amye -exp (=5 301, 77)
m="7 —50<2;<5.0; dim=10

0<z;<10; dim=4 min(fas) = f23(0.9965,0, ...,0) ~ 2.00686



EVOLUTION STRATEGIES

A.13 f5,: Kowalik

[Schwefel, 1977, Schwefel, 1995]

- 11 b7 +b; 2
faa(@) = 352, (ai - leimfii)

—-50<z;<50; dim=14
i a; b;l
1 | 0.1957 | 0.25
2 | 0.1947 | 0.5
3 | 0.1735 1
4 | 0.1600 2
5 | 0.0844 4
6 | 0.0627 6
7 | 0.0456 8
8 | 0.0342 | 10
9 | 0.0323 | 12
10 | 0.0235 | 14
11 | 0.0246 | 16

min(fas) & f24(0.1928,0.1908,0.1231,0.1358)
~ 0.0003075
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Abstract case, an evolutionary algorithm using a population of
size 1, no crossover, and deterministic plus-selection
Evolutionary  algorithms  (EAs)  are as in evolution strategies (Mﬁhlenbeig (1992), Droste,
. . Jansen, and Wegener (1998), Garnier, Kallel, and
population-based search heuristics often \ .
. S . Schoenauer (1999)). This algorithm, that can be con-
used for function optimization. Typically

they employ selection, crossover, and mu-
tation as search operators. It is known
that EAs are outperformed by simple hill-
climbers in some cases. Thus, it may be
asked whether the use of a population and
crossover is at all advantageous. In this
paper it is rigorously proven that the use
of a population instead of just a single
individual can be an advantage of its own
even without making use of crossover. This
establishes by example the advantage of
EAs compared to (random) hill-climbers on
appropriate objective functions. Moreover,
we describe one particular situation where
intuitively a population should outperform a
single individual and present a formal proof
justifying this intuition.

1 INTRODUCTION

The class of evolutionary algorithms comprises ge-
netic algorithms, evolution strategies, evolutionary
programming, and genetic programming. All these
general and robust randomized search heuristics are
applied to many different tasks. Though there is a
huge amount of successful applications, from a theo-
retical point of view our understanding of evolutionary
algorithms is still dissatisfactory. Here, we concentrate
on the task of optimization and consider the maximiza-
tion of pseudo-Boolean functions f: {0,1}" — R.

One common theoretical approach is the investigation
of very simple evolutionary algorithms. This can lead
to the investigation of the (1 4+ 1) EA in the extreme

sidered to be a kind of randomized hill-climber, is in-
teresting not only from a theoretical point of view, but
also is of practical interest. It is known (Juels and Wat-
tenberg (1995), Mitchell (1995)) that this simple algo-
rithm can outperform quite sophisticated evolutionary
algorithms. This holds even on functions where one
would expect the use of crossover to be of great ben-
efit (Mitchell, Forrest, and Holland (1992), Mitchell,
Holland, and Forrest (1994)). This motivates that we
mistrust intuitions and look for confirmation by rigor-
ous proofs. Thus, we want to find at least one example
where we can prove that a population based evolution-
ary algorithm can outperform the (14 1) EA. Since in
practice it is common to restart an evolutionary algo-
rithm after some time, we want the (1 + 1) EA to be
outperformed even if arbitrary restart strategies are
allowed. The evolutionary algorithm should in some
sense be “standard”: We do not want a specialized
algorithm this is tailored for just this one example.
Therefore, we want to apply standard techniques, only.
However, since we want to prove that the use of a pop-
ulation alone can be advantageous, we do not allow the
use of any crossover operator. Moreover, the same mu-
tation operator has to be applied in both algorithms,
since we do not want any performance differences to
stem from different mutation operators. We are inter-
ested in a comparison of the computation time. Note,
that the number of generations alone is in general not
an appropriate measure. If only the number of gener-
ations is taken into account, the use of a large popula-
tion can only be advantageous. Such a measurement
is obviously cheating. Under such unrealistic assump-
tions it is easy to outperform search heuristics based
on a single individual. Here, we choose the number of
function evaluations as an appropriate measure that is
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easy to define and to measure. For the algorithms con-
sidered it will be obvious that the number of function
evaluations is a realistic measure for the computation
time.

For continuous search space, especially for the
sphere function, some results are known. Beyer
(1993,1995a,1995b) shows that as far as local perfor-
mance on the sphere function is concerned the use
of populations cannot help. In the case of a noisy
environment things are different. Arnold and Beyer
(2000) argue how the use of populations can be help-
ful in a noisy environment and increase the efficiency
of the search. Jansen and Wegener (1999) prove that
a genetic algorithm can by far outperform the (1 + 1)
EA. This result relies heavily on the use of uniform
crossover. Therefore, it remains open whether the use
of a population alone, even without crossover, can be
advantageous. Here, we give a rigorous proof that this
can be the case. In the next section we give precise
definitions of the algorithms used. Furthermore, we
explain an intuitive idea why the use of a population
may be advantageous and define a family of functions
in accordance to that idea. In Section 3, we consider
one special member of that family of functions and
prove that a population-based algorithm with appro-
priately chosen population size can clearly outperform
the (1+1) EA. Based upon the methods from this first
result we derive a much stronger statement. We show
that a population-based algorithm with a population
that is not too small optimizes a broad family of func-
tions in polynomial expected time while the (1 4 1)
EA has superpolynomial expected run time. Finally,
in Section 4 we summarize and discuss open questions.

2 DEFINITIONS

The (1+1) EA is perhaps the most simple EA; using a

population size of just 1 and mutation, only. The selec-

tion mechanism used is the plus-selection known from

evolution strategies. This simple algorithm is sub-

ject of intense research, see for example Miihlenbein

(1992), Rudolph (1997), Droste, Jansen, and Wegener

(1998), Garnier, Kallel, and Schoenauer (1999). We

assume that we want to maximize some objective func-

tion f:{0,1}" — R.

Algorithm 1 (The (1+1) EA).

1. Choose z € {0,1}" uniformly at random.

2. Create y by flipping each bit in x
independently with probability 1/n.

3. If f(y)> f(z), then set z:=y.

4. Continue at 2.
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Since the (141) EA uses a kind of degenerated popu-
lation of size 1 and accepts only strings with at least
equal function value it can be regarded as a kind of
random mutation hill-climber. Note, however, that
since in each step it generates any =’ € {0, 1}" as child
y with positive probability, it cannot get stuck in any
local optimum. This distinguishes the (14+1) EA from
other hill-climbing algorithms.

We want to compare the efficiency of the (1+1) EA
with that of an evolutionary algorithm that uses a
real population but no crossover. We want to prove
that such an EA can indeed be superior to the simple
(1+1) EA. On the one hand, we would like to have an
EA for this purpose that is a kind of “standard EA”
except for neglecting crossover. On the other hand,
it is immediately obvious that advantages due to the
use of a population can only occur if the population
does not converge too rapidly. Therefore, we would
like to apply some mechanism that helps us to main-
tain at least some minimal degree of diversity. There
are numerous more or less complicated mechanisms
to do so, see Back, Fogel, and Michalewicz (1997) for
an overview. A very simple mechanism is avoidance
of duplicates as suggested and investigated by Ronald
(1998). An even simpler and computationally less ex-
pensive mechanism is avoidance of replications as used
by Jansen and Wegener (1999). Avoidance of replica-
tions ensures that every child is subject to a mutation
flipping at least 1 bit or to crossover. We will see
that this weak and computationally cheap mechanism
is sufficient to maintain an acceptable degree of diver-
sity.

The EA we use is a kind of elitist steady-state GA,
using fitness-proportional selection for reproduction,
bit-wise mutations with probability 1/n (just as the
(141) EA), no crossover, reverse proportional selec-
tion for deletion, and deletion after insertion. We use
population size N and leave the concrete choice of IV
open for the moment.

Algorithm 2 (The Evolutionary Algorithm).

1. For ¢:=1 To N Do
Choose z; € {0,1}" uniformly at random.

2. Choose y € {x1,22,...,2Ny} such that
N
Prob(y = ;) = f(z:)/ 2° f(z).
j=1
3. Repeat
4. Create xy41 by flipping each bit in y

independently with probability 1/n.
. Until zy41 #y.
6. Sort {x1,z2,...,Zn4+1} such that
f(z1) > f(z2) > - > f(rN4+1) holds.
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7. Choose z € {x3,23,...,ZN+1} such that
Prob (Z _ xz) _ _ fe)tfve)—f(@i)

Fan)+f@ns)—F ()

2

N+
>
i=
and remove it.
8. Continue at 2.

One may argue that it is not appropriate to call Algo-
rithm 2 a GA since it does not use crossover. Using
mutation as the only variation operator seems to make
this algorithm to be similar to an evolution strategy
or evolutionary programming. In order to avoid this
debate we denote Algorithm 2 as evolutionary algo-
rithm.

Our intuitive idea for the origin of an advantage for
the population-based EA compared to the (1+1) EA is
the following (Rowe 2000). Assume we have a function
that mainly consists of an easy to follow path to a local
optimum that has second best function value. Then a
direct mutation to a global optimum is needed. The
expected waiting time for such a mutation can be quite
large depending on the Hamming distance between the
local and a global optimum. Since Algorithm 2 uses
a population and the quite weak proportional selec-
tion, it has a good chance to “diffuse” the population
around the local optimum. Therefore, some members
of the population have a smaller Hamming distance
to a global optimum what can lead to a quicker find-
ing of this global optimum. We define a class of ob-
jective functions with such properties and prove for
some members of this class that they have the desired
properties such that the (141) EA is outperformed
by the population-based evolutionary algorithm. The
function class is a modified (mainly scaled) version of
JuMmpy, as used by Jansen and Wegener (1999) to ex-
emplify the utility of uniform crossover.

Definition 3. The function SJumpy s: {0,1}" — R
(short for SCALEDJUMP) is defined for any n € N,
se N\ {1}, ke {1,2,...,n} by

sl if (Jlzlly < n — &) v ([lll = n)

gn—k +n—Fk— ||x||1 otherwise,

SJumPy, s(x) := {

for each x € {0,1}", where ||z|1 denotes the number
of ones in x.

3 RESULTS

The results for the (1+1) EA follow more or less di-
rectly from the investigations of the (1+1) EA on
Jumpy, by Jansen and Wegener (1999). For the sake
of completeness we present full proofs here, too.

Theorem 4. The expected run time of the (1+1) EA
on SJUMPg s: {0,1}" — R for k > 1, k = O(logn),
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and s € N\ {1} is © (n*). For any t € N, the proba-
bility that the (1+1) EA optimizes STUMPy, ¢ within t
steps is bounded above by O (t/nk).

Proof. We begin with an upper bound on the expected
run time. Consider levels of strings

li:= {2 €{0,1}" | [lz]x = 7}

for i € {0,1,...,n}. Note, that for all ¢ and all
x,y € l; we have SJUMP 5(x) = SJUMPy s(y) since
SJUMP;, s is a symmetric function. Furthermore, for
all © # j and all x € I; and all y € l; we have
SJUMPy, s(z) # SJUMP s(y). Thus, once the (1 + 1)
EA leaves some level I; (that is we have x € [;, y ¢ ;
and SJUMPy ¢(xz) < SJUMP s(y)) no string from I;
can ever become the current string. Let p; denote
the probability that in one generation the (1 + 1) EA

n—1
leaves ;. Clearly, then Y 1/p; is an upper bound
i=0

on the expected run time. For i < n — k it is suf-
ficient to mutate exactly one of the n — i bits with
value 0. For i > n — k it is sufficient to mutate
exactly one of the ¢ bits with value 1. This yields
pi > (min {i,n —i} /n) (1—1/n)"" for i # n—k. For
i =n—k we have p; = (1/n*) (1 - 1/n)"~", since the
only way to increase the function value is to mutate
exactly the k bits with value 0 leading to the unique
global optimum. Thus, we have

-y

as upper bound on the expected run time. This upper
bound holds for all values of k € {1,2,...,n}.

2 Z +nf =0 (nk)
0<i<n/2
i#En—k

n—1

Now, we prove the second statement. Note, that the
lower bound on the expected run time follows from
this statement. It is essential that we have £ > 1
and k = O (logn), here. We denote the current string
of the (1 + 1) EA in the ¢-th step by x;. After ran-
dom initialization we have ||zo|l1 < n — k with prob-
ability 1 — e~%(") due to Chernoff bounds (Motwani
and Rhagavan (1995). Once we have |z¢||1 = n — k,
we have ||zi|l1 € {n — k,n} for all ' > ¢. For all
x with ||z|[i < n — k the probability to reach the
unique global optimum from z via a direct mutation
is 0 (1/n*). Thus, we only have to deal with strings
x with ||z|][1 > n — k. In order to reach the unique
global optimum via a direct mutation from such a
string the following two events are necessary. First,
such a string has to be reached. Second, the global
optimum has to be reached from this string before
some string «’ with ||2/|; = n — k becomes current
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string of the (1 + 1) EA. For all y € {0,1}" with
|ly|[1 = n—m, we have that y is reached from any string
z with [|z|; < n—Fk with probability O (k™ /nk+1=m).
This holds since the Hamming distance from x to y is
bounded below by k& + 1 — m. Assume, that we have
x; = y at some point of time. Let t* be the first
point of time where the current string is either the
global optimum or contains exactly n — k ones, i.e.
t* = min{t' |t/ >t A|lap| € {n—k,k}}. For all ¢/
with ¢t < ¢/ < t* we have ||zp|1 < n —m. Thus, the
probability to reach the global optimum in one step
is always bounded above by O (1/n"™). The probabil-
ity to increase the number of zeros by 1 in one step
is bounded below by ((n —k)/n) - (1 — 1/n)"~*. We
consider only steps ¢’ with xy # xp_1. We see that
the probability to reach the global optimum in such a
step is still bounded above by O (1/n™). Note, that
after at most k — m such steps we have reached ;.
Thus, the probability that x;« is the unique global
optimum is bounded above by O ((k —m)/n™) =
O (k/n™). Therefore, we have that the probability
to reach the global optimum from ¥ is bounded above
by O (k™ /n* 1) = O ((k/n)*™) = o (1/n¥) for all
such strings y. This completes the proof. O

Obviously, the simple (1 + 1) EA is able to optimize
SJUMP;, s quite efficiently, at least for small k. How-
ever, we see that arbitrary restart-strategies cannot
decrease significantly the expected run time. Note,
that the size of s does not matter for this algorithm.
This is different for Algorithm 2, which uses a fitness-
sensitive selection mechanism, namely proportional se-
lection. We concentrate on the special case SJUMP; 2,
first. This is useful, since in this simpler case it is eas-
ier to develop the methods and insights that will yield
the result in more general cases, too. Here, however,
no too big advantage is possible. It is important to
see that arbitrary restart mechanisms cannot lead to
a substantial speed-up of the (1 + 1) EA. This is due
to the upper bound of O (t/nk) for the success proba-
bility after ¢ steps.

Theorem 5. The expected run time of Algorithm 2
with population size N = |y/n| on the function
SJUMPs 2 is bounded above by O(n3/2).

Before we prove the result for the population-based
evolutionary algorithm we consider two events that are
of special interest and both have to do with selection.
First, we are interested in a lower bound on the prob-
ability to select some member of the population with
a certain function value as parent.

Lemma 6. Consider Algorithm 2 on the function
SJUMPy ;. Assume that x is a member of the current
population. Let fi1 and fo denote the function value
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of the current best and current second best members of
the population. Consider the selection in line 3 of the
algorithm.

a) The  probability to  select some mem-
ber 'y of the current population  with
SJuMPy s(y) = SJuMPy s(x) is bounded be-
low by STuMPy, s(x)/(N f1).

b) The probability to select some member y of the
current population with SJUMPL s(y) = f1 is
bounded below by 1 — (faN)/ f1.

The other aspect of selection is selection for deletion
in line 7. Here, we are interested in an upper bound on
the probability to select some member of the extended
population with a certain function value for deletion.

Lemma 7. Consider Algorithm 2 on the function
SJUMPy s, in particular, consider the selection in
line 7 of the algorithm. We make the following as-
sumptions about the current population:

e The population contains N + 1 strings.

o The current best member of the population con-
tains exactly n — k ones.

e There is exactly one member x of the population
which contains exactly j ones, where we have n —
k<j<n.

a) The probability to select x is bounded above by
2/N.

b) If there is at least one member of the population
with less than n — k ones, then the probability to
select = is bounded above by 1/(s + N).

We omit the proofs of Lemma 6 and Lemma 7. A
technical report with full proofs is available.

Proof of Theorem 5. We use a population size of N =
[v/n] and assume for the sake of notational simplicity
that we have |/n| = /n. The generalization to other
cases is trivial. We describe a kind of typical run that
ends when the unique global optimum becomes mem-
ber of the current population for the first time. We
divide that run into two disjoint phases and estimate
the expected length of each phase. The first phase be-
gins after random initialization and ends when a string
with n — 2 ones or the unique global optimum becomes
member of the current population for the first time.
The second phase begins after the first phase and ends
when the unique global optimum becomes member of
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the current population for the first time. Due to the
elitism employed in Algorithm 2 we always have at
least one string with n — 2 ones in the population in
the second phase.

The expected length of the first phase is O (nlogn):
We estimate the probability to select the current best
member of the population as parent in line 3. FEi-
ther the whole population consists of N strings that all
have current best function value, or we have fo/f1 =
O (1 /n2) In the first case we obviously select such
a parent with probability 1. In the latter case, we
apply Lemma 6 b). Thus, we have 1 — O (N/n?) =
1-0 (1 /n3/ 2) in any case as a lower bound for select-
ing the current best member of the current popula-
tion for reproduction. Due to the elitistic replacement
strategy the current best member of the population
cannot be replaced. Therefore, we can pessimistically
ignore steps where some other member of the popula-
tion is chosen as parent. Now, consider the case that
the chosen parent is the current best member of the
population and contains ¢ bits with value 1. Then, we
have a probability of at least ((n —i)/n)-(1—1/n)"~!
to create a child y with larger function value. Thus,
the expected waiting time for improving the current
best member of the population is bounded above
by (n3/2/(n*? —1)) -en/(n—1i) = O(n/(n—1i)) in
this situation. We sum up these expected waiting

n—1
times and get >, O(n/(n—1i)) = O(nlogn) as up-
i=0

1=
per bound on the expected length of the first phase.
Note, that these considerations do not depend on the
initial population.

In the second phase we are interested in three special
events. First, we investigate the probability that we
introduce a string with exactly n— 1 ones in the popu-
lation when there is no such string present in one gen-
eration. Second, we are interested in the probability
to remove the only occurrence of a string with exactly
n — 1 ones without introducing the global optimum
instead in one generation. Finally, we investigate the
probability to create the global optimum in one gener-
ation given that at least one string with exactly n — 1
ones is present in the current population.

We consider the current population and distinguish
three different “states” it can be in. Note, that each
of these three states does not represent one special
population but a large number of different populations
that all have some property in common. If no string in
the current population has more than n—2 ones we say
the EA is in state A. If the string with the maximal
number of ones in the current population contains n—1
ones, we say the EA is in state B. Finally, if the
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global optimum is member of the current population
we speak of state C. We want to derive an upper
bound on the expected number of generations the EA
needs to “reach state C”, i.e. to have a population
that satisfies the defining condition of state C'.

We consider a Markov chain with three states Sy, S,
and S3. We want to bound the first hitting time of Sy
starting in Sz from above. For X,Y € {Sp, S1, 52} we
denote by px y the transition probability for a state
transition from X to Y.

We assume pessimistically that we have pg, g, = 0.
This can obviously only enlarge the first hitting time
of Sy. Since we are interested in the first hitting time
of Sy, only, we can assume pg, s, = 1, S0 Ps,,s, =
Ds,,5; = 0 follows. Due to our assumptions we have
Ps,,S: + Psy,s, = 1, so we can replace PS2,82 by 1-
Ds,,s,- In the same way we can replace pg,.s, by 1 —
DS1,S, — PS1,S,- The resulting Markov chain can be
visualized as follows.

1—ps,.s 1 —ps,,s. — Ps1,5 1
e pShSZ e °

PSs,5:1 PS1,80

Let the random number of transitions starting in
So leading to Sy be denoted by Ts,. Let the ran-
dom number of transitions starting in S; leading to
So be denoted by Ts,. Then we have E (Ts,) =
(1 - psz,sl) (1 +E (Tsz)) + Ds,,5: (1 +E (TSI)) which
leads to E (TSQ) = (1/p52,51) + E (Tsl).

For E (Ts,) we have E (Ts,)

(1 — PS1,80 7psl’s2) (1 +E(T51)) + Psy,50
Dsi.s, (1 +E(Ts,)) leading to E(Tg,)
(1/}751’50) + (psl,sz/ (psz,sl 'psl,so))'

We look for an upper bound on the expected absorp-
tion time and thus need an upper bound on pg, s, and
lower bounds on pg, s, and pg,.s,. In order to obtain
meaningful results, we connect the described Markov
chain to the evolutionary algorithm we consider. First
of all, the defining conditions of the three different
“states” of the EA are obviously not sufficient to de-
scribe unambiguously exactly one population. In fact,
for each such “state” a lot of different populations sat-
isfy the according defining condition. The probability
to reach some population that meets condition B in
one generation starting from a population that meets
condition A depends on the specific population the
EA starts in. The same holds for all other “transition
probabilities”.

I+



EVOLUTION STRATEGIES

If we associate A with Ss, B with S7, and C' with Sy
we have the following. If the minimal number of zeros
a member of the current population contains, equals
1, then the population satisfies a condition that is as-
sociated with S;. We choose values for pg, s, Ps;,s,,
and pg,.s, in the following way. Let P4 denote the
set of all populations satisfying condition A. Let Pgp
and P denote the according sets for conditions B and
C. We denote the change from a population P; to an-
other population P in one generation by P, — Ps.
We want pg, s, to be a lower bound on the probabil-
ity to come from a population satisfying condition A
to a population satisfying condition B, i.e. ps, s, <
min {ZPQEPB Prob (P, — P) | P, € PA}. We want
Ds,,S, to be a lower bound on the probability to come
from a population satisfying condition B to a popu-
lation satisfying condition C, thus we want to have
Psy,so < min {ZP2€PC Prob (P, — P) | P € PB}.
Finally, we want pg, s, to be an upper bound on the
probability to come from a population satisfying con-
dition B to a population satisfying condition A, that
is ps,.s, > max{ZPzGPA Prob (P, — P2) | P, € PB}.

Such lower bounds for pg, s, and ps, s, are easy to
find. Introducing a string with exactly n — 1 ones
into the population can be achieved in the following
way. First, one selects the current best member of the
population, which is a string with exactly n — 2 ones.
As in the first phase, either the the whole population
consists of strings with n — 2 ones and have current
best function value. In this case we obviously select
such a string with probability 1. Otherwise, we apply
Lemma 6 b) and have f; = n2("=2) and f, < n2"=3),
Thus, the probability for this event is bounded below
by 1 — N/n? in any case. Then exactly one of the
two bits with value zero is mutated. This event has
probability (2/n)(1 — 1/n)"~1. Finally, this child is
not deleted from the (at this moment enlarged) popu-
lation. We apply Lemma 7 a) and have 1 — 2/N as a
lower bound. Therefore, we have

(-5 () )

as a lower bound for pg, s,

For ps, s, we consider the case that a string with n—1
ones is selected as the parent and the only bit with
value 0 is mutated, only. The probability to select
such a string is bounded below by

n?n=2 1 1 1 L1
Vi n2(=2+1/2 = 9. /n

Nn2(n72) -
due to Lemma 6 a). Thus, we have (1/(2y/n))-(1/n)-
(1-1/n)" ' =0 (1/n3/2) as alower bound on pg, s,
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Finally, we need an upper bound for pg, s,. Obviously,
a necessary condition for the event we consider is that
the only string with n—1 ones that is in the population
is selected for deletion. We distinguish two different
cases. First, assume that at least one of the strings in
the set {z2,x3,...,zn4+1} (in line 7 of Algorithm 2)
contains less than n — 2 ones. This can be due to
the fact that such a string was already member of the
population or due to the fact that such a child was
created. In this case the probability to select the string
with n — 1 ones for deletion is bounded above by 1/n?
due to Lemma 7 b). Thus, in the case that a string
with less than n — 2 ones is created by mutation we
have 1/n? as an upper bound on DS1,Ss-

Now, we consider the second case, where except for
the one string x with n — 1 ones all other members
of the population contain exactly n — 2 ones. First of
all, the probability to select the string = for deletion
is bounded above by 2/N due to Lemma 7 a). We
consider two sub-cases with respect to the parent of
the newly created child. If the parent is a string with
n—2 ones, then the probability to create a child differ-
ent from the parent with n — 2 ones is bounded above
by 2/n, since at least one of the two bits with value
zero has to flip. Otherwise, either a child with a num-
ber of ones that is different from n — 2 is created or we
have the case of a replication that is not allowed due
to the definition of Algorithm 2. If, on the other hand,
the parent is the only string with n — 1 ones, it is obvi-
ously a necessary condition that this string is selected
for reproduction. The probability of such a selection
is bounded above by (n*"=2 —1)/(Nn*"=2) <
1/v/n due to Lemma 6 a). Therefore, we have
max {1/n?,(2/v/n)-2/n,(2/y/n)-1/\/n} = 2/n as an

upper bound on pgs, s, in any case.

We combine what we have and get E (Ts,) = O (n%/?)
leading to E(Ts,) = O(n) + O (n*?) = O (n*?)
which is also an upper bound on the expected length
of the second phase. Together with the upper bound
on the expected length of the first phase we obtain the
desired result. |

We see, that the EA optimizes SJUMP; ,,2 on average
Q (y/n)-times faster than the (1+1) EA. Note, that
this result depends on the appropriate choice of the
population size N. For N = © (y/n) similar results
can be proven. Note, however, that already for N > n
we cannot prove any better bound then 2 (n2)

Thus, Theorem 5 is a result with two problems. First,
the performance of an EA should be less dependent
on the choice of the parameterization. Second, since
EAs are heuristics and we do not expect optimal per-
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formance, a gap of size /n is not very convincing.
Fortunately, the ideas and methods we developed so
far, are sufficient to deliver much stronger results.

We consider functions SJuMP s: {0,1}" — R with
k > 1, where k is not too large, and s > n2. It will
turn out that & = O ((logn) /loglogn) is an appro-
priate choice. Similar to the proof of Theorem 5 we
consider a special Markov chain and describe a tight
connection between the expected run time of the EA
and the expected absorption time of the Markov chain.
Since the idea concerning the advantage of a popula-
tion is the same, the number of states of the Markov
chain equals k£ 4 1, just as in the proof of Theorem 5
(see Figure 1).

We find appropriate lower bounds on pg, 5, , for all
i € {1,2,...,k} and appropriate upper bounds on
ps,.s, foralli € {1,2,..., k—1} similar to the proof of
Theorem 5. It is quite easy to see and straightforward
to show, that

—1
< Ps;,S;_1 ) 1
O<i<k Ds;.8;,_1 +DS;,5, 0<i<k Ps;.Sia

is an upper bound on the expected absorption time.
Combining all these findings yields the following the-
orem. A rigorous proof is contained in a technical
report.

Theorem 8. Consider Algorithm 5 on the function
SJumpy s with k > 1, k = O((logn) /loglogn), and
s € N\ {1} with s > n?. The expected run time of this
EA with population size N, where n < N < /s holds,
is O(nN(c-k)k+1) = nOW  where ¢ is some positive
constant.

Let k = © ((logn)/loglogn) and s = Q (n'°¢™). Then
we have the following result. Using any polynomial
population size N > n, the population-based evolu-
tionary algorithm has polynomial expected run time
on SJUMP; i, whereas the (14 1) EA has expected run
time © (n(log n)/log log"), which is super-polynomial.
Thus, there is a whole family of objective functions,
where the expected run time can be tremendously re-
duced by employing a population instead of just one
single individual.

4 CONCLUSIONS

We investigated the question whether the use of a
population can by itself be advantageous even with-
out using crossover. We measured the computational
cost by the number of function evaluations. We con-
sidered the maximization of pseudo-Boolean functions
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f:4{0,1} — R and proved for one example that
the appropriate use of a population can speed-up op-
timization by a factor of Q(y/n). We could even
strengthen this result, by proving, that the use of a
large enough population of polynomial size can reduce
the expected run time from super-polynomial to poly-
nomial. This is the first such result that has been
rigorously proven.

It remains open whether functions can be found where
the advantage due to the use of a population (without
employing crossover) is even exponential. It would be
interesting to find a lower bound on the population
size for the case where the use of a population is of
substantial benefit. Moreover, we would like to iden-
tify other circumstances under which populations are
advantageous. Note, that in order to do a fair com-
parison one has to allow the (1+1) EA to make use of
restart mechanisms.
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Abstract

Evolutionary Dynamic Weighted Aggrega-
tion (EDWA) has shown to be both effective
and computationally efficient [1] for multi-
objective optimization (MOO). Besides, it
was also found empirically and surprisingly
that EDWA was able to deal with multi-
objective optimization problems with a con-
cave Pareto front, which has proved to be
beyond the capability of the Conventional
Weighted Aggregation (CWA) methods [2].
In this paper, a theory on why CWA fails
for multi-objective problems with a concave
Pareto front is provided schematically. Ac-
cording to this theory, it can easily be ex-
plained why EDWA has worked well for both
convex and concave multi-objective prob-
lems. Simulation examples are conducted on
various test functions to support our theory.
It is concluded that EDWA is an effective and
efficient method for solving multi-objective
optimization problems.

1 Introduction

Evolutionary multi-objective optimization has been
widely investigated in the recent years [3, 4]. Gen-
erally speaking, there are three main approaches
to evolutionary multi-objective optimization, namely,
weighted aggregation approaches, population-based
non-Pareto approaches and Pareto-based approaches
[5].

Conventional weighted aggregation (CWA) based ap-
proaches two main weaknesses. Firstly, aggregation
based approaches can provide only one Pareto solu-
tion from one run of optimization. Secondly, it has
been shown that weighted aggregation is unable to

deal with multi-objective optimization problems with
a concave Pareto front [2].

One effort using weighted aggregation based approach
for multi-objective optimization (MOO) was reported
in [6]. In that work, the weights of the different objec-
tives are encoded in the chromosome to obtain more
than one Pareto solution. Phenotypic fitness sharing
is used to keep the diversity of the weight combina-
tions and mating restrictions are required so that the
algorithm can work properly.

An efficient and effective method called evolutionary
dynamic weighted aggregation (EDWA) was proposed
in [1]. The original idea in EDWA was straightfor-
ward, i.e. if the weights for the different objectives
are changing during optimization, the optimizer will
go through all points on the Pareto front. If the
found non-dominated solutions are archived, the whole
Pareto front can be achieved. This has been shown to
be working well for both convex and concave Pareto
fronts.

In this paper, a theory on evolutionary multi-objective
optimization using weighted aggregation is suggested.
Based on this theory, the reason why EDWA is able
to deal with MOO is revealed. Simulations are carried
out on different test functions both to support our the-
ory and to demonstrate the effectiveness of EDWA.

2 Multi-objective Optimization with
Weighted Aggregation

2.1 Definition of Multi-objective
Optimization

Consider a multi-objective optimization problem with
k objectives (fi,i = 1,2, ...,k) and n decision variables
(ziyi=1,2,...,n):

f(x) = (f1(x), -0, (%)), 1)
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fq f1

(a) Convex Pareto front (b) Concave Pareto front

Figure 1: Convex and concave Pareto fronts.

The target of the optimization is to minimize f;(x),i =
1,2,..., k subject to

g,(X) S O,Z = ]-aza ey M. (2)

Since the k objectives may be conflicting with each
other, it is usually difficult to obtain the global mini-
mum for each objective at the same time. Therefore,
the target of MOO is to achieve a set of solutions that
are Pareto optimal. The related concepts of Pareto
dominance, Pareto optimality, Pareto optimal set and
Pareto front are defined as follows [4]:

Pareto dominance: A vector u = (u1,...,ux)
is said to dominate v = (vy,...,v;) if and only if
u; < ;4 = 1,2,...,k and there exists at least one
element with u; < v;.

Pareto optimality: A solution x is said to be
Pareto optimal if and only if there does not exist
another solution x’ so that f(x) is dominated by f(x’).
All the solutions that are Pareto optimal for a given
multi-objective optimization problem are called the
Pareto optimal set (P*).

Pareto front: For a given multi-objective opti-
mization problem and its Pareto optimal set P*, the
Pareto front (PF*) is defined as:

PF* ={f(x) = (f1(x),.., ax)[x € P*}.  (3)

There are generally convex and concave Pareto fronts.
A Pareto front (PF”) is said to be convex if and only
if Vu,v € PF*,VX € (0,1),3w € PF* : |u|| + (1 -
VI [lwl]-

On the contrary, a Pareto front is said to be concave
if and only if Yu,v € PF* VA € (0,1),Iw € PF* :
Allul + (1 = NvI] < [[wl]-

For example, Fig.1(a) is a convex Pareto front and
Fig.1(b) is a concave Pareto front. Of course, a Pareto
front can be partially convex and partially concave.
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2.2 Conventional Weighted Aggregation for
MOO

Conventional Weighted Aggregation (CWA) is a
straightforward approach to multi-objective optimiza-
tion. In this method, the different objectives are
summed up to a single scalar with a prescribed weight

F= Zwifz’(x); (4)

where w; is the non-negative weight for objective
fi(x),i = 1,...,k. Usually, a priori knowledge is
needed to specify the weights. During the optimiza-
tion, the weights are fixed in conventional weighted
aggregation method.

Using this method, only one Pareto optimal solution
can be obtained with one run of the optimization al-
gorithm. In other words, if one intends to obtain dif-
ferent Pareto solutions, one has to run the optimizer
several times. This is of course not allowed in a lot of
real world problems because it usually takes too much
time to run the optimization more than once.

What is worse, efficiency is not the only problem for
CWA. It was pointed out that CWA is not able to ob-
tain the Pareto solutions that are located in the con-
cave region of the Pareto front [2].

However, it is not as straightforward as one might
imagine to explain the reason why the solutions in the
concave region of the Pareto front cannot be obtained
using CWA. One attempt to explain this problem is
illustrated in Fig. 2, which was provided in [2]. In
the figure, line L denotes solutions with the same cost
and the slope of the line is determined by the weights.
According to this theory, the solutions in the concave
region between point A and B cannot be reached by
CWA based methods. Unfortunately, this illustration
is incorrect because the solutions outside the shaded
area are unreachable anyway and therefore, it is impos-
sible for the optimizer to proceed towards the Pareto
front from the origin, in particular for minimization
problems.

In [5], another illustration as shown in Fig. 3 is used.
However, from this illustration, it is still unclear why
the solutions in the concave region are not obtainable
with CWA methods. Further explanations are pro-
vided as follows. In Fig. 4 (a), it can be seen that
the line with equal cost will converge to a point on
a convex Pareto front when the slant of the line is
given, that is, when the weights are fixed. In contrast,
the line will continue to move after it reaches a point
(point C, which is corresponding to the given weights)



1044

(&) Convex Pareto front. (b) Concave Pareto front.

Figure 2: Geometrical representation of weighted sum
approach abstracted from [2].

fa

Decreasing cost

Figure 3: Line of equal cost introduced by the
weighted-sum approach abstracted from [4].

in the concave region of the Pareto front, until no fur-
ther minimization of the cost is possible. Finally, the
obtained solution will be either A or B.

In the following, a new explanation for this problem
is suggested. In our opinion, whether CWA is able
to converge to a Pareto-optimal solution depends on
the stability of the Pareto solution corresponding to
the given weight combination. If the Pareto solution
corresponding to a given weight combination is a sta-
ble minimum, then it can be obtained with CWA. To
explain this further, let us have a look at the prob-
lem from another point of view. We first discuss a
convex Pareto front. For a two-objective problem,
if the Pareto front is presented in the conventional
way, as shown in Fig. 5 (a), then point B is the sta-

(a) Convex Pareto front

(b) Concave Pareto front

Figure 4: Conventional weighted aggregation for
MOO. (a) Convex Pareto front, (b) Concave Pareto
front.
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Figure 5: Convex Pareto front. All Pareto solutions
are stable minimum when the coordinate system ro-
tates. (a) 0 degree; (b) 45 degree; (¢) 90 degree.

ble minimum on the Pareto front. That is to say,
point B will be the solution obtained by CWA given
the weight combination of (wy,ws) = (0,1). If the
weight combination is changed in optimization, it is
equivalent to rotating the coordinate system together
with the Pareto front. Thus, when w; decreases and
ws increases, it is equal to rotate the coordinate sys-
tem counter-clockwise. If f = f5, then for a given
weight combination of (wi,w2) = (0.5,0.5), the co-
ordinate system rotates 45 degrees. In this case, C
is the stable minimum of the Pareto front that will
be obtained using CWA with (wq,w2) = (0.5,0.5), as
shown in Fig. 5 (b). Obviously, for a weight combina-
tion of (w1,w2) = (1,0), A is the stable minimum and
the coordinate system rotates 90 degrees. Therefore,
different Pareto solutions will be obtained using the
conventional weight aggregation with different weight
combinations if the Pareto front is convex. Since the
weights are always non-negative, the maximal rotation
angle is 90 degree. Without considering the time con-
sumption, the whole Pareto front can be obtained by
running the optimizer as many times as possible.

Now let us have a look at a concave Pareto front.
As illustrated in Fig. 6, all solutions located in the
concave region of the Pareto front are unstable when
the weight combination changes. As explained above,
Fig. 6 (a) corresponds to a weight combination of
(w1, w2) = (0,1) and the solution will be point B. For
all weight combinations that corresponds to a rotation
angle between 0 and 45 degrees, the solution to be ob-
tained will be B, whereas for all weight combinations
that correspond to a rotation angle between 45 and 90
degrees, the solution to be obtained will be A. The
weight combination that corresponds to a rotation an-
gle of 45 degree (if f¥ = f¥) is a dividing point (Point
C). If the weight combination exactly corresponds to
this dividing point, the result of the optimization can
either be A or B, depending on the initial condition
and dynamics of the optimizer. As a conclusion, only
point A and B are stable minima on the Pareto front
no matter how the weight combination changes.
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Figure 6: Concave Pareto front. All Pareto solutions
are unstable minimum except the two points on both
ends when the coordinate system rotates. (a) 0 degree;
(b) 45 degree; (c) 90 degree.

According to the above discussions, we can draw the
following conclusions:

e For a convex Pareto front, each weight combi-
nation corresponds to a stable minimum on the
Pareto front.

e For a concave Pareto front, all solutions with ex-
ception to the two points on the two ends are
unstable when the conventional weighted aggre-
gation is used. Therefore, an optimizer is unable
to converge to the Pareto solution corresponding
to the weight combination.

e When the Pareto front is rotated slowly from 0 de-
gree to 90 degree, the optimizer will go along the
Pareto front from one stable minimum to another,
once it reaches any point of the Pareto front. If
the Pareto front is convex, the moving speed is de-
termined by the change of weights. If the Pareto
font is concave, the optimizer will stay on one sta-
ble minimum until this point becomes unstable.
In this case, the optimizer will move along the
Pareto front to the next stable minimum.

3 Evolutionary Dynamic Weighted
Aggregation

As it is pointed out in the last section, if we rotate the
Pareto front 90 degree, the optimizer will go from one
stable optimum to another. This can be done in two
ways:

e After the optimizer has converged to one stable
minimum, the Pareto front is rotated 90 degrees
abruptly. In the two-objective case, this corre-
sponds to the situation where w; is changed from
0 to 1 and wy from 1 to 0. We call it Bang-bang
Weighted Aggregation (BWA).

e The Pareto front is rotated gently, that is, the
weights are changed gradually. In this case, the
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A shortest path

i shortest path

£, fy
(b) Concave Pareto front

(a) Convex Pareto front

Figure 7: For a convex Pareto front (a), it is not the
shortest path between two points, whereas for a con-
cave Pareto front (b), it is the shortest.

optimizer will traverse the whole Pareto front and
all the solutions on the front will be obtained.
This was denoted as Generation-based Periodical
Variation of the Weights in [1]. In this paper, it
is called Dynamic Weighted Aggregation (DWA).

In both cases, the weights are changed periodically.
This may be helpful if the Pareto front is not uniform.
By uniform, we mean that if the distance in the weight
space is the same, then the distance on the Pareto front
is also the same.

3.1 Bang-bang Weighted Aggregation

Bang-bang weighted aggregation (BWA) can be seen
as a test of our theory proposed in the last section.
According to our theory, it is also possible to obtain
the whole Pareto front when we rotate it 90 degrees
abruptly, no matter whether it is convex or concave.
However, we expect that the optimizer may not nec-
essarily keep moving along the Pareto front if it is
convex, because the Pareto front is not the shortest
feasible path from one stable point to another, refer
to Fig. 7 (a). Very interestingly, if the Pareto front is
concave, the optimizer should keep moving along the
Pareto front because it provides the shortest feasible
path from one stable point to another, as illustrated
in Fig. 7 (b).

A bang-bang change of weights can be realized in the
following way for a two-objective minimization prob-
lem:

sign(sin(2nt/F)) (5)
1.0 — wy, (6)

S
[y
—~~

o~

|

where t is the generation index and F' is the frequency
of the weight change. It is clear that F' should be large
enough to allow the optimizer to move from one stable
point to another.
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3.2 Dynamic Weighted Aggregation

In dynamic weighted aggregation (DWA), the weights
are changed gradually. This slow change of the weights
will force the optimizer to keep moving on the Pareto
front if it is convex. If it is concave, the performance
of DWA may not have much difference from that of
the BWA. This can be realized as follows:

|sin(2n¢/F)|, (7)
1.0 — wy (1), 8)

g

[y

—~
~
|

where t is the number of generation. It is noticed that
w1 (t) changes from 0 to 1 periodically. The change fre-
quency can be adjusted by F. The frequency should
not be too high so that the algorithm is able to con-
verge to a minimum. On the other hand, it seems
reasonable to let the weight change from 0 to 1 twice
during the whole optimization. In the simulation de-
scribed in Section 5.3 and 5.4, F is set to 100 for BWA
and 200 for DWA, so that for both methods, the Pareto
front rotates three times in 150 generations.

3.3 An Archive of Pareto Solutions

In both BWA and DWA, the population is not able to
keep all the found Pareto solutions, although it is able
to traverse the Pareto front dynamically. Therefore, it
is necessary to record the Pareto solutions that have
been found so far. To this end, it is necessary to main-
tain an archive of the Pareto-optimal solutions. The
pseudo-code for building the archive is listed in Algo-
rithm 1. The similarity is measured by the Euclidean
distance in the fitness space.

4 Test Functions

To evaluate our theory and to demonstrate the ef-
fectiveness of our methods, simulations are carried
out on five test functions. The first three test func-
tions are taken from [7, 8] and the fourth test func-
tion is adapted from test functions Fy and F3 so that
its Pareto front is partially convex and partially con-
cave. Fy has a discontinuous Pareto front, which is
used to test how the methods behave when the Pareto
front is discontinuous. Note that for all test functions,
T; € [0, 1].

e The first test function (F;) used here is the sec-
ond function in [8] and we extend it to an n-
dimensional. The Pareto front of this function

EVOLUTION STRATEGIES

Algorithm 1 Pseudo-code for maintaining an archive

of Pareto solutions.
for each individual o in offspring population do
if (o dominates an individual in parent population
p) and (o is not dominated by any solutions in the
archive) and (o is not similar to any solutions in
the archive) then
if archive is not full then
add o to the archive
else if o dominates any solution a in the archive
then
replace a with o
else if any solution a; in the archive dominates an-
other solution a2 then
replace a2 with o
else
discard o
end if
else
discard o
end if
end for
for each solution in the archive do
if solution a; dominates a2 then

remove a2
end if
end for
is uniform.
h = 1 ix? (9)
n =1 '
Bo= L3 200 (10)
n =1 Z ‘

e The second test function (F») is the first function
in [7], which has a convex but non-uniform Pareto
front:

h = = (11)
9 n

g x(L0—+/fi/g)- (13)

9(z2y ...y Tn)
fo =

e The third test function (F3) is the second function
in [7], which has a concave Pareto front:

i = m (14)
g(z2, .., zn) = 1.0+ %;x, (15)
fo = gx (10— (f1/9)%). (16)

e The fourth test function (Fy) adapted from Fj
and F3, which has a Pareto front that is neither
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purely convex nor purely concave:

i = n (17)
9(z2,.0yn) = 1.0+ % ;2 Z; (18)
foo = gx(10=3/fi/9—(f1/9)").

(19)

e The fifth test function (F3) is the third function
in [7], whose Pareto front consists of a number of
separated convex parts:

i = = (20)

g(z2, -y 2n) = 1.0+ %Zw, (21)
f2 = gx(1.0=+/fi/9—(f1/9)

sin(107 f1)). (22)

5 Simulation Studies

5.1 The Evolution Strategies

In the standard evolution strategy, the mutation of
the objective parameters is carried out by adding an
N(0,0?) distributed random number. The step size o;
is also encoded in the genotype and subject to muta-
tions. A standard evolution strategy can be described
as follows:

oi(t) = o;(t— 1exp(r'z)exp(rz;) (23)
x(t) = x(t—1)+1z (24)

where x is an n-dimensional parameter vector to be
optimized, z is an n-dimensional random number vec-
tor with Z ~ N(0,0(t)?), z and z; are normally dis-
tributed random numbers with z,2z; ~ N(0,1). Pa-
rameters 7, 7' and o; are the strategy parameters,
where o; is mutated as in equation (24) and 7, 7' are
constants as follows:

r= (Vi) = (va)” e

There are several extensions to the above standard ES.
In this work, the standard (u, A)-ES [9] is employed.

5.2 Conventional Weighted Aggregation

We first employ CWA to obtain the Pareto front. As
we mentioned above, we have to run the optimizer
more than once if we attempt to obtain more than
one solution. In this work, the algorithm is run for 20
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times for test functions Fj, F5 and F3, and 40 times
for test function F4. Since the Pareto solutions are
not uniformly distributed on the Pareto front corre-
sponding to a uniformly distributed weight combina-
tions, smaller weight change is needed to obtain the
solutions in the convex region of the Pareto front in
function Fy. In all the simulations, the dimension n is
set to 2.

(a) (b)

Figure 8: CWA for F; and F;. The results are col-
lected from 20 runs of the optimization.

The results on F; and F, are given in Fig. 8. Since
both functions are convex, the CWA based approach is
able to obtain different Pareto solutions with different
weights. We see that the distribution of the solutions
from F3 is not uniform, although the distribution of
the weights is uniform.

(a) (b)

Figure 9: CWA for F3 and Fj. 20 runs are carried out
for F3 and 40 runs are carried for Fj.

Fig. 9 provides the results on F3 and Fy. Since the
Pareto front of F3 is concave, we can only obtain two
solutions, whereas for Fy, the solutions in the convex
region are obtained and those in the concave region are
not obtained, which is expected from our discussion in
Section 3.

5.3 Bang-bang Weighted Aggregation and
Dynamic Weighted Aggregation

In this part, we intend to empirically support our the-
ory on multi-objective optimization by showing that
bang-bang weighted aggregation is able to obtain the
Pareto set, in particular for concave Pareto fronts. At
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the same time, the performance of both BWA and
DWA are compared for different situations. For both
methods, 150 generations are run so that the weight
can switch three times during optimization, as men-
tioned in Section 3.2.

(a) (b)
Figure 10: Results on Fi: (a) BWA and (b) DWA.

According to our theory, BWA may perform worse
than DWA for convex Pareto fronts, because the
Pareto front between two stable points is not the short-
est feasible path. This can be seen from the results
on Fi, which are shown in Fig. 10. However, when
the Pareto front is concave, the performances of BWA
and DWA are similar, as shown in Fig. 11. This is
consistent with our theory.

(a) (b)
Figure 11: Results on F3: (a) BWA and (b) DWA.

Test function Fy has a partially convex and partially
concave Pareto front. Since its convex part is relatively
small, there is no essential discrepancy between the
results from BWA and DWA, see Fig. 12.

*****

Figure 12: Results on Fy: (a) BWA and (b) DWA.

All the above test functions, Fy, F3 and Fy have a
continuous Pareto front. It is desirable to investigate

EVOLUTION STRATEGIES

how our methods work for discontinuous Pareto fronts,
particularly when BWA is used. In Fig. 13 (a), we see
that BWA has successfully obtained the discontinuous
Pareto front. Amazingly, the algorithm is able to move
from one part of the Pareto front to another through
a bridge that connects the different parts of the Pareto
front, which is shown in Fig. 13 (b) caught by a snap-
shot during optimization.

k\_ + ‘k\\ #
. . PN . A
o os . ERA A

"

Figure 13: BWA for a discontinuous Pareto front (F3):
(a) The obtained Pareto front; (b) A snapshot showing
how the BWA moves between different parts of the
Pareto front.

Similar results have been obtained on Fy using DWA.

5.4 Discussions

From the simulation results, we can make the following
observations:

© | @

Figure 14: DWA for Fy4: The optimizer starts to move
along a concave Pareto front only when the rotation
angle reaches a dividing point. (a) wy = 0.0; (b) wy =
0.9; (¢) w1 = 0.92 and (d) wy = 1.0.

e For convex Pareto fronts, DWA exhibits better
performance than BWA. The reason is that the
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optimizer will not necessarily keep moving along
the Pareto front if BWA is used.

e For concave Pareto fronts, BWA and DWA show
similar performance. However, BWA may be
more efficient than DWA when the Pareto front
is concave. This is due to the fact that when the
Pareto front rotates, the optimizer stays at one
stable solution until a rotation angle correspond-
ing to the dividing point has been reached, as dis-
cussed in Section 2.2. Let us have a look at the
results from applying the DWA to Fy. In gener-
ation 100, w; = 0.0 and the optimizer is around
the stable point A, see Fig. 14 (a). When the evo-
lution proceeds, the optimizer remains on point
A until in generation 135, when w; = 0.90, see
Fig. 14 (b). In generation 137, the optimizer has
moved through the most part of the concave re-
gion (Fig. 14 (c)), where w; = 0.92. Finally, in
generation 150, the optimizer is around the other
stable point of the concave region, i.e., point B in
Fig. 14 (d). It should be noticed that the solutions
in the archive are not shown in Fig. 14.

In application, if one does not know in advance if
the Pareto front is convex or concave, DWA is recom-
mended to ensure that the optimizer will move along
the Pareto front to obtain the whole set of Pareto so-
lutions. However, if one knows that the Pareto front is
concave, the BWA may need less time to achieve the
whole Pareto set.

6 Conclusion

Multi-objective optimization using weighted aggrega-
tion based approaches is revisited. The problem of
concave Pareto fronts in MOO is discussed and a the-
ory why CWA based approaches are unable to obtain
the solutions in the concave region of the Pareto front
is proposed. An evolutionary dynamic weighted aggre-
gation (EDWA) is proposed to obtain Pareto solutions
in one run, no matter whether they are located in the
convex or concave region of the Pareto front. The
proposed method is shown to be not only efficient,
meaning it is able to obtain Pareto solutions in one
run of the optimization, but is also able to obtain the
solutions located in the concave region of the Pareto
front. This is very encouraging because the EDWA is
computationally efficient and all existing evolutionary
algorithms can be employed with minor modifications
to change the weight dynamically during optimization.
However, theoretic work may be necessary to ascer-

tain that when the weights changes and the optimizer
moves from one stable minimum to another stable min-
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imum, all the solutions in the concave region between
the two minima are reached. The conclusion that local
optima are concentrated in a very small region of the
solution space [10] may be one support for the EDWA
and vice versa, the successful of the EDWA is also a
support for this conclusion.

ACKNOWLEDGMENTS

The authors would like to thank E. Korner and W. von See-
len for their support, T. Arima for his helpful comments
and M. Hasenjdger and T. Okabe for stimulating discus-
sions.

References

[1] Y. Jin, T. Okabe, and B. Sendhoff. Adapting weighted
aggregation for multi-objective evolution strategies. In
K. Deb, L. Thiele, and E. Zitzler, editors, First Inter-
national Conference on Evolutionary Multi-criterion
Optimization, Lecture Notes in Computer Science,
pages 96-110, Zurich, Switzerland, 2001. Springer.

[2] P.J. Fleming. Computer aided control systems using a
multi-objective optimization approach. In Proc. IEE
Control’85 Conference, pages 174-179, Cambridge,
UK., 1985.

[3] C.A.C. Coello. A comprehensive survey of
evolutionary-based multiobjective optimization tech-
niques. Knowledge and Information Systems,
1(3):269-308, 1999.

[4] D. A. Van Veldhuizen and G. B. Lamont. Multiobjec-
tive evolutionary algorithms: Analyzing the state-of-
art. Evolutionary Computation, 8(2):125-147, 2000.

[6] C. M. Fonseca and P. J. Fleming. Multiobjec-
tive optimization. In Th. B&ick, D. B. Fogel, and
Z. Michalewicz, editors, Ewvolutionary Computation,
volume 2, pages 25-37. Institute of Physics Publish-
ing, Bristol, 2000.

[6] P. Hajela and C. Y. Lin. Genetic search strategies in
multicriteria optimal design. Structural Optimization,
4:99-107, 1992.

[7] E. Zitzler, K. Deb, and L. Thiele. Comparison of mul-
tiobjective evolution algorithms: empirical results.
Evolutionary Computation, 8(2):173-195, 2000.

[8] J. D. Knowles and D. W. Corne. Approximating the
nondominated front using the Pareto archived evolu-
tion strategies. Evolutionary Computation, 8(2):149—
172, 2000.

[9] H.-P. Schwefel. Ewolution and Optimum Seeking.
Sixth-Generation Computer Technologies Series. John
Wiley & Souns, Inc., 1994.

[10] P.C. Borges and M.P. Hansen. A basis for future suc-
cesses in multiobjective combinatorial optimization.
Technical Report IMM-REP-1998-8, Department of
mathematical Modeling, Technical University of Den-
mark, 1998.



1050

EVOLUTION STRATEGIES

Main Vector Adaptation: A CMA Variant with Linear Time and
Space Complexity

Jan Poland
University Tiibingen, WST RA
Sand 1, D - 72076 Tibingen
Germany
poland@informatik.uni-tuebingen.de

Abstract

The covariance matrix adaptation (CMA)
is one of the most powerful self adapta-
tion mechanisms for Evolution Strategies.
However, for increasing search space dimen-
sion N, the performance declines, since the
CMA has space and time complexity O(N?).
Adapting the main mutation vector instead
of the covariance matrix yields an adaptation
mechanism with space and time complexity
O(N). Thus, the main vector adaptation
(MVA) is appropriate for large-scale prob-
lems in particular. Its performance ranges
between standard ES and CMA and depends
on the test function. If there is one preferred
mutation direction, then MVA performes as
well as CMA.

1 Introduction

Evolution Strategies need self adaptation, in order to
apply to hard or badly scaled fitness functions. For
a motivating example, consider the optimization of a
prism lens from [4], chaper 9: Given is a glass block
that consists of 19 prism segments. The thickness of
the segments at both ends is variable. Hence, there
are 20 object variables, which are tuned in order to
focus the light rays and minimize the overall thickness
of the lens (see Fig. 1, the exact fitness function is
stated as f1o in Section 5). A simple ES with mutative
or derandomized step length control finds the focus
quite easily, but it fails to minimize the lens thickness.
This is due to the fact that all object variables have
to be reduced simultaneously in order to minimize the
thickness, while any other mutation direction destroys
the focus.

Other self adaptation algorithms fail in this situation,

Andreas Zell
University Tiibingen, WST RA
Sand 1, D - 72076 Tiibingen
Germany
zell@informatik.uni-tuebingen.de

Figure 1: Optimization of a prism lens

too. One could expect for example an adaptation of
the mutation mean (momentum adaptation) to be ap-
propriate (compare e.g. [3]). However, our experi-
ments with such an algorithm have not been successful.
On the other hand, the covariance matrix adaptation
(CMA), which adapts the covariance of the mutation,
does work in this situation. In this paper, we will de-
velop a new self adaptation algorithm that also works
in this situation and is based on similar ideas as the
CMA, but with less space and time consumption.

2 The CMA Algorithm

The covariance matrix adaptation (see [1] or [2]) is
one of the most powerful self adaptation mechanisms
today available for Evolution Strategies. While a sim-
ple ES uses a mutation distributen N (0,02 -I) (where
I is the identity matrix), the CMA-ES performes a
N(0,02 - C)- distributed mutation, and the covariance
matrix C' is being adapted. This procedure is based
on the following ideas (see [1]): Let Zi,...,Z, be
independently N(0,1) distributed, z1,...,2, € RY,
01,...,0n € R and

n n

2 /

Z = g Z;-0;z; and C = E o; - %%
i=1 i=1
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Then Z is a normally distributed random vector with
mean 0 and covariance C. On the other hand, any N-
dimensional normal distribution N (0, C) can be gener-
ated by such a sum by choosing for z; the eigenvectors
and for o2 the corresponding eigenvalues of C.

Thus, the offspring & can be created by adding a
N(0,0? - C) distributed random vector to the parent
x, where o > 0 is the global step size for z which can
be adapted conventionally. If p,, denotes the mutation
path, i.e. the (weighted) mean of the last successful
steps, then C' can be updated by

C’ = (]. — Ccov) : C + Ceov * ﬁmﬁ;m

where c.., > 0 is a small constant and C is the covari-
ance matrix for the next generation. The path p,, is
updated by a similar formula:

ﬁm:(l—cm)mm—&—c“m-o_l(fc—m)

(note that o=1(2 — x) is N (0, C) distributed). Again,
¢m > 0 is a small constant, while ¢, = \/cm(2 — ¢m),
which assures that p,, and p,, are identically dis-
tributed if p,, and o~!(Z — z) are independent and
identically distributed. Hence, the path is not influ-
enced by the global step size o.

This covariance matrix adaptation procedure has
turned out to be very efficient and is successful in cases
where the standard ES breaks down. In particular, the
CMA makes the strategy invariant against any linear
transformation of the search space. Moreover, the co-
variance matrix approximates the inverse Hessian ma-
trix for functions with sufficient regularity properties.
Thus, the CMA can be considered as an evolutionary
analogon to quasi Newton optimization algorithms.

The main drawback of the CMA comes with increas-
ing dimension N of the search space. The storage
space and the update time for the covariance matrix
have complexity O(N?), while the computation of the
eigenvectors and eigenvalues is even O(N?3). This can
be reduced to O(N?) by executing the step for exam-
ple after N/10 generations instead of every generation,
which does no severe damage. In any case, for large N,
the CMA performance declines rapidly, compare also
Fig. 7. There are other self adaptation mechanisms
which are similar to CMA, such as the rotation an-
gle adaptation (see [5]). This algorithm has quadratic
space and time complexity as well and shows a poorer
performance in general.

3 Main Vector Adaptation

For many functions the advantage of the CMA com-
pared to a conventional ES is given by the fact that
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the CMA finds the preferred mutation direction, while
all other directions are not acceptable. An instance is
the lens optimization (see the introduction). In these
cases, it should be sufficient to adapt one vector in-
stead of an entire matrix in order to find this direc-
tion. This is done basically by the simple formula
0 = (1 —c¢y) v+ ¢y Pm, where p,, is the path as
before and ¢, > 0 is a small constant. Then, the off-
spring & can be generated by t =x+4+0-Z 4021 - v,
where Z ~ N(0,I) and Z; ~ N(0,1). We call v the
main (mutation) vector and the algorithm main vector
adaptation (MVA).

In order to make these formulas work in practice, we
have to regard two details. First, the mutation is in-
dependent of the sign of the main vector v. However,
in contrast to the update formula for the covariance
matrix, the update of v depends on the sign of the
path p,,. This can result in the annihilation of subse-
quent mutation steps and inhibits the adaptation of v,
in particular for difficult functions such as the sharp
ridge f7 (cf. Section 5). To avoid this breakdown, we
simply flip v if necessary:

0= (1 - CU) : Sign(<vapm>) U+ Gy 'ﬁm-

Here, (-,-) denotes the scalar product of two vectors.

The second problem to be fixed is the standard de-
viation of Z + Z; - v along the main vector v. Since
Z+7Zy-v ~ N(0,I + '), its variance along v is
02 = 1+ |]v|?, hence o, = /1 + [[v]2. On the con-
trary, o, = 1 + ||v|| would be desired, since this corre-
sponds to the functioning of v as additional mutation
in the main vector direction. Thus, we write

FT=x+o0 - (Z+2Z1 wy-v).

Letting w, = 1+ 2 [jv|| 7! yields 0, = 1 + ||v||, how-
ever, the experiments show that a constant w, = 3
(corresponding to ||v|| = 1) yields the best results in
general, occasionally, w, = 1 is better.

Again, we point out that taking v (or anything simi-
lar) as the mean vector of the mutation does not yield
an efficient algorithm! This is presumably due to the
geometry of the high dimensional RY | where a nonzero
mutation mean results in a shifted sphere, while the
additional main vector mutation yields an ellipsoid as
mutation shape.

4 The MVA-ES Algorithm

In order to adapt the mutation step size o, we employ
the same derandomized mechanism using a path p,,
with the only difference that for p, the main vector v
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is ignored. This is again a perfect analogy to the CMA
([1]). Thus, the complete mutation algorithm reads as
follows.

Mutation.
1. Generate Z ~ N(0,1)
2. Generate Z; ~ N(0,1)
. t=x4+0-(Z+2Z1 -w,-v)
4. po=(1—¢o) po+ct-Z
5. 6= 0 exp (Il — Xx)/(do - )
6. P = (1= cm) P + - (Z+ Z1 - wy - 0)
7.0 = (1 - Cu) : Sign(<vapm>) U+ Cy Pm

where

Z € RN and Z; € R random vectors,

z,& € RN parent and offspring individuals,

Pos Do € RY parent and offspring o-paths,

¢ > 0 o-path constant and c¥ = \/m,
choose e.g. ¢, =4/(N +4),

0,6 > 0 parent and offspring mutation step lengths,

Dy P € RN parent and offspring paths,

¢m > 0 path constant and ¢, = \/cm(2 — cm),
choose e.g. ¢, =4/(N +4),

v, € RN parent and offspring main vectors,

¢y, > 0 main vector constant, choose e.g.
2/(N +V2)?,

X =E(IN(O, 1)) = V2 T("5)/T(5) = /N — 5
(we prefer this approximation to the approxima-
tion from [1]).

Cy —

The suggestions for the parameters ¢, ¢,, and ¢, are
the same as the respective suggestions for the CMA
in [1], they are good also for MVA. However, for some
test functions, a greater value ¢, yields a faster con-
vergence, e.g. ¢, = 0.1.

For the recombination, we restrict here to a simple
intermediate recombination that is executed by com-
puting the mean of the object variables, paths, step
sizes, and main vectors of all participating individu-
als. Clearly, other recombination types are possible as
well, e.g. discrete or generalized intermediate recom-
bination.

5 Experimental Results

The MVA-ES has been tested against the CMA-ES
and a standard ES with derandomized step length
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Figure 2: f; (sphere) and fo (Schwefel)
control. We used the test functions fi,..., fo from

[1], which are nonlinear and resistent to simple hill-
climbing. In addition, we test the lens optimization
f10- In order to obtain non-separability for fi,..., fo,
one determines a random orthonormal basis U before
every ES run and minimizes fi (U - z) instead of fi(x).
Comparing the results to the case U = I shows that
each of the tested algorithms is invariant against any
rotation of the search space. This was of course ex-
pected.

In order to compare the adapation properties, all func-
tions have been tested in dimension N = 20. More-
over, we obtain a time and space complexitiy com-
parison with function f; in different dimensions. For
each test function and each ES, we try a simple (1, 10)
variant without recombination (solid line in the plots)
and a (5,35) variant with intermediate recombination
(dotted line). We performed 70 runs for each setting.



EVOLUTION STRATEGIES

f3 (Cigar)
10" = ‘ :
— u=1, A=10, no recomb.
2 u=5, A=35, recomb.
100 1« Mmva-Es )
o CMA-ES
10° ¢ standard ES o |
1072} .
0
[}
s
S0t 1
10° | 1
-8 x 4
10 " 5 B
10_10 L L L
0 1 2 3 4 5
function evaluations x10°
f4 (Tablet)
10° ‘ ‘ ; ‘ ‘
— p=1,A=10, norecomb. |  — — ——————y
u=5, A=35, recomb.
*  MVA-ES e ——
o CMA-ES %&
¢ standard ES
10° t .
12}
1%
()
=
10° L
o x
10710 L L L L L L
0 0.5 1 15 2 25 3 35
function evaluations X 10°

Figure 3: f3 (cigar) and fy (tablet)

The plots show the fitness curves of average runs of
MVA-ES, CMA-ES and standard ES. For MVA-ES,
the best and the worst fitness curves are displayed,
too. The tests have been performed with MATLAB,
for the CMA-ES we used the implementation from [1].

Function f;(z) = Zf\il 22 is the sphere function and
the only one that remains separable under the ran-
dom rotation. We observe that neither ES has dif-
ficulties to find the optimum, as well as for Schwe-
fels function fo(x) = Zf\;1(23:1 23). The "cigar”
fs(z) = 22 + 32N ,(1000z;)? is more interesting: The
standard ES fails, while CMA and MVA are success-
ful. This is the classical case of one preferred muta-
tion direction: It is easy to optimize the coordinates
2...N, but then the remaining feasible direction along
the first coordinate is difficult to find. We observe fur-
ther that recombination apparantly disturbs the main
vector adaptation a little in general.
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The "tablet” fq(x) = (1000371)24—2?;2 x? is in a sense
the converse of f3: The optimization is first carried
out along the first coordinate, then the coordinates
2...N remain. Since there is no preferred mutation
direction, it is not unexpected that MVA fails to con-
verge, while the covariance matrix adapts easily to this
situation. Here a mechanism that ”fades out” one di-
rection, i.e. the inverse of MVA could be suitable.
Note that recombination helps the MVA in this case
to converge. The ellipsoid f5(z) = Zfil(lOOO%xi)Q
is another linear transformation of the sphere. Here,
there is neither a preferred mutation direction as in
f3 nor an ”anti-mutation” direction as in f;. Again,
CMA adapts easily, while the bad scaling remains a
problem for MVA and standard ES.

The parabolic ridge fs(z) = —z1 + 100 ZZJ\LQ z? is an
instance for a preferred mutation direction and is eas-
ily optimized by the MVA-ES. The same is true for the



1054
f7 (Sharp Ridge)
200 — p=1, A=10, no recombination ||
u=5, A=35, recombination
*  MVA-ES
200} CMA-ES 1
¢ standard ES
[9]
%]
2
£-200r b
-400r b
-600r b
_800 Il Il Il L L L
0 0.5 1 1.5 2 25 3 35
function evaluations x10*
fs (Rosenbrock)
10* ‘ :
— p=1, A=10, no recomb.
2 p=5, A=35, recomb.
10 X MVA-ES i
o CMA-ES o
10° |L_© standard ES \

10 . . . .
0 2 4 6 8 10

) - n
function evaluations % 10

Figure 5: f7 (sharp ridge) and fs (Rosenbrock)

sharp ridge fr(z) = —x1 + 100\/2&2 x2. This func-
tion is particularly hard to optimize, since the local
gradient is constant. A too small choice for w, results
in a failure of the MVA. The generalized Rosenbrock
function fg(z) = 0" (100(22 — 2i41)% + (2 — 1)?)
(?banana function”) is an instance for a bent ridge.
Again, MVA and CMA are successful in this situation,
while standard ES fails. On the contrary, function
fo(x) = Z?Ll |xi\2+101<f;—11, a sum of different powers,
is hard for MVA. Recombination improves the MVA
convergence.

Function fio(x) = Zf\];ll (R—L—h-(i—1)— % (e—
(g1 — :101))2 + max; x; + min; z; is the prism lens
function (see introduction and Fig. 1). Here, h > 0 is
the height of the segments, b > 0 is the distance from
the lens to the screen, R = h - % the y-coordinate
of the desired focal point, € > 1 the refraction index
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of the lens and 2 - x; the respective thickness. While
the standard ES stagnates with a thickness induced by
the initial random initialization, MVA and CMA find
the optimum. When the preferred direction has been
found and the lens is thinned, the focus is slightly dis-
turbed and has to be restored afterwards. The MVA-
ES does this much more rapidly than the CMA-ES,
when ¢, = 0.1 is chosen. (The corresponding parame-
ter setting for CMA does not work.)

Finally, we compare the time and space consumption
of a (1,10)-MVA-ES and a (1,10)-CMA-ES in search
space dimension N = 2, 5,10, 20, 50, 100, 200, 400, 800,
see Fig. 7. In the time complexity plot, the average
time for one generation with test function f; is dis-
played. The covariance matrix eigenvectors have been
updated all N/10 generations. The performance de-
crease is linear in N for the MVA and quadratic in
N for the CMA. Of course, the time complexity argu-
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Figure 7: Time and space consumption of the (1,10)-
MVA-ES and the (1,10)-CMA-ES for increasing di-
mension N. The time for one generation with test
function f7 is shown, the covariance matrix eigenvec-
tors have been updated all N/10 generations.

ment becomes unimportant when the fitness function
is expensive, in particular when its time complexity
in NV is greater or equal O(N?). But even then, the
space advantage of the MVA remains, especially if the
population consists of many individuals. Moreover, for
large N, the computation time for the covariance ma-
trix eigenvectors increases drastically in practice, since
there is only a limited amount of memory available.
For a Pentium III with 128 MB RAM and the built-in
MATLAB function, this occurs at about N =~ 400.

6 Conclusions

We presented a new self adaptation mechanism for
Evolution Strategies that adapts the main mutation
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vector. The algorithm is similar to CMA and shows
a similar performance in situations where there is one
preferred mutation direction to find. If the demanded
adaptation is more complex, MVA is less powerful than
CMA. On the other hand, the time and space complex-
ity of MVA is only linear in the search space dimension
N. Therefore, MVA is appropriate for problems in
high dimensional search spaces (N > 500), where the
use of CMA becomes problematic because of its O(IN?)
complexity. In low dimensions (N < 100), CMA will
remain the better choice.

There are several possible extensions of MVA. For ex-
ample, one could adapt an ” anti-mutation” vector, this
can be appropriate for functions similar to f;. One can
adapt more than one main vector, controlled e.g. by
the scalar product. If this is extended to N vectors,
it could be possible to obtain an algorithm similar to
CMA that does not need any eigenvector decomposi-
tion and thus has an O(N?) update of the mutation
directions instead of O(N?).
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Abstract

This paper presents a Fuzzy Simulated Evo-
lution (FSE) algorithm for VLSI standard
cell placement. This is a hard multiobjec-
tive combinatorial optimization problem with
no known exact and efficient algorithm that
can guarantee finding a solution of specific
or desirable quality. Approximation iterative
heuristics such as Simulated Evolution are
best suited to perform an intelligent search
of the solution space. Due to the imprecise
nature of design information at the place-
ment stage the various objectives and con-
straints are expressed in the fuzzy domain.
The search is made to evolve toward a vec-
tor of fuzzy goals. The proposed heuristic is
compared with genetic algorithm. FSE was
able to achieve better solutions than GA in a
fraction of the time.

1 INTRODUCTION

In VLSI design, the placement problem consists of
assigning modules to locations on the silicon surface
under numerous design constraints while trading-off
several objectives. The number of modules can be in
range of thousands. Even in its simplest form, place-
ment is a generalization of the quadratic assignment
problem [7].

Formally this problem can be stated as follows: Given
a set of modules M = {my,ma,---,m,}, and a set of
signals V' = {vy,vs,- -, v}, each module m; € M is
associated with a set of signals V,,,, where V,,, C V.
Also each signal v; € V is associated with a set of mod-
ules M, where M,, = {mjlv; € Vi,; }. M,, is called a
signal net. Placement problem is to assign each mod-
ule m; € M to a unique location such that a given

cost function is optimized and constraints are satis-
fied. Objectives addressed in this work are the mini-
mization of wire-length, power dissipation, and circuit
delay. Layout area is considered as a constraint. These
are estimated as follows.

Estimation of Wire-length: The wire-length cost
can be computed by adding wire-length estimates for
all the nets in the circuit.

COStwire = Z lj (1)

jEM

where [; is the wire-length associated with net v; and
M is the set of all cells in the circuit. This wire-length
is computed using Steiner tree approximation.

Estimation of Power: In CMOS circuits, over 90%
power dissipation is due to the switching activity [2, 1],
expressed as:

P Y S CiVEpfeSiB (@)

ieM

where P, denotes the total power, Vpp is the sup-
ply voltage, S; is the switching activity at the output
node of cell i (module m;) which indicate the num-
ber of gate output transition per clock cycle, f is the
clock frequency. The node total capacitance is denoted
by Cj, and 3 is a technology dependent constant. As-
suming that clocking frequency and power voltages are
fixed, total power dissipation of the circuit is a function
of C; and S; of the various gates in the logic circuit.
The capacitive load C; of a gate comprises input gate
capacitances of the cells driven by cell ¢ and that of
interconnects capacitance at the cell output node, as
shown in the following equation:

Ci=Ci+ Y Y (3)

JEM;
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where Cj“‘.’ is the input capacitance for cell (or gate)
J, C represents the interconnect capacitance at the
output node of cell i and M; is the set of fanout cells
of cell 7.

In case of standard cell design, cell properties are fixed
for a particular library, hence we cannot reduce C’;.] .
Further C] are related to the corresponding inter-
connect wire-lengths [;, hence cost due to the overall
power in VLSI circuits can be termed as:

Costpower = Z Sili (4)

i€EM

Estimation of Delay: Let path 7 consist of nets
{v1, v, ..., v }, then its path delay T} is expressed by
the following equation:

k
T = (CD; +1D;) (5)

where C'D; is the switching delay of the cell driving
net vi and ID; is the interconnect delay of net wi.
The overall circuit delay is equal to 15, where 7, is
the longest path in the layout (most critical path).

CD; is constant and only ID; depends on placement.
Using the RC delay model, this delay is estimated as:

where LF; is load factor of the driving block (inde-
pendent of layout), R} is the interconnect resistance
of net v;, and Cj; is the load capacitance of cell ¢ given
in Equation 3. The cost function due to timing per-
formance can be expressed as:

COStdelay =T (7)

Layout Width: In our work layout width is consid-
ered as a constraint. The upper limit on the layout
width is defined in Equation 8:

Widthmes = (1 + a) x Widthop (8)

where Width,q, is the maximum allowable width of
the layout, Widthey: is the minimum possible layout
width obtained by adding the widths of all cells and
dividing it by the number of rows in the layout. The
parameter a denotes how wide the layout can be as
compared to the optimal one.

During placement most of the cost parameters can-
not, be precisely determined. For example, the exact
amount of wire-length and area of the layout can be
known only after the subsequent stage of design (rout-
ing). Also, the amount of power dissipated, or the
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performance of the circuit, depends on the amount
of wire-length as well as the operation dynamics of
the circuit. For these reasons it is much easier for a
designer to describe desirable characteristics of place-
ment solutions in linguistic terms which is the basis
of fuzzy logic [11]. In this work the evaluation of the
goodness values of individual modules in their current
locations (a requirement of simulated evolution heuris-
tic) as well as the quality of the overall placement so-
lution are described using fuzzy rules.

2 SIMULATED EVOLUTION

Placement is a hard combinatorial optimization prob-
lem with no known exact and efficient optimization
algorithms that can find a solution of a given qual-
ity. Approximation iterative heuristics such as simu-
lated annealing, genetic algorithms, simulated evolu-
tion, tabu search, are robust search methods for this
category of problems [8].

Simulated Evolution (SE) is a general iterative heuris-
tic proposed by Ralph Kling [6]. It falls in the cate-
gory of algorithms which emphasize the behavioral link
between parents and offspring, or between reproduc-
tive populations, rather than the genetic link [4]. This
scheme combines iterative improvement and construc-
tive perturbation and saves itself from getting trapped
in local minima by following a stochastic perturbation
approach. It iteratively operates a sequence of evalu-
ation, selection and allocation steps on one solution.
The selection and allocation steps constitute a com-
pound move from current solution to another feasible
solution of the state space. SE proceeds as follows.
It starts with a randomly or constructively generated
valid initial solution. A solution is seen as a set of
movable elements (modules). Each element m; has an
associated goodness measure g; in the interval [0,1].
The main loop of the algorithm consists of three steps
(See Figure 1): evaluation, selection and alloca-
tion. These steps are carried out repetitively until
some stopping condition is satisfied. In the evalua-
tion step, the goodness of each element is estimated.
In the selection step, a subset of elements are se-
lected and removed from current solution. The lower
the goodness of a particular element, the higher is its
selection probability. A bias parameter B is used to
compensate for inaccuracies of the goodness measure.
Finally, the allocation step tries to assign the selected
elements to better locations. Other than these three
steps, some input parameters for the algorithm are set
in an earlier step known as initialization.
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Algorithm Simulated_-Evolution(B, ®;nitial, StoppingCondition)
NOTATION

B= Bias Value.

®= Complete solution.

m;= Module 7.

gi= Goodness of m;.

ALLOCATE(m;,®;)=Function to allocate m; in partial solution ®;

Begin
Repeat

EVALUATION:
ForEach m; € ® evaluate g;;

/* Only elements that were affected by moves of previous */

/* iteration get their goodnesses recalculated®/
SELECTION:
ForEach m; € ® DO
begin
IF Random > Min(g; + B, 1)
THEN
begin
S=S U m;; Remove m; from ®
end
end
Sort the elements of S
ALLOCATION:
ForEach m; € S DO
begin
ALLOCATE(m;, ®;)
end
Until  Stopping Condition is satisfied
Return Best solution.
End (Simulated_-Evolution)

Figure 1: Structure of the simulated evolution algo-
rithm.

3 FUZZY SIMULATED
EVOLUTION

In order to apply simulated evolution one has to de-
sign a suitable goodness measure, a cost function, and
an appropriate allocation operator. These three to-
gether have the most impact on the behavior of the
SE algorithm. Due to the multiobjective nature of
the placement problem, the goodness measure, cost
function, and the allocation operator should take into
consideration all objectives.

Balancing different objectives by weight functions is
difficult, or at best controversial. Fuzzy logic is a con-
venient vehicle for solving this problem. It allows to
map values of different criteria into linguistic values,
which characterize the level of satisfaction of the de-
signer with the numerical value of the objectives. All
these numerical values operate over values from the
interval [0,1] defined by the membership functions for
each objective. For placement, the designer seeks to
find solutions optimized with respect to wire-length,
delay, and power dissipation.

EVOLUTION STRATEGIES

3.1 FUZZY GOODNESS EVALUATION

Following the generation of an initial solution, the
goodness of each cell in its current location is deter-
mined. A designated location of a cell is considered
good if it results in short wire-length for its nets, re-
duced delay, and reduced power. These conflicting re-
quirements can be conveniently expressed by the fol-
lowing fuzzy logic rule.

Rule R1: IF cell i is near its optimal wire-length
AND near its optimal power AND (near its op-
timal net delay OR Tiar(7) is much smaller than
Tnae) THEN it has a high goodness.

where T),q, is the delay of most critical path in the
current iteration and Ty,q. (%) is the delay of the longest
path traversing cell ¢ in the current iteration.

A fuzzy logic rule is an If~Then rule. The If part
(antecedent) is a fuzzy predicate defined in terms of
linguistic values and fuzzy operators (Intersection
and Union). The Then part is called the conse-
quent. In our case, the linguistic value used in the
consequent part identifies the fuzzy subset of good
locations for that particular cell. There are many
implementations of fuzzy union and fuzzy intersec-
tion operators. Fuzzy union operators are known as
s-norm operators while fuzzy intersection operators
are known as t-norm. Generally, s-norm is im-
plemented using max and t-norm as min function,
ie., paup(z) = max (pa(z), up(r)), and panp(z) =
min (pa(z), pp(z)). This is known as the min — max
logic initialy introduced by Zadeh [11]. For example,
according to the min-max logic the rule above evalu-
ates to the following:

,Ltf (:L’) = min (/J’?w (Z’), pr (1‘), ma‘x(ugnet (Z’), prath (Z’)))

where the superscript e is used here to represent eval-
uation, z represents the location of cell 4, u$(x) repre-
sents the membership in the fuzzy set of high goodness,
Wiy () and puf, (z) represent the memberships in fuzzy
subsets of near optimal wire-length and low power as
compared to other cells; uf,.;(z) and pg,,p, () arve the
memberships in fuzzy sets of near optimal net delay as
compared to other cells and “T},q. (i) is much smaller
than Tpaz” .

However, formulation of multi-criteria decision func-
tions do not desire pure “anding” of t-norm nor the
pure “oring” of s-norm. The reason for this is the
complete lack of compensation of t-norm for any par-
tial fulfillment and complete submission of s-norm to
fulfillment of any criteria. Also the indifference to the
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individual criteria of each of these two forms of opera-
tors led to the development of Ordered Weighted Aver-
aging (OWA) operators [9]. This operator falls in the
category of compensatory fuzzy operators and allows
easy adjustment of the degree of “anding” and “or-
ing” embedded in the aggregation. According to [9],
“orlike” and “andlike” OWA for two fuzzy sets A and
B are implemented as given in Equations 10 and 11
respectively.

pa|yp(®) = B xmax(ua, pp) + (1= F) x %(MA+MB

panp(@) = B xmin(ua, pp) + (1) %(MA + 1B

B is a constant parameter in the range [0,1]. It rep-
resents the degree to which OWA operator resembles
the pure “or” or pure “and” respectively.

With the AND and OR fuzzy operators implemented
as OWA operators, rule R1 evaluates to the expression
below:

gi = pi (r) = B¢ x min(pug, (), pi,(2), piq(T))
1
+(1 - %) x 3 > () (12)
Jj=w,p,d
where

/J’zgd (.27) = 55 X ma’x(”’?net (ZC), M?path (CC))

(1 B5) X 5 (e () + (@) (13)

gi is the goodness of cell i. 3¢ and [ are constants
between 0 and 1 to control OWA operators. Whereas
u$ () represents the membership in fuzzy set of good
timing performance, it is obtained after applying orlike
OWA to s, (7) and g, (7).

Hiparn () is included in the computation of ug,(z) be-
cause if a cell is not on the critical path then it must
have high goodness with respect to the delay objective.

If a cell ¢ drives the net v;, {v1,v2, ....., v } is the set of
nets connected to cell ¢ and v, is the net driven by the
predecessor cell of cell i on the longest path traversing
cell 4, then base values Xy, (z), X;p(x), Xinet(x) for
fuzzy sets near optimal wire-length, power, net delay
and Xipqtn (z) for fuzzy set “Iinax (i) much smaller than
Thax are computed as given in Equations 14-17,

il
25:1 L
Ele Sj 1
Yiy Sl

Xlw(ﬂf) =

Xip(x) =
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Figure 2: Membership functions used in fuzzy evalua-
tion.

ID; + 1D},

X, - 16

inet (7 ID; +ID;, (16)
T,

fpath(m) = #:-(Ti) (17)

where [7 is the optimal wire-length of net v;, com-
puted by placing all the cells connected to v; next
to each other on the layout surface and then estimat-
ing the wire-length; the product S; x [; is related to
the switching power dissipated in net v;; I D} is the
optimal interconnect delay of net v;, ID;, and IDj,
are the actual and optimal interconnect delays of net
driven by the predecessor cell of cell i on the current
longest path traversing cell i. Membership functions
of these base values are shown in Figure 2.

The values of amin and amq, depend on the statistical
nature of the base values. A typical frequency of occu-
rance plot is shown in Figure 3, where we have plotted
X¢,.(z) and X&(z) versus the number of cells having
these base values. It is clear from this figure that these
plots have nearly bell-shaped behavior. Therefore we
can say that around 95% cells have base values in the
range [X; — 20y, X; + 20;], where X; is the mean value
of X;(z) and o; is the standard deviation of X;(z) for
1 = w, p,net. The values of a,,;, and apq. are there-
fore computed as:

Amin_i = Xl —20; and Gmaz_i = Xz + 20; (18)
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Figure 3: Base values vs frequency of occurance plot.

The values of a,,;, and a4, are computed in the be-
ginning and then recomputed again when the size of
selection set is around 90 percent of the initial value.

3.2 SELECTION

In this stage of the algorithm some cells are selected
probabilistically depending on their goodness values.
Bias concept in selection step, present in the origi-
nal SE algorithm [5], is the major drawback of the
heuristic. It is not easy to select value of bias because
it varies from problem to problem. Also in the case
of placement it varies from circuit to circuit [10]. To
overcome this problem another selection scheme is pro-
posed. According to this scheme a random number is
generated in the range [0, M] and compared with g;. If
the generated random number is greater than g; then
the cell is selected for allocation. The value of M is
calculated as follows:

M =G + 20, (19)

where G and o, are the average goodness and stan-
dard deviation of goodness values of cells in current
iteration. Value of M is calculated in the beginning
and updated only once, when the size of selection set
is 90% of its initial size.

3.3 ALLOCATION

In allocation stage the selected cells are to be placed in
the best available locations. In our proposed scheme
we have considered selected cells as movable modules
and remaining cells as fixed modules. Selected cells are
sorted in descending order of their goodnesses with
respect to their partial connectivity with unselected
cells. Ties are broken with respect to their goodness
values. One cell from the sorted list is selected at a
time and its location is swapped with other movable
cells in the current solution. The swap that results in
the maximum gain is accepted and the cell is removed
from the selection set.

The goodness of the new location is characterized by
the following fuzzy rule:

EVOLUTION STRATEGIES

Rule R2: IF a swap results in reduced overall wire-
length AND reduced overall power AND reduced
delay AND within acceptable layout width THEN
it gives good location.

The above rule is interpreted as follows.

/J’?_pwd(l) = Ba X mzn(,ufp(l), /J’?w(l)v /J’zad(l))

- x s Y oum @)

J=pw,d

pit (1) = min( pwian (D), 1 pwa() ) (21)

the superscript a is used here to represent allocation.
(1) is the membership of cell ¢ at location [ in the
fuzzy set of good location. uf ,,,(1) is the membership
in the fuzzy set of “reduced wire-length and reduced
power and reduced delay”. uf,, (1), pg, (1), pi; (), and
ud (1) are the membership in the fuzzy sets of re-
duced wire-length, reduced power, reduced delay and
within acceptable width respectively.

Notice that the third AND operator in the above fuzzy
rule is implemented as a pure min because the width
constraint has to be always satisfied.

If a cell ¢ swaps its location with cell j then the base
values are computed as shown in Equations 22-25:

ki ) kj )
(Zm:l llm + Zm:l l]m)n (22)

Xi(l) = : :
(Zﬁ;:l lim + 22:1 ljm)n—l

ki k;
a n;: Simlim + rri: Simljm)n
sz(l) — (Ekz 1 ij 1~ym>j ) (23)
(Zm:l Slmllm + Zm:l SJml]m)nfl

(IDZ' + 1Dy, +IDj +IDjp)n

a(]) = 24
ia(l (ID; + ID;, + ID; + IDj}), 1 24)

Width,,
@ = ———— 25
z_wzdth( ) Widthopt ( )
where, subscript n and n — 1 show the iteration num-

bers, {vi1,via, ..., Vik; } is the set of nets connected to
cell i, Width,, is the actual width at n" iteration.

Membership functions for these base values are shown
in Figure 4. The values of ay, ap, ag and ayian de-
pend upon priority on the optimization level of the
respective objective. Typical values for a,,, a, and a4
are in the range [0.75,0.95], whereas aiqn is in the
range [0.2,0.5]. In our case we have set a,, = 0.75,
ap = 0.75, ag = 0.85 and ayiqen, = 0.25.
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Figure 4: Membership functions used in allocation.
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Figure 5: Membership functions within acceptable
range.

3.4 FUZZY COST MEASURE

In order to select the best solution found so far, it
is required to develop some cost measure. In case of
multi-objective placement, the best placement is one
which results in lowest cost in terms of all objectives.
However, such a solution most likely does not exist.
Some techniques to cope with this problem are men-
tioned in [12]. All these techniques introduce some
tradeoff between different objectives. In this work, a
goal directed search approach is adopted, where the
best placement is one that satisfies as much as possi-
ble a user specified vector of fuzzy goals [3].

In order to combine three parameters and one con-
straint, following fuzzy rule is suggested.

Rule R3: IF a solution is within acceptable wire-
length AND acceptable power AND acceptable de-
lay AND within acceptable layout width THEN it
is an acceptable solution.

width
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The above fuzzy rule translates to the following:

Hoale) = B x min(u(a), uil), uf (x)) (26)
-5 x5 Y @
Jj=p,d,l
p@) = i) mn (@) (2D

where pf(x) is the membership of solution z in fuzzy
set, of acceptable solutions, ,u;dl(x) is the membership
in fuzzy set of “acceptable power AND acceptable de-
lay AND acceptable wire-length”, whereas p§(z) for
j = p,d,l,width, are the individual membership values
in the fuzzy sets within acceptable wire-length, power,
delay, and layout width respectively. (¢ is the con-
stant in the range [0, 1], in our case we chose ¢ = 0.7,
the superscript ¢ represents “cost”. The solution that
results in maximum value of u°(x) is reported as the
best solution found by the search heuristic.

The membership functions for fuzzy sets within ac-
ceptable power, delay and wire-length are shown in
Figure 5(a), whereas the constraint within acceptable
layout width is given as a crisp set as shown in Fig-
ure 5(b).

Since layout width is a constraint, hence its member-
ship value is either 1 or 0 depending upon goal,iqtn (in
our case goalyigen, = 1.25). However, for other objec-
tives by increasing and decreasing the value of goal; we
can vary its preference in overall membership function.
The lower bounds (O;s fori € {I,p, d, width}) are com-
puted as follows: O; = Y1 | 1,0, =30, Silf,Vv; €
{v1,v2, ..., 0p }; Og = Zle CD;+ID; Vvjin path m;
and Oyjatn = Width,pe; where k is the number of nets
in 7.

4 GA BASED OPTIMIZATION

For the comparison purpose we have also implemented
genetic algorithm (GA) [8]. Membership value in
the fuzzy set of acceptable solution given in Equa-
tion 27 is used as the fitness measure of a chromo-
some (solution). In parent selection step for crossover
roulette wheel selection scheme [8], is used. Par-
tially mapped crossover (PMX) is used to gener-
ate new offsprings. For the selection of next genera-
tion Extended Elitism Random Selection scheme
is used, where half of the chromosomes in the next
population are the best among offspring and current
population and half are selected randomly. A vari-
able mutation is used in the range [0.03,0.05] that
depends upon the standard deviation of fitness in the
current population. Stopping criteria is the maximum
number of generations.
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5 EXPERIMENTS AND RESULTS

We have applied GA and FSE on eleven different
ISCAS-85 and ISCAS-89 benchmark circuits. In case
of FSE algorithm, execution is aborted when no im-
provement is observed in the best solution found so far
in 500 consecutive iterations. In case of GA stopping
criteria is 10,000 generations.

Table 1 compares the quality of final solution gener-
ated by FSE and GA. The circuits are listed in order
of their size (122-1753 modules). From the results, it
is clear that GA performs better than FSE for smaller
circuits, but for circuits with large number of cells FSE
outperforms GA. In all circuits it is observed that GA
takes considerably large amount of execution time as
compared to FSE.
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Figure 6: Comparison of FSE and GA. (a) and (c)
represent current and best fitness (membership) of the
solution obtained by FSE; (b) and (d) represent aver-
age and best solution obtained by GA, plotted versus
execution time in seconds.

To compare improvement in the quality of solution ver-
sus time, we have plotted current and best membership
values of the solution obtained by FSE versus actual
execution time in Figure 6-(a) and (c), for comparison
the average and best fitness (membership) values in a
current population obtained by GA versus execution
time are plotted in Figure 6-(b) and (d). These plots
are for test case S1196. It can be observed that qual-
ity of solution improves rapidly in FSE based search as
compared to GA. Due to lack of space plots for other
circuits are not included; however both heuristics ex-
hibited similar behavior on all circuits.
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Figure 7: Comparison of FSE and GA based on search
efforts in particular membership ranges; (a) and (b)
show number of solutions visited in particular mem-
bership ranges for FSE and GA respectively; (c) and
(d) show cumulative number of solutions visited in a
specific membership range versus execution time in
seconds for FSE and GA respectively.

Figures 7(a) and (b) show the quality of solution sub-
space searched by FSE and GA. It is evident from the
figure that both heuristics concentrated in high fitness
subspaces which indicates that they were properly en-
gineered to solve this particular problem. The figure
also shows that FSE was able to evolve much faster
toward a better solution subspace (after few hundred
seconds). On the other hand GA required generations
in the order of thousands, where each generation con-
sisted of 32 solutions.

Figures 7(c) and (d) track with time the total number
of solutions found by FSE and GA for various member-
ship ranges. These are very informative plots as they
show, that as time progressed, the solutions found by
each heuristic were getting better. Note however that
FSE exhibited much faster evolutionary rate than GA.
For example, after about 400 seconds, almost all new
solutions discovered by FSE have a membership in the
interval 0.5-0.6 in the fuzzy subset of good solutions
with respect to all objectives, and almost none were
found with lower membership values (see Figure 7(c)).
In contrast, for GA, it is only after 10,000 seconds that
the first solution with membership in the interval 0.5-
0.6 was found (see Figure 7(d)). This behavior was
observed for all test cases.
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Circuit GA FSE

L(pm) [P (um) [D(s) [W(um)| T(s) [ Lpm)|[P@Em)|DIps)|Wkmn) | T()
S2081 2426 388 113 142 2341 2693 462 112 152 13
5298 1062 838 130 171 2922 4989 1013 133 181 104
S386 6324 1665 193 181 3945 7083 1640 197 186 152
S832 21015 4787 | 395 232 7206 | 24705 5827 390 258 1643
S641 18320 4365 736 254 21082 | 13906 3321 702 296 618
S953 32031 5156 | 230 262 11221 | 32340 5242 245 262 1278
S1238 52670 | 15473 | 410 279 16208 | 39620 | 12377 371 310 1168
S1196 51804 | 15259 | 370 292 23070 | 42426 | 12745 364 325 1521
S1494 71021 | 17497 | 803 336 26032 | 56061 | 14071 719 360 3378
S1488 69702 | 17346 | 784 334 21434 | 57001 | 13837 710 358 3529
C3540 | 310996 | 109850 | 924 127 43232 | 164807 | 58055 734 507 18318
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Table 1: Layout found by FSE and GA, “L”, “P” “D” and “W” represent the wire-length, power, delay, and
width costs and “T” represents execution time in seconds

6 CONCLUSION

In this paper, we have proposed an evolutionary algo-
rithm for low power high performance VLSI standard
cell placement. We have used FSE as search heuristic
and GA for comparison. Fuzzy logic is used to over-
come the multi-objective nature of the problem. In
FSE, fuzzy logic was implemented at evaluation and
allocation stages and to choose the best solution from
the set of solutions generated by FSE. In GA fuzzy
logic is used in the fitness evaluation.

It is observed that FSE performs much better than
GA in terms of execution time, it also performs better
than GA in terms of final solution in bigger circuits.
Also the quality of solution improved more rapidly in
FSE based search as compared to GA.
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