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Abstract
The study of evolutionary approaches to create electrical
circuits is becoming increasingly widespread.  This pa-
per will present early results in evolving electrically
implementable dynamical neural networks that correct
several classes of arrhythmia in a simulated human
heart.  In addition to assessing the quality of the
evolved circuits, we will examine how the evolved cir-
cuits differ from traditional pacemakers and consider
what implications these differences may hold.  We will
also propose some objective function improvements
that should increase the number of effective evolved
controllers

1   INTRODUCTION

The author has recently proposed the use of Continuous
Time Recurrent Neural Networks (CTRNNs) as an ena-
bling paradigm for evolving analog electrical circuits
[Gallagher, 2000] [Gallagher and Fiore, 2000]. In those
previous works, we presented hardware implementations
of extrinsically evolved CTRNNs and demonstrated that
CTRNNs evolved in simulation are practically implemen-
table and behave as predicted in simulation.  Making the
presumption of extrinsic evolvability, this paper will dis-
cuss an application of the CTRNN paradigm to the
evolution of neural network based electrical circuits to
correct common arrhythmias in a simulated human heart.
We will begin with a brief discussion of cardiac arrhyth-
mia as well as of the cardiac model employed.  Second,
we will describe the basic control strategy as well as the
neural architectures and models utilized.  Third, we will
discuss the specific genetic algorithm (GA) methods used
as well as the results of forty evolutionary searches aimed
at producing arrhythmia correcting circuits.  Fourth, we
will qualitatively assess both evolutionary successes and
failures with an eye toward improving GA search for fu-
ture experiments.  We will also provide a brief, qualitative
description of the best controller's function. Finally, we
will conclude with discussion of possible practical appli-
cations of these results and discuss future goals and
research.

2   CARDIAC MODEL

The human heart has four chambers, two atria constitute the
top half of the heart, and two ventricles constitute the heart's
bottom half.  In normal operation, the atria contract in uni-
son followed shortly by the ventricles contracting in unison.
The sinoatrial (SA) node (located in the upper portion of the
right atrium -- see Figure 2) is autoexcitatory and serves as
the heart's primary pacemaker -- firing an impulse capable of
causing atrial contraction about sixty to seventy times per
minute.  The atrioventricular (AV) node (located near the
interventricular septum near the bottom of the right atrium)
is also composed of autoexcitatory tissue and fires with an
intrinsic frequency of about 40 cycles per minute. The AV
node is the only electrically conducting pathway between the
atria and the ventricles. Atrial contractions (P waves) are
initiated by autonomous firing of the SA node. The conven-
tional view holds that those impulses are conducted through
the AV node with a time delay -- triggering ventricular con-
traction soon after (R waves).

Cardiac arrhythmias are breakdowns in the normal relation-
ships between atrial and ventricular contractions.  One class
of arrhythmias, the AV blocks, can be detected by examin-
ing electrocardiogram (ECG) recordings.  ECGs are time
series recordings of electrical activity in the heart. A simpli-
fied schematic representation of an ECG time series is
shown in Figure 1.  Three classes of AV blocks, character-
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Figure 1: In an ECG recording, P waves correspond to atrial
contractions.  R waves correspond to ventricular contrac-
tions.
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ized by specific ECG signatures, are commonly recognized.
First degree AV blocks are characterized by a constant
lengthening of the PR interval (the time between P and R
waves) beyond normal length (greater than about 0.2 seconds
in a human). Second degree blocks are characterized by the
occasional failure of R waves to appear after P waves.  There
are two varieties of second degree blocks.  In Mobitz Type I
block (Wenckebach block), the interval between P and R
waves continuously increases until eventually an R wave is
completely dropped.  In Mobitz Type II block, PR intervals
are constant, but R waves are still intermittently dropped.
Mobitz Type II blocks are further subcategorized into groups
based on the ratio of atrial to ventricular contractions.  A
patient who drops every other R wave would be said to have
2:1 Mobitz Type II block, for example. Third degree blocks
are characterized by total failure of synchronization between
the top and bottom of the heart.  In third degree block, the
ventricles contract independently of the atria and at a rate
near the AV node's intrinsic frequency of forty beats per
minute.

For this work, we adopted a coupled oscillator model of
heartbeat generation described in [Di Bernardo, Signorini,
and Cerutti, 1998] and [Signorini, Cerutti, and Di Bernardo,
1998].  Both the AV and the SA nodes are represented by
van der Pol oscillators (Figure 3).  Each oscillator possesses
an "active resistor" (labeled V1 and V2 in Figure 3) that is
capable of both dissipating and producing energy.  The value
of the resistor R controls the degree of coupling between the
oscillators. All three classes of AV blocks can be simulated
by manipulating R.  When R is zero, the oscillators are
decoupled -- simulating 3rd degree block.  At settings of R
near 1.0, the oscillators are coupled and one observes normal
1:1 entrainment of the two halves of the heart with the SA
node acting as the primary pacemaker.  One observes other
classes of AV block for intermediate values of R.  The spe-
cific nature of the block observed depends additionally on the
intrinsic frequencies of the SA and AV oscillators.  This is

consistent with physiological observations.  Patients are
often "stress tested" to increase heart rate and uncover block-
ing phenomena that might otherwise go unnoticed.

We can express the state equations of the cardiac model as
follows:
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Figure 2: The positions of the sinoatrial and atrioventricu-
lar nodes in the human heart.
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Figure 3:  Schematic representation of coupled oscillator
cardiac model. [Di Bernardo, Signorini, and Cerutti, 1998]
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In the model, x2  represents SA node activation and x4  rep-

resents AV node activation.  Both correspond to voltages in
the electrical equivalent model. x1  and x3 correspond to the

electrical current through the SA and AV branches of the
circuit respectively. The PR interval is taken to be the time
between subsequent maxima of x2  and x4 .  S1 and S2  are

externally controlled voltage sources used to inject stimula-
tion into the SA and AV nodes respectively.  Settings of all
model parameters are made to mimic physiological observa-
tions.  Details can be found in [Di Bernardo, Signorini, and
Cerutti, 1998].  We will discuss specific model settings used
in this work in the sections of this paper in which they are
relevant.

3 NEURAL MODEL

The evolved cardiac controllers are Continuous Time Recur-
rent Neural Arrays (CTRNAs) [Gallagher, 2000], which are
grid arrangements of CTRNN neurons [Beer, 1995].  Each
neuron in the grid receives inputs only from their immediate
right, top, left, and bottom neighbors.  These neighbors
may be other neurons, sensory devices, or physical actua-
tors.  Each grid neuron has the following state equation:
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CTRNA controllers evolved in this paper were assembled
using four neurons and interfaced to the cardiac model as
shown in figure 4. Conventional artificial pacemakers oper-
ate by sensing P and R complexes and firing large
depolarization spikes to either the top or bottom of the heart
as appropriate when contractions are "missed".  In a sense,
they take large corrective action when a control algorithm
determines that a necessary event did not occur.  In this
work, we're employing a different approach.  Here we will
attempt to evolve "neural prosthesis" that augment, rather
than override, the natural cardiac conduction system.  The
CTRNAs are intended to apply small corrections continu-
ously to prevent the heart from missing contractions to
begin with, rather than force them to occur after they are
missed.  Since such subtle augmentation can be difficult, if
not impossible, to design by hand, we turned to genetic al-
gorithms to evolve neural array parameter settings that
appropriately coupled our device to mend broken (albeit
simulated) hearts.

4 GENETIC ALGORITHM SEARCHES

In our experiments, we assumed the AV node to possess an
intrinsic frequency of 40 beats per minute (BPM).  We also
assumed the SA node to be the primary cardiac pacemaker
and thus, modified its intrinsic frequency to drive the whole
heart at faster or slower rates.  All healthy simulated hearts,
therefore, had the following parameter settings in common:

C2 0 675= . L2 0 027= . R = 1 1.

The values of C2  and L2  were chosen to produce an intrin-

sic AV frequency of 40 BPM as well as to produce
physiologically realistic AV action potential shapes.  De-
tails can be found in [Di Bernardo, Signorini, and Cerutti,
1998].  The setting of R  was chosen to reflect normal,
healthy coupling of the two oscillators.  C1 and L1, which

specify the intrinsic frequency of the SA node, were chosen
to produce rates of 40, 60, 80, 100, and 120 BPM in the
whole heart when SA is normally coupled with the AV os-
cillator.  SI settings that produce heart rates of interest are
given in Table 1.

SA AV

0

1

2

3

Figure 4:  Generic CTRNA Architecture:  The numbered
squares are CTRNN neurons.  Excitatory connections to neu-
rons end in bars, inhibitory connections in filled dots.  The
circles at the top represent the SA and AV nodes in the cardiac
model.  Neurons 0 and 2 receive weighted input from the SA
( x2 ) and AV ( x4 ) nodes respectively.  The outputs of neurons

0 and applied to the simulated heart as S1 and S2  .
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Table 1: Model Heart Parameter Settings

Heart Rate C1 L1

40 BPM 0.395 0.079

60 BPM 0.250 0.05

80 BPM 0.15 0.03

100 BPM 0.144 0.0228

120 BPM 0.09125 0.01825

AV blocks were simulated by adjusting R  to values in the
range of [0..1.1] inclusive.  

We used the public domain genetic algorithm package
GAucsd1 (version 1.4) to evolve all neural parameters of
CTRNAs of the form shown in Figure 4.  A neural array
was specified by four time constants, four biases, and six-
teen weights for a total of twenty-four parameters.  Each grid
parameter was encoded in four bits, with time constants ∈ [-
0.5,10], and biases and weights in the range ±16. GAucsd
employs a technique known as dynamic parameter encoding
(DPE) that zooms the mapping between a fixed set of bits
and a real parameter based on statistics gathered during a run
[Schraudolph & Belew, 1992]. GAucsd parameters were set
as follows: Total Trials = 100000; Population Size = 500;
Crossover Rate = 0.62; Mutation Rate = 0.000160; Genera-
tion Gap = 1; Scaling Window = -1; Structures Saved = 10;
Max Gens w/o Eval = 2; Options = Aclue; Maximum Bias
= 0.99; Max Convergence = 112; Conv Threshold = 0.98;
DPE Time Constant = 50; Sigma Scaling = 2.  

Fitness of an individual CTRNA controller was evaluated by
simulating the heart, coupled to the CTRNA as defined in
Figure 4, for fifteen simulated seconds and assessing the
errors between CTRNA augmented heart behavior and
healthy, unaugmented (normal) heart behavior under ten pre-
selected test conditions. The ten test conditions consisted of
each of the five hearts defined in the earlier table (rates from
40 through 120 BPM) under normal (R=1.1) and 3rd degree
block (R=0.0) conditions.  It was assumed that any control-
ler capable of correcting third degree block would also correct
2nd and 1st degree blocks.  The total error for each test con-
dition was the mean squared error (MSE) between the normal
and augmented PR interval, the MSE between the normal
and augmented RP interval, the MSE between normal and
augmented atrial rate, and the MSE between the normal and
augmented ventricular rate.  The total error for a CTRNA
controller was taken to be the sum of the errors of each of
the ten test conditions.  

Forty separate GA searches were run.  Each required about
two days to evaluate 200 generations on a 300 MHz

                                                
1 URL: ftp://ftp.aic.nrl.navy.mil/galist/src/GAucsd14.sh.Z

FreeBSD Pentium architecture workstation.  Four searches
resulted in CTRNAs capable of correcting all three classes of
AV block in simulated hearts operating over the range of 40
to 120 BPM.  We will call these devices "effective control-
lers".   The remaining searches produced devices that could
correct arrhythmias at slow heart rates, but failed in various
ways to correct arrhythmias at faster pacings.  We will refer
to these devices as "ineffective controllers".  First, we will
examine the evolutionary histories and performances of the
effective controllers, then discuss why the ineffective con-
trollers never evolved properly.

5 ASSESMENT OF EFFECTIVE
CONTROLLERS

Experiments are named after the workstation they ran on.
We will use the experiment's name, as appropriate in con-
text, to refer to both the GA search itself as well as the best
CTRNA resulting from the run.  Four GA experiments,
belle, spunky2, droopy2, and sprocket2 produced effective
controllers at generations 52, 14, 41, and 14 respectively.
Prior to the emergence of the effective controllers at the gen-
erations indicated, all four experiments showed a similar
evolutionary history.   The controllers first evolved the abil-
ity to correct all classes of AV block at 40 and 60 BPM,
later evolving the ability to correct at 80 and 100 BPM, and
finally, the ability to correct at 120 BPM.  After the emer-
gence of an effective controller, all searches produced only
minor improvements to subsequent controllers by fine tun-
ing PR and RP intervals.  

Figure 5 demonstrates correction of 1st degree AV block by
the CTRNA controller belle.  This result is typical of the
correction produced by all four effective controllers.  Note
that as R drops and coupling between the SA and AV nodes
breaks down, the average PR interval increases in the unas-
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Figure 5:  Average PR interval vs. R for unassisted and as-
sisted heart beating at 60 BPM.  Note progressive 1st degree
block in the unassisted heart vs. largely constant PR intervals
over a range of R values for the assisted heart.
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sisted heart.  Also note that the PR interval does not in-
crease in the assisted heart.  In fact, it decreases slightly.  

Figure 6 demonstrates typical correction of 2nd degree Mo-
bitz type I block.  Figure 6a shows time series plots of x2

(SA) and x4 (AV) activations over a period of fifteen seconds

for a model heart beating at 60 BPM.  Heart parameters are
as indicated earlier in this section for a 60 BPM heart except
that R=0.09. Notice the missed ventricular contractions at I
and II in Figure 6a.  Also note that the PR interval leading
up to those missed beats continually lengthens leading up to
the missed contraction. In Figure 6b we see x2  and x4 time

series for the same heart coupled with the evolved controller
droopy2.  Note that in the CTRNA assisted heart, the PR
intervals are constant at about 0.428 seconds.  This com-
pares favorably with the PR interval of 0.469 seconds in an
uncorrected healthy heart (R=1.1) beating at 60 BPM.  The
corrective ability shown for droopy2 is typical of that pro-
vided by the other three successful controllers.  This
corrective ability also generalizes to Mobitz Type I block at
other heart rates.

Figure 7 illustrates typical correction of 2nd degree Mobitz
Type II 2:1 block.  Figure 7a shows SA and AV activation
time series for an unassisted damaged heart beating at 100
BPM.  Heart parameter settings are as earlier indicated for a
100 BPM heart except that R = 0.26. Note that in Figure 7a
PR intervals are constant and every other ventricular contrac-
tion is dropped. Figure 7b shows the time series of the same
heart assisted by the evolved CTRNA sprocket2.  Note that
a 1:1 relationship between SA and AV activations has been

restored.  Also note that the PR interval is constant. The
corrective ability of sprocket2 in this is typical of all four
successful controllers. All four successful controllers have
also been shown to be able to correct Mobitz Type II block
at other heart rates and for other entrainment ratios.

Figure 8 demonstrates typical correction of 3rd degree AV
block.  Heart parameters are as indicated for a 120 BPM
heart, except that R=0.0 (total AV block).  In Figure 8a, the
time series of the unassisted heart, we observe total AV
block.  The SA and AV nodes are completely disassociated
and AV fires at its intrinsic 40 Hz.  Figure 8b shows the
time series for the same heart assisted by the controller
spunky2.  After a short startup transient, the assisted heart
beats at about 120 BPM.  The startup transient is not typi-
cal.  The other three successful controllers induce appropriate
120 BPM operation from time zero.

In addition to correcting all three classes of AV blocks tested
at rates from 40 through 120 BPM, no successful controller
interferes with proper operation of the simulated heart when
the "natural" conduction system is intact (R=1.1).  Time
series of healthy hearts with one of the four successful assist
units engaged are nearly indistinguishable from time series
of healthy hearts with the CTRNA assist units disengaged.
When coupled to a "healthy heart" the four effective CTRNA
controllers alter neither the normal SA paced heart rate nor
the length of the PR interval.

1
A

1
B

I II

Figure 6: Time series plots for an unassisted heart with 2nd degree Mobitz type I block (A) and the same heart coupled with the
evolved controller droopy2.  x2  (SA activation) is shown using black thin lines.  x4  (AV activation) is shown using bold gray
lines.  Atrial contractions occur at peaks of x2 and ventricular contractions occur at peaks of x4 .  The PR interval is the length of
time between x2  and subsequent x4  peaks.
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6 ASSESMENT OF INEFFECTIVE
CONTROLLERS

What of the 36 ineffective controllers?  Though they do not
correct for all classes of AV block over the whole range of
heart rates studied, they are all effective in correcting for
some subset of conditions and/or block types.  Considering
that many of these produced corrective action qualitatively
similar to those provided by early stages of the four success-
ful controllers and also considering that the two hundred
generations allowed was nearly four times as many as needed
by the slowest evolving effective controller --  one needs to
ask why more experiments didn't result in successful con-
trollers.  The answer seems to lie in a poor choice of
objective function.  Though it is true that effective control-
lers score well on the stated objective function -- it is
equally true that some ineffective controllers score as well or
better. Use of average PR and RP intervals seems particu-
larly problematic -- as it is possible for corrected heart rates
to adopt non 1:1 SA to AV entrainments that produce aver-
age PR and RP intervals close to desired values.  This can
cause the GA to perpetuate clearly unacceptable solutions --
preventing convergence on good solutions.  Many examples
of exactly this phenomenon were found among the set of
ineffective controllers.  One possible fix, which is currently
under study, is to modify the objective function to also
minimize the variances of the PR and RP intervals as well
as the error between assisted AV ratio and the perfect AV
ratio of 1.0 (AV ratio is the ratio of atrial to ventricular con-
tractions, or P to R waves).  These modifications to our
naive objective function should weed out unacceptable solu-

tions without significantly increasing the amount of
computation time necessary to complete a GA search.

8 QUALITATIVE CIRCUIT ANALYSIS

Although a complete analysis of how the evolved CTRNA
controllers function has yet to be completed, there a few
interesting functional observations that can be made at this
time.  For this discussion, we will focus our attention on
the controller belle.  Our qualitative observations of its func-
tion are general for all four effective controllers.

Refer to Figure 2 for a controller circuit diagram.  In belle,
neurons 1 and 3 maintain fixed outputs at all times.  This
means that we could remove those neurons from the system
and replace them with constant biases to neurons 0 and 2.
Dynamically speaking, neurons 1 and 3 are irrelevant.  Neu-
ron 3, which provides stimulation directly to the AV node,
acts much like a traditional artificial ventricular pacemaker.
It "listens" for SA activity and, with a slight time delay,
conducts that activation to the AV node to trigger a ventricu-
lar contraction.  Cutting the connection from neuron 2 to
the AV node completely breaks the controller's ability to
maintain 1:1 entrainment of the two halves of the heart.
The activity of neuron 0 is somewhat more subtle and much
more interesting.  In our model, the SA node is the primary
cardiac pacemaker -- its intrinsic frequency sets the pace for
the whole heart.  The heart, however, does not entrain to the
exact SA frequency.  The SA node is coupled to a "slow" 40
BPM oscillator, so at high target rates, the SA must adopt
an intrinsic frequency somewhat above the target "whole
heart" frequency.  If we cut the connection from neuron 0 to

1

1
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B

Figure 7: Time series plots for an unassisted heart with 2nd degree Mobitz Type II block (A) and the same heart coupled with the
evolved controller sprocket2.  Plotting conventions are identical to those used in Figure 6.  
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the SA node, the simulated assisted heart beats at the SA
intrinsic frequency, rather than the correct coupled frequency.
At a target rate of 120 BPM, for example, the belle assisted
heart with the neuron 0 to SA connection cut beats at 160
BPM.  In practice, neuron 0 selectively slows the SA node.
At whole heart target frequencies near 40 BPM, neuron 0 is
almost totally quiescent.  Since the SA and AV rates are
both near 40 in that case, no damping is needed for the SA
frequency.  As the whole heart target frequency, and thus,
SA intrinsic frequency, increase, neuron zero becomes pro-
gressively more active and progressively slows the SA node
to its correct target value.  Neuron 0, in a sense, acts as a
rate sensitive damper of oscillations in the SA node.  With
traditional pacemaker therapy, such tachycardia (dangerously
fast heart rate) would be treated with drugs to slow the heart
rate.  With our evolved circuit, the tachycardia induced by
the breakdown of coupling between the heart halves is han-
dled by the evolved assist device itself.
 

7 CONCLUSIONS AND FUTURE WORK

The author has proposed evolved CTRNAs as an enabling
paradigm for compact, cheap, analog circuits for device con-
trol.  This paper's basic contribution is an example of using
that paradigm to create extremely compact controllers capa-
ble of correcting a large class of failure modes in a simulated
heart.  Although the yield of 10% (4 out of 40 controllers
were totally effective) was disappointing -- we were able to
identify the likely reason for that poor yield and are taking
steps to fix the problem. Preliminary results are showing a
near 100% yield of effective controllers using the improved

objective function.  Further, the controllers from this new
batch seem to operate like the four discussed in this paper.

More broadly, the work described here provides a base from
which to spin off several potentially intriguing lines of in-
quiry.  One avenue being explored is the evolution of
CTRNAs that correct for a wider variety of heart defects.  Of
particular interest would be CTRNAs capable of correcting
bradycardia (dangerously slow heart rates) and tachycardia
(dangerously fast heart rates) in addition to arrhythmia.  In
preliminary work, the author has already evolved one four-
neuron CTRNA that subsumes all the abilities of the best
controllers introduced in this paper and can, in addition,
automatically correct bradycardia.  In that circuit, the unused
neurons (neurons 1 and 3) oscillate, providing an internal
clock that drives the heart if its intrinsic rate falls danger-
ously low.  We've already observed some correction of
tachycardia in circuits already evolved.  This has lead us to
attempt evolving circuits that can slow one or both sides of
the simulated heart as needed.  Initial studies on this front
are currently underway.

To be accepted as effective controllers, evolved systems
must be understandable and explainable.  This can be diffi-
cult for evolved electrical circuits in general and for evolved
neural nets specifically.  The author and his colleagues have
enjoyed considerable success in using dynamical systems
principles to explain the principles underlying evolved
CTRNN central pattern generators [Beer, Chiel, and Galla-
gher, 1999][Chiel, Gallagher, and Beer, 1999]. The
controllers evolved in this work are much more intricately
coupled to sensory input than any device we have previously
considered and will provide an excellent opportunity to ex-
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Figure 8:  Time series plots for an unassisted heart with 3rd block (A) and the same heart coupled with the evolved controller
spunky2.  Plotting conventions are identical to those used in Figure 6.  
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tend our CTRNA analysis techniques. Such study is being
actively pursued.

Although control of the simulated heart was initially con-
ceived as a pure research problem against which to test the
effectiveness of evolved hardware to control an interesting
dynamical system, the very fact that the interesting dynami-
cal system is a cardiac model raises the question of evolving
CTRNA devices to assist real hearts. The model used in this
work reproduces many important aspects of cardiac function
-- but in its simplicity falls short in properly representing a
variety of physiological details.  Although useful in helping
us develop GA and CTRNN analysis methods, the simple
coupled oscillator model would be of limited value in pre-
dicting actual behavior when coupling an assist device to a
real heart.  The author is investigating more physiologically
accurate models against which to test the evolved control-
lers.  The author is also investigating more accurate
modeling of the interface between the CTRNA and heart
tissue. Actual implantable voltage sources used to produce
cardiac stimulation are significantly less perfect than the
ideal sources we presumed in this paper.  Likewise, actual
cardiac sensor leads may not provide clean signals -- nor do
they have the same properties over the lifetime of the device.
Appropriate modeling of sensory and excitation leads are
both currently under investigation.  

In conclusion, this paper has presented an example of evolv-
ing several practically implementable neural network based
circuits that can effectively control a dynamically rich sys-
tem, preventing a range of possible failure modes. As a pure
research problem, it provides both an interesting GA
benchmark and a source of interesting analog neural net-
works upon which to develop new dynamical systems
analysis techniques. In addition, this work sets the stage for
potential applied research in neural prosthesis and bio-
control.
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Abstract

In-situ exploration as required for example by
missions to comets and planets with unknown
environmental conditions, has recently been
approached with new ideas, such as the use of
biology-inspired mechanisms for hardware
sensor adaptation. The application of evolution-
inspired formalisms to hardware design and self-
configuration lead to the concept of evolvable
hardware (EHW). EHW refers to self-
reconfiguration of electronic hardware by
evolutionary/genetic reconfiguration
mechanisms. In this paper we describe the initial
development of efficient mechanisms for smart
on-board adaptive sensing, adaptively
controlling the reconfigurable pre-processing
analog electronics using evolvable hardware,
which will lead to higher quality, lean data

1 INTRODUCTION

High data rates provided by modern sensors surpass on-
board real-time processing capabilities. This is addressed
by imposing large on-board storage memory and high
communications bandwidth; there is however no good
solution to using the data in real-time control situations
such as fast entry, descent and landing, or within sensor
webs. Only a small fraction of the data carries quality
information, yet current pre-processing electronics is not
smart enough to eliminate useless/redundant data. In fact
more information could be obtained from the sensor if the
electronics would adapt to incoming signals and the
context of the measurement.

The concept of reconfigurable and adaptive electronics
for signal conditioning has led to a series of recent chips
that allow programmable adjustment of amplifier gains,
memory-based compensation of sensor nonlinearity, etc
[17]. However, the flexibility of these programmable
devices is limited by the high level of reconfiguration

granularity, and require that all compensation data is
predetermined through lab experiments and then stored in
ROM; also no later changes in sensor characteristics or
electronics itself could be considered once the sensor is in
operation.

A complementary technique, called evolvable hardware
(EHW), allows the automatic determination of optimal
electronic circuit configurations[1][2][3]. In particular a
chip designed for evolvable hardware experiments, the Jet
Propulsion Laboratory (JPL) Field Programmable
Transistor Array (FPTA) has high flexibility by
reconfiguration at transistor level [20]. Evolutionary
algorithms allow for automatic determination of optimal
configuration. In the narrow sense EHW refers to self-
reconfiguration of electronic hardware by
evolutionary/genetic reconfiguration mechanisms as in
our application [4][5][6][9]. In a broader sense EHW
refers to various forms of hardware, from antennas to
complete evolvable space systems that could adapt to
changing experimental environments and, moreover,
increase their performance during the mission.

In this paper we describe the initial development of
efficient mechanisms for smart on-board adaptive
sensing, adaptively controlling the reconfigurable pre-
processing analog electronics using evolvable hardware,
which will lead to higher quality, lean data. The target is
to demonstrate the mechanisms on an adaptive
electrometer providing the same or more information
content than the MARS’01 MECA (Mars Environmental
Compatibility Assessment) Electrometer with a
significant reduction in the total amount of transmitted
data. The electrometer was part of MECA project and has
as objective of the project to gain a better understanding
of the hazards related to the human exploration of Mars.

In the paper we identify one application of adaptive
sensor array device for which the reduction of the data
can be considerable: discrimination task of materials with
different triboelectric properties. The discrimination task
requires a sophisticated signal conditioning able to
analyse  multiple responses in order to extract differences
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in signal and adapt to deal with the high sensitivity of the
sensor array to ambient conditions. The analysis and
sensitivity are translated to requirements and fitness
evaluation metrics that are used by an evolutionary
algorithm to determine the optimal adaptation
mechanisms.

This paper reports on experiments that illustrate how
evolutionary algorithms can design analog circuit
integrated in the sensing elements and adapted to the
experimental conditions. At this stage of the research, the
search for an electronic circuit realization of a desired
transfer characteristic is made in software as in extrinsic
evolution. In extrinsic evolution, the final solution is
downloaded to (or becomes a blueprint for) the hardware.
In the near future we will use intrinsic evolution where
the hardware actively participates in the circuit
evolutionary process and is the support on which
candidate solutions are evaluated.

This paper is organized as follows: Section 2 presents a
description of the electrometer sensor array. Section 3
presents the adaptive sensor architecture. Section 4
presents an evolution-oriented architecture for
reconfigurable hardware based on the concept of FPTA
and the details of the evolutionary design tool. Section 5
presents the experiments and results obtained for the
adaptive electrometer for a discrimination application in a
changing environment. Section 6 concludes the paper.

2 ELECTROMETER SENSOR ARRAY

The electrometer is part of MECA project. The objective
was to gain a better understanding of the hazards related
to the human exploration of Mars [15][16]. The MECA
project also has a material patch experiment to determine
the effects of dust adhesion, a wet chemistry laboratory
with ion selective electrodes to characterize the ionic
content of the soil, and microscopy station with optical
and atomic force microscopes to determine particle size
and hardness.

The electrometer was built into the heel of the Mars ’01
robot arm scoop as seen in Fig. 1. The instrument has four
sensor types: (a) triboelectric field, (b) electric-field, (c)
ion current, (d) temperature.  The triboelectric field sensor
array contains five insulating materials to determine
material charging effects as the scoop is dragged through
the Martian regolith. The insulating  materials were
chosen after Earth-based tests in Mars simulant soils.

During digging operation the electrometer is out of the
way. After digging, the scoop is rotated so the
electrometer head is pointing down toward the Martian
soils allowing it to be rubbed against the Martian soil.

In the rubbing sequence, depicted in Fig. 2, the scoop is
first lowered against the Martian soil. During the start of
the traverse, the electrometer is zeroed by closing a switch
which will be discussed later.  After reaching the end of
its traverse, the scoop is abruptly removed from the soil at
which time the triboelectric sensor response is measured.

Figure 1: Electrometer sensor suite mounted in the heel of
the Mars'01 scoop

Figure 2: Operational scenario for the scoop and charge
distribution in the electrometer during rubbing (left) and

after removal from the surface (right).

As seen on the left in Fig. 2, charge is generated
triboelectrically across capacitor C3 as the insulator is
rubbed on the Martian surface. Since the charges are in
close proximity across C3, no charge appears across
capacitors C1 or C2.  As the insulator is removed from the
surface, the charges redistribute themselves across C1 and
C2 according to the charge relationship Q1 = Q2 and
provide the signal for the amplifier.

This electrometer is an induction field meter [11] operated
in a direct current mode, where the operational amplifier
input current charges C1. The electrical schematic of the
non-adaptive component of the triboelectric sensors is
shown in Fig. 3. The design of the electric field sensor
follows from the traditional electrometer [12]. The
instrument is composed of a capacitive divider where C2
is the field sensing capacitor and C1 is the reference
capacitor. The point between the capacitors is connected
to the positive terminal of the first stage amplifier
(terminal +5 of U3) operated in the follower mode.  The
sensing electrode is protected by a driven guard that is
connected to the negative terminal of the first stage
amplifier (terminal -6 of U3). A second operational
amplifier (U4) is added to provide additional
amplification. At the beginning of the measurements, C1
is discharged using the solid-state switch, S1 which has
very low leakage. In the TRI sensor, C2 has an insulator
dielectric which acquires charge during rubbing.
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Figure 3: Schematic circuit representations for the non-
adaptive component of the Triboelectric sensor (TRI)

fully characterized before field use.

Four different insulating materials were loaded into the
titanium triboelectric sensor head. A typical experiment
consists of manually rubbing a wool felt on the
triboeletric head at room temperature. The results are
shown in Figure 4. The falling period between 10 and 20
seconds represents the rubbing period. The large negative
response is for the Rulon-J which is to be expected for
Rulon-J rubbed on wool.

Figure 4: Response of triboelectric sensor array to white
wool felt (For all figures: response C1 is ABS (TRI1),
response C2 is Polycarbonate (TRI2), response C3 is
Teflon (TRI3) and response C4 is Rulon-J (TRI4)).

3 ADAPTIVE SENSOR ARCHITECTURE

The triboelectric sensor array is an example of a hybrid
integrated array devices where the sensors are grouped on
the same devices but where the signal processing is done
on a separate device as we will describe later [13]. This
sensor array employs similar sensors (in terms of the
measurand) but sensors have subtle differences (i.e.
partially correlated outputs) related to the triboelectric
properties of materials, known as the triboelectric series.
The triboelectric sensors have poor specificity and so
respond to a very wide range of materials. The signal

processing must then carry out a sophisticated analysis of
the responses to extract the subtle differences in signals.
The approach we have chosen, as shown in Fig. 5, is to
use an evolvable hardware discrimnator signal conditioner
connected to the triboelectric sensor array and that will be
able after evolution to discriminate with high precision
the response of different materials.

Another important reason to use an adaptation mechanism
is to be able to do in-situ self-calibration [14]. Indeed the
sensors are very sensitive to ambient conditions, such as
temperature, humidity, atmospheric and contact pressure,
ambient gas, materials. They are also sensitive to the
material and surface condition of the sensors. For
example the dust cling on the insulator surface affect
considerably the response of the triboelectric sensor
arrays. Finally the array sensor has poor ageing
characteristic, that is the triboelectric sensing element is
slowly corroded and thus changes its response
characteristics with time. To remedy this high sensitivity
to the ambient conditions and sensors conditions, we
performed an in-situ self-calibration: calibrate the sensors
right at site with the current environmental conditions and
a set of given sensor materials.

Fig. 5 shows the basic arrangement of an adaptative
electrometer array sensor system for discriminating
different materials. The triboelectric property of the
material is sensed by an array of sensors, each with its
response which is converted to an electrical signal via
suitable transduction circuitry. The voltage signal VAi is
then injected to the evolvable hardware specially designed
for the current environment and a set of materials. The
prediction of the triboelectric property of the material is
given in terms of voltage. In the next section, we describe
the evolvable hardware developed by JPL, called FPTA
and the mechanism to find the best circuit configuration
to perform the classification task.

4 EVOLUTION-ORIENTED DEVICES
AND ENVIRONMENT

The idea of a FPTA was introduced first by Stoica in
[8]. The FPTA is a concept design for hardware
reconfigurable at the transistor level. As both analog and
digital CMOS circuits ultimately rely on functions
implemented with transistors, the FPTA is a versatile
platform for the synthesis of both analog and digital (and
mixed-signal) circuits. Further, it is considered a more
suitable platform for synthesis of analog circuitry than
existing FPGAs or FPAAs, extending the work on
evolving simulated circuits to evolving analog circuits
directly on the chip.
The FPTA module is an array of transistors
interconnected by programmable switches. The status of
the switches (ON or OFF) determines a circuit topology
and consequently a specific response. Thus, the topology
can be considered as a function of switch states, and can
be represented by a binary sequence, such as “1011…”,
where a 1 represents an ON switch and a 0 represents a
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OFF switch. The FPTA architecture allows the
implementation of bigger circuits by cascading FPTA
modules with external wires. To offer sufficient flexibility
the module has all transistor terminals connected via
switches to external terminals (except for power and
ground). Issues related to chip expandability were treated
in elsewhere [10].

Figure 6 illustrates an example of a FPTA module
consisting of 8 transistors and 24 programmable switches.
In this example the transistors P1-P4 are PMOS and N5-
N8 are NMOS, and the switch-based connections are in
sufficient number to allow a majority of meaningful
topologies for the given transistor arrangement, and yet
less than the total number of possible connections.
Programming the ON and OFF switches defines a circuit.
The effects of non-zero, finite impedance of the switches
can be neglected in the first approximation. One FPTA
module was fabricated as a Tiny Chip through MOSIS,
using 0.5-µm CMOS technology. We build a testbed for
future development with a test board with four chips
mounted on it and connected with the electrometer (Fig.
7).

In the context of electronic synthesis on reconfigurable
devices such as the FPTA, the architectural configurations
are encoded in "chromosomes" that define the state of the
switches connecting elements in the reconfigurable
hardware. The main steps in evolutionary synthesis of
electronic circuits are illustrated in Figure 8. First, a
population of chromosomes is randomly generated to
represent a pool of circuit architectures. The
chromosomes are converted into control bit strings, which
are downloaded onto the programmable hardware. In the
particular case of the FPTA cell, the chromosome has 24
bits that determines the state of the 24 switches (Figure
6). Circuit responses are compared against specifications
of a target response using as fitness the root mean square
error.

Figure 6: Module of the Programmable Transistor Array

The individuals are ranked based on their fitness; that is,
how close they come to satisfying the target. Preparation
for a new iteration loop involves generation of a new
population of chromosomes from the pool of the best
individuals in the previous generation. Individuals are
selected probabilistically based on their fitness. Some are
taken as they were and some are modified by genetic
operators, such as chromosome crossover and mutation.
The process is repeated for a number of generations,
resulting in individuals with increasingly better fitness.
The genetic algorithm is usually ended after a given
number of generations, or when the closeness to the target
response has been reached. In practice, one or several
solutions may be found among the individuals of the last
generation.
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In addition to the procedure described above, which is
called intrinsic Evolvable Hardware or hardware
evolution, Figure 8 also shows an alternative way to carry
on evolutionary circuit synthesis, by the use of simulators
instead of reconfigurable chips. In this particular case, the
chromosome is mapped into a SPICE circuit model,
which is simulated and evaluated. This later procedure is
called extrinsic Evolvable Hardware or software
evolution. The mapping of the chromosome into the
circuit netlist is accomplished by examining the
chromosome values bit by bit. According to each bit value
(0 or 1), the state of its corresponding switch will be set in
the circuit netlist. After all the switches’ states are
determined, the circuit is simulated. The extrinsic
approach has been used for the experiments of the
adaptive electrometer sensor array. The intrinsic approach
is currently under development.

Figure 7. Module of the Programmable Transistor Array
connected to the electrometer

An evolutionary design tool EHWPack (Figure 8) was
developed to facilitate experiments in hardware and
software evolution [7], as defined in the previous section.
This tool incorporates the public domain Parallel Genetic
Algorithm package PGAPack as genetic engine running
on a UNIX workstation. Referring to software evolution,
we incorporated in the EHWPack, the SPICE 3F5 as
circuit simulator. In the case of hardware evolution, the
tool proved very useful in testing architectures of
reconfigurable hardware and demonstrating evolution on
FPTA reconfigurable chips. An interface code links the
GA with the hardware where potential designs are
evaluated, while a Graphical User Interface (GUI) allows
easy problem formulation and visualization of results. At
each generation the GA produces a new population of
binary chromosomes, which get converted into
configuration bits downloaded into the 4 FPTAs
reconfigurable chips or into Netlists that describe
candidate circuit designs, and are further simulated by
SPICE.

5 ADAPTIVE SENSOR EXPERIMENT

One experiment was conducted. The experiment shows
that the evolvable hardware approach finds a FPTA
circuit that is able to discriminate between the responses
of the electrometer to three different materials.

Figure 8. Environment for evolutionary design
The experiments used three rubbing material samples
(wool felt, Teflon and Polyestyrene) and used only two
insulating materials of the electrometer (Teflon and
Rulon-J). The experiments start by an initialization
procedure which puts the electrometer in a known state:
the five electrometer insulators were cleaned by brushing
followed by Am-241 alpha particle deionization. The
deionization process was observed by running a trace and
noting when the response no longer changed. After
cleaning and deionization, the samples were placed in the
apparatus as seen in Figure 7. The data acquisition was
started and five points were acquired every second. The
first fifty points are baseline points. During the next 200
points, the samples were rubbed by the apparatus from
left to right as shown in Fig. 4, Fig. 9 and Fig. 10. During
the final data points, the rubbing was stopped and the
rubbing material was no longer in contact with the
electrometer insulating materials.

At this stage of the research, the response of the
electrometer to three materials was obtained by rubbing
the materials on the electrometer. The resulting data was
used to find a circuit able to discriminate between the
response of the electrometer to the different materials by
extrinsic evolution using the SPICE simulator.

The evolutionary experiment was conducted in air at a
pressure of 970mb, relative humidity of 33 percent and a
temperature of 21°C. The evolvable hardware system
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used one FPTA cell. The circuit had two inputs and one
output. At the two inputs, we injected the sensor
responses of the insulating material TRI3 (Teflon,
response C3) and TRI4 (Rulon-J, response C4) to the
three rubbing materials in addition to the baseline as
shown in Fig.4, 9 and 10. The outputs are collected as a
voltage signal.

Figure 9. Response of triboelectric sensor array to
Polystyrene (C1 is ABS, C2 is Polycarbonate, C3 is
Teflon, C4 is Rulon-J). The four material samples are

rubbed after 15[s].

Figure 10. Response of triboelectric sensor array to
Teflon (C1 is ABS, C2 is Polycarbonate, C3 is Teflon, C4

is Rulon-J).

The following GA parameters were used: Population: 40,
Chromosome size: 24 bits for 1 FPTA, Mutation rate:
10%, Crossover rate: 90%, exponential Selection, Elite
Strategy: 20% population size. The fitness function seeks
to maximize the voltage difference at the output when

different materials are used for rubbing. It can be
described by the following equation:

where the indexes i and j sweep the four patterns of the
three materials and the baseline and T is the period of
time used to evaluate the fitness.

The main task of evolution is to synthesize a circuit able
to discriminate among the three materials and the baseline
by amplifying the voltage differences among the materials
measured by the sensors. Figure 12 depicts the evolved
circuit.

Figure 12. Evolved circuit able to discriminate among 3
materials and 1 baseline.

Figure 13 shows the response of the evolved circuit. In
the negative part of the graph are the responses of the
electrometer to the 3 materials and the baselines. Before
being applied to the FPTA, they pass through a unit gain
inverter stage (Fig. 12). In the positive part of the vertical
axis, the circuit response for the four patterns is shown. In
the circuit response, there is an average separation of
0.6V between the adjacent materials, except for the wool
felt and teflon materials, for which the difference is 1.2V.
The overall output range achieved a value around 2.3V,
whereas the input range given by the responses of the
sensor is around 0.7V. We observe also that the gain of
the evolved FPTA is not constant: it depends on the
amplitude of the input signal in such a way that the circuit
improved the discrimination margin for different
materials (Table 1).
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Figure 13. Response of the evolved circuit for 3 materials
and 1 baseline. The time starts when the material sample
is rubbed on the isolating materials of the electrometer

Table 1: Variable Gain of the Evolved Circuit

Teflon Wool Polystyrene

VA3 (TRI3) 0.124 V 0.332 V 0.412 V
VA4 (TRI4) 0.252 V 0.420 V 0.684 V

(VA3+VA4)/2 0.188 V 0.376 V 0.548 V

Vout (output FPTA) 2.3 V 1.7 V 0.5 V

GAIN 12.23 4.5 0.9

To assess the generalisation of the circuit solution we
have tested the evolved circuit with sensor responses with
slightly different environmental conditions which resulted
in a decrease in the response of the sensors. As expected,
the difference in response of the evolved circuit was
smaller but it still captured the correct order of the
patterns corresponding to the triboelectric series [18,19]
(Figure 14).

Figure 14. Response of the evolved circuit for 3 materials
for slightly different environmental conditions than for

experiment of Figure 13. The output measures the output
current Iout at the drain of transistor P4.

6 CONCLUSIONS

These initial experiments, while illustrating the power of
evolutionary algorithms to design analog circuit for
sophisticated analysis of responses of sensor array and to
maintain functionality by adapting to changing
environments, only prepare the ground for further
questions. Examples of further questions include
addressing how the evolutionary mechanism can be
implemented in hardware such that it can be integrated in
the sensor, or how should the sensors responses be stored
to avoid repeating the experiments for evaluating each
circuit configuration.

The long term results of the proposed research would
allow sensor electronics to adapt to incoming data and
extract higher quality data, making available information
otherwise not accessible. It will make sensor systems
adaptive and intelligent. It will increase the amount of
information available from sensors, while actually
decreasing the amount of data needed for downlink.
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