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Abstract

 

Genetic Programming is used to create a reactive obsta-
cle avoidance system for an autonomous mobile robot.
The evolved programs take a black and white camera
image as input and estimate the location of the lowest non-
ground pixel in a given column.  Traditional computer
vision operators such as Sobel gradient magnitude, median
filters and the Moravec interest operator are combined
arbitrarily.  Five memory locations can also be read or
written to.  The first evolved program is now controlling
the robot.

When constructing a system, engineers typically prac-
tice iterative design, namely instantiating a design, evalu-
ating it, and then modifying it in light of the evaluation. In
the current work Genetic Programming can be seen as
automating this process by iteratively improve the archi-
tecture of the system in fundamental, previously
unplanned ways.  The system described here successfully
navigates in the hallways outside the lab.

 

1. Introduction

 

Computer vision in unstructured environments, such as
a typical office environment, is notoriously difficult.  Dif-
ferent methods have their strengths and weaknesses, and
no one method is universally better or worse than the alter-
natives.  To find a method that works empirically for a par-
ticular environment, I use Genetic Programming to evolve
arbitrary expressions that combine the results of tradi-
tional computer vision operators over a window.  The
expressions  return an estimate of the distance to the near-
est obstacle in a given direction.  The expression is evalu-
ated for six different directions, and a separate hand-
written program uses these estimates to steer the robot.

As in any field of research, one can find threads in the
literature by following the evolution of a single idea. The
idea that most inspires this work started with Ian
Horswill’s Ph.D. thesis on Polly the Robot. Polly gave
simple tours of the seventh floor of the MIT AI lab, which
had a textureless carpeted floor. Obstacles, or at least their
boundaries, could therefore be detected as areas of visual
texture. The system had problems with other carpet pat-

terns, or even sharp shadows. Liana Lorigo extended this
work by assuming the bottom of each image represented
floor, and searched for areas with different colors or tex-
ture than the floor. However, an object near the robot
could confuse it. Iwan Ulrich and Illah Nourbakhsh took
the floor to be part of a previous image that had since been
traversed.  The work reported here is a first step towards
automatically repeating and generalizing this thread.

 

1.1. Previous Work

 

Evolutionary Robotics
Evolutionary Robotics is a new field that uses simu-

lated evolution to produce control programs for robots.
Recent work can be found in [7] and [20].  Unless other-
wise mentioned, the work reported here has been validated
by running it on a real robot, not just in simulation.  Most
work uses bitstring Genetic Algorithms to evolve recurrent
neural nets for obstacle avoidance and wall following
using sonar, proximity or light sensors, e.g. [8, 17, 16].
Significantly, recurrent neural networks are considered
much harder to train than feed forward networks, since
gradient information typically isn t available.  Evolution-
ary Computation doesn t use gradient information, and
therefore even exploratory, toy problems use recurrence.

Nordin et al. [21] use a Genetic Programming variant
that directly manipulates SPARC machine language.  They
use symbolic regression to predict the goodness  of a
state 300 ms in the future, based on the current sensor
readings and action.  For obstacle avoidance, the goodness
is simply the sum of the proximity sensors, plus a term to
reward moving quickly in a straight line.  To choose a
direction, the robot runs the best individual for all possible
actions with the current sensor readings.  The action with
the highest estimated goodness is chosen.  They use a pop-
ulation size of 10,000 and find that, in runs where perfect
behaviour developed, it developed by generation 50.

Most work evolves in simulation, with the best individ-
uals then run on a robot in the real world.  Reynolds [24]
has pointed out that without adding noise to a simulation,
EC will find brittle solutions that wouldn t work on a real
robot.  Jakobi et al. [8] discovered that if there is signifi-
cantly more noise in the simulation than on the real robot,
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new random strategies become feasible that also don t
work in practice.

As far as I know, no one has explored the reverse, i.e.
whether entire classes of solution won t be found because
they don t work in simulation.  For example, dead reckon-
ing error may be different on carpet then on a hard floor,
so one possibility is to try to distinguish between them
based on, say, their visual appearance.  If this difference in
error isn t modeled in the simulation, such a solution will
never be found.  Once evolutionary robotics gets beyond a
basic stage, programs evolved in simulation may miss
many subtle solutions.

As well, to my knowledge, no one has tried to simulate
CCD camera images, either using standard computer
graphics techniques or morphing previously captured
images.  The Sussex gantry robot [2] uses a CCD camera,
but the images are reduced to the average brightness over
three circles.  These are significantly easier to simulate
than a full CCD image, especially when the only objects
are pure white on a black background.  Smith [25] simu-
lated a 16 pixel one-dimensional camera with auto iris on
a robot soccer field.  The 16 pixels were actually derived
from 64 pixels; Smith doesn t say how.  This is an impor-
tant step, but again much easier than simulating a CCD
image at, say, 160 x 120 pixels or above.

A few research groups perform all fitness evaluations
on the real robot.  Floreano and Mondada [4] evolve recur-
rent neural networks for obstacle avoidance and naviga-
tion from infrared proximity sensors.  It takes them 39
minutes per generation of 80 individuals, and after about
50 generations the best individuals are near optimal, move
extremely smoothly, and never bump into walls or corners.
Naito et al. [19] evolve the configuration of eight logic
elements, downloading each to the robot and testing it in
the real world.  Finally, the Sussex gantry robot [2] men-
tioned earlier has used evaluation on the real robot.  They
used a population size of 30, and found good solutions
after 10 generations.

The closest work to that reported here was done by Bal-
uja [1], who evolves a neural controller that interprets a 15
x 16 pixel image from a camera mounted on a car.  The
network outputs are interpreted as a steering direction, the
goal being to keep it on the road.  Training data comes
from recording human drivers.

In summary, Evolutionary Robotics has used low band-
width sensors, such as sonar or proximity sensors, presum-
ably to cut down the amount of information to process.
There are typically less than two dozen such sensors on a
robot, and each returns at most a few readings a second.
However, much traditional work in computer perception
and robotics uses video or scanning laser range finders,
which typically have tens to hundreds of thousands of pix-
els, and are processed at rates up to 10 Hz or more.  Evolu-

tionary Robotics has much to gain by scaling to these data
rich inputs.

In addition, most Evolutionary Robotics has designed
algorithms for simplified environments that are relatively
easy to simulate.  While evaluating evolved programs on
real robots is considered essential in the field, those envi-
ronments are typically still tailored for the robot.  The cur-
rent work attempts to evolve algorithms to interpret video
of an unmodified office environment in real time, to help a
robot wander while avoiding obstacles.

Visual Obstacle Avoidance
Somewhat surprisingly, there have only been a handful

of complete systems that attempt obstacle avoidance using
only vision in environments that weren t created for the
robot.  Larry Matthies  group has built a number of com-
plete systems, all using stereo vision [14]. They first rec-
tify the images, then compute image pyramids, followed
by computing sum of squared differences , filtering out
bad matches using the left-right-line-of-sight consistency
check, then low pass filter and blob filter the disparity
map.

Their algorithm has been tested on both a prototype
Mars rover and a HMMWV.  The Mars rover accom-
plished a 100m autonomous run in sandy terrain inter-
spersed with bushes and mounds of dirt [13].  The
HMMWV has also accomplished runs of over 2 km with-
out need for intervention, in natural off-road areas at Fort
Hood in Texas [15]. The low pass and blob filtering mean
the system can only detect large obstacles; a sapling in
winter, for example, might go unseen.

Ratler [10] used a stereo vision algorithm to do autono-
mous navigation in planetary analog terrain.  After rectifi-
cation, the normalized correlation is used to find the stereo
match.  The match is rejected if the correlation or the stan-
dard deviation is too low, or if the second best correlation
is close to the best.  Travelling at 50 cm/sec over 6.7km
the system had 16 failures, for a mean distance between
failures of 417m.  No information on failure modes is
available.

David Coombs  group at NIST has succeeded with runs
of up to 20 minutes without collision in an office environ-
ment [3]. Their system uses optical flow from both a nar-
row and a wide angle camera to calculate time-to-impact,
and provide feedback that rotationally stabilizes the cam-
eras.  Reasons for failure include the delay between per-
ception and action, textureless surfaces, and hitting objects
while turning (even while turning in place).

Liana Lorigo s algorithm [11, 12] assumes the bottom
of the image represents clear ground, and searches up the
image for the first window that has a different histogram
than the bottom.  This is done independently for each col-
umn.  If the ground is mostly flat, then the further up the
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image an object is, the further away it is.  The robot heads
to the side (left or right) where the objects are higher up. 

Failure modes include objects outside the camera s
field of view, especially when turning. Other failure modes
are carpets with broad patterns, boundaries between pat-
terns, sharp shadows, and specularities on shiny floors.

Ian Horswill s algorithm [5, 6] is similar to the above.
It assumes that the floor is textureless, and labels any area
whose texture is below threshold as floor.  Then, moving
from the bottom of the image up, it finds the first non-
floor  area in each column, turning left or right depending
on which side has the most floor.

The system s major failure mode is braking for shafts
of sunlight. In addition, it cannot break for objects it has
seen previously but doesn t see now.  Textureless objects
with the same brightness as the floor also cause problems,
as does poor illumination.

 Ulrich and Nourbakhsh [27] took the floor to be the
part of a previous image that had since been traversed.

Illah Nourbakhsh has used depth from focus for robot
obstacle avoidance [22].  Three cameras, focused at differ-
ent distances (near, middle and far), image the same scene.
Whichever image is sharpest is the most in focus, so the
objects are roughly at that distance.  Actually, the images
are divided into 40 windows (8 across and 5 down), which
are treated independently, giving an 8 by 5 depth map.

In hundreds of hours of tests, the robot has avoided
stair cases as well as students, often running down its bat-
teries before a collision.  However, failure modes include
areas of low texture and tables at the robot s head height.

 

2. Experiments

 

All experiments were performed on the Uranus mobile
robot, in the Mobile Robot Lab at Carnegie Mellon Uni-
versity.  The robot has a three degree of freedom base with
dead reckoned positioning.  While forward/backwards
motion and turning in place are fairly accurate (~ 1%
error), sideways motion isn t (about 10-20% error, signifi-
cant rotation).  For sensing it uses a b/w analog video cam-
era and a ring of 24 sonar sensors.  Processing was done
by an off board 700 MHz Pentium III computer running
BeOS.

The work to date has taken place in a hallway whose
most problematic features are glossy, textureless grey
walls which often confound local depth estimation tech-
niques such as stereo, optical flow and depth from focus.

 

2.1. The Evaluation of Learned Programs

 

One possible method of evaluating a learned program
is to run it on a simulated robot in a virtual environment.
The simulation could proceed faster than real time and

doesn’t require the constant supervision and resetting by
hand that experiments with real robots often do.  Many
experiments with sonar and proximity sensors proceed in
this way.

However, simulating CCD camera images to the fidel-
ity required here is difficult, to say the least.  Also, the cre-
ation of a simulation with noise levels and characteristics
similar to those found in the real world is a time consum-
ing and difficult task.  Finally, as mentioned in the Previ-
ous Work section, certain subtle solutions may be possible
in the real world, but not in simulation.  Evolving in simu-
lation may make the problem harder than need be, or just
different.

In other words, simulations are necessarily different
from the real world.  The best evolved programs may not
work in the real world, and the best program for the real
world may do poorly in simulation.  The task of construct-
ing and refining a simulation to minimize these problems
could prove interesting and valuable, but was not the
approach chosen here. 

Another option is to evaluate the algorithms by running
them on the real robot.  The robot could use the algorithm
in question to navigate, stop when it hit something, and
then travel back to where it started.  When heading back, it
could cheat  by using a map of the space or additional
sensors such as its sonar ring.  Even so, this is very slow
and requires a person to supervise the robot.  The research
groups that have attempted this use population sizes of
less than 100 individuals, whereas GP typically uses sizes
of 2000 to 10,000.  Each evaluation on the robot takes a
good fraction of a minute, and is prone to getting stuck,
can t be done while its batteries are charging, can t be
done at night, etc.  As a rule of thumb, evaluations should
take a second or less on average.  This may actually be
practical using a number of small, fast, reliable robots, but
not with our beloved, lumbering Uranus.

For these reasons, the evolution is done off-line.
Before the simulated evolution, the robot is run and vision
and dead reckoning data is collected.  During evolution,
each evolved program is evaluated by executing it with the
collected data as input, and comparing its output to a hand
constructed correct answer.  The output is interpreted as a
distance to the nearest object, rather than a steering com-
mand directly, since this representation is more closely
related to the input.  The input, a set of greyscale values,
may be so distantly related to the steering commands that
the mapping is impossible to learn with current techniques
and resources.  With the success reported here, predicting
the steering direction directly is an exciting next step. 

 

2.2. System Description

 

The considerations of the previous section lead to the
following setup.  The robot is run autonomously with a
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hand-coded algorithm that uses sonar to avoid obstacles.
During this online data collection run, camera images are
continuously recorded.  Then, during the offline learning
run, simulated evolution evolves programs to estimate
obstacle distance from each image.  Finally, the best
evolved programs are used to control the robot during
online obstacle avoidance.

To collect images that are representative of what the
cameras might see during that final stage, the robot col-
lects data while avoiding obstacles under sonar.  While
obstacle avoidance under sonar is considered easier than
under vision, it still took many attempts to get a working
system. The method that proved most successful deter-
mines speed based on proximity to the nearest object, and
determined direction of travel by fitting lines to points on
the left and right sides of the robot.  More details can be
obtained from the author.

Each evolved program takes as input the image and the
horizontal position of the column it must estimate.  It
returns a single number, the vertical position, in pixels, of
the first (i.e. lowest) non-ground pixel.  It s run on six dif-
ferent columns per image, on each of 75 images in the
training set, for a total of 450 fitness cases.  The fitness is
the sum of the absolute differences between the returned

values and ground truth.  The absolute differences were
capped at twenty.

The particular form of simulated evolution used here is
Genetic Programming [9].  To give GP a little more struc-
ture, iterated window branches are included.  These
branches evaluate an evolved expression whose terminals
include image statistics over a small window.  The win-
dow is moved one pixel at a time, either horizontally or
vertically, evaluating the expression at each location.
They can read and write to five real valued registers, simi-
lar to Teller and Veloso s work with PADO [26].  The com-
plete list of functions and terminals in the window
iteration branch is shown in Table 1.  An example iterated
window branch, using a Lorigo style algorithm, is shown
in Figure 1.

The return values of these expressions are discarded, so
the register values are the only values left after execution.
Each program has three window iteration branches, for a
total of fifteen register values.  These values are provided
to the result producing branch, which must use them to
estimate the location of the lowest non-ground pixel.

A Koza style tableau is shown in Table 2.  The best
evolved program is then run on the robot, and a hand writ-
ten program converts the estimated object locations to
speed and direction commands.

 

2.3. Experimental Setup

 

First, the camera was calibrated using the system
described in [18].  The camera was then mounted on the
robot, pitched 31 degrees down from horizontal.  75
images were collected, each 320 by 240 pixels, during a

 

Table 1: Functions and Terminals of the 
Window Iteration Branch

 

root

 

iterate-horizontal

 

, 

 

iterate-ver-
tical

 

rectangle 
sizes

 

r22

 

, 

 

r23

 

, 

 

r32

 

, 

 

r33

 

, 

 

r24

 

, 

 

r42

 

, 

 

r44

 

, 

 

r55

 

, 

 

r26

 

, 

 

r62

 

, 

 

r36

 

, 

 

r63

 

, 

 

r66

 

, 

 

r77

 

, 

 

r28

 

, 

 

r82

 

, 

 

r38

 

, 

 

r83

 

, 

 

r88

 

, 

 

r2020

 

arithmetic

 

*

 

, 

 

+

 

, 

 

%

 

, 

 

-

 

, 

 

sqr

 

 and random constants

parame-
ters

 

x-obstacle

 

, the horizontal pixel location in 
which to find the obstacle; 

 

area

 

, the area of 
the window in pixels; 

 

image-max-x

 

 (319): 

 

image-max-y

 

 (239); 

 

first-rect

 

, one if 
this is the first rectangle of the iteration, zero 
otherwise; 

 

x

 

 and 

 

y

 

, the center of the rectangle 
in pixels.

flow con-
trol

 

prog2

 

; 

 

prog3

 

; 

 

break

 

, with halts the execu-
tion of the branch, returning immediately with-
out any more iterations; 

 

if-le

 

memory

 

set-a

 

 ... 

 

set-e

 

, 

 

read-a

 

 ... 

 

read-e

 

image sta-
tistics

average and average-of-squared over the win-
dow: raw, truncated median, median corner, 
Sobel magnitude, and four directional Moravec 
interest operators.

iterate-vert

r2020 x-obstacle

prog2

image-max-y 1

set-d if-le

0.5 first-recty

prog2

set-a

sobel-mag +

median-corner moravec-horiz

set-b

sqr

-

read-a sobel-mag

if-le

sqr

-

read-b +

median-corner moravec-horiz

300 break0

if-le

5000 break

Figure 1: An example window iteration branch, used
in a seed for the first generation of all runs.
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7.5 m data collection run.  These images became the train-
ing set.  The run was through a hallway and included two
turns.  Ground truth was then assigned by hand using a
simple GUI.  Typical images and ground truth are shown
in Figure 2.

During offline learning, the images were first rectified
to conform to an ideal perspective projection, and cropped
to a horizontal field of view of 83 degrees using the above
calibration information.  The results of the operators were
precomputed at every pixel, then the genetic programming
run was started.

Offline learning was performed on a dual 700 MHz
Pentium III, and evaluation times varied widely, but aver-
aged approximately 725 msec.  The time for a simulated
evolution run also varied widely, averaging approximately
20 hours.

All genetic programming runs were seeded with the
individual from Figure 1.  That is, one of the 2000 individ-
uals in generation zero has the window iteration branch
show there, plus a result producing branch that simply
returns the d  register of that branch.  This individual was
designed as an example for explaining the approach and
not intended to be run.  The set of operators and their com-
bination was chosen arbitrarily for their explanatory
power without any thought as to how well they would
work in practice.  It was later used to test the system, and
the thresholds were determined interactively at that time.
The remaining individuals were created randomly, using
the ramped-half-and-half method from [9].

After the offline learning, a hand written navigation
algorithm used the estimates to decide speed and direction
to travel.  The best evolved algorithm was run on twelve
columns in the image, twice as many as used in training.
To better navigate around nearby obstacles, the camera
was tilted further down, to 39.5 degrees from horizontal.

The navigation algorithm classifies estimates as either
near (requiring an immediate halt), medium (slow to 2/3
speed to avoid collision) or far (avoid them before they
become a problem.)  This case based approach is inspired
by the Property Mapping approach of Nourbakhsh [23].  If
any of the middle four estimates are in the lower fifth of
the image, or either of the two readings outside are at the
bottom, then the object is considered near and the robot
immediately halts.  Otherwise, it looks for objects within
four feet to the left and the right of where the robot is and
where it would be if it continued straight.  To convert pixel
height in the image to real world distances, it assumes that
the floor is flat, and that the non-ground object touches the
floor.  If an object is sighted, on either the left or the right,
a line is drawn through the readings on each side, and the
robot turns to run parallel to the lines.

If there are no objects near or in medium-sides, the
algorithm looks for objects straight ahead within the far

 

Table 2: Koza Style Tableau

 

Objective Given an image and a horizontal posi-
tion within it, return the first non-
ground pixel.

Architecture of 
individuals

Three 

 

window iteration

 

 branches and 
one result producing branch.

Terminal set for 
result produc-
ing branch

random constants, 

 

x-obstacle

 

, 

 

image-max-x

 

 (319), 

 

image-max-

 

y 
(239), 

 

mem0a

 

 ... 

 

mem0e

 

, 

 

mem1a

 

 ... 

 

mem1e

 

, 

 

mem2a

 

 ... 

 

mem2e

 

Function set for 
result produc-
ing branch

+, -, *, %, sqr, if-le

Fitness cases Six columns in each of 75 images.  450 
total.

Raw fitness The sum, over the fitness cases, of the 
absolute value of the difference 
between the pixel location estimated by 
the evolved program and the hand cre-
ated ground truth.  If a difference was 
greater than 20, it was replaced by 20.

Standardized 
fitness

Same as raw fitness

Hits The number of fitness cases for which 
the absolute difference was less than 
2.0.

Parameters 101 generations, population size of 
2000, tournament selection size 7, 
ramped-half-and-half with min size 6 
and max size 9.

Figure 2: Training data, with ground truth indicated.
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boundary.  Objects there cause it to respond by turning left
or right, towards the largest gap.  If all areas are clear other
than far-sides, a line is fit to the side with the closest read-
ings, and if the line is converging with the robots center
line, the robot turns to move parallel.  Finally, if there are
no objects anywhere within the robot s field of view, it
simply moves straight.

This algorithm was created by hand using traditional
iterative design, and is still far from optimal.  It is a natural
application for simulated evolution, which is likely to do
significantly better.

 

2.4. Results and Discussion

 

The seed individual performed better than any other
individual in generation 0, although not by much.  Of the
450 fitness cases (6 columns in each of 75 images), only
two of them were within two pixels of the ground truth,
the criterion for a hit.   Its fitness was 14 pixels absolute
error on average, where individual errors were limited to
20 pixels. By design, it fails in the many cases where the
ground wasn t visible at the bottom of the column.

Twenty runs were completed.  In all but one of these,
the best-of-generation individual on the last generation did
better than the seed.  The average fitness (lower is better)
of these twenty individuals was 7.43 pixels absolute error,
the average number of hits (higher is better) was 111 out of
a possible 450.

Interestingly, the three best best-of-run individuals had
the same result producing branch as the seed, and iterated
vertically in the desired column from bottom to top, just
like the seed.  This means the result producing branches
only used one register from one of the three window itera-
tion branches.  Therefore, these best-of-run individuals
have essentially the structure of Ian Horswill s and Liana
Lorigo s systems.

The best individual from all runs had a standardized fit-
ness of only 2.42 pixels absolute error per column, got 272
hits (i.e. 60.4% of estimates within 2 pixels), and had 587
nodes.  After simplification (which didn t change the esti-
mates it computes), 228 nodes remained. The rectangle
size had been reduced from 20 by 20 pixels to 8 by 8.  The
first rectangle  branch was considerably expanded, and
after the first rectangle it only looked at the Sobel magni-
tude, i.e. the gradient.

The solution generalizes surprisingly well on the same
camera in the same hallway.  While its sensitive to the
height of the camera, it is relatively insensitive to the pitch
and the horizontal location of the column in the image.
With the camera set to automatic gain it also provides
acceptable results over a wide range of iris settings.  It
detects objects that weren t present during training, such
as chairs or people, with about as much fidelity as it
detects walls.  It s also fast.  Even without precomputing

the image operators, the individual runs at about 10 Hz on
a 333 MHz Pentium II.  However, it s relatively sensitive
to centimeter long pieces of metal or other small, shiny
objects on the floor that produce high gradients.

With the camera fixed in one place, the algorithm pro-
duces occasional glitches, most often declaring that a pixel
at the bottom of the image is non-ground when it is, in
fact, ground.  To stop these from causing too many panic
halts, the hand written navigation algorithm filters read-
ings by taking the minimum (highest pixel location) of
consecutive estimates.

When navigating under sonar, fourteen sonar sensors
for a total field of view of approximately 215 degrees, see-
ing well to the sides.  While pitching the camera down
increases awareness to the front left and front right of the
robot, the area of awareness is still much smaller than with
sonar, and entirely in front of the robot s base.  In the reac-
tive framework described here this makes it almost impos-
sible to successfully navigate doorways, especially since
the robot is only a few inches narrower than them.  How-
ever, it performed very well at corridor following and
avoiding obstacles such as people and chairs.  The next
revision of the system will include state, in order to ease
these problems.
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Abstract

Gait control programs for hexapod robots are
learned by incremental evolution.  The first
increment is used to learn the activations
required to generate a single leg cycle. At this
level the control program is required to produce
the proper sequence of pulses needed to generate
smooth movement by the servos.  The learning
program needs to take into account the
peculiarities of the servo, its mounting and the
capabilities of the leg.  The second increment of
the learning process is used to learn the best
combination of individual leg cycles to produce a
gait.  This part requires the learning system to
choose the best leg cycles for each leg and to
coordinate their movement.  In this paper, we
describe an application of this method to learn
gaits for an actual hexapod robot.  A cyclic
genetic algorithm is used to learn efficient gait
cycles for each leg.  A genetic algorithm is used
to combine these leg cycles in such a way that
coordinated gaits result. Tests are conducted on
the actual robot to confirm the method’s viability.

1 INTRODUCTION

The generation of gaits is important for the effective use
of hexapod robots.  Proper gaits are needed to ensure that
the robot moves quickly and efficiently.  Gaits need to be
custom designed specifically for the individual robot to
make the best use of its capabilities.  There are two main
parts to gait generation; the cyclic action of the individual
legs and the coordination of all the legs to make effective
use of their cycles.  These can be learned together by
finding the sequence of concurrent movements required
by all the actuators as was done in previous work [3,4,5].
Or, they can be learned separately.  Learning together
greatly increases the complexity so details are often lost
in the abstraction necessary to keep the computations
within reason.  This method can produce reasonable gaits
that can operate on simpler controllers, but since some
detail is lost, they cannot fully exploit the capabilities of
the robot.  Learning the leg cycles separate from their

coordination allows the system to better use each leg as
long as the controllers are complex enough to handle the
increased details.

Individual leg learning can take into account the
capabilities of the actuators and movement constraints of
individual legs.  In our work, we use a robot that has
servos for actuators.  These servos require a pulse to
designate their desired position.  The pulse length for each
position is distinct for each servo and is dependent on its
placement during installation.  A single pulse does not
guarantee proper positioning since it may be asking the
servo to move further then it can in the time between
pulses.  A sequence of pulses with small changes in pulse
length is required to get rate control.  This sequence of
control signals needs to be repeated to get the cycle of
activations required to produce a cycle of movement for
the leg.

Since evolutionary computation (EC) is well suited for
adapting a solution to the peculiarities of a problem, some
form of EC would work well in learning what signals are
needed for the leg cycle.  The difficulty comes in that
most forms of evolutionary computation are not naturally
equipped to handle the cyclic nature of these leg cycles.
One exception is with genetic programming, which can be
used to evolve programs and programs can have loops.
Graham Spencer [6] had some success in generating
programs for hexapod gaits using genetic programming.
His programs worked concurrently on all the actuators to
produce gaits for hexapod robots.  His programs, tested
only on robot simulations, resulted in gaits that
maintained sustained forward movement but could not
obtain the optimal tripod gait.

Randall Beer and John Gallagher [1,2] used genetic
algorithms (GAs) to develop neural network controllers
for a simulated hexapod robot.  In this work, the structure
of the neural networks (NNs) was pre-defined and the GA
learned the weights required to generate gaits.  This work
makes more of a division between the leg cycles and the
coordination of legs.  NN structures are separately defined
for the leg cycles and the coordinators, but the weights are
learned concurrently.  The nature of the leg cycles are
somewhat defined by the structure of the NNs and further
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learned by the GA.  The coordination is controlled by
central NNs with defined structures; the weights of these
are learned at the same time as the leg NN weights.

In previous work [3,5], we used Cyclic Genetic
Algorithms (CGAs) to generate the sequence of primitive
instructions that produced a gait. CGAs were developed
to allow for the representation of a cycle of actions in the
chromosome.  They differ from the standard GA in that
the chromosome is in the form of a circle with two tails.
The tails of the CGA chromosome are provided to allow
for pre and post-cycle procedures.  They provide a means
for completing tasks before and after entering the cycle.
For gait sequence generation, the pre-cycle can position
the legs in a ready to walk posture and the post-cycle can
return the robot to a stable at rest posture.  In our
application, we used only the pre-cycle tail. The CGA
genes can be one of several possibilities.  They can be as
simple as normal genes that represent traits of the
individual or they can be as complicated as cyclic sub-
chromosomes that can be trained separately by a CGA.
For our purposes, the genes represent tasks that are to be
completed in a set amount of time.  The trained
chromosome will contain the cycle of servo control pulses
that will be continually repeated by the leg’s controller to
produce a leg cycle.

Tests showed that CGAs could produce tripod gaits on
robot simulations that were transferable to an actual
autonomous hexapod robot [4].  This was accomplished
by creating a model with specific information taken from
an individual robot.  The CGA used this model to develop
an optimal gait that was specific to the robot's capabilities.
This gait was subsequently downloaded into the actual
robot where its performance was confirmed to correspond
to the performance of the model.  The primitive
instructions used in these experiments were not designed
to take advantage of the full capabilities of the servo
motor actuators.  Each servo had 2 possible states; either
full forward or full back for horizontal servos or full up or
full down for vertical servos.  Each servo was given a
control pulse that would drive it to the extreme.  This was
necessary to accommodate the limited capabilities of the
single BASIC Stamp II controller.

In this paper, we use incremental evolution to learn
control for 7 controllers.  One controller is used to
coordinate the other 6, which are each used to control a
leg.  These 6 additional controllers allow the system to
take advantage of the capabilities of the servos.  Each leg
controller controls that leg’s vertical and horizontal servo.
Cycles of pulses are learned using a CGA that produces
individual leg cycles optimizing for time on the ground
and forward movement.  These individual leg cycles are
then combined, using a standard genetic algorithm to
produce gaits for the robot.  Tests in simulation and on the
actual robot confirm the viability of this method for
producing gaits.

2 THE ROBOT

The robot used was the ServoBot, which is a hexapod
robot that has two degrees of freedom per leg.  Twelve
servos, two per leg, provide thrust and vertical movement.
They can be set to specific angular positions by providing
a control pulse.  This pulse should be repeated every 25
ms for the servo to maintain a constant position.  The
length of the pulse determines the position.  Pulses from
20 to 2400 microseconds cover the full range of
movement for each leg, although each servo is unique in
its pulse to position ratios.  Some may have a full down
position at 20, on others it may be 80.  There is the same
variance in the full up position.  In addition, the right and
left side servos are mounted differently to ensure
consistent mechanical capabilities, so in some cases the
full down position is at a pulse length of 20 and in some
cases it’s at 2400.

The servo cannot move the leg fast enough to reach the
desired position within one pulse if the differences in
pulses are too much.  This results in the fastest leg
movement as the servo attempts to get to its desired
position as soon as possible.  Varying speeds of
movement can be attained by incrementally changing the
pulse lengths.  For example, moving a leg using
consecutive pulse lengths of 40, 45, 50, etc. will move the
leg at a slower speed than 40, 50, 60, etc., unless, of
course, the increments are already more than the servo's
capability.  Consecutive pulses of 40, 240, 440, etc. would
probably result in the same speed as the consecutive
pulses of 40, 340, 640, etc.

Control was provided by BASIC Stamp IIs, one per leg
and one working as the overall controller.  Each leg’s
stamp could take in a sequence of pulses that indicated the
position of its two servos.  The central stamp controller
told each leg stamp when to start its sequence and if
needed, when to cut short one cycle to start another in
order to maintain leg coordination.

3 THE FIRST INCREMENT:
EVOLVING LEG CYCLES

In order to produce leg cycles, each stamp needs a
sequence of pulses to continually position its servos.  This
sequence must by variable in length to accommodate the
differing capabilities of each leg and its servos.  Fixed
length chromosomes offer distinct advantages when using
CGAs since like areas of each chromosome are more
likely to correspond to similar tasks.  In order to
formulate the problem in such a way as to be able to use a
fixed length chromosome, some observations of a leg
cycle had to be made.  Pulses within 20 microseconds of
each other result in positions that are only slightly
distinguishable from each other (usually within 1 mm).
This level of position accuracy is sufficient for our
problem, so we can represent all pulses from 0 to 2400 by
the numbers 0 to 120 considering each to be in increments

1115EVOLUTIONARY ROBOTICS



of 20 microsecond pulses.  This allows us to use a seven
bit number to represent each pulse.  It takes 14 bits to
represent pulses for both servos.

Smooth movement is required by the horizontal servo,
especially while on the ground.  A sequence of pulses
such as 100, 120, 140, 160 would move the leg smoothly
from the position corresponding to 100 to the position
corresponding to 160.  The sequence 100, 110, 150, 160
would result in the same final position, but the movement
would not be as smooth.  The chromosome representation
needed to be such that smooth movement would be
possible for horizontal movement, but was not needed for
vertical movement since vertical movement does not
affect the smoothness of the robot’s movement.

( (R1 HP1 VP1) (R2 HP2 VP2) (R3 HP3 VP3)
  (R4 HP4 VP4) (R5 HP5 VP5) ... (R8 HP8 VP8) )

Figure 1:  Leg cycle chromosome.  Each gene of the
chromosome was made up of three parts: repetitions,
horizontal pulse, and vertical pulse.

In order to accommodate these considerations, the
chromosome representation shown in Figure 1 was used.
The chromosome was made up of 8 genes.  Each gene
consisted of 3 parts.  The first was called the repetitions,
the second was the horizontal pulse, and the third was the
vertical pulse.  The horizontal pulse and vertical pulse

numbers were each multiplied by 20 microseconds to
calculate the actual pulse width sent to the servo.  The
effect of the repetitions was different on the two types of
pulse.  For the horizontal pulse the repetitions number
was used to calculate the increments required to move
from the servo’s last pulse length to the new pulse length.
The following formula was used:

           pulse increment = (horizontal pulse  -   previous
horizontal pulse) / repetitions

This pulse increment was then added for repetitions
number of consecutive pulses until the end servo pulse
was at horizontal pulse.  For example, if the previous
horizontal pulse was 40 and the gene was (5, 60, 100)
then the following pulses would be sent to the horizontal
servo over the next 5 inputs : 44, 48, 52, 56, 60.
Repetitions effected the vertical pulses only by telling the
controller how many times to repeat this vertical pulse.
The extra computation was not required since smoothness
was only a factor for horizontal movement.

The contents of the chromosome representation were used
directly by the BASIC Stamp II and upon execution it
would do the calculations required to direct its two servos.
An example of the resultant sequence of pulses that would
be produced is shown for a shortened chromosome in
Figure 2.

    Genes       Horizontal Pulses    Vertical Pulses

(4  25  127)   100 127

  75 127

  50 127

  25 127

            (2 55 43)     40  43

  55  43

 (5 125 38)   69  38

  83    38

  97  38

 111    38

 125    38

Figure 2:   Sequence of pulses resulting from example genes.   The 125 from the last gene is used to calculate
the increments (-25) from 125 to 25.  The first of this is added to calculate the first pulse.  As can be
observed, the pulse of 125 is again reached and the cycle continues with smooth horizontal movements.
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3.1 LEG MODEL

Each leg was represented by a simple data structure that
held the information required to produce a leg cycle.
Each servo’s maximum throw positions were stored as  x,
y, coordinates.  The horizontal servo’s full forward
position was defined as x = 0, the full back position was x
= the measured number of millimeters distance from the
full forward.  The vertical servo had a y = 0 if it rested on
the ground when all the legs were full down and the max
up was y = the millimeters off the ground when the leg
was fully lifted.  Along with these positions the pulse
required to attain each was recorded.  The model data
structure also included a lookup table for each servo.
This table listed the corresponding leg position of 13
different pulse lengths (1,200, 400,…2400).  These
figures were attained by applying consistent pulses to
each servo and measuring the leg’s response.  The final
data kept in the model was the current position and pulse
of each servo.

3.2 TRAINING

Evolution of a leg cycle started by taking accurate
measurements of the leg’s capabilities.  This information

was fed into the model data structure used for training.  A
population of 64 chromosomes (each representing a leg
cycle) was randomly generated and trained for 500
generations on the model of the robot.  Fitness was
calculated using three factors: forward movement, down
count, and smoothness.  Forward movement was
calculated by determining the movement generated while
the leg was on the ground.  To attain the maximum
forward movement, the leg should be on the ground
throughout the length of its effective throw.  The effective
throw is usually less than the full throw.  As the leg
reaches its extremes of movement, the distance moved per
pulse reduces significantly, so in the optimal solution the
leg is repositioned before it reaches its full extreme.
Another facet of the leg fitness is the down count.  This
factor gives more fitness to leg cycles where the leg is on
the ground for a high proportion of the time.  A third
contributor to fitness is smoothness.  This is calculated for
movement on the ground.  Leg cycles where the
horizontal movement over the ground is consistent score
higher smoothness. These three fitness indicators were
added together to get the total fitness.  The fitness for
each chromosome was used to stochastically select
individuals to produce each new population.

Figure 3:  Single leg training for each leg.

Crossover was accomplished by randomly picking
corresponding spots in the two selected parents. In the
pre-cycle tail, a single point in both chromosomes was
picked.  In the cyclic section, since it could be considered
a circle, crossover was performed at two points.  The
effect was to swap sections within the circle.  An alternate

type of crossover was a gene-by-gene crossover that
performs crossover in each of the corresponding genes of
the two chromosomes.  Crosses could happen between the
individual members of the list or within the bits of the
specific numbers in the list.  There were two types of
mutation used and selected randomly after each
recombination.  In one, each gene had a random chance of
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being replaced by a new completely random gene.  In the
other, each part of the gene had a random chance of
having one of its bits flipped.

Gene-by-Gene Evaluation, a genetic operator peculiar to
CGAs, was used to clean up the chromosome by
randomly picking one or two individuals from the
population on each set of trails and examining each gene
one at a time.  Genes were evaluated move-by-move by
comparing the previous move fitness to the present.
Genes that performed poorly in their current position were
eliminated.  Genes that were good in the execution of
their early repetitions and subsequently dropped in the
later repetitions were modified by reducing their
repetitions.  Genes that had zero repetitions were moved
out so that only active genes were at the start of the cyclic
section.

3.3 RESULTS

Training was done for 500 generations with the fittest
individual chromosome saved at 0, 10, 25, 60, 100, 200,
300, 400, and 500 generations.  The results of this
training, done for each leg, is shown in Figure 3.  Both the
optimal length (number of pulses in the cycle) and content
of the cycle had to be learned.  Each solid line represents

a leg.  The dashed line is the average.  Three of the 6 legs
learned quickly.  One of the legs was stuck for some time,
with a suboptimal length, which precluded it from further
growth until it evolved to a different length.  At this time
it also improved rapidly.  The optimal lengths found for
the six legs varied from 29 to 36 pulses per cycle.

Training was repeated, in preparation for the gait training
discussed in the next section, but this time an additional
fitness calculator was used.  Desired length reduced the
fitness if the chromosome’s length was different than a
predesignated desired length.  A second test was
performed using 5 randomly generated populations, but
this time the desired length factor was included.  The
length used was 36 pulses, which was the maximum
optimal length found in the previous test.  The results of
this test are shown in Figure 4.  With pressure to conform
to a specified near optimal length, all six legs grew
quickly in their fitness.

The resultant leg cycles were downloaded and observed
on the actual robot where they appeared to produce
efficient, useable leg cycles.  No mechanism was
constructed to test individual legs, so actual quantitative
tests were not possible until the individual leg cycles were
used together to form a gait.

Figure 4:  Single leg training with a desired length specified.
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4 THE SECOND INCREMENT:
EVOLVING GAITS FROM THE LEG
CYCLES

A hexapod gait can be looked at as the coordination of 6
legs with each leg performing its own cycle.  The proper
combination of the six correct leg cycles will produce the
desired gait.  In addition to finding the best gait for the
ServoBot using optimal leg cycles, this task also shows
how to combine several cycles to form a single cyclic
behavior.

4.1 EVOLVING FIXED LENGTH LEG CYCLES

Section 3 discussed the evolution of gait cycles that were
optimal when they were at a desired length of 36.  This
length was chosen since it was the longest of the 6 no-
length-restriction optimal leg cycles found previously.  A
set of leg cycles using a range of desired lengths would be
needed to produce a gait.  The gait learning algorithm
would be able to choose leg cycles from anywhere in this
range for each leg to come up with the proper
coordination of legs.  The no-length optimal should be in
the center of this range but there was more likelihood that
longer length leg cycles would be of use in further
experimentation so the longest gait cycle length found in
the no-length tests was chosen to be the middle desire
length.

Each leg trained for 500 generations to learn optimal leg
cycle with a desired length of 36.  This population was
then used to learn gait cycles with desired lengths from 21
to 52.  Starting with the 36 length population, the desired
length was changed to 35 and training continued for 200
generations.  This continued down to a desired length of
21.  Similarly, training up to 52 was done starting from
the 36 length population.  These learned leg cycles were
stored in 6 files, which were called up when gait training
began.

Gait training was done using a standard GA.  The
chromosome  (Figure 5) was made up of 7 parts.  The gait
cycle length (GCL) represented the number of pulses in
each gait cycle.  Information for each leg included its leg
cycle length (LCL) and start time (START).  Each of
these values is described in the next section.

(GCL
  (LCL START)
  (LCL START)
  (LCL START)
  (LCL START)
  (LCL START)
  (LCL START))

Figure 5:  Chromosome used for gait training.

4.2 ROBOT MODEL

The single stamp that acted as the central controller was
to coordinate the individual leg cycles.  It needed to know
the length (in pulses) of the gait cycle and which leg
cycles to use for each leg.  In addition, it needed the start
time for each gait cycle.  This was where the coordination
took place.  Upon execution the controller program would
count through the total number of pulses 0, 1, 2, 3….
When the start time for each leg was researched, its leg
cycle began.  The central controller ensured that all the
stamps executed their pulses together.  When the gait
cycle length was reached, the count started again at 0.
When each leg’s start number was reached they begin
their cycle again.  To simulate the effect of this on the
robot, each of the leg cycles was run separately for the
number of designated pulses used for training (500 in this
case).  They were then considered to be running
simultaneously in a simulator that would determine at
each pulse what the result of the 6 leg pulses would be.

4.3 TRAINING

A population of 64 randomly generated chromosomes
was produced to start training, which was done for 500
generations.  Each individual's fitness was calculated by
determining the effect of the 6 leg-cycles running
simultaneously as specified by the gait cycle
chromosome.  In addition to calculating the fitness
produced by the legs, additional factors such as balance
and drag were introduced.  Balance was a determination
of the robot’s stability.  Drag was used to penalize the
fitness of the gait when the legs were on the ground but
not producing thrust.  Using these fitnesses, individuals
were stochastically selected to be the parents of the next
generation.  Crossover and mutation were done both at the
gene level and at the bit level as described in section 3.2.

4.4 RESULTS

The best individual at 0, 10, 25, 60, 100, 200, 300, 400, &
500 generations was stored.  The results on the robot
model are shown in Figure 6.  Graphs of the fitness
growth of the 5 distinct starting populations along with
their average (dashed line) is shown.  There are three
things to note from this graph. The start fitness at
generation 0, in most cases, is fairly high.  This is because
all the legs are already moving in a near optimal cycle;
they just need to be coordinated.  The GA quickly learns
adequate coordination by 100 generations.  After that, the
GA works to improve this solution to find the optimal leg
cycle lengths and start spots for each leg.  In all 5 cases,
near optimal tripod gaits are produced.
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Figure 6:  The results on a model of GA training to coordinate the legs.

Figure 7:  Comparison of the model to actual robot performance for a single population over the 500
generations of training.

Tests on the actual robot confirmed the viability of the
produced gaits. Figure 7 shows the results of actual tests
on the robot using the 0, 10, 25, 60, 100, 200, 300, 400,
and 500 generations of one of the populations. As can be
observed, the system consistently overestimates the
fitness in the higher ranges.  The model is purposely

simple to reduce computation time and does not take into
account lost speed due to slippage and actuators moving
slower due to resistance.  Both of these factors have more
of a negative effect at high speeds.   In addition, the
model does not compensate sufficiently for the weight of
the robot. Observations of actual tests on the robot show
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that the legs need to be lifted higher to avoid some drag
during leg repositioning.  The gait is fast enough,
however, that there is minimal time with only three legs
on the ground.  The result is a steady forward movement

with little time wasted.  Figure 8 shows a comparison of
the end products of the five trials.  In all cases the gait
produced was a fast tripod.

Figure 8:  Comparison of the model/actual fitness for all five populations after training is complete.

5 CONCLUSIONS

Incremental evolution is an effective means of evolving
gaits for hexapod robots.  In the first increment CGAs can
be used to generate the cycles of pulses required to
produce a leg cycle for a two servo leg.  Tests in
simulation showed that they improve performance
significantly over training and observation of the results
on an actual robot confirmed the viability of the produced
cycles.  In the second increment, these leg cycles can be
combined in such a way that their concurrent execution
can produce a gait.  Using a GA to coordinate the 6 leg
cycles, with fitness predicated on maximum forward
movement, the leg cycles can be combined to form a
near-optimal gait cycle.  Tests in the simulation and the
actual robot confirm the viability of this method.
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Abstract

This paper proposes an evolutionary ap-
proach to select appropriate behaviors for a
mobile robot. We augment each behavior by
adding activation/termination constraints to
accelerate the evolutionary processes. The
former constraints reduce the number of situ-
ations where each behavior is executable, and
the latter contribute to extract meaningful
behavior sequences, each of which can be re-
garded as one action regardless of its length.
We apply the genetic algorithm to obtain the
switching function to select the appropriate
behavior according to the situation. As an
example, a shooting task in a soccer game
is given to show the validity of the proposed
method. Based on the combination of the
proposed architecture and GA, we can obtain
the purposive behaviors. Simulation results
are shown, and a discussion is given.

1 Introduction

Machine learning techniques such as reinforcement
learning [8] and genetic algorithm [4] are promising
to obtain purposive behaviors for autonomous robots
in complicated environments. Many learning and evo-
lutionary techniques can obtain purposive behaviors
such as wall-following [2, 6], shooting a ball into the
goal [1], and so on. However, if the robot has no a pri-
ori knowledge to obtain the complicated behaviors, it
takes enormous time. Consequently, the resultant be-
havior seems trivial in spite of the long learning time.
That is, a direct mapping from sensory inputs to motor
commands is not tractable.

In order to obtain the feasible solution in the realis-
tic learning time, a layer architecture is often intro-

switching function

collision
avoidance navigationwandering

Figure 1: A layer architecture for behavior selection

duced to cope with large scaled problems [7]. Figure
1 shows an example of layered architecture for behav-
ior selection. In this approach, the upper layer learns
the switching function to select the suitable behavior
already designed or learned. Because the designed be-
haviors can generate purposive action under the lim-
ited situations, they can help the evolutionary compu-
tation to search the feasible solutions.

In this approach, we face with the following problems:

1. how to coordinate and switch the behaviors,

2. when to select the behaviors, and

3. when to terminate the currently executing behav-
ior.

Uchibe et al. [9] applied genetic programming to solve
the above three problems in the robotic soccer domain.
However, the resultant decision tree is not represented
in a compact style. In their case, the robot selected
the collision avoidance although there were no obsta-
cles near the robot. In addition, the robot did not use
the given shooting behavior when it is suitable to be
activated. There are two major reasons why a layered
approach could not obtain the appropriate behavior
sequences: (1) GP does not take account of the pre-
condition of the given behavior explicitly, and (2) the
behavior is often switched although the goal of the be-
havior is not achieved. The first reason prevents GP
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Figure 2: A timing to select the next behavior

from reducing the learning time, and the second causes
the scraps of behavior sequence.

An example sequence of the selected behaviors is
shown in Figure 2, where the black circle indicates the
timing to change the behavior to another one. Figure
2 (a) indicates the ideal behavior sequence, whereas
Figure 2 (b) the resultant behavior sequence often ob-
tained by the learning or evolutionary approaches. In
the case (a), the robot selects the same behavior for a
while. On the other hand, in the case (b), the robot
often switches the behaviors according to the situa-
tion. Although this can be regarded as an acquisition
of the new behavior sequences instead of the given be-
havior, it causes enormous learning time because the
robot does not make good use of the behavior given
by the designer.

In order to take advantage of the behavior given by
the designer, we have to consider the the precondi-

tion and the goal of the behavior. This paper pro-
poses a behavior selection mechanism with activa-
tion/termination constraints. The former constraints
reduce the number of situations where each behavior is
executable, and the latter contribute to extract mean-
ingful behavior sequences. We call behavior with ac-
tivation/termination constraints module. These con-
straints enable the robot to modify the timing to se-
lect the next behavior as shown in Figure 2 (c), where
the gray circle indicate a vague state whether a new
behavior is changed or not. From the case (c), the ter-
mination constraint contributes to avoiding frequent
switching behavior. It enables us to deal with het-
erogeneous modules1 in the same manner. Once the
module is selected, actions are executed until the mod-
ule terminates stochastically based on the termination
constraint. Thus, we can obtain the behavior sequence
like Figure 2 (c).

The lower layer consists of multiple modules, while the
upper layer selects the appropriate module according
to the situation. Genetic algorithm is applied to obtain
the switching function to select the appropriate mod-
ule and the timing to terminate it according to the sit-
uation. Activation/termination constraints affect not
the genetic operations such as crossover and mutation
but the individual representation. Although we uti-
lize standard genetic operations, we can obtain pur-
posive behaviors owing to the activation/termination
constraints within a reasonable computational time.
The results of computer simulation are shown, and a
discussion is given.

2 Behavior Selection with
Activation/Termination Constraints

2.1 Lower layer

Suppose that the robot has L modules mi (i =
1, · · · , L). A module mi consists of three components:
a behavior πi : X (state space)→ U (action space), an
activation constraint and Ii a termination constraint
Ti. There are several ways to implement the behav-
iors, but they must be given to the robot in advance.

The activation constraint Ii gives a set of states where
the module should be executable.

Ii(x) =
{

1 mi is executable at state x,
0 otherwise. (1)

If the designer gives the behavior π to the robot, it is
not difficult to give the precondition of the behavior.

1 In this paper, “heterogeneous” means the differences
of time to achieve the goal of the module.
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For example, the collision avoidance behavior is im-
plemented for the mobile robot with sonars, where the
designed behavior is activated only when the obstacles
are detected by sonar.

Each module has one termination constraint Ti con-
sisting of a probability to sustain the module or not.
In other words, this function gives the time to continue
to execute the selected module.

Ti(x, t) =




0 the goal of the module
mi is achieved,

0 t > tp,i,
pi otherwise,

(2)

where t and tp,i denote the elapsed steps and the
pre-specified time interval, respectively. If the robot
continues to execute the same module tp,i steps, it is
forced to stop. The robot judges whether the selected
module should be terminated or sustained with prob-
ability pi.

2.2 Upper layer

In the upper layer, the modules are switched according
to the current situation. Let the value of the module
mi at the state x be Vi(x). The robot selects the
module of which value is the highest:

i∗ = arg max
i=1,···,n

Vi(x)Ii(x). (3)

Once the module is selected, then actions are executed
according to the current behavior πi until the module
terminates stochastically based on Ti.

In order to approximate Vi(x), we use the function
expressed by

Vi(x) =
N∑

j=1

exp
(−(x − cij)T W ij(x − cij)

)
, (4)

where cij ∈ �n and W ij ∈ �n×n denote the center
position and the symmetric matrix. If W ij is positive
definite, Eq.(4) expresses the Gaussian function.

3 Genetic Operations

In order to obtain the appropriate pi, cij and W ij ,
we use the genetic algorithms. In GA, it is an im-
portant role to design the genetic operations such as
crossover and mutation. A procedure to generate the
new offspring is indicated in Figure 3.

Suppose that the robot has L modules, and each mod-
ule has N parameters (pi, cij , W ij). Figure 4 (a)

next  population

crossover
reproduction

5 %

90 %

5 %

5 %

current  population

creation

geneticoperations

mutation

elite selection

Figure 3: Flowchart of GA

shows the chromosome of individual. We perform two
types of crossover.

Global crossover : Figure 4 (b) shows a basic idea of
global crossover. For each module mi, a pair of param-
eters is selected randomly from each parent. Then, we
swap two parameters.

Local crossover : At the beginning, we find the pa-
rameters of which distance is minimum.

(j∗, k∗) = min
j,k=1,···N

||c1
ij − c2

ik||.

1. In case of W ij , we perform two point crossover.

2. In case of pi and cij , we utilize BLX-α [3] based
on real-coded GA. Figure 4 (c) shows a basic
idea of BLX-α in a case of two dimensional vec-
tor. The BLX-α uniformly picks parameter values
from points that lie on an interval that extends αI
on either side of the interval I between parents.
In other words, it randomly generates two chil-
dren around their two parents by using uniform
distribution in the hyper rectangular region whose
sides are parallel to axes of the coordinate system.

Mutation : One of the elements of cij or W ij is
replaced to a new random value.

Genetic operations used here does not take account of
activation/termination constraints explicitly. In other
words, activation/termination constraints do not help
GA to search the feasible solutions directly.

4 Task and Assumptions

4.1 Robot and Environment

We have selected a simplified soccer game as a test-
bed. The task for the learner is to shoot a ball into
the opponent goal. The environment consists of a ball
and two goals, and a wall is placed around the field
except the goals. The sizes of the ball, the goals and
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Figure 4: Crossover

the field are the same as those of the middle-size real
robot league of RoboCup Initiative [5] that many AI
and robotics researchers have been involved in.

Figure 5 shows the real robot used for modelling.
The robot moves around the field based on the power
wheeled steering system. As motor commands, our
mobile robot has two degrees of freedom. The input u
is defined as a two dimensional vector:

uT =
[

ul ur

]
ul, ur ∈ {−1, 1},

where ul and ur are the velocities of the left and right
wheels, respectively. In addition, the robot has a kick-
ing device to kick the ball.

The robot has two vision systems; one is a normal vi-
sion system to capture the front view, and the other
is an omni-directional one to capture the visual infor-
mation whole around the robot. The omni-directional
vision has a good feature of higher resolution in direc-
tion from the robot to the object although the distance
resolution is poor.

The robot observes the center positions of the ball and
two goals in the image plane using two vision systems.
Therefore, the number of image features is 12. A sim-
ple color image processing is applied to detect the ball
and the goal areas in the image plane in real-time (ev-
ery 33 [msec]). Figure 6 (b) shows detected image

omni-directional
vision

normal vision

Figure 5: Our mobile robot

opponent goal

initial disposition of the ball

initial disposition of the robot

opponent goal

own goal

ball
robot

θb own

oppθb

bx

ownx

oppx

(a) top view of the field (b) view captured by an
omni-directional vision

Figure 6: The experimental setting.

features to extract the information of the environment
based on the omni-directional vision, where xb, xown

and xopp are the center position of the ball, the own
goal, and the opponent one, respectively.

4.2 Module Design

4.2.1 Basic Modules

We prepare five basic modules of which behavior just
generates a simple action regardless of sensory infor-
mation. That is, the motor command generated by
each basic module is described as follows:

• m1 : go forward
uT = [1.0, 1.0]

• m2 : go backward
uT = [−1.0, −1.0]

• m3 : stop
uT = [0.0, 0.0]

• m4 : turn left
uT = [−1.0, 1.0]
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(a) m6 (b) m7

Figure 7: Typical behaviors generated by the reactive
modules

• m5 : turn right
uT = [1.0, −1.0]

These modules are always executable, in other words,
for all x we set Ii(x) = 1 (i = 1, · · · , 5). Since they
have no explicit purpose to achieve, the termination
constraints only depends on the steps. In this experi-
ment, we set the termination parameters in Eq.(2) as
p = 0.4 and tp = 150 steps (= 5 [sec]).

4.2.2 Reactive Modules

Figure 7 shows typical behaviors generated by the four
modules prepared in advance. In order to realize the
defending behavior, we design the following four reac-
tive modules.

• m6 : search the ball
The purpose of this module is to capture the ball
image using the normal vision. Therefore, the
robot searches the ball by turning to left or right.
T6 is set to zero when the ball is observed.

• m7 : avoid collisions
The purpose of this module is to avoid colli-
sions with the wall. If the wall is not detected,
uT = [1.0, 1.0]. This module is activated when
the robot moves near the wall.

• m8 : kick the ball
In a case where the ball is in front of the robot
and this module is selected, the robot succeeds in
kicking the ball. Of course, this module has no
effects when the ball is not in front of the robot.
This module is activated when the ball image is
captured by the normal camera.

• m9 : shoot the ball
The purpose of this module is to push the ball
into the opponent goal. This module is activated
when both the ball and the opponent goal images
are captured by the normal camera. The resul-
tant behavior is the same as that of m1, that is,

uT = [1.0, 1.0]. This module does not always suc-
ceed in shooting behaviors, especially when the
ball position is shifted from the goal direction.

In this experiment, we set the termination parameters
in Eq.(2) as p = 0.8 and tp = 150 for the above four
modules.

4.2.3 Complex Modules

We prepare a controller which makes the features on
the image plane converge to the desired values. For
the desired state xd = [xd yd]T , a motor command u
is computed by

u =
[

ur

ul

]
= K

[ −1 1
1 1

] [
xd

yd

]
, (5)

where ur and ul are the velocities of the right and left
wheels, respectively. K is a gain matrix. Using the
controller based on Eq. (5), we prepare the following
two modules.

• m10 : move to the defensive position
The purpose of this module is to move to the place
between the ball and the own goal. The desired
state xd is given by

xd = (1− a)xb + axown.

• m11 : move to the offensive position
The purpose of this module is to move to the op-
posite side of the opponent goal to shoot. The
desired state xd is given by

xd = (b + 1)xb − bxopp (0 ≤ b ≤ 1).

These two modules can be executed when the desired
state is not achieved, that is,

Ii =
{

1 ||x − xd|| ≤ ε
0 otherwise ,

where ε and ||x|| denote the norm of x, and the small
threshold, respectively. In this experiment, we set the
termination parameters in Eq.(2) as p = 0.8 and tp =
150 for the above two modules.

4.3 GA Settings

The population size is 50, and we perform 30 trials to
evaluate each individual. At the beginning of the trial,
the robot and the ball are placed at the dark and light
gray areas, respectively shown in Figure 6 (a). One
trial is terminated if the robot shoots a ball into the
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Figure 8: Typical behaviors generated by the complex
modules

goal or the pre-specified time interval expires. In or-
der to select parents for crossover, we use tournament
selection with size 10.

One of the most important issues is to design the fit-
ness measures. In this experiment, we set up four fit-
ness measures as follows:

• f1 : the total number of obtained goals,

• f2 : the total number of lost goals,

• f3 : the total number of steps until all trials end

• f4 : the total number of ball-kicking,

In order to cope with multiple fitness measures, one
simple realization is to create the new scalar function
based on the weighted summation of multiple fitness
measures by

fc =
n∑

i=1

wifi, (6)

where wi denotes the weight for i-th evaluation. The
problem is to design the value of wi since we must
consider the tradeoff among all the fitness measures.
In this experiment, we use the adaptive fitness func-
tion [10] to decide the weights. Based on this method,
the weights are modified considering the relationships
among the changes of the four evaluations through the
evolution process.

5 Experimental Results

In order to show the validity of the proposed method,
we perform the following four experiments; (1) with-
out activation/termination constraints, (2) with ter-
mination constraints, (3) with activation/termination
constraints, and (4) proposed method. In cases of (2)
and (3), a probability pi for each module is fixed while
the probability based on (4) is obtained by the learn-
ing method. Figure 9 shows the averaged scores during
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Figure 9: Average of scores

the evolutionary processes. Since we perform 30 trials
to evaluate one individual, the maximum value of the
averaged score is 30.

5.1 Simulation Results

Without activation/termination constraints

Figure 9 shows that this approach did not fulfill the
goal of shooting behavior. Figure 10 (a) shows the
transition of the selected modules. Since the robot se-
lects the new module in real time (every 33 [msec]), the
robot changed the module frequently, especially from
six to ten seconds. At the beginning, the robot selected
the avoiding module m7 although the robot is not lo-
cated near the wall. In this case, the robot utilized m7

to approach the ball since this module generated the
backward action when the ball is not observed. Then,
the two modules m11 and m4 are selected frequently
from six to ten seconds. As a result, the robot failed
to shoot the ball into the goal until the pre-specified
time interval expired.

With termination constraints

This approach caused the successful shooting behav-
ior, and took shorter learning time than the case of no
constraints described in the above. However, this ap-
proach took longer time to evolve than the case with
both constraints. Figure 10 (b) shows the transition
of the selected modules. In this experiment, m1 was
selected to shoot the ball into the goal instead of m9.

With activation/termination constraints

Figure 10 (c) shows the transition of the selected mod-
ule. Until six seconds, the robot used three modules
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Figure 10: Sequences of the selected modules
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Figure 11: Example behavior sequences based on the
proposed method

m4, m10, and m11 to go back to the offensive position.
In this situation, the pre-defined behavior m11 can not
succeed in moving to the offensive position since this
behavior is implemented by a local linear feedback con-
troller. After the robot moved to the front of the ball,
the robot succeeded in shooting the ball into the goal.

Proposed method

Figure 9 shows that this approach took the shortest
learning time to obtain the shooting behavior, and got
best scores. In this method, the basic module, for ex-
ample, m5 (turn right) was terminated quickly. One of
the successful behaviors based on the proposed method
is shown in Figure 11, where the numbers in the figure
represents the elapsed time (second).

The learning processes of the cases (c) and (d) are al-
most same as shown in Figure 9. In this experiment,
the probability pi did not converged because the opti-
mal probability depends on the switching function.

5.2 Real Experiments

We show a result to demonstrate how the proposed
method works. We transfer the result of computer
simulation to the real robot. A simple color image
processor (Hitachi IP5000) is applied to detect the ball
and the goal area in the image in real-time (33 [msec]).

Figure 12 shows an example sequence of obtained be-
havior in the real environment. Because of the low
image resolution of the omni-directional vision system,
the robot sometimes failed to detect the objects at a
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Figure 12: Obtained behavior in a real environment

long distance. In this case, the module could not be
performed appropriately. In spite of those troubles,
our robot could accomplish the given task.

6 Discussion and Future Works

This paper presented an architecture for behavior se-
lection with activation/termination constraints. We
applied the proposed method to a soccer situation, and
demonstrated the experiments on a simulated robot.

In the current version of our method, the genetic op-
erations are applied only to learning the upper layer,
that is, c and W . One interesting extension is to learn
the appropriate termination constraints since it should
be better to set the appropriate T according to the sit-
uation.

As future work, we will apply the proposed method
to co-evolution for cooperative behavior acquisition in
the context of RoboCup.
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