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Abstract

In evolutionary multi-objective optimisation
(EMOO) using dynamic weighted aggrega-
tion (DWA), very interesting dynamic be-
haviours of the individuals have been ob-
served [7] [8]. In this paper, the dynamics
of the individuals on fitness space (FS) dur-
ing multi-objective optimisation (MOO) us-
ing evolution strategies (ES) is studied by in-
vestigating the mapping of a normal distribu-
tion in the parameter space (PS) onto the FS.
It is found that the movement of the individ-
uals on the FS is strongly dependent on the
characteristics of the projected distribution.
Results on three test functions are given to
show the good agreement of dynamics pre-
dicted from theoretical calculation with that
observed in MOO using DWA.

1 INTRODUCTION

Evolutionary algorithms (EA) have been shown to
be very successful for multi-objective optimisation
(MOO) problems. Up to now a variety of methods
for MOO have been proposed [2, 3]. In addition, the-
oretical studies on the accuracy of the approximation
of the Pareto front, on the convergence properties and
on the diversity of individuals in a population have
also been reported. However, the dynamics of individ-
uals during optimisation, that is, the characteristics of
the movement of the individuals on the fitness space
(FS) has not yet been investigated to the best of our
knowledge. This might be attributed to the fact that
in our notion the fitness space'® of single objective op-

!This should not be confused with the notion of fitness
landscape, where the fitness values are mapped over the
parameter or more general genotype/phenotype configura-
tions.

timisation problems is one dimensional and it can be
argued that we might not learn much from observing
the dynamics of the population on one axis.

However, in MOO the situation is different, the space
is at least two-dimensional and it is believed that the
investigation of the dynamics of individuals on the
FS will lead to a deeper insight into the properties
of Pareto fronts and to a better understanding of the
working mechanism of MOO algorithms, which will
ultimately enable us to improve the performance of
MOO algorithms.

In this paper, we will study the dynamics of the in-
dividuals on the FS empirically and analytically by
concentrating on the mapping of the mutation distri-
bution from PS to the FS. This approach is motivated
by the way evolution strategies produce offsprings, i.e.,
by adding normally distributed random vectors to the
parent parameter vector. Therefore, by understand-
ing the changes the fitness function induces on the
normal distribution, we can understand some of the
properties of multi-objective evolutionary algorithms
based on evolution strategies. At the same time, the
notion of a search distribution is not restricted to evo-
lution strategies and has been proposed as a unified
approach to the analysis of evolutionary algorithms,
see e.g. [10]. Thus, we are confident that the general
approach presented in this paper is not restricted to
evolution strategies.

The work in this paper is partly motivated by the
behaviours observed in MOO using the dynamically
weighted aggregation (DWA) algorithm [7, 8]. The
basic idea is to combine the optimisation objectives
with different weights, which are changed dynamically
during optimisation so that a set of Pareto-optimal so-
lutions instead of one single solution will be obtained.
It has been shown that the method is not only effec-
tive for problems with a convex Pareto front, but also
for those with a concave Pareto front. In the opti-



misation, it is found that when the weights change,
the individuals move along the Pareto front once they
reach one point on it, even if the Pareto front is dis-
continuous. To understand why individuals follow the
Pareto front was the initial target of this work. Note,
that this type of movement is even observed for sud-
den large weight changes and after mutation but before
selection. Therefore, the trivial explanation that the
individuals simply follow the Pareto front since it is
the path of “highest fitness” is not sufficient.

Of course, we had to choose objective functions for
which we carry out our analysis, we chose three func-
tions (concave, convex, discontinuous). In the course
of our work, it turned out that the presented analysis
can also be used to determine whether and when (e.g.
with respect to the initialisation) a test problem is dif-
ficult or not for a specific algorithm; we will comment
on these findings in Section 5.

The remainder of this paper is structured as follows:
In the next section, we will briefly recall some of the
theoretical work on MQOO. In Section 3, we will con-
cisely outline Evolution Strategy, the DWA method,
the test functions and present some of the empirical
observations. In Section 4, we will analyse the trans-
formation of the mutation distribution and relate it
to the results from Section 3. Further implications of
Section 4, e.g. for the difficulty of test functions are
discussed in Section 5.

2 THEORY FOR EMOO

Results on the convergence of evolutionary multi-
objective optimisation have been presented by
Rudolph [12, 13] based on the Markov chain approach
which has been successfully used for the analysis of
single objective evolutionary algorithms, see e.g. [11]
among others. The work by Hanne [6] is also mainly
concerned with the convergence of evolutionary multi-
objective algorithms. Complexity issues have been ad-
dressed for example by van Veldhuizen [17]. Very re-
cently an interesting approach has been suggested by
Thiele et al. [16] to define a simple problem class for
multi-objective optimisation to facilitate the theoreti-
cal analysis of evolutionary algorithms for this domain.

Teich presented some theoretical investigations for un-
certain objectives for MOO [15], based on which he
developed the Estimate Strength Pareto Evolutionary
Algorithm (ESPEA).

Since the comparison of different algorithms for multi-
objective optimisation is much harder than for single
objective ones, it has also been the focus of some the-
oretical investigations, which are mainly based on a

statistical approach using an appropriate metric, see
e.g. the work by Fonseca et al. [5] and by Zitzler et al.
[19].

Even though the above list is likely to be incomplete,
compared to the overall number of publications in
MOO, theoretical approaches have been sparse in par-
ticular for the analysis of the dynamics of individuals
during the evolutionary search and of the main factors
which determine the characteristics of this movement.
Surely the approach in this work can only be seen as a
starting point, however, we believe it can be beneficial
to explain some of the empirical observations, which
we will outline in the next section.

3 DYNAMICALLY WEIGHTED
AGGREGATION

3.1 EVOLUTION STRATEGIES

In evolution strategies (ES), mutation plays the major
role in search. The mutation is performed by adding
a random number generated from a normal distribu-
tion N(0,0?), where o; is the standard deviation. In
the standard ES, new individuals are generated in the
following way [1]:

Z(t) =
O'i(t) =

Ft-1)+2 (1)
oi(t — 1) exp(7'z) exp(72;), (2)

where, Z is an n-dimensional parameter vector, Z
is an n-dimensional random number vector with
Z ~ N(0,0(t)?), z and z; are normally distributed ran-
dom numbers with z,2; ~ N(0,1). In ES, the o; are
also called stepsizes, and are evolved together with the
object parameters. This is known as self-adaptation,
which is an important feature of the ES.

The parameters 7 and 7’ in equation (2) are constants
that are given as follows:

T = 3)

T = — (4)

In the ES usually a deterministic selection method is
used. In the non-elitist (u, A) method, the best u indi-
viduals from the A offspring are chosen as the parents
of the next generation.

3.2 BASIC IDEA OF DWA

Jin et al. [7, 8] proposed dynamically weighted aggre-
gation as an efficient method to easily apply any evolu-



tionary algorithm (and evolution strategies in particu-
lar) to multi-objective optimisation problems. Since
our empirical observations are based on the DWA
method, we will explain it briefly in the following.

The basic idea is to linearly combine all objec-
tives like in the conventional aggregation method:
f= Z:il w; f;- Here m, w; and f; are the number of
objective functions, the weights for the f; and the ob-
jective functions, with 7" | w; = 1. In order to obtain
the whole Pareto front, the weights w; are changed dy-
namically in each generation using a periodical func-
tion between [0, 1], for example, the sine function. To
achieve the whole Pareto front, it is necessary to main-
tain an archive of non-dominated solutions.

Whereas conventional weighted aggregation methods
with restart cannot obtain concave Pareto fronts, it
has been argued and empirically demonstrated in [8]
that the DWA methods indeed can (at least if some
mild assumptions about the changing functions for the
w;(t) are made).

3.3 TEST FUNCTIONS

Several test functions for multi-objective optimisa-
tion have been proposed in the literature, see e.g.
[9, 18, 4, 14]. Here we chose three functions whose
Pareto front can be calculated analytically and which
represent the three important cases of convex, concave
and discontinuous Pareto fronts.

3.3.1 Function 73 (Convex Case)

The first test function 7} is defined as follows [9]:

A 3 )
f2 =

The convex Pareto front can be calculated analytically
with the following result:

fo=fi—4/fi+4 (7)
0<f1i<4,0< fr<4

3.3.2 Function T, (Discontinuous Case)

The second test function 75 is defined as follows [18]:

i = = (8)

g x (1 - \/g - %Sin(l()ﬂ' fl)) (9)

f2 =

9
g(zg,...,wn):1+n_lz2$i
i=
x; € [0,1]

The discontinuous Pareto front is:

f2=1.0—+/fi — fisin(107 1), (10)

where f; can be from the following intervals:
f1 €10.0000,0.0830], (0.1823,0.2579], (0.4095, 0.4541],
(0.6187,0.6528], (0.8237,0.8523]. These constraints on
f1 were not obtained analytically, but from simula-
tions. As it is evident, the Pareto front is discontinu-
ous.

3.3.3 Function 75 (Concave Case)

The third test function T3 is defined as follows [4, 14]:

ho= 1—exp(—g(wi—%>2) (1)
fo = 1—exr><—§<xi+%>2) (12)

This original test function (n = 8) was proposed by
Fonseca and Fleming in 1993. Here we generalised it
to the n-dimensional case. The concave Pareto front
is given by:

! ;fl exp (4 “log(1— f1)> (13)

(0,1 —e™4

fo = 1-
f1

3.4 DYNAMICS OF THE DWA
ALGORITHM

When we apply the DWA algorithm to the three test
functions described in the previous section and observe
the dynamics of the individuals in particular during
the movement along the Pareto front, some interest-
ing phenomena can be observed. Unfortunately, we
cannot show the dynamics directly, therefore, we have
to present snapshots for different generations and de-
scribe the behaviour in between.

For all experiments, the following weight change func-
tion was used:

1 1
w1 = gsign (—sin(0.17 1)) + , (14)

where t is the number of generations.

In this paper, we use standard ES with (u,A) =
(15,100), and the archive size is 200. The initial stan-
dard deviation is 0.1, 0.01 and 0.1 for test functions



T1, T5 and T35 respectively. Two dimensional cases, i.e.
n = 2, are shown.

In Figure 1 the distributions of individuals (circles) af-
ter mutation and before selection? are shown for test
function T7. Whereas in Figure 1(a) the distribution
is fairly widespread, in Figure 1(b) is concentrated on
the Pareto front. In both cases selection has little in-
fluence on the shape of the individual’s distribution
which is mainly determined by the shape of the muta-
tion distribution of the parents. Even though, one can
argue that the diversity is considerably decreased in
later parent generations, this does not account for the
non-isotropic nature of the distribution, which is par-
ticularly evident from Figure 1 (b), where nearly all
offspring - before selection - are located on the Pareto
front. Indeed if we observe the continuous dynamics,
we see that the individuals move nearly perfectly along
the Pareto front, which makes the search very efficient.

Figure 1: Distribution of the individuals after muta-
tion and before selection for test function 77 for the
DWA algorithm after generation 1 in figure (a) and
generation 18 in figure (b).

Similar dynamics can be observed for the second test
function 75, for which snapshots of the distribution
of the individuals before selection are shown in Fig-
ure 2. The solution to equation (10) is given by the
thin curve and the Pareto front (all non-dominated so-
lutions), which consists of parts of this curve, is given
by the thicker curve elements. Again we see that when
the parents are located near (f1, f2) = (1,0) at gener-
ation 18, (Figure 2(a)), the individuals are restricted
to the set of non-dominated solutions, whereas near
(f1,f2) = (0,1) at generation 29, (Figure 2(b)), the

2In each generation the complete evolution cycle (muta-
tion and selection) is carried out. However, our snapshots
are shown for one generation, say t1, and the distribution
is shown after mutation;, and before selections, in order
to highlight that the non-isotropic distribution of the in-
dividuals is to a large degree a result of mutation and not
just of selection.

distribution of individuals is rather wide spread. In-
deed, dynamically one can nicely observe, how the
individuals move from (f1, f2) = (0,1) to (fi1, f2) =
(1,0) and back along the thin curve being wider dis-
tributed near the left end and strongly concentrated
near the right end of the curve in Figure 2. This move-
ment can be observed several times during the periodic
change of the weights, according to equation (14).

Figure 2: Distribution of the individuals after muta-
tion and before selection for test function 73 for the
DWA algorithm after generation 18 in figure (a) and
generation 29 in figure (b).

For the third test function the results for generation
16 and 26 are shown in Figure 3(a) and (b). We ob-
serve that individuals are clustered near three points:
(1,£2) = (0,1), (fu, f2) = (1,0) and (fi, fo) = (1,1).
The interior of this “triangle” bounded from below by
the Pareto front, is very sparsely represented. Dur-
ing the dynamical observation, the peculiarity of the
three points becomes even more evident, since in some
generations nearly all individuals are concentrated in
these points irrespective of the weight changes.

Figure 3: Distribution of the individuals after muta-
tion and before selection for test function 73 for the
DWA algorithm after generation 16 in figure (a) and
generation 26 in figure (b).

‘We can summarise our observations as follows:

e The distribution of individuals strongly depends



on the position in search space nearly irrespective
of selection.

e The movement of individuals between points on
the Pareto front follows a very distinctive pattern
which is also not only controlled by selection.

4 THE SHAPE OF THE
MUTATION DISTRIBUTION IN
FITNESS SPACE

We have argued in the previous section that the char-
acteristics of our empirical observations for all three
test functions is to a large extent independent of selec-
tion. Therefore, it has to depend on the shape of the
mutation distribution which is for evolution strategies
in PS the normal distribution. Of course, when we ob-
serve the movement of individuals in FS, we must con-
sider what the shape of the normal distribution looks
like in FS. We will see that the transformed distribu-
tion can have very distinctive features which help to
explain our empirical observations. The fitness values
at generation t after mutation are given by

@) = f(a(t—1) +2), 2~ NO,0})  (15)

Here f, z(t) and o; are the objective function, the
design variable at generation ¢, and the standard de-
viation at generation f. In this section, we neglect
self-adaptation, which implies o; = 0. We will take it
into consideration in the future work.

Without loss of generality, we restrict the following
analytical investigation to the case n = 2.

In the two-dimensional case, the normal distribution
on PS is given by:

1 _(m1—p)?  _ (mo—po)?

f($1,$2)=2m7102€ i e % (16)

Here, f(z1,z2), 0 and p are the probability density
function (pdf), the standard deviation and the mean,
respectively.

Now, let us firstly assume that f; and f> are one-to-
one functions, i.e. z = f~1(f(z)). The other case, e.g.
test function 77, will be dealt with later. From this
assumption, we can get the following equation:

fi+Af1 fe+Af2
/ / o1, F5)dfydf] =

z1+Az1 To+Axo
[ r@adsas o)
1 )

Here g(f1, f2) is the pdf in the FS. The area (z1,z2)

- (1 + Az, 2 + Azs) corresponds to (f1, f2) - (f1+
Afy, fo+ Afs). From equation (17) we obtain
1
9(f1, f2) = 7 f (@1, 22), (18)

7]

where J is the Jacobian matrix.

Now we can calculate the mutation distribution in F'S
for each of the three test functions and compare the
results with the observations of Section 3.

4.1 FUNCTION T; (CONVEX CASE)

Sy U@ aa) + @)} (19)

1
(T1,22) = 4 (fl -
with ¢ given by

_ i\/—ff —f2—16+2f1f2+8f1+8f2 (21)

In order to obtain equation (19), we had to slightly
modify equation (17) to take the fact into account that
T is not one-to-one:

fitAfr pfatAf
[ e sariari =
1
r1+Az;  prot+Azs
/ / f(ah, z5)dzydzy
—x1 —x2
/zl Axy /:l:g Azo
The results for some points in the FS are shown in Fig-
ure 4, the standard deviations are given by (o1,03) =
(1,1).
Figures 4 demonstrate that once one solution on the
Pareto front is found the individuals will move along
the Pareto front with a high probability - indepen-
dent of selection - solely because the shape of the nor-
mal distribution which defines mutation in evolution
strategies is mapped to the shape shown in figures 4
(a)-(c). However, when the Pareto front has not been
reached yet, i.e. the individual is concentrated in the
interior, the search distribution is nearly isotropic and
the success solely depends on selection, as shown in
Figure 4(d).

g(.flaf?) =

f2+4)(1,1) + (dc, Fc), (20)

f(z}, zh)dzydz) (22)

4.2 FUNCTION T, (DISCONTINUOUS
CASE)

1
79\/5]0(.%1,.%2) (23)
T 2y/1+932

g(flva) =
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Figure 4: The shape of the normal distribution in FS
for test function Th. (a) (z1,z2) = (0,0), (f1, f2)
(0,4); (b) (z1,22) = (1,1), (f1,f2) = (L,1); (c
(.’L‘l,xg) = (2,2), (fl,fQ) = (4,0), (d) (J?l,.’l,'g)
(_1’3)v (flafZ) = (575)'

~—

(z1,22) =

(fl, St It psin(ionp) + c))

\/f1f2+ + fEsin(107fy) —

)
Il

From the shape of the transformed mutation distri-
butions in Figure 5 (a) and (b) we conjecture that
individuals located at (f1, f2) = (1,0) are very likely
to move along the curve of non-dominated solutions
and discover the discontinuous Pareto front. Whereas,
the opposite direction, i.e. the movement of individuals
starting at (f1, f2) = (0,1) along this curve, is much
less likely since the distribution is more isotropic.

3 20 3 20

Figure 5: The shape of the normal distribution in FS
for test function T». (a) (z1,z2) = (0,0), (f1,f2) =
(07 1); (b) (w17z2) = (170)7 (flan) = (170)'

4.3 FUNCTION T3 (CONCAVE CASE)

g(fi, f2) = |J| {f(z1,22) + f(z2,71)} (24)
J = 4V2exp(-2(z} + 23 + 1)) (z1 — z2)
V2
(.’131,£Ez) = ?(hl — hz)(l, 1) + (:I:c, :FC) (25)

Here, ¢, h1 and hsy are:

\/~h% — B3 — 16+ 2hyhy + 8hy + 8hy
(—log(1 — f2), —log(1 — f1))

C

(h1,h2)

Figure 6 shows the logarithm of the transformed mu-
tation distribution in FS for different individuals po-
sitioned on the Pareto front as well as on the interior.
We observe that in all cases the “boundaries” have a
very high probability whereas the interior of the shown
part of the fitness space has a very small probability.
Thus, even without selective pressure individuals are
very likely to move along the concave Pareto front,
simply due to the shape of the transformed mutation
distribution.

10

Figure 6: The shape of the normal distribution in
FS for test function T3, logarithmic values are shown.

(8) (@1,22) = (— Lo —2), (fif2) = (1—e,0);
)

(b) (1'1,332 = ( 70)a ( 1af2) = (1 - eilal - eil);
(©) (@1 22) = (L, 22, (Fuufe) = (0,1 = e ) (@)
("1"1’1"2) = (_1’ 1)a flan) = (1 - 6_3’ 1- 8_3);



5 FURTHER STUDIES ON
FUNCTION T}

In order to better understand the constraints which
lead to the “compression” of the mutation distribu-
tion onto the Pareto front in some cases, we look at
Function 73 again in a bit more detail.

The Pareto front in the parameter and the fitness space
for function T} is shown in Figure 7 by the thick curve,
which is a straight line in PS. The parallel lines x3 =
1 £ ¢v2,(0 < z1 + ¢v/2/2 < 2), above and below
the PS-Pareto line in a distance c are projected to the
following curves:

f2:f1_4,/f1_%c2+4. (26)

Equation (26) can be written as follows:

1 1 / 1
f2 — 502 = fl — 562 —4 fl — 562 +4, (27)

with the constraints

1
0 < f1—§c2 < 4 (28)
1
0 < f2—§c2 < 4 (29)
. Parameter Space Fitness Space
X2 D f2

.. Pareto Front

N T e

o
7c2f1

Pareto Front
(a) (b)

Figure 7: (a) The Pareto front in PS and parallel lines
with distance ¢; (b) the Pareto front in FS and the
images of the parallel lines in F'S.

From the above considerations and from Figure 7, we
can better understand in which way the mutation dis-
tribution is changed. The distance to the Pareto front
in PS for individuals which lie on one of the parallel
lines is ¢, in FS it is \/iicz. Therefore, for ¢ = /2

this distance remains unchanged. Whereas for ¢ < /2
the distance is decreased or “compressed” under the
mapping of function T3, it is increased for ¢ > v/2.

In the context of the probability distribution, it means
that if the individual is located below the thin curve

2
area closer to the Pareto front is increased. The op-

posite holds for individuals above this curve for which
it becomes more unlikely to move towards the Pareto
front.

%02 for ¢ = v/2 in Figure 7 (b), the probability of the

For function T7 the recommended initialisation [9] of
the parameters is —2 < ;3 < 2 and -2 < zo < 2.
Therefore, the uniform probability density is given by:

0.0625
P(fﬂl,fﬂz) = 0

,—2<x; <2
,else

(i=1,2)

(30)
In fitness space this probability density is projected as
follows:

1 _ 1
sint) = {F m T ey
a = fi—fot+4
b — \/—ff—f§—16+2f1fz+8f1+8f2

Equation (31) is shown in Figure 8 with logarithmic
scale, it agrees well with simulations which we carried
out.

Figure 8: The shape of the probability density in fit-
ness space for individuals, which have uniform distri-
bution on [—2,2] in parameter space for function 7;.

We observe that the probability is very high for points
on or close to the boundary including Pareto front
and that it decreases with increased distance from the
boundary. From our considerations above, this can be
easily understood. For all points, which lie within the
corridor show in Figure 7 for ¢ = \/5, their distance
to the boundary (the Pareto front is the section of
the boundary between the two coordinates) is reduced
under the mapping. For the square —2 < z; < 2,
(1 =1,2), these are 3/4 of all points, thus the probabil-
ity density is increased near the boundary, see Figure
9.

In Figure 9 the thick lines represent the Pareto front
on PS and the gray areas are “compressed” regions.



(a)

Figure 9: The area of initialisation on 7. (a) shows
the initialisation [—2,2]. The gray ( “compressed” )
area covers 3/4 of the total region. (b) shows [—4,4].
The gray area covers 7/16 of the total region.

We conclude that the initialisation of the individuals,
even if it is uniform in parameter space, might result
in an important bias in fitness space. In particular for
problem 77 we can conclude that the proposed initial-
isation will lead to an initial population where it is
rather likely that some individuals are already located
on or very near the Pareto front. If this initialisation
is e.g. used together with the DWA method the per-
formance of the algorithm will be very high, however,
mostly because of the specific relations between PS
and FS. Generally, we would advise to use an initialisa-
tion —4 < z; < 4, (i = 1,2), at least, where the num-
ber of points whose distance is decreased is roughly
equal to the ones whose distance is increased (relation
7/9) to reduce the probability that initial individuals
are already located near the Pareto front. The shape
of the probability density in the fitness space is shown
in Figure 10 when the parameters are initialised on
[—4, 4] in parameter space.

F1

Figure 10: The shape of the probability density in
fitness space for individuals, which have uniform dis-
tribution on [—4,4] in parameter space for function
T:.

6 CONCLUSION

In this paper, we investigated the dependence of the
dynamics of the individuals in fitness space on the
properties of the mapping of the probability density
function for mutation or more general for the popula-
tion of the next generation from parameter space to
fitness space. The analysis which we presented here is
restricted to evolution strategies or at least to those
evolutionary algorithms where a normally distributed
mutation is the main operator, e.g. evolutionary pro-
gramming. Although we did not explicitly test this,
we are very confident that the results of this paper
are valid for any selection method, indeed the analyt-
ical investigations in Section 4 and 5 are completely
independent from selection.

We believe our approach can be a starting point for
a more general investigation of the influence of the
PS-FS mapping on the search distribution which is
usually only discussed in the PS. In particular for
multi-objective optimisation where FS is at least two-
dimensional, the movement of the individuals on this
space can show a much richer dynamics. Although the
importance of the PS-FS mapping on all aspects of
evolutionary algorithms is widely accepted, the anal-
ysis of its influence on the search without selection
has not received much attention so far. The fact that
in some cases the Pareto front is a local attractor for
the population (in a probabilistic sense, see Figure 4)
without the influence of selection seems to be worth
noticing.

We started our analysis with the observation of some
dynamic behaviour of the DWA method under some
conditions. However, as we have shown in the former
section, the results are not restricted to the DWA or
related methods, but bear strong implications on such
important questions, like “When is a test function dif-
ficult?”. In the literature this question is usually dis-
cussed in the context of such properties like decep-
tiveness, ruggedness, etc., however, the much simpler
notion of the relation of distances in PS and in FS is
hardly addressed. Nevertheless, as Figure 8 and 10
shows, it might have a very direct influence on the
algorithm’s performance, without telling much about
the true strength of the algorithm.
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