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Abstract

This paper combines the idea of a hierarchical
distributed genetic algorithm with different inter-
agent partnering strategies. Cascading clusters of
sub-populations are built from bottom up, with
higher-level sub-populations optimising larger
parts of the problem. Hence higher-level sub-
populations search a larger search space with a
lower resolution whilst lower-level sub-
populations search a smaller search space with a
higher resolution. The effects of different partner
selection schemes for (sub-)fitness evaluation
purposes are examined for two multiple-choice
optimisation problems. It is shown that random
partnering strategies perform best by providing
better sampling and more diversity.

1 INTRODUCTION

When hierarchically distributed evolutionary algorithms
are combined with multi-agent structures a number of
new questions become apparent. One of these questions is
addressed in this paper: the issue of assigning a
meaningful (sub-) fitness to an agent. This paper will look
at seven different partnering strategies for fitness
evaluation when combined with a genetic algorithm that
uses a co-operative sub-population structure. We will
evaluate the different strategies according to their
optimisation performance of two scheduling problems.

Genetic algorithms are generally attributed to Holland
[1976] and his students in the 1970s, although
evolutionary computation dates back further (refer to
Fogel [1998] for an extensive review of early
approaches). Genetic algorithms are stochastic meta-
heuristics that mimic some features of natural evolution.
Canonical genetic algorithms were not intended for
function optimisation, as discussed by De Jong [1993].
However, slightly modified versions proved very

successful. For an introduction to genetic algorithms for
function optimisation, see Deb [1996].

The twist when applying our type of distributed genetic
algorithm lies in its special hierarchical structure. All sub-
populations follow different (sub-) fitness functions, so in
effect only searching specific parts of the solution space.
Following special crossover-operators these parts are then
gradually merged to full solutions. The advantage of such
a divide and conquer approach is reduced epistasis within
the lower-level sub-populations which makes the
optimisation task easier for the genetic algorithm.

The paper is arranged as follows: the following section
describes the nurse scheduling and tenant selection
problems. Pyramidal genetic algorithms and their
application to these two problems are detailed in section
3. Section 4 explains the seven partnering strategies
examined in the paper and section 5 describes their use
and computational results. The final section discusses all
findings and draws conclusions.

2 THE NURSE SCHEDULING
PROBLEM

Two optimisation problems are considered in this paper,
the nurse scheduling problem and the tenant selection
problem. Both have a number of characteristics that make
them an ideal testbed for the enhanced genetic algorithm
using partnering strategies. Firstly, they are both in the
class of NP-complete problems [Johnson 1998, Martello
& Toth 1990]; hence, they are challenging problems.
Secondly, they have proved resistant to optimisation by a
standard genetic algorithm, with good solutions only
found by using a novel strategy of indirectly optimising
the problem with a decoder based genetic algorithm
[Aickelin & Dowsland 2001]. Finally, both problems are
similar multiple-choice allocation problems. For the nurse
scheduling, the choice is to allocate a shift-pattern to each
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nurse, whilst for the tenant selection it is to allocate an
area of the mall to a shop. However, as the following
more detailed explanation of the two will show, the two
problems also have some very distinct characteristics
making them different yet similar enough for an
interesting comparison of results.

The nurse-scheduling problem is that of creating weekly
schedules for wards of up to 30 nurses at a major UK
hospital. These schedules have to satisfy working
contracts and meet the demand for given numbers of
nurses of different grades on each shift, whilst at the same
time being seen to be fair by the staff concerned. The
latter objective is achieved by meeting as many of the
nurses’ requests as possible and by considering historical
information to ensure that unsatisfied requests and
unpopular shifts are evenly distributed. Due to various
hospital policies, a nurse can normally only work a sub-
set of the 411 theoretically possible shift-patterns. For
instance, a nurse should work either days or nights in a
given week, but not both. The interested reader is directed
to Aickelin & Dowsland [2000] and Dowsland [1998] for
further details of this problem.

For our purposes, the problem can be modelled as
follows. Nurses are scheduled weekly on a ward basis
such that they work a feasible pattern with regards to their
contract and that the demand for all days and nights and
for all qualification levels is covered. In total three
qualification levels with corresponding demand exist. It is
hospital policy that more qualified nurses are allowed to
cover for less qualified one. Infeasible solutions with
respect to cover are not acceptable. A solution to the
problem would be a string, with the number of elements
equal to the number of nurses. Each element would then
indicate the shift-pattern worked by a particular nurse.
Depending on the nurses’ preferences, the recent history
of patterns worked and the overall attractiveness of the
pattern, a penalty cost is then allocated to each nurse-
shift-pattern pair. These values were set in close
consultation with the hospital and range from 0 (perfect)
to 100 (unacceptable), with a bias to lower values. The
sum of these values gives the quality of the schedule. 52
data sets are available, with an average problem size of 30
nurses per ward and up to 411 possible shift-patterns per
nurse.

The problem can be formulated as an integer linear
program as follows.

Indices:

i  =  1...n nurse index.

j  =  1...m shift pattern index.

k  =  1...7 are days and 8...14 are nights.

s  =  1...p grade index.

Decision variables:





=
else   0

 patternshift   works nurse   1 ji
xij

Parameters:

n  =  Number of nurses.

m  =  Number of shift patterns.

p  =  Number of grades.
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pij  =  Preference cost of nurse i working shift pattern j.
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Di  =  Shifts per week of nurse i if day shifts are worked.

Bi  =  Shifts per week of nurse i if both are worked.

Rks  =  Demand of nurses with grade s on day or night k.
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Constraint set (1) ensures that every nurse works exactly
one shift pattern from his/her feasible set, and constraint
set (2) ensures that the demand for nurses is covered for
every grade on every day and night. Note that the
definition of qis is such that higher graded nurses can
substituted those at lower grades if necessary. Typical
problem dimensions are 30 nurses of three grades and 411
shift patterns. Thus, the Integer Programming formulation
has about 12000 binary variables and 100 constraints.

Finally for all decoders, the fitness of completed solutions
has to be calculated. Unfortunately, feasibility cannot be
guaranteed, as otherwise an unlimited supply of nurses,
respectively overtime, would be necessary. This is a
problem-specific issue and cannot be changed. Therefore,
we still need a penalty function approach. Since the
chosen encoding automatically satisfies constraint set (1)
of the integer programming formulation, we can use the
following formula, where wdemand is the penalty weight, to
calculate the fitness of solutions. Hence the penalty is
proportional to the number of uncovered shifts and the
fitness of a solution is calculated as follows.
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Here we use an encoding that follows directly from the
Integer Programming formulation. Each individual
represents a full one-week schedule, i.e. it is a string of n
elements with n being the number of nurses. The ith
element of the string is the index of the shift pattern
worked by nurse i. For example, if we have 5 nurses, the
string (1,17,56,67,3) represents the schedule in which
nurse 1 works pattern 1, nurse 2 pattern 17 etc.

For comparison, all data sets were attempted using a
standard Integer Programming package [Fuller 1998].
However, some remained unsolved after each being
allowed 15 hours run-time on a Pentium II 200.
Experiments with a number of descent methods using
different neighbourhoods, and a standard simulated
annealing implementation, were even less successful and
frequently failed to find feasible solutions. A
straightforward genetic algorithm approach failed to solve
the problem [Aickelin & Dowsland 2000]. The best
evolutionary results to date have been achieved with an
indirect genetic approach employing a decoder function
[Aickelin & Dowsland 2001]. However, we believe that
there is further leverage in direct evolutionary approaches
to this problem. Hence, we propose to use an enhanced
pyramidal genetic algorithm in this paper.

3 TENANT SELECTION PROBLEM

The second problem is a mall layout and tenant selection
problem; termed the mall problem here. The mall problem
arises both in the planning phase of a new shopping centre
and on completion when the type and number of shops
occupying the mall has to be decided. To maximise
revenue a good mixture of shops that is both
heterogeneous and homogeneous has to be achieved. Due
to the difficulty of obtaining real-life data because of
confidentiality, the problem and data used in this research
are constructed artificially, but closely modelled after the
actual real-life problem as described for instance in Bean
et al. [1988]. In the following, we will briefly outline our
model.

The objective of the mall problem is to maximise the rent
revenue of the mall. Although there is a small fixed rent
per shop, a large part of a shop’s rent depends on the sales
revenue generated by it. Therefore, it is important to
select the right number, size and type of tenants and to
place them into the right locations to maximise revenue.
As outlined in Bean et al. [1988], the rent of a shop
depends on the following factors:

• The attractiveness of the area in which the shop is
located.

• The total number of shops of the same type in the
mall.

• The size of the shop.

• Possible synergy effects with neighbouring similar
shops, i.e. shops in the same group (not used by Bean
et al.).

• A fixed amount of rent based on the type of the shop
and the area in which it is located.

This problem can be modelled as follows: Before placing
shops, the mall is divided into a discrete number of
locations, each big enough to hold the smallest shop size.
Larger sizes can be created by placing a shop of the same
type in adjacent locations. Hence, the problem is that of
placing i shop-types (e.g. menswear) into j locations,
where each shop-type can belong to one or more of l
groups (e.g. clothes shops) and each location is situated in
one of k areas. For each type of shop there will be a
minimum, ideal and maximum number allowed in the
mall, as consumers are drawn to a mall by a balance of
variety and homogeneity of shops.

The size of shops is determined by how many locations
they occupy within the same area. For the purpose of this
study, shops are grouped into three size classes, namely
small, medium and large, occupying one, two and three
locations in one area of the mall respectively. For
instance, if there are two locations to be filled with the
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same shop-type within one area, then this will be a shop
of medium size. If there are five locations with the same
shop-type assigned in the same area, then they will form
one large and one medium shop etc. Usually, there will
also be a maximum total number of small, medium and
large shops allowed in the mall.

To test the robustness and performance of our algorithms
thoroughly on this problem, 50 problem instances were
created. All problem instances have 100 locations
grouped into five areas. However, the sets differ in the
number of shop-types available (between 50 and 20) and
in the tightness of the constraints regarding the minimum
and maximum number of shops of a certain type or size.
Full details of the model and how the data was created, its
dimensions and the differences between the sets can be
found in [Aickelin 1999].

4 PYRAMIDAL GENETIC
ALGORITHMS

Both problems failed to be optimised with a standard
genetic algorithm [Aickelin & Dowsland 2000, 2001].
Our previous research showed that the difficulties were
attributable to epistasis created by the constrained nature
of the optimisation. Briefly, epistasis refers to the ‘non-
linearity’ of the solution string [Davidor 1991], i.e.
individual variable values which were good in their own
right, e.g. a particular shift / location for a particular nurse
/ shop formed low quality solutions once combined. This
effect was created by those constraints that could only be
incorporated into the genetic algorithm via a penalty
function approach. For instance, most nurses preferred
working days; thus, partial solutions with many ‘day’
shift-patterns have a higher fitness. However, combining
these shift-patterns leads to shortages at night and
therefore infeasible solutions. The situation for the mall
problem is similar yet more complex, as two types of
constraints have to be dealt with: size constraints and
number constraints.

In [Aickelin & Dowsland 2000] we presented a simple,
and on its own unsuccessful, pyramidal genetic algorithm
for the nurse-scheduling problem. A pyramidal approach
can best be described as a hierarchical coevolutionary
genetic algorithm where cascading clusters of sub-
populations are built from bottom up. Higher-level sub-
populations have individuals with loner strings and
optimise larger parts of the problem. Thus, the hierarchy
is not within one string but rather between sub-
populations which optimise different problem portions.
Hence, higher-level sub-populations search a larger
search space with a lower resolution whilst lower-level

sub-populations search a smaller search space with a
higher resolution. A related hierarchical framework was
presented using Genetic Programming [Koza 1991]
whereby main program trees coevolve with successively
lower level functions [e.g. Ahluwalia & Bull 1998]. The
pyramidal GA can be applied to the nurse-scheduling
problem in the following way:

• Solutions in sub-populations 1, 2 and 3 have their
fitness based on cover and requests only for grade 1,
2 and 3 respectively.

• Solutions in sub-populations 4, 5 and 6 have their
fitness based on cover and requests for grades (1+2),
(2+3) and (3+1).

• Solutions in sub-population 7 optimise cover and
requests for (1+2+3).

• Solutions in sub-population 8 solve the original (all)
problem, i.e. cover for 1, for (1+2) and for (1+2+3).

The full structure is illustrated in figure 1. Sub-solution
strings from lower populations are cascaded upwards
using suitable crossover and selection mechanisms. For
instance, fixed crossover points are used such that a
solution from sub-population (1) combined with one from
(1+2) forms a new solution in sub-population (1+2). Each
sub-population performs 50% of crossovers uniform with
two parents from itself. The other 50% are done by taking
one parent from itself and the other from a suitable lower
level population and then performing a fixed-point
crossover. Bottom level sub-populations use only uniform
crossover. The top level (all) population randomly
chooses the second parent from all other populations.
Although the full problem is as epistatic as before, the
sub-problems are less so as the interaction between nurse
grades is (partially) ignored. Compatibility problems of
combining the parts are reduced by the pyramidal
structure with its hierarchical and gradual combining.
This can be seen as similar to the “Island Injection”
parallel GA system [Eby et al. 1999].

Using this approach improved solution quality in
comparison to a standard genetic algorithm was recorded.
Initially roulette wheel selection based on fitness rank had
been used to choose parents. The fitness of each sub-
string is calculated using a substitute fitness measure
based on the requests and cover as detailed above, i.e. the
possibility of more qualified nurses covering for less-
qualified ones is partially ignored. Unsatisfied constraints
are still included via a penalty function. This paper will
investigate various partnering strategies between the
agents of the sub-populations to improve upon these
results.
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Figure 1: Nurse Problem Pyramidal Structure.

Similar to the nurse problem, a solution to the mall
problem can be represented by a string with as many
elements as locations in the mall. Each element then
indicates what shop-type is to be located there. The mall
is geographically split into different regions, for instance
north, east, south, west and central. Some of the
objectives are regional; e.g. the size of a shop, the synergy
effects, the attractiveness of an area to a shop-type,
whereas others are global, e.g. the total number of shops
of a certain type or size.

The application of the pyramidal structure to the mall
problem follows along similar lines to that of the nurse
problem. In line with decomposing partitions into those
with nurses of the same grade, the problem is now split
into the areas of the mall. Thus, we will have sub-strings
with all the shops in one area in them. These can then be
combined to create larger ‘parts’ of the mall and finally
full solutions.

However, the question arises how to calculate the
substitute fitness measure of the partial strings. The
solution chosen here will be a pseudo measure based on
area dependant components only, i.e. global aspects are
not taken into account when a substitute fitness for a
partial string is calculated. Thus, sub-fitness will be a
measure of the rent revenue created by parts of the mall,
taking into account those constraints that are area based.
All other constraints are ignored. A penalty function is
used to account for unsatisfied constraints.

Due to the complexity of the fitness calculations and the
limited overall population size, we refrained from using
several levels in the hierarchical design as we did with the
nurse scheduling. Instead a simpler two-level hierarchy is
used as shown in figure 2: Five sub-populations
optimising the five areas separately (1,2,3,4,5) and one
main population optimising the original problem (all).

Within the sub-populations 1-5 uniform crossover is used.
The top-level population uses uniform crossover between
two members of the population half the time and for the
remainder a special crossover that selects one solution
from a random sub-population that then performs a fixed-
point crossover with a member of the top population.

Figure 2: Mall Problem Pyramidal Structure.

The remainder of this paper will investigate ways to try to
improve on previously found poor results by suggesting
ways of combining partial strings more intelligently. An
alternative, particularly for the mall problem, would be a
more gradual build-up of sub-populations. Without
increasing the overall population size, this would lead to
more and hence smaller sub-populations. However, this
more gradual approach might have enabled the algorithm
to find good feasible solutions by more slowly joining
together promising building blocks. This is in contrast to
the relatively harsh two-level and three-level design
where building blocks had to ‘succeed’ immediately.
Exploring the exact benefits of a gradual build-up of sub-
solutions would make for another challenging area of
possible future research.

5 PARTNERING STRATEGIES

The problem of how to pick partners has been noted in
both competitive and co-operative coevolutionary
algorithms. Many strategies have been presented in the
literature as summarised for instance in [Bull 1997]. In
this paper, the following strategies are compared for their
effectiveness in fighting epistasis by giving meaningful
(sub-) fitness values in the pyramidal genetic algorithm
optimising the nurse scheduling and the mall problems.

• Rank-Selection (S): This is the method used so far in
our algorithms. Solutions are assigned a sub-fitness

1+2+3

1+2

all

3+12+3

1 32

21

all

3 4 5
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score based as closely as possible on the contribution
of their partial string to full solutions. All solutions
are then ranked within each sub-population and
selection follows a roulette wheel scheme based on
the ranks [e.g. Aickelin & Dowsland 2000].

• Random (R): Solutions choose their mating partners
randomly from amongst all those in the sub-
population their sub-population is paired with [e.g.
Bull & Fogarty 1993].

• Best (B): In this strategy, each agent is paired with
the current best solution of the other sub-
population(s). In case of a tie, the solution with the
lower population index is chosen [e.g. Potter & De
Jong 1994].

• Distributed (D): The idea behind this approach is to
match solutions with similar ones to those paired with
previously [e.g. Ackley & Littman 1994]. To achieve
this each sub-population is spaced out evenly across a
single toroidal grid. Subsequently, solutions are
paired with others on the same grid location in the
appropriate other sub-populations. Children created
by this are inserted in an adjacent grid location. This
is said to be beneficial to the search process because a
consistent coevolutionary pressure emerges since all
offspring appear in their parents’ neighbourhoods
[Husbands 1994]. In our algorithms, we use local
mating with the neighbourhood set to the eight agents
surrounding the chosen location.

• Best / Random (BR): A solution is paired twice: with
the best of the other sub-population(s) and with a
random partner(s). The better of the two fitness
values is recorded.

• Rank-based / Random (SR): A solution is paired
twice: with roulette wheel selected solution(s) and
with (a) random partner(s). The better of the two
fitness values is recorded.

• Random / Random (RR): A solution is paired twice
with random partner(s). The better of the two fitness
values is recorded.

6 EXPERIMENTAL RESULTS

6.1 THE MODEL

To allow for fair comparison, the parameters and
strategies used for both problems are kept as similar as
possible. Both have a total population of 1000 agents.
These are split into sub-populations of size 100 for the
lower-levels and a main population of size 300 for the
nurse scheduling and respectively of size 500 for the mall
problem. In principle, two types of crossover take place:
within sub-populations a two-parent-two-children
parameterised uniform crossover with p=0.66 for genes
coming from one parent takes place.

Each new solution created undergoes mutation with a 1%
bit mutation probability, where a mutation would re-
initialise the bit in the feasible range. The algorithm is run
in generational mode to accommodate the sub-population
structure better. In every generation the worst 90% of
parents of all sub-populations are replaced. For all fitness
and sub-fitness function calculations a fitness score as
described before is used. Constraint violations are
penalised with a dynamic penalty parameter, which
adjusts itself depending on the (sub)-fitness difference
between the best and the best feasible agent in each (sub-)
population. Full details on this type of weight and how it
was calculated can be found in Smith & Tate [1993] and
Aickelin & Dowsland [2000]. The stopping criterion is
the top sub-population showing no improvement for 50
generations.

To obtain statistically sound results all experiments were
conducted as 20 runs over all problem instances. All
experiments were started with the same set of random
seeds, i.e. with the same initial populations. The results
are presented in feasibility and cost respectively rent
format. Feasibility denotes the probability of finding a
feasible solution averaged over all problem instances.
Cost / Rent refer to the objective function value of the
best feasible solution for each problem instance averaged
over the number of instances for which at least one
feasible solution was found.

Should the algorithm fail to find a single feasible solution
for all 20 runs on one problem instance, a censored
observation of one hundred in the nurse case and zero for
the mall problem is made instead. As we are minimising
the cost for the nurses and maximising the rent of the
mall, this is equivalent to a very poor solution. For the
nurse-scheduling problem, the cost represents the sum of
unfulfilled nurses’ requests and unfavourable shift-
patterns worked. For the mall, the values for the rent are
in thousands of pounds per year.

6.2 RESULTS

Table 1 shows the results for a variety of fitness
evaluation strategies used and compares these to the
theoretic bounds (Bound) and the standard genetic
algorithm approach (SGA). For the Nurse Scheduling
Problem all strategies used give better results than those
found by the SGA. However, as explained above, most
credit for this is attributed to the pyramidal structure
reducing epistasis.

On closer examination, rank-based (S), random (R) and
distributed (D) perform almost equally well, with the
rank-based method being slightly better than the other
two. All three methods have in common that they contain
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a stochastic element in the choice of partner. The benefit
of this is apparent when compared to the best (B) method.
Here the results are far worse which we attributed to the
inherently restricted sampling. Interestingly, using the
double schemes (SR, BR and RR) improves results across
the board, which again strengthens our hypothesis how
important good sampling is. The overall best results are
found by the double random (RR) method. These results
correspond to those reported in [Bull 1997].

The results for the Mall problem are similar to those
found for the nurse problem: Double strategies work
better than single ones and the Best strategy does
particularly poorly. However, unlike for the nurse
scheduling none of the single strategies significantly
improves results over the SGA approach. Reasons for this
have already been outlined in the previous sections, i.e.
mainly the nature of splitting the problem into sub-
problems being contrary to many of the problem’s
constraints. On the other hand, even for the simple
strategies results are far improved over those found by
using the partnering strategies for mating, whilst those
found by the double strategies even outperform the SGA.
We believe that this can be explained as follows: The
main downfall of the partnering for mating strategies for
the mall problem was outside control of these strategies. It
lies in the fact that the sub-fitness scores are not a good
predictor for the success of sub-solutions. However, as
these results show, if the original (sub-)fitness measures
are substituted by full fitness scores based on good
partnering methods the pyramidal structure does work.
This confirms our suspicion that the previous ‘failure’ of
the pyramidal idea for the mall problem was rooted within
our choice of sub-fitness measures rather than in the
hierarchical sub-population idea itself.

Method N Cost N Feasibility M Rent M Feasibility

Bound 8.8 100% 2640 100%

SGA 54.2 33% 1850 94%

S 13.3 79% 1860 90%

R 14.5 77% 1915 94%

B 35.9 44% 1550 72%

D 14.6 77% 1820 88%

SR 12.7 84% 1950 99%

BR 14.2 81% 1897 86%

RR 12.1 83% 1955 99%

Table 1: Partnering Strategies for Fitness Evaluation
Results (N = Nurse, M = Mall).

6.3 NURSE SCHEDULING WITH A
HILLCLIMBER

The results presented so far show that even with the best
algorithm for the nurse scheduling problem some data
instances were unsolvable. In order to overcome this, a
special hillclimber has been developed which is fully
described in [Aickelin & Dowsland 2001]. The use of
local search to refine solutions produced via the GA for
complex problem domains is well established – often
termed memetic algorithms [e.g. Moscato 1999]. Briefly,
the hill-climber is local search based algorithm that
iteratively tries to improve solutions by (chain-) swapping
shift patterns between nurses or alternatively assigns a
strictly solution improving pattern to a nurse. As the hill
climber is computationally expensive, it is only used on
those solutions showing favourable characteristics for it to
exploit. Those solutions are referred to as ‘balanced’ and
one example is a nurse surplus on one day shift and a
shortage on another day shift.

The last set of experiments presented in table 2 shows
what impact the best partnering schemes for evaluation
(RR) has once the previously excluded hillclimber is
attached to the genetic algorithm. The results reveal that
the SGA is outperformed by the double random fitness
evaluation approach coupled with the hill climber. One
possible explanation for this effect can be found by
having a closer look at the RR operator. Gains are most
likely made due to better sampling. However, as
mentioned before there is a large stochastic element
involved in this case. Judging from these results it seems
that this is beneficial as it leads to a bigger variety of
solutions in turn leaving more for the hill climber to
exploit.

Algorithm Short N Cost N Feasibility

SGA & Hillclimber SGA&H 10.8 91%

RR & Hillclimber RR&H 9.9 95%

Table 2: Results for Algorithms combined with a
Hillclimber for the Nurse Scheduling Problem.

7 CONCLUSIONS

Using the partnering strategies for evaluation purposes
yields results in accordance with those reported in [Bull
1997]. For both problems the simple strategies worked
equally well apart from the restricting ‘best’ choice.
Combining two partnering schemes improved results
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further with the overall best solutions found by the double
random strategy. Interestingly, the improvements of
results seemed to be based on better sampling and more
diversity. Thus for this approach an additional hillclimber
is able to improve solutions beyond the previously best
ones.
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Abstract

There is a tradeoff between speed and accu-
racy in fitness evaluations when various dis-
cretization sizes are used to estimate the fit-
ness. This paper introduces discretization
scheduling, which varies the size of the dis-
cretization within the GA, and compares this
method to using a constant discretization.
It will be shown that when scheduling the
discretization, less computation time is used
without sacrificing solution quality. Fitness
functions whose cost and accuracy vary be-
cause of discretization errors from numerical
integration are considered, and the speedup
achieved from using efficient discretizations is
predicted and shown empirically.

1 Introduction

In recent years, advances in the field of genetic algo-
rithms (GAs) have allowed an increasing number of
complex real-world problems in optimization, search,
scheduling, and machine learning to be solved with
GAs. One obstacle to the use of GAs in commercial ap-
plications is the evaluation expense. As GAs typically
require hundreds or thousands of function evaluations,
and industrial applications may require anywhere from
minutes to days for a single evaluation, a GA may re-
quire the good part of a year to complete. Some of
these applications with expensive function evaluations
include computational fluid dynamics, structural op-
timization, and environmental applications. In many
cases, coarse-grained parameters can be used to de-
crease the computation time by introducing error in
the fitness evaluations. This paper focuses on how
these types of problems can run effectively and accu-
rately while dealing with considerable amounts of error
in the evaluation.

The goal of this paper is to establish efficient guide-
lines for GAs that use a finite discretization to approx-
imate a continuous system. To achieve this goal, an
understanding of the effects of evaluation error on GA
performance must be obtained, and a model must be
created that will both predict the accuracy and compu-
tational requirements in an environment with evalua-
tion error present. Although the specific situations are
somewhat idealized, the general idea applies to more
complex evaluations resulting from implicit or explicit
quadrature in finite elements, finite differences or other
techniques used to approximate differential and inte-
gral equations.

This paper considers the following question: For mul-
tidimensional problems, how can the discretization be
scheduled in order for the least amount of computation
time to be spent toward finding a solution of a given
quality? This paper is organized as follows. First,
we go over background, including decomposition of
GAs, a literature review and error analysis of numeri-
cal integration. Next, we introduce the concept of dis-
cretization and discuss its components: convergence
time, population sizing, and discretization considera-
tions. Naive and efficient discretizations are then de-
fined. Two-dimensional experiments are run to show
the computational savings. Finally, this paper is con-
cluded.

2 Background

In this paper, it is assumed that in the design of com-
petent GAs—GAs that solve hard problems quickly,
reliably, and accurately—can be decomposed into sub-
problems, and that each subproblem can be analyzed
separately. The principles of the sixfold decomposition
of GAs (Goldberg, Deb, & Clark, 1992) are

1. Know what the GA processes: building blocks
(BBs)
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2. Ensure there is an adequate initial supply of BBs

3. Ensure that necessary BBs are expected to grow

4. Ensure that BB-decisions are well made

5. Solve problem of bounded BB-difficulty

6. Ensure that BBs can be properly mixed

We are particularly interested in the third and fourth
items, ensuring that necessary building blocks are ex-
pected to grow and that building block decisions are
well-made. Efficient techniques that introduce error to
the fitness evaluation may not ensure that the neces-
sary building blocks grow if the decisions are made
poorly. That is, error introduced by efficient tech-
niques cannot be so large that the GA cannot choose
correctly between two distinct, competing individuals
in most cases, or the necessary building blocks will be
lost from the population.

2.1 Literature Review

Since using discretization in a fitness function approx-
imates the true fitness, it is critical to understand the
effects of error on GA performance. In this section,
we review previous research efforts that analyze and
explain the effects of error on GAs. Although the type
of error that we analyze is due to discretization and
searching on a grid, research efforts that investigate
other types of error, such as sampling error, can help
to shed light on general effects of error in GA perfor-
mance.

Early studies on the effects of evaluation error on
GA performance considered evaluation error that was
mainly due to variance or randomness. These stud-
ies used sampling to estimate the fitness and ran the
GA in a bounded computation time. The tradeoff for
these problems is between the time to make each fit-
ness evaluation and the total number of evaluations
made. Either more, inaccurate evaluations or fewer,
accurate evaluations are made. In addition, each im-
plementation has different convergence time and pop-
ulation requirements. Optimal sampling in GAs was
studied by (Fitzpatrick & Grefenstette, 1988; Miller &
Goldberg, 1996; Aizawa & Wah, 1994).

Other types of research considered industrial applica-
tions of GAs, with expensive fitness evaluations. One
approach was to create an approximate model to the
fitness landscape with statistical techniques, such as
neural networks (El-Beltagy, Nair, & Keane, 1999; Jin,
Olhofer, & Sendhoff, 2000). However, many of these
types of approaches are particularly prone to converg-
ing to a sub-optimal solution because they search in

the space as defined by the statistical technique, not
the original problem. Others considered heuristics to
improve GA performance for certain types of problems
(Le Riche & Haftka, 1993; von Wolfersdorf, Acher-
mann, & Weigand, 1997; Kogiso, Watson, Gürdal, &
Haftka, 1993), but these approaches are strictly empir-
ical and cannot be applied to other types of problems.
Finally, the injection island GA refined the model in a
stepwise process by running multiple grids for large
engineering applications in parallel (Lin, Punch, &
Goodman, 1994; Punch, Averill, Goodman, Lin, Ding,
& Yip, 1994). Intuitively, the authors understood that
some good building blocks could be generated inexpen-
sively with a coarse grid spacing, so they ran several
different resolution grids in parallel, each of which was
run on a different set of processors. They then injected
the best individuals into the higher resolution grids.

Albert and Goldberg (2000) empirically examined the
tradeoffs between more and less accurate models that
use numerical integration. When using a constant
grid with a deterministic fitness function, bias error
is added to the evaluations. They found that for a
bounded computation time, an optimal number of grid
points exists that can maximize solution quality. This
research provided the initial motivation for discretiza-
tion scheduling because the solution quality with this
method may not be that which is desired.

Albert and Goldberg (2001) examined the amount of
solution quality limited by the computation time avail-
able under one-dimensional integrated fitness func-
tions. The objective was to minimize the computa-
tion time such that a given solution quality is ac-
quired. They varied the discretization by using fewer
grid points in the early generations and exponentially
increasing the number of grid points in order to more
efficiently use computation time. Although more func-
tion evaluations are needed for the efficient method
compared to when the number of grid points is con-
stant for the entire GA, they achieved a significant
computational speedup from their method.

2.2 Error Analysis

It is assumed that any numerical integration scheme
used to estimate the fitness can be written of the form:

I(f) =
∫ b2

a2

∫ b1

a1

f(x, y)dxdy ≈
n1∑
i=1

n2∑
j=1

wijf(xi, yj)

where the integral of the function f taken at the points
xi and yj is taken from a1 to b1 in the x -dimension and
from a2 to b2 in the y-dimension, n1 and n2 are the
total number of grid points in the x - and y-dimensions,
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and wij are the weights as determined by the numer-
ical integration scheme. The estimated error in the
integration scheme is accurate to a certain order de-
pending on h, the size of the discretization where h is
b1−a1

n1 or b2−a2
n2 . For the left-endpoint rule, the inte-

gral is O(h) accurate; for the midpoint and trapezoidal
rules, the integral is O(h2) accurate; and for Simpson’s
rule, the integral is O(h4) accurate.

In addition to the accuracy, there are different compu-
tational requirements to implement different numerical
integration schemes. It is assumed that the time to es-
timate an integral is dependent only on the number of
grid points, n. That is, it is assumed that there are no
additional costs to calculate the weights wij .

3 Discretization Scheduling

This section focuses on discretization scheduling and
its components, and particularly the effects of the er-
ror that is introduced when using a coarse grid. The
topics critical to discretization scheduling are appar-
ent variance error, convergence time and population
sizing.

The concept of discretization scheduling is to use more
than one discretization size within the GA. The choice
of the number of grid points n is traditionally fixed
within the GA. This choice of n is too precise at the
beginning of the run, which leads to wasted compu-
tation cycles early on. A more efficient discretization
would be to use fewer grid points in the first genera-
tions and increase the number of grid points through-
out the GA. This is inspired by domino convergence
(see section 3.2), which indicates that in the first few
generations, the GA will be considering only the most
salient bit. In theory, only two grid points are needed
at the beginning of the run, but in practice, this num-
ber may need to be larger.

Since convergence time tells us which building blocks
are converging at what time, how the grid should be
spaced can be determined in order to efficiently con-
verge to that particular building block. That is, if two
grid points are initially used by the GA, the number
of grid points must be doubled in order to converge
to the second bit. Thus, increasing the number of grid
points exponentially will match the salience of the con-
verging bits when the bits are converted to a floating
point number.

In the remainder of this section, we further elabo-
rate on discretization scheduling. This section begins
with the deriving of the computational requirements
for GAs with fitness functions that consider numeri-
cal integration. However, much of the theory can be

generalized to other, similar types of fitness functions.

The fitness function considered is an sum of m two-
dimensional integrals. The experiments have the fol-
lowing form where f is the fitness function:

f =
m∑

i=1

∫ xi

0

∫ yi

0

∂2gi(xi, yi)
∂xi∂yi

∂yi∂xi (1)

It is assumed that g(x,y) is continuous and differen-
tiable.

3.1 Apparent Variance Error

When the discretization is scheduled—more than one
grid spacing is used by the GA—apparent variance
error is introduced into the GA. That is, although
the evaluations are determinate, each time the grid
changes, the fitness evaluation for a given set of vari-
ables also changes. When the grid changes often, the
variance term in the error can become significant. In
practice, this means that the GA will experience du-
ration elongation—the GA will take more generations
to converge—and will necessitate a larger population.

The ratio of the error variance to the fitness variance,
r, at any time during the GA is assumed to be constant
since both depend on the accuracy of the numerical
scheme used as well as the distribution of individuals
in the fitness landscape. It can be defined as

r =
σ2

E,t

σ2
F,t

(2)

where σ2
E,t is the error variance and σ2

F,t is the fitness
variance, each at generation t. In addition, both the
error and fitness variances decrease with time and are
approximately zero at convergence. For the computa-
tional experiments in the following section, it is empir-
ically shown that r is approximately constant during
the GA when an efficient discretization is used.

3.2 Convergence Time

Convergence time is crucial for understanding how
GAs perform and computation time can be used ef-
ficiently. In this section, the convergence time equa-
tions for exponentially-scaled building blocks are intro-
duced, and the convergence time for a special case of
a sum of identical subfunctions is displayed. The con-
vergence times are based on selection intensity adapted
from population genetics (Kimura, 1964).

Binary integer subcodes experience domino conver-
gence, which converge starting with the most salient
building block down to the least salient building block.
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Since binary integer subcodes have exponentially-
scaled bits, it is assumed that other exponentially-
scaled problems also converge in this way. Thierens,
Goldberg, and Pereira (1998) show that for selection
operators with constant selection intensity, such as
tournament selection, the population converges in O(l)
time where l is the string length. The convergence time
for binary integer subcodes using pairwise tournament
selection can be expressed as

tconv =
− ln 2

ln
[
1− I√

3

]λ = ct · k (3)

where I is the selection intensity, k is the number
of building blocks, and ct is the time to converge to
each successive building block (Thierens, Goldberg, &
Pereira, 1998). The convergence time for the entire
GA can be found when considering that k = l in the
above equation. This equation implies that it takes
the same amount of time to converge to each building
block, no matter what its fitness contribution. When
the whole string converges, λ is equal to the string
length l.

The convergence times are different when the fitness
function is composed of a sum of identical subfunc-
tions, when the fitness can be written as:

f =
m∑

i=1

g(x, y)

The convergence time are developed in (Albert, 2001)
and the derivations are not printed here. When eval-
uation error is not present, the convergence time can
be written as:

tconv1 =
− ln 2

ln
[
1− 1√

3mπ

]k = ct

√
mk (4)

where ct ≈ ln 2
√
3π = 2.13, and the total convergence

time increases by a factor of
√

m. The convergence
rate is O(

√
mk) for these types of functions.

When evaluation error is present, as mentioned in sec-
tion 3.1, the convergence time is elongated. The con-
vergence time changes to

tconv2 =
− ln 2

ln
[
1− 1√

3mπ(1+r)

]k = ct

√
m(1 + r) · k (5)

where, again, ct ≈ ln 2
√
3π. The convergence rate

is O(
√

m(1 + r)k) for these types of functions. This
equation collapses to equation 4 when accurate fitness
evaluations are used. It is assumed that r is constant
or is approximately constant during the GA. It should

be noted that it takes ck = ct

√
1 + m generations to

converge to each bit in each subfunction.

The ratio of the convergence times can be determined
from taking the ratio of equation 4 to equation 5. The
ratio can thus be written as

tconv1

tconv2
=

ct
√

mk

ct

√
m(1 + r)k

=
1√
1 + r

(6)

Since r ≥ 0, the above ration is always less than or
equal to 1. That is, a GA with an accurate fitness
function is on average expected to converge faster than
its error-prone counterpart.

Because the least salient building blocks do not ex-
perience any selection pressure for a number of gen-
erations, it is possible that they will experience ge-
netic drift and will converge randomly to either 0 or 1.
The expected time for a bit to experience drift is pro-
portional to the population size (Goldberg & Segrest,
1987):

tdrift ≈ 1.4N (7)

In this equation, N is the population size. For any
application, it is important to ensure that drift will
not occur until well after the population is expected
to converge.

3.3 Population Sizing

Several population-sizing models have been derived
for problems with equally salient building blocks, and
more recently, population requirements have been
considered for problems with exponentially-scaled
building blocks. Initially, the population size for
exponentially-scaled building blocks was observed em-
pirically. When considering the drift model, it has
been observed that the population size varies in the
same way that the convergence time varies—linearly.
That is, a single, exponentially-scaled variable is ex-
pected to converge as O(l) and has also been empir-
ically observed that the population size must vary as
O(l) as well (Lobo, Goldberg, & Pelikan, 2000).

Recently, Rothlauf (2001) developed a population-
sizing model for problems with exponentially-scaled
building blocks by considering the drift model. Drift
only affects the GA if tdrift < tconv, and if drift oc-
curs, the least salient bits will randomly converge to
either 0 or 1. If the bit string of length l is composed of
m concatenated sub-strings of length k, each of which
is exponentially-scaled, Rothauf found that the pop-
ulation size varies as O(k

√
m). However, the model

by Rothauf does not take into account building-block
mixing, and the resulting population sizes given by
this model are inadequate for our purposes.
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In section 3.2 , it was shown that a GA without evalua-
tion error will converge as O(k

√
m). This implies that

when evaluation error is present in the GA, the popula-
tion size must vary as O(k

√
m(1 + r)) because the GA

converges at the slower rate of O(k
√

m(1 + r)). From
the observation of Lobo, Goldberg, and Pelikan (2000)
and the theoretical work of Rothlauf (2001), it can be
inferred that the convergence time and population size
varies in the same way for exponentially-scaled prob-
lems.

The population sizes for our experiments are written
in the form

Nn = cN

√
mk

Ne = cN

√
m(1 + r)k

where Nn is the naive population size and Ne is the
efficient size. The constant cN is the same in both
equations and can be found empirically when using a
naive discretization. The population size when using
the efficient discretization can be determined once r is
known.

3.4 Putting it All Together

A naive discretization assumes that the discretization
is constant throughout the duration of the GA. This
can be contrasted with an efficient discretization, in
which the discretization varies within the GA (Albert,
2001). The computation time for a GA with a multiple
integral can be modeled as

T = (α + βn1n2...nd)GNn.

where α is the overhead per individual per genera-
tion, β is the time to calculate one sample, ni is the
number of samples in the ith dimension, G = tconv is
the total number of generations to convergence, and N
is the population size. The term (α + βn1n2...nd) is
the cost of each function evaluation. When the num-
ber of grid points in any dimension is identical, and
tconv = ct

√
mk is substituted for G, the above equa-

tion can be simplified to

Tn = (α + βnd)ctk
√

m · Nn. (8)

where d is the number of dimensions, and Nn is the
naive population size.

It is assumed that the discretization is scheduled in
multiple dimensions by starting with two grid points
in each dimension. Since the convergence time models
tells us which bit the GA is converging to, it is also
known how many grid points are used in each dimen-
sion. That is, when the GA is converging to the first
bit, 21 = 2 grid points are needed to converge to the

correct first bit. It will take ck generations to converge
to the first bit, and the GA will start to converge to the
second bit, when it will require 22 = 4 grid points in
each dimension. The GA will proceed in this way until
it converges to the final kth bit when 2k grid points
are needed. Hence, the number of grid points in each
dimension must be doubled in every dimension every
ck generations.

The assumption that only two discretizations are
needed in each dimension may be insufficient for the
GA to converge to the correct optima, so a larger num-
ber of grid points may be needed to start with. It is
assumed that at any given time, the number of grid
points in each dimension is the same, but an efficient
time budget can be easily derived when the number of
grid points varies in every direction.

For an arbitrary amount of dimensions, d, the efficient
time, as described above, can be written as

Te =
k∑

i=1

(α + β · 2d·i)ckNe.

The above equation can be rewritten after substituting
Ne = Nn

√
1 + r and ck = ct

√
m(1 + r):

Te =
k∑

i=1

(α + β · 2d·i)ct

√
mNn(1 + r). (9)

The speedup can be written in terms of the naive and
efficient computation times:

S =
Tn

Te
=

(α + βnd)ct
√

mk · Nn∑k
i=1(α + β · 2d·i)ct

√
m · Nn(1 + r)

(10)

Equation 10 can be simplified and rewritten knowing
that

∑k
i=1 2

i = 2k+1 − 2 and n = 2k as

S =
α
β k + k2k·d

α
β k + (2k+1 − 2)d

· 1
1 + r

.

4 Experiments

The fitness function considered is an integral in two
dimensions. The experiments have the following form
where f is the fitness function:

f =
3∑

i=1

∫ xi

0

∫ yi

0

∂2gi(xi, yi)
∂xi∂yi

∂yi∂xi (11)

g(x, y) = (eAx cos(Bx))(eAy cos(By)) (12)

The fitness function is the sum of three identical sub-
functions, where A and B are 0.1 and 1.4, respectively.
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Six bits are used to represent the string for each x and
y variables when the variables are mapped from 0 to
10.08. Thus, the total chromosome length is 36 bits.
The maximum occurs at 6.88 for each x and each y in
each subfunction.

The integration ideally should start with two grid
points in each direction. However, two grid points
are inadequate for the integration because the func-
tion is multimodal. An analysis shows that at least 8
grid points are needed in each direction for the GA to
choose the correct first bit. When fewer grid points
are used, the GA starts to converge to a local opti-
mum and correct bits are lost. This number is found
by starting with 2 grid points and determining the
largest difference between the location of the approx-
imated optima and the actual optima. If this value is
larger than the discretization size, h, then the num-
ber of grid points in increased. For this problem, the
smallest discretization size such that the location of
the approximated optima is within h of the true op-
tima is 5, and 8 is the smallest power of two greater
than 5.

4.1 Apparent error variance

A minimum of 8 grid points is needed for the GA to
find the correct solution. When switching from 8 to
16 grid points, apparent variance error is added to the
fitness evaluations. The value of the variance is ap-
proximately 0.80 and it is roughly constant during the
GA. Figure 1 shows how r varies within the GA. This
value of r is used to predict the convergence time and
the population size.

4.2 Convergence time analysis

The convergence time equation must be modified to
take into account the three subfunctions and two vari-
ables in each subfunction. For any given fitness func-
tion (Muhlenbein & Schlierkamp-Voosen, 1993) give
the following equation to describe how the fitness mean
varies from one generation to another:

µt+1 − µ = σF,tI (13)

and from (Albert & Goldberg, 2001), when the fit-
ness function is a sum of m identical subfunctions, the
above equation can be rewritten as

m(µt+1 − µ) =
√

(σF,tI)

If the subfunction can be written as g(x, y) = h(x) ·
h(y), then the equation 13 is valid as written for h(x)
and h(y), where h(x) and h(y) are identical when x =

10 15 20 25 30 35
0

0.5

1

1.5

Generations

r

Figure 1: The value of r for the idealized two-
dimensional experiments is roughly constant during
the GA, and its value centers at 0.80

.

y. In the same way, m′ = m2, which adjusts for g(x, y).
Since m is 3, m′ is 9:

m′(µt+1(λ)− µt(λ)) =
√

m′σt(λ)I (14)

The value m′ = 9 is used in the convergence and popu-
lation sizing equations. If binary tournament selection
is considered, then the convergence times are

tconv1 =
− ln 2

ln
[
1− 1√

3m′π

]k = ct

√
m′k

tconv2 =
− ln 2

ln
[
1− 1√

3m′π(1+r)

]k = ct

√
m′(1 + r) · k

Using these values, the naive convergence time is 36.2
generations. Knowing that r is 0.80, the efficient con-
vergence time is expected to be 49.2 generations.

4.3 GA parameters

The population size was empirically determined by the
following equations:

Nn = cNk
√

m′

Ne = cNk
√

m′(1 + r)

Experiments indicate that cN = 8.89 for the popula-
tion to be adequately sized, which results in a popula-
tion size of 160 individuals for the naive experiments.
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The population size for the efficient experiments is 215
individuals when r = 0.80. The drift time for the naive
and efficient experiments are 224 and 301 generations,
much longer than the predicted convergence times of
36.2 and 49.2 generations. Thus, drift is not a concern
for these experiments.

For the experiments, the probabilities of selection and
crossover are 1.0, and the probability of mutation is
1/N for this problem. Pairwise tournament selection,
one-point crossover and uniform mutation are the op-
erators used for this problem.

4.4 Time budgeting and speedup

The expected computation time for the naive case can
be found when α and β are known. Here, the two di-
mensional case is considered, d = 2. Computational
experiments indicate that α and β are 2.51×10−5 and
1.37×10−7, respectively, when Mflops are used to esti-
mate the computation time. To be able to discriminate
between the least salient bit in each of the subfunction,
64 grid points are needed in each dimension. Equation
8 can predict the time needed for the naive implemen-
tation and the following equation predicts the time for
the efficient implementation.

The naive computation time is 3.40 Mflops and the
number of function evaluations necessary is predicted
to be 5790. For the efficient case, 1.59 Mflops are
needed and predicted number of function evaluations
is 10,580. This yields a predicted speedup of 2.14. As
mentioned previously, the GA is started with 8 grid
points in each dimension. In other words, the first
3 · 8.20 = 24.6 generations are run with 8 grid points
in both the x and y directions.

4.5 Results

For the experiments, 50 trials were run using both
the naive and efficient discretization. The expected
speedup from using an efficient discretization is 2.14.
Tables 1 and 2 show the generations, time, and num-
ber of fitness evaluations for the naive and efficient
implementations.

Table 1: Predicted and actual computation time val-
ues for two-dimensional experiments using a naive dis-
cretization

Gens Time Evaluations
Predicted: 36.2 3.40 5790
Actual: 37.1 3.48 5940

As in the one-dimensional case, the efficient GA takes

Table 2: Predicted and actual computation time val-
ues for two-dimensional experiments using an efficient
discretization

Gens Time Evaluations
Predicted: 49.2 1.59 10,750
Actual: 50.0 1.69 10,750
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Figure 2: Predicted and actual gene position for ide-
alized two-dimensional experiments

slightly longer to converge—50.0 generations com-
pared to the 49.2 predicted generations. The actual
speedup of 2.06 is very close to the predicted speedup
of 2.14. That is, despite the efficient GA making al-
most twice as many function evaluations as the naive
GA, on average, it finished in less than half the time.
Figure 2 shows the converged gene position for each
subfunction for the naive and efficient implementation.
Like in the one-dimensional experiments, the experi-
mental gene position follows very closely to the pre-
dicted gene position.

5 Conclusions

Discretization scheduling allows a GA to efficiently use
computation time on a single processor by changing
the grid spacing during the GA. This is particularly
useful for fitness functions that use a discrete system
to approximate a continuous system and that are com-
putationally expensive. We show that, theoretically, it
is possible to schedule the grid in multiple dimensions
such that computation time is decreased while solu-
tion quality is not sacrificed. Empirically, we show
that these relationships hold for a two-dimension nu-
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merical integration problem.
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Abstract

In this paper we introduce The Eugenic Algo-

rithm with Modeling (TEAM), an evolution-

ary search algorithm that employs statisti-

cal analysis to promote construction of high-

�tness chromosomes. A model of gene/�tness

correlations is automatically generated to di-

rect the construction process. When applied

to the combinatorial optimization problems

of �nding a maximally weighted cut in a

graph and minimizing the two-dimensional

Rosenbrock function, TEAM performs well

compared to other evolutionary algorithms at

evolving high-�tness solutions.

1 INTRODUCTION

The �eld of combinatorial optimization focuses on

problems with a �nite number of possible solutions.

For many such problems, an optimal solution cannot

be found analytically, or the problem is too large for

exhaustive search. This class of interesting problems

includes the traveling salesman problem, maximally

weighted cut in a graph, integer programs, the subset

sum problem, and maximal clique in a graph. Near-

optimal solutions can often be found reasonably fast

using techniques such as hill-climbing and simulated

annealing (SA; Kirkpatrick and Sherrington, 1988).

These standard techniques operate by incrementally

improving suboptimal solutions. Evolutionary algo-

rithms, which utilize optimization strategies modeled

after biological evolution, implement a more global

search and have been shown to be particularly pow-

erful on combinatorial optimization problems.

Numerous evolutionary algorithms have been designed

to operate on a population of binary chromosomes, a

convenient structure for encoding solutions to combi-

natorial problems. The traditional approach, exempli-

�ed by genetic algorithms (GAs; Holland, 1975), pro-

duces new chromosomes via recombination of existing

chromosomes, with a component of mutation. The

information inherited by a single new chromosome is

derived from only a small percentage of the total in-

formation present in the population.

Recently, evolutionary algorithm research has pro-

gressed towards increasingly constructive techniques

for generating new chromosomes. Among these

algorithms are Binary Simulated Crossover (BSC;

Syswerda, 1993), Population Based Iterative Learn-

ing (PBIL; Baluja, 1994), and the Eugenic Algorithm

(EuA; Prior, 1998). These algorithms construct chro-

mosomes based on information in the entire chromo-

some population. A probability indicating allele pref-

erence is calculated for every gene, and these probabil-

ities are then used to bias the allele selection process

towards an estimated ideal chromosome.

This paper presents a second-generation construc-

tive algorithm, The Eugenic Algorithm with Modeling

(TEAM), that applies statistical methods to the iden-

ti�cation of desirable alleles. A model of gene/�tness

correlations is built and used during chromosome con-

struction to aid allele selection.

We next describe the TEAM algorithm. In Section 3

we present and discuss the results of applying TEAM

to two combinatorial optimization problems, �nding a

maximally weighted cut in a graph and minimizing the

two-dimensionalRosenbrock function (De Jong, 1975),

showing that TEAM performs better than stochastic

hillclimber, standard GA, and EuA. Finally, we spec-

ulate how the algorithm might be improved by using

di�erent statistical tests and generalizing the model.
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2 TEAM

2.1 OVERVIEW

At a high level, TEAM operates similar to other GAs.

A population of chromosomes is evolved based on feed-

back from a chosen chromosome evaluation function,

f(c). Augmenting the standard chromosome pop-

ulation, TEAM maintains a gene/�tness correlation

model, hereafter referred to as the model, and sev-

eral sets of �tness values used in updating the model,

hereafter referred to as the model statistics. For every

gene, these additional structures are used to estimate

the allele with the greatest likelihood of producing a

high-�tness chromosome.

The algorithm begins by initializing three data sets as

follows: (1) build the initial population, (2) initialize

the model statistics based on the initial population,

(3) initialize the model based on the model statistics.

Population evolution proceeds via repetition of the fol-

lowing steps: (1) create a new chromosome, (2) select

and replace an existing chromosome in the popula-

tion with the new chromosome, (3) update the model

statistics using the new chromosome, (4) reconstruct

the model if necessary. Evolution terminates after a

speci�ed number of generations has elapsed.

Chromosome creation involves assigning an allele to

every gene in the genome. The �rst genes assigned are

those with the strongest observed inuence on �tness.

The allele with the strongest observed correlation to

high �tness is assigned to each gene. Allele/�tness

correlation is partially based on previous allele assign-

ments, therefore a partially constructed chromosome

contributes to its own construction.

After the entire chromosome has been constructed,

a chromosome in the existing population is selected

for extinction by one of several heuristics. The se-

lected chromosome is removed from the population,

and the newly constructed chromosome added. The

model statistics are updated with information about

the new chromosome. The model is updated period-

ically, after a speci�ed number of elapsed generations

since the previous update.

2.2 CHROMOSOME CREATION

Chromosome creation involves ordering the genes and

then assigning an allele to every gene. The assignment

of an allele x to gene gi is called a binding, written

gi = x. For binary chromosomes, x 2 f0; 1g. A chro-

mosome c of length l is de�ned by a set of bindings,

fcg1 ; cg2 ; : : : ; cglg, where cgi is the allele of gene gi in

chromosome c. A chromosome c is said to satisfy a set

of bindings S if for every binding gi = x in S, cgi = x.

The �rst step of chromosome creation, gene ordering,

is based on selectivity. The selectivity of a gene is an

estimation of how clearly the observed �tness values in

the population suggest a particular allele for that gene.

For example, if the set of �tness values of chromosomes

satisfying binding gi = 0 is f12; 15; 16; 17g, and the

set of �tness values of chromosomes satisfying binding

gi = 1 is f18; 19; 20; 23g, then the gene has high se-

lectivity; the allele 1 appears to consistently lead to

higher �tness chromosomes. Alternatively, if the re-

spective sets of �tness values were f12; 15; 19; 20g and

f16; 17; 18; 23g, the gene's selectivity would be low.

Genes are ordered by decreasing selectivity. The selec-

tivity of a gene gi relative to population P is estimated

by:

Sel(gi; P ) =

�
1:0; if

��[P ]Fgi=0�� � 1 _
��[P ]Fgi=1�� � 1

t test
�
[P ]Fgi=0; [P ]

F
gi=1

�
; otherwise

;

where [P ]
F

gi=x
is the set of �tness values of chromo-

somes from population P that satisfy binding gi = x.

Function t test returns one minus the observed signi�-

cance level (OSL) used in Student's t-test (Press et al.,

1992), a statistical hypothesis test indicating whether

two sample sets are believed to come from the same

normal distribution. A high value for t test, near 1,

indicates that the sets are probably not from the same

distribution, while a low value, near 0, indicates that

there is insuÆcient evidence to make that distinction.

Once the genes have been ordered, they are sequen-

tially bound to alleles in this order. Set B, initially

empty, contains the bindings that de�ne the partially

constructed chromosome. As each gene is bound, the

resulting binding is added to set B.

To select an allele for gene gi, a set B0

i is �rst cal-

culated. B0

i is a subset of B containing the bindings

deemed most relevant to the pending binding of gene

gi. Construction of B0

i is described in Section 2.3. An

estimate of the allele, xi, for gene gi most likely to lead

to a high-�tness chromosome is calculated from B0

i as:

xi =

(
0; if [P ]F

B0

i
[gi=0

> [P ]F
B0

i
[gi=1

1; otherwise
;

where [P ]B0

i
[gi=y is the subpopulation of P com-

posed of chromosomes satisfying all bindings in the

set B0

i [ gi = y, and [P ]F
B0

i
[gi=y

is the set of �t-

ness values of chromosomes in that subpopulation.

The gene gi is bound to allele xi with probability

1� 1

2
(1� Sel(gi; [P ]B0

i
))�, otherwise gene gi is bound

to allele 1 � xi. Parameter � regulates the depen-

dence of allele selection on selectivity. This proba-

bilistic scheme assigns alleles based on con�dence in
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expected outcome. Statistically inuential genes are

more likely to be assigned xi, while genes not appear-

ing to strongly inuence �tness are assigned more ran-

domly. In this way, the system performs neighborhood

search to �ne tune less inuential genes. As the last

step, to promote diversity, the binding of gene gi is

mutated with probability pm.

2.3 THE MODEL

The model's primary purpose is provide a basis for es-

timating gene epistatis (Davidor, 1991). The model

records the observed relative inuence of genes on

chromosome �tness in a set of gene rankings. Each

ranking describes the inuence of a single gene on �t-

ness when used in conjunction with other genes. For

example, a potential model for a population of chro-

mosomes with four genes might look like the following:

g0 : g3 g1 g2
g1 : g2 g0 g3
g2 : g0 g1 g3
g3 : g2 g0 g1 :

For each gene, all other genes are sorted based on the

quantity Ur(gi; gj), an estimation of the amount of in-

uence the combination of genes gi and gj has on �t-

ness. An ordered pair of genes, (gi; gj), is considered

highly inuential if for gj = x, the set of estimated

�tness values of chromosomes satisfying the bindings

fgi = 0; gj = xg is statistically di�erent from the set

of estimated �tness values of chromosomes satisfying

fgi = 1; gj = xg. A high Ur value, near 1, indicates

high inuence, and a low value, near 0, indicates low

inuence. If Ur(gi; gx) > Ur(gi; gy) then gene gx ap-

pears before gene gy in the entry for gene gi. Ur(gi; gj)

is calculated as:

Ur(gi; gj) =
1

4

0
BB@

t test(Fgi=0; Fgi=0;gj=0) +

t test(Fgi=0; Fgi=0;gj=1) +

t test(Fgi=1; Fgi=1;gj=0) +

t test(Fgi=1; Fgi=1;gj=1)

1
CCA ;

The sets F comprise the model statistics. Fgi=x is the

set of �tness values of all previously evaluated chro-

mosomes that satisfy binding gi = x. For a chromo-

some of length l, there are 2l possible single bindings,

and therefore 2l Fgi=x sets. Fgi=x;gj=y is the set of

�tness values of all evaluated chromosomes which sat-

isfy bindings fgi = x; gj = yg. There are 4l2 such

Fgi=x;gj=y sets, though all sets such that i = j are un-

used. These sets F act as a global history; as evolution

proceeds the �tness value of every evaluated chromo-

some is a member of l of the Fgi=x sets and l(l� 1) of

the Fgi=x;gj=y sets. Fgi=x and Fgi=x;gj=y are estima-

tions of the �tness value of any chromosome satisfying

a speci�ed single or double binding. Although these

sets are incomplete, we assert that they eventually con-

tain suÆcient information to support Ur(gi; gj).

During allele selection, a set B0

i is calculated from set

B, the set of bindings comprising a partial chromo-

some. Let hgi;j be the jth gene in the model entry

for gi. B0

i is initially empty, and for each gene hgi;j
in the model entry for gi, proceeding via increasing

j, we perform the following test: if hgi;j is part of a

binding b 2 B and
���[P ]B0

i
[b

��� � nmin then add b to

B0

i. Parameter nmin speci�es the minimum number of

chromosomes that must be present in [P ]B0

i
.

2.4 REPLACEMENT POLICY

After a new chromosome has been created, an existing

chromosome is selected for removal from the popula-

tion. A typical heuristic for extinction is poor �tness,

i.e. the least �t chromosome is removed. However,

based on the information in the model we can make a

more intelligent selection. We can remove the chromo-

some that contributed the least to the construction of

the new chromosome.

In the course of creating a new chromosome, the sets

B0

i are calculated l times. The more times a chro-

mosome appears in instances of [P ]B0

i
, the more that

chromosome has contributed to the construction of the

new chromosome. Therefore, a reasonable extinction

heuristic is to remove the chromosome that appeared

least often in instances of [P ]B0

i
. This heuristic regards

chromosomes as informational units rather than sim-

ple patterns for high �tness, promoting the retention

of information in the population.

These policies are called replace worst �tness and re-

place worst contributor, and they will be tested exper-

imentally below.

3 EXPERIMENTS

TEAM was evaluated on two combinatorial optimiza-

tion problems and compared to two standard algo-

rithms as well as EuA, the predecessor of TEAM.

3.1 ALGORITHMS

3.1.1 Stochastic Hillclimber

A simple Stochastic Hillclimber was used as a straw-

man in these experiments. The hillclimber maintains

one chromosome. Each generation, a new chromosome
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is created solely by mutating the existing chromosome.

The probability of each bit being mutated is speci�ed

by parameter pm. If the �tness of the new chromo-

some is higher than that of the original chromosome,

the original chromosome is replaced by the new chro-

mosome. Evolution continues until a speci�ed number

of generations has elapsed.

3.1.2 Genetic Algorithm

The GENEsYs-1.0 (B�ack, 1992) GA implementation

was used in these experiments. Fitness-proportionate

selection, elitism, and 2-point crossover were used.

The GA is further parameterized by the population

size, n, the per-chromosome probability of recombi-

nation, pr, and the per-gene probability of mutation,

pm.

3.1.3 EuA

The predecessor of TEAM, EuA uses statistical pre-

dictors of chromosome �tness without maintaining a

model or model statistics. A detailed description

of this algorithm can be found in (Prior, 1998) and

(Polani and Miikkulainen, 2000). This algorithm is pa-

rameterized by the population size, n, the probability

of allele selection noise (similar to mutation), pn, and

the per-gene probability that an extinct allele will be

reintroduced (only applicable when all chromosomes

have the same allele for a particular gene), pi.

3.1.4 TEAM

As described in Section 2, TEAM is parameterized by

the population size, n, the minimum number of chro-

mosomes to consider during allele selection, nmin, the

per-gene probability of mutation, pm, the selectivity

factor, �, the model update frequency, Tmodel, and

the chromosome replacement policy, �.

3.2 RESULTS

Our two combinatorial optimization test problems dif-

fer in how amenable they are to neighborhood search

algorithms. Finding a maximally weighted cut in a

graph, though an NP-complete problem, has a high de-

gree of hillclimbability, making neighborhood searches

e�ective. The Rosenbrock Function, on the other

hand, has many local optima in binary space (Prior,

1998). This problem is very deceptive, making neigh-

borhood searches less e�ective. The algorithms in

this paper direct and focus neighborhood search dif-

ferently, therefore these problems will illuminate the

algorithms' strengths and weaknesses.

3.2.1 Maximally Weighted Cut in a Graph

In this problem we wish to partition the vertices of an

undirected, weighted graph into two sets, V0 and V1,

such that the sum of weights of all edges having one

endpoint in V0 and the other endpoint in V1 is maxi-

mal. A feasible solution to this problem is a partition

of the vertices such that every vertex is a member of V0
or V1, but not both. Given a graph of n vertices andm

edges, we encode a partition as a binary chromosome

of length n. If gi = 0, then vertex i is a member of V0,

otherwise gi = 1 and vertex i is a member of V1.

The sum of weights of all edges crossing the partition

is used as the chromosome evaluation function f(c). It

is calculated as

f(c) =

n�1X
i=1

nX
j=i+1

wij

�
cgi
�
1� cgj

�
+ cgj (1� cgi)

�
;

where wij is the weight of the edge incident on ver-

tices i and j, or valued 0 if no such edge exists.

The GENEsYs GA package implicitly minimizes �t-

ness value, therefore an altered chromosome evalua-

tion function �f(c) was used with that package. The

graph was constructed randomly, with edge weights

uniformly distributed on [0; 1].

Each algorithm was executed 100 times, each evolved

for 100,000 generations. The average best �t-

ness value of each generation is shown in Fig-

ure 1. The parameters used for each algorithm

are: Stochastic Hillclimber: pm=0.04; GA: n=50,

pr=0.6, pm=0.001; EuA: n=100, pn=0.05, pi=0.01;

and TEAM: n=100, nmin=20, pm=0.01, �=0.6,

Tmodel=100, �=replace worst contributor. These pa-

rameter values were determined experimentally; small

variations produce roughly equivalent results.

All algorithms tested eventually generated chromo-

somes of approximately the same �tness. In this do-

main of few local optima, only the curves prior to

the plateau are noticeably di�erent. The hillclimber

makes good progress in early generations, but EuA

and TEAM soon catch up and exceed it in perfor-

mance. The di�erences between the �nal average best

�tness values of the four algorithms, though relatively

small, are statistically signi�cant.

Both of TEAM's chromosome replacement policies, re-

place worst �tness and replace worst contributor, were

tested on this problem. The replace worst contributor

policy (shown) generated chromosomes with �tness

values approximately 10% better than those under the

replace worst �tness policy. This result suggests that

low-�tness individuals can contain valuable informa-

tion, and are not always the best choice for extinction.
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Figure 1: Average Best Fitness of 100 Runs Maximizing Cut Weight Over 100,000 Generations. In this problem

with relatively few local maxima, the hillclimber makes good progress early on, but is eventually exceeded by

EuA and TEAM. The �nal �tness di�erences are statistically signi�cant (p < 0:05).

3.2.2 Two-Dimensional Rosenbrock Function

In this problemwe wish to minimize the following func-

tion:

f(x; y) = 100(y � x2)2 + (x� 1)2;

where x; y 2 [�5:12; 5:12]. A feasible solution to this

problem is a two-dimensional point, (x; y), which we

encode as two oating-point numbers in a chromosome

of 64 genes. We calculate the coordinates x and y as

follows:

x = 5:12

 
1� 2

32X
i=1

0:5icgi

!
;

y = 5:12

 
1� 2

64X
i=33

0:5i�32cgi

!
:

The coordinate x is encoded in genes 1 through 32,

with gene 1 the most signi�cant bit (MSB) in the

oating-point encoding of x, and gene 32 the least sig-

ni�cant bit (LSB). Similarly, coordinate y is encoded

in genes 33 through 64, with gene 33 the MSB and

gene 64 the LSB.

All algorithms used a chromosome evaluation func-

tion based directly on the Rosenbrock function value,

f(c) = f(x; y). 100 runs were performed for each al-

gorithm, each evolved for 50,000 generations. The av-

erage best �tness value of each generation is shown

in Figure 2. The parameters used for each algo-

rithm are: Stochastic Hillclimber: pm=0.3; GA: n=50,

pr=0.6, pm=0.016; EuA: n=100, pn=0.1, pi=0.01;

and TEAM: n=100, nmin=20, pm=0.01, �=0.2,

Tmodel=100, �=replace worst �tness. These parame-

ter values were again determined experimentally, and

small variations produce roughly equivalent results.

In this problem, TEAM clearly outperformed all other

algorithms: it generated solutions with �tness values

several orders of magnitude closer to optimal than its

competitors. The di�erences between the �nal average

best �tness of the four algorithms are statistically sig-

ni�cant. The discretization of the problem introduces

many local optima, traditionally diÆcult features for

optimization algorithms. Yet during later generations,

TEAM's average best �tness continues to improve,

suggesting TEAM could yield even better solutions if

evolution continued beyond 50,000 generations.
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Figure 2: Average Best Fitness of 100 Runs Minimizing the Rosenbrock Function Over 50,000 Generations. In

this problem with many local optima and signi�cant deception, TEAM �nds solutions several orders of magnitude

better than the other algorithms. The �nal �tness di�erences are statistically signi�cant (p < 0:05).

Both of TEAM's chromosome replacement policies

were tried on this problem as well. Interestingly,

the alternative replace worst contributor policy caused

TEAM's population to often converge to suboptimal

solutions. The more common replace worst �tness

policy (shown) performed signi�cantly better, allow-

ing TEAM to consistently �nd good solutions.

How does TEAM achieve such a strong performance

on this problem? To illustrate, recall that the order

in which genes are bound during chromosome creation

is determined by selectivity. Gene ordering therefore

tells us which genes TEAM identi�ed as the most use-

ful, thereby illustrating its progress toward solution.

Figure 3 shows such a histogram of the gene order.

The gray scale indicates a gene's average rank during

chromosome creation over several generations. Dark

coloration indicates that the gene is among the �rst

genes bound, and lighter coloration indicates that the

gene is bound later.

The most prominent feature of Figure 3 is the concen-

trated dark bands, i.e. adjacent genes that were bound

early in the chromosome creation process. In early

generations, the two bands are localized near genes

1 and 2, at the bottom of the histogram, and genes

33 and 34, near the middle of the histogram. Recall

that in the oating point encoding of (x; y) in a chro-

mosome, these genes correspond to the most signi�-

cant bits of the x and y coordinates. Since the two-

dimensional Rosenbrock function has a relatively small

region of near optimal solutions, this result makes

sense: the most important indicators of �tness, and

thus the most important genes to initially bind, are

those responsible for the largest changes in the point

(x; y). It is important to set those genes correctly,

otherwise there is no possibility of high �tness.

Gene 33 is identi�ed as selective almost immediately.

All points in the domain with �tness relatively near the

optimal lay above the line y = 0. A chromosome en-

coding a point above this line must have gene 33 bound

to allele 0, therefore this gene is highly selective and

should be bound early. As evolution progresses and

the alleles of the selective genes become nearly homo-

geneous in the population, additional genes become se-
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Figure 3: Histogram of Gene Order for Minimization of the Rosenbrock Function Over 50,000 Generations. Dark

coloration indicates the gene was bound early in chromosome creation, light means late. TEAM identi�es and

solves the most selective genes �rst, thereby making consistent re�nement possible.

lective. This process is visible in Figure 3 as a widening

of the two dark bands. TEAM's focus on these new

selective genes incrementally re�nes the point (x; y).

This way, Figure 3 illustrates how TEAM solves the

problem by identifying the most important genes �rst.

Similar processes take place in other domains where

the dependencies may be less obvious, giving us im-

portant insight into the domain. To an observer, gene

order can be an important clue to identifying underly-

ing inter-gene dependencies in the problem.

4 DISCUSSION & FUTURE WORK

The overhead of maintaining the model and construct-

ing the chromosome in TEAM is considerable com-

pared to that of a hillclimber or a GA. However, such

more intelligent evolution steps are warranted if they

can generate better �nal solutions than other meth-

ods. In the challenging test of minimizing the Rosen-

brock function, TEAM indeed produced solutions sig-

ni�cantly better than the other algorithms.

TEAM relies on the t-test, which assumes samples are

normally distributed. While TEAM is e�ective in the

two selected problems, normality may be a risky as-

sumption in other domains. It might therefore make

sense to replace the t-test with a method that works

equally well with arbitrary distributions, such as the

Mann-Whitney U test (Mendenhall and Beaver, 1994).

Instead of scoring chromosomes and genes based on

�tness values, scores could be based on rank within

chromosome/gene sets. This way it should be possible

to apply TEAM reliably to a wide range of domains.

Rank-based calculations have another advantage: they

limit the inuence high-�tness chromosomes have dur-

ing chromosome creation. Currently, if there is a

small number of individuals with very high �tness, the

new chromosome is constructed mostly based on their

genes. However, the goal of evolution in TEAM is

to produce a population that converges around a few

high-�tness individuals. With rank-based calculations

a larger number of chromosomes take part in construc-

tion, thereby maximizing the amount of information

considered during chromosome creation.

The model maintained by TEAM has perhaps the

greatest potential for improvement. The current

GENETIC ALGORITHMS 285



model is organized around pair-wise relationships be-

tween genes. This is an improvement over algorithms

that deal with genes in isolation, but combinatorial

problems are not limited to only pair-wise dependen-

cies. A method for identifying and exploiting n-gene

relationships is needed. Instead of recording gene pairs

with an observed relationship to �tness values, we can

record gene groups of arbitrary size. We can already

identify groups of size two, and larger groups can be

formed through expansion and combination of existing

groups as additional correlations are found. The iden-

ti�cation of gene groups could be run in parallel with

population evolution. It is an interesting problem in

its own right, and will be studied in detail in future

work.

5 CONCLUSIONS

An advanced constructive evolutionary algorithm,

TEAM, was introduced in this paper. Using sta-

tistical analysis and modeling of gene/�tness corre-

lations, TEAM can evolve chromosomes in domains

with complex gene dependencies. Experiments show

that TEAM performs better than other problem-

independent combinatorial optimization techniques on

diÆcult problems. This result shows that domain in-

formation can be extracted and meaningfully applied

during population evolution. Future work will focus

on improved methods of information extraction and

application from limited domain sampling.
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Abstract

A parameter-less adaptive penalty scheme for ge-
netic algorithms applied to constrained optimiza-
tion problems is proposed. Besides being sim-
ple, adaptive and not requiring any parameter, it
provides a different penalty parameter for each
constraint. The performance of this new scheme
is examined using several test-problems from the
evolutionary computation literature.

1 INTRODUCTION

The design and implementation of a robust genetic al-
gorithm (GA) for constrained problems is not an easy
task. Several possibilities have been explored by the evo-
lutionary computation community and they can be roughly
grouped as: 1) penalty techniques, 2) repair methods, 3)
special decoders, 4) special operators, 5) selection tech-
niques, 6) hybrid methods and 7) other methods.

Repair methods use domain knowledge in order to move
infeasible offspring into the feasible set. However there are
situations when it is very expensive, or even impossible,
to construct such a repair operator, drastically reducing the
range of applicability of repair methods. Like repair meth-
ods, the design of special decoders[1] that always extract a
feasible phenotype from a given genotype is not trivial in
general and cannot always be done. In special situations
genetic operators can be constructed so that a feasible off-
spring is always generated from feasible parents[2]. Hy-
brid methods, combining mathematical programming and
evolutionary techniques have also been developed[3, 4].
Modified selection schemes used alone [5] or in conjunc-
tion with additional features [6] are also proposed. Un-
der the heading “other methods” one usually collects those
which cannot be clearly classified in one of the previous
groups such as the use of co-evolution (see[7, 8]). For other
methods found in the evolutionary computation literature

see[2, 9, 10, 4] and references therein.

Penalty techniques range from simple naive schemes (like
the “death penalty”: any infeasible offspring is just dis-
carded with no consideration for its potential informa-
tion content) to penalty schemes involving from one to
several parameters. Those parameters can remain con-
stant (the most common case) or be dynamically varied
along the evolutionary process according to an exogenous
schedule[11, 12] or an adaptive procedure[13]. Penalty
methods, though quite general, require considerable do-
main knowledge and experimentation in each particular ap-
plication in order to be effective.

In contrast with previous approaches where a single penalty
parameter is used for all constraints in a given problem,
an adaptive scheme is proposed here which automatically
sizes the penalty parameter corresponding to each con-
straint along the evolutionary process.

In the next section the main penalty techniques found in the
literature are summarized. Section 3 presents the adaptive
scheme proposed and Section 4 discusses several numeri-
cal experiments with test-problems. The paper ends with
conclusions in Section 5.

2 THE CONSTRAINED OPTIMIZATION
PROBLEM

A standard constrained optimization problem in Rn can be
thought of as the minimization of a given objective func-
tion f(x), where x 2 Rn is the vector of design/decision
variables, subject to inequality constraints gp(x) � 0; p =
1; 2; : : : ; �p as well as equality constraints hq(x) = 0; q =
1; 2; : : : ; �q. Additionally, the variables may be subject to
bounds xL

i
� xi � xU

i
but this type of constraint is triv-

ially enforced in a GA and need not be considered here.
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2.1 Penalty functions

Although a few papers [14] do consider a multiplicative
penalty function, in the widely used additive penalty for-
mulation one is led to the unconstrained minimization of a
modified objective function

F (x) = f(x) + penal(x) (1)

where the penalty function penal(x) is zero if x is a feasi-
ble solution and greater than zero otherwise. It is useful to
define the amount of violation of the j-th constraint by the
solution x 2 Rn as

vj(x) =

�
jhj(x)j equality case
maxf0;�gj(x)g inequality case

(2)

It is also common to design penalty functions that grow
with the vector of violations v(x) 2 Rm where m = �p +
�q is the number of constraints to be penalized. The most
popular penalty function is given by

penal(x) = k

mX
j=1

(vj(x))
2 (3)

where k is the penalty parameter. It can be shown that as
k ! 1, the corresponding solution x�

k
of the penalized

problem tends to the solution x� of the original problem.
Although it is easy to obtain the unconstrained problem,
the definition of a good penalty parameter k is usually a
very time-consuming trial-and-error process.

Among the many penalty techniques found in the
literature[15, 3, 16] some of them – more closely related
to the work presented here – will be briefly discussed be-
low.

2.1.1 Some methods in the literature

Homaifar et al. [17] write the fitness function as in (1) –
(3) but allow the user to define several levels of constraint
violation in such a way that the penalty coefficients grow
as higher levels of violation are reached. As a result, the
method requires a penalty parameter kl

j
for the l-th level of

violation of the j-th constraint. This is an attractive strategy
because, at least in principle, it allows for a good control of
the penalization process. The weakness of this method is
the large number of parameters that must be set by the user
for each problem.

Joines & Houck [11] introduce dynamic penalty parame-
ters and the fitness function F (x) can be written as in (1)
– (3) with the penalty parameter, given by k = (C � t)�,
increasing with the generation number t.

Bean & Alouane [18] use (1) – (3) but with the penalty
parameter k = �(t) adapted at each generation by the fol-

lowing rules:

�(t+ 1) =

(
( 1

�1
)�(t) if bi 2 F for all t� g + 1 � i � t

�2�(t) if bi 62 F for all t� g + 1 � i � t
�(t) otherwise

where bi is the best element at generation t, F is the feasi-
ble region, �

1
6= �

2
and �

1
; �

2
> 1.

Coit et al. [13], use the fitness function:

F (x) = f(x) + (Ffeas(t)� Fall(t))

mX
j=1

(vj(x)=vj(t))
�

whereFall(t) corresponds to the best solution until the gen-
eration t (without penalty), Ffeas corresponds to the best
feasible solution and � is a constant.

Schoenauer & Xhantakis [19] handle constrained problems
in stages: (i) first evolve a randomly generated population
considering only the first constraint until a certain percent-
age of the population is feasible with respect to that con-
straint; (ii) the final population of the first stage of the pro-
cess is used in order to optimize with respect to the second
constraint. During this stage, the elements that had vio-
lated the previous constraint are removed from the popu-
lation, (iii) the process is repeated until all the constraints
are processed. This strategy becomes less attractive as the
number of constraints grows and is potentially dependent
on the order in which the constraints are processed.

Le Riche et al. [20] create two sets of candidate solutions
where one of them is evaluated with a penalty parameter
k1 and the other with a parameter k2. With k1 � k2 there
are two different levels of penalization and there is a higher
chance of maintaining feasible as well as infeasible individ-
uals in the population and to get offsprings near the bound-
ary between the feasible and infeasible regions.

Powell & Skolnick [21] propose a method of superiority of
feasible points where each candidate solution is evaluated
by the following expression:

F (x) = f(x) + r

mX
j=1

vj(x) + �(t; x)

where r is a constant. The main assumption is that any fea-
sible solution is better than any infeasible solution. This
assumption is enforced by a convenient definition of the
function �(t; x). Deb [6] modified this scheme by introduc-
ing tournament selection coupled with the fitness function:

F (x) =

�
f(x) if x is feasible
fmax +

P
m

j=1
vj(x) otherwise (4)

where fmax – the function value of the worst feasible solu-
tion in the population – replaces f(x), leading to a higher
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(potentially excessive) penalty. However, Deb’s[6] con-
straint handling scheme (which also involves niching and
a controlled mutation) works very well for his real-coded
GA, but not for the binary-coded one.

Hamida & Schoenauer [22] propose an adaptive algorithm
accounting for the proportion of feasible individuals in the
population, using a seduction/selection strategy to mate
feasible and infeasible individuals and a selection scheme
to favor a fraction of all feasible individuals.

Runarsson & Yao [5] propose a novel approach to balance
objective and penalty function values by a stochastic rank-
ing. Using a real coding, very good results are obtained for
continuous optimization problems.

Recently, Wright & Farmani [23] proposed a method that
requires no parameters and represents the constraint viola-
tion by a single infeasibility measure.

3 THE PROPOSED METHOD

In this work a method without any type of user defined
penalty parameter is proposed. An adaptive scheme is de-
veloped which uses information from the population such
as the average of the objective function and the level of vi-
olation of each constraint during the evolution.

The fitness function proposed is written as:

F (x) =

�
f(x); if x is feasible;
f(x) +

P
m

j=1
kjvj(x) otherwise

where

f(x) =

�
f(x); if f(x) > hf(x)i;
hf(x)i otherwise

(5)

and hf(x)i is the average of the objective function values
in the current population. In the Figure 1 feasible as well as
infeasible solutions are shown. Among the 6 infeasible so-
lutions, the individuals #3, #4, #5 and #6 have their ob-
jective function values (represented by opened circles), less
than the average objective function and, according to the
proposed method, have f given by hf(x)i. The solutions
#1 and #2 have objective function values which are worst
than the population average and thus have f(x) = f(x).

The penalty parameter is defined at each generation by:

kj = jhf(x)ij hvj(x)iP
m

l=1
[hvl(x)i]2

(6)

and hvl(x)i is the violation of the l-th constraint averaged
over the current population. Denoting by pop the popula-
tion size, one could also write

kj =
jPpop

i=1
f(xi)jP

m

l=1
[
P

pop

i=1
vl(xi)]2

popX
i=1

vj(x
i) (7)

f (x)

f (x)

f (x)

65 x 

0

infeasible feasible

=(x)g

3 41 2

Figure 1: The definition of the function f .

With the proposed definition one can prove the following:

Property – An individual whose j-th violation equals the
average of the j-th violation in the current population for
all j, has its fitness value given by:

F (~x) =

�
f(~x) + jhf(x)ij if f(~x) > hf(x)i
hf(x)i + jhf(x)ij otherwise

Proof – In fact, let ~x be such an element. By definition,

F (~x) = f(~x) +

mX
j=1

jhf(x)ijhvj (x)iP
m

l=1
[hvl(x)i]2

vj(~x):

But, by hypothesis, vj(~x) = hvj(x)i for all j leading to

F (~x) = f(~x) +
jhf(x)ijP

m

l=1
[hvl(x)i]2

mX
j=1

[hvj(x)i]2

= f(~x) + jhf(x)ij

and the results follow from eq. (5).

In the next section several examples from the literature are
considered in order to test the robustness of the proposed
adaptive parameter-less scheme. It should be emphasized
that the accuracy of the final results of the search depends
also on other components of the algorithm not considered
here – such as coding, operators and selection scheme –
besides the penalization procedure itself. Good results re-
ported in the literature (such as in [5]) are obtained with real
coding, more sophisticated selection schemes and more ef-
fective genetic operators. The need for better operators
in order to obtain good results in constrained continuous
optimization has already been pointed out by Hamida &
Petrowski [24].
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4 NUMERICAL EXPERIMENTS

In order to investigate the robustness of the proposed
penalty procedure, several optimization problems from the
literature are solved using a simple generational GA with
Gray code, rank-based selection and elitism. The operation
of recombination was applied with probability pr = 0:8.
Standard one-point, two-point and uniform crossover op-
erators were applied each one with its respective rela-
tive probability (in this work, p1

c
= 0:2; p2

c
= 0:4 and

pu
c
= 0:4). Mutation was applied bit-wise to the offsprings

with rate pm = 0:03. The equality constraints were con-
verted into one inequality constraint bounding the abso-
lute value of the degree of violation by 0.0001 (That is,
jh(x)j � 0:0001).

4.1 Test-problem 1

In the first example to be investigated, from [6], the func-
tion to be minimized and the constraints are given respec-
tively by

f(x) = (x2
1
+ x2 � 11)2 + (x1 + x2

2
� 7)2;

4:84� (x1 � 0:05)2 � (x2 � 2:5)2 � 0;

x2
1
+ (x2 � 2:5)2 � 4:84 � 0

The search space is bounded by 0 � xi � 6; i = 1; 2 and
the optimum solution is (x1; x2) = (2:246826; 2:381865).
with a function value f(x) = 13:59085. The number of
generations allowed was 50 and the best solution found
was (2:2468493; 2:3823017) corresponding to f(x) =
13:59085, the worst one was (1:5048537; 4:1170674)with
f(x) = 152:54840 and the average value was f(x) =
30:7488. In this Test-problem 50 independent runs were
performed with a population size equal to 50 and each vari-
able coded with 20 bits. Table 1 presents a comparison of
results for this test-problem.

This study Ref.[6]
best 13.59085 13.59658
worst 152.54840 244.11616

Table 1: Comparison of results on Test-problem1. The op-
timum value is 13.59085.

One can note that the results found for the Test-problem 1
are better than those found in the reference [6] using the
same number of function evaluations.

4.2 Test-problem 2

In this test problem, from Michalewicz[25], the function

f(x;y) = 6:5x� 0:5x2 � y1 � 2y2 � 3y3 � 2y4 � y5

is to be minimized over the set y3 � 1, y4 � 1, y5 � 2,
x � 0 and yi � 0 for 1 � i � 5. subject to

x+ 2y1 + 8y2 + y3 + 3y4 + 5y5 � 16

� 8x� 4y1 � 2y2 + 2y3 + 4y4 � y5 � �1
2x+ 0:5y1 + 0:2y2 � 3y3 � y4 � 4y5 � 24

0:2x+ 2y1 + 0:1y2 � 4y3 + 2y4 + 2y5 � 12

� 0:1x� 0:5y1 + 2y2 + 5y3 � 5y4 + 3y5 � 3

The global solution is (x;y�) = (0; 6; 0; 1; 1; 0) with
f(x;y�) = �11. Using a population size of 70, three
sets of 10 independent runs allowing for 1000, 5000 and
20000 generations were performed. Each variable was
coded with 25 bits and the results are shown in the Ta-
ble 2. Michalewicz [25], using GENECOP, was able to
find the optimum solution in 1000 generations for all runs.
However, it must be noted that GENECOP is designed to
maintain feasibility for that particular constraint set (linear
inequalities).

maxgen
1000 5000 20000

x 0.000001907 0.000000715 0.000000000
y1 6.000138938 5.998155534 5.999983966
y2 0.002714396 0.000119925 0.000008345
y3 0.999999881 1.000000000 1.000000000
y4 0.989082306 0.999896646 0.999980778
y5 0.002151549 0.000607729 0.000004590

best �10:98587 �10:99879 �10:99997
average �10:96019 �10:99447 �10:99965
worst �10:90891 �10:98327 �10:99887

Table 2: Comparison of results in the Test-problem 2.

4.3 Test-problem 3

The previous test-problems presented only continuous vari-
ables. The present one, from [26], involves continuous as
well as discrete variables. The function to be maximized is

f(x1; x2; x3; y1; y2) = �5:357854x2
1
�

0:835689y1x3 � 37:29329y1+ 40792:141

subject to

a1 + a2y2x3 + a3y1x2 � a4x1x3 � 92

a
5
+ a

6
y
2
x
3
+ a

7
y
1
y
2
� a

8
x2
1
� 90 � 20

a
9
+ a

10
x
1
x
3
+ a

11
y
1
x
1
� a

12
x
1
x
2
� 20 � 5

The range of the continuous variables x1; x2 and x3 is
[27; 45] and the ranges of the integer variables y1 and y2
are [78; 102] and [33; 45], respectively. The coefficients a1
to a12 are given in the Table 3.
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a1 = 85:334407 a5 = 80:51249 a9 = 9:3009610
a2 = 0:0056858 a6 = 0:0071317 a10 = 0:0047026
a3 = 0:0006262 a7 = 0:0029955 a11 = 0:0012547
a4 = 0:0022053 a8 = 0:0021813 a12 = 0:0019085

Table 3: Coefficients for Test-problem 3.

The global solution is, for any value of x2 and y2,
(27; x2; 27; 78; y2). The number of bits per variable was
25, except for the variables y1 and y2 which were coded
with 8 bits each. The number of generations allowed was
100 and the population size was set to 250. All 10 runs pro-
duced the optimal solution with f = 32217:4. In Table 4 a
comparison is made between some of the results obtained
by Costa & Oliveira [26] for this problem. The first column
corresponds to a standard penalty scheme – eq. (1) – (3) –
with k = 103, the second one to Deb’s penalty scheme
(eq. 4) and the last one to the present study. The search
process was terminated by Costa & Oliveira [26] when: (i)
1000 generations were performed or (ii) no improvement
was observed after 50 generations or (iii) all the population
converged to a single solution. The Table 4 shows the av-
erage number of function evaluations (avgnf) and the per-
centage of runs finding the optimal solution (% success).

standard (k = 103) Deb’s This study
avgnf 37167 35255 25000

% success 100 100 100

Table 4: Comparison of results on Test-problem 3.

4.4 Test-problem 4

This test corresponds to a mechanical design minimiza-
tion problem studied by Deb [6]. The design variables
are fh; l; t; bg, with bounds 0:125 � h � 10 and 0:1 �
l; t; b � 10, and the objective function is

fw = 1:10471h2l + 0:04811tb(14:0+ l)

subject to

13; 600� �(x) � 0; 30; 000� �(x) � 0;

b� h � 0; Pc(x) � 6; 000 � 0; 0:25� �(x) � 0

The expressions for �(x), �(x), Pc(x) and �(x) are:
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q
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2

+ (� 00(x))
2

+ l�
0(x)� 00 (x)=c

c =

r
0:25

�
l2 + (h+ t)2

�
; �(x) =

504000

t2b

Pc(x) = 64746:022 (1� 0:0282346t) tb3

�(x) =
2:1952

t3b
; �

0

(x) =
6000p
2hl

�
00

(x) =
6000 (14 + 0:5l) c

2
n
0:707hl

�
l2=12 + 0:25 (h+ t)

2

�o
In [6] Deb investigates two situations in order to compare
the results for this example. The first one corresponds to a
binary coded GA with standard penalty scheme – eq. (1)
- (3) – and four constant penalty coefficients (k = 100,
k = 101, k = 103 and k = 106). The population size was
set to 80, the maximum number of generations was 500 and
50 independent runs were performed. Each variable was
coded with 10 bits and the total length of the chromosome
was 40. The Table 5 shows the comparison of results and it
is clear that in this study better values were found.

best worst
k = 100 2.41324 483.50177
k = 101 3.14206 7.45453
k = 103 3.38277 10.65891
k = 106 3.72929 9.42353
This study 2.39623 3.39956

Table 5: Comparison of results on Test-problem 4 using
standard penalty and the proposed technique.

The second situation (referred to as the ”welded beam re-
visited” by Deb) corresponds to a real coded GA proposed
by Deb where, among other features, niching was used.
The population size was set to 80. Two series of 50 runs
were performed allowing for 500 and 4000 generations re-
spectively. Each variable was coded with 30 bits generating
a chromosome 120 bits long. Results for this test are shown
in Table 6.

maxgen This Ref. [6]
study w/o niching with niching

best 500 2.38352 2.44271 2.38119
4000 2.38159 — 2.38119

worst 500 3.73060 7.44425 2.64583
4000 2.95533 — 2.38355

Table 6: Comparison of results on Test-problem 4 using
Deb’s real coded GA and the proposed technique.

It is clear that Deb’s results only improve when niching is
added to his penalty scheme.

4.5 The G-Suite

In this section the 11 well known G1-G11 test-problems
presented by Koziel & Michalewicz [1] are considered.
The G-Suite is made up of distinct kinds of functions and
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involves constraints given by linear inequalities LI, nonlin-
ear equalities NE and nonlinear inequalities NI. The sum-
mary of the Test-cases is presented in the Table 7 where the
column “n” shows the number of parameters, “a” indicates
the number of active constraints at the optimum solution
and f� denotes the known optimum value of f . More de-
tails of each of these problems can be found in [1] and [5].
An extended discussion involving each one of these prob-
lems and different techniques from the evolutionary com-
putation literature can be found in [27].

Three set of experiments were performed using a popula-
tion size of 70. For the first experiment 20 independent
runs were performed with the maximum number of gener-
ations set to 5000. In the second experiment the maximum
number of generations is set to 20000. Finally, the third ex-
periment consists of 10 independent runs (with 5000 gen-
erations) where the best solution obtained in the first exper-
iment is introduced in the initial population.

Name n Type of f(x) LI NE NI a f�

G1 13 quadratic 9 0 0 6 �15:0
G2 20 nonlinear 9 0 6 1 0.803553
G3 10 polynomial 0 1 0 1 1.0
G4 5 quadratic 0 0 6 2 �30655:5
G5 4 cubic 2 3 0 3 5126.4981
G6 2 cubic 0 0 2 2 �6961:8
G7 10 quadratic 3 0 5 6 24.306
G8 2 nonlinear 0 0 2 0 0.0958250
G9 7 polynomial 0 0 2 0 680.63

G10 8 linear 3 0 3 6 7049.33
G11 2 quadratic 0 1 0 1 0.75

Table 7: Summary of 11 Test Cases.

A comparison of the results obtained with the simple adap-
tive procedure proposed here with those obtained by Koziel
& Michalewicz [1] is made in the Tables 8, 9, 10, 11, 12 and
13 where the best results are indicated in boldface.

It can be noted that the proposed scheme provides better
results than those obtained using the more complex ho-
momorphous mapping technique of Koziel & Michalewicz
[1].

The same observation applies to the results recently ob-
tained by Wright & Farmani [23] using a binary code.

5 CONCLUSIONS

A new simple adaptive parameter-less penalty scheme for
the solution of constrained optimization problems via ge-
netic algorithms has been proposed. Its main feature, be-
sides being adaptive and not requiring any parameter, is to
automatically define a different penalty parameter for each
constraint.

In all problems tested so far (including tests not shown
here) the procedure has produced good results when com-
pared to the literature available. It must also be emphasized
that such good results were obtained in spite of the use of an
otherwise very naive binary coded genetic algorithm with
standard operators. Good results reported in the literature
are often obtained with real coding, more sophisticated se-
lection schemes, more aggressive genetic operators and by
exploring the particular structure of the constraint set.

The procedure proposed here is simpler, can be imple-
mented for binary coded genetic algorithms leading to good
results for mixed continuous-discrete optimization prob-
lems. Additional tests in larger real-world applications are
being conducted with good results so far.
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Function Experiment 1
worst best average

G1 �15:00 �15:00 �15:00
G2 0:6002978 0:7724640 0:7031971
G3 0:9391756 0:9939078 0:9757277
G4 �30660:76 �30665:24 �30663:40
G5 6040:595 5126:571 5389:364

G6 �6961:779 �6961:796 �6961:789
G7 42:01618 24:86371 29:86465
G8 0:0725015 0:0958250 0:0926157

G9 682:1562 680:7590 681:4076

G10 10002:93 7086:404 8161:997

G11 0:7579745 0:75 0:7503349

Table 8: Experiment 1.

Function Experiment 1
worst best average

G1 �14:0566 �14:7207 �14:4609
G2 0:78427 0:79506 0:79176

G3 0:9917 0:9983 0:9965

G4 �30617:0 �30662:5 �30643:8
G5 — — —
G6 �4236:7 �6901:5 �6191:2
G7 38:682 25:132 26:619

G8 0:0291434 0:095825 0:0871551
G9 682:88 681:43 682:18

G10 11894:5 7215:8 9141:7
G11 0:75 0:75 0:75

Table 9: Experiment 1 (Koziel & Michalewicz [1]).

Function Experiment 2
worst best average

G1 �15:00 �15:00 �15:00
G2 0:6499022 0:7918570 0:7514353
G3 0:9983935 1:000307 0:9997680

G4 �30664:91 �30665:51 �30665:29
G5 6040:595 5126:571 5389:347

G6 �6961:796 �6961:796 �6961:796
G7 33:07581 24:85224 27:90973
G8 0:0795763 0:0958250 0:0942582

G9 681:6396 680:6678 680:9640

G10 9977:767 7080:107 8018:938

G11 0:75 0:75 0:75

Table 10: Experiment 2.

Function Experiment 2
worst best average

G1 �14:6154 �14:7864 �14:7082
G2 0:79119 0:79953 0:79671

G3 0:9978 0:9997 0:9989
G4 �30643:8 �30645:9 �30655:3
G5 — — —
G6 �5473:9 �6952:1 �6342:6
G7 25:069 24:62 24:826

G8 0:0291438 0:095825 0:0891568
G9 683:18 680:91 681:16

G10 9659:3 7147:9 8163:6
G11 0:75 0:75 0:75

Table 11: Experiment 2 (Koziel & Michalewicz [1]).

Function Experiment 3
worst best average

G1 �15:00 �15:00 �15:00
G2 0:7729277 0:7780233 0:7741776
G3 0:9973952 0:9997135 0:9987124

G4 �30665:25 �30665:51 �30665:39
G5 5126:571 5126:571 5126:571

G6 �6961:796 �6961:796 �6961:796
G7 24:86371 24:86130 24:86346

G8 0:0918033 0:0958250 0:0940601
G9 680:7590 680:7222 680:7461

G10 7082:667 7080:328 7081:146

G11 0:75 0:75 0:75

Table 12: Experiment 3.

Function Experiment 3
worst best average

G1 �14:5732 �14:7184 �14:6478
G2 0:78279 0:79486 0:78722

G3 0:996 0:9978 0:997
G4 �30645:6 �30661:5 �30653:1
G5 — — —
G6 �6390:6 �6944:4 �6720:4
G7 26:182 25:09 25:545
G8 0:0958246 0:0958250 0:0958248

G9 683:58 681:72 682:56
G10 7685:8 7321:2 7498:6
G11 0:75 0:75 0:75

Table 13: Experiment 3 (Koziel & Michalewicz [1]).
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Abstract

Exploitation of domain knowledge can expe-
dite the process of finding solutions to new
problems. This research is focused on a dis-
tributed memory system which maintains a
dynamic knowledge base, in the form of mem-
ory cells, that are employed to improve search
performance over time. Short-term and long-
term memory models are analyzed in the
context of the distributed memory system.
Results indicate that genetic search perfor-
mance is significantly impacted by the quan-
tity and quality of information that is main-
tained in memory.

1 Introduction

Many real-world optimization problems are time sen-
sitive, where unbounded time to find the optimal so-
lution is not practical. In these instances, execution
time can be expedited by leveraging domain knowl-
edge, providing a “starting point” for the search al-
gorithm. Extensive research has been performed in
the context of incorporating a-priori knowledge to im-
prove genetic search performance [4, 5]. However, it is
still unclear how the quantity and quality of informa-
tion that constitutes the knowledge base affect search
performance. This provides the motivation for exam-
ining the impact of short-term and long-term memory
on genetic search performance, in terms of both quan-
titative and qualitative metrics.

We have developed a distributed memory system
(DMS) that serves as the test environment for our
analysis. In this DMS, genetic search is employed as
the search mechanism on the system nodes. The nodes
operate independently and simultaneously, sampling
and solving different pattern matching problems from

a shared library. The DMS incorporates a dynamic
pool of memory cells that is shared between nodes.
However, information from any one cell is available at
only one node at a time. The memory cells evolve
with continuous feedback from each independent ge-
netic search. Each node in the DMS employs genetic
search to solve an independent problem as opposed to
all nodes working together to solve a single problem,
thereby differentiating this work from most parallel ge-
netic algorithm research.

A secondary goal for each search is to improve the
aggregate search performance of all nodes by sharing
information about problems that may be encountered
by other nodes over time. Our objective is to compare
genetic search performance when knowledge is shared
via short- or long-term memory (of limited size) for
initial seeding rather than random initialization.

2 Distributed Memory System

Simple bit-pattern recognition problems form the
bounded problem library for this work.1 The system
is trained to recognize a set of bit string patterns in a
pattern library by evolving and maintaining dynamic
memory cells that may be shared between nodes via
communication. The memory cells (in the form of bit
string patterns) are evolved by local genetic search and
fed back into the system.

2.1 Operation

This DMS consists of two core operations. The first is
genetic search, taking place simultaneously and con-
tinuously on each node. The second involves mobile

1The GA may not be the best choice for simple pattern
matching problems. This application was selected so as to
focus on performance metrics in the context of exploiting
memory for subsequent search. We anticipate using this
system for complex pattern recognition tasks in the future.
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agents that circulate the memory cells between inde-
pendent nodes. While the memory cells can travel
to any node in the system, a cell is only useful when
resident on a given node. The nodes perform pattern
matching continuously. Each node has access to a pat-
tern library, much like the immune library in Forrest,
et. al., [3]. Random samples from the pattern library
are taken at each node. The resident memory cells in
the input queue on each respective node are compared
against a selected bit string. If a match is found, a
new sample is taken and the process is repeated. If no
match is found, the resident memory cells are used as
the initial population for genetic search.

In this system, autonomous mobile agents circulate
the memory cells. From the perspective of each node,
agents continuously arrive, deposit memory cells, re-
trieve new memory cells and transport them to new
nodes (Figure 1). Meanwhile, bit strings are continu-
ously sampled from the pattern library. At the instant
that a sample is taken, the first 50 memory cells that
reside in the local input queue are removed, comprising
the initial population for genetic search. If the initial
population is less than 50, the memory cells that reside
in the local output queue are removed and added to
the initial population. Finally, random bit strings are
generated to satisfy any remaining discrepancy. With
a complete initial population, genetic search begins for
the string to match the sampled pattern.

Figure 1: Agent transportation of memory cells.

2.2 Search Algorithm

The CHC adaptive search algorithm [1] is a genera-
tional genetic algorithm that has been shown to yield
very good performance in optimizing a wide variety of
test problems with little or no parameter tuning [6, 7].
Therefore, CHC is used as the genetic search com-
ponent of our DMS. CHC begins the search process
by generating 2 ∗N random samples and selecting the

best N samples, where N is the population size.2 Each
of the individuals in the population is then randomly
paired to form potential mating pairs. The Hamming
distance between the potential mates is measured and
compared with an incest threshold. If the Hamming
distance is greater than the incest threshold the indi-
viduals are allowed to mate. When the mating process
is completed for the N/2 pairs, the offspring produced
compete for survival with the parent population. The
best N individuals survive.

Mating in CHC is typically performed using the HUX
crossover operator when a binary representation is em-
ployed. HUX is a highly disruptive crossover operator
which guarantees that the offspring produced will be
maximally distant (in Hamming space) from the par-
ents. Crossover is performed by exchanging exactly
half of the bits that differ between the two parents.

The incest threshold value is initially set to the ex-
pected difference between samples in the population
(i.e., L/2, where L is the string length). The incest
threshold is adaptively adjusted as search progresses.
Each generation that either: a) no offspring survive
or b) no matings are allowed, the incest threshold is
reduced. When the incest threshold goes below 0, cat-
aclysmic mutation is used to diverge the population.
Divergence is accomplished by making 2 ∗N copies of
the best individual in the population. Then 35% of
the bits in all but one individual are complemented
and search is restarted.

2.3 Parameters

In this DMS there are several operational parameters
that can be tuned to: 1) optimize the learning curve
(i.e., minimize the time to recognize the sampled pat-
terns) and 2) minimize the memory footprint (i.e., the
number of memory cells in the system). There are
four parameters (feedback percentage, feedback decre-
ment, direct decrement and survival threshold) in this
DMS that directly impact memory cell survival. There
are two additional parameters (number of agents and
agent wait time) that effect the circulation and overall
distribution of memory cells in the system.

To bound the size of the memory cell population in
this system we have introduced the notion of lifetime.
Memory cell lifetimes are associated with time-to-live
(TTL) values. All memory cells receive the same initial
TTL value when they are fed into the system. To
survive, a memory cell must maintain a TTL that is
greater than the survival threshold. Each time a cell

2The initial population in this DMS is seeded rather
than randomly generated, as explained in Section 2.1.
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is moved from the input to the output queue on a
given node, its TTL is decremented. Figure 2 provides
an overview of the operations and parameters at each
node in the system. The six operational parameter
descriptions [and ranges] are as follows:

1. Number of Agents [1 - (100*numOfNodes)] -
the number of agents that exist in the system.

2. Agent Wait Time [100 ms - 2 sec] - the length of
time that an agent waits at a node for a memory
cell to become available before moving to a new
node “empty handed”.

3. Feedback Percentage [2% - 100%] - the per-
centage of patterns fed to the survival test from
the final genetic population. String patterns are
taken in order of best score to worst.

4. Feedback Decrement [0 - 100] - decrement ap-
plied to a memory cell’s TTL when fed to the
survival test from the final genetic population.

5. Direct Decrement [0 - 100] - decrement applied
to a memory cell’s TTL when fed directly from
the input queue to the output queue.

6. Survival Threshold [1 - 100] - minimum TTL
value for a memory cell’s continued survival.

Figure 2: DMS operations and parameters.

In this DMS, the TTL parameter governs the persis-
tence of memory cells. Short-term memory (STM) is
modeled by unconditionally decrementing the TTL of
memory cells each time they are used. Each cell is
treated the same, regardless of its value to the system.
Long-term memory (LTM) is modeled by conditional
handling of the TTL value, rewarding “useful” mem-
ory cells. Upon arrival at a host, each memory cell is
scored against the current pattern sample. The TTL
of the memory cell is reset if its score is greater than
its current TTL. Thus, in the LTM model, survival de-
pends on possessing a high affinity (close in Hamming
space) for one or more members of the pattern library.

In evaluating the STM and LTM models, we examine
memory efficiency, defined in terms of: 1) minimizing

the average trials to match the sample patterns (sys-
tem learning curve), and 2) minimizing the memory
cell count at the end of the simulation (memory foot-
print). Ideally, the DMS should quickly reduce the
number of trials required to match sampled patterns,
while limiting the growth of memory cells (Figure 3).

Figure 3: Model DMS behavior.

The performance of this DMS was known to depend
on the values assigned to the six parameters govern-
ing the system behaviors. To fairly compare the two
memory models in this DMS, we used a meta-GA to
search for the best operational parameter sets for each
model (Section 3). The respective parameter sets are
then employed to compare the STM and LTM models.
Section 4 describes the DMS simulations and provides
an analysis of simulation results. Analysis of the re-
sults leads to a question of long-term stability (Section
5), where the meta-GA is again employed to search for
a new DMS parameter set using new evaluation con-
ditions. Section 6 provides insight into the effects of
the STM and LTM models on genetic search, with an
emphasis on the role of random genetic material.

3 Optimizing DMS Parameters Using
a Meta-GA

Each evaluation for the search simulates the DMS
using the operational parameters as specified by the
meta-GA genes (Figure 4). The DMS is simulated for
a fixed number of cycles on all nodes, where each cycle
constitutes the search for a sampled pattern. Due to
the stochastic nature of genetic search and the non-
deterministic behavior in a multi-threaded environ-
ment, a complete DMS simulation is executed three
times for each evaluation, reporting the average as the
evaluation value. The evaluation function used to min-
imize the system learning curve and memory size is:

f(x) =

[
i=3∑
i=0

(1.5 ∗ MemCells) + avgTrials

]
/3 (1)

The STM and LTM meta-GA searches were performed
using a pattern library with 10, 64-bit strings. Two
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Figure 4: Meta-GA search for DMS parameter sets.

DMS nodes were concurrently simulated for 100 cy-
cles each. For the STM model, the memory cell TTL
was never reset. For the LTM model, the memory cell
TTL was reset if the memory cell pattern scored higher
against the current sample. The initial TTL was set
to 100 for the simulations of both models.

3.1 Meta-GA Search Results

Table 1 shows the operational parameter sets discov-
ered by the meta-GA searches for the two memory
models. Each search was run for 8,000 trials (i.e.,
24,000 simulations).3 Both meta-GA searches discov-
ered that a feedback rate of 2% was best for each of
the two memory models. This results in a single indi-
vidual being fed back to the memory cell population
for each completed pattern matching cycle. The op-
erational parameter set discovered for the LTM model
specifies more agents to transport information in the
DMS than does the parameter set discovered for the
STM model. More agents may be required in the LTM
simulations, since the agent wait time is considerably
longer than the wait time specified for the STM model.

The feedback decrement values discovered for the two
DMSs are similar and the direct decrement is exactly
the same. However, the values discovered for the sur-
vival threshold in the two searches were dramatically
different. The meta-GA search discovered a survival
threshold of 50 for the DMS using a LTM model and
a 12 for the STM model. The memory cells in the
LTM model must be useful to the system (i.e., match
a pattern sample) frequently to remain alive. A sur-

3Due to the evaluation time required for each simula-
tion, only a single meta-GA search was performed for each
of the memory models proposed. Therefore, parameter sen-
sitivity tests (i.e., varying one parameter at a time while
holding the others constant) were employed to evaluate the
solutions. No better solutions were discovered, indicating
that the operational parameter sets at least represent local
optima.

Memory Model
DMS Parameter STM LTM
Number of Agents 1 9
Agent Wait Time 338 ms 1170 ms
Feedback Rate 2% 2%
Feedback Decr. 1 0
Direct Decr. 3 3
Survival Threshold 12 50

Table 1: Parameter sets discovered by meta-GA
search. Each simulation was run for 100 cycles.

vival threshold of 50 quickly eliminates memory cells
with random strings and, when combined with a di-
rect decrement value of 3, will also eliminate memory
cells with patterns that are not sampled for more than
16 cycles. The lifetime of a memory cell in the DMS
using the STM model is not determined by its value
to the system. Thus, a survival threshold of 12, when
combined with a direct decrement of 3, allows STM
cells to be exploited for ∼29 cycles.

4 Comparing DMS Performance for
STM and LTM Models

As mentioned previously, the behavior of this DMS is
stochastic in nature. Therefore, the performance of the
DMS using the two memory models were compared by
executing 30 independent, 100-cycle simulations, using
the operational parameter sets found by the meta-GA
and listed in Table 1. The results of the 30 independent
simulations enabled statistical comparisons. For each
simulation we measured:

1. Final Memory Cell Count - the total number
of memory cells in the system at completion.

2. Average Trials - the average number of trials
required to match the pattern library samples.

3. Evaluation Value - as given in Equation 1.
4. Hit Rate - the percentage of cycles where the

sampled pattern was matched in the initial popu-
lation (i.e., at least one memory cell used to seed
the initial population matched the sample, elimi-
nating the need for genetic search).

5. Pattern Match Rate - the percentage of mem-
ory cells in the system at completion that match
one of the pattern library samples.

6. Restarts/Simulation - the number of cy-
cles/simulation (pattern library samples) where
the GA experienced at least one restart (see Sec-
tion 2.2) while searching for a sampled pattern.

Table 2 gives the average values and standard error
of the mean (SEM) for each of these six performance
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measurements. Not surprisingly, the DMS learns to
recognize patterns much faster when starting with
populations seeded with memory cells than when start-
ing from random populations (i.e., no memory).

Metric No Memory STM LTM
Cell count 0 87.27 (0.69) 120.33 (1.79)
Avg trials 900.78 (7.24) 177.81 (2.24) 230.22 (3.06)
Hit rate(%) 0 84.68 (0.25) 79.83 (0.27)
Match rate(%) N/A 69.87 (0.55) 89.35 (1.29)
Restarts/Sim 0 0.06 (0.04) 2.16 (0.35)

Table 2: Average performance values and SEM (for 30
runs) using the parameter sets found by the meta-GA
(Table 1). Each run equals a 100-cycle simulation.

4.1 The Value of Short-term Memory

Performance, as measured by the evaluation value,
memory cell count, and average trials, is significantly
better for the DMS implementing the STM model as
opposed to the LTM model. This might be unexpected
since traditional memory models tend to reinforce use-
ful memory recall events (i.e., reset TTL) and delete
memory cells that have not been useful for long peri-
ods of time. However, the direct feedback that allows
this DMS to learn also replenishes memory cells that
are of value. For example, if a memory cell contains
a string that matches the pattern sampled at a given
cycle, and that memory cell is used to seed the initial
population for the search, the string will be duplicated
in the feedback process. This propagates useful infor-
mation in the DMS without resetting the TTL.

The design of this DMS does not provide for dynam-
ically discontinuing feedback (in which case, resetting
the TTL would be critical). In future work, this DMS
could respond to a dynamic pattern library, making
continuous feedback critical. The emergence of a dy-
namically maintained distribution of patterns (repre-
sented by the memory cell population) that promotes
recall at all nodes in the DMS is important.

More insight into these memory models can be gained
by examining the behavior of individual DMS simula-
tions. Figure 5-a shows the trials to match each pat-
tern sampled during a DMS simulation of 100 cycles
for the STM model, as well as, the memory cell count.
Figure 5-b shows the same information for a DMS sim-
ulation using the LTM model. Cycles are shown on the
X-axis. The solid line shows the number of trials to
discover the pattern (Y-axis on left). The dashed line
shows the memory cell count (Y-axis on the right).4

4The information on these graphs reflects the experience
at a single node in the DMS system.

For both simulations, the searches usually expend
∼900 trials to discover the pattern to match the sam-
ple for the first ∼15 cycles. After this learning period,
the system often contains a match for the sampled pat-
tern in the seeded initial population. Cycles where the
pattern is matched in the initial population (i.e., a hit)
require only 50 trials.5 The peaks in trials indicate ge-
netic search was required to discover the pattern (i.e.,
no match was found in the initial population).

Matching a sampled pattern in the initial population
has a significant impact on the average trials to find a
pattern. Thus, the higher average hit rate observed for
the STM DMS in Table 2 results in significantly better
performance than in the LTM DMS implementation.

Figure 5-a also shows that the memory cell count grows
for a period of ∼40 cycles and reaches a high of ∼100
memory cells. However, in the DMS using the LTM
model (Figure 5-b) the memory cell count only grows
for about half as long and peaks out at a much lower
number (∼70). The shorter initial growth period and
smaller memory cell count peak exhibited by the DMS
using the LTM model would seem to be advantageous,
but actually results in worse performance when com-
pared with the DMS using the STM model. The mem-
ory cell count in the DMS using the STM model ap-
pears to become stable after a large number of cells
expire (∼40 cycles). The DMS using the LTM model
never seems to become stable and the memory cell
count appears to be growing somewhat toward the end
of the simulation (i.e., 100 cycles).

5 Stability Analysis of the LTM
Model

The trend exhibited by the DMS using the LTM model
(Figure 5-b) indicates that the memory cell count
would likely continue to grow in longer simulations.
To test this hypothesis, DMS simulations for the two
memory models were run for 300 cycles, using the same
operational parameter sets (see Table 1) used to pro-
duce Figures 5-a and 5-b. Figure 5-c shows the trials
to match a sample pattern at each cycle for the DMS
using the STM model over 300 cycles. Not only does
the memory cell count remain stable (i.e., no growth)
past the initial 100 cycles, but the peaks, indicating
where genetic search is needed to discover the sam-
pled pattern, are sparse after the first ∼30 cycles. The
300-cycle simulation for the STM model is consistent
with the behavior observed in 100-cycle simulations.

5The entire initial population is tested regardless of
which of the initial patterns match.
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Figure 5: Trials to match sampled patterns and memory cell count at a node for a DMS simulation.

Figure 5-d shows that the memory cell count contin-
ues to grow after 100 cycles for the DMS using the
LTMmodel, as predicted. Also, the frequency of peaks
(indicating that genetic search was performed) is con-
siderably greater than observed for the STM model
simulation (Figure 5-c). This behavior indicates that
the operational parameters found by the meta-GA for
the DMS using the LTM model do not perform well
past 100 cycles (i.e., termination point of simulations
during the meta-GA search evaluations).

5.1 Meta-GA Revisited

To determine if a parameter set resulting in more sta-
ble behavior could be discovered for the DMS using the
LTM model, a third meta-GA search was performed
using additional cycles/simulation during evaluation.
The third search was performed using the same param-
eters, conditions and evaluation function described in
Section 3, except that each simulation was run for 300
cycles instead of the original 100 cycles.

Table 3 lists the best parameters discovered after
8,000 trials for the 300 cycles/simulation evaluations

Memory Model
DMS Parameter STM-100 LTM-100 LTM-300
Number of Agents 1 9 5
Agent Wait Time 338 ms 1170 ms 1880 ms
Feedback Rate 2% 2% 2%
Feedback Decr. 1 0 0
Direct Decr. 3 3 6
Survival Threshold 12 50 41

Table 3: Parameter sets discovered by meta-GA. The
STM-100 and LTM-100 parameters sets result from
the 100 cycles/simulation (Table 1) and the LTM-300
parameters result from 300 cycles/simulation.

(LTM-300). Table 3 also lists the parameter sets
discovered for the STM and LTM models using 100
cycles/simulation during evaluation (from Table 1).
The parameter sets from Table 1 are referred to as
STM-100 and LTM-100 to indicate the number of cy-
cles/simulation used during meta-search evaluations.

The LTM-300 operational parameter values discovered
by the meta-GA differed in several respects from the
LTM-100 parameter set. Perhaps the most critical dif-
ference is in the parameters that affect memory cell
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survival. The LTM-100 parameter set included a sur-
vival threshold of 50 and a direct decrement of 3. Thus,
memory cells must be useful at least every ∼16 cycles
to survive. In contrast, the LTM-300 parameter set
has a survival threshold of 41 and direct decrement of
6. In this case, memory cells will only be tolerated for
∼10 cycles if they are not useful. This suggests that a
smaller population of memory cells will be maintained.

To compare the performance of the DMS using the
LTM-300 parameter set to that of the DMS using the
STM-100 and LTM-100 parameter sets, 30 indepen-
dent simulations were executed using each parame-
ter set and the corresponding memory model. All
simulations were run to 300 cycles (regardless of the
cycles/simulation used during meta-search). Table 4
shows the average values and SEM for the final mem-
ory cell count, average trials to match a pattern, aver-
age evaluation value, hit rate, final match rate, and av-
erage restarts/simulation for the 30 independent runs
of each of the three parameter sets.

The final memory cell count, average trials to match a
pattern, evaluation value, and hit rate performance
values are significantly better for the DMS simula-
tions using the STM-100 parameter set than for the
DMS simulation using either the LTM-100 or LTM-
300 parameter set. The LTM-300 parameter set re-
sults in only marginally better performance than the
LTM-100 parameter set, despite the extra 200 cy-
cles/simulation considered by the meta-GA. The in-
ability to discover a parameter set resulting in bet-
ter performance for the LTM model, regardless of the
number of cycles/simulation, indicates the superiority
of the STM model for this DMS.

Figure 6 shows the trials to find pattern matches and
the memory count using the LTM-300 parameter set.
The memory cell count still fluctuates after 250 cycles.
However, the smaller value for the survival threshold
used in the LTM-300 parameter set than the value in
the LTM-100 set does in fact result in a smaller mem-
ory cell count. The average final memory cell count is
significantly smaller when the LTM-300 parameter set
is used rather than the LTM-100 set (Table 4).

Metric STM-100 LTM-100 LTM-300
Mem cells 100.50 (0.16) 190.70 ( 7.90) 128.03 ( 6.67)
Avg trials 117.08 (1.04) 205.56 ( 5.99) 276.20 ( 6.81)
Eval value 267.83 (1.08) 491.61 (12.95) 468.24 (15.12)
Hit rate 91.98 (0.10) 86.06 ( 0.38) 76.95 ( 0.44)
Match rate 60.50 (0.12) 92.08 ( 0.85) 69.44 ( 2.82)
Restarts 0.27 (0.10) 26.40 ( 2.56) 22.3 ( 4.70)

Table 4: Averages for 30 independent runs using the
STM-100, LTM-100 and LTM-300 parameter sets. All
simulations are run to 300 cycles.
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Figure 6: Trials to match patterns and memory cell
count at a node for a 300 cycle DMS simulation using
the LTM-300 parameter set (Table 3).

While the average final memory cell count using the
LTM-300 parameters is smaller than that using the
LTM-100 parameters, the average number of trials to
find a matching string is significantly worse when using
the LTM-300 parameter set. As previously noted, the
hit rate is the most important factor in lowering the
average trials required to match a sample pattern. The
hit rate when using the LTM-100 parameter set is sig-
nificantly higher than for the LTM-300 parameter sets.
In addition, the hit rate for both of the LTM models
is significantly lower than when using the STM-100
parameter set.

It is also surprising that the match rate of the final
memory cell population does not correlate better with
the hit rate. In fact, these two measures are inversely
correlated (i.e., a high hit rate yields a lower match
rate). This is due to a non-uniformly distributed mem-
ory cell population, where most of the cells match only
a small fraction of the pattern library.

6 Hit Or Miss: The Role of Random
Genetic Material

A side effect of the high match rate exhibited by the
DMS using the LTM models (Table 4) is the occur-
rence of cycles where pattern samples are difficult to
match. This is reflected in the large number of trials
(>1200) to match a pattern (Figures 5-c, 5-d, and
6). In these instances the trials required to match a
pattern are 2 to 3 times as many as when the GA
uses a random initial population (i.e., no memory, Ta-
ble 2). The average number of restarts/simulation for
each parameter set tested is listed in Tables 2 and 4.
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These events represent a restart by CHC while search-
ing for the pattern. These restarts occur when CHC
has converged on a solution that does not match the
sampled pattern. This occurs when the initial popu-
lation is seeded from memory cells where at least one
allele in all of the seed strings disagrees with the allele
at the corresponding locus of the sampled pattern. For
example, if all of the seed strings have a 0 in locus 3
and the pattern sampled has a 1 in that position, the
initial population will not contain the genetic material
to solve the problem. CHC does not use mutation ex-
cept during restarts, so the search will converge to a
solution that does not match the sampled pattern. A
restart will be required to find the pattern [2].

This type of “biased” seeding occurs when a large per-
centage of the memory cells contain strings matching
patterns in the library and very few contain random
strings. This condition is a result of the consider-
able impact of the hit rate on fitness. Memory cells
containing random strings do not survive long in the
DMS when the LTM model is used while memory cells
with strings that match library patterns rapidly in-
crease their representation as seen by the final match
rate metric in Tables 2 and 4. In contrast, the STM
model simulations contain a higher percentage of ran-
dom strings in the memory cell population (i.e., sig-
nificantly lower match rate). Including this random
material in the initial population helps provide genetic
diversity in all loci and avoids restarts more reliably.

7 Conclusions

This investigation provides an analysis of two memory
models in the context of a distributed memory sys-
tem. We have examined the performance impact of
knowledge preservation and exploitation with respect
to genetic search using CHC.

The LTM model was designed to promote and preserve
high quality information, with the expectation that
seeding the genetic search with this material would
yield the best results. Although this model performed
as expected (i.e., a high concentration of quality ma-
terial is maintained), it was surprising to find that the
DMS using the STM model performed significantly
better with respect to average trials and memory cell
count. This is due to the fact that on occasion, the
LTM model causes the genetic search to be initialized
with material that is not representative of the prob-
lem set (i.e., a non-uniform distribution). In these
instances, the initial population is comprised of many
“good” seeds, with respect to alternate pattern library
samples, but not the current sample. Hence, an ini-
tial match is not available and the genetic search must

discover the pattern. Even worse, there is a higher
probability of a restart event, which results in perfor-
mance that is significantly worse than starting with a
random initial population (i.e., no memory).

The random information kept by some memory cells
in the STM model actually mitigates the potential
of seeding the initial population with an incorrect
bias. Essentially, there exists a memory quality bound-
ary, where highly concentrated (yet unevenly sampled)
knowledge can penalize performance. This is evident
from the significantly higher hit rate and better perfor-
mance exhibited in simulations using the STM model.
Given this behavior, we can conclude that the constant
feedback mechanism in the STM model, equivalent to
short term memory with reproduction, is the better of
the two memory models tested for this DMS.

This research demonstrates that the exploitation of
domain knowledge, or memory in this instance, can
significantly expedite search performance. The STM
model improved genetic search performance by a fac-
tor of five over random initialization (i.e., no memory),
with respect to the number of trials needed to match
a pattern. The LTM model, although performing con-
siderably worse than STM, nevertheless demonstrated
a four-fold improvement in performance over genetic
search with random initialization.
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Abstract

This paper describes the application of four
evolutionary algorithms to the selection of
feature subsets for classification problems.
Besides of a simple genetic algorithm (GA),
the paper considers three estimation of dis-
tribution algorithms (EDAs): a compact GA,
an extended compact GA, and the Bayesian
Optimization Algorithm. The objective is
to determine if the EDAs present advantages
over the simple GA in terms of accuracy or
speed in this problem. The experiments used
a Naive Bayes classifier and public-domain
and artificial data sets. All the algorithms
found feature subsets that resulted in higher
accuracies than using all the features. How-
ever, in contrast with other studies, we did
not find evidence to support or reject the use
of EDAs for this problem.

1 INTRODUCTION

In machine learning, the problem of supervised clas-
sification is concerned with using labeled examples to
induce a model that classifies objects into a finite set
of known classes. The examples are described by a
vector of numeric or nominal features. Some of these
features may be irrelevant or redundant. Avoiding ir-
relevant or redundant features is important because
they may have a negative effect on the accuracy of the
classifier. In addition, by using fewer features we may
reduce the cost of acquiring the data and improve the
comprehensibility of the classification model. Finding
feature subsets that result in accurate classifiers can
be cast as a search problem, and genetic algorithms
have been used successfully to address this problem.

This paper presents experiments with a simple ge-
netic algorithm (sGA) and three estimation of distri-

bution algorithms (EDAs): a compact GA (cGA), an
extended compact GA (ecGA), and the Bayesian Op-
timization Algorithm (BOA). Instead of the mutation
and crossover operations of conventional GAs, EDAs
use a statistical model of the individuals that survive
selection to generate new individuals. EDAs are an
important step toward solving the linkage problem,
a fundamental obstacle to the application of simple
GAs to problems with unknown relationships among
variables. Numerous experimental and theoretical re-
sults show that EDAs can solve hard problems reli-
ably and efficiently (Pelikan et al., 1999; Etxeberria &
Larrañaga, 1999; Mühlenbein & Mahnig, 1999).

The objective of this study is to determine if EDAs
present advantages over simple GAs in terms of accu-
racy or speed when applied to feature selection prob-
lems. The experiments described in this paper use
public-domain and artificial data sets. The classifier
was a Naive Bayes, a simple classifier that can be in-
duced quickly, and that has been shown to have good
accuracy in many problems (Kohavi & John, 1997).

Our target was to maximize the accuracy of classifica-
tion. The experiments demonstrate that all the feature
selection methods tried here resulted in higher accura-
cies than using all the features. However, in contrast
with other studies, we found no evidence to support or
reject the use of the advanced EDAs in this problem.

The next section briefly reviews previous applications
of EAs to feature subset selection. Section 3 describes
the algorithms, data sets, and the fitness evaluation
method. The experimental results are presented in
section 4. Section 5 concludes this paper with a sum-
mary and a discussion of future research directions.

2 FEATURE SELECTION

In a domain where objects are described by d fea-
tures, there are 2d possible feature subsets. Obviously,
searching exhaustively for the best subset (using any
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criteria to measure quality) is futile. One approach
to deal with this problem is to preprocess the data
and select features based on properties that good fea-
ture sets are presumed to have, such as orthogonality
and high information content. This is known as the
filter approach (John, Kohavi, & Phleger, 1994). Al-
though it can be relatively fast, the filter approach
may produce disappointing results, because it ignores
completely the induction algorithm.

An alternative to preprocessing the data is the wrap-
per approach. The key idea is to consider the induc-
tion algorithm as a black box that can be used by a
heuristic search algorithm to evaluate each candidate
feature subset (John, Kohavi, & Phleger, 1994). The
feature subset with the higher evaluation is selected as
the final set on which to run the inducer. The resulting
classifier should then be tested on data not used dur-
ing the search. A major disadvantage of the wrapper
approach is that it requires much more computational
effort than filters.

Numerous search algorithms have been used to search
for feature subsets (Jain & Zongker, 1997). Genetic al-
gorithms are usually reported to deliver good results,
but there are exceptions where simpler (and faster) al-
gorithms result in higher accuracies on particular data
sets (Jain & Zongker, 1997).

Applying GAs to the feature selection problem is
straightforward: the chromosomes of the individuals
contain one bit for each feature, and the value of the
bit determines whether the feature will be used in the
classification. Using the wrapper approach, the indi-
viduals are evaluated by training the classifiers using
the feature subset indicated by the chromosome and
using the resulting accuracy to calculate the fitness.
Siedlecki and Sklansky (1989) were the first to describe
the application of GAs in this way.

GAs have been used to search for feature subsets in
conjunction with several classification methods such
as neural networks (Brill et al., 1990; Brotherton &
Simpson, 1995), decision trees (Bala et al., 1996), k-
nearest neighbors (Kelly & Davis, 1991; Punch et al.,
1993; Raymer et al., 1997; Kudo & Sklansky, 2000),
rules (Vafaie & Jong, 1993), and Naive Bayes (Inza
et al., 1999).

Besides selecting feature subsets, GAs can extract new
features by searching for a vector of numeric coeffi-
cients that is used to transform linearly the original
features (Kelly & Davis, 1991; Punch et al., 1993). In
this case, a value of zero in the transformation vector
is equivalent to avoiding the feature. Raymer et al.
(1997) and Raymer et al. (2000) combined the linear

transformation with explicit feature selection flags in
the chromosomes, and reported an advantage over the
pure transformation method.

The only previous application of model-building EA to
select feature subsets is the work by Inza et al. (1999,
2001a, 2001b). They presented experiments with sev-
eral EDAs and two sequential feature selection algo-
rithms. Inza et al. reported that the EDAs found sub-
sets that result in similar accuracies than the simple
GA and the sequential feature selection algorithms,
but the EDAs have an advantage because they need
fewer generations to finish. Their algorithms are sim-
ilar to those included in this study, and we use some
of the same data sets.

3 METHODS

This section describes the algorithms and the data
used in this study as well as the method used to eval-
uate the fitness.

3.1 ALGORITHMS AND DATA SETS

The simple genetic algorithm in this study uses bi-
nary strings, binary (pairwise) tournament selection
without replacement, uniform crossover, and bit-wise
point mutation. Simple GAs such as this have
been used successfully in many applications. How-
ever, it has long been recognized that the problem-
independent crossover operators used in simple GAs
can disrupt groups of related variables and prevent the
algorithm from reaching the global optimum, unless
exponentially-sized populations are used. (Thierens
(1999) gives a good description of this problem).

One approach to identify and exploit the relationships
among variables is to estimate the joint distribution
of the individuals that survive selection and use this
model to generate new individuals. The complexity
of the models has increased over time as the methods
of building models from data mature and more pow-
erful computers become available. Interested readers
can consult the reviews by Pelikan et al. (1999) and
Larrañaga et al. (1999).

The simplest model-building EA that was used in the
experiments reported here is the compact GA (Harik,
Lobo, & Goldberg, 1998). This algorithm assumes
that the variables (bits) that represent the problem
are independent, and therefore it models the popula-
tion as a product of Bernoulli distributions. The com-
pact GA receives its name from the compact way it
represents the population: the cGA uses a vector p
of length equal to the problem’s length, l. Each ele-
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ment of p contains the probability that a sample will
take the value 1. If the Bernoulli trial is not successful
the sample will be 0. All positions of p are initialized
to 0.5 to simulate the usual uniform random initial-
ization of simple GAs. New individuals are obtained
by sampling consecutively from each position of p and
concatenating the values obtained. The probabilities
vector is updated by comparing the fitness of two in-
dividuals obtained from it. For each pk, k = 1, .., l, if
the fittest individual has a 1 in the k-th position, pk

is increased by 1/n, where n is the size of the virtual
population that the user wants to simulate. Likewise,
if the fittest individual has a 0 in the k-th position,
pk is decreased by 1/n. The cGA iterates until all
positions in pk contain either zero or one.

PBIL (Baluja, 1994) and the UMDA (Mühlenbein,
1998) are other examples of algorithms that use uni-
variate models and operate on binary alphabets. They
differ from the cGA in the method to update the prob-
abilities vector.

The extended compact GA (Harik, 1999) uses a prod-
uct of marginal distributions on a partition of the
variables. In this model, subsets of variables can be
modeled jointly, and the subsets are considered in-
dependent of other subsets. Formally, the model is
P =

∏m
i=0 Pi, where m is the number of subsets in the

partition of variables and Pi represents the distribution
of the i-th subset. The distribution of a subset with k
members is stored in a table with 2k − 1 entries. The
challenge is to find a partition that models the popula-
tion correctly. Harik (1999) proposed a greedy search
that initially supposes that all variables are indepen-
dent. The model search tries to merge all pairs of sub-
sets and chooses the merger that minimizes a complex-
ity measure based on information theory. The search
continues until no further subsets can be merged. In
contrast to the cGA, the ecGA has an explicit pop-
ulation that is evaluated and subject to selection at
each iteration of the algorithm. The algorithm builds
the model considering only those solutions that sur-
vive selection. The population is initialized randomly,
and new individuals are generated by sampling con-
secutively from the m subset distributions.

The Bayesian Optimization Algorithm (Pelikan, Gold-
berg, & Cantú-Paz, 1999) models the selected individ-
uals using a Bayesian network, which can represent
dependence relations among an arbitrary number of
variables. Independently, Etxeberria and Larrañaga
(1999) and Mühlenbein and Mahnig (1999) introduced
similar algorithms. The BOA uses a greedy search to
optimize the Bayesian Dirichlet metric, a measure of
how well the network represents the data (the BOA

could use other metrics). The user specifies the max-
imum number of incoming edges to any node of the
network. This number corresponds to the highest de-
gree of interaction assumed among the variables of the
problem. As the ecGA, the BOA builds the model
considering only the solutions that survived selection.
New individuals are generated by sampling from the
network. The main difference between the ecGA and
the BOA is the model that they use to represent the
survivors.

Figure 1 illustrates the different models used by the
ecGA and the BOA. The ecGA cannot represent indi-
vidual relationships among the variables in a subset.

The classifier induced in the experiments was a Naive
Bayes (NB). This classifier was chosen for its speed
and simplicity, but the evolutionary wrapper method
can be used with any other supervised classifiers, as
mentioned in the previous section. In the NB, the
probabilities for nominal features were estimated from
the data using maximum likelihood estimation (their
observed frequencies in the data) and applying the
Laplace correction. Numeric features were assumed
to have a normal distribution. Missing values in the
data were skipped.

The experiments used the C++ implementations of
the ecGA (Lobo & Harik, 1999) and the BOA version
1.0 (Pelikan, 1999) that are distributed by their au-
thors on the web.1 The ecGA code has a non-learning
mode that emulates the cGA. The sGA and Naive
Bayes were developed in C++. All programs were
compiled with g++ version 2.96 using -O2 optimiza-
tions. The experiments were executed on a single pro-
cessor of a Linux (Red Had 7.1) workstation with dual
1.5 GHz Intel Xeon processors and 512 Mb of memory.
The ecGA and the BOA codes were modified to use a
Mersenne Twister random number generator, which
was also used in the GA and the data partitioning.

The data sets used in the experiments are described
in table 1. The first four data sets are available in the
UCI repository (Blake & Merz, 1998). Random21 and
Redundant21 are two artificial data sets with 21 fea-
tures each. The target concept of these two data sets
is to define whether the first nine features are closer
to (0,0,...,0) or (9,9,...,9) in Euclidean distance. The
features were generated uniformly at random in the
range [3,6]. All the features in Random21 are random,
and the first, fifth, and ninth features are repeated four
times each in Redundant21. We took the definition of
Redundant21 from the paper by Inza et al. (1999).

1Available at http://www-illigal.ge.uiuc.edu
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(a) ecGA (b) BOA

Figure 1: Representation of the models used in the ecGA and the BOA.

Domain Instances Classes Numeric Feat. Nominal Feat. Missing

Ionosphere 351 2 34 – N
Segmentation 2310 7 19 – N
Sick Euthyroid 3163 2 7 18 Y
Soybean Large 683 19 – 35 Y
Random21 2500 2 21 – N
Redundant21 2500 2 21 – N

Table 1: Description of the data used in the experiments.

3.2 MEASURING FITNESS

Since we are interested in classifiers that generalize
well, the fitness calculations must include some esti-
mate of the generalization of the Naive Bayes using
the candidate subsets. If enough data are available,
the generalization may be estimated by dividing the
training data into training and testing sets. The train-
ing set is used to find the class conditional probabili-
ties, and the accuracy of the trained classifier on the
testing set is used to calculate the fitness.

Unfortunately, the training data sets are small, so the
procedure above may not be practical in our case. In-
stead, we estimate the generalization of the network
using crossvalidation. In k-fold crossvalidation, the
data D is partitioned randomly into k non-overlapping
sets, D1, ..., Dk. At each iteration i (from 1 to k), the
network is trained with D\Di and tested on Di. Since
the data are partitioned randomly, it is likely that re-
peated crossvalidation experiments return different re-
sults. Although there are well-known methods to deal
with “noisy” fitness evaluations in EAs (Miller & Gold-
berg, 1996), we chose to limit the uncertainty in the

accuracy estimate by repeating 10-fold crossvalidation
experiments until the standard deviation of the accu-
racy estimate drops below 1% (or a maximum of five
repetitions). This heuristic was proposed by Kohavi
and John (1997) in their study of wrapper methods
for feature selection, and was adopted by Inza et al.
(1999). We use the accuracy estimate as our fitness
function.

Even though crossvalidation is expensive computation-
ally, the cost was not prohibitive in our case, since the
data sets were relatively small and the NB classifier is
very efficient. If larger data sets or other inducers were
used, we would have to deal with the uncertainty in the
evaluation by other means, such as increasing slightly
the population size (to compensate for the noise in the
evaluation) or by sampling the training data. We de-
fer a discussion of possible performance improvements
until the final section.

Our fitness measure does not include any term to bias
the search toward small feature subsets. However, the
algorithms found small subsets, and with some data
the algorithms consistently found the smallest subsets
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that describe the target concepts. This suggests that
the data sets contained irrelevant or redundant fea-
tures that decreased the accuracy of the Naive Bayes.

4 EXPERIMENTS

All the algorithms used populations with 1000 individ-
uals. The GA used uniform crossover with probability
1.0, and mutation with probability 1/l, where l was
the length of the chromosomes that corresponds to the
total number of features in each problem. Promising
solutions were selected with pairwise binary tourna-
ments without replacement. The cGA, ecGA, and the
BOA used the default parameters provided in their
distributions: the cGA and ecGA used tournaments
among 16 individuals, and the BOA used truncation
selection with a threshold of 50%. The algorithms were
terminated after observing no improvement in the best
individual over consecutive generations.

To evaluate the generalization accuracy of the feature
selection methods, we used 5 iterations of 2-fold cross-
validation (5x2cv). In each iteration, the data were
randomly divided in halves. One half was input to the
feature selection algorithms. The final feature sub-
set found in each experiment was used to train a final
NB classifier (using the training data), which was then
tested on the other half of the data. The accuracy re-
sults presented in table 2 are the average and standard
deviations of the ten tests.

To determine if the differences among the algorithms
were statistically significant, we used a combined F

test proposed by Alpaydin (1999). Let p
(j)
i denote the

difference in the accuracy rates of two classifiers in fold

j of the i-th iteration of 5x2 cv, p̄ = (p
(1)
i + p

(2)
i )/2

denote the mean, and s2
i = (p

(1)
i − p̄)2 +(p

(2)
i − p̄)2 the

variance, then

f =

∑5
i=1

∑2
j=1

(

p
(j)
i

)2

2
∑5

i=1 s2
i

is approximately F distributed with 10 and 5 degrees
of freedom, and we rejected the null hypothesis that
the two algorithms have the same error rate with 0.95
confidence if f > 4.74 (Alpaydin, 1999). Care was
taken to ensure that all the algorithms used the same
training and testing data in the two folds of the five
crossvalidation experiments. The algorithms were ini-
tialized using the same set of random seeds, so they
all started from the same initial populations.

Table 2 has the average accuracies obtained with each
method. The best observed result in the table is high-
lighted in bold type, and those results that according

to the combined F test are significantly different from
the best are marked with a bullet (•). There are two
immediate observations that we can make from the re-
sults. First, the feature selection algorithms result in
a great improvement in accuracy over using a NB with
all the features. However, this difference is not always
significant (Soybean Large, Random21). Second, all
the feature selection algorithms result in similar ac-
curacy values. There is not a single statistically sig-
nificant difference among the four algorithms on these
data sets.

We must be careful not to take the results at face
value and conclude incorrectly that the cGA and the
ecGA find feature subsets that result in better accura-
cies than the other EAs, since the differences are small
and not significant. For the same reasons, we cannot
disqualify the BOA or the simple GA, which did not
score highest in any data set.

In terms of the size of the final feature subsets, all the
algorithms find similarly-sized subsets, which are sub-
stantially and significantly smaller than the original
set of features (see table 3). It is interesting to note
that the cGA and ecGA always found subsets with the
nine target features for the Redundant21 data.

Table 4 shows the mean number of generations until
termination. The BOA finishes sooner than the other
algorithms on most data sets, but the differences are
not significant, except for one case. This observation,
along with the experimental results of accuracy and
feature subset size, suggests that the EDAs do not
offer an advantage over the simple GA for the feature
selection problems that we considered.2

2In preliminary experiments, the simple GA used a pop-
ulation with 100 individuals and one-point crossover (which
is not particularly suitable for this problem where the or-
dering of the bits in the chromosome is irrelevant). The
algorithms were terminated after 50 generations, although
we did not observe much improvements after 10–20 gener-
ations. The cGA, ecGA, and the BOA used a population
with 1000 individuals. Larger populations were chosen be-
cause these algorithms need large samples to estimate cor-
rectly the parameters of their population models. These
larger populations also confer an advantage to the EDAs
over the simple GA, because the EDAs sample more solu-
tions. However, even with this advantage, we found no evi-
dence that the EDAs found feature subsets that resulted in
better classification accuracies. Moreover, we did not find
significant differences in the size of the final feature sub-
sets found by each algorithm. The simple GA was more
than 10 times faster than the EDAs (because of the ex-
tra time required by the model-building step in EDAs and
presumably because of random fluctuations in the num-
ber of crossvalidations used to estimate accuracy). All this
lead us to favor the simple GAs over the EDAs for feature
selection problems.
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Domain All Features sGA cGA ecGA BOA

Ionosphere 83.37±2.65• 90.48±1.20 91.50±0.79 91.05±1.91 91.22±1.01
Segmentation 79.71±0.94• 89.24±1.03 90.38±1.12 90.44±0.91 88.95±0.76
Soybean Large 85.22±5.50 84.42±4.69 84.92±5.11 85.07±5.38 83.19±4.87
Sick Euthyroid 79.04±4.23• 95.73±0.87 95.81±0.87 95.90±0.79 95.82±0.87
Random21 94.02±0.86 94.87±1.30 95.01±1.34 95.07±1.25 94.80±1.23
Redundant21 76.89±1.32• 94.16±2.40 95.96±0.92 95.96±0.92 92.66±2.59

Table 2: Mean accuracies found (± standard deviation) in the 5x2cv experiments. The best result is in bold

and a bullet (•) denotes a result that is significantly different from the best result with 95% confidence.

Some of the results presented here agree with the con-
clusions of Inza et al. (1999) and Inza et al. (2001a),
but some results and conclusions differ in important
ways. In agreement with the results presented above,
Inza et al. did not find statistically significant differ-
ences between the accuracy of their EDA and other
genetic and sequential feature selection methods (us-
ing the same combined F test used here). However,
they detected that the sGA needed significantly more
generations to end than the EDAs in almost all the
data sets they considered. This result suggests an ad-
vantage of EDAs over the sGA and the other feature
selection methods they tried.

The disagreement of our results may be due to differ-
ences in the algorithms or some details in the exper-
imental setup. It must be emphasized that the sGA
and the EDAs used in this paper are not the same
that Inza et al. used. An important difference is that
Inza et al. used proportional selection in their simple
GA, while we used tournament selection, which can
be more efficient. Another difference is that the EDA
of Inza et al. that learns a Bayesian network uses a
greedy search that adds edges to the graph that max-
imize the Bayesian Information Criterion; the BOA
considers edge additions and deletions and attempts to
maximize a different measure of model quality. Other
small differences in our experiments may affect the re-
sults slightly. For example, the Naive Bayes used in
this paper was implemented from scratch, and, while
great care was taken to ensure that it conformed with
the specifications of their NB, differences in floating
point accuracy, compilers, and operating systems can
affect the results slightly.

5 CONCLUSIONS

This paper presented experiments with four evolution-
ary algorithms applied to the feature selection prob-
lem. The experiments considered a Naive Bayes clas-
sifier and public-domain and artificial data sets. With
these data and classifier we did not find evidence to

support or reject the use of the sophisticated model-
building EAs in this problem. However, taking into
account the (preliminary) experiments where the sim-
ple GA with smaller populations was much faster than
the other algorithms and found feature subsets of sim-
ilar quality, we are inclined to recommend the sGA
over the other algorithms.

There are numerous opportunities to extend this work.
The results that suggest that EDAs are not advanta-
geous for feature selection should be explored further
with additional data sets and other induction algo-
rithms. It is not clear what characteristics of the data
or the classifier would require an EDA to find feature
subsets that reliably result in high accuracies.

Future work should also explore methods to improve
the computational efficiency of the algorithms to deal
with much larger data sets. In particular, subsampling
the training sets and parallelizing the fitness evalua-
tions seem like promising alternatives. In addition,
future work should explore efficient methods to deal
with the noisy accuracy estimates, instead of using
the expensive multiple crossvalidations that we em-
ployed. Previous work (Miller & Goldberg, 1996) in-
dicates that small increases of the population size are
sufficient to deal with noise in the fitness evaluation.
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Domain Original sGA cGA ecGA BOA

Ionosphere 34• 13 ±2.35 11.5±2.95 12.3±1.59 14.2±2.20
Segmentation 19• 8.3±0.94 7.8±0.63 7.4±0.84 8.4±1.50
Soybean Large 35• 24.8±2.57 23.4±2.45 24.6±2.45 22.4±2.67

Sick Euthyroid 25• 12.8±2.25 12.5±2.27 12.6±3.43 11.5±2.41

Random21 21• 13.5±1.50 12.3±1.49 12.1±1.37 14±1.56•
Redundant21 21• 9.4±0.51 9±0 9±0 10±0.81

Table 3: Mean sizes of final feature subsets (± standard deviation). The best result is in bold and a bullet (•)
denotes a result that is significantly different from the best result with 95% confidence.

Domain sGA cGA ecGA BOA

Ionosphere 2.7±1.25 5.3±1.88 4.6±1.77 3.3±1.49
Segmentation 2.6±1.35 4.7±1.76• 5.3±1.25 2±1.41

Soybean Large 4.3±2.21 3.6±1.77 4.2±1.47 2.2±1.47

Sick Euthyroid 2±1.05 2.2±1.03 3.4±0.84 1.7±1.46

Random21 2.7±1.33 3.4±1.89 4.3±0.82 2.3±1.49

Redundant21 3.3±2.45 3.7±0.48 4.3±1.05 2.6±1.63

Table 4: Mean generations until termination (± standard deviation). The best result is in bold and a bullet (•)
denotes a result that is significantly different from the best result with 95% confidence.
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Etxeberria, R., & Larrañaga, P. (1999). Global op-
timization with Bayesian networks. In II Sympo-
sium on Artificial Intelligence (CIMAF99). (pp.
332–339).

Harik, G. (1999). Linkage learning via probabilis-
tic modeling in the ECGA (IlliGAL Report No.
99010). Urbana, IL: University of Illinois at
Urbana-Champaign, Illinois Genetic Algorithms
Laboratory.

Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1998).
The compact genetic algorithm. In of Electri-
cal, I., & Engineers, E. (Eds.), Proceedings of
1998 IEEE Iternational Conference on Evolu-
tionary Computation (pp. 523–528). Piscataway,
NJ: IEEE Service Center.
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Abstract

Pseudo random number generators (PRNGs)
are the basic input to the stochastic selection,
recombination, and mutation operations of
genetic algorithms (GAs). Although it does
not seem like a crucial decision, recent studies
suggest that the choice of PRNG can affect
the performance of GAs. The objective of
this paper is to study the effect of PRNGs on
a simple GA, and to identify the components
that are most affected by the PRNG. The pa-
per presents ablation experiments using two
PRNGs and true random numbers from an
atmospheric noise source. The experiments
show that the PRNG used to initialize the
population is critical, but the PRNG used
as input to other operations does not af-
fect the performance significantly. We con-
firmed these results with additional experi-
ments that isolated single components of the
GA. In a few cases, we obtained improved re-
sults with a poor PRNG, but we were unable
to obtain improvements consistently across
the test functions used or with different seeds.
The results suggest that, in accordance with
common practice in other fields, it is prefer-
able to use the best PRNG available to avoid
muddling the interpretation of the results.

1 INTRODUCTION

A basic component of genetic algorithms (GAs) is the
pseudo-random number generator (PRNG) that pro-
vides input to the stochastic selection, recombination,
and mutation operations. It is well known that the
performance of GAs is greatly influenced by the so-
lution encoding, population size, and choice of opera-
tors, and it may appear that the choice of PRNG is

relatively unimportant. However, several studies show
that the performance of evolutionary algorithms can
be affected by the choice of PRNG. In genetic pro-
gramming (GP), Daida et al. (1997, 1999) found sur-
prising improvements (ranging from 36% to 800%) on
different performance measures when a poor PRNG
was used. Meysenburg and Foster (1999a) found sim-
ilar but smaller differences in GP performance. In
GAs, Meysenburg (1997) and Meysenburg and Foster
(1997) found that, in very few cases, a poor PRNG re-
sulted in modest performance improvements, but they
found no evidence of better GA performance with good
PRNGs. Later, Meysenburg and Foster (1999b) found
additional evidence of poor PRNGs causing slightly
better GA performance, and also found that good
PRNGs caused worse performance in isolated cases.

Our own experiments show that small variations in the
PRNG can cause large deviations in the GA’s perfor-
mance. Consider the example in figure 1. A simple
GA is optimizing a fitness function formed by con-
catenating 13 copies of an 8-bit trap function (defined
later). The first graph shows the average fitness value
reached at the end of the experiments vs. the popula-
tion size. The only difference among the four plots is
the random number generator used. The two overlap-
ping plots in the middle show the results using a good
PRNG (a Mersenne Twister) and true random num-
bers (from an atmospheric noise source); the top and
bottom plots were obtained with a poor PRNG seeded
in two different ways. In some cases, the performance
with the poor PRNG seeded with an arbitrarily chosen
constant (10) is 35% better than with a good PRNG
and 100% better than itself seeded with random num-
bers (bottom plot). We observed similar trends with
7- and 9-bit traps, but we found no significant differ-
ences using other seven test functions. The second
graph shows the number of trap functions that were
solved to optimality (a performance measure strongly
correlated to fitness) vs. the population size.
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Figure 1: Example of different performance using different sources of (pseudo)random numbers. The error bars
represent 95% confidence intervals. “MT” denotes experiments with a Mersenne Twister (MT), “True” denotes
experiments with a source of true random numbers, “MT1000” refers to the MT with its period limited to 1000,
and “Seed=10” is the limited MT initialized with the constant 10.

The objective of this paper is to continue the study of
the effect of PRNGs on GAs. We used ablation exper-
iments and simple fitness functions with known char-
acteristics to isolate the stochastic components of the
GA where the source of random numbers causes the
greatest difference. In the ablation experiments, we
used a “poor” PRNG as input to one of the stochas-
tic components of the EA (say selection) while using a
“good” PRNG for the rest of the algorithm. We per-
formed additional experiments isolating single compo-
nents of the GAs and compared the deviation of the
algorithms to their expected behavior, which was cal-
culated using existing models. We also performed ex-
periments that included a source of true random num-
bers, but we found no difference in GA performance
when compared to a “good” PRNG. We believe that
this is the first time true random numbers have been
used in GAs. The study was limited to simple genetic
algorithms with fixed-length binary strings and popu-
lar operators.

The results of this study show that the PRNG used
to initialize the population is critical to the perfor-
mance of the GA, but the PRNG used as input to
other GA operations does not affect the performance
significantly. The experiments also show that, at least
for the test functions used here, the choice of PRNG
can cause large variations in performance (much larger
than previously reported for GAs). Therefore, users
and researchers of GAs should choose the PRNGs and
their seeds carefully and report these choices appropri-
ately, as has been advocated elsewhere (Daida et al.,
1997; Daida et al., 1999).

The remainder is organized as follows: The next sec-

tion describes the PRNGs and the source of true ran-
dom numbers used in this study; section 3 describes
the experiments and presents the results; and finally,
section 4 summarizes the findings, issues recommen-
dations, and suggests opportunities for future work.

2 (PSEUDO)RANDOM NUMBER
GENERATORS

The consensus in many communities interested in
stochastic simulations is to use the best PRNG avail-
able. Using the best PRNG helps to ensure that the
results of a stochastic simulation are, in fact, a prod-
uct of the algorithm and its inputs, and not an artifact
of the PRNG.

The first PRNG used here is the Mersenne Twister
(MT) (Matsumoto & Nishimura, 1998), which is con-
sidered to be one of the best PRNGs currently avail-
able (it has a period of 219937−1 and is equidistributed
in 623 dimensions). We used the implementation from
the GNU Scientific Library version 0.4. In particular,
this implementation uses the corrected seeding proce-
dure recommended by the MT authors. The second
PRNG used is also an MT, but its period has been
artificially limited to 1000 numbers by re-seeding the
generator every thousand calls with the original seed.
We refer to the second PRNG as MT1000. Meysen-
burg and Foster (1999b) used similar generators in
their experiments. In contrast to other studies that
compared EA performance using numerous PRNGs,
the experiments in this paper use only two generators
that represent extremes in PRNG quality. This choice
was motivated from the observations of Meysenburg
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and Foster (1999b), where improvements in GA per-
formance were observed only with a very poor PRNG,
and no evidence of performance difference was found
using other relatively good PRNGs.1

In addition to the two PRNGs, we use true ran-
dom numbers obtained from an atmospheric noise
source. These random numbers are available at
www.random.org along with a description of the
method used to create them. Briefly, a radio was tuned
to a frequency where no one was transmitting, and the
noise received was fed to a workstation where it was
sampled as an 8-bit signal at 8KHz. The upper 7 bits
of each sample were discarded, and the remaining bits
were subject to a simple skew correction to ensure an
even distribution of ones and zeroes.

To create our true random generator, we concate-
nated the four pregenerated 10Mb files available at
www.random.org. These files are essentially streams of
random bits that need some preprocessing before using
them in a GA. The basic output from our PRNGs are
uniform random numbers in [0, 1]. To obtain the same
from the true random file, our C++ program read 4
bytes at a time into unsigned long (32 bit) integers and
divided them by 232.

Unless specified otherwise, we initialized the PRNGs
with 32-bit random integers obtained from the first
1Mb file from random.org. As our experiments below
confirm, the initialization of the PRNGs—especially
MT1000—was critical to the performance of the GA.

3 EXPERIMENTS

3.1 METHODS

The experiments used deceptive trap functions, which
are used in numerous studies of genetic algorithms be-
cause they have known properties and their difficulty
can be regulated easily (Deb & Goldberg, 1993). The
values of the deceptive functions depend on the num-
ber, u, of bits set to one in their k-bit input substring.
The fitness increases with more bits set to zero until it
reaches a local optimum, but the global maximum is
at the opposite extreme where all the bits in the input
are set to one. The order-k traps are defined as

fk(u) =

{

k − u− d if u < k,

k if u = k,
(1)

1A short period is only one of the possible shortcomings
of a PRNG: Correlations between consecutive samples and
structural properties (such as the organization of the pseu-
dorandom numbers in lattices) were not considered here.

where d is the fitness difference of the two peaks, which
in our case is always set to one. The trap functions
become more difficult by increasing k and decreasing
d. We varied k from 3 to 10. The fitness functions are
formed by concatenating fully-deceptive trap functions
and adding their individual contributions. We decided
to set the length of the individuals to l = d100/ke ∗ k
bits (i.e., 100 bits or the smallest integer multiple of
k larger than 100). For example, for the 6-bit trap
problem, the individuals are l = 102 bits long and
their fitness is calculated as

∑16
i=0 f6(u6i), where u6i

denotes the number of ones in the substring that starts
at position 6i.

The results reported here are from a simple GA with
fixed-length binary encoding, pairwise tournament se-
lection without replacement, one-point crossover with
probability 1.0, and point-wise mutation with proba-
bility 1/l. The population size for the 3,4,5,6-bit traps
varied from 2 to 300 in steps of 2. For the 7-bit prob-
lem, the population size varied from 10 to 1000 in steps
of 10, and for the 8,9,10-bit problems the population
varied from 20 to 3000 in steps of 20. The experiments
were terminated after 500 generations.

All the results were obtained repeating each experi-
ment 100 times with different random seeds, and two-
sided z tests with α = 0.05 were used to verify if
the observed means were different. The PRNGs were
called each time that a random number was needed
by the GA. For example, the PRNG was called once
for each bit in the initial population (instead of, say,
using the 32 bits returned by the PRNG to initialize
32 genes).

Our performance measure is the number of substrings
that converged to the global optimal value (all ones)
at the end of each run. We refer to these correct sub-
strings as building blocks. This performance measure
is adequate for the trap test functions, because the
number of optimal subfunctions is a binomially dis-
tributed random variable that can be well approxi-
mated with a normal, which is what the z test assumes.
This performance measure is strongly correlated with
the fitness, as can be observed by comparing the two
graphs in figure 1. This performance measure also al-
lows us to calculate easily the expected behavior of the
algorithm in some experiments below.

3.2 TRUE RANDOM NUMBERS

The first set of results compares the performance of
the GA using the true random numbers with the MT
and MT1000 PRNGs. For brevity we present only the
results for 3-,4-,7-, and 10-bit problems in figure 2.
The results for the 6-bit trap are similar to the 3-bit
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problem: there are no noticeable differences, except in
a few cases at relatively large population sizes, where
the GA using the MT1000 performs worse. For the
problems with 4,5,8,9, and 10 bit traps, the GAs using
MT1000 perform noticeable worse than the GAs with
true random or MT, except for small population sizes.
The 7-bit problem has a similar behavior, but the tran-
sition to worse results appears at relatively large pop-
ulations. These results contrast with some previous
studies (Meysenburg & Foster, 1997; Meysenburg &
Foster, 1999a) that showed that, in general, the per-
formance of GAs was not adversely affected by poor
PRNGs, and that sometimes poor PRNGs resulted in
better results.

As mentioned in the introduction, the results in fig-
ure 1 use an 8-bit trap function. The overlapping
middle plots correspond to the MT and the true ran-
dom numbers. The bottom plot was generated with
the MT1000 PRNG seeded with the random num-
bers as described in the previous section. The top
plot was also generated with the MT1000 PRNG, but
the seed was arbitrarily chosen to be the constant
10. Surprisingly, this poor PRNG with an arbitrary
seed often outperforms all the other algorithms. We
observed similar trends with the 7, and 9-bit prob-
lems, but with the other functions the results between
the two MT1000 were statistically indistinguishable.
While these results are intriguing, the performance
with other arbitrarily chosen seeds was much worse
than the bottom plot in figure 1. In essence, the best
results were obtained by chance, and poor PRNGs do
not seem to offer an advantage in general.

For all population sizes and in all problems tested,
the GAs with the MT generator and the true random
numbers performed equally well (there was not a single
statistically significant difference). Therefore, in the
following experiments we omit the results with the true
random numbers.

3.3 ABLATION EXPERIMENTS

To further analyze the cause of the poor performance
of GAs with MT1000, we performed ablation exper-
iments. We started with a GA that uses MT for its
four randomized components (initialization, selection,
crossover, and mutation) and substituted MT1000 in
each of these components at a time as specified in ta-
ble 1. We also included the results where MT1000 is
always used. Figure 3 has the results of this study for
the 4-, 5-, 7-, and 10-bit functions. To minimize the
clutter, the graphs omit the results for mutation (exp.
5), which did not differ from the results with MT.

These results clearly show that the performance of

Exp. Init. Sel. X-over Mut.

1
√ √ √ √

2 × √ √ √

3
√ × √ √

4
√ √ × √

5
√ √ √ ×

6 × × × ×
7

√ × × ×

Table 1: Ablation experiments setup. The
√

and
× represent the Mersenne Twister and the MT1000
PRNGs, respectively. Experiment 7 was used to ver-
ify the hypothesis that initialization was critical.

the GA that used MT1000 to initialize the population
(exp. 2) is strongly correlated with the performance of
the GA that uses MT1000 for all its operations (exp.
6). This suggests that the initialization of the popu-
lation is critical for the adequate performance of the
GA, but the PRNG used in selection, crossover, or
mutation seems unimportant. To provide additional
support for this hypothesis, we performed an experi-
ment where the population was initialized with MT,
and the rest of the GA operations use MT1000 (ex-
periment 7 in table 1). The results are also plotted in
figure 3, and are not significantly different than those
of the GA that uses MT exclusively.

3.4 ADDITIONAL EXPERIMENTS

To try to understand why crossover and selection do
not seem affected by the choice of PRNG, we per-
formed additional experiments. To study crossover, we
performed two different experiments. First, we fixed
the population size to 100 and the number of gener-
ations until termination to 500. Using the 4-bit trap
function and 100-bit long strings, we recorded the fre-
quency that each possible crossover point was chosen.
Ideally, we would expect that all points are chosen with
the same frequency, since the probability of choosing
each is uniform (p = 1/(l− 1)). However, it is natural
to expect some variability as the number of times a
particular point is chosen is a random variable with a
binomial distribution. Figure 4 presents the frequen-
cies (sorted to aid in visualization) along with the ex-
pected frequency and 95% confidence intervals (calcu-
lated assuming that the binomial distribution can be
approximated well with a normal). As we can see, the
true random and the MT generator produce results
that match our expectations, while using the MT1000
causes some crossover points to be chosen much more
frequently than others. These results would suggest
that the MT1000 is inadequate as input to crossover,
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Figure 2: Performance of GAs using true random numbers and the MT and MT1000 PRNGs. The error bars
represent 95% confidence intervals. The True and MT plots overlap, and are always at least as good as MT1000.

but in the ablation experiments we did not observe
significant differences with good quality generators.

We did additional experiments recording the number
of crossover operations that resulted in an offspring
with at least one optimal subfunction more than each
of the parents. Thierens and Goldberg (1993) call this
occurrence a mixing event. As k increases, we expect
fewer mixing events (all else being equal), and there-
fore the population was sized to 200 individuals for the
functions with k = 3, 4, 5, 6 and to 1000 individuals for
the remaining problems. The results in table 2 show
that there are no significant differences in the num-
ber of mixing events using different sources of random
numbers. This agrees with the ablation experiments,
but it is puzzling that such a non-uniform distribu-
tion of crossover points has no apparent effect on our
performance measure (or in fitness).

Separate experiments were done to investigate the ef-

fect of random inputs to selection. In particular, the
following experiments verify if the expected fitness
gain after selection matches the theoretical expecta-
tions. If the fitnesses are distributed normally, the
mean fitness of the selected individuals can be calcu-
lated as (Mühlenbein & Schlierkamp-Voosen, 1993)

µsel = µorig + Iσorig, (2)

where µorig and µsel represent the mean fitness of the
population before and after selection, I is the selection
intensity, which in the case of pairwise tournaments is
0.5642 (Miller & Goldberg, 1995; Bäck, 1995), and
σorig is the standard deviation of the fitness of the
population before selection.

For these experiments, the GA used populations of
10000 individuals of length 100 ∗ k. We chose such
a large population to ensure that MT1000 generator
would cycle, and we used longer individuals to ap-
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Figure 3: Performance of GAs in the ablation study. The error bars represent 95% confidence intervals. MT1000
and Init MT1000 are the two plots that overlap at the bottom; the rest of the plots overlap at the top.

proximate the assumed normal distribution. Since the
fitness functions are summations of 100 random vari-
ables, it is reasonable to assume that the fitness of the
initial population is distributed normally (the fitness
of the selected population is certainly not normal).

We initialized the populations using the true random
numbers to avoid any bias. Selection was driven by
the true random numbers as well as the MT and
MT1000 PRNGs. Pairwise tournament selection was
applied once to the randomly initialized populations,
and statistics of the selected individuals were recorded.
Table 3 shows the expected and experimental results
(averaged over 100 trials) of the mean fitness before
and after selection. There are no statistically signif-
icant differences between the expected fitness value
and the experimental results with the three sources
of (pseudo)random numbers.

Finally, we performed experiments to determine the ef-

fect of PRNGs on the initialization of the population.
We measured the number of optimal subfunctions in
a randomly initialized population of size 1000. Ta-
ble 4 has the average of 1000 repetitions using true
random numbers and the different PRNGs initialized
with random numbers. In addition, the table has re-
sults for MT1000 with a seed of 10, which produced the
improvements in performance in figure 1. The length
of the individuals was l = d100/ke ∗ k, and the ex-
pected number of optimal subfunctions is l/(k ∗ 2k).
Only MT1000 seeded with 10 shows significant devia-
tions from the expected behavior. Note that MT1000
results have a higher variance (an order of magnitude)
than the other generators.
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k True MT MT1000

3 945.48 (21.99) 947.92 (26.07) 933.42 (23.06)
4 755.87 (25.44) 770.13 (24.50) 742.82 (23.83)
5 553.56 (25.16) 554.77 (25.38) 558.03 (25.27)
6 376.56 (31.58) 372.46 (27.61) 356.67 (27.25)
7 2528.23 (107.95) 2621.69 (102.39) 2492.4 (109.20)
8 1882.13 (127.38) 1870.27 (137.06) 1806.73 (123.02)
9 957.94 (132.21) 928.89 (128.53) 847.57 (108.75)

10 421.65 (104.56) 436.84 (109.23) 423.89 (104.86)

Table 2: Number of mixing events. The numbers in parenthesis are the standard errors.

k Original Expected True MT MT1000

3 99.9932 105.616 105.619 105.617 105.616
4 131.295 137.523 137.512 137.525 137.526
5 168.713 175.441 175.441 175.438 175.438
6 210.885 218.001 218.007 218.008 218.010
7 256.196 263.758 263.766 263.762 263.763
8 303.484 311.354 311.556 311.548 311.549
9 351.868 360.354 360.360 360.358 360.362
10 400.981 409.9156 409.921 409.911 409.924

Table 3: Population mean before and after selection driven by different PRNGs and true random numbers.
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Figure 4: Frequency of choosing crossover points.

4 CONCLUSIONS

Previous studies have suggested that the choice of
PRNG has a small effect on the performance of GAs.
This paper presents additional experimental evidence
of the effect of PRNGs on GAs, and the results sug-
gest that the impact of the PRNG can be much more
dramatic than reported previously. In agreement with
other studies, we found that a poor PRNG can result
in improved performance. However, this improvement
is highly dependent of the seed, and we were unable to

obtain good results consistently across the test func-
tions used and different seeds. The ablation experi-
ments suggest that the PRNG used to initialize the
population is critical, while the PRNG used as input
to other stochastic GA operations does not seem to
affect the results. We performed additional experi-
ments isolating individual components of the GA that
seem to confirm these results. We did not observe any
improvement in performance using the true random
numbers over the MT generator.

The results of this study are limited to two PRNGs
and to the trap functions used. Future work should
apply the same experimental setup to additional func-
tions and PRNGs. The effect of PRNGs on other evo-
lutionary algorithms can also be studied with ablation
experiments. The criticality of initialization on the
performance of the GAs suggests that finding alter-
natives to the uniform random initialization may be
beneficial.

While the choice of PRNGs seems to cause consider-
able fluctuations in performance, the design of reliable
algorithms that consistently reach good solutions is
not likely to be found in the experimentation with ran-
dom seeds or different PRNGs. However, these large
fluctuations require that experimenters choose their
PRNGs and seeds carefully, and that these choices are
reported appropriately. The results of this paper sug-
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k Expected True MT MT1000 MT1000

seed=random seed=10

3 4.25 4.2547 (0.0617) 4.2475 (0.0621) 4.2382 (0.5039) 4.653
4 1.5625 1.5668 (0.0368) 1.5632 (0.0392) 1.5635 (0.3795) 2.2
5 0.625 0.6255 (0.0236) 0.6248 (0.0259) 0.6217 (0.2462) 0.8
6 0.2656 0.2659 (0.0155) 0.2652 (0.0164) 0.2647 (0.1182) 0.34
7 0.1171 0.1175 (0.0107) 0.1172 (0.0108) 0.1149 (0.0711) 0.098
8 0.0507 0.0515 (0.0070) 0.0506 (0.0071) 0.0511 (0.0729) 0.104
9 0.0234 0.0235 (0.0045) 0.0236 (0.0049) 0.0233 (0.0295) 0.024
10 0.0097 0.0098 (0.0028) 0.0098 (0.0032) 0.0109 (0.0324) 0

Table 4: Number of optimal subfunctions in randomly initialized populations. The numbers in parenthesis are
the standard errors.

gest that experimenters should use the best PRNG
available to avoid “lucky” accidents that can muddle
the interpretation of the results.

Acknowledgments

UCRL-JC-146850. This work was performed under the
auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

I thank the anonymous reviewers for their detailed and
constructive comments that helped improve the paper.

References
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Abstract 
 
 
In real-world multi-objective problems, the 
evaluation of objective functions usually requires 
a large amount of computation time. Moreover, 
due to the curse of dimensionality, solving multi-
objective problems often requires much longer 
computation time than solving single-objective 
problems. Therefore, it is essential to develop ef-
ficiency enhancement techniques for solving 
multi-objective problems. This paper investi-
gates fitness inheritance as a way to speed up 
multi-objective genetic and evolutionary algo-
rithms. Convergence and population-sizing mod-
els are derived and compared with experimental 
results in two cases: fitness inheritance without 
fitness sharing and fitness inheritance with fit-
ness sharing. Results show that the number of 
function evaluations can be reduced with the use 
of fitness inheritance. 

1 INTRODUCTION 
For many large-scale and real-world problems, the fitness 
evaluation in genetic and evolutionary algorithms may be 
a complex simulation, model or computation. Therefore, 
even this subquadratic number of function evaluations is 
rather high. This is especially the case in solving multi-
objective problems. It is not only because the number of 
the objectives to be evaluated is increased, but also the 
curse of dimensionality may increase the convergence 
time of genetic algorithms (GAs). As a result, it is benefi-
cial to utilize efficiency enhancement techniques (EETs) 
in multi-objective GAs. 
In practice EETs have improved the performance of GAs. 
Many real-world applications of GAs usually use EETs to 
improve the speed, ranged from parallel computing, dis-
tributed computing, domain-specific knowledge, or 

cheaper fitness functions. Recently, Sastry (2001) pro-
posed an analytical model for analyzing and predicting 
behavior of single-objective GAs with EETs. However, 
due to the popularity of multi-objective GAs, there is a 
need to investigate multi-objective GAs with EETs. In 
this paper, one EET called fitness inheritance is modeled 
and optimized for greatest speedup. In fitness inheritance, 
an offspring sometimes inherits a fitness value from its 
parents rather than through function evaluations. 
The objective of this paper is to model fitness inheritance 
and to employ this model in predicting the convergence 
time and population size required for the successful de-
sign of a multi-objective GA. This paper is organized in 
the following manner. Section 2 briefly reviews the past 
works on EETs and fitness sharing. Section 3 describes 
the bicriteria OneMax problem and fitness inheritance, 
and derives convergence-time and population-sizing 
models for multi-objective GAs with EETs, as well as the 
optimal proportion of inheritance, the speed-up. The ex-
perimental results on fitness inheritance with and without 
fitness sharing are presented in Section 4.  The paper is 
concluded in Section 5. 

2 BACKGROUND 
As background information, a brief review of the fitness 
inheritance literature is first presented. Then, a brief 
summary on how to incorporate fitness inheritance in 
multi-objective GAs is provided. Since fitness inheritance 
with and without fitness sharing will be discussed in this 
paper, section 2.2 presents a brief summary on fitness 
sharing. 

2.1 LITERATURE REVIEW 
Smith, Dike and Stegmann (1995) proposed two ways of 
inheriting fitness, one by taking the average fitness of the 
two parents and the other by taking a weighted average of 
the fitness of the two parents. Their results indicated that 
GAs with fitness inheritance outperformed those without 
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inheritance in both the OneMax and an aircraft routing 
problem. However, theoretical analysis in this paper was 
limited to considering a flywheel effect that arises in the 
schema theorem. Zheng, Julstrom, and Cheng (1997) used 
fitness inheritance for the design of vector quantization 
codebooks. A recent study by Sastry (2001, 2001a) devel-
oped a theoretical framework for analyzing fitness inheri-
tance, and discussed how to determine the optimal pro-
portion of fitness inheritance and speed-up of using fit-
ness inheritance in single-objective GAs. However, until 
now, there is no study on using fitness inheritance for 
multi-objective GAs. 

2.2 FITNESS INHERITANCE 
In fitness inheritance, the fitness of all the individuals in 
the initial population are evaluated. Thereafter, the fitness 
of some proportion of individuals in the subsequent popu-
lation is inherited. This proportion is called the inheri-
tance proportion, pi.  The remaining individuals receive 
evaluated fitness. If none of the individuals receive inher-
ited fitness (pi = 0), all the individuals are evaluated as 
usual, then no speed-up will be obtained. On the other 
hand, if all the individuals receive inherited fitness (pi = 
1), it means that none of the individuals are evaluated. 
Thereafter, the fitness diversity in the population will 
vanish rapidly and the population will premature con-
verged, so that GAs will fail to search the global optimum. 
As a result, it is important to choose an optimal inheri-
tance proportion, so that maximum speed-up will be 
yielded. The flowchart of multi-objective GAs with fit-
ness inheritance is shown in figure 1. 

Figure 1: Fitness inheritance in multi-objective GAs. 
 
There are several different ways to inherit fitness (objec-
tive fitness values), such as weighted-sum. For a multi-
objective problem with z objective, fitness inheritance in 
multi-objective GAs can be defined as 
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where fz is the fitness value in objective z, w1, w2 are the 
weights for the two parents p1, p2, and fz,p1, fz,p2 is the 
fitness values of  p1, p2 in objective z, respectively. In 
practice, fitness inheritance can be performed on all the 
objectives or just several objectives. 
In this paper, we assume that all the objective receives 
inherited fitness from the parents, and the inherited fitness 
(objective values) is taken to be the average of the two 
parents. Therefore, w1 and w2  are set to 1.  

2.3 FITNESS SHARING REVISITED 
Most multi-objective problems have multiple Pareto-
optimal solutions. This usually causes difficulties to any 
optimization algorithm in finding the global optimum 
solutions. In prior GA literature, there have been many 
niching methods on how to promote and maintain popula-
tion diversity. Fitness sharing, proposed by Goldberg and 
Richardson (1987), may be the most widely used niching 
method in solving multi-modal and multi-objective prob-
lems.  The basic idea of fitness sharing is to degrade the 
fitness of similar solutions that causes population diver-
sity pressure. The shared fitness of an individual i is given 
by 

i

i
ish m

F
F =, , (2)

where Fi is the fitness of the individual, and mi is the 
niche count, which defines the amount of overlap (sharing) 
of the individual i with the rest of the population. The 
niche count is calculated by summing a sharing function 
over all individuals of the population: 
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The distance di, j represents the distance between individ-
ual i and individual j in the population, determined by a 
similarity metric. The similarity metric can be based on 
either phenotype or genotype similarity. If the sharing 
function determines that the distance is within a fixed 
radius σsh, it returns a value, as equation (4).  
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The parameter α is usually set to 1. σsh is often conserva-
tively estimated.  

3 FITNESS INHERITANCE IN MULTI-
OBJECTIVE OPTIMIZATION 

In this section the bicriteria OneMax problem is extended 
from OneMax problem for analyzing multi-objective GAs 
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with fitness inheritance. In this section, a brief summary 
of fitness inheritance is also presented.  

3.1 BICRITERIA ONEMAX PROBLEM 
The OneMax or bit-counting problem is well-known and 
well-studied in the context of GAs. The OneMax problem 
is a bit-counting problem where fitness value of each 
binary string is equal to the number of one bits in it. Ac-
cordingly, the optimum binary string is an all 1s string. 
The simplicity of the OneMax problem makes it a prime 
candidate to study the effect of fitness inheritance on the 
performance of GAs. In order to investigate the perform-
ance of multi-objective GAs with fitness inheritance, we 
develop the bicriteria OneMax problem for analyzing 
multi-objective GAs with fitness inheritance. The bicrite-
ria OneMax problem is defined by 





−=
−=

),() ,(
),() ,(
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Maximize , (5)

where string s is the string to be evaluated, x1, and x2 are 
two fixed string, the string length is l, and d(s, x) is the 
hamming distance of two string. If the fixed string x is all 
1s string, then the corresponding objective function will 
be the OneMax problem. The number of Pareto-optimal 
solutions, m, in the bicriteria OneMax problem can be 
calculated by 

( )21 ,2 xxdm = . (6)

In this paper, unless otherwise mentioned, x1 is all 1s 
string, and x2 is all 1s string except the first four bits of x2 
is 0s. 

3.2 TIME TO CONVERGENCE 
In this section we derive convergence-time model for the 
bicriteria OneMax problem with fitness inheritance. For 
OneMax domain, the convergence model can be derived 
by using the response to selection equation (Mühlenbein 
and Schlierkamp-Voosen ,1993), 

ftt Ifff σ=−=∆ +1 . (7)

This equation was derived by calculating the difference in 
mean fitness of two populations using the selection inten- 
sity I, the population’s fitness variance 2σ f  at time t.  
Sastry (2001) extended this model for fitness inheritance 
in single-objective GAs. This population-sizing model 
derived by Sastry is reproduced below: 

fitt pIfff σ−=−=∆ + 11  (8)

Now, we can proceed to derive the convergence model for 
the bicriteria OneMax problem by extending equation (8). 
Based on the concept of fitness sharing, assumed that the 
population were divided into several subpopulations 
(niches), and each niche optimizes its own separate One-

Max problem. Therefore, the optimizing process for the 
bicritiera OneMax problem can be regarded as optimizing 
several OneMax problems simultaneously. Since niches 
are from the same population, each niche will receive 
external noise from other niches. As a result, we can use 
the OneMax model with noisy fitness functions (Miller, 
1997) to predict convergence time in the presence of 
external noise caused by niches. For each niche, the con-
vergence model for the bicriteria OneMax problem can be 
expressed as 
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where 2
Nσ  is the noise variance from other niches.  

Let M be the number of niches in the population, and  
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Assumed that each niche has same proportion of correct 
BBs, let pt be the proportion of correct BBs in the niche at 
generation t. For the OneMax domain, the mean fitness at 
generation t equals lpt, the fitness variance can be ap-
proximated by lpt (1 - pt), and the noise variance from 
other niches can be approximated by (M – 1) pt (1 - pt). 
The population is converged to optimal when pt = 1. 
Equation (9) now yields 
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Approximating the above equation with a differential 
equation and integrating this equation using the initial 
condition p|t=0 = 0.5, we get 
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Then we can derive an equation for convergence time, 
tconv, by equating pt = 1, and inverting equation (11), 
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Finally, we can yield 
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If pi is taken as 0, and M is taken as 1, then the above 
relation reduces to 

I
ltconv 2

π
= , (14)

which agrees with existing convergence-time models for 
the OneMax problem.  
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Generally, M can be set to the number of niches in the 
population or the number of Pareto-optimal solutions in 
equation (13). However, it is difficult to determine M, 
because niches are often overlapped in the real-world 
problems, and the number of niches in the population is 
always varied in the real runs of GAs with fitness sharing. 
The convergence-time model will be examined and com-
pared with experiments in the later section. 

3.3 POPULATION SIZING 
Selecting a conservative population size reduces the 
chance of premature convergence, and it also influences 
the quality of the solution obtained. Therefore, it is impor-
tant to appropriately size the population to incorporate the 
effects of fitness inheritance. For the OneMax problem, 
the Gambler’s Ruin population-sizing model (Harik et al., 
1997) can be used to determine the population-sizing 
model. Sastry (2001) extend this model for fitness inheri-
tance. This population-sizing model derived by Sastry is  
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n σπψ
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−=

−

, (15)

where n is the population size, k is the building block (BB) 
length, ψ is the failure rate, and σf is the variance of the 
noisy fitness function. For an OneMax with string length 
100, k = 1, 2σ f = 25. 
Assuming the population were divided into M niches, and 
each niche optimizes for its own separate OneMax prob-
lem. Similar to the population-sizing model for the bicri-
teria OneMax problem, we can extend this model by us-
ing the OneMax model with noisy fitness functions 
(Miller, 1997) to predict population-sizing in the presence 
of external noise caused by niches. The population model 
for the bicriteria OneMax problem can be written as 
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where 2
Nσ  is the noise variance from other niches, and  M 

is the number of niches.  
The population-sizing model will be examined and com-
pared with experiments in the later section. 

3.4 OPTIMAL INHERITANCE PROPORTION 
AND SPEED-UP 

Given a problem there should be a range of inheritance 
proportions that are more efficient than the others. An 
inappropriate inheritance proportions would not reduce 
the number of function evaluations. For large sized prob-
lems, Sastry’s study indicates that the optimal inheritance 
proportion, pi, lies between 0.54 -0.558. The total number 
of function evaluations required can be calculated by 

( )[ ]iiconvfe pptnN +−= 1 . (17)

From the equation (10) and equation (13), we can the 
predicted the total number of function evaluations re-
quired, as shown in figure 1. 
The speed-up of fitness inheritance is defined as the ratio 
of number of function evaluations with pi = 0 to the num-
ber of function evaluation at optimal pi. From the practical 
view, a user usually fixes the population size and then 
optimizes the proportion of fitness inheritance. Therefore, 
the optimal proportion of fitness inheritance with a fixed 
number of population size can be obtained by the inverse 
of equation (16). 

3* 1
n

p i
κ

−= , (18)

where )()ln(2 221
Nf

k M σσπψκ +−= − . Equation  

(18) indicates that if the population is larger than κ, the 
larger the population size, the higher of inheritance pro-
portion can be used. 

Figure 1: Total number of function evaluations predicted 
by equation (17) with a failure rate of 0.0001.  

4 EXPERIMENTS AND RESULTS 
The experiments were performed using selectorecombina-
tive GAs with binary tournament selection, and uniform 
crossover with crossover probability of 1.0. No mutation 
operator is used. The sharing factor σsh is set to 50. The 
fitness assignment strategy we used is proposed by Ho 
(1999), is defined by 

cqpXF +−=)( , (19)

where p is the number of individuals which can be 
dominated by the individual X, and q is the number of 
individuals which can dominate the individual X in the 
objective space. To ensure a positive fitness value, a 
constant c is added. Generally, the constant c can be 
assigned using the number of all participant individuals. 
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All experiments were performed 30 runs using the 100-bit 
bicriteria OneMax problem. 
As to M in equation (13) and equation (16), considering 
the bicriteria OneMax problem and assuming perfect 
niching, M can be set to 2. Because better mixing of BBs 
is able to generate other Pareto-optimal solutions from x1 
and x2. It should be an approximated lower-bound for the 
comparison with experimental results. However, it is 
noted that, in the real runs of GAs with fitness sharing, M 
is varied in the population. Therefore, equation (13) and 
equation (17) is also varied. 
In order to investigate multi-objective GAs with fitness 
inheritance, two kind of experiments, ftiness inheritance 
without fitness sharing and fitness inheritance with fitness 
sharing, were performed and compared with analytical 
results. However, since multi-objective GAs without 
fitness sharing may lead to only some niches. Therefore, 
for fitness inheritance without fitness sharing, the algo-
rithm used an external non-dominated set to store the non-
dominated solutions during its search process. 

4.1 FITNESS INHERITANCE WITHOUT FIT-
NESS SHARING 

The convergence time observed experimentally is com-
pared to the above prediction for a 100-bit bicriteria 
OneMax problem in figure 2. Although fitness sharing 
was not used, the results indicate fitness inheritance is 
able to find all the Pareto-optimal solutions during the 
search process. The discrepancy between the empirical 
and analytical results may due to some niches disappear 
out of the population. Therefore, multi-objective GAs will 
focus the search on the remaining niches. When there is 
only one niche left, it lead to that all the population is 
optimizing an OneMax problem.  
The population-sizing model is compared to the results of 
100-bit OneMax problem and the results obtained for a 
100-bit bicriteria OneMax problem and in figure 3.  From 
the plot it can be easily seen that when the proportion of 
fitness inheritance is smaller than 0.4, our population-
sizing model fits the experimental result accurately. How-
ever, when the proportion of fitness inheritance is bigger 
than 0.4, the experiments results get closer to the analyti-
cal results of the OneMax problem. It is because when the 
proportion of inheritance is higher, the diversity of popu-
lation becomes lesser. So that the search was focused on 
the remaining niches when some niches disappeared dur-
ing the search process.  As a result, the convergence time 
of fitness inheritance without fitness sharing is varied and 
may be lower then the analytical results predicted by 
equation (13).  
By using an appropriate population size and proportion of 
fitness inheritance and from the equation (13) and equa-
tion (16), we can the predicted the total number of func-
tion evaluations required and compared with experimental 
results, as shown in figure 4. The above results indicates 
the optimal inheritance proportion lies between 0.6 – 0.8 

for fitness inheritance without fitness sharing. The speed-
up is around 1.4. In other words, the number of function 
evaluations with inheritance is around 40% less than that 
without inheritance. This implies that we can get a mod-
erate advantage by using fitness inheritance. The discrep-
ancy between our results and Sastry’s study occurs due to 
the disappearance of niches.  
Considering the fixed population size, the speed-up is 
different to the speed-up obtained above. From figure 5, it 
can be seen that if the population size is 2000, then fitness 
inheritance can yield a speed-up of 3.4. The result agrees 
with that obtained by Sastry (2001). 

Figure 2: Convergence time for a 100-bit bicriteria One-
Max problem for different proportion of inheritance pre-
dicted by equation (13) compared to experimental results. 

 
Figure 3: Verification of the population-sizing model for 
various inheritance proportions with empirical results. 
The curves are analytical results of Onemax problem and 
bicriteria OneMax problem, respectively. Experimental 
results depict the population size required for optimal 
convergence with failure rate of 0.0001. 

GENETIC ALGORITHMS 323



Figure 4: Total number of function evaluations predicted 
by equation (17) compared to experimental results. The 
curves are the analytical results of 100-bit Onemax prob-
lem and 100-bit bicriteria OneMax problem, respectively.  

Figure 5: Total number of function evaluations for various 
proportion of fitness inheritance at different population 
sizes.. 

4.2 FITNESS INHERITANCE WITH FITNESS 
SHARING 

In section 4.2, the experiments were performed using 
fitness inheritance with fitness sharing. The external non-
dominated set was not used.  
Recalling the definition of fitness sharing in section 2.3, 
we know that fitness sharing will degrade the fitness of 
similar individuals, so that these individuals will have 
smaller opportunity to be selected into the next generation. 
However, considering fitness inheritance with fitness 
sharing, an individual inherits fitness (objective value) 
from its parents. So the objective values are approximated. 
Then the dummy fitness is assigned according to the ap-
proximated objective values. Therefore, the dummy fit-
ness is also approximated. Apparently, if some individu-
als are over-estimated and receive better fitness than their 

actual fitness, fitness sharing will also maintain these 
individuals. As a result, when fitness inheritance is used 
with fitness sharing, we expect that over-estimated indi-
viduals are likely to survive in the population and affect 
other solutions as the proportion of inheritance increased.  
Figure 6 and figure 7 present the convergence model and 
population-sizing model observed for 100-bit bicriteria 
OneMax problem using fitness inheritance with fitness 
sharing. When the inheritance proportion is smaller than 
0.7, the experimental results fit the predicted convergence 
model and population-sizing model. However, when the 
inheritance proportion is bigger than 0.8, GAs with fitness 
inheritance and fitness sharing cannot converge to all the 
Pareto-optimal solutions.  

Figure 6: Convergence time for different proportion of 
inheritance predicted by equation (13) compared to ex-
perimental results using fitness inheritance with fitness 
sharing. 

Figure 7: Verification of the population-sizing model for 
fitness inheritance with fitness sharing compared with 
empirical results. Experimental results depict the popula-
tion size required for optimal convergence with failure 
rate of 0.0001. 
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Figure 8 presents the distance to Pareto front of both ac-
tual and inherited fitness for the experimental results with 
inheritance proportion 0.9. It indicates that the search 
process was divided into two phases. In this first phase, 
fitness inheritance proceeded well. The second phase 
started around the 40th generation. Some individuals were 
approximated to better fitness and maintained by fitness 
sharing. Due to the high inheritance proportion, these 
inferior individuals mixed with other individuals. Finally 
the population was filled with incorrect individuals. This 
phenomenon explains the discrepancy between empirical 
and analytical results in figure 6.  

Figure 8: The distance to the Pareto front of actual fitness 
and inherited fitness for the experimental results with 
inheritance proportion 0.9. The empirical results are aver-
aged over 30 runs. 

Figure 9: The distribution of function evaluations. The 
curve is the total number of function evaluations predicted 
by equation (17) for optimal convergence of a 100-bit 
bicriteria OneMax problem with a failure rate of 0.0001.  
 
 

The predicted number of function evaluations is com-
pared with experimental results in figure 9. The speed-up 
is around 1.25. The discrepancy between our results and 
analytical results may due to the number of niches, M, is 
varied in the real runs of GAs with fitness sharing. some 
inferior individuals are maintained by fitness sharing, and 
then mixed with other niches. Therefore, more function 
evaluation times are required. This may be the overhead 
in using GAs with fitness sharing. 
In summary, the experimental results of fitness inheri-
tance with fitness sharing indicate that the proportion of 
inheritance lies between 0.4 -0.5, so that incorrect niches 
will have lesser chance to be maintained by fitness shar-
ing. The result is slightly different to the optimal propor-
tion of inheritance derived by Sastry.  

5 CONCLUSIONS 
In this paper, we have developed a bicriteria OneMax 
problem and derived models for convergence-time and 
population-sizing. The models have been analyzed in two 
cases: fitness inheritance without fitness sharing and fit-
ness inheritance with fitness sharing. In the first case, 
fitness inheritance yields saving on 40% in terms of the 
number of function evaluations. While using a fixed 
number of population size, fitness inheritance can yield a 
speed up of 3.4. In the second case, fitness inheritance 
yields saving to 25%.   
Though the speed-up of fitness inheritance seems to be 
modest, it can be incorporated with parallelism, time 
continuation, and other efficiency enhancement tech-
niques. In such case, a speed up of 1.25 can be important. 
Further studies on using complex inheritance techniques 
and incorporating fitness inheritance with state-of-the-art 
multi-objective genetic algorithms are still remains to be 
done. 
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Abstract

In this paper, we de�ne sorting network iso-
morphism and examine its relationship to
graph-theoretic problems. We devise the nor-
malization technique that exploits the func-
tional similarities of sorting networks, which
in turn helps genetic algorithms avoid too
much perturbation. The sorting network iso-
morphism provides the basis for the normal-
ization. In addition, we developed an e�ec-
tive local search heuristic for the problem.
Combining the local heuristic with a genetic
algorithm, we found 60-comparator sorting
networks in the 16-bus problem without �x-
ing any comparators on a single-CPU PC.
This result is signi�cantly faster and more
stable than the previous study conducted
with a supercomputer.

1 Introduction

A sorting network is a hardware sorting logic in which
the comparisons and exchanges of data are carried
out in a prescribed order. A sorting network is com-
posed of buses and a number of homogeneous com-
parators, where each comparator c(a,b) performs the

elementary operation that compares the a
th and b

th

buses; if the values are in order, ignore them, other-
wise exchange them. We call a sorting network for
n inputs an n-bus sorting network. For any input
sequence of an n-bus sorting network, the output se-
quence y0; y1; : : : ; yn�1 is monotonically nondecreasing
(y0 � y1 � : : : � yn�1). Figure 1 shows a 4-bus sorting
network [ c(0,1), c(2,3), c(0,2), c(1,3), c(1,2) ].

Historically many scientists had made studies of 16-bus
sorting networks [3] [11] [1] [21] [13]. In 1969, Green

[13] �rst discovered a 60-comparator sorting network
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Figure 1: A 4-bus sorting network

which is still one of the best known. Recently, 16-bus
sorting networks have attracted attention again due
to the improvements in new stochastic search methods
[14] [2] [8] [16] [10] [6] [7].

Most of these studies initialized the networks with
the �rst 32 comparators of Green's network to re-
duce the size of the problem space [14] [8]. To date
Juill�e [16] is the only one who attacked the problem
without �xing the �rst 32 comparators. He found 60-
comparator sorting networks with a stochastic search
method called END (Evolving Non-Determinism) on a
Maspar MP-2 supercomputer. Even most other stud-
ies that �xed the �rst 32 comparators used supercom-
puters [14] [8].

In [6] and [7], the authors �rst found 60-comparator
sorting networks on a single-CPU PC with the �rst 32
comparators �xed. In this paper, we attack the prob-
lem without �xing any comparators. Under the sin-
gle CPU environment again, we found 60-comparator
sorting networks. This is thought to be possible by
the following: First, we devised a process to maintain
the consistency between two parent networks, which
in turn helps the genetic algorithm undergo e�ective
exploitation. Next, we designed an e�ective local opti-
mization heuristic customized to the problem. Finally,
we incorporated the local optimization heuristic into
the genetic framework to lead a strong synergy.

The rest of this paper is organized as follows. In Sec-
tion 2, we present some underlying theory related to
the sorting network and our theoretical view of it. In
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Figure 2: Formulae for the contents of buses

Section 3, we de�ne the sorting network isomorphism
and describe normalization as its application to the
genetic algorithm. In Section 4, we propose our local
optimization heuristic, and in Section 5 we provide a
genetic algorithm combined with the local optimiza-
tion heuristic. We give the experimental results in
Section 6. Finally, we make our conclusions in Section
7.

2 Preliminaries

2.1 Boolean Characteristics of Sorting

Networks

A valid sorting network guarantees to sort any input
sequence in order. It is, however, possible to restrict
the inputs to binary sequences by the following [17]:

Theorem 1 (Zero-One Principle) If an n-bus

sorting network sorts all 2n sequences of 0's and 1's
into nondecreasing order, it will sort any arbitrary

sequence of n numbers into nondecreasing order.

Then we are able to write down two outputs, min(a,b)
and max(a,b), of a comparator c(a,b) as follows (note
that a and b are binary numbers): min(a; b) = a ^ b

and max(a; b) = a _ b. Generalizing this, for a given
sorting network, the contents of any points on a bus
can be expressed in disjunctive normal form (DNF)
with inputs as variables. We denote the input and
output on the kth bus by xk and yk (0 � k � n� 1) in
an n-bus network. Figure 2 illustrates an example. In
the �gure, the output on 0th bus, y0 = (x0^x1)^(x2^
x3), can be reduced to x0^x1^x2^x3. Similarly, y1, y2,
and y3 can be reduced to (x0^x1^x2)_(x0^x1^x3)_
� � �_(x1^x2^x3), (x0^x1)_(x0^x2)_� � �_(x2^x3),
and x0_x1_x2_x3, respectively, by axioms of boolean
algebra.

Let �k be the kth smallest element in the set of inputs
fx0; x1; : : : ; xn�1g (0 � k � n�1). Then, the following
holds in general [17]:

�k =
_
fxi0 ^ xi1 ^ � � � ^ xin�k�1

j

0 � i0 < i1 < � � � < in�k�1 � n� 1g:

In a valid n-bus sorting network, �k corresponds to the
k
th output, i.e., yk = �k 8 k.

2.2 Transforming to Valid Networks

In this section, we briey review our previous works in
[6] and [7] to transform invalid networks to valid ones.

2.2.1 O/N-pairs and Parallel Layers

The Zero-One Principle [17] says that we can prove the
validity of an n-bus sorting network by testing just 2n

binary sequences instead of n! sequences. We denote
by Tn the entire set of 2n binary sequences with which
we test and by Sn the set of sorted sequences from
Tn. (Sn � Tn) We can consider an n-bus network as
a function from Tn to Tn. Then we denote by f� the
function corresponding to a sorting network �.

Let t(i) be the ith bit value of a binary sequence t. For
two input bus indices x and y such that x < y (x; y =
0; 1; 2; :::; n�1), if (f�(t))(x) � (f�(t))(y) for all t 2 Tn,
then the sorting is acceptable with the sorting network
� as far as the two input buses are concerned. We
call such an input bus pair (x,y) an ordered pair (o-
pair) with respect to the network �. On the other
hand, if there exists a t 2 Tn such that (f�(t))(x) >
(f�(t))(y), then the sorting is not guaranteed for the
two buses. We call such an input bus pair (x,y) a non-
ordered pair (n-pair) with respect to the network �.
We denote by OP(�) the entire set of o-pairs for a
network � and by NP(�) the entire set of n-pairs for
it. It is clear that jOP(�)j+ jNP(�)j =

�
n

2

�
.

In a sorting network, a number of consecutively lo-
cated independent comparators are allowed to be shuf-
ed. We handle these interchangeable comparators as
a group, since the sequence of these comparators does
not a�ect the function of the network. We call such a
group of comparators a parallel layer. For example,
the network in Figure 1 is composed of three parallel

layers.

A parallel layer strongly a�ects the subsequent search
direction. If a considerable number of leading parallel
layers have been determined, the rest may be easily
constructed without redundancy by the repair heuris-
tic of the next section. From the perspective of parallel
layers, the sorting network problem can be considered
to be the problem of �nding a considerable number
of leading parallel layers. For this reason, we evolved
only a �xed number of leading parallel layers; this sig-

ni�cantly reduced the computational load in [7].
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2.2.2 Edit and Repair Heuristics

In [6] and [7], we devised two heuristics, edit and re-
pair, to enhance the GAs' �ne-tuning around local op-
tima. The edit removes redundant comparators in a
network. If the input bus pair of a comparator is an
o-pair with respect to its previous comparators, the
comparator is redundant. The repair modi�es an in-
valid network to a valid one. In [6] and [7], the number
of n-pairs of a network was used as a measure evalu-
ating the quality of the network. The repair builds
a valid network by adding a set of comparators that
reduce the largest number of n-pairs. The repair con-
sists of two operations: appending and insertion. The
appending adds comparators in the rear part of a net-
work; the insertion adds comparators in the middle of
a network. See [7] for details.

3 Isomorphism and Normalization

3.1 De�nition of Sorting Network

Isomorphism

If we denote by j�j the number of comparators in
�, a sorting network � is generally represented by a
sequence of comparators c0; c1; : : : ; cj�j�1. And each
comparator ci is represented by a pair of input bus
indices (ai,bi). Here, the input bus indices ai and bi

indicate only the absolute locations of the input buses
of ci. We cannot know the relationship between ci and
the input bus index system of �, from the values of ai
and bi.

In the previous section, we saw that an intermediate
value of any point on a bus can be expressed in DNF
with inputs as variables. For a comparator ci in a
network � = c0; c1; : : : ; cj�j�1 (0 � i � j�j � 1), we
denote by DI(ci) the set of the DNFs of ci's inputs.
(jDI(ci)j = 2) The sequence of DI(ci)'s reects the
construction process of � under a given input bus index
system.

Let Sn be the set of all the permutations of input
set fx0; x1; : : : ; xn�1g. For a DNF d =

W
i

V
j
xij

(xij 2 fx0; x1; : : : ; xn�1g) and a permutation p 2 Sn,
we de�ne p(d) as

p(d) =
_
i

^
j

p(xij) :

Now, we de�ne the sorting network isomorphism as
follows:

De�nition 1 For two n-bus sorting networks � =
c0; c1; : : : ; cj�j�1 and �

0 = c00; c
0

1; : : : ; c
0

j�0j�1
,

� is isomorphic to �
0 (� ' �

0)

0
1
2
3
4
5

0
1
2
3
4
5

Figure 3: Two isomorphic networks

() j�j = j�0j and 9p 2 Sn such that

p(DI(ci)) = DI(c0i) 8i = 0; 1; : : : ; j�j � 1.

From the de�nition, two isomorphic networks are con-
structed essentially in the same way, and their input
bus indices may be di�erent. In other words, a network
can be transformed into another isomorphic network
by appropriate permutation of the bus indices and
comparator reconnection. Here, we should note that
the comparator reconnection is more than the simple
transposition of comparators' end points according to
the permutation.

Figure 3 shows an example of two isomorphic net-
works. Between the two networks, there are a per-

mutation

�
0 1 2 3 4 5
5 4 3 2 1 0

�
and a nontrivial re-

connection of comparators. Although they are quite
di�erent in appearance, they are the same networks in
viewpoint of the construction scheme.

3.2 Validity Preserving Property Under

Isomorphism

From the de�nition of sorting network isomorphism,
given an n-bus network � and a permutation p 2
Sn, we can construct the network �

0 isomorphic to
�. Suppose that � = c0; c1; : : : ; cj�j�1 and �

0 =
c00; c

0

1; : : : ; c
0

j�j�1
. We choose the bus pair, as the input

bus pair of c0i, whose DNF set coincides with p(DI(ci)).
Figure 4 shows the construction algorithm for an iso-
morphic network. Note that, in the algorithm, the
permutation keeps changing according to the history
of construction.

Generally, the validity is preserved among isomorphic
networks. This property is utilized in the process of
normalization in Section 3.4.

Proposition 1 For a valid sorting network �, every

network isomorphic to � is valid.

Proof: Omitted by space limitation.

In Figure 3, the left network is valid; accordingly, the
right network is also valid.
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ConstructIsomorphicNetwork(�, p) (const-network)
// � : a given sorting network
// c0; c1; : : : ; cj�j�1, ci = (ai; bi)
// �

0 : the isomorphic network returned
// c00; c

0
1; : : : ; c

0
j�j�1

, c0i = (a0i; b
0
i)

// p : a permutation 2 Sn

f

for i  0 to j�j � 1 f
a
0
i  min(p(ai),p(bi));

b
0
i  max(p(ai),p(bi));
p(ai)  a

0
i;

p(bi)  b
0
i;

g

return �
0;

g

Figure 4: The construction algorithm
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(b) Its underlying graph G(�)

Figure 5: An example of an underlying graph

3.3 Underlying Graphs and Isomorphism

Given two networks � and �
0, the sorting-network iso-

morphism problem asks whether they are isomorphic
or not. Considering the de�nition of sorting network
isomorphism, it seems that the problem itself is rather
complicated. However, we intend to look at the prob-
lem from another angle.

Sorting networks have been generally represented in
such a way as in Figure 5(a). Since it draws buses
across comparators in order to focus on the ows of
data on buses, it is not appropriate in representing the
relationship among comparators. We devised a model
to better represent the relationship among compara-

tors.

Set a vertex for each comparator. If an output of com-
parator ci is fed into comparator cj as an input, con-
nect vertex vi and vertex vj by an arc eij from vi to
vj . At this time, mark eij with \+" if it represents the
maximum output of ci. Otherwise, mark eij with \�".
We have a directed graph G = (V;E) corresponding to
a given sorting network where V is the set of vertices
and E is the set of arcs. (e.g., Figure 5(b))

For a given network �, we call such a directed graph

obtained from � an underlying graph of � and de-

note by G(�). It is obvious that those graphs are
acyclic and the degrees of their vertices are bounded
by 4. G(�) represents the relationships among the
comparators of �; consequently G(�) represents the
construction scheme of �. There is strong relationship
between the sorting network isomorphism and under-
lying graphs.

For two directed graphs G = (V;E) and G
0 = (V 0

; E
0),

G and G
0 are isomorphic if and only if there exists a

bijection f : V 7! V
0 such that w(x; y) = w(f(x); f(y))

for every ordered pair (x,y) of vertices in V , where
w(i; j) indicates the mark of the arc from vertex i to
vertex j [18]. At this time, we denote by G ' G

0. It
holds, in general, that if two networks are isomorphic,
then their underlying graphs are also isomorphic, and
vice versa.

Proposition 2 For two networks � and �
0,

� ' �
0 () G(�) ' G(�0) :

Proof: Omitted by space limitation.

Since sorting networks can be eÆciently transformed
to their underlying graphs and the degree of any vertex
in the underlying graphs are bounded by 4, Proposi-
tion 2 implies that the sorting network isomorphism
problem is polynomially reduced to the bounded va-
lence graph isomorphism problem.

It is an open problem whether the general graph iso-
morphism problem is NP-complete or not [12] [18].
However, it is known that the isomorphism of graphs
of bounded valence can be tested in polynomial time
[20]. So the sorting network isomorphism problem can
be eÆciently solved.

3.4 Normalization of Networks

If we perform crossover with two near-isomorphic solu-
tions of signi�cantly di�erent shapes, the o�spring will
be signi�cantly di�erent from both parents. For exam-

ple, consider Figure 6(a) and Figure 6(b). Although
the subnetworks with the �rst eight comparators in (a)
and (b) are totally di�erent, they are isomorphic; they
have the same construction schemes. If we crossover
the two networks as they stand in appearance, these
common attributes of the two networks are prone to
be broken in the process of crossover. In a parent's
point of view, the crossover is like too strong a muta-
tion. We minimize this \visual inconsistency" before
crossover.

We de�ne the distance of two networks as follows:
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(a) A network � (b) A network �
0 (c) �0 after normalization

Figure 6: An illustration of normalization process

De�nition 2 For two networks �=c0; c1; : : : ; cj�j�1

and �
0=c00; c

0

1; : : : ; c
0

j�0j�1
, let s = maxftjci = c0i; 0 �

i � t � 1g. The distance between the two networks �

and �
0 is de�ned as

d(�; �0) = maxfj�j; j�0jg � s :

It is known that a network can be reconstructed so that
the distance between the network and its isomorphic
one is 0.

We transform one of the parents as closely as possible
to the other parent. We call such a transformation
normalization. Although much simpler, normaliza-
tion had been performed for genetic multiway graph
partitioning to help maintain consistency between two
parents [19].

Given a mapping of buses to minimize the distance
between networks, normalization can be achieved by
the construction algorithm in the previous section. In
order to �nd the mapping, we proceed layer by layer
to the right and check whether the underlying graphs,
corresponding to the subnetworks (to the layer) of the
two parents, are isomorphic or not. If the two graphs
are not isomorphic at the k

th layer for the �rst time,
we have found an isomorphism between the underlying
graphs corresponding to the two subnetworks from the
�rst layer to the k � 1th layer. Then we match the bus
indices of the corresponding source vertices (whose in-
degrees are zero) of the graphs from the isomorphism,
so as to generate the mapping of buses.1 Figure 7
shows the outline of normalization.

Figure 6(c) shows the network after the network
in Figure 6(b) is normalized with respect to the
network in Figure 6(a), where the mapping is�

0 1 2 3 4 5 6 7
0 7 1 2 5 4 3 6

�
. The actual crossover

is conducted between the networks (a) and (c).

1[20] guarantees that such normalization can be ef-
�ciently processed in viewpoint of computation theory.
Since we do not need the precise algorithm, we perform
the normalization process using a type of labeling heuris-
tic that is fast but allows errors to some degree.

Normalize(�,�0)
// l, l0 : numbers of parallel layers of � and �

0

// �i : the i
th parallel layer of � (0 � i � l� 1)

// �
0
i : the i

th parallel layer of �0 (0 � i � l
0
� 1)

f

k  minfl� 1; l0 � 1g;
for i  0 to minfl � 1; l0 � 1g f

if (G(�0 � � ��i) 6' G(�0
0 � � ��

0
i)) f

k  i;
break;

g

g

if (k > 0) f
generate the mapping p

from G(�0 � � ��k�1) and G(�0
0 � � ��

0
k�1);

return const-network(�,p);
g else f

return �
0;

g

g

Figure 7: The outline of normalization

4 Local Optimization

We mentioned before that we had devised edit and re-
pair heuristics to enhance the GA's �ne-tuning around
local optima in [6] and [7]. The repair heuristic is a
type of greedy and constructive algorithm that modi-
�es an invalid network to a valid one with the number
of n-pairs as a measure. Although they were somewhat
powerful in the version that �xes the �rst 32 compara-
tors, we �nd that they are not enough for the version
of the problem that does not �x any comparators. The
problem space is incomparably huge and more power-
ful local optimization is desired. We designed a local
search heuristic to search the problem space around a
valid network after repair.

From the viewpoint of underlying graphs, the optimal
sorting network problem can be considered to be the
problem of �nding the edges that optimally connect
the vertices corresponding to given comparators | the
problem of �nding the optimal network topology. We
consider the networks, obtained by exchanging every
two input bus indices of comparators in each layer of
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create initial population of a �xed size;
do f

choose parent1 and parent2 from population;
parent2  normalization(parent1, parent2);
o�spring  crossover(parent1, parent2);
mutation(o�spring);
edit(o�spring);
repair(o�spring);
local-optimization(o�spring);
replace(population, o�spring);

g until (stopping condition);
return the best individual;

Figure 8: The outline of the hybrid genetic algorithm

� proceeding from left to right, as neighbor networks
of �. This exchanging process is equivalent to swap-
ping two input-output pairs of the two vertices corre-
sponding to two comparators in the same layer in the
underlying graph G(�). Such a strategy considerably
reduces the computational load of local search for the
following reason.

Suppose that the number of parallel layers in � is l,
and let the parallel layers of � be �0; �1; : : : ; �l�1; let
the functions corresponding to these parallel layers be
f�0 ; f�1 ; : : : ; f�l�1

. In general, if � does not have any
redundant comparator, the number of unsorted binary
sequences steeply decreases as the parallel layers are
added one by one. In other words,

jf�0(Tn)� Snj � jf�1(f�0(Tn))� Snj � � � �

� jf�l�1
(f�l�2

� � � f�0(Tn) � � �)� Snj :

Therefore, we can considerably reduce the time of eval-
uating the neighbors by considering only the unsorted
sequences instead of all the sequences in Tn. Such
a strategy, which successively improves layers left to
right, is natural in that a parallel layer strongly a�ects
the subsequent layers [7].

5 GA Framework

We used a typical hybrid steady-state genetic algo-
rithm. Figure 8 shows the outline of the hybrid ge-
netic algorithm. We describe the details of our genetic
algorithm in the following.

� Encoding: Each sorting network is represented
by a chromosome. A chromosome is composed of
a �xed number of parallel layers and one supple-
mental layer. Each gene is represented by a pair
of input buses and corresponds to a comparator.
Each parallel layer consists of a bounded number
of independent comparators and the supplemental

layer consists of an unlimited number of compara-
tors.

In our GA, only the genes in the parallel lay-
ers are used for crossover. On the other hand, the
genes in the supplemental layer are used only for
the evaluation of �tness; genes in the supplemen-
tal layer are appended by repair and local opti-
mization. This is a variant of Baldwinian hybrid
GAs [22] [15] [23].

� Initialization: We set the population size to be
100. For each parallel layer in a chromosome,
we randomly generate independent comparators.
The number of independent comparators is cho-
sen to be between a quarter and half the number
of input buses. We then perform edit and repair
processes to make the chromosome valid.

� Parent Selection: The �tness value Fi of chro-
mosome i is calculated as follows:

Fi = (
1

Li

�
1

Lw

) + (
1

Lb

�
1

Lw

)=3

where

Lw : the length of the worst (longest),

Lb : the length of the best (shortest), and

Li : the length of chromosome i:

Each chromosome is selected as a parent with a
probability proportional to its �tness value. This
is a typical proportional selection scheme.

� Normalization: As mentioned in Section 3, we
normalize one of the parents with respect to the
other before crossover.

� Crossover: As mentioned, we consider only the
parallel layers of the two parents in crossover. We
generate �ve cut points. Since the lengths of the
two parents are often di�erent, we �rst generate
�ve logical points and translate them into \rel-
atively" the same positions in the parents. Few
parallel layers of o�springs made in this way are
usually valid.2 We convert each layer to a valid
one by removing comparators until there is no
comparator that shares the same bus with another
comparator in the layer.

� Mutation: We randomly select each compara-
tor with a low probability (P=0.03) in each layer
and change one of the input buses at random. If

2Here, a \valid" layer means a layer that consists of
independent comparators. This usage is di�erent from the
other parts, e.g., Section 2.1, of this paper.
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Figure 9: The average running times according to the
number of parallel layers

there exists a comparator, say c, in the same layer
that occupies the changed bus, we connect the
comparator c to the (necessarily) absent bus after
change.

� Edit, Repair and Local Optimization: As
mentioned in Section 2, we perform the edit and
repair processes to an o�spring after mutation.
Then we perform the local search heuristic in Sec-
tion 4 to it.

� Replacement: We replace the inferior of the two
parents if the o�spring is not worse than both
parents. Otherwise, we replace the worst member
of the population. This scheme is a compromise
between preselection [5] and GENITOR-style re-
placement [24], and showed successful results in
[4].

6 Experimental Results

We evolved the population of networks using a genetic
algorithm on an Intel Pentium III 866 MHz. We used
a population size of 100, which is signi�cantly smaller
than Juill�e's [16].

We denote by N-HGA the proposed hybrid genetic
algorithm with normalization and by HGA the algo-

rithm without the normalization. When we used 8 to
12 parallel layers, HGA found 60-comparator sorting
networks in all of the 50 trials and N-HGA found 60-
comparator sorting networks in all of the 100 trials.
Figure 9 shows the average running times of the GAs
according to the number of parallel layers. N-HGA
outperformed HGA.

With 9 parallel layers, N-HGA showed the most stable
performance. We conducted more experiments on the
N-HGA with 9 parallel layers. Table 1 summarizes

the experimental results and environments of Juill�e's

Table 1: Comparison of experimental results and en-
vironments

END [16] N-HGA

Population size 65,536 100

Machine Maspar MP-2 Pentium III
(17,000 Mips) 866 MHz

# of processors 4,096 1

Results 60 comparators, 60 comparators,
2 for 3 runs 50 for 50 runs

Execution time 2880 to 4320 min 346 to 1334 min
(average 743 min)

Figure 10: A 60-comparator sorting network that we
found

END model [16] and the N-HGA. Juill�e [16] reported
that they found 60-comparator networks in two of the
three runs. We found 60-comparator networks in all
the 50 runs. They consumed 2 to 3 days with the
Maspar MP-2 supercomputer; we consumed around
half a day with a single-CPU PC. Overall, N-HGA
was signi�cantly faster and more stable than END. We
present in Figure 10 one of the 60-comparator sorting
networks that we found.

7 Conclusion

We de�ned the concept of sorting network isomor-
phism and examined the characteristics that isomor-
phic networks share. We took a graph-theoretical ap-
proach for the sorting network isomorphism by inves-
tigating its relationship with underlying graphs. We
also devised the normalization technique on the ba-

sis of sorting network isomorphism and used it in the
genetic algorithm, so that we could avoid more-than-
necessary perturbation by crossover.

We developed an e�ective local search heuristic. The
local search heuristic is another factor in the improve-
ment of the performance. When the local optimization
heuristic and the genetic algorithm were combined,
they showed strong synergy. We found solutions with
the best known quality in the 16-bus problem with a
fairly small time budget. To the best of our knowledge,

this is the �rst result that found 60-comparator sort-
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ing networks without �xing any comparators under a
(single-CPU) PC environment.

Although the suggested method performed impres-
sively, we consider that there remains room for further
improvement. We are currently working on the im-
provements for both of the local and genetic searches.
We are also considering the investigation of general
relationship between the isomorphism of phenotypes
and the exploitation of genetic algorithms.
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Abstract

In [8], the authors proposed a hybrid ge-
netic algorithm for the optimal sorting net-
work problem. In this paper, we propose an
approach to further improve this work. For
this, we designed a novel data structure to
eÆciently process the dominating operation
in solving the problem. We also developed
an e�ective local search heuristic based on
a fast approximate measure. Combining it
with genetic operators, we obtained the most
stable results so far.

1 Introduction

A sorting network is composed of buses and a number
of homogeneous comparators. Each comparator c(a,b)
performs the elementary operation that compares the
a
th and b

th buses; if their values are in order, they
pass the comparator straight, otherwise they are ex-
changed. We call a sorting network with n inputs an
n-bus sorting network. For any input sequence of an n-
bus sorting network, the output sequence is monotoni-
cally non-decreasing (y0 � y1 � : : : � yn�1). Figure 1
shows a 4-bus sorting network with �ve comparators:
[ c(0,1), c(2,3), c(0,2), c(1,3), c(1,2) ].

Usually, there are some comparators that can run si-
multaneously. In Figure 1, the �rst and second com-
parators can run simultaneously since they are inde-
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Figure 1: A 4-bus sorting network

pendent. Likewise, the third and fourth comparators
also can run simultaneously. Thus, the sorting can be
completed in just three parallel steps.

There have been many studies of sorting networks be-
cause of their applications and rich underlying theory
[17] [20] [18]. The research has two main aims [17]:
to reduce the number of comparators or to reduce the
number of parallel steps. We focus on minimizing the
number of comparators following the convention [13]
[9] [15].

This paper pursues improvement upon the authors'
work on the sorting network problem [8]. We focus
on the 16-bus sorting network problem. And we �x
the �rst 32 comparators as in [8]. Historically most
studies included 16-bus sorting networks [4] [11] [2]
[21] [12]. In 1969, Green [12] �rst discovered a 60-
comparator sorting network which is still one of the
best known. Recently, 16-bus sorting networks have
attracted attention again due to the improvements in
new stochastic search methods [13] [3] [9] [15] [10] [8].

Most practical studies of 16-bus sorting networks used
supercomputers because of the huge computational
needs [13] [9] [15]. In [7] and [8], the authors �rst found
60-comparator sorting networks on a single-CPU PC
in a few minutes. In this study, we propose an ap-
proach to further improve this result. For this, we �rst
designed a novel data structure in order to eÆciently
process the time-dominating operation in solving the
problem. We also devised a fast approximate measure
that evaluates the potential quality of a given network.
Then we developed an e�ective local search heuristic
based on this measure. Finally, we combined it with
genetic operators to lead a strong synergy.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our previous works related to the
sorting network problem. In Section 3, we describe
the novel data structure and our local optimization
heuristic, and in Section 4 we provide a genetic algo-
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rithm combined with the local optimization heuristic.
We give the experimental results in Section 5. Finally,
we summarize the study in Section 6.

2 Preliminaries

In this section, we briey review our previous works in
[7] and [8] for further discussions.

2.1 Zero-One Principle and Networks as

Functions

A valid sorting network guarantees to sort any input
sequence in order. It is, however, possible to restrict
the inputs to binary sequences by the following [17]:

Theorem 1 (Zero-One Principle)

If an n-bus sorting network sorts all 2n sequences of 0's
and 1's into nondecreasing order, it sorts any arbitrary
sequence of n numbers into nondecreasing order.

The Zero-One Principle says that we can prove the
validity of an n-bus sorting network by testing just 2n

binary sequences instead of n! sequences. We denote
by Tn the entire set of 2n binary sequences and by Sn
the set of sorted sequences from Tn. (Sn � Tn) We can
consider an n-bus network as a function from Tn to Tn.
Then we denote by f� the function corresponding to
a sorting network �.

2.2 O/N-pairs and Parallel Layers

Let t(i) be the ith bit value of a binary sequence t. For
two input bus indices x and y such that x < y (x; y =
0; 1; 2; :::; n�1), if (f�(t))(x) � (f�(t))(y) for all t 2 Tn,
then the sorting is acceptable with the sorting network
� as far as the two input buses are concerned. We
call such an input bus pair (x,y) an ordered pair (o-
pair) with respect to the network �. On the other
hand, if there exists a t 2 Tn such that (f�(t))(x) >
(f�(t))(y), then the sorting is not guaranteed for the
two buses. We call such an input bus pair (x,y) a non-
ordered pair (n-pair) with respect to the network �.
We denote by OP(�) the entire set of o-pairs for a
network � and by NP(�) the entire set of n-pairs for
it. It is clear that jOP(�)j+ jNP(�)j =

�
n
2

�
.

In a sorting network, a number of consecutively lo-
cated independent comparators are allowed to be shuf-
ed. We handle these interchangeable comparators as
a group, since the sequence of these comparators does
not a�ect the function of the network. We call such a
group of comparators a parallel layer. For example,

the network in Figure 1 has three parallel layers.

A parallel layer strongly a�ects the subsequent search
direction. If a considerable number of leading parallel
layers have been determined, the rest may be easily
constructed to the optimality by the repair heuristic
of the next section. From the perspective of parallel
layers, the sorting network problem can be considered
to be the problem of �nding a considerable number
of leading parallel layers. For this reason, we evolved
only a �xed number of leading parallel layers; this sig-
ni�cantly reduced the computational load in [8].

2.3 Edit and Repair Heuristics

In [7] and [8], we devised two heuristics, edit and re-
pair, to enhance the GAs' �ne-tuning around local op-
tima. The edit removes redundant comparators in a
network. If the input bus pair of a comparator is an
o-pair with respect to its previous comparators, the
comparator is redundant. The repair modi�es an in-
valid network to a valid one. In [7] and [8], the number
of the n-pairs of a network was used as a measure eval-
uating the quality of the network. The repair builds
a valid network by adding a set of comparators that
reduce the largest number of n-pairs. The repair con-
sists of two operations: appending and insertion. The
appending adds comparators in the rear part of a net-
work; the insertion adds comparators in the middle of
a network. See [8] for details.

3 The Proposed Approach

3.1 Performance Improvement Using

Function Value Tables

Rabin showed that the validity check problem of a
given sorting network is co-NP-complete; it is consid-
ered that the problem is intrinsically diÆcult [17]. If

we know the number of the n-pairs in a network, we
can decide whether the network is valid or not. So it
is also intrinsically diÆcult to �nd the number of the
n-pairs.

Thus, it occupied most of the running time, in [8], for

the edit and repair since they use the number of n-pairs
as a measure of evaluating a network. They examined
the output sequences obtained by feeding binary se-
quences into a network in order to get the number of
n-pairs simultaneously with o/n-pairs, which are used
in the edit and repair heuristics. Thus the comparison
operation for the comparators dominated the edit and
repair processes.

The local optimization algorithm described in the next
section evaluates a network on the basis of the length
of the edited network and the number of n-pairs.
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The comparison operation still dominates the running
time. Hence, the eÆciency of the suggested approach
essentially depends on how eÆciently we process the
comparison operation.

As mentioned above, we consider an n-bus sorting net-
work as a function from Tn to Tn. Similarly, we can
consider each comparator as a function from Tn to Tn.
We denote by j�j the number of comparators in a sort-
ing network �. Suppose that an n-bus network � con-
sists of the comparators c0; c1; : : : ; cj�j�1. If we denote
by f� the function corresponding to � and by fci the
function corresponding to ci (0 � i � j�j � 1), then,
for any t 2 Tn, it holds that

f�(t) = (fcj�j�1
Æ fcj�j�2

Æ � � � Æ fc1 Æ fc0)(t)

= fcj�j�1
( fcj�j�2

(� � � fc1(fc0(t)) � � �)) :

From the above equation, if we know the images of all
binary sequences under fci for all ci (0 � i � j�j � 1),
we could get the value f�(t) for any t 2 Tn in just
j�j table lookups, instead of comparing a sequence of
pairs.

We prepare a matrix in advance. In the matrix, each
row represents an integer in [0; 2n � 1]; each integer
corresponds to a binary sequence in Tn. Each column
represents an integer in [0;

�
n

2

�
�1] and corresponds to a

comparator. The element mij in the matrix represents
the binary sequence after applying the jth comparator
to the i

th binary sequence. In the case of the 16-bus
network problem, the memory space required to create
such a table is

�
16

2

�
�216�2 = 120�65536�2 bytes <

16 Mbytes. Figure 2 shows the matrix for the 16-bus
problem. In addition to this, we generate a table that,
for each t 2 Tn, stores the pairs in t that are not in
order. By using these tables, we could considerably
reduce the computational time for the comparison op-
erations.1

1Experiments showed that the computational time was
reduced to less than one third by using the tables.

3.2 A Local Search Heuristic

3.2.1 An Approximate Measure for Network

Quality

We mentioned before that we had devised edit and re-
pair heuristics to enhance the GA's �ne-tuning around
local optima in [7] and [8]. The repair heuristic is a
type of greedy and constructive algorithm that mod-
i�es an invalid network to a valid one with the num-
ber of n-pairs as a measure. In general, the pertur-
bation by crossover and mutation considerably lowers
the qualities of o�spring networks. In this case, it is
diÆcult to recover the qualities of networks only by the
edit and the greedy and constructive repair heuristic.
In this study, we devised a local search heuristic to
alleviate this problem.

Let �0 be a neighbor of a network � in the problem
space. The eventual quality of �0 can be the quality
of the network obtained by performing the edit and
repair to �

0. Due to the tablization of the previous
section, we can considerably reduce the time for edit
and repair. Nevertheless, the repair is still a heavy-
computing operation.

For a sorting network �, let E(�) and R(�) be the net-
works obtained by performing edit and repair heuris-
tics to �, respectively. We get the following fact from
Fact 2 in [7]:

Fact 1 For a sorting network �,

jR(E(�))j � jE(�)j+ jNP(�)j :

Proof: Omitted.

We denote by cj�j the value of jE(�)j+jNP (�)j and call
cj�j as the potential-length upper bound of �. From the

above fact, cj�j is an upper bound of the length of the
network obtained by performing the edit and repair
heuristics to �. In other words, the quality of � is

bounded by cj�j.
For a neighbor network �

0 of a valid network �, it

is clear that dj�0j � j�j implies jR(E(�0))j � j�j. This
means that, if the potential-length upper bound of �0 is
not greater than the length of �, the potential quality
of �0 is not worse than the quality of �. Therefore, we
can replace � with �0 and improve the network quality.

Furthermore, we approximate the quality of any net-

work � obtained in the process of local search by cj�j.
It is, of course, not true that cj�j � dj�0j always im-
plies jR(E(�))j � jR(E(�0))j. However, experiments

showed that there is a strong correlation between cj�j
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Figure 3: An example sorting network and its under-
lying graph

and jR(E(�))j. When a tie occurs, we give favor to
the networks with shorter edited lengths.

3.2.2 Underlying Graphs of Sorting

Networks

Sorting networks have been generally represented in
such a way as in Figure 1. Since it draws buses across
comparators in order to focus on the data ows on
buses, it is not appropriate for representing a physical
situation involving discrete comparators and the re-
lationship among them. We devised a more intuitive
model to represent the relationship among compara-
tors.

We set a vertex for each comparator. If an output of
comparator ci is fed into comparator cj , we put an arc
eij from the vertex vi to the vertex vj . We have a graph
G = (V;E) corresponding to a sorting network where
V is the set of vertices and E is the set of directed
edges. For a given network �, we call such a graph
an underlying graph and denote by G(�). Figure 3
shows an example sorting network and its underlying
graph.

3.2.3 Search Strategy

From the viewpoint of underlying graphs, the opti-
mal sorting network problem can be considered to be
the problem of �nding the edges that optimally con-
nects the vertices corresponding to given comparators
| the problem of �nding the optimal network topol-
ogy. At �rst glance, it seems to be reasonable to do
local search by creating and deleting arcs between two
random vertices. However, for a network �

0 obtained
from a network � in this manner, we have to consider
all the binary sequences in the test set in order to get

the value of dj�0j in most cases. This makes the local
search intractable.

For this reason, we consider the networks, obtained by
exchanging every two input bus indices of compara-
tors in each layer of � proceeding from left to right,
as neighbor networks of �. This exchanging process is
equivalent to swapping two input-output pairs of the

vi

vj

(a) A sorting network �

vi

vj

(b) A neighbor of �

Figure 4: An illustration of exchanging process

two vertices corresponding to two comparators in the
same layer in the underlying graph G(�). Figure 4
shows an example. Such a strategy considerably re-
duces the computational load of local search for the
following reason.

Suppose that the number of parallel layers in � is l,
and let the parallel layers of � be �0; �1; : : : ; �l�1; let
the functions corresponding to these parallel layers be
f�0 ; f�1 ; : : : ; f�l�1

. In general, if � does not have any
redundant comparator, the number of unsorted binary
sequences steeply decreases as the parallel layers are
added one by one. In other words,

jf�0(f�32(Tn))� Snj � jf�1(f�0(f�32(Tn)))� Snj �

� � � � jf�l�1
(f�l�2

� � � f�0(f�32(Tn)) � � �)� Snj :

Therefore, in evaluating the qualities of neighbors,
when we exchange two input bus indices for the com-
parators in the ith layer of �, we can considerably re-
duce the time of editing the neighbors and getting the
numbers of n-pairs by considering only the sequences
in f�i�1

(f�i�2
� � � f�0(f�32(Tn)) � � �)� Sn instead of all

the sequences in f�32(Tn)�Sn. Such a strategy, which
successively improves layers left to right, is natural in
that a parallel layer strongly a�ects the subsequent
layers [8].

In each layer, we improve the layer by exchanging in-
put bus indices of comparators in the manner of se-
quential 2-opt [16] [19] [1]. Let n be the number of
input bus indices and l the number of parallel lay-
ers of a network �. And let �i be the i

th layer of �
(0 � i � l � 1). We denote by exchange(�; a; b) the
layer obtained by exchanging the a

th and b
th input

bus indices of comparators in a parallel layer � and by
��=�i the network obtained by replacing a layer �i in
� with another layer �. Figure 5 describes our local
optimization algorithm.

4 GA Framework

We used a hybrid steady-state genetic algorithm. Fig-

ure 6 shows the outline of the hybrid genetic algorithm.
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LocalOptimize(�)
f

for i  0 to l� 1 f
Q  ;;
�
0

i  �i;
for j  1 to n=2 f

choose a; b 2 f0; 1; : : : ; n� 1g �Q

such that �j = exchange(�
j�1
i ; a; b)

and dj��j=�i j is maximal;

Q  Q [ fa; bg;

�
j
i  exchange(�j�1i ; a; b);

g
choose k 2 f1; 2; : : : ; n=2g

such that dj��k
i
=�i
j is maximal;

�  ��k
i
=�i

;

g
�  R(E(�));
return �;

g

Figure 5: The outline of the local optimization

create initial population of a �xed size;
do f

choose parent1 and parent2 from population;
o�spring  crossover(parent1, parent2);
mutation(o�spring);
edit(o�spring);
repair(o�spring);
local-optimization(o�spring);
replace(population, o�spring);

g until (stopping condition);
return the best individual;

Figure 6: The outline of the hybrid genetic algorithm

The details are described in the following.

� Encoding: Each sorting network is represented
by a chromosome. Figure 7 shows the structure
of a chromosome. A chromosome is composed of
a �xed number of parallel layers and one supple-
mental layer. Each gene is represented by an inte-

ger corresponding to a comparator as in the func-
tion value table. Each parallel layer consists of
a bounded number of independent comparators
and the supplemental layer consists of an unlim-
ited number of comparators.

In our GA, only the genes in the parallel lay-
ers are used for crossover. On the other hand, the
genes in the supplemental layer are used only for
the evaluation of �tness; genes in the supplemen-
tal layer are appended by repair and local opti-
mization. This is a variant of Baldwinian hybrid
GAs [22] [14] [23].

gene 2 gene 8 gene 2

parallel parallel parallel
layer 1 layer 2 layer k

at most 8 genes no limit to the number of genes

gene 1 gene 1

supplemental layer

Figure 7: The structure of a chromosome in the 16-bus
case

� Initialization: We set the population size to
be 50. For each parallel layer in a chromosome,
we randomly generate independent comparators.
The number of independent comparators is chosen
to be between a quarter and a half the number of
input buses. We then perform the edit and repair
processes to make the chromosome valid.

� Parent Selection: The �tness value Fi of chro-
mosome i is calculated as follows:

Fi = (
1

Li

�
1

Lw

) + (
1

Lb

�
1

Lw

)=3

where

Lw : the length of the worst (longest),

Lb : the length of the best (shortest), and

Li : the length of chromosome i:

Each chromosome is selected as a parent with a
probability proportional to its �tness value. This
is a typical proportional selection scheme.

� Crossover: As mentioned, we consider only the
parallel layers of the two parents in crossover. We
perform one-point crossover with each layer inde-
pendent of the other layers. Since the numbers of
genes in the two parents are usually not the same,
the traditional one-point crossover is not possible.
Thus, we generate a cut point on the \relatively"
similar position in the parents. Few parallel layers
of o�springs made in this way are usually valid.2

We convert each layer to a valid one by remov-
ing comparators until there is no comparator that
shares the same bus with another comparator in
the layer.

� Mutation: We randomly select each compara-
tor with a low probability (P=0.07) in each layer
and change one of the input buses at random. If
there exists a comparator, say c, in the same layer

2Here, a \valid" layer means a layer that consists of
independent comparators. This usage is di�erent from the
other parts, e.g., Section 2.3, of this paper.
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Table 1: Comparison of Experimental Results and Environments

Hillis [13] Drescher [9] Juill�e [15]y Choi & Moon [8] This Study
Population size 65,536 524,288 4,096 50 50

Machine CM-1 CM-5 Maspar MP-2 Pentium III Pentium III
(17,000 Mips) 866 MHz 866 MHz

# of processors 65,536 64 4,096 1 1
Results 61 comparators 60 comparators, 60 comparators, 60 comparators, 60 comparators,

100 % for 10 runs almost 100 % 100 % for 100 runs 100 % for 100 runs
Execution time 5 to 50 min 5 to 18 min 5 to 10 min 2 to 15 min 32 to 144 sec

(average 5 min) (average 72.5 sec)

yThe version where the �rst 32 comparators are �xed

that occupies the changed bus, we connect the
comparator c to the (necessarily) absent bus after

change.

� Edit, Repair and Local Optimization: As

mentioned in Section 2, we perform the edit and
repair processes to an o�spring after mutation.

Then we perform the local search heuristic of Sec-
tion 3 to it.

� Replacement: We replace the inferior of the two
parents if the o�spring is not worse than both
parents. Otherwise, we replace the worst member
of the population. This scheme is a compromise
between preselection [6] and GENITOR-style re-
placement [24], and showed successful results in
[5].

The genes in the parallel layers are updated as a result
of local optimization while those in the supplemental
layer are appended only for �tness evaluation. This
is a combination of Lamarckian and Baldwinian GAs.
This model can reduce the computational load of the
Lamarckian side by ignoring some of the last compara-
tors in the evolution.

5 Experimental Results

With the �rst 32-comparators of networks �xed, we
evolved the population of networks using a genetic al-
gorithm on an Intel Pentium III 866 MHz. We used
a population size of 50, which is signi�cantly smaller
than other studies [13] [9] [15].

The chart in Figure 8 shows the performances of GAs
according to the number of parallel layers used for the
GAs. Each bar indicates the number of 60-comparator
sorting networks (of quality equivalent to the best
known) that the corresponding GA found in 144 sec-
onds in 100 trials. When we used four parallels, the

# of networks

# of parallel layers

0

20

40

60

80

100

2 3 4 5 9 101 6 87

Figure 8: The number of 60-comparator sorting net-
works that we found in 144 seconds in 100 trials, ac-
cording to the number of parallel layers

GA found 60-comparator networks in all of the 100
trials. On the other hand, when we used one paral-
lel layer, we could not �nd any 60-comparator sorting
network. The performance of the GA showed a bitonic
distribution with respect to the number of parallel lay-
ers.

Table 1 summarizes the experimental results and the
environments of Hillis [13], Drescher [9], Juill�e [15], our
previous study [8], and this study. This work showed
the most stable performance in signi�cantly less time
even after considering the di�erence of CPU powers.

When we examined the 100 networks with 60 com-
parators that we found using 4 parallel layers, there
were 72 distinct sorting networks.3 Table 2 classi�es
the 72 sorting networks according to the number of
parallel steps. We present in Figure 9 one of the 60-
comparator sorting networks (with 10 parallel steps)
that we found.

3We ignored the sequences in the same parallel step.
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Table 2: The number of distinct sorting networks ac-
cording to the number of parallel steps

# of parallel steps 10 11 12 Total

# of sorting networks 47 4 21 72

6 Conclusion

We paid attention to the relative importance of the
comparison operations in the process of solving the
sorting network problem. Experiments showed that
these operations have a great e�ect on the perfor-
mance. We designed a novel data structure in order to
process the operations eÆciently, and this led to the
remarkable performance improvement.

To the best of our knowledge, no e�ective local search
algorithm for the optimal sorting network problem has
been proposed yet. We realized that this was because
there was no eÆcient measure for evaluating the qual-
ities of networks. We devised an approximate measure
that not only reects the qualities of networks suÆ-
ciently but also needs small computational time.

We also developed an e�ective local search heuristic
based on this measure. In particular, we maximized
the eÆciency of the local search heuristic by reecting
the characteristics of the problem. Such an eÆcient
and e�ective local search heuristic came to be another
factor in the improvement of the performance.

A notable aspect of the proposed GA is that it evolves
only a �xed number of parallel layers; the remaining
layers are appended by the local optimization just for
the evaluation of the solutions. This is a combina-
tion of a Lamarckian and a Baldwinian GA. It turned
out that, when the chromosomal size of the Lamarck-
ian side is properly determined, the Baldwinian side is
easily optimized to a solution of best-known quality.
This signi�cantly reduces the problem search space
and helps the GA to conduct an eÆcient search.

When the local optimization heuristic and the genetic
algorithm were combined, they showed strong synergy.
We found the best known solutions in 16-bus networks
with a fairly small time budget. To the best of our
knowledge, this is the most eÆcient result in the dis-
covery of 60-comparator sorting networks.

We restricted the problem space by �xing the �rst 32
comparators. We are currently working on the theoret-
ical justi�cation of the restriction. The study includes
experiments using the model without �xing any com-
parators. We will also consider greater-than-16 bus
problems in the future.

Figure 9: A 60-comparator sorting network that we
found
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Abstract

Inductive learning in First-Order Logic
(FOL) is a hard task due to both the pro-
hibitive size of the search space and the
computational cost of evaluating hypotheses.
This paper introduces an evolutionary algo-
rithm for concept learning in (a fragment of)
FOL. The algorithm evolves a population of
Horn clauses by repeated selection, mutation
and optimization of more fit clauses. Its main
novelty, with respect to previous approaches,
is the use of stochastic search biases for re-
ducing the complexity of the search process
and of the clause fitness evaluation. An ex-
perimental evaluation of the algorithm indi-
cates its effectiveness in learning short hy-
potheses of satisfactory accuracy in a short
amount of time.

1 Introduction

Learning from examples in FOL, also known as Induc-
tive Logic Programming (ILP) (Muggleton & Raedt,
1994), constitutes a central topic in Machine Learn-
ing, with relevant applications to problems in complex
domains like natural language and molecular compu-
tational biology (Muggleton, 1999).

Learning can be viewed as a search problem in the
space of all possible hypotheses (Mitchell, 1982).
Given a FOL description language used to express
possible hypotheses, a background knowledge, a set
of positive examples, and a set of negative examples,
one has to find a hypothesis which covers all positive
examples and none of the negative ones (cf. (Kubat
et al., 1998; Mitchell, 1997)).

This problem is NP-hard even if the language to rep-
resent hypotheses is propositional logic. When FOL

hypotheses are used, the complexity of searching is
combined with the complexity of evaluating hypothe-
ses (Giordana & Saitta, 2000).

Popular FOL learners like FOIL (Quinlan, 1990) and
Progol (Muggleton, 1995) adopt a progressive coverage
approach. One starts with a training set containing all
positive and negative examples, construct a FOL (if-
then) rule which covers some of the positive examples,
removes the covered positive examples from the train-
ing set and continues with the search for the next rule.
When the process terminates (after a maximum num-
ber of iterations or when all positive examples have
been covered), the resulting set of rules is reviewed,
e.g., to eliminate redundant rules. These algorithms
use different greedy methods as well as heuristics (e.g.
information gain) to cope with the complexity of the
search.

FOL learners based on genetic algorithms act on more
clauses at the same time. Systems like GIL (Janikow,
1993), GLPS (Leung & Wong, 1995) and STEPS
(Kennedy & Giraud-Carrier, 1999) use an encoding
where a chromosome represents a set of rules. In other
GA based systems like SIA01 (Augier et al., 1995),
REGAL (Giordana & Neri, 1996), G-NET (Anglano
et al., 1998) and DOGMA (Hekanaho, 1998), a chro-
mosome represents a clause. In the latter case a non
redundant hypothesis is extracted from the final pop-
ulation at the end of the evolutionary process. Both
approaches present advantages and drawbacks. En-
coding a whole hypothesis in each chromosome allows
an easier control of the genetic search but introduces
a large redundancy, that can lead to populations hard
to manage and to individuals of enormous size. En-
coding one clause in each chromosome allows for co-
operation and competition between different clauses
hence reduces redundancy, but requires sophisticated
strategies, like co-evolution, for coping with the pres-
ence in the population of super-individuals.
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This paper introduces an evolutionary algorithm
which evolves a set of chromosomes representing
clauses, where at each iteration fitter chromosomes
are selected, mutated, and optimized. The main nov-
elty with respect to previous approaches is the intro-
duction of two stochastic mechanisms for controlling
the complexity of the construction, optimization and
evaluation of clauses. The first mechanism allows the
user to specify the percentage of background knowl-
edge that the algorithm will use, in this way control-
ling the computational cost of fitness evaluation. The
second mechanism allows one to control the greediness
of the operators used to mutate and optimize a clause,
thus controlling the computational cost of the search.

Furthermore we introduce and test a variant of the
Universal Suffrage (US) selection operator ((Giordana
& Neri, 1996)), called Weighted Universal Suffrage
(WUS) selection operator. The US selection operator
is based on the idea that individuals are candidates to
be elected, and positive examples are the voters. Every
positive example has the same voting power. The idea
behind the WUS selection operator, is to give more
voting power to examples that are harder to cover.
The voting power of examples is adjusted during the
computation.

We show experimentally that the algorithm is able to
find hypotheses of satisfactory quality, both with re-
spect to accuracy and simplicity, in a short time.

2 The Learning Algorithm

The algorithm considers Horn clauses of the form

p(X,Y )← r(X,Z), q(Y, a).

consisting of atoms whose arguments are either vari-
ables (e.g. X,Y, Z) or constants (e.g. a). The atom
p(X,Y ) is called head, and the set of other atoms is
called body. The head describes the target concept,
and the predicates of the body are in the background
knowledge.

The background knowledge contains ground facts (i.e.
clauses of the form r(a, b) ← . with a, b constants).
The training set contains facts which are true (posi-
tive examples) and false (negative examples) for the
target predicate. A clause is said to cover an example
if the theory formed by the clause and the background
knowledge logically entails the example.

A clause has a declarative interpretation (universally
quantified FOL implication)

∀X,Y, Z(r(X,Z), q(Y, a)→ p(X,Y ))

and a procedural one

in order to solve p(X,Y ) solve r(X,Z) and q(Y, a).

Thus a set of clauses forms a logic program, which can
directly (in a slightly different syntax) be executed in
the programming language Prolog. So the goal of the
learning algorithm can be rephrased as finding a logic
program that models a given target concept, given a
set of training examples and a background knowledge.

The overall algorithm we introduce, called ECL (Evo-
lutionary Concept Learner), is illustrated in pseudo-
code in the figure below.

ALGORITHM ECL
Sel = positive examples
repeat

Select partial Background Knowledge
Population = Initial pop
while (not terminate) do

Select n chromosomes using Sel
for each selected chromosome chrm

Mutate chrm
Optimize chrm
Insert chrm in Population

end for
end while
Store Population in Final Population
Sel = Sel - { positive examples

covered by clauses in Population }
until max iter is reached
Extract final theory from Population

In the repeat statement the algorithm constructs iter-
atively a Final population as the union of max iter
populations. At each iteration, part of the background
knowledge is chosen using a stochastic search bias de-
scribed below.

A Population is evolved by the repeated application
of selection, mutation and optimization (the while
statement). These operators use only the chosen part
of background knowledge.

At each generation of the evolution, n clauses are se-
lected by means of the Universal Suffrage (US) selec-
tion operator (Neri & Saitta, 1995), a powerful se-
lection mechanism used for achieving species forma-
tion in GAs for concept learning. US selection chooses
randomly a positive example from the set Sel of posi-
tive examples yet not covered by clauses in the actual
Final population , and performs a roulette wheel se-
lection on those clauses of the Population which cover
that example. If the example is not yet covered by
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any clause, a new clause is constructed for that ex-
ample using a seeding operator. The selected clause
is then modified using the mutation and optimization
operators, and is inserted in the population.

When the construction of the Final population is
completed, a logic program is extracted using a set
covering algorithm.

Before presenting the main steps of ECL, we describe
the stochastic search biases.

2.1 Stochastic Search Biases

ECL uses two stochastic mechanisms, one for selecting
part of the background knowledge, and one for select-
ing the degree of greediness of the operators used in
the evolutionary process.

A parameter p (p real number in (0, 1]) is used in a sim-
ple stochastic sampling mechanism which selects an el-
ement of the background knowledge with probability
p. In this way the user can limit the cost of the search
and fitness evaluation by setting p to a low value. This
because only a part of the background knowledge will
be used when assessing the goodness of an individ-
ual. This leads to the implicit selection of a subset of
the examples (only those examples that can be covered
with the partial background knowledge selected will be
considered). Individuals will be evaluated on these ex-
amples using only the partial background knowledge.
In this way an individual can be wrongly evaluated
because a subset of the examples is used, and also be-
cause those examples can be wrongly classified, in case
they are covered using the whole background knowl-
edge, but are not covered using the partial background
knowledge. This is different from other mechanisms
used for improving the efficiency of fitness evaluation,
like (Glover & Sharpe, 1999), (Teller & Andre, 1997),
where training set sampling is employed for speeding
up the evaluation of individuals.

The construction, mutation and optimization of a
clause use four greedy generalization/specialization
operators (described later in an apart section). Each
greedy operator involves the selection of a set of con-
stants (or of a set of variables). The size of this set
can be supplied by the user by setting a corresponding
parameter Ni (i = 1, . . . , 4). The elements of the set
are then randomly chosen with uniform probability. In
this way the user can control the greediness of the op-
erators, where higher values of the parameters imply
higher greediness.

Finally ECL uses also a language bias which is com-
monly employed in ILP systems for limiting explicitly
the maximum length of clauses.

These search biases allow one to reduce the cost of
both the search and fitness evaluation, but the price
to pay may be the impossibility of finding the best
clauses.

2.2 Fitness and Representation

The quality of a clause cl is measured by the following
fitness function:

fitness(cl) = pos−poscl
pos + w · negclneg

The aim of ECL is to evolve clauses with minimum
fitness, that is which cover many positive examples
and few negative ones. In the above formula pos and
neg are respectively the total number of positive and
negative training examples, poscl, negcl are the num-
ber of positive and negative examples covered by the
clause cl, and w is a weight used to favor clauses cov-
ering few negative examples. The weight w is used to
deal with skewed distributions of the examples, where
a high weight is used when there are much more posi-
tive examples than negative ones.

ECL uses a high level representation similar to the one
used by SIA01 (Augier et al., 1995), where a clause
p(X,Y ) ← r(X,Z), q(Y, a). is described by the se-
quence

p,X, Y , r,X,Z , q, Y, a

This representation is preferred to other GA typical
representations, like bit string, because it allows the
direct use of ILP operators for generalization and spe-
cialization of a clause. Moreover, it does not constraint
the length of a chromosome, like e.g in the bitwise rep-
resentation used in the REGAL and G-NET systems,
which requires the user to specify an initial template
for the target predicate.

2.3 Clause Construction

A clause cl is constructed when the US selection oper-
ator selects a positive example which is not yet covered
by any clause in the actual population. This example
is used as seed in the following procedure, where BKp

denotes the chosen part of background knowledge.

1. The selected example becomes the head of the
emerging clause;

2. Construct two sets Acl and Bcl. Acl consists of all
atoms in BKp having at most one argument which
does not occur in the head; Bcl contains all ele-
ments in BKp \Acl having at least one argument
occurring in the head.

GENETIC ALGORITHMS 345



3. while length(cl) < l and Acl ∪Bcl 6= ∅

(a) Randomly select an atom from Acl and re-
move it from Acl. If Acl is empty then ran-
domly select an atom from Bcl (and remove
it from Bcl). Add the selected atom to the
emerging clause cl .

4. Generalize cl as much as possible by means of the
repeated application of the generalization opera-
tor ‘constant into variable’ (described in the next
section). Apply this operator to the clause until
either its fitness increases or a maximum number
of iterations is reached. In the former case, retract
the last application of the generalization operator.

In step 3 l is the maximum length of a clause, supplied
by the user. If l was not supplied then the first con-
dition of the while cycle is dropped, and no constraint
on the length of the clause is imposed.

2.4 Selection

The US selection operator, first introduced in (Gior-
dana & Neri, 1996), selects clauses in two steps:

1. randomly select n examples from the positive ex-
amples set;

2. for each selected example ei, 1 ≤ i ≤ n, let
Cov(ei) be the set of clauses in the current pop-
ulation that cover ei. If Cov(ei) 6= ∅, choose one
clause from Cov(ei) using a roulette wheel mecha-
nism, where the sector associated with the clause
c ∈ Cov(ei) is proportional to the ratio between
the fitness of c and the sum of the fitness of all
the clauses occurring in Cov(ei). If Cov(ei) = ∅
create a new clause covering ei, using ei as a seed.

When introduced, in (Giordana & Neri, 1996), the
US selection operator was used in a distributed sys-
tem, made of various genetic nodes, where each genetic
node performs a GA. In that setting, the examples as-
signed to each node were different, and the training
sets changed during the computation. However at the
GA level the examples were the same, and had the
same probability of being selected.

We propose here the following variant of the US se-
lection, called Weighted US selection, where examples
have different probability of selection. A weight is as-
sociated to each example, where smaller weights are
associated to examples harder to cover. Then the ran-
dom selection used in step 1 of the US selection above
is replaced by a selection which takes into account the
weights of examples.

More in detail, the weight of an example e is equal to

| Cov(e) |
| Pop |

being Pop the current population and Cov(e) the set
of clauses of Pop that cover e. If the population is
empty, then every example has the same weight.

The examples are then selected with a roulette wheel
mechanism, where the dimension of the sector associ-
ated to each examples is inversely proportional to the
weight of the example. So the less clauses cover an
example, the more chances that example has of being
selected. The weights of the examples are updated at
every iteration. Once the examples have been selected,
the selection of the clauses is made as in the standard
US selection operator.

With this mechanism not only uncovered examples are
favored, but also examples that are covered by few
clauses are favored, having wider sector in the roulette
wheel. Examples covered by many clauses are penal-
ized, because easier to cover. In this way the sys-
tem will focus at each iteration more and more on the
harder examples to be covered.

2.5 Mutation and Optimization

The mutation consists of the application of one of the
four generalization/specialization operators. This op-
erator is chosen as follows. First, a (randomized) test
decides whether it will be a generalization or a spe-
cialization operator. Next, one of the two operators of
the chosen class is randomly applied. The first test is
based on the completeness and the consistency of the
selected individual. If the individual is consistent with
the training set, then it is likely that the individual
will be generalized. Otherwise it is more probable that
the individual will be specialized. The test decides to
generalize a clause cl with probability

pgen(cl) = 1
2 (poscl−negclpos+neg + α)

otherwise it decides to specialize the clause. The con-
stant α is used to slightly bias the decision toward
generalization. The probability pgen is maximal when
cl covers all positive and no negative examples, and it
is minimal in the opposite case.

The optimization phase consists of a repeated applica-
tion of the greedy operators to the selected individual,
until either its fitness does not increase or a maximum
number of iterations is reached.

The system does not make use of any crossover oper-
ator. Experiments with a simple crossover operator,
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which uniformly swaps atoms of the body of the two
clauses, have been conducted. However the results did
not justify its use.

2.6 Hypothesis Extraction

The termination condition of the main while state-
ment of ECL is met when either all positive exam-
ples are covered or a maximum number of iterations
is reached. In this case a logic program for the target
predicate is extracted from the final population. The
theory has to cover as many positive examples as possi-
ble, and as few negative ones (notice that at this stage
the clauses have been “globally” evaluated, using the
complete background knowledge). This problem can
be translated into an instance of the weighted set cov-
ering problem as follow. Each element cl of the final
population is a column with positive weight equal to

weightcl = negcl + 1

and each covered positive example is a row. The
columns relative to each positive example are the
clauses that cover that example. In this way clauses
covering few negative examples are favored. A fast
heuristic algorithm ((Marchiori & Steenbeek, 2000))
is applied to this problem instance to find a “best”
theory.

3 Generalization/Specialization
Operators

A clause cl is generalized either by deleting an atom
from the body of the clause or by replacing (all oc-
currences of) a constant with a variable. Dually, cl is
specialized by either adding an atom to the body of
cl, or by replacing (all occurrences of) a variable with
a constant.

The four operators utilize four parameters N1, . . . , N4,
respectively, in their definition, and a gain function.
When applied to operator τ and clause cl, the gain
function yields the difference between the clause fitness
before and after the application of τ :

gain(cl, τ) = fitness(cl)− fitness(τ(cl))

The four operators are defined below.

3.1 Atom Deletion

Consider the set Atm of N1 atoms of the body of
cl randomly chosen. For each A in Atm, compute
gain(cl,−A), the gain of cl when A is deleted from
cl.

Choose an atom A yielding the highest gain
gain(cl,−A) (ties are randomly broken), and gener-
alize cl by deleting A from its body.

Insert the deleted atom A in a list Dcl associated with
cl containing atoms which have been deleted from cl.
Atoms from this list may be added to the clause during
the evolutionary process by means of a specialization
operator.

3.2 Constant into Variable

Consider the set V ar of variables present in cl plus a
new variable. Consider also the set Con consisting of
N2 constants of cl randomly chosen.

For each a in Con and each X in V ar, compute
gain(cl, {a/X}), the gain of cl when all occurrences
of a are replaced by X.

Choose a substitution {a/X} yielding the highest gain
(ties are randomly broken), and generalize cl by apply-
ing {a/X}.

3.3 Atom Addition

Consider the set Atm consisting of N3 atoms of Bcl
(list built at initialization time) and of N3 atoms of
Dcl, all randomly chosen.

For each A in Atm compute gain(cl,+A), the gain of
cl when A is added to the body of cl.

Choose an atom A yielding the highest gain
gain(cl,+A) (ties are randomly broken), and special-
ize cl by adding A to its body.

Remove A from its original list (Bcl or Dcl).

3.4 Variable into Constant

Consider the set Con consisting of N4 constants (of the
problem language) randomly chosen, and a variable X
of cl randomly chosen.

For each a in Con, compute gain(cl, {X/a}), the gain
of cl when all occurrences of X are replaced by a.

Choose a substitution {X/a} yielding the highest gain
(ties are randomly broken), and specialize cl by replac-
ing all occurrences of X with a.

4 Experimental Evaluation

We consider three datasets for experimenting with
ECL: the vote, credit and mutagenesis dataset, respec-
tively. The three dataset are public domain datasets.
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The vote dataset contains votes for each of the U.S.
House of Representatives Congressmen on the sixteen
key votes. The problem is learning a concept for dis-
tinguishing between democratic and republican con-
gressmen. The dataset consists in 435 instances, of
which 267 are examples of democrats, and 168 are re-
publicans.

The credit dataset concerns credit card applications.
The problem consists in learning when to allow a sub-
ject to have a credit card or not. There are 690 in-
stances, of which 307 are positive instances and 383
are negative instances. Each instance is described by
fifteen attributes. These first two datasets are taken
from (Blake & Merz, 1998).

The mutagenesis dataset comes from the field of or-
ganic chemistry, and concerns the problem of learning
the mutagenic activity of nitroaromatic compounds.
These compounds occur in automobile exhaust fumes
and are also common intermediates in the synthesis
of many thousands of industrial compounds (Debnath
et al., 1991). Highly mutagenic nitroaromatics have
been found to be carcinogenic (Ashby & Tennant,
1991). The concept to learn is expressed by the pred-
icate active(C), which states that compound C has
mutagenic activity. The dataset originates from (Deb-
nath et al., 1991).

The parameter settings used in the experiments are
given in Table 1.

Vote Credit Mutagenesis
pop size 80 20 50
mut rate 1 1 1

n 10 2 7
max gen 5 30 10
max iter 2 10 10

N(1,2,3,4) (3,6,2,5) (2,5,2,5) (4,8,2,8)
p 0.1 0.2 0.1
l 4 4 8

Table 1: Parameter settings: pop size = maximum size
of population, mut rate = mutation rate, n = number
of selected clauses, max gen = maximum number of
GA generations, max iter = maximum number of it-
erations, N(1,2,3,4) = parameters of the four greedy
operators, p= parameter of BK selection, l = maxi-
mum length of a clause

These values have been obtained after a few experi-
ments on the training sets, with the constraint that a
run of ECL would take at most 1 hour. As expected,
the values found depend on the specific dataset. Un-
fortunately, we were unable to find general rules that

could explain the choice of these parameters. This is in
general a challenging problem (Eiben et al., 1999), and
we are actually investigating methods for the on-line
adaptation of parameters.

The evaluation method used is ten-fold cross valida-
tion. Each data set is divided in ten disjoint sets of
similar size; one of these sets is used as test set, and
the union of the remaining nine forms the training set.
Then ECL is run on the training set and it outputs a
logic program, whose performance on new examples is
assessed using the test set.

This process is repeated 10 times, using each time a
different set as test set. The average of all the results
is taken as final evaluation measure for ECL.

We consider three performance measures:

• efficiency: the running time of the algorithm on
the training set for finding the logic program;

• simplicity: the number of clauses of the logic pro-
gram;

• accuracy: the proportion of examples in the test
set which have been correctly classified by the re-
sulting logic program.

System Vote Credit Mutagenesis
G-NET 0.95 (0.032) 0.84 (0.044) 0.91 (0.079)

C4.5 0.95 (0.030) 0.86 (0.033) n.a.
Progol - - 0.80 (0.030)
ECL 0.94 (0.023) 0.79 (0.072) 0.87 (0.056)

Table 2: Accuracy results obtained using ten-fold cross
validation. Standard deviation is given between brack-
ets.

Results obtained by ECL are compared to results ob-
tained by three of the most effective concept learn-
ers based on different approaches in table 2. C4.5
is based on decision trees, Progol employs a progres-
sive coverage method, and G-NET is a distributed co-
evolutionary genetic algorithm.

The results for the first three systems are taken from
(Anglano et al., 1998), while the result of Progol is
taken from (Srinivasan et al., 1994). All the results
were obtained using the same ten-fold cross validation.
On the vote dataset the results obtained by ECL are
comparable to those obtained with the other three sys-
tems. The results on the credit dataset are worse than
those of G-NET and C4.5.

Table 3 presents the results obtained on the three
datasets using the parameter p set to one. This means
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Dataset Accuracy Efficiency Simplicity
Vote 0.94 (0.033) 66 min 5.89

Credit 0.71 (0.074) 224min 41.1
Mutagenesis 0.81 (0.089) 81 min 16

Table 3: Results obtained by ECL using the same pa-
rameters shown in table 1, but here p is set to 1, so
that the whole background knowledge is used.

Dataset Efficiency Simplicity
Vote (ECL) 29 minutes 5

Vote (G-NET) - 2
Credit (ECL) 50 minutes 5

Credit (G-NET) - 14
Mutagenesis (ECL) 10 minutes 4

Mutagenesis (GNET) few hours 3

Table 4: Efficiency = average running time, Simplic-
ity= average number of clauses for ECL, and of dis-
juncts for G-NET.

that the whole background knowledge will be used.
The other parameters are the ones defined in table 1.
It can be seen that the results are not better than the
results shown in table 2, especially in the mutagene-
sis dataset. This is probably due to overfitting that
can take place when too much information about the
problem to tackle is present. Moreover, as expected,
the system slows down sensibly when using the whole
background knowledge.

Table 4 shows the average time taken by a run on
each dataset. Table 4 shows that even if in some cases
other systems outperform ECL, ECL is able to find,
in a short amount of time, a simple result with a sat-
isfactory accuracy. For instance, on the mutagenesis
dataset ECL is able to find a simple logic program
with 4 clauses in just 10 minutes (on the average).
In contrast, as mentioned in (Anglano et al., 1998),
G-NET, which is a distributed system working on a
cluster of workstations, needs few hours for finding a
theory of comparable simplicity, which is not much
more accurate. Unfortunately detailed results on the
execution time of G-NET were not available, and also
replicating the experiments resulted not possible, due
to the impossibility to install the system1.

4.1 US vs. Weighted US Selection

Table 5 reports some results in which the US and the
WUS selection operators are compared. It can been

1Thanks to F. Neri for his support.

Operator WUS US
Vote 0.941 0.882

Credit 0.790 0.795
Mutagenesis 0.872 0.860

Table 5: Average accuracy results obtained on the
three dataset, with US and weighted US selection op-
erator.

seen that the use of the WUS selection operator im-
proves the accuracy of the system for the vote and the
mutagenesis datasets. In particular in the vote dataset
the difference is evident. For the credit dataset the use
of the WUS selection operator does not lead to any im-
provement. Even if the results of the experiments do
not indicate a dramatic benefit of the WUS selection
operator over the US one, it does not affect the effi-
ciency of the system hence it can be used as alternative
selection mechanism.

5 Conclusion

In this paper we presented a concept learning algo-
rithm based on evolutionary computation, which in-
corporates novel simple parametric mechanisms for
controlling the cost of searching the hypotheses space
and the cost of fitness evaluation. We also introduced
a variant of the US selection operator, called Weighted
US selection operator.

The algorithm can be used profitably for exploring ef-
ficiently a new learning problem to get a first rough
idea of possible simple models of the target concept,
or for experimenting with a range of different search
strategies at the same time, including random search
and hill climbing as bounds of the range, which can be
obtained from ECL by setting appropriately the bias
search parameters.

The search biases of ECL assume a uniform distribu-
tion of the data used for selection. This does not reflect
reality in many learning problems. We are actually
investigating alternative stochastic sampling mecha-
nisms for selecting the portion of background knowl-
edge, which would take into account the estimated im-
portance of each element (e.g. fact of the background
knowledge) according to some evaluation measure ob-
tained from the examples in the training set.
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Abstract

According to the No-Free-Lunchtheorems
of WolpertandMacready, we cannotexpect
one genericoptimization techniqueto out-
performotherson average[WM97]. For ev-
eryoptimizationtechniquethereexist “easy”
and “hard” problems. However, little is
known asto whatcriteriadeterminethesuc-
cessof anoptimizationtechnique.

In this paper, we considerthis questionfrom
the evolutionary computingpoint of view.
We usecost distributions, i.e., the frequen-
ciesof theobjective function’svaluesoccur-
ring in thesearchspaces,to deviseaclassifi-
cationof optimizationproblems.Unlike fit-
nesslandscapes,thecostdistribution is truly
problemintrinsic rathernthanpart of an al-
gorithmicsolution.

Basedon the characteristiccostdistribution
of a problem, our model helps to predict
what componentsof an evolutionary algo-
rithm are most relevant (e.g., initialization,
mutation),andwhat is the expectedoverall
performance.Wevalidatethemodelthrough
experimentson three problems: Set Parti-
tioning,Knapsack,andTravelingSalesman.

1 INTRODUCTION

Evolutionaryalgorithmshave beenshown to be very
successfulfor a variety of optimizationproblems,for
exampletimetablingandscheduling. However, there
area numberof otherproblems,like Traveling Sales-
man,thathavebeenmuchmoredifficult to tackleusing
thesametechniques.

�
Author’s current address: Microsoft Corp, Redmond,

WA 98052,USA

There is some intrinsic property of a problem that
makes it more or lesssuitableto be tackledby evo-
lutionaryalgorithms.In thepast,researchershave ob-
served threemajor classesof NP-completeoptimiza-
tion problems:

Easy. Near-optimal or even optimal solutions can
be found without major difficulties. In this case,so-
phisticatedmutationor crossoveroperationshaveonly
marginal impactonthequalityof theresult.In asense,
theseproblemsare “too easy” for the evolutionary
framework. Simpleroptimizationalgorithmslike Hill
Climbing often outperformevoluationarytechniques
in that they find resultsof comparablequality much
quicker. An exampleof this kind of problemis Set
Partitioning.

Adequate. A large classof problemsbelongto this
classwhereevolutionaryalgorithmsexcel, often out-
performingotheroptimizationstrategiessignificantly.
Oneexampleof thiskind of problemis Knapsack.

Hard. Problemslike theTraveling SalesmanProblem
poseparticulardifficulties to evoluationaryoptimiza-
tion. In thiscasesophisticated,problem-specifictuning
is necessaryto obtainacceptableresults.In contrastto
easyproblems,evolutionaryoptimizationseldomfinds
optimal solutions. Most interestingly, this particular
difficulty appearsto be of a generalnature,indepen-
dentof the type of evolutionaryoptimizationusedor
topologydefinedin thesearchspace.

In this paper we investigatethe role of cost distri-
butions of optimizationproblems. By this we mean
thefrequenciesof all occurringvaluesof theobjective
functionthroughouttheentiresearchspace.It provides
basicstatisticalinformationon averagecostof a ran-
dom solution,andconcentrationof goodor badsolu-
tions. Costdistributionsareindependentof any notion
of adjacency, proximity, or neighborhoodof solutions,
definedfor exampleasan algorithmic transformation
betweensolutions. Rather, given a probleminstance,
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Figure1: Basictypesof distributions(qualitatively).OptimumdenotedbyOPT, meanby � ;

its costdistribution underliesall possibletopologiesa
searchalgorithmcandefineon thesearchspace.

Through a large number of experiments, we have
seenthat cost distributions appearto be very char-
acteristicfor differentoptimizationproblems[Waa99,
WGL00a]: Differentinstancesof a givenproblemex-
hibit costdistributionswhichareof similarquality. The
variationwithin aproblemis gradualandlimited.

We presentherea broadclassificationof cost distri-
butions,basedon surveying theliteratureandown ex-
perimentalobservations. We discusshow eachbuild-
ing block of the evolutionaryframework (e.g.,initial-
ization, mutation)is affectedby the costdistribution,
andwhat is the overall impacton the optimizational-
gorithm. Our model helpsexplain earlier resultson
the behavior of evolutionary optimization. Also, we
believe our analysisof individual componentscanaid
in tailoring thegeneralevolutionaryframework to spe-
cific problems,andourgeneralmodelwill beusefulto
predicthow amenablearenew problemsfor treatment
usingevolutionarytechniques.

2 PARAMETERS OF SEARCH SPACE

Since the introduction of generalsearchalgorithms,
significanteffort hasbeendevotedto characterizethe
search space—i.e., the setof all possiblesolutions—
andits influenceon thesearchalgorithms.In this sec-
tion we discusscostdistributionsandhow they influ-
encetopologicalmodels.

2.1 COST DISTRIBUTIONS

A cost distribution capturesthe frequenciesof cost
values—i.e.,valuesof the objective function—in the

completesearchspace.1 For any particularcost � , the
distribution indicatesthe numberof feasiblesolutions
in the spacewhosecost is � . This information is the
basisto answerquestionssuchas:Are there“many so-
lutions” closeto theoptimum?

Whena spaceof solutionsis too large to be enumer-
ated, the generalshapeof the cost distribution can
be approximatedby uniform randomsamplingof the
space(or quasi-randomsamplinglike randomwalks,
whenuniform samplingis too hard).

Cost distributions are independentof the algorithm
usedto tackletheproblemandareaninvariantproperty
of theparticularprobleminstance.No matterwhether
a topology is definedat a later stage,the costvalues
andtheir frequenciesarenot altered.

What makes cost distributions suchan important in-
strumentis thepossibilityto analyzeconcentrationsof
cost valuesin the searchspace. We are in particular
interestedin thedistancebetweentheoptimumandthe
bulk of solutions. Without loss of generalitywe as-
sumea minimizationproblem.Thequestioncentralto
our furtherconsiderationsis therefore:

Is thebulk of solutionscloseto theoptimum
or is the optimuman outlier with respectto
thedistribution?

In large test serieswith different optimization prob-
lems, we have observed two basictypesA and B of
costdistributions, the secondof which comesas two
sub-typesB1 andB2. In Figure1, thesedistributions
areshown qualitatively.

In problemswith type-A distribution, thebulk of solu-

1We preferthetermcostover fitness, becausesometimes
fitnessis intendedasa relative measure(seee.g., [ZT99]).
Instead,cost refers to the absolutevalue of the objective
function.
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tions is very closeto the optimal costs,i.e., thereare
many optimal or near-optimal solutionsin the search
space.Theoptimumcanevenhave highestfrequency
of all solutions(seeSec.4.1). Note that this cost-wise
proximity doesnot imply any neighborhoodor topol-
ogy, but simply indicatesthatmany differentsolutions
with similar costexist.

In problemswith type-Bdistribution, thebulk of solu-
tions is of distinctly differentcost than the optimum.
Wecandistinguishthesub-typesB1 wherethemeanis
at a moderatedistanceof theoptimum,andB2 where
thebulk of solutionsis farawayfrom theoptimum,i.e.,
the optimum is an outlier and near-optimal solutions
arerare.

Note, the actualshapeof the distribution–symmetry,
skew, etc.–isof little relevance. The concentrationof
solutionsrelative to theoptimumwill beimportantfor
the further analysis. In practicalproblemscostdistri-
butionswill likely show disturbances,andcertainlynot
all problemscanbe assignedexactly to one type but
may be in betweentwo types. Yet, we can identify
cleartrendsandtheresultsof ouranalysiscanbeinter-
polatedasnecessary.

2.2 WHAT FITNESS LANDSCAPE?

Models for the topology or landscapeof the space
arepowerful toolsto interpretcertaineffectsoccurring
with optimizationalgorithms(seee.g.,[Kau93]). How-
ever, unlikethecostdistribution,thespacelandscapeis
not intrinsic to the problem,andcompletelydifferent
topologiescanbedefinedfor agivenspace.

For instance,considerthe Traveling SalesmanProb-
lem, wherethe shortesttour via a numberof cities is
sought. Let us definetwo differentnotionsof neigh-
borhoodN1 andN2. Two toursareneighboredif one
canbetransformedinto theotherby

N1: exchangingtwo subsequentlyvisitedcities;

N2: exchangingany two cities;

Figure2 illustratestheconsequenceswith theoptimal
tourandpossibleneighborsaccordingto thetwo differ-
entneighborhoodrelations.Whereasneighborsunder
N1 areof verysimilar cost,neighborsunderN2 canbe
of higherdifferencesin costs.Moreover, N2 is a super
setof N1, i.e., neighborsin N1 arealsoneighborsin
N2 but not conversely.

Both N1 andN2 inducea topology, thusa landscape,
on the searchspace. One appearsrelatively smooth
(N1), theotherrugged(N2). Yet they arebothdefined
on thesameproblem.Neitherof thetwo landscapesis

(b) (c)

(a)

Figure2: Alternativetours for a TravelingSalesmanProb-
lem; (a) optimal tour, (b) tour neighbored to optimal tour
underN1,(b) underN2

intrinsic to the problem,andneithercouldbe claimed
tobe“thenatural”landscape.A numberof otherneigh-
borhoodrelationsfor thisproblemhavebeendescribed
in literature; for a survey on neighborhooddefining
transformationsseefor instance[FJMO95].

In ourview, thespacelandscapeis partof theapproach
to solve a problem.In contrast,thecostdistribution is
an intrinsic attributeof theproblem. A main claim of
thispaperis thatusefulinsightcanbegainedfrom con-
sideringthe cost distribution alone,and that suchin-
sightholdsregardlessof thespecifictopologyimposed
on thespace.

3 PRINCIPLES OF EVOLUTION ARY
ALGORITHMS

The notion of evolutionary computingis fairly flex-
ible, comprising a large variety of algorithms and
techniques.Frameworks as for instancepresentedin
[Gol89, Mit96] are capableof simulatingother algo-
rithms that are commonly not consideredevolution-
ary, like RandomSamplingor SimulatedAnnealing
[Bäc96]. On the otherhandthereareseveral generic
elementsthatareagreedto becharacteristicfor anevo-
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Type-A Type-B1 Type-B2
Initialization � � �
Recombination � � ���
Mutation � � �
Restarts � ��� ���
Overall easy adequate hard

� ��	
� = (strong)positiveinfluence, � = no influence,
� = negativeinfluence

Table 1: Importanceof componentsof evolutionary algo-
rithmswith respectto thecostdistribution

lutionaryalgorithm.In ouranalysis,wefirst sketchthis
generickey elementsandscrutinizethe impactof cost
distributions on thosecomponents.In particular, we
investigateto what degreethe singlecomponentsuse
randomlyselectedsolutions. Randomsampling,uni-
form or biased,on—possiblyrestricted—setsof solu-
tionsis theverynucleusof all randomizedoptimization
algorithmsincludingevolutionarytechniques.

Startingwith a randomlygeneratedinitial population,
generationsarerepeatedlyderivedby selectingasetof
parents,generatingtheoffspringby recombination, in-
troducinga certainrandomdistortionin form of muta-
tion, andsubjectingall individualsto a selectionpro-
cess. The algorithm terminatesas soonas a certain
stoppingcriterion—e.g.,timeout,maximumnumberof
individualsreached,or no improvementover a certain
numberof generations—isfulfilled. In every genera-
tion, all individualsarechecked for their fitness, i.e.,
their costs,not only for theselectionof thenext gener-
ationbut alsoto keeptrackof thebestindividual found
sofar. Simulatingthenaturalevolutionaryprocessthe
algorithmachievesa gradualimprovementconcentrat-
ing onwell suitedindividualsby selectionandthepro-
ductionof closelyrelatedoffspring.

Initialization. The influenceof the costdistribution
on theinitial phaseis significantasinitializing directly
translatesto sampling. Note, that samplingheredoes
not necessarilymeanuniformsampling.

For atype-Adistributiontheprobabilityto find already
near-optimalsolutionsin the initial sampleis high. In
otherwords,thesubsequentoptimizationphasecannot
improvetheinitially foundsolutionssubstantially. The
probability that high quality solutionsare includedin
the initial solution dependfurther on the size of the
population: very small populationsmay differ enor-
mouslyin quality.

In caseof a type-Bdistribution,theinitialization’s role
is lessimportant,dependingon thedistanceof thecost
of theoptimalsolutionfrom theaveragecost.Thesam-

pled initial individuals are of comparable,distinctly
sub-optimalquality. In type-B2problems,the initial-
izationproducesonly resultsof constantbut low qual-
ity. As opposedto the previous case,the size of the
populationdoesnot affect its quality—theprobability
to samplea near-optimalsolutionis virtually zero.

Recombination. Implementing a mating between
two individualsresultsin arandomsolutionwhichcon-
sistsof partsof its ancestor.

In the caseof the type-A distribution sophisticationis
usuallyof limited useonly as thereareplenty of so-
lutions in the closevicinity. However, if therearetoo
many closerelatives,guiding the recombinationpro-
cessbecomesalsomoredifficult.

The lesssolutionswith similar coststo their ancestors
thereare,themoreastray—i.e.,in directionof theav-
eragecost—therecombinationmaylead.Moresophis-
ticatedalgorithmsarenecessaryto avoid a fall backto
thebulk of solutionsin caseof a type-B2distribution.

Mutation. In caseof a type-A distribution,mutation
canbemostfruitful astheoddsto improveby random
alterationarehigh.

For a type-Bdistribution, theprobabilityto achievean
immediateimprovementby mutationis very smallbut
mutationis still usefulto avoid undueconcentrationof
certainpropertiesamongtheindividuals.

Restarts. Evolutionary algorithms, mimicking the
naturalevolutionaryprocessarecharacterizedby con-
vergence,i.e., the overall fitnessof the consecutive
generationsincreases—althoughit is not necessarily
monotonic. For simplified models of those algo-
rithms,theconvergenceof theoptimumasa limit, pro-
vided an infinite running time, hasbeenproven (see
e.g.,[Bäc96]). Similar factsareknown for algorithms
like SimulatedAnnealing.However, dependingon the
costdistribution,evolutionaryalgorithmscanverywell
profit from restarting,simply becauseof the costdis-
tribution’s influenceon the initialization.In caseof a
type-A distribution, the impactof re-runsmaygreatly
improvetheresults,whereasin a type-B1scenario,re-
startsdo not makemuchof adifference.Theinfluence
is even weaker in caseof a type-B2 problem. With
type-B distributions, the resultsusuallydo not justify
thehighercostsin termsof runningtime.

In Table1, the basictendenciesof influencearesum-
marized.The threetypesof costdistributionsdirectly
suggestthreeclassesof difficulty—from anevolution-
ary algorithm point of view. Type-A is the easiest,
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whereall componentsbut recombinationarepositively
influencedby thedistribution. Theimpacton Type-B1
problemsis fairly balanced;in Type-B2problemsneg-
ative influencesdominate.

4 CASE STUDY

To corroborateour analysis,we scrutinizethreerep-
resentative and well-understoodNP-completeopti-
mization problems: Set Partioning, Knapsack, and
Traveling SalesmanProblem(seee.g. [GJ79]). The
threeproblemsarearchetypicaloptimizationproblems
which have beenreceiving greatattentionever since
their inception.

As a preliminary study to the experimentspresented
below, we scrutinizedthe occurringcostdistributions
with respectto the varianceamonginstancesof the
sameproblem.For all threetypesof problemswe var-
ied all availableparameterslike size,typeandparam-
etersof thedistributionsof weightsor coordinatesetc.
and determinedthe cost distributions with large uni-
form samples.

We found the costdistributionsof our threeproblems
convergevery quickly (i.e. for virtually all non-trivial
problem sizes)to their anticipatedanalytical contin-
uous approximation,accordingto the Central Limit
Theorem.This statisticalanalysis,basedon thestruc-
ture of the problemandits costfunction, is presented
in [Waa99]. For TSP, we have also determinedthe
cost distributions of all problemsgiven in the stan-
dard benchmarklibrary TSPLIB [Rei91, WGL00b],
andfoundthemto matchthesamecharacteristicshape.

In this sectionwe will presentdatatakenfrom a larger
seriesof experimentsin whichwescrutinizedtheeffect
of the costdistributions. To ensurethe resultsof the
experimentsarecomparableacrossthedifferentprob-
lems,weimplementedagenericframework whichpro-
videsauniformwayof controlingcommonparameters
liketheratioof individualsgeneratedby recombination
to the thosestemmingfrom mutationetc. All experi-
mentsbelow wereconductedusing250individualsper
generation;theoptimizationwasterminatedafter1000
generations.

While writing our own framework guaranteesa fair
analysis,we comparedour findingswith resultsin the
literatureverifying thegeneralityof our observations.

4.1 TYPE-A

Setor numberpartioningis a typical representative of
this class.A set � of numbersis to bepartitionedinto
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Figure3 showsthecostdistributionof aninstancewith
100 elementstaken from a Gammadistribution. The
original distribution of numbersdecreasesin signifi-
cancewith increasingsize of the set. For an analyt-
ical model, we refer the readerto [WGL00b]. The
costdistribution is characterizedby optimalandnear-
optimal costsappearingwith the highestfrequencies.
Evenplainrandomsamplingalgorithmsareguaranteed
to find near-optimalsolutions[KKLO86], hill climber
and other multi-start algorithms that do not deploy
highly sophisticatedtechniques,achieve excellent re-
sultswithin extremelyshortrunningtime.

Evolutionaryalgorithmsfind resultsof similar quality
but requirelongerrunningtimes.With thiskind of dis-
tribution, thesizeof the initial populationis critical to
the stability of the optimization,i.e., usinga popula-
tion sizeof 1000almostcertainlycontainsanoptimal
or near-optimal solution; the quality of small popula-
tionsmaydiffer significantly, sothatusinga tight time
limit and re-startingthe algorithm a coupleof times
may improve the resultssignificantly in caseof small
populations.

We implementeda geneticalgorithmfor setpartition-
ing usingthestandardstringencoding.Figure4 shows
thedependenciesbetweenthequality of theoptimiza-
tion result and recombinationand mutation ratio re-
spectively. Besidesthe ratio of mutationand recom-
bination,wealsovariedthesizeof thepopulation.

' The figure underlinesthe importanceof the ini-
tialization (value for (0,0) representsplain ran-
domsampling):Usinga largepopulationswe ob-
tainnear-optimalresultswithoutrecombinationor
mutation

' We achieve (near-)optimal resultseasily for al-
mostany configuration

' No sophisticationis neededwhendefiningthere-
combinationoperation

4.2 TYPE-B1

The classof type-B1 distributionscomprises,among
others,a large variety of scheduling,timetabling,as-
signmentproblems,andKnapsack Problemson which
we focushere.

The problemsdefinition is as follows: Given a num-
berof items—eachhasaprofit andaweightassociated
with it—, a (sub-)setof itemsis soughtsuchthat the
totalweightdoesnotexceedagivenboundbut thesum
of profitsis maximal(seee.g.,[GJ79]). Weinvertedthe
valuesto turnthemaximizationproblemin oneof find-
ing theminimum. In Figure5, thecostdistribution of

aninstanceconsistingof 150itemsis shown. Theval-
uesof bothweightandprofit of the singleitemswere
chosenasrandomnumbersbetween10 and100. The
capacityof the knapsackwaschosenashalf the total
weightof all items. Suchassumptionsarecommonin
the literature[ZT99]—in particular, this configuration
follows theexampleof [MT90].

The effect of this distribution on genetic searchis
twofold: The samplingof an initial populationdoes
not containhigh quality solutions. Also, the random
samplingcomponentwithin crossoverandmutationis
limited—theprobabilityto sampleanearoptimalsolu-
tion is practicallyzero. On theotherhand,theoptima
arenot toofarawayfrom thebulk of solutions.Genetic
algorithmsareknown asasuitableandverysuccessful
optimizationtechniquefor this kind of cost distribu-
tions.

Figure6 shows theexperimentalresultsobtainedwith
an implementationusing standardstring encodingof
individuals.
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' In contrastto type-A problems,the population
size is of little importance(we omitted figures
for experimentswith differentpopulationsizesas
they areidentical)

' With anincreasingratio of recombination,there-
sultquality improves–weseesignificantimprove-
mentsover randomsamplingandhigh mutation
ratio; bestresultsareobtainedwith high recombi-
nationandlow mutationratio(about(80%,20%)).

4.3 TYPE-B2

As a Type-B2 problem, we study the cost distribu-
tionsof the symmetricTSPwhereinstancesaregiven
only by the coordinatesof the cities. The TSPLIB
collection of instancesfor the symmetricTSP serves
as a widely acceptedstandardbenchmarklibrary in
this field [Rei91]. In Figure 7 the cost distribution
of a problemwith 52 cities, obtainedfrom (*)!+ uni-
formly sampledtours,isdepicted.Thecostdistribution
shows the expectedfeatures:Almost all solutionsare
concentrated—evenin the upperhalf of the total cost
range.Moreover, they areconcentratedin a verysmall
interval. The optimal tour is known to be of length
7542. All sampledtours are longer than 21966and
shorterthan35898. Consequently, neitherwhenran-
domly selectingtoursfor a initial populationnor when
addingrandomlychosentoursduringtheoptimization
a tour shorterthan21966is likely to be chosen.The
bestsampledtour is morethantwice the lengthof the
onefoundby asimplegreedyalgorithm(9535).

The TSP is know to be a difficult problemfor evo-
lutionary algorithms. Evolutionary algorithmswhen
appliedto this problemrequirespecial,sophisticated
extensionsin orderto achieve competitive results(see
e.g.,[MW92]).

Figure8showstheresultsobtainedwith ourimplemen-
tation. We experimentedwith differentrecombination
strategiesfoundin the literature;while differing in re-
sult quality, theoverall trendsasdepictedin thegraph
couldbeobservedwith all implementations.Mutation
wasimplementedas2- or 3-swaps.

' Both initialization andsizeof the populationare
virtually irrelevant, i.e. all randomtoursaresig-
nificantly suboptimalandany populationof non-
trivial size, say, 100 or greaterwill lead to very
similar results.

' Increasingthe ratio of individuals generatedby
recombinationleadsto betterresultperformance
thoughresultsaresuboptimalon average;
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Figure8: TravelingSalesmanProblem:Qualityofoptimiza-
tion resultasfunctionof mutationandrecombinationratio

' Dueto thelow concentrationof (good)neighbors,
mutationcaneasilydecreasethenumberof good
or prospectiveindividuals;asopposedto theother
two problemtypes, the rangeof good resultsis
smaller, arounda low ratioof mutationonly

' Restartshavepracticallynoinfluenceontheresult
quality.

Interestingly, we found the sametrendswith different
recombinationtechniques.

5 SUMMARY

Basedon theobservationthata costdistribution of an
optimizationproblemis characteristicfor theproblem
[WGL00b], we studiedits effectsandimplicationson
an optimization with evolutionary techniques. Cost
distributions come in three major types of shape: a
strongconcentrationof costssimilar to the optimum
(1); or elsethebulk of solutionshascostseitherfar (2)
or very far (3) from theoptimum.
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Our analysisshows which algorithmic principles of
evolutionarysearcharepositively andwhich arenega-
tively influencedby aparticularshapeof thecostdistri-
bution. Summingthesepartial influencesup, we gave
experimentalevidencethat cost distributions indicate
whethera problemis (1) too easyfor an evolutionary
approach,i.e., evolutionary searchis an overkill and
simpleralgorithmsperformjust aswell; (2) of a diffi-
culty which evolutionarytechniquesaretypically well
suitedto tackle;or (3) a hardproblem,wherethestan-
dard repertoireof evolutionary implementationtech-
niquesachieveonly mediocreperformance.

Unlike previous work in this field we deliberately
avoidedthenotionof landscape,becauseit is notintrin-
sicto theproblembut artificially imposedonthespace,
intently or not, to allow the use of navigation algo-
rithms. In contrast,costdistributionsareentirelyinher-
entto theproblem,andindependentof theoptimization
algorithmapplied.Furthermore,we observedthatcost
distributions could predict the behavior of evolution-
ary algorithms,which do introduceandutilize a space
topology. It appearsthatcostdistributionsareinfluen-
tial to the definition of landscapes,asthe difficulty of
shapinga certainlandscapedependsalsoon the num-
berof availablesolutionsof certaincosts.For example,
a landscapewhich is favorablefor Hill Climbing opti-
mization is significantly easierto definein caseof a
type-Adistribution thanis for a type-B.

Our analysisprovides an indicator whether a given
problemis difficult enoughto be tackledwith evolu-
tionary algorithms;and which componentof an evo-
lutionarysearchtechniqueto modify andtune,in case
theresultsarenot satisfying.
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Abstract

The ability to track dynamic functional op-

tima is important in many practical tasks.

Recent research in this area has concentrated

on modifying evolutionary algorithms (EAs)

by triggering changes in control parameters,

ensuring population diversity, or remember-

ing past solutions. A set of results are pre-

sented that favourably compare hill climbing

with a genetic algorithm, and reasons for the

results are suggested. A method is then intro-

duced, Evolutionary Random Search (ERS),

that combines crossover and hill climbing mu-

tation in a novel manner. It is assessed

against the GA and hill climbing tests, and

the encouraging results are discussed.

1 Introduction

There is a growing literature concerning the �nding

and tracking of dynamically changing optima, by evo-

lutionary computation, e.g. Branke (1999a); Grefen-

stette (1999); Oppacher and Wineberg (2000); Egger-

mont et al. (2001); Ursem (2000). Almost all of these

methods take the form of modi�ed genetic algorithms

(GAs), although some have compared GAs and Evolu-

tion Strategies (ES), e.g. De Jong (1999). None could

be found that used hill climbing in dynamic optimisa-

tion. This paper provides an updated summary of the

literature in this �eld and investigates the value of hill

climbing versus GAs in tracking optima.

Four optimisation methods | two types of GA and

two types of RandomMutation Hill Climbing (RMHC)

| were applied to optimisation tasks of di�erent types,

and levels of complexity. The results agree with those

of Mitchell et al. (1993) who found that RMHC was

more e�ective than typical GA approaches. The work

presented here suggest that this is also true when fol-

lowing dynamically changing optima.

Continuing from the comparative results, suggestions

are made about how a new hybrid evolutionary-hill

climbing method might be obtained, by combining el-

ements from GAs and RMHC. Three versions of the

new method, Evolutionary Random Search (ERS), are

tested on the optimisation tasks. Conclusions are

drawn from the results and suggestions are made about

the relationship between ERS, RMHC and GAs.

2 Background

This section reviews previous work on: (i) compar-

isons of EAs and hill climbing, and (ii) evolutionary

techniques for dynamic optimisation.

2.1 EAs and Hill Climbing

In 1993, Mitchell et al. (1993) asked the question,

\When will a genetic algorithms outperform hill climb-

ing?", in work that set out to test Holland's Building

Block Hypothesis (1975). To this end an experiment

was devised that, it was thought, would lay out a sim-

ple Royal Road for a GA to follow, from small schemas

through to the optimal string, and compared it to three

hill climbing methods. Instead it was found that one

hill climbing algorithm, RMHC, outperformed the GA

by an order of magnitude. RMHC was de�ned as fol-

lows, \In RMHC, a string is chosen at random and

its �tness is evaluated. The string is then mutated

at a randomly chosen single locus, and the new �t-

ness is evaluated. If the mutation leads to an equal or

higher �tness, the new string replaces the old string1.

This procedure is iterated until the optimum has been

found, or a maximum number of function evaluations

has been performed", on a population of individuals.

1 Note that this mutation operator is not destructive.
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The main area of weakness in the GA was identi�ed

as a property called hitchhiking, that occurs when an

un�t gene near to a �t schemas is spread through the

population along with the �t schema. One of the rea-

sons RMHC outperformed the GA was because the

GA was doing wasteful work removing these hitchhik-

ers, whereas RMHC was not.

Lang (1995) suggested that hill climbing improved on

results in Koza (1992), beginning a series of claims

and counter claims, involving Koza's informal rebut-

tal at the ML-95 conference and hearty discussions

on the internet (Lang et al., 1995). Both Lang and

Koza seemed to overlook Lang calling his hill climbing

method `RMHC' in their internet exchanges. Accord-

ing to Lang (1995), and the de�nition given above,

the method used was not RMHC since it involved

crossover, and apparently did not create new random

solutions as mutations of previous solutions.

True RMHC can be considered to be a form of parallel

evolution, akin to multiple, isolated (1+1)-ES popula-

tions, in which the population's single member com-

petes only with its o�spring for survival. However, in

RMHC the degree of mutation is not usually under the

control of strategy parameters.

2.2 EAs and the Dynamic Optimisation

Problem

The motivation for our work is, however, quite di�er-

ent from Mitchell et al. (1993). It springs from a need

to optimise robot behaviours in a changing environ-

ment, see Walker and Wilson (2002), and hence re-

lates to a real-world problem in evolutionary dynamic

optimisation.

Angeline (1995) and Branke (1999a) have summarised

much of the work in this �eld, to which the reader

is referred for details. However, relevant aspects of

their papers, and additional, more recent work, are

presented below. Branke usefully categorises this work

as exhibiting one of the three following characteristics:

� Triggered change to the EA's operation when a

change in optima is encountered.

� Continual diversity so the EA's population can

always respond to changes in optima.

� Remembering previous solutions (e.g. previous

global optima) to be reused later.

All three approaches aim to mitigate the lack of diver-

sity in a standard, optimised EA population. When

diversity is lacking, and the optima change, most (if

not all) of the EA's search points can remain located

around the old global extreme, and thus they can eas-

ily be trapped in new local optima near that point.

2.2.1 Triggered Change

The �rst approach is that of triggered change, an early

example of which is Cobb's work in triggered hypermu-

tation (Cobb, 1990), improved by Cobb and Grefen-

stette (1993).

Grefenstette and Cobb's approach triggered a large in-

crease in mutation, when the environment changed, to

increase the diversity of the population. The mutated

individuals were able to search areas of the �tness

space away from the old point of convergence and, by

means of the crossover operator, the population could

spread throughout the new �tness space, before con-

verging again, at or near the new global extreme. The

process can repeat inde�nitely. Grefenstette has re-

cently provided a comparison of various types of muta-

tion and hypermutation models (Grefenstette, 1999).

Grefenstette pointed out that Cobb's triggered hy-

permutation fails in some types of dynamic environ-

ments (Grefenstette, 1992). Firstly, if the environment

changes signi�cantly and the new optima are not close

enough to previous ones, hypermutation may not in-

troduce enough diversity to overcome this. Secondly,

if the �tness space changes only by adding new op-

tima, then hypermutation would not be triggered at

all. The solution involved a proportion of the popula-

tion being continually replaced by random individuals,

an approach called the Random Immigrants GA. In

a comparison between the performance of a standard

GA, triggered hypermutation and random immigrants

algorithms, Cobb and Grefenstette (1993) found that

in dynamic environments with large scale changes, ran-

dom immigrants performed best, it also caused less

disruption in stable environments.

The Random Immigrants method was further modi-

�ed (Grefenstette, 1999), where an attempt was made

to control the mutation rate genetically, in a similar

manner to an ES. Grefenstette used this in a num-

ber of adaptive mutation rate tests, and found that,

although techniques using some hypermutation gave

better results than those that did not (for both grad-

ually and suddenly changing environments), altering

the mutation rate dynamically was not as e�ective.

2.2.2 Continual Diversity

Grefenstette's work using random immigrants might

be thought of as a move towards continually ensuring

high diversity, in place of regaining population diver-
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sity when change is detected. This section discusses

other means of maintaining continual diversity.

Ghosh et al. (1998) implemented an aging population

of individuals because dynamic optimisation was con-

sidered to be, \...optimizing a series of time-dependent

optima." This approach added to the Steady State

GA (SSGA) such that each individual was given an

age, used in calculating its �tness (along with perfor-

mance metrics), with middle-aged individuals gaining

the most �tness. It was found that his form of GA im-

proved on the performance of the SSGA in both sta-

tionary and non-stationary environments. In dynamic

environments the new version outperformed the SSGA

for small environmental changes, and was particularly

impressive for large scale changes.

Ursem's comprehensive work (Ursem, 2000) set out a

relatively complex algorithm, which views the GA's

population as a number of subpopulations that may

be climbing di�erent peaks in the �tness landscape.

These subpopulations were identi�ed and maintained

during subsequent generations, for instance by chosing

crossover mates from within the same subpopulation.

It was found to outperform the sharing GA (Goldberg

and Richardson, 1987).

Another project using subpopulations took a simpler

approach (Oppacher and Wineberg, 2000), a main

\core" population, and numerous \colonies" around

it that explored di�erent parts of the �tness land-

scape. These colonies were forced away from the core

population's �tness space, and performed hill climb-

ing to avoid unnecessary exploration of poor parts of

the landscape. Crossover occurred within colonies and

the core only. Good colony members could periodi-

cally migrate to the core, to provide it with increased

diversity and to allow it to adapt quickly when the

environment changed. It was found to outperform a

standard GA in dynamic environments.

2.2.3 Remembering Solutions

If a new optimisation problem is similar to a previ-

ous solution, it might be more eÆcient to remember

the old solution than to regenerate it. Again Branke

makes a useful distinction here between two types of

approach: �rstly, implicit memory often using multi-

ploidy, e.g. Dasgupta and McGregor (1992) and Lewis

et al. (1998), although neither appears to be particu-

larly robust; secondly, explicit memory where solutions

are speci�cally stored for later reuse. With Ramsey,

Grefenstette has addressed this issue too (Ramsey and

Grefenstette, 1993), but this does assume that the en-

vironment can be measured, so that the relevant solu-

tion can be retrieved.

The method described in (Louis and Xu, 1996; Louis

and Johnson, 1997) sampled and remembered the best

member of the population at regular intervals. It was

found that seeding the next run of the GA with 5-10%

of the remembered individuals gave improved results.

However the method appeared to be fragile to a higher

percentage of seeding, and to large changes in the �t-

ness space.

Eggermont et al. (2001) have reported a GA with a

case based memory of past successes, which the GA

accessed when the environment changed. After each

generation, the best individual was added to the mem-

ory, then when the �tness deteriorated, e.g. due to en-

vironmental change, the individuals in memory were

re-evaluated and the best in the current environment

was re-introduced into the population. It was found

that this case-based addition to the GA improved the

performance in a dynamic environment.

Branke (1999b) himself describes a method that de-

�ned two populations: a memory population to re-

member previous, good solutions, to maintain a min-

imum degree of quality; and a population to search

constantly for new peaks, submitting its best e�orts

to the memory population. The search population was

reinitialised after every change in the �tness space.

3 Aims and Objectives

In light of the research, just reviewed, the aim of this

work is to answer two questions: \Can RMHC and

GAs be combined to produce a method that ensures a

continually diverse population?" and, \How will such

a method perform, relative to RMHC, and why?" The

objectives to obtain these aims are two-fold:

Firstly, to compare the performance of GA and RMHC

methods in a dynamically changing, multidimensional

environment, under a variety of conditions. The dif-

ferent conditions should test di�erent aspects of the

methods and highlight their bene�ts.

Secondly, to use this information, and previous work in

evolutionary dynamic optimisation, to begin to gener-

alise a new method of optima-tracking. This method

should have a performance which approaches or ex-

ceeds RMHC, and which improves on standard GA

performance.

4 Methodology

4.1 Optimisation tasks

The optimisation tasks to be solved were 2-, 5- and

10-dimensional versions of Equation 1. Increasing the
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number of dimensions, from 2, to 5 to 10, made the

optimisation task more diÆcult, since this reduced the

density of search points in the �tness space. In all cases

the space searched by the methods below was limited

to an 0 � xi < 10 square/hypercube. The standard

benchmark equation to be optimised was,

f(x) =
sin(5(

PN
i=1(xi � xfi)

2)1=2)

5(
PN

i=1(xi � xfi)2)1=2
(1)

for N 2 f2; 5; 10g, and where f de�nes the �tness at a

point in space represented by the genes of an individ-

ual2, with f ! 1 as the Euclidean distance from the

origin to x! 0.
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Figure 1: A 2-D graph of Equation 1, here the global

maximum is at (0,0)

To implement the dynamics required, the global op-

timum (in this case a maximum) was relocated by

adding an o�set, xfi, to each xi. A change occurred

every 1000 generations, twenty times. The location of

the maximum changed in two ways:

� Randomly within the space [(0,0),(10,10)). This

tested the ability of the algorithms to �nd optima

that were often well-separated in the �tness space,

with the complication of intervening local optima.

Methods with poor continual population diversity

should not perform well.

� Incrementally from (0,0) to (2,2), in 0.1 incre-

ments. This tested the ability of the algorithm

to track optima that were relatively close in the

�tness space. In some cases, parts of the maximal

peak were outside the search space. This made

the search task slightly harder than if the maxi-

mum were always totally with the space.

2 Refers to both GA and RMHC population elements

4.2 Comparative Tests: the GA and RMHC

Methods

The methods used were:

GA An unremarkable implementation, using two-

adversary tournament selection. Crossover

swapped a two real-valued genes, at a random lo-

cus, with a probability of 0.8. The mutation oper-

ator, which set the new value of a gene randomly

in the range [0,10), had a probability of muta-

tion of 0.01. The GA's control parameters were

adjusted by hand to maximise its performance.

GA with Elitism (GA-E) Implemented as de-

scribed in the previous point, except for the

addition of elitism, which retained the best

member from each generation.

Global mutation RMHC (RMHC-G) Both

forms of RMHC followed the de�nition in

Mitchell et al. (1993), set out above. The only

variation was in the type of mutation. RMHC-G

used the GA's mutation operator and set a `gene'

in the range [0,10). Note that there was no need

to maximise the performance of either form of

RMHC.

Local mutation RMHC (RMHC-L) Identical to

RMHC-G, described in the previous point, except

that the RMHC-L mutation operator ensured that

a new `gene' value, v0 was close to the old value v.

Given r, the range of possible values for v, this was

achieved by, v0 = v + random() � r=100� r=200.

Unlike the GA, both forms of RMHC are only

able to alter one dimension (gene) before having

�tness evaluated. This placed them at a disad-

vantage to the GA methods, in which crossover

can alter several dimensions at once.

All methods used real-valued chromosomes, not bit

strings, with a population size of 100, and 1000 gen-

erations of continuity. Tests showed that raising these

levels by an order of magnitude made very little di�er-

ence in relative performance of the methods, and low-

ering the values by an order of magnitude only slightly

changed their relative performance. Since 100 gen-

erations and populations of 10 make the results less

repeatable, the values above were preferred and the

optimisation tests were run under these conditions for

all four methods.
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4.3 ERS: Improving on the Standard

Methods?

Another approach, introduced here, combined ele-

ments of these algorithms to form an Evolutionary

Random Search (ERS) method. In population terms,

an ERS is analogous to removing a number of individ-

uals from a population and shipwrecking them on an

island, where they and their o�spring compete against

each other. During this time they may be considered

a subpopulation, as discussed Section 2.2.2, however

they do not necessarily represent points near local op-

tima. The ERS framework (Figure 2) allows instances

of an ERS to vary the number of shipwrecks that oc-

cur, and the number and types of o�spring. In all

cases however, a shipwreck involves some combina-

tion of RMHC's non-destructive mutation and GA's

crossover. There are t shipwrecks per generation.

Three versions of ERS are discussed here. In all three

examples, n = 3, and P , the population of individuals,

had 100 members; but this need not be the case.

The ERS1 method combined GA, RMHC-G and

RMHC-L in a deliberately na��ve and expensive man-

ner. Its purpose was to show the combined e�ect of

GA, RMHC-L and RMHC-G. During each generation

there were jP j=n shipwrecks, covering the whole of the

population, bar one individual. This individual could

be replaced with a random individual, or with a re-

membered previously successful individual, to help the

recovery of previously seen solutions. For these tests

the individual was randomised. Each iteration of the

repeating portion of Figure 2 created 12 new individu-

als. Three of these were global mutants, three were lo-

cal mutants and 6 were the o�spring of the two groups

of mutants. Thus the na��vety of ERS1 was due to it

being four times more expensive than RMHC and the

GA.

ERS2, was identical to ERS1 in all but two respects.

Firstly, it created only 8 shipwrecks per generation, to

ensure nearly the same number of �tness evaluations

(96) as the GA and RMHC methods (100), making

it possible to compare the e�ectiveness of ERS2 and

RMHC-G. Secondly, it randomly chose the members

of its 8 shipwrecks, and the remaining individuals were

left una�ected for that generation.

ERS3 tried a di�erent combination of parameters to

expore other possibilities of the ERS framework, whist

again performing the same number of �tness evalua-

tions as the ERS2, GA and RMHC methods. ERS3

ordered the population by �tness, and split it into

three parts of jP j=3 individuals (the remaining indi-

vidual was replaced by a new random individual.) It

selected an individual from each of the three parts,

� Repeat t times:

{ Select n members, s, from P .

{ Create m1 RMHC-G mutants from s.

{ Create m2 RMHC-L mutants from s.

{ Select members from the local and global
mutants.

{ Crossover selected individuals and create
children.

{ List originals, mutants and children.

{ Sort list.

{ Place �ttest n from list back into P .

� End repeat.

� Replace any remaining individuals in P with
random (or remembered) individuals.

Figure 2: The ERS framework (one generation)

called hi, mid and lo, to indicate their relative �t-

ness. Each shipwreck in ERS3 applied crossover, and

non-destructive mutation to these three members, in

a manner that maximised the chance that the o�-

spring would represent improvements to the optimisa-

tion task. To this end, ERS3 dispensed with RMHC-

L (i.e. m2 = 0), since the results below will show it

provided little in terms of performance, and because

RMHC-G can do local optimisation where required,

although it takes longer. Both of the RMHC-G mu-

tants were of the hi individual because, with no other

information available, each was more likely to lead to

a �tter individual than mutants of lo or mid. These

two new individuals are called gm1 and gm2. The re-

maining individual was created by crossover of lo and

mid, in the hope of occasionally combining two poor

solutions into one �t one. This operation also simul-

taneously altered multiple dimensions, something the

mutation operator can not do. One of the two o�spring

was retained at random to give xi. At this point the

�tnesses of gm1, gm2 and xi were evaluated. The

three best individuals, of the six total individuals on

the island, were then returned to the population.

5 Results

Figure 3 shows the best and average �tness, for

each generation of a GA tracking a 2-dimensional

version of the randomly changing function. Since

the best and average �tness were closely related

in all tests, the average �tness results will be

omitted in the following results. The full re-

sults set can be found at http://www.aber.ac.uk/
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smg/WORK/ga-hc-results.htm, or on request. They

consist of the best, average and worst �tness for each

generation of each experiment, and re-runs of the full

set of results to demonstrate repeatability, as well as

results for other �tness landscapes.
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Figure 3: A typical task: the GA optimising a 2-D,

randomly changing �tness function

Figure 3 illustrates how a population's best �tness

dropped every 1000 generations, when the �tness func-

tion's optima were changed. The �tness then often

returned to previous levels. At times, however, the

GA could not �nd the global maximum in the allotted

number of generations because all population mem-

bers were caught around a local maximum, and muta-

tion was not occurring often enough to provide search

points that were �tter than the local maximum. The

average best �tness is used to summarise the success of

each of these tests, as shown in Table 1. The standard

deviation is also available in the full results.

The test results from Table 1 are presented in Figures 4

and 5. These show the two types of dynamic test,

random (left) and incremental (right), for 2-, 5- and

10-dimensional versions of the test function.

5.1 Comparative Test Results

The incremental results for RMHC-L, the GA and the

GA-E were fairly dependent on the �tness of the ini-

tial population | when high, the optimisation method

might track the maximum for a number of generations.

However, there were some clear results.

In all cases RMHC-L performed worst, with the excep-

tion of the 10-dimensional incremental test, an artefact

of the RMHC-L's initial population in the result pre-

sented here. The GA and GA-E performed better;
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Figure 4: The comparative results: the left-hand group

of three plots show the randomly moving optima re-

sults and the right-hand group show the incremen-

tally moving optima results, both for 2-, 5- and 10-

dimensions

almost equally as well as each other, except for the 2-

dimensional incremental test at which GA-E was supe-

rior. RMHC-G was by far the most successful method.

These results indicate that the results in Mitchell et al.

(1993) apply to dynamic optimisation, as well as to

static optimisation, under some conditions.

The two types of RMHC performed best and worst,

indicating a relationship between the amount of non-

destructive mutation and utility. Presumably an ES

(without crossover) would perform somewhere Be-

tween these two extremes, since Gaussian mutation

can result in both large and small changes. This will

be tested in future work.

5.2 Evolutionary Random Search (ERS) Test

Results

Figure 5 shows that ERS1 was better that RMHC-G

in all cases. Since ERS1 performed the same amount

of random mutation as RMHC-G, plus extra RMHC-

L and crossover operations, this is not surprising.

What is perhaps unexpected is that ERS1 does not

out-perform RMHC-G by much, except in the 10-

dimensional incremental tests. However, when the

ERS method is limited to the same amount of process-

ing as other methods (ERS2 and ERS3), the di�erence

in performance between them and RMHC-G was not

as clear (although both types were still superior to

GA-E, GA and RMHC-L).
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Table 1: Data for Figures 4 and 5

Random Incremental
No. Dimensions 2 5 10 2 5 10 Average
ERS1 0.995 0.774 0.152 0.999 0.995 0.977 0.8157
ERS2 0.986 0.224 0.075 0.998 0.989 0.958 0.7056
RMHC-G 0.993 0.755 0.093 0.998 0.962 0.303 0.6846
ERS3 0.990 0.517 0.068 0.998 0.957 0.114 0.6077
GA-E 0.689 0.072 0.031 0.985 0.053 0.067 0.3165
GA 0.626 0.092 0.028 0.359 0.127 0.033 0.2113
RMHC-L 0.031 0.019 0.015 0.054 0.016 0.111 0.0415
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Figure 5: A comparison of the ERS methods to the

GA-E and RMHC-G methods

To assess overall performance the average of each row

in Table 1 was taken. The most successful was ERS1,

with an average �tness of 0.8157, though its result can

be dismissed due to the excess �tness evaluations men-

tioned above. This was followed by ERS2 with a �t-

ness score of 0.7056, closely followed by RMHC with

a score of 0.6846 (the di�erence is not statistically im-

portant). ERS3 performed respectably with 0.6077,

and the best of the remaining methods, GA-E, had an

average �tness of 0.3165.

Overall RMHC-G and ERS2 could hardly be sepa-

rated in terms of performance, and this suggests that

there is scope for further research into combinations

of evolutionary and non-evolutionary methods. The

ERS methods also showed signi�cant improvement

over the GA methods, due to their non-destructive mu-

tation operators promoting continual population di-

versity (with no need to trigger some form of hypermu-

tation). Comparing the ERS3 and RMHC-G results

is interesting since it suggests that crossing over two

poor individuals in ERS3 regularly yielded an individ-

ual that was almost as �t as a globally mutated indi-

vidual in RMHC. Further work with di�erent types of

crossover is needed to establish whether this conclusion

holds in general, or at all. If so this may indicate that

ERS3's combination of non-destructive mutation, and

weaker GA crossover, partially mitigates the hitchhik-

ing phenomenon Mitchell et al. (1993).

6 Conclusions

As far as the authors are aware, the work presented

here is the �rst attempt to unify evolutionary and non-

evolutionary methods in dynamic optimisation. The

�rst aim of this work was to answer: \Can RMHC

and a GA be combined to produce a method that en-

sures a continually diverse population?" In this in-

stance it can, by means of continual high levels of

non-destructive mutation. The question now is how

generalisable these results are.

The second aim was to discover how ERS performed

relative to RMHC, and why. The results were good,

but mainly because, like RMHC, ERS contains such

high mutation. Perhaps this was to be expected since

Grefenstette and Cobb noted that random immigrants

were useful, but controlling the rate of their mutation

had little value (Grefenstette, 1999); and since, in the

results above, low levels of mutation were not partic-

ularly e�ective. The application of crossover, even to

medium �tness chromosomes, appears to be quite ef-

fective, since it alters the values of several dimensions

at once { something the mutation operator can not do.

On the basis of the results presented here, a sug-

gested answer to Mitchell et al's question, \When will

a GA outperform hill climbing?" is \when it combines

crossover with strong non-destructive mutation oper-

ators." In any case, EA practitioners | in contrast to

those who model genetic and evolutionary processes

| should neither dismiss EAs as inferior to RMHC,

nor look for failings in the RMHC methodology above

that will excuse the GA's performance. More funda-

mentally perhaps, one might question the need for a

separation between EAs and hill climbing at all. Some
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forms of ES are little more than self-adapting muta-

tion; is this an EA or a form of hill climbing? Is such

a dichotomy useful?

7 Further Work

The work presented here is being expanded by:

� Application and comparison of the methods to

several, qualitatively di�erent �tness functions,

c.f. Ursem (2000).

� Comparison to other existing methods, such as

ES and the approaches outlined in Section 2.2,

particularly the use of age (Ghosh et al., 1998).

� Establishing whether the conclusions hold in gen-

eral, and if so whether crossing over poor solutions

can be used to mitigate the hitchhiking problem.

� Reducing the number of generations before the

�tness function changes, until a change occurs ev-

ery generation and testing the use of memory in

the ERS (as briey described in the text above).
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Abstract

We present a novel representation and crossover 
operator for genetic algorithms. Bits are not 
linked to one another. Instead, the current popu-
lation suggests a pseudo-distance between each 
pair of bits; this pseudo-distance really measures 
the degree to which bits appear to participate in a 
building block. Then crossover respects the 
pseudo-distance: it is clumps of nearby bits that 
have their values copied from parent to child. 
Thus our new approach does directly (preserva-
tion of building blocks under crossover) what 
other approaches only hope to do indirectly. Our 
approach is tested on several problems, ranging 
from simple to very challenging, and the results 
compared to standard approaches. In these prob-
lems, the new approach is successful and usually 
outperforms the standard approaches.

1. INTRODUCTION

We assume there is a problem of interest to us, and we 
wish to use a genetic algorithm to search among the solu-
tions to the problem. There is a plenitude of solutions to 
the problem, of varying quality; some are rather good 
solutions, and some are only fair. We assume there is a 
known measurement of the quality of a solution, which 
we term its fitness and which is a non-negative real num-
ber. Individual solutions are identifiable with the property 
values they exhibit, along a known set of properties. Solu-
tions differ one from another by having different values 
for these properties. 

In the standard representation used for genetic algo-
rithms, an individual solution (which we now begin to 
term simply an individual) gets represented by represent-
ing its property values as values, which in this paper we 
will take to be bits, which are linked together in a linear 
sequence, like beads along a strand, that is, like genes 
along a chromosome. Under this representation, which 
mimics a biological model, mating with crossover contin-
ues the mimicry, in particular of haploidal reproduction. 
One or more crosspoints are chosen at random along the 
strand, parental genetic sequences are clipped at those 

points, and parental genetic fragments are exchanged, to 
form the children. Also mutation is easily mimicked, by 
changing an occasional bit value. 

Two bits, as a pair, can assume any one of four bit-pair 
values, namely, (0, 0), (0, 1), (1, 0), and (1, 1). Let us say 
that two bits are closely related, provided that they can 
exhibit a bit-pair value that is rather beneficial to a solu-
tion, in the sense that having this pair of values 
significantly increases the fitness of the solution. This 
notion of a beneficial bit-pair value is an instance of what 
[Holland, 1975] terms a building block.

When we read the proof of the Schema Theorem (see 
[Holland, 1975] or [Goldberg, 1989]), we learn that two 
closely related bits can suffer from a great hazard. To lie 
far apart from one another along the bead strand increases 
the likelihood that the beneficial bit-pair value will be 
destroyed under crossover. One parent may exhibit the 
beneficial bit-pair value, but if a crosspoint is chosen 
between the pair of bits, it can happen that neither child 
exhibits the pair. 

This hazard was recognized at the dawn of genetic algo-
rithms, and since then attempts have been made to 
contend with it. One possibility is reordering bits, with the 
intention of having closely related bits wind up situated 
near one another. [Holland, 1975] noted that the inver-
sion operator (a subsequence of bits gets its order 
reversed) might be useful in reordering bits dynamically. 
[Goldberg, 1989, pp.166-179] argues that for permuta-
tion-based representations (as might be used in the 
traveling salesman problem), certain permutation-based 
crossover operators, such as PMX [Goldberg and Lingle, 
1985], combine the actions of crossover and reordering. 
The messy genetic algorithm mGA of [Goldberg, Korb, 
and Deb, 1989], along with its other distinctive features, 
implicitly permits reordering of bits. Bui and Moon have 
a sequence of papers that deal with ordering and preorder-
ing bits; of particular interest to them are graph problems, 
such as the graph bisection problem (see section 3.5 
below). In [Bui and Moon, 1993] there is a preprocessing 
step which makes the sequence of bits (one for each graph 
vertex) reflect certain vertex adjacencies as they are evi-
denced in, say, breadth-first traversal. Then in [Bui and 
Moon, 1995] they follow a different course; this time the 
bits are placed, not in a one-dimensional sequence, but 
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instead at integral points of multi-dimensional real space; 
they argue the latter allows room for a more faithful rep-
resentation of adjacencies. In [Greene, 2000] it is shown 
that under reasonable assumptions, a schema theorem 
obtains when the structure of bits and their linkages is lib-
eralized to be as general as a connected graph, and then in 
[Greene, 2001] there are experiments with such alterna-
tive bit arrangements. [Sehitoglu and Ucoluk, 2001] 
explicate a regime for exchanging bits with their neigh-
bors to the left or right, based upon whether they appear 
to participate in a building block.

(A new school, of probabilistic modeling, takes a com-
pletely different tack, but with the same general goal of 
identifying and exploiting those bits which are closely 
related. This school is exemplified by the research in 
[Muehlenbein and Paass, 1996], [Pelikan, Goldberg, and 
Cantu-Pas, 1998], and [Harik, 1999]. In this school, simu-
lation of biological crossover is abandoned, in favor of a 
generate-and-test approach. The typical regimen is to loop 
on two steps: use the current population to infer some 
probabilistic dependencies between the values of the vari-
ous bits, then use those probabilities to stochastically 
manufacture plausible individuals that will comprise the 
next generation.)

In the current paper, we will take a novel step towards 
correcting the hazard mentioned above. We will stay 
within the tradition that simulates crossover, but our bits 
will not be overtly linked together at all!

Reading the proof of the Schema Theorem suggests the 
following line of reasoning. When parental genetic mate-
rial is inherited, it should be inherited in a certain 
piecemeal way. When parental bit values are copied into 
child bits, closely related bits should be copied in clumps. 
We will loop to copy parental bit values. When an uncop-
ied parental bit is chosen to be the next one copied, we 
will copy not only that bit’s value, but also the values of 
those still uncopied bits which are suitably closely related 
to it. 

Above we alluded to reordering efforts, and non-linear 
linkage schemes. We now describe these as follows. Such 
approaches link or re-link bits one to another, with an eye 
to positioning closely related bits close together (gener-
ally this means a short path length between them). Then it 
should follow that when links are chosen for clipping dur-
ing crossover, there will be a decreased likelihood that 
closely related bits get separated from one another.

The appeal of our approach is that it does directly what 
the other approaches only hope to do indirectly: closely 
related bits tend to clump together when parental genetic 
material is being copied into children. Linking bits one to 
another is a held-over artifact from the biological model 
of a chromosome (especially this is so when the linkage is 
into a linear sequence), and we now dispense with it.

Below we introduce a plausible measurement for close 
relatedness between bits. We will think of this measure-
ment as also giving a pseudo-distance between bits. Our 
genetic algorithm will be generational (an entire new pop-

ulation P(t+1) at time tick t+1 is created from the 
population P(t) at time t, as opposed to a steady-state 
approach). Also, the measurement of close relatedness (or 
pseudo-distance) between bits is re-calculated for each 
generation. We term our approach a linkless self-distanc-
ing genetic algorithm. 

2. THE LINKLESS SELF-DISTANCING 
GENETIC ALGORITHM

In this section we describe the details of our approach, 
LSDGA. Of course, our approach is mostly distinguished 
by a new way of representing an individual in the popula-
tion, then by the algorithm for crossover that follows from 
it.

2.1. AN INDIVIDUAL

An individual is a set of bit-values. The bits are not linked 
together. Each individual in the population consists of the 
same number of bits, and that number is constant over all 
generations of the population. An individual has a fitness, 
which is a non-negative real number. The fitness value is 
problem-dependent.

2.2. CLOSELY RELATED BITS

How can we gauge when two bits are closely related? We 
do not purport to provide a perfect answer to that ques-
tion, but our answer is plausible and persuasive. Future 
research may improve upon our answer. 

As a pair, two bits can assume any one of four different 
bit-pair values, namely, (0, 0), (0, 1), (1, 0), and (1, 1). 
Our sentiment is that two bits are closely related, pro-
vided that they can exhibit a bit-pair value that is rather 
beneficial to an individual, in the sense that having this 
bit-pair value significantly increases the fitness of the 
individual. [Holland, 1975] would say that the two bits 
form a (small) building block.

We think of the current population as a sampling of the 
entire fitness landscape, and as such it offers evidence as 
to which bits are closely related. We consider just the fit-
ter half of the current population (some other fractional 
part of the fitter individuals may be a better choice); 
denote this subset S. Now let two bits b1 and b2 be given. 
Considering just bits b1 and b2, the members of S may 
potentially exhibit any one of the four bit-pair values, and 
of course the members of S have their respective fit-
nesses. If among the members of S, fitness is rather 
disproportionately concentrated above just one of the four 
possible bit-pair values assumable by the bit-pair b1 and 
b2, then that is what we will deem close relatedness 
between b1 and b2. (Put another way, let us consider the 
opposite circumstance. If fitness is evenly distributed 
above the four bit-pair values assumable by b1 and b2, 
then we would say these bits are independent of one 
another, meaning that the value of one has little to do with 
the value of the other, as far as contributing to the fitness 
of an individual.)
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Specifically, we do the following. For i = 0, 1, and j = 0, 
1, let Fij be the sum of the fitnesses of those elements of 
population subset S for which bit-pair (b1, b2) assumes 
the value-pair (i, j). Let F = F00 + F01 + F10 + F11. The 
four fractions rij = Fij / F lie in the real unit interval [0, 1], 
and add up to 1.0. We want to detect the situation when 
one of these fractions is rather close to 1.0 (and the other 
three are nearly 0.0). More than one expression would 
reveal such; we use a familiar entropy calculation,

and denote this value by dist(b1, b2). The normalizing 
factor 1/2 guarantees that this value lies in the real unit 
interval [0, 1]. Finally we observe that bits b1 and b2 
more nearly fulfill our notion of being closely related 
exactly when dist(b1, b2) more nearly approximates zero, 
and we will think of dist(b1, b2) as being a pseudo-dis-
tance value.

At this point a reader may interject that a building block 
may consist of more than just two bits. We respond by 
reasoning as follows. If fitnesses are concentrated above 
one of the eight possible bit-triple values assumable by a 
triad of bits, then even more so is fitness concentrated 
above the bit-pair values of any two bits of the triad. This 
is because the latter concentration includes the concentra-
tion above the bit-triple value. On the other hand we also 
caution the reader as follows. For triads, the correspond-
ing concentration metric (measuring the spread of eight 
fractions) should use not 1/2 but 1/3 as its normalizing 
factor. The concentration metric for a triad is not neces-
sarily either greater or less than the concentration metric 
for a pair of bits drawn from the triad.

As remarked earlier, we practice generational evolution. 
Mating with crossover among sundry pairs of members of 
the population P(t) at time t is used to create the next pop-
ulation P(t+1). The first step in this generational rollover 
is to use (the fitter half of) population P(t) to calculate the 
pseudo-distances between all pairs of bits; these distances 
will be used during crossover. Note that pseudo-distances 
are re-computed on each generation. (If an individual con-
sists of 100 bits, there are 100 * 99 / 2 = 4950 bit-pairs, 
and so also that many distances get calculated.) 

During crossover, we want bits that are suitably close 
together in pseudo-distance to get copied in clumps. To 
this end we calculate a cutoff value for pseudo-distance. 
We found the following worked well in our experiments. 
Bit-pair pseudo-distances are grouped into a histogram of 
twenty 5% brackets, then the chosen cutoff is that pseudo-
distance that as an upper bound contains at least 20% of 
the bit-pair pseudo-distances (or sometimes it is 25%).

2.3. CROSSOVER

Crossover is now easily described. Two parents produce 
two children. To copy parental bit values into child bits, 
we loop on four steps. Step 1: choose an uncopied bit b at 

random. Step 2: to it, group those uncopied bits  such 

that . Step 3: for k = 1, 2, copy this 
group of bit-values from parent(k) into child(k). Step 4: 
with 50% probability, interchange the roles of child(1) 
and child(2). (Step 4 means we may expect parts of a par-
ent’s genetic material to wind up in both children.) Let us 
note that the copying of isolated bits (ones not suitably 
close to other bits) resembles uniform crossover 
[Syswerda, 1989]. (In step 2, we sometimes prevent copy-
ing of an entire clump that is too large by making nearby 
bit  jump a 50-50 hurdle before we group it with b.)

It is conceivable that premature convergence of the popu-
lation can occur. Once the (fitter half of the) population 
members closely resemble one another, most bit pairs will 
seem to have fitness concentrated above a particular bit-
pair value, so most bit pairs will appear to be quite close 
to one another, and a child may simply duplicate a par-
ent. In section 2.4, which concerns how the next 
generation of the population is constructed from the cur-
rent one, we take steps to diversify the population.

2.4 GENERATIONAL CHANGE

Our initial population P(0) consists of random 
individuals.

To construct the next generation P(t+1) of the population 
from P(t), we first practice elitism, and have the fittest 
two members of P(t) survive intact into P(t+1). Then 
P(t+1) is filled up to the same size as P(t) by mating with 
crossover. As an aside, population size is kept small, typi-
cally between 25 and 50. Also, we linearly scale the set of 
fitness values present in the current population into a real 
interval of the form [1, maxVF] (for maximum virtual fit-
ness) in such a way that the smallest fitness value in the 
population is mapped to 1, and the largest is mapped to 
maxVF. (Typically maxVF is 2 or 4.) Then, individuals 
are selected for parenting by using a weighted roulette 
wheel based upon the scaled fitnesses (see [Goldberg, 
1989]).

Two parents produce two children. Each child is added to 
P(t+1), but only if it is distinct from the individuals 
already in P(t+1). Next we sort P(t+1) into decreasing 
order of fitness, as a prelude to mutation.

The elite survivors in P(t+1) are spared any mutation. For 
the rest, mutation is graduated and stochastic. A single 
mutation step consists of flipping the value of a randomly 
chosen bit. Each individual is subjected to some number 
of mutation attempts; in our experiments, the maximum 
number of attempts is 40. Mutation is stochastic, in that a 
mutation attempt succeeds to become a completed muta-
tion step only with a 50% probability. Mutation is 
graduated, in that less fit individuals are subjected to more 
mutation attempts. The number of attempts is propor-
tional to the rank of the individual within the (sorted) 
population. Thus the least fit individual is subjected to 40 
mutation attempts, and we expect about 20 of these to 
result in the flipping of a bit in that least fit individual.

This completes the construction of P(t+1).

1 2⁄( ) rij– log2rij⋅( )

i j,
∑⋅

b ′
dist b b ′,( ) cutoff≤

b ′
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2.5. STOPPING CONDITIONS

Generations of populations P(1), P(2), P(3), …, are 
formed, until some maximum number of generations has 
been reached, or some stopping condition has been met. 
Since we view genetic algorithms as a heuristic approach 
to problem solving, in this research we often content our-
selves when a very good though sub-optimal solution has 
been unearthed. For many of the problems used in our 
experiments, a maximum fitness is known for the prob-
lem, and so we may content ourselves if we reach 98% of 
that value.

3. EXPERIMENTS

We have explored the behavior of our approach on a num-
ber of problems. The problems range from simple ones, to 
very challenging ones drawn from the literature. 

3.1.  COUNTING WEIGHTED 1’S

In this simple experiment, there are 80 bits, and they are 
numbered 1 through 80. The fitness of an individual 
equals the sum of the bit numbers of those bits whose 
value is 1 (versus 0). This problem is not quite the “count-
ing 1's” problem (see Experiment 3.3); we might term it 
“counting weighted 1's”. The maximum fitness is 1 + 2 + 
3 + … + 80 = 80 * 81 / 2 = 3240. There is one individual 
of maximum fitness. The fitness landscape everywhere 
slopes upward towards this maximum. (Why? if we hill-
climb in Hamming space, then changing a 0 to a 1 in an 
individual produces an individual of increased fitness, 
with the degree of increase depending on the bit number.) 
We used 98% of maximum fitness, or 3175.2, as accept-
able fitness. We ran 20 trials of this experiment, using 40 
as our population size, and allowing up to 100 genera-
tions per trial. We would expect the bits having high bit 
numbers to rapidly converge to the value of 1, and indeed 
this is what can be observed when a trial's generations are 
examined sequentially. All but two trials found an indi-
vidual of acceptable fitness before exhausting all 100 
generations. Over the 20 trials, the average fitness of the 
fittest individual found on a trial was 3186.75 and the 
average final generation number was 63.0. So, our new 
approach is successful at finding rather good solutions in 
a reasonable amount of time. Table 1 summarizes the 
results of this experiment.  

3.2.  WEIGHTED 8-BIT GROUPS

This experiment is somewhat similar to the preceding 
one. Again an individual consists of 80 bits, but they are 
no longer numbered. Instead, they are grouped into 10 
groups of eight bits each, and the groups are numbered 1 
through 10. A subgroup of bits makes its own contribu-
tion to fitness. For group number k, , let n(k) 
denote the absolute value | (number of 1's in k-th sub-
group) minus 4 |. Note n(k) is in the range 0..4, and has 
the maximum value 4 when either all (eight) of the sub-
group's bits are 1's or all are 0's. The fitness of an 
individual is then defined to be . The maxi-

mum fitness is 1*4 + 2*4 + … + 10*4 = 220. For this 
problem, there are 210 = 1024 individuals of maximum 
fitness. These individuals exhibit all 0’s or all 1’s in each 
subgroup. As earlier, we used 98% of maximum fitness as 
acceptable fitness. We ran 20 trials of this experiment, 
using 40 as our population size, and allowing up to 100 
generations per trial. We would expect subgroups to con-
verge towards all 1's or all 0's, with convergence 
happening sooner in subgroups having a higher group 
number, and this can be observed when a trial's genera-
tions are examined. This time, 13 of the trials found an 
individual of acceptable fitness before exhausting all 100 
generations. Over the 20 trials, the average fitness of the 
fittest individual found on a trial was 215.5 and the aver-
age final generation number was 84.3. See Table 2.  

3.3.  TARGETING A SPECIFIED INDIVIDUAL

In [Greene, 2001] the following experiment is described. 
An individual is a 2-dimensional 24 x 24 grid of bits. A 
particular individual is distinguished (it resembles the let-
ter capital-A against an opposing background); this 
individual becomes the target. Then, an arbitrary popula-
tion individual has an error, equal to its Hamming 
distance from the target, with a maximum value of 24 * 
24 = 576. Thence the individual has a fitness, defined as 
maximum error minus own error. Thus maximum fitness 
also equals 576, and we use 98% of that, or 564.48, as 
acceptable fitness. We note that this problem is isomor-
phic to a “counting 1's” problem. In a counting 1’s 
problem, the fitness of an individual is the number of bits 
having value 1. For the problem at hand, fitness equals the 
count of bits which have the target’s corresponding bit 
value. In a counting 1’s problem, each bit acts as an inde-

Table 1: Counting Weighted 1’s

Bits per individual 80
Optimal fitness 3240
Acceptable fitness 3175.2
Number of trials 20
Population size 40
Max generations 100
Avg final gen. num 63.0
Avg best fitness 3186.75

1 k 10≤ ≤

Σk k n k( )⋅( )

Table 2: Weighted 8-bit Groups

Bits per individual 80
Optimal fitness 220
Acceptable fitness 215.6
Number of trials 20
Population size 40
Max generations 100
Avg final gen. num 84.3
Avg best fitness 215.5
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pendent building block, there is one individual of 
maximum fitness, and the fitness landscape everywhere 
has the same slope upward towards the maximum. In the 
cited paper, two parents are cut by a random 2-dimen-
sional sub-grid, for purposes of exchanging bit groups at 
crossover time. 

For comparison's sake, first we repeated this experiment. 
Then secondly we re-worked this problem as a 1-dimen-
sional problem, by re-representing each grid as a 1-
dimensional bit string, under row-major representation, 
and practicing 1-point crossover among parents. Finally, 
we also used the same problem to test our new linkless 
self-distancing approach to representation and crossover. 
We ran 20 trials, allowing up to 2000 generations upon 
each trial. Table 3 compares the results of these three 
approaches. For the 1-dimensional and 2-dimensional 
approaches, all 20 trials exhausted all 2000 generations 
without unearthing an individual of acceptable fitness. 
Contrast that with our new approach. It invariably found 
an individual of acceptable fitness, with average last gen-
eration number equal to 496.0. Moreover, this was 
achieved while using a smaller population size. For this 
problem, our new approach is unmistakably better and 
faster.  

3.4.  THE 20 QUEENS PROBLEM

We reprise a second problem from [Greene, 2001]. This is 
the 20 Queens problem, which is the analogue of the clas-
sic 8 Queens problem from chess. There is a 20 x 20 
chessboard, and the goal is to have 20 queens placed into 
board squares so that no queen is attacking the others. In 
the cited paper, the chessboard surfaces as a 20 x 20 grid 
of bits, with bit value 1 meaning the board square is occu-
pied by a queen, whereas value 0 means the square is 
empty. Fitness is addressed as follows. Errors are added 
up. One or more errors are occurring when any of the fol-
lowing holds: a row or a column contains  queens, 
or a diagonal or counter-diagonal contains n > 1 queens. 
The worst situation occurs when every square (not merely 
20 squares) has a queen on it, in which case the total num-
ber of errors equals 2*(E - 1)*(2* E - 1), where E = edge-
size. Here E = 20 and maximum error = 1482. Then the 
fitness of an individual is defined as maximum error 
minus own error. Maximum fitness is then 1482. In our 
experiments we take 98% of that figure, or 1452.36, to be 
acceptable fitness.

This is a hard problem, with many constraints to satisfy 
and many epistatic interactions between bits. The fitness 
landscape for this problem is hard to analyze, but proba-
bly it is rather jagged. Chess players know there are many 
individuals of maximum fitness. For instance, given one 
solution to this classic puzzle, the 8 symmetries of a 
square (obtained by rotations and reflections) provide 
more solutions.

The cited paper worked this problem 2-dimensionally. In 
doing so, two parents were cut by a random subgrid, for 
purposes of crossover. We first re-worked the cited 
research. Then we also worked this as a 1-dimensional 
problem, by re-representing a board in row-major form as 
a 1-dimensional array, and practicing 1-point crossover. 
Finally we worked this problem using our new approach. 

Table 4 summarizes the results. The 1-dimensional and 2-
dimensional approaches generally, but not always, found 
an acceptable individual before exhausting all allowed 
generations in a given trial. The average best individuals 
found by the three approaches have nearly equal fit-
nesses, but our new approach when applied to this 
problem finds an acceptable individual in circa 6 times 
fewer generations, and does so using a smaller population 
size, as well. For this problem, our new approach is very 
much the superior one.     

3.5.  RE: GRAPH BISECTION

The next two experiments concern graph bisection, so in 
this section we discuss that topic. Let a graph G, having n 
vertices and some number of edges, be given. For sim-
plicity, we will assume n is even. A bisection of G means 
a partitioning of G’s vertices into two subsets of the same 
size, n/2. The cut-size of the bisection is defined to be the 
number of edges which have an endpoint in each of the 
two vertex subsets. The graph bisection problem is to 
identify a bisection with the lowest possible cut-size.

Graph bisection has been studied by researchers such as 
[Kernighan and Lin, 1970], [Johnson et al., 1989], and 
[Laszewski, 1991]. It has also been examined in a series 
of papers by Bui and Moon and their colleagues, for 
instance [Bui and Moon, 1993], [Bui and Moon, 1995], 
and [Bui and Moon, 1996]. Graph bisection has practical 
applications, and is also known to be a hard problem [Bui 
and Jones, 1992]. Space does not allow a full explication 
of the issues of this problem. Our work follows the gen-

Table 3: Targeting a Specific Individual

For each representation, an individual is made up of 576
bits, maximum fitness is 576, acceptable fitness is 564.48.

1-diml 2-diml LSDGA
Number of trials 20 20 20
Population size 50 50 32
Max generations 2000 2000 2000
Avg final gen. num 2000.0 2000.0 496.0
Avg best fitness 544.05 550.9 565.05

n 1≠

Table 4: The 20 Queens Problem

For each representation, an individual consists of 400 bits,
maximum fitness is 1482, acceptable fitness is 1452.36.

1-diml 2-diml LSDGA
Number of trials 20 20 20
Population size 100 100 40
Max generations 2000 2000 1000
Avg final gen. num 1863.1 1565.5 286.5
Avg best fitness 1450.6 1451.55 1453.8
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eral development of the past researchers. We refer the 
interested reader to the cited papers. 

A bisection of the graph puts its vertices into two 
“halves”, call them the A and B halves. To search for a 
bisection with minimal cut-size, we proceed as follows. 
Represent a bisection by using n bits, one for each vertex. 
Bit values of 0 versus 1 signify whether the associated 
vertex is in the A or B subset. Then we can easily com-
pute cut-size: loop through the list of edges, tallying each 
whose two endpoints are in different subsets. Note that 
cut-size can be as low as 1, and can be no greater than the 
number of edges.

Our attack on a graph bisection problem will use the 
approach to representation and crossover which we expli-
cated in section 2. An individual in the population 
consists of n bits (n = the number of vertices), moreover, 
we will see to it that n/2 of these bits have the value 0 and 
the other n/2 have the value 1. We define the fitness of an 
individual to be: the number of edges in G, minus the cut-
size of the bisection which corresponds to the individual. 
Maximum fitness equals number of edges, minus 1. When 
the least possible cut-size of a graph is unknown, as is 
usually the case, in our trials we let acceptable fitness 
equal maximum fitness. Mating with crossover can pro-
ceed as we described it in section 2, but we need to end it 
with two additional steps. The first step is a repair step, 
and the second step is an improvement step.

(There is also another consideration made, at the start of 
crossover. Our representation admits an isomorphy. The 
result of flipping every bit of an individual is what we 
may term its complement. An individual and its comple-
ment really represent the same partition of the vertex set 
into two subsets. We note that mating an individual with 
its (near) complement is likely to produce a chaotically 
different child, whereas the child of two (near) identical 
partitions should be a (near) duplicate of its parents. 
Hence we make it a practice at crossover time that we 
mate parent-1 with whichever of parent-2 or its comple-
ment is the closer to parent-1 in Hamming distance.)

Crossover and mutation can produce an individual (child) 
for which the A and B subsets are not the same size. This 
obliges us to repair the individual, by flipping enough of 
the bits with the value (0 or 1) which occurs in excess. 

Our repair work is heuristic. Note that to move a vertex to 
the other subset (A or B), that is, to flip a single bit, 
implies a changed bisection and hence a change in cut-
size. A negative change to cut-size is favorable, for it 
makes cut-size become lower, as is our desire. We make a 
list of the bits which exhibit the excess value (0 or 1), and 
with each such bit we pair the change in cut-size that 
would result from flipping it. Repair then takes the form 
of looping on 2 steps until the required number of bits 
have flipped: (1) identify the listed bit which has the most 
favorable change in cut-size, remove it from the list, and 
flip this bit; (2) update the change-to-cut-size for those 
listed vertices which are adjacent to the flipped one (this 
is the only updating which is necessary here, the correct 
update is to subtract 2).

(The repair work in [Bui & Moon, 1996] is different. 
Their bits are stored in an array which, for the repair step, 
is treated as circular. They pick a random index and from 
there move forward, flipping those bits which exhibit the 
excess value, until enough have been flipped.)

Next we describe the improvement step. The improve-
ment step, which is done to a partition which has already 
been balanced into two subsets of the same size, is also 
heuristic. The idea goes back to [Kernighan & Lin, 1970]. 
Similar to the earlier observation, we note that to have 
two vertices, one from each subset, exchange sides also 
implies a change in cut-size. In the improvement step, a 
well-chosen subset of the A-elements, together with a 
well-chosen subset, of the same size, of the B-elements, 
are identified, then these groups exchange sides. The pro-
cedure is summarized in the 5 steps given next. (1) Make 
a list, AList, of the A-elements, pairing each with the 
change in cut-size that would result if that vertex were to 
change sides; sort AList into increasing order. Similarly 
form BList out of the B-elements. Also create a list Best-
Pairs, initially empty. 

(2) Now look at a window of the best w elements from the 
AList and likewise the w best elements from BList. Con-
stant w is window size; for it we used 10. There are w*w 
pairs of vertices, one from A and one from B, formable 
from our windows. Identify the pair for which there is the 
most favorable change to cut-size if the two vertices were 
to exchange sides; append that pair to the end of list Best-
Pairs. (3) Remove these two vertices from AList and 
BList. Update the change-to-cut-size of those vertices 
adjacent to the two vertices. Re-sort AList and BList. (4) 
Loop back to step 2 until enough pairs have been put into 
the sequence BestPairs. We follow the advice of Bui and 
Moon and let BestPairs grow to length n/6 - 1 where 
recall n is the number of vertices in G. (Kernighan and 
Lin used the longer length n - 1.) (5) Finally, for k = 1, 2, 
3, etc., consider the partial sums

The most favorable such partial sum then identifies the k 
elements from A and k from B which are made to 
exchange sides in the improvement step. 

3.6.  BISECTING THE GRAPH U500.10

The graph named U500.10 is a test case devised by 
[Johnson et al., 1989]. It is a so-called random geometric 
graph, and the authors constructed it as follows. First, 500 
points are generated, whose coordinates are random val-
ues in the real unit interval [0, 1]. (The 500 points are 
randomly situated in the unit square.) Then a distance 
value is calculated, with the property that: when all pairs 
of points within that distance of one another are con-
nected by an edge, then the expected (that is, average) 
degree of a vertex is 10. 

change-to-cut-size for i-th pair in BestPairs( )

i 1=

k

∑
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Bui and Moon have used this same test case. In particular 
we have in mind [Bui and Moon, 1996]. In that paper the 
authors provide a detailed comparison of several algo-
rithms, some of their own devising and some from earlier 
researchers; the algorithms are tested on a multitude of 
graphs, including U500.10. It is fair to say that the over-
all best performing algorithm from this paper is the 
authors’ genetic algorithm BFS-GBA (Breadth-First 
Search Graph-Bisection Algorithm). Another compared 
algorithm is simulated annealing as practiced in [Johnson 
et al., 1989], denoted SA.

We tested our graph-bisecting form of LSDGA on the 
graph U500.10. The graph’s vertex and edge sets are 
available on-line at dimacs.rutgers.edu/pub/dsj/partition. 
This graph has 2355 edges, so acceptable fitness is 2354. 
In Table 5 we summarize how our own algorithm 
LSDGA measured up against BFS-GBA and SA. To date 
no one knows the least possible cut-size for U500.10; the 
least one known is 26. The entries of Table 5 give the 
least and the average cut-sizes that surfaced over trials. 
The column for LSDGA comes from our own experi-
ments; the other two columns are copied from [Bui and 
Moon, 1996]. Our own algorithm found the same least 
cut-size (26) that the other two algorithms did. Also, on 
four of our trials our algorithm found a cut-size of 29, 
which is very close to the least known cut-size. Our algo-
rithm’s average cut-size (44.77) falls in between those of 
the other two algorithms.  

Further comparisons between these three algorithms are 
difficult to make. The time-costs of SA and BFS-GBA are 
compared by Bui and Moon, but the costs are given in 
terms of CPU seconds on particular processors. Algo-
rithm BFS-GBA is a genetic algorithm, but it is a steady-
state algorithm whereas ours is generational. Also, the 
stopping condition used is entirely different; that algo-
rithm stops evolving “when 80% of the population is 
occupied by solutions with the same quality” (p. 846). 
Finally, we remain unclear about certain terminology in 
the paper.

3.7.  BISECTING CATERPILLAR GRAPH CAT352

Figure 1 suggests the structure of a so-called caterpillar 
graph. A caterpillar graph is made up of identical star-like 
clusters, with the star centers connected one to another in 

a linear sequence. [Bui and Moon, 1996] tell us that cater-
pillar graphs are especially difficult for certain graph 
bisection algorithms, such as that of [Kernighan and Lin, 
1970], and simulated annealing as practiced in [Johnson 
et al., 1989]. Bui and Moon experimented with several 
sizes of caterpillar graph. The one named cat352 is made 
up of stars of 7 vertices, just like in Figure 1. In cat352 
there are 50 such stars (giving 350 vertices), plus (we pre-
sume, anyway) two terminating vertices of degree 1 at the 
far left and far right. Plainly the minimal cut-size for 
graph cat352 is a mere 1, and it corresponds to splitting 
the graph between the two central stars. 

We tested our algorithm LSDGA on graph cat352. The 
number of edges is 351, so our choice of maximum fit-
ness is one less than that, or 350. This is the fitness that is 
achievable by the optimal bisection. Our stopping condi-
tion on each of 20 trials was to either unearth the optimal 
bisection or stop after 500 generations. On 4 of our 20 tri-
als the optimal bisection was discovered. On the other 16 
trials the best bisections we found had cut-sizes of 3 (6 
times), 5 (4 times), 7 (3 times), and 9 (3 times). Table 6 
summarizes the results, with comparisons to algorithm 
BFS-GBA of [Bui and Moon, 1996]. The table does not 
offer a comparison to [Johnson et al., 1989] as they did 
not use caterpillar graphs. Our best cut-size is the equal of 
Bui and Moon, though their average cut-size is better than 
ours.  

4. CONCLUSIONS

We have presented a new representation and crossover 
algorithm for genetic algorithms. Bits are not linked 
together at all. On each generation, the current population 
is used to calculate a pseudo-distance between bits. Bits 
which are close under the pseudo-distance are ones which 
appear to belong to a same building block. Under cross-
over, nearby bits get copied in clumps into the children. 
Thus our new linkless self-distancing approach does 

Table 5: Bisecting Graph U500.10

Omitted entries in the columns occur when the values are
unknown, inappropriate, or are incomparable to LSDGA.

SA BFS-GBA LSDGA
Number of trials - - 20
Population size - - 32
Max generations - - 500
Avg final gen. num - - 500
Best cut-size 26 26 26
Avg cut-size 65.8 32.68 44.77

Figure 1: A Caterpillar Graph Segment

Table 6: Bisecting Graph cat352

Omitted entries in column two occur when the values are
unknown, inappropriate, or are incomparable to LSDGA.

BFS-GBA LSDGA
Number of trials - 20
Population size - 32
Max generations - 500
Avg final gen. num - 431.95
Best cut-size 1 1
Avg cut-size 2.25 4.5
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directly what other approaches to learning linkage and 
preserving building blocks have only hoped to do indi-
rectly. Experiments were performed on six problems. 
These included simple problems, problems with numer-
ous equally fit optima, and very challenging problems in 
graph bisection. Our new approach worked very success-
fully on these problems, equaling and often outperforming 
other more familiar approaches.

5. FUTURE WORK

Our approach is brand new. There are many questions that 
suggest themselves, which we have not yet had time to 
pursue. Are there better choices for our system parame-
ters than the ones we have cited? Is there a better measure 
of fitness concentration than the entropy calculation we 
have used? Is there a Schema Theorem for our approach? 
In what ways can premature convergence occur, and how 
can it be combatted? Can careful bookkeeping allow us to 
adapt the approach to steady-state GA’s? The approach 
needs to be extended to the case that the granularity of a 
gene is bigger than a single bit. In that vein, there would 
be many more than 4 ways that a pair of genes can 
assume a pair of values. Will our entropy calculation for 
fitness concentration, properly adapted, still succeed? In 
short, there are many issues inviting exploration.
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Abstract

Greedy score-based algorithms for learning the
structure of Bayesian networks may produce
very different models depending on the order in
which variables are scored. These models often
vary significantly in quality when applied to
inference. Unfortunately, finding the optimal
ordering of inputs entails search through the
permutation space of variables. Furthermore, in
real-world applications of structure learning, the
gold standard network is typically unknown. In
this paper, we first present a genetic algorithm
(GA) that uses a well-known greedy algorithm
for structure learning (K2) and approximate
inference by importance sampling as primitives
in searching this permutation space. We then
develop a flexible fitness measure based upon
inferential loss given a specification of evidence.
Finally, we evaluate this GA wrapper using the
well-known networks Asia and ALARM and
show that it is competitive with exhaustive
enumeration in finding good orderings forK2,
resulting in structures with low inferential loss
under importance sampling.

Keywords: Bayesian networks, genetic algorithms,
permutation problems, probabilistic reasoning, machine
learning, wrappers

1 INTRODUCTION

Learning the structure, or causal dependencies, of a
graphical model of probability such as a Bayesian
network (BN) is often a first step in reasoning under
uncertainty. In many machine learning applications, it is
therefore referred to as a method ofcausal discovery
[PV91]. Finding the optimal structure of a BN from data
has been shown to beNP-hard [HGC95], even without
considering latent (unobserved) or irrelevant (extraneous)
variables. Therefore, greedyscore-basedalgorithms
[FG98] have been developed to provide more efficient
structure learning at an accuracy tradeoff. In this paper
we examine a general shortcoming of greedy structure
learning – sensitivity to variable ordering – and develop a
genetic algorithm to mitigate this problem by searching

the permutation space of variables using a probabilistic
inference criterion as the fitness function.

We make the case in this paper that the probabilistic
inference performance element,in the absence of a
known gold standard network or any explicit
constraints, can provide the feedback needed to search for
a good ordering. We then derive a heuristic based on
validation by inference (exact inference [LS88, Ne90] for
small networks, approximate inference by stochastic
sampling [CD00] for larger ones). Our primary objective
is inferential accuracyusingthe learned structure.

Toward this end, we adapt a flexible, composite fitness
measure used in other machine learning systems called
wrappers [KJ97], which automatically tune
hyperparameters of the learning system such as the
ordering of input variables. We present the system shown
in Figure 1, a genetic algorithm-based wrapper [CS96,
RPG+98, HWRC01], and show how it provides a parallel
stochastic search mechanism for inferential loss-
minimizing variable orderings. We demonstrate that,
used in tandem withK2, it produces structures whose loss
under importance sampling is nearly as low as any found
by exhaustive enumeration of orderings. Finally, we
discuss how this wrapper provides a flexible method for
tuning representation biases[Mi97] in Bayesian network
structure learning using different fitness criteria.

[2] Representation Evaluator
for Bayesian Network

Structure Learning Problems

Genetic Wrapper for Variable Ordering
In Bayesian Network Structure Learning

D: Training Data

: Evidence Specification

Dtrain (Structure Learning)

Dval (Inference)

[1] Permutation Genetic Algorithm

ÿ

Candidate
Ordering

f(ÿ)

Ordering
Fitness

Optimized
Ordering

ÿ̂

eI
ÿ

Figure 1. System Design Overview.
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2 VALIDATION OF STRUCTURES

Consider a typical probabilistic reasoning environment, as
shown in Figure 2, where structure learning [A] is a first
step. The input to this system includes a setD of training
data vectorsx = (x1, …, xn) each containingn variables. If
the structure learning algorithm is greedy, an orderingÿ
on the variables may also be given as input. The structure
learning component of this system produces a graphical
model B = (V, E, Θ) that describes the dependencies
amongXi, including the conditional probability functions.
The inferential performance element [B] of this system
takesB and a new data setDtest of vectors drawn from the
desired inference space, where only a subvectorE of X =
(X1, …, Xn) is observable, and infers the remaining
unobserved valuesX \ E. We denote the indicator bit
vector for membership inE by I e. The performance
criterion f is the additive inverse of the (inferential or
utility) loss of [B].

This section specifies the functionality of [A] and [B] and
explains the derivation off as a function of the orderingÿ.
In the next section, we show how the environment
depicted in Figure 2 is used as the fitness evaluation
module [2] of the overall GA-based system (Figure 1).

2.1 Learning Bayesian Network Structure

Consider a finite setÿ = {X1, …, Xn} of discrete random
variables. ABayesian networkis an annotated directed
acyclic graphG = (V, E) that encodes a joint probability
distribution overÿ . The nodes of the graph correspond to
the random variablesX1, …, Xn. Each node is annotated
with the conditional probability distribution (CPD) that
representsP(Xi | Paxi ), wherePaxi denotes the parents of
Xi in G. A Bayesian networkB specifies the unique joint
probability distribution overÿ given by:

P(X1, …, Xn) = ( )∏
=

n

i
xi i

Pa|XP
1

(1)

The graph G represents conditional independence
properties of the distribution. These are theMarkov
independencies: each variableXi is independent of its
non-descendants, given its parents, in G. [EF01] We
denote the annotating CPD parameters ofB by Θ; thus,B
= (V, E, Θ).

We are interested in learningB from training dataD
consisting of examplesx. For simplicity, we assume that
there are no variables that are latent or completely
irrelevant (not weakly relevant [KJ97]). The objective of
structure learning is then to find the arcsE for V = ÿ.
Some structure learning algorithms, such asK2 [CH92],
are greedy in that they add arcs based upon the
incremental gain that each single arc induces in a global
score, such as the Bayesian (Dirichlet) score. [CH92,
FG98]. We useK2 for structure learning – module [A] of
Figure 2 – because it finds structures quicklyif given a
reasonable orderingÿ. Variables must occur “upstream”
from one another (or “downstream” inÿ, i.e., have a
higher index) to be considered as candidate parents. If the
number of parents per variable is constrained to a constant
upper bound,K2 has worst-case polynomial running time
in the numbern of variables.

Two clear limitations of greediness are inability to
backtrack (i.e., undo the addition of an arc) or consider
the joint effects of adding multiple arcs (parents). This is
why greedy structure learning algorithms are sensitive to
the presence of irrelevant variables in the training data, a
pervasive problem in machine learning [KJ97].
Additionally, K2 is particularly sensitive to the variable
ordering because arcs fail to be added, resulting in
unexplained correlations, whenever candidate parents are
evaluated in any order that precludes a causal
dependency. Were a gold standard structureG* = (V, E*)
available, this would be seen as an inversion in the partial
ordering induced byE*. Preventing missing arcs – i.e.,
“false negatives for causality” – is a challenge in structure
learning as applied to causal discovery [PV91, FG98].

Unfortunately, just as finding the optimal structure is
itself intractable [HGC95], so is finding the optimal
ordering of inputs for a given structure learning
algorithm. Searching the space of permutations of
variables is prohibitive, and defeats the purpose of using a
greedy algorithm. In this paper, we focus onK2 and the
problem of optimizing the variables to be given as its
input. To specify the optimization of variable order as a
search problem, we must define the states (permutations),
operators (re-ordering), initial candidates, and evaluation
criterion.

2.2 Validation by Inference

A desired joint probability distribution functionP(X) can
be computed using the chain rule for Bayesian networks,
given above in Equation (1). Themost probable

[2] Representation Evaluator
for Bayesian Network
Structure Learning Problems

: Evidence SpecificationeI
ÿ

Dtrain (Structure Learning)

Dval (Inference)

f(ÿ)

Ordering Fitness
(Inferential Loss: MSE)

[B] Probabilistic
Inference
Algorithm
(Exact or

Approximation
by Sampling)

B = (V, E, ΘΘΘΘ)
Learned Bayesian Network

[A] Greedy Score-Based
Structure Learning Algorithm

(K2)
and Parameter Estimation

Algorithm

ÿ
Candidate Ordering

(Permutation)

Figure 2. Probabilistic reasoning environment,
Module [2] from Figure 1.
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explanation (MPE) is a truth assignment, or more
generally, value assignment, to aquery Q = X \ E with
maximal posterior probability given evidencee. Finding
the MPE directly using Equation (1), requires
enumeration of exponentially many explanations.
Instead, a family of exact inference algorithms known as
clique-tree propagation(also calledjoin tree or junction
tree propagation) is typically used in probabilistic
reasoning applications. The first of these algorithms was
developed by Lauritzen and Spiegelhalter [LS88, Ne90].
Although exact inference is important in that it provides
the only completely accurate baseline for the fitness
function f, the problem for general BNs is#P-complete
(thus, deciding whether a particular truth instantiation is
the MPE isNP-complete) [Co90, Wi02].

Approximate inference refers to approximation of the
posterior probabilities given evidence. One stochastic
approximation method calledimportance sampling
[CD00] estimates the evidence marginal by sampling
query node instantiations:

P(E = e) = ( )ÿ =
E\X

eE|E\XP (2)

[CD00] discusses basic variants of importance sampling.
These includeprobabilistic logic sampling[He86], whose
importance function is the joint distribution function
P(X). By sampling from the network as if no evidence
were given, the priors on source or root nodes are
emphasized, resulting in a possibly suboptimal
importance function as the authors point out. The source
priors are similarly emphasized inforward simulationby
likelihood weighting [SP89, CD00], which samples using
the joint probability of query nodes as the importance
function:

P(X \ E) = ( )ÿ
∉ex

xi i
PaxP | (3)

Welch demonstrates [We96] that even a moderately
complex binary network with deterministic nodes,
approximately the size ofALARM, can be difficult to
sample from by pure forward sampling if there are
enough query nodes (evidence) – the author instantiates 4
of 32 binary nodes with a moderately unlikely evidence
vector,P(e)= 6.5 * 10-4.

One way of scaling up to large networks in a realistic
probabilistic reasoning application is to dynamically adapt
the importance function. [CD00] presents a solution of
this type calledadaptive importance sampling(AIS),
where a dynamic importance function is first initialized
using structural heuristics, then empirically trained in
each of several training steps. This is similar to the
hyperparameter sampling stages in Markov chain Monte
Carlo (MCMC ) methods [Ne93]. The key issue is
whether we have any prior knowledge regarding the
estimators (e.g., heuristic importance functions).

We have implemented five variants of importance
sampling: forward simulation, logic (aka rejection)

sampling, backward sampling, self and heuristic
importance sampling, and adaptive importance sampling.
Because adaptive importance sampling has been
empirically shown [CD00] to be more robust in the
presence of unlikely evidencee, and because we have
found it to converge quickly in independent experiments,
we use it in our evaluation component, module [B] in
Figure 2 above.

2.3 Deriving Fitness

To optimize the ordering, we considered fitness functions
with three objective criteria. In this paper, however, we
focussolelyon the first:

1. Inferential loss: Quality of the network
produced byK2 as detected through inferential
loss evaluated over a holdout validation data set
Dval ≡ D \ Dtrain (see Figure 1) – requires modules
[A] and [B] in Figure 2

2. Model loss: “Size” of the network under a
specified representation – requires module [A]
only and is independent of [B]

3. Ordering loss: Inference and model-independent
measure of data quality given onlyD and ÿ –
independent of both modules [A] and [B]
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In related work on genetic wrappers for variable selection
in supervised inductive learning, Hsuet al adapted
Equation (4) [HWRC00, HWRC01] from similar fitness
functions developed by Cherkauer and Shavlik for
decision tree pre-pruning [CS96], Raymeret al for
similarity-based learning (k-nearest neighbor regression)
[RPG+97], and Whitley and Guerra-Salcedo for
connectionist learning [GW99]. This breadth of
applicability demonstrates the generality of simple genetic
algorithms as wrappers for performance tuning in
supervised inductive learning.

Recently, Hsu et al automatically validated the
coefficientsa, b, andc for several individual data sets on
a supervised learning task. [HWRC02] Results were
positive in that this approach found application-specific
values for thesehyperparameters, and the GA achieved
better generalization accuracy than search-based feature
selection wrappers [KJ97] for a real-world test bed
(prediction of loss ratio in automobile insurance risk
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analysis). Controlling the values ofa, b, and c
simultaneously proved to be difficult in that large
amounts of validation data were required, and the authors
report that experiments did not indicate conclusively
whether the GA performed better with this single
composite-objective fitness function or a multi-objective
one (i.e., Pareto optimization). Therefore, for clarity,we
set b and c to 0 to ignore fb and fc in the experiments
reported in this paper. In the last section, we discuss the
ramifications of this design choice and possible future
work using the fullf.

We now focus on the first term,fa. This fitness function
computes inferential loss by measuring the predictive
power of the Bayesian network on the data set given a
specification of evidence,I e. The specificfa we use is the
normalized additive inverse of the root mean squared
error (RMSE), which is the square root of the sum of
squared differences betweeen the sampled, approximate
probabilities P’(xij) and exact probabilitiesP(xij), over
statesxij of variablesXi. [CD00] Note thatfa is the only
term that depends on which variables areobservable, i.e.,
members ofE. We consider this the most important term
just as validation set classification error is considered a
typical estimator of generalization error in supervised
classification learning [Mi97]. Ultimately, a BNB is only
as good as the inferences it can produce on real-world
data given realistic evidencee, and an orderingÿ is only
as good as the BN that it can induce given a specific
structure learning algorithm. In the next section, we
explain why this is a motivation for GA wrappers in
general.

3 SEARCH-BASED ENHANCEMENT OF
LEARNING

Figure 1 indicates the role of a combinatorial optimization
system for controllingÿ, in context: a probabilistic
reasoning system based on greedy structure learning can
use an optimized orderingÿ̂ to enhance structure quality.
This is done by searching for a goodÿ using a “realistic”
inferential criterion and a fixed, greedy structure learning
algorithm such asK2. We now explore this combinatorial
optimization problem and the design of our specific GA.

3.1 Wrapper Approaches to Optimizing Input

Tuning machine learning algorithms for large, complex
data sets is an expensive and difficult task. In addition to
identifying the appropriate inputs for a particular
classification or inference performance element, the
system designer must find a representation for
hypotheses, i.e. the language for expressing the target
concept, and a suitable performance measure by which to
evaluate hypotheses. Making appropriate decisions
regarding the input specification is crucial for tractable
learning, because these determine part of theinductive
bias [Be90, Mi97] of the learning system.Bias, the
preferences of a learning system for one hypothesis over
another other than those dictated by consistency with the

training data, determines how the space of hypotheses (in
our application, BN structures) is to be searched and can
radically affect the tractability of this search.
Unfortunately, effective decisions often depend in subtle
ways upon the learning algorithm, training data, and their
interaction. A mechanism for systematically identifying
good inputs should take the performance element of the
system input into account.1 It must have the ability to
tune the learning system by automatically adjusting the
some aspect of the input specification (e.g., selected
variables,aka feature subsets, or variable orderingsÿ)
and coefficients for quantitative inductive bias such as
those discussed previously. Controlling all of these
parameters, while keeping the machine learning system
efficient and manageable, is not easy.

We approach this problem in BN structure learning by
applying search-based combinatorial optimization and use
validation by inference(presented in the previous section)
as a search heuristic. The high-level mechanisms that
determine a learning system’s representation and
preference biases can be expressed using learning
hyperparameters[Ne93], such asÿ. Just as a learning
parameter denotes a trainable component of a pattern
detector or classification function, a learning
hyperparameter denotes a controllable component of the
organization, representation, or search algorithm for a
learning problem. Inductive learning systems, or
inducers, are built with such hyperparameters and the
ability to tune them using combinatorial search, based
upon evaluation metrics over validation data. The
benefits to probabilistic learning and reasoning are the
potential for greater flexibility in learning processes, an
increase in generalization quality, and the ability to make
the learning component more automatic and transparent.

3.2 GA-Based Wrappers

A GA is ideal for implementing wrappers where
hyperparameters are naturally encoded as chromosomes
such as bit strings or permutations. This is precisely the
case with variable (feature subset) selection, where a bit
string can denote membership in the subset, and with
variable ordering, where a permutation denotesÿ, the
order in which nodes are added to the BN. Both of these
are forms of constructive inductionwhere the input
representation is changed from the default [Be90] – here,
the full subsetÿ or an arbitrary orderingÿ0.

With a GA-based wrapper, we seek to evolve
hyperparameter values using the performance criterion of

1 The termwrapper as used in machine learning [Ko95,
KJ97] simply refers to this property, wherein the
combinatorial optimization system “wraps around” a
specific inductive learning and classification or inference
ensemble such as the one shown in Figure 2. In the
genetic and evolutionary computation literature, as we
note below, wrappers for tuning GA hyperparameters
have been in use for quite some time. [BGH89, DSG93,
HL99]
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the overall learning system as fitness. In learning to
classify, this may simply mean validation set accuracy.
However, as we have noted, many authors of GA-based
wrappers have independently derived criteria that
resembleminimum description length(MDL) estimators –
that is, they seek to minimize model size and the sample
complexity of input as well as maximize generalization
accuracy. [CS96, RPG+97, GW99, HWRC00]

An additional benefit of GA-based wrappers is that it can
automatically calibrate “empirically determined”
constants such as the coefficientsa, b, andc introduced in
the previous section. As we noted, this can be done using
individual training data sets rather than assuming that a
single optimum exists for a large set of machine learning
problems. This is preferable to empirically calibrating
hyperparameters as if a single “best mixture” existed.
Even if a very large and representative corpus of data sets
were used for this purpose, there is no reason to believe
that there is a singlea posteriori optimum for
hyperparameters such as weight allocation to inferential
loss, model complexity, and sample complexity of data in
the constructive induction wrapper.

Finally, GA wrappers can “tune themselves” – for
example, theGA-Based Inductive Learning(GABIL)
system of Dejonget al [DSG93] learns propositional rules
from data and adjusts constraint hyperparameters that
control how these rules can be generalized. Mitchell
notes that this is a method for evolving the learning
strategy itself. [Mi97] Many classifier systems also
implement performance-tuning wrappers in this way.
[BGH89] Finally, population size and other constants for
controlling elitism, niching, sharing, and scaling can be
controlled usingparameterless GAs. [HL99]

We adaptedGAJIT [Fa00], a Java shell for developing
genetic algorithms, to implement a GA for the
permutation problem of ordering variables for Bayesian
network structure learning (usingK2) and inference
(using the Lauritzen-Spiegelhalter algorithm [LS88,
Ne90] andforward simulation[SP89, CD00]). We now
specify the ordering problem and, in the next section,
present the permutation GA design.

3.3 Ordering and Structure Learning Problems

The ordering problem itself is a straightforward search in
permutation spaceΑΑΑΑ for a value ofÿ that minimizes the
inferential loss or maximizes its normalized, additive
inverse,fa. Some simple combinatorial analysis illustrates
the relative complexity of the ordering and structure
learning problems.

Clearly |ΑΑΑΑ| = n! if we suppose that there are no latent or
irrelevant variables. From Stirling’s approximation, we
can estimate that nlgn2≈A . Meanwhile, we know that
all elements of structure space are directed acyclic graphs,
containing some subset of then2 possible directed edges.
The size of structure space is thus in( )2

2nΟ . Note that
this includes all directed graphs and is therefore an
overestimate. Taking the asymptotic ratio of these two

counting functions, however, we see that in the limit,
there are infinitely many possible structuresfor each
ordering. K2, which is deterministic, finds just one such
structure, so it is not guaranteed that finding a loss-
minimal orderingÿ will cause it to produce a loss-optimal
network B, particularly for very largen. However,
Friedman conjectures [FLNP00] that searching ordering
space provides a useful change of representation [Be90]
that tends to admit smoother interpolation than in
structure space. In evolutionary computation terms, this
would mean that ordering space is lessdeceptive[Go89]
than structure space.

4 GA FOR VARIABLE ORDERING

4.1 Searching Ordering Space

The criterionfa is computed by actually learning a BNB =
K2 (ÿ, Dtrain) – more precisely (E,Θ) = K2 (ÿ, Dtrain).

E is computed byK2, which makes a single pass through
ÿ (a permutation ofÿ = {X1, …, Xn}) and, for eachXi,
considering onlyXj whereÿ(j) > ÿ(i) as a potential parent
of Xi in E. It then addsXj to Paxi by adding (Xj, Xi) to E if
and only if this increases the Dirichlet score ofPaxi,
evaluated overDtrain. This continues until: the set ofXj is
exhausted, no single parent can be added to incrementally
increase the score, or a preset (or automatically
calibrated) limit on the size ofPaxi in E is reached. For
discrete BNs,Θ is computed simply by populating the
specified conditional probability tables (CPTs) with
frequencies computed usingDtrain.

OnceB is fully learned, each example inDval ≡ D \ Dtrain

is masked withI e and its complement to obtain separate
evidence and query data. The inferential lossfa is
computed as specified in the previous section. The
ordering problem is a combinatorial search inΑΑΑΑ using fa
as a heuristic.

4.2 Permutation Genetic Algorithm Design

Application of genetic algorithms to permutation
problems is discussed in [Go89] and [HH99]. The design
of theGAJITwrapper illustrated in Figure 1 is as follows.

We implemented an elitist permutation GA purely by
extending theGAJIT classes using order crossover (OX)
[HH99]. OX exchanges subsequences of two
permutations, displacing duplicate indices with holes. It
then shifts the holes to one side, possibly displacing some
indices, and replaces the original subsequence in these
holes. If two parentsp1 = [3 4 6 21 5] andp2 = [4 1 5 32
6] are recombined using OX, with the crossover mask
underlined, the resulting intermediate representation isi1
= [- - 5 3 1 4] andi2 = [- - 6 2 4 1], and the offspring are
o1 = [6 2 5 3 1 4] ando2 = [5 3 6 2 4 1]. Mutation is
implemented by swapping uniformly selected indices.
Cataclysmic mutation[GW99] can easily be implemented
using a shuffle operator, but we did not find this
necessary.
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The master controllerfor our GA runs in a Java virtual
machine. It manages slaves that concurrently evaluate
members of its populationÿ. Each individual is encoded
as a permutation of the indices {1, …,n}. Slave
processes distributed across (4-48 processors) of a
distributed-shared memory (DSM) compute cluster run
identical copies of theK2 and inference-based application
depicted in Figure 2. Each evaluates the ordering it is
given by learningB from Dtrain, a holdout segment ofD
(2/3 by default) and returnsfa for the validation setDval ≡
D \ Dtrain. The master GA collects the fitness components
for all members of its population and then computesf
(here,f = fa).

5 EXPERIMENTAL RESULTS AND
EVALUATION

We experimented using the GA on data simulated from
the well-known toy BNAsia [Ne90], which has 8 nodes.
This is a very simple network to perform inference on
when the structure is knowna priori, but the permutation
space – which we are searching using onlyf and the
synthetic data – has 8! = 40320 orderings. We also
performed exploratory experiments using two versions of
theALARMnetwork: a subgraph of 13 nodes and the full
37-node network.

Figure 3 depicts the histogram of validation set fitness as
measuredexhaustively using Equation 5 and forward
simulation [SP89, CD00]. Each of the 8! = 40320 fitness
evaluations was made by runningK2 on Dtrain (as shown
in Figure 2), consisting of 20000 stochastically-generated
samples, and then evaluating the resulting BN using
forward simulation onDtest (a holdout test setnot used by
the GA asDval in Figure 2) and an evidence bit vectorI e=
(1 0 0 0 0 0 0 1). The histogram shown corresponds to
data generated from the evidence instantiationVisit-to-
Asia = true∧ Dyspnoea = false. We note that this is just
one evidence specification among many plausible ones
that might occur in “real” applications of this consultative

BN. The mean fitness is 0.958, the range is [0.0802,
0.999], and the standard deviation is 0.039.

Table 1 summarizes experimental specifications using the
experimental platform described in the previous section.
Figure 4 shows the average-fitness curve forAsia using
the GAJIT wrapper. Using forward simulation [SP89,
CD00], we generated 20000 samples forDtrain, 5000 for
Dval (used to evaluate fitness in the GA), and 5000 forDval

(used to evaluate “generalization fitness” on the ordering
returned by the GA). The number of stochastic samples
used to perform inference onDval is given in Table 1; for
all runs, 15000 samples were used to perform inference
on Dtrain. The GA uses OX (order crossover), swap-
mutation, and a population of size 10, and was run for 100
generations.

K2 FS Samples Best f of final gen
5000 1500 0.944
10000 1500 0.960
20000 150 0.935
20000 450 0.977
20000 1500 0.978

Table 1. Results forAsia (5000 samples per fitness
evaluation in Dval andDtest)

The results for the last line were averaged over 3 trials but
Figure 4 depicts the median result. Starting from a test
fitness of 0.4 (inferential loss of 0.6), it improves the test
fitness to 0.98. This is only about slightly above the mean
fitness but it is noteworthy that the gold standard network
achieves fitness of only 0.98 as well. We validated this
using exact inference (the Lauritzen-Spiegelhalter
algorithm [LS88, Ne90]) to compute the marginals on the
data and our forward simulation function itself converges
to negligibly low relative loss.

Inferential RMSE for Forward Simulation
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Figure 4. Fitness curve for last run in Table 1

As the fitness curve shows, theGAJIT wrapper reaches
0.98 rather quickly. The highest fitness achieved by the
wrapper on any run is 0.99, and inspection shows that the
corresponding ordering has only one inversion from the
canonical one given by Neapolitan [Ne90]. This
inversion is consistent with the partial ordering of the
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canonicalB, which means thatK2 can still produce the
best possible structure from it.

Experiments usingALARM-13and ALARM-37indicated
that althoughK2 is capable of recovering a graph (V, E)
close to the gold standard network (Cooper and
Herskovits report only two graph errors using only 20000
training examples [CH92], as we used), its algorithm for
estimating conditional probability tables results in high
relative inferential loss. We hypothesize that this is due
to the skewness of some conditional probability tables
(CPTs) in both versions ofALARM. The fitness
evaluation procedure depicted in Figure 2 is therefore is
less effective than onAsia. In continuing work, we are
hybridizingK2 with other CPT learning algorithms.

6 DISCUSSION AND FUTURE WORK

We have considered several continuations of this
research, grouped into four categories: validation,
scalability, comparison to other structure learning
methods, and improvements to the ordering GA.

First, validation is currently performed by running
importance sampling for precisely 15000 samples (with
an importance function update every 100 samples for
AIS), and this is repeated to find the fitness of the best
ordering ÿ̂ found by the generational GA. Experiments
currently in development runK2 with a range ofDtrain

sizes to generate a learning curve, and run AIS longer
with ÿ̂ to get a more accurate evaluation. Automated
convergence analysis can be used to adapt the number of
samples and the AIS update rate. Fast exact inference to
find the true inferential loss baseline, a topic of a
concurrent research project, can test the efficacy of AIS
itself. We have focused in this paper on the general case,
where the gold standard network may not be known, but
when it is, one can use graph edit distance between the
BN induced by ÿ̂ and the gold standard as a validation
measure [CH92].

Second, we plan to explore the scalability of the GA
wrapper by experimenting with larger networks (such as
ALARM and Pathfinder) with which we have already
tested AIS andK2 as individual components. When used
in a GA, which may evaluate fitness thousands to millions
of times for this problem, these primitives to become
bottlenecks. To make the wrapper feasible, it will be
necessary to parallelizeK2 and AIS.

Third, there are several algorithms besides greedy search
for structure learning, such as deterministic score-based
(sparse candidate, Tabu search) methods, constraint-based
methods, stochastic sampling in structure space by direct
(non-greedy) global optimization and stochastic sampling
in ordering space (to determine structure, without using a
greedy algorithm such as K2 as an intermediary). These
are often less sensitive to variable ordering but may still
be affected by it. In continuing work, we plan to compare
our GA wrapper to these techniques.

Fourth, the following are promising variants of the GA
that are high experimental priorities: Pareto optimization
of (fa, fb, fc) and experimentation with other permutation
mutation and crossover operators (partially matched and
cycle crossover).
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Abstract

Finding the right coupling of learning and
evolution in a hybrid algorithm is an open
problem. In this article, we present a strategy
to adjust the time spent on learning during
evolutionary optimization of neural networks.
The proposed adaptation scheme leads to a
significant improvement in performance. It
is empirically shown that suitable learning
strategies strongly depend on the problem
and that it is advantageous to adapt the time
spent on learning during evolution.

1 INTRODUCTION

Evolution and learning are biologically-inspired opti-
mization paradigms that have proven to be efficient
in a wide range of applications, particularly when—as
in nature—combined in hybrid strategies. Both tech-
niques have different characteristics and their coupling
aims at getting the best of both worlds. Evolution
and learning interact in complex ways (e.g., see May-
ley, 1996; Nolfi and Parisi, 1999). Further, it appears
to be obvious that the optimal way of combining them
depends on the target problem and may change during
optimization. However, a systematic way to balance
the two strategies is still missing. In this article, we
present an adaptive method for controlling the time
spent on learning in the framework of evolutionary op-
timization of neural networks.

Structure optimization of artificial neural networks is
the most prominent technical example of a success-
ful combination of evolution and learning, where evo-
lution is employed to optimize mainly the network’s
architecture and learning (or training) is usually iden-
tified with gradient-based adaptation of the weights
(Yao, 1999). In this paper, we assume that learning

and evolution interact in a typical manner: Each off-
spring individual, representing one network architec-
ture with the corresponding initial weights, is trained
once immediately after its creation. The fitness of the
individual is determined after training.

Most learning algorithms are iterative methods and
their computational complexity usually scales linearly
with the number of iterations. When searching for a
neural network for a given task, several questions arise:
Is learning necessary or is evolution sufficient? If learn-
ing is employed, how should evolution and learning be
coupled? How long should each system learn? We ad-
dress the last question, which might lead to an answer
to the first one. For several reasons the learning time
is a crucial parameter, e.g.:

• In most cases, the computational costs for gener-
ating and evaluating an offspring can be neglected
compared to the costs for training. For standard
neural network architectures, even a single learn-
ing iteration typically takes about twice the time
of one fitness evaluation.

• If the learning time is too long, the neural net-
work may overfit and lose its ability to generalize,
i.e., to react in a desired way to data not used
for learning. Even if no overfitting occurs, long
learning might be a waste of resources in cases of
bad local minima or insufficient architectures.

• If the maximum number of iterations is too small,
the weights may not have enough time to adapt
to an altered architecture. Hence, better archi-
tectures may be discarded, because the learning
time is too short to uncover their benefits.

It is intuitive—and will become obvious in this study—
that the right learning time depends on the problem
at hand and on the course of evolution. Nevertheless,
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no systematic way exists either to choose the learning
time for a given task or to adjust it during evolution.

In this article, we present a strategy to adapt the time
spent on learning. The basic idea is inspired by strat-
egy adaptation methods in evolutionary computation
(Smith and Fogarty, 1997; Eiben et al., 1999). The
learning time is viewed as a strategy parameter that
is adjusted on population level. As a basis for adap-
tation, different numbers of iterations have to be ex-
plored. Therefore, the learning time is described by
a random variable. The maximum number of itera-
tions an offspring is allowed to learn is a realization
of this random variable, whose expectation is subject
to adaptation: The expected learning time in the up-
coming generations is shifted towards the learning time
that gave good results recently.

We proceed with the presentation of a straightforward
algorithm for evolutionary structure optimization of
neural networks and with the detailed explanation of
the adaptation scheme for the learning time. In section
3, we present experimental results showing the dynam-
ics of the learning times induced by our adaptation
scheme as well as the improved optimization perfor-
mance. The paper ends with concluding remarks.

2 LEARNING TIME ADAPTATION

IN STRUCTURE OPTIMIZATION

In the main part of this section, we introduce the adap-
tation scheme for the learning time. Beforehand, we
describe a simple algorithm for structure optimization
of neural networks, which serves as a testbed for our
method. However, the proposed adaptation scheme is
designed to work well with almost any of such algo-
rithms.

2.1 EVOLUTIONARY FRAMEWORK

We use an evolutionary algorithm for structure opti-
mization of neural networks inspired by Angeline et al.
(1994). The search space contains all arbitrarily con-
nected feed-forward neural networks. The validity of
the architectures is the only constraint, i.e., each hid-
den neuron has to lie on a path from at least one input
to at least one output neuron. Each of the µ individu-
als in the population encodes the architecture and the
weights of one neural network by means of a direct
encoding scheme. Prior to the first generation, the
individuals are randomly initialized and assigned a fit-
ness value, depending on the target problem. In every
generation, each parent produces one offspring by re-
production and mutation. One out of five problem
specific mutation operators is randomly chosen and

applied: adding and deleting single neurons and single
connections as well as disturbing each weight normally
distributed with zero mean and standard deviation
σ; connections with a lower weight are removed with
an increased probability (Braun, 1997). Thereafter,
each individual is trained using the iRprop+ learning
method (Igel and Hüsken, 2002), an improved ver-
sion of the well known Rprop algorithm (Riedmiller
and Braun, 1993). Learning starts with the genet-
ically encoded weight configuration. After learning
the modified weights are inherited, i.e., coded back
onto the individual’s genome, following the Lamarck-
ian paradigm, which is very efficient for technical pur-
poses. Finally, the individual’s fitness is evaluated and
the parent population of the next generation is deter-
mined by means of EP-tournament selection (Fogel,
1995).

2.2 ADAPTATION OF THE LEARNING

TIME

The aim of adjusting the learning time is to choose
its value such that in the next generations a maxi-
mum fitness improvement relative to the costs can be
expected. This task is similar to the adaptation of
the strategy parameters of an evolutionary algorithm
(e.g., population size, mutation rates, . . . ), which is a
key concept in evolutionary computation (Smith and
Fogarty, 1997; Eiben et al., 1999). Our scheme is
inspired by these methods, in particular by the co-
variance matrix adaptation (CMA) evolution strategy
(Hansen and Ostermeier, 2001). The adjustment of
the learning time is based on the heuristic that learn-
ing times that have given good results recently will
also perform well in future generations.

The learning strategy is altered every G generations;
this interval is called adaptation cycle. For the adap-
tation of the strategy (i.e., the average learning time
in the gth adaptation cycle), it is necessary to explore
the space of possible strategies and to compare the
improvements achieved by different strategies. There
has to be a variety of different learning times for the
individuals instead of the same for all of them, in or-
der to estimate the efficiency of different strategies in
every adaptation cycle to find out the putative best

strategy. The variable τ
(g)
i ∈

�
0 denotes the learning

time of the ith individual in the gth adaptation cycle.

One possibility for the adaptation would be to under-
stand learning as some kind of operator. For each in-
dividual, one operator from a set of learning operators
with different learning times is applied and rated de-
pending on the fitness gain. The probability of these
operators to be applied in the next adaptation cycle is
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adjusted based on the rating (Davis, 1989). In the do-
main of evolutionary optimization of learning systems,
such a procedure was successfully applied by Igel and
Kreutz (1999, 2001) for the adaptation of the proba-
bilities to apply different mutation operators. In our
context, this procedure is not suitable, because the
number of different operators needed to represent the
various learning times would be too high. Further,
the learning operators strongly differ in their compu-
tational costs. To allow for an ongoing probability
adaptation, none of these operators should be allowed
to become extinct. Hence, even when some expensive
operators are not suitable in the current phase of opti-
mization, they have to be applied every now and then
and may dominate the average computational com-
plexity. Simulations support this assumption.

Instead of the operator approach, we adapt the learn-
ing time more directly. To explore different learning

strategies, the value of τ
(g)
i is drawn independently for

each individual from a Poisson distribution with the
expectation m(g).1 The parameter m(g) is subject to
adaptation, which permits a smooth adjustment of the
learning periods. The expectation of the learning time
in adaptation cycle g + 1 is given by

m(g+1) = max
[

(1 − γ)m(g) + γ τ̃ (g), mmin

]

. (1)

The variable γ ∈ [0, 1] determines the influence of τ̃ (g),
the value which would have been the most suitable
choice of m(g) in the last adaptation cycle. In the
end, (1) is a weighted average over the whole history,
but the influence of past generations is exponentially
suppressed depending on γ. This weighted average
is similar to the evolution path in the CMA evolu-
tion strategy. The lower bound mmin in (1) enables a
minimum diversity of the learning times to allow for
continuing adaptation.

Now one is only left with the estimation of τ̃ (g). The
efficiency of learning for τ iterations is measured by the
benefit B(g)(τ) (Tuson and Ross, 1998), normalized
to the costs of learning c(τ) as proposed by Igel and
Kreutz (1999):

B(g)(τ) =
1

N
(g)
τ

∑

ι

max

[

φ(parent(ι)) − φ(ι)

c(τ)
, 0

]

.

(2)

1The Poisson distribution of τ
(g)
i ∈ � 0 is given by

p
τ
(g)
i

=
(m(g))τ

(g)
i

τ
(g)
i

!
e−m(g)

. As the expectation as well as

the variance are equal to m
(g), the width of the distribu-

tion increases with its expectation.

The sum runs over all N
(g)
τ offspring ι in adaptation

cycle g that have been trained for τ iterations; φ(.)
assigns each individual a fitness value. As an alterna-
tive to (2), one might relate B(g)(τ) only to the fitness
gain achieved by learning, i.e., the difference of the off-
spring’s fitness before and after learning replaces the
numerator in (2). However, (2) has empirically proven
to be more efficient, as it allows for evaluating the
number of iterations in the context of mutations. For
instance, it is able to take into account the time nec-
essary to counterbalance mutational disturbances.

The computational costs c(τ) depend on the imple-
mentation of the feed-forward neural network. For
simplicity, we utilize an approximation. It takes
roughly twice as much time to calculate the gradient
of the network error with respect to all weights than
to compute the network’s error itself (Rummelhart
et al., 1986): First, the input is “propagated forward”
through the network and thereafter it is “propagated
backward” through it. Additionally, one “forward-
propagation” has to be performed after the last it-
eration of learning to calculate the individual’s fitness
φ(ι). As we use “propagations” as the unit of the costs,
we set

c(τ) = 2τ + 1 . (3)

The learning time τ̃ (g) should be the time for which
the improvements have been maximal in the near past
and therefore might also be in the near future. This
seems to be fulfilled for τ̃ (g) = arg

[

maxτ

{

B(g)(τ)
}]

.
However, this might not be optimal, as in the next gen-
erations not only learning times equal to τ̃ (g) are ap-
plied, but also learning times randomly drawn from a
Poisson distribution. In the limiting case of an isolated

maximum of B(g)(τ̃ (g)), learning times τ
(g+1)
i = τ̃ (g)

would yield a maximum improvement, but slightly dif-
fering learning times would mainly lead to an explo-
ration of bad strategies. Therefore, we do not consider
the maximum of B(g)(τ), but the maximum of

b(g)(τ) =

∞
∑

τ ′=0

B(g)(τ ′) ·
ττ ′

τ ′!
e−τ , (4)

the convolution of B(g)(τ) with the Poisson distribu-
tion with mean τ . The value of b(g)(τ) is an esti-
mation of the expected improvement in the case of
m(g) = τ , as the distribution of learning times is taken
into account. As a side effect, the convolution yields a
smoothing of B(g)(τ), which makes the evaluation of
the benefit more robust. Finally, the estimation of the
optimal learning time is given by

τ̃ (g) = arg
[

max
τ

[

b(g)(τ)
]]

. (5)
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In (4) the case of non-instantiated learning times, i.e.,
times that have not been sampled, has to be consid-
ered, as for the corresponding values of B(g)(τ) no es-
timations are available. This is particularly true for
learning periods that strongly deviate from the mean
m(g), but by chance it can also occur quite close to
m(g). If information about longer and shorter learn-
ing times is available, we substitute missing values by
means of linear interpolation. Otherwise, we make the
most conservative assumption of B(g)(τ) = 0.

One might argue that due to the adaptation of the
learning time, some new parameters are introduced
and have to be chosen. However, these new parame-
ters are, compared to the learning time, intuitive and
therefore much easier to choose. Further, they are not
as problem dependent as the fixed learning time pa-
rameter is. Therefore, although the absolute number
of parameters has increased, the choice of their val-
ues has become easier and more robust. In addition,
the online adaptation of the learning times adds a new
quality to the algorithm, as dissimilar learning times
can be realized in different stages of optimization.

3 EXPERIMENTAL

VERIFICATION

In the following, we empirically show how the adap-
tation of the learning times improves the efficiency of
the optimization of neural networks. Additionally, we
consider the adaptation dynamics of the learning time,
which provide insights into the different roles of learn-
ing and evolution.

All results presented stem from 50 independently ini-
tialized trials per setting. The population size was
µ = 20, the tournament size q = 5, and the standard
deviation for the weight mutations σ = 0.05. Stan-
dard parameters were chosen for the iRprop+ algo-
rithm: η+ = 1.2, η− = 0.5, ∆0 = 0.05, ∆min = 10−8,
and ∆max = 50. The hidden neurons of the neu-
ral network had the sigmoidal activation function
f(x) = x/(1 + |x|) and the output neurons had linear
ones. Adaptation of the learning time was conducted
every second generation (G = 2) with the adaptation
rate γ = 1/4 and a lower bound of mmin = 1. This pa-
rameter setting should serve as an example rather than
as a recommendation for the optimal choice. Finally,
we explore different values for the initial expectation of
the learning time m(g) and compare the results with an
algorithm with the same value as a constant learning
time.

3.1 SAMPLE PROBLEMS

We use established neural network benchmark prob-
lems for the formulation of different types of structure
optimization tasks, in order to observe different dy-
namics of the learning time.

3.1.1 Smallest Network for 6-Parity

The task is to find the neural network with the low-
est number of weights n(dof) that completely solves the
classification problem 6-parity. The network is to de-
cide the parity of a bit-string of length 6 (i.e., whether
the number of “1” in this string is even or not). Learn-
ing was conducted with all 26 = 64 possible patterns,
the target values were given by “0” and “1”, and the
mean squared error E(mse) was used for training. The
individual’s fitness consists of three addends, the clas-
sification error E(class.), the number of weights of the
network, and the mean squared error, evaluated using
the whole data set:

φ = νE(class.) + n(dof) + E(mse) . (6)

The parameter ν = 106 was chosen with respect
to the expected magnitudes of the different addends
to describe the previously mentioned importance of
the different optimization goals. Normally, it holds
νE(class.) � n(dof) � E(mse). The inclusion of E(mse)

yields ongoing optimization, even in the absence of im-
provements with respect to the main goals. However,
reduction of the mean squared error may contribute to
better classification performance of the offspring and
may prepare the deletion of non-relevant weights.

3.1.2 Prediction of Sunspots

The task is to optimize a neural network with respect
to its ability to predict the number of sunspots st+1

in the next year, based on their number in the current
and previous years. Figure 1 shows the annual number
of sunspots. The states st, st−1, st−3, and st−7, each
of them normalized to [0.2, 0.8], serve as the input for
the network.

In contrast to 6-parity, the fitness is only given by the
mean squared error of the network on a particular data
set. We distinguish between two different settings:

sunspot(=): The same data points (i.e., the predic-
tion of all years from 1708 to 1938) are used for
learning and for fitness evaluation.

sunspot(6=): The data points used for learning and fit-
ness evaluation are disjoint subsets of the sunspot
data set. The prediction error in the years 1708 to
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Figure 1: Evolution of the average number of sunspots
in the last 300 years. The data are provided by the
SIDC (http://sidc.oma.be).

1784 is used for learning and the weight configu-
ration of the network with the best error over the
years between 1785 and 1861 is inherited (hold-
out samples). The individual’s fitness is given by
the mean squared error in the years between 1862
and 1938.

3.2 DISCUSSION OF RESULTS

The results of the structure optimization for the dif-
ferent problems are summarized in table 1. It be-
comes obvious that for both algorithms—with and
without learning time adaptation—the achieved fitness
strongly depends on the initial learning time. In all
cases where the differences between both algorithms
with equal initial learning time are statistically signif-
icant, the algorithm with adaptation performs better
than the one with constant learning time; in the other
cases we must assume both algorithms to be equally
good. In particular, for short initial learning peri-
ods the advantage of the adaptation becomes obvious.
Here, the adaptation can operate faster and there-
fore select more suitable strategies, where the speed
of adaptation is defined as the change of m(g) per cost
unit. The other way round, both algorithms perform
equally well for long initial learning times, as the adap-
tation speed is slow. In 6-parity, after a very high
number of generations and for moderate learning times
both algorithms have achieved equally good results, as
both have “converged”. As can be seen from the upper
diagram in figure 2, the algorithm with learning time
adaptation reaches this state earlier.

Summarizing, learning time adaptation yields better
results in most cases and is equally good in the re-

maining ones. In the following, we consider the learn-
ing strategies that emerged for the different problems.

3.2.1 Smallest Network for 6-Parity

The upper diagram in figure 2 shows fitness curves that
emphasize the results in table 1. The lower diagram
depicts the evolution of the adapted learning times,
showing very clear directions of adaptation. The evo-
lution of the learning times and the fitness trajectories
in conjunction with (6) allow an identification of three
phases of optimization.

1. Initially, the increase of the learning time coin-
cides with a decrease of the classification error.
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Figure 2: Evolution of the fitness and the adapted
learning time for the 6-parity problem, where “adap-
tive” and “const.” refer to the algorithms with and
without adaptation of the learning times. The preced-
ing numbers denote either the initial or the constant
learning times.
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Table 1: Median of the best individual’s fitness after a given number of propagations. Depending on the context,
the first column shows either the constant learning time or the initial value of the expectation of the learning
time. The numbers in parentheses give the number of propagations after which the fitness values were measured.
In rows marked with “?”, the difference between constant and adaptive learning time is statistically significant,
Wilcoxon rank sum test (Wilcoxon, 1945), p < 0.05.

(initial) 6-parity (105) 6-parity (3·105) sunspot(=) (105) sunspot( 6=) (2·105)
learning time constant adaptive constant adaptive constant adaptive constant adaptive

5 15652.5 46.0 ? 15647.1 29.0 ? 133.1 84.7 ? 139.9 130.3 ?
10 46.0 41.5 ? 33.0 26.0 ? 108.4 83.6 ? 144.5 129.2 ?
20 59.5 56.0 28.0 28.5 89.7 81.3 ? 142.4 128.2 ?
30 109.5 83.0 ? 30.0 32.0 78.6 74.1 ? 137.6 131.8 ?
50 323.5 286.5 ? 34.0 32.5 74.4 74.2 135.9 138.2

As the networks in the initial population are quite
large, it is likely that the algorithm finds suitable
architectures within this population to solve the
classification problem. Therefore, learning seems
to be the driving force in this phase and, in partic-
ular for short learning times, the amount of learn-
ing is increased compared to the amount of archi-
tectural changes.

2. The second phase starts after φ has dropped below
approximately 1000, i.e., the classification prob-
lem is solved and n(dof) becomes the dominating
addend in (6). Hence, the amount of the numera-
tor in (2) is dominated by structural changes, i.e.,
mutations. As the denominator increases with
the learning time, it is beneficial to learn only
for a short period. In this phase, the task of
learning might be to counterbalance mutational
“damages” with respect to solving the classifica-
tion task, rather than to achieve further improve-
ment in the setting of the weights.

3. The third phase is characterized by a continuing
increase of the learning time. As a further re-
duction of n(dof) without worsening the classifi-
cation performance becomes more and more un-
likely, the largest improvement can be gained by
reducing the mean squared error. This can effi-
ciently be realized by long learning periods. As
the mean squared error is in the order of magni-
tude of 10−4, these improvements are not visible
in figure 2. Reductions of the architecture are
rarely observed, maybe prepared by the fine tun-
ing of the weights, as removing of single connec-
tions takes place with respect to the correspond-
ing weight (cf. section 2.1).

From this analysis of the three phases, it becomes
clear that an algorithm with constant learning time

can barely cope with them efficiently, so that learning
time adaptation becomes necessary.

3.2.2 Prediction of Sunspots

The results of the experiments using the sunspot data
set are shown in figure 3. Interestingly, the evolu-
tion of learning times look completely different de-
pending on whether one (sunspot(=)) or three differ-
ent (sunspot(6=)) data sets are involved. In the first
case, long learning seems to be a good strategy, as
overfitting does not have to be taken into account. A
slight reduction of the number of iterations takes place
only in the first generations of the trials with an initial
learning time of 20, moving the balance towards evo-
lution (see lower left plot in figure 3). This example
also shows that the adaptation speed is limited due to
the width of the Poisson distribution and the damping
in (1) and that the longer the learning time the slower
the adaptation.

In sunspot(6=), where different data sets are used for
learning and fitness evaluation, the effect of overfit-
ting becomes important. The lower right plot in fig-
ure 3 shows different behaviors depending on the initial
learning times. If the adaptive algorithm starts with 5
iterations, the learning time increases during the first
generations. This happens because overfitting has not
occurred yet and learning is efficient, as improvements
on the learning data set coincide with improvements
on the fitness data set. However, when after approx-
imately 104 propagations overfitting becomes a prob-
lem, the learning time strongly decreases and stays at
its minimum value mmin. In this phase learning would
only lead to overfitting and therefore to an increase of
the error on the fitness data set, i.e., a worsening of
fitness. Progress can only be expected to occur due to
fortuitous mutational variations. When the adaptive
algorithm is initialized with 20 iterations, the learning
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Figure 3: Evolution of the fitness and adapted learning time for the sunspot prediction problem.

time seems to be too long to avoid overfitting right
from the start and decreases nearly monotonically to
its minimum value.

Again, different learning strategies, as well as a change
of the strategy during the course of evolution, can be
observed. This explains the significant improvement
of the optimization performance by means of adaptive
learning time control compared to a constant learning
time in all phases of the optimization.

4 CONCLUSION AND OUTLOOK

The number of learning iterations in algorithms that
combine learning and evolution is a crucial parameter
for the efficiency of the optimization. We have em-
pirically shown that the right learning strategy indeed
strongly depends on the problem and on the course of

evolution. This may not only include the choice of the
initial learning time, but also any schedule for mod-
ifying the learning period during optimization. Un-
fortunately, the best strategy is usually not known a

priori.

Therefore, we proposed an algorithm that adapts the
learning time similarly to strategy parameters of pure
evolutionary algorithms. The main idea is to random-
ize the learning time, to evaluate the fitness improve-
ments resulting from different learning periods, and
then to adapt the expectation of the learning time.
In a number of examples from the domain of evolu-
tionary optimization of neural networks the adapta-
tion method works in an intuitive way. Moreover, in
all examples the optimization is improved due to the
better choice of the ratio between evolution and learn-
ing.
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Based on these findings, our answer to the question of
the right choice of the learning time is to start with a
small one and use an adaptation scheme to adjust it to
the given task. The answer to the question, whether
learning is necessary at all, can be left to the evolu-
tionary process itself.

This study is a step towards an evolutionary optimiza-
tion algorithm for neural networks without any crucial
parameters. In further investigations, we plan to com-
bine the control of the learning time with adjustment
of the operator probabilities (Igel and Kreutz, 1999,
2001) and adaptation of the population size.
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Abstract 

This paper shows how a small number of fuzzy 
rules can be selected for designing interpretable 
fuzzy rule-based classification systems. Our 
approach consists of two phases: candidate rule 
generation by data mining criteria and rule 
selection by genetic algorithms. First a large 
number of candidate rules are generated and 
prescreened using two rule evaluation criteria in 
data mining. Next a small number of fuzzy rules 
are selected from candidate rules using genetic 
algorithms. Rule selection is formulated as an 
optimization problem with three objectives: to 
maximize the classification accuracy, to 
minimize the number of selected rules, and to 
minimize the total rule length. Thus the task of 
genetic algorithms is to find non-dominated rule 
sets with respect to the three objectives. 

1. INTRODUCTION 

Fuzzy rule-based systems have been successfully applied 
to various fields such as control, modeling, and 
classification (Leondes 1999). While the main goal in the 
design of fuzzy rule-based systems has been the 
performance maximization, their interpretability has also 
been taken into account in some recent studies (Pene-
Reyes & Sipper 1999, Castillo et al. 2001, Roubos & 
Setnes 2001, and Casillas et al. 2002). In this paper, we 
consider three objectives in the design of fuzzy rule-based 
classification systems as in Ishibuchi, Nakashima & 
Murata (2001): Classification accuracy, the number of 
fuzzy rules, and the total length of fuzzy rules. The length 
of a fuzzy rule is the number of its antecedent conditions 
(i.e., the number of attributes in its antecedent part). The 
first objective is the performance maximization while the 
others are related to the interpretability. Usually human 
users do not want to manually check hundreds of fuzzy 
rules. Thus the number of fuzzy rules is closely related to 

the interpretability of fuzzy rule-based systems. Fuzzy 
rule-based systems with a small number of fuzzy rules are 
not always interpretable. Human users cannot intuitively 
understand long fuzzy rules with many antecedent 
conditions. Thus the rule length is also closely related to 
the interpretability of fuzzy rule-based systems. In this 
paper, we maximize the classification accuracy of fuzzy 
rule-based systems, minimize the number of fuzzy rules, 
and minimize the total length of fuzzy rules. Multi-
objective genetic algorithms are used for finding non-
dominated rule sets with respect to these three objectives.  

Fuzzy rule generation methods can be categorized into 
two approaches according to their strategies for dividing 
the input space into fuzzy subspaces. One approach is 
based on grid-type fuzzy partitions where the domain 
interval of each input is divided into antecedent fuzzy sets 
with linguistic labels. Fig. 1 is an example of such a grid-
type fuzzy partition. The other approach uses multi-
dimensional antecedent fuzzy sets defined on the input 
space. Fig. 2 illustrates two-dimensional ellipsoidal 
antecedent fuzzy sets. Multi-dimensional antecedent 
fuzzy sets usually lead to fuzzy rule-based systems with 
high accuracy but low interpretability. On the other hand, 
fuzzy rule-based systems with high interpretability can be 
generated from grid-type fuzzy partitions. Since our goal 
is to generate interpretable fuzzy rule-based systems, we 
use the first approach (i.e., grid-type fuzzy partitions). As 
discussed in Suzuki & Furuhashi (2001), homogeneous 
fuzzy partitions are more interpretable than adjusted ones. 
Thus we use homogeneous fuzzy partitions as shown in 
Fig. 1. Usually we do not know an appropriate fuzzy 
partition for each input. In general, each input may have a 
different fuzzy partition while the two axes of the input 
space is divided by the same fuzzy partition in Fig. 1. 
Moreover, general rules may use coarse fuzzy partitions 
while specific rules may use fine fuzzy partitions in a 
single fuzzy rule-based system. For handling such a 
situation with different fuzzy partitions of different 
granularities, we specify each antecedent condition of 
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fuzzy rules by choosing an antecedent fuzzy set from 
various fuzzy partitions for each input. In this paper, we 
use four fuzzy partitions in Fig. 3 where the total number 
of antecedent fuzzy sets is 14. For generating short fuzzy 
rules with a small number of antecedent conditions, we 
use “don’t care”  as an additional antecedent fuzzy set. 
Thus an antecedent fuzzy set for each input is chosen 
from the 14 fuzzy sets in Fig. 3 and “don’ t care” . The 
total number of combinations of antecedent fuzzy sets is 

n15  for an n-dimensional pattern classification problem. 
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Figure 2: Ellipsoidal antecedent fuzzy sets. 
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Figure 3: Four fuzzy partitions. The meaning of each label is as 
follows: S: small, MS: medium small, M: medium, ML: medium 
large, and L: large. The superscript of each label denotes the 
granularity of the corresponding fuzzy partition. 

Genetic algorithm-based fuzzy rule selection (Ishibuchi, 
Nakashima & Murata, 2001) consists of two phases. In 

the first phase, a large number of candidate rules are 
generated from various combinations of antecedent fuzzy 
sets. In the second phase, subsets of the generated 
candidate rules are examined using genetic algorithms for 
finding non-dominated rule sets with respect to the above-
mentioned three objectives. In Ishibuchi, Nakashima & 
Murata (2001), a single fuzzy partition was used for all 
inputs as in Fig. 1. In this case, the total number of 
combinations of antecedent fuzzy sets including “don’t 
care”  is n)15( +  for an n-dimensional pattern 
classification problem. This is much smaller than n15  in 
this paper. That is, we have much more candidate rules. It 
should be noted that the search space for finding non-
dominated rule sets exponentially expands as the number 
of candidate rules increases. The efficiency of genetic 
algorithms is significantly deteriorated by the increase in 
the number of candidate rules as shown in this paper. 
Thus we need a trick for decreasing the number of 
candidate rules. Our idea is to prescreen candidate rules 
based on fuzzy versions of two rule evaluation criteria 
(i.e., confidence and support) for association rules, which 
have been frequently used in the field of data mining 
(Agrawal et al. 1996). In our prescreening procedure, 
fuzzy rules are divided into several groups according to 
their consequent classes. Then fuzzy rules in each group 
are sorted in a descending order of the product of 
confidence and support. Finally a pre-specified number of 
fuzzy rules are chosen from the top of the rule list for 
each group. The selected fuzzy rules are used as candidate 
rules in our genetic algorithm-based rule selection method. 

In the next section, we show how the design of fuzzy rule-
based classification systems can be formulated as a three-
objective rule selection problem. In Section 3, we propose 
a prescreening procedure of candidate rules using fuzzy 
versions of the two rule evaluation criteria in data mining. 
In Section 4, we describe a three-objective genetic 
algorithm for rule selection. The effect of the proposed 
prescreening procedure on the efficiency of the genetic 
algorithm-based rule selection method is examined in 
Section 5 through computer simulations. Finally Section 6 
concludes this paper. 

2. PROBLEM FORMULATION 

Let us consider an M-class pattern classification problem 
with m labeled patterns )...,,( 1 pnpp xx=x , =p 1, 
2,...,m in an n-dimensional continuous pattern space. For 
simplicity of explanation, we assume that the pattern 
space is the n-dimensional unit hypercube n]1,0[ . That 
is, we assume that all attribute values are real numbers in 
the unit interval ]1,0[ . For our pattern classification 
problem, we use fuzzy rules of the following form: 

Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  

     then Class qC  with qCF ,       (1) 
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where qR  is the q-th fuzzy rule, )...,,( 1 nxx=x  is an 
n-dimensional pattern vector, qiA  is an antecedent fuzzy 
set, qC  is a consequent class (i.e., one of the M classes), 
and qCF  is a rule weight (i.e., certainty factor). The 
antecedent fuzzy set qiA  is one of the 14 fuzzy sets in Fig. 
3 or “don’ t care” . The rule weight qCF  is a real number 
in the unit interval ]1,0[ . As shown in the next section, 
the consequent class qC  and the rule weight qCF  are 
determined in a heuristic manner from compatible training 
patterns with the antecedent part of qR . 

Let S be a subset of n15  fuzzy rules of the form (1). Our 
task is to find rule sets with high classification ability and 
high interpretability. This task can be rephrased as finding 
a small number of simple fuzzy rules with high 
classification ability. As in Ishibuchi, Nakashima & 
Murata (2001), our rule selection problem is formulated 
as the following three-objective optimization problem: 

Maximize )(1 Sf , and minimize )(2 Sf , )(3 Sf ,   (2) 

where )(1 Sf  is the number of correctly classified 
training patterns by S, )(2 Sf  is the number of fuzzy 
rules in S, and )(3 Sf  is the total rule length of fuzzy 
rules in S. 

Usually there is no optimal rule set with respect to all the 
three objectives. Thus our task is to find multiple rule sets 
that are not dominated by any other rule sets. A rule set 

BS  is said to dominate another rule set AS  (i.e., BS  is 
better than AS : BA SS � ) if all the following 
inequalities hold: 

    )()( 11 BA SfSf ≤ ,        (3) 

    )()( 22 BA SfSf ≥ ,        (4) 

    )()( 33 BA SfSf ≥ ,        (5) 

and at least one of the following inequalities holds: 

    )()( 11 BA SfSf < ,        (6) 

    )()( 22 BA SfSf > ,        (7) 

    )()( 33 BA SfSf > .        (8) 

The first condition (i.e., all the three inequalities in (3)-
(5)) means that no objective of BS  is worse than AS  (i.e., 

BS  is not worse than AS ). The second condition (i.e., 
one of the three inequalities in (6)-(8)) means that at least 
one objective of BS  is better than AS . When a rule set 
S  is not dominated by any other rule sets, S is said to be a 
Pareto-optimal solution of our rule selection problem in 
(2). In many cases, it is impractical to try to find true 
Pareto-optimal solutions of our rule selection problem 
whose search space is huge (i.e., the search space is the 
power set of n15  fuzzy rules). Thus we try to find near 
Pareto-optimal solutions. More specifically, first we 
decrease the search space by prescreening candidate fuzzy 
rules. Then we search for near Pareto-optimal solutions by 
a three-objective genetic algorithm. 

3. CANDIDATE RULE PRESCREENING 

3.1 FUZZIFICATION OF ASSOCIATION RULES 

As we have already explained, the total number of 
combinations of antecedent fuzzy sets is n15  for our n-
dimensional pattern classification problem. When n is 
small (e.g., 4≤n ), we can examine all combinations of 
antecedent fuzzy sets for generating fuzzy rules and use 
all the generated fuzzy rules as candidate rules in our 
genetic algorithm-based rule selection method. That is, no 
prescreening of candidate rules is necessary. On the other 
hand, we need a prescreening procedure when n is large. 
It is time-consuming to examine all the n15  
combinations when n is large (e.g., 13=n  in wine data 
used in computer simulations of this paper). In this case, it 
is also impractical to use all the generated fuzzy rules as 
candidate rules in our genetic algorithm-based rule 
selection method. Our idea is to use rule evaluation 
criteria in data mining for decreasing the number of 
candidate rules. 

In the area of data mining, two criteria called confidence 
and support have often been used for evaluating 
association rules (Agrawal et al. 1996). Our fuzzy rule in 
(1) can be viewed as an association rule of the form 

qq C�A . We use the two criteria for prescreening 
candidate rules. In this subsection, we show how the 
definitions of these two criteria can be extended to the 
case of the fuzzy association rule qq C�A  (Ishibuchi, 
Yamamoto & Nakashima, 2001). Similar extensions of 
the two criteria to fuzzy association rules were also 
proposed in Hong et al. (2001). 

Let D be the set of the given m training patterns 
)...,,( 1 pnpp xx=x , mp ,...,2,1= . The cardinality 

of D is m (i.e., mD =|| ). The confidence of qq C�A  is 
defined as follows (Agrawal et al. 1996): 

  
|)(|

|)()(|
)(

q

qq
qq D

CDD
Cc

A

A
A

�
=� ,    (9) 

where the denominator |)(| qD A  is the number of 
training patterns compatible with the antecedent part qA , 
and the numerator |)()(| qq CDD �A  is the number of 
training patterns compatible with both the antecedent part 

qA  and the consequent class qC . The confidence c 
indicates the grade of the validity of qq C�A . That is, 
c (× 100%) of training patterns compatible with qA  are 
also compatible with qC . In the case of standard 
association rules, neither qA  nor qC  is fuzzy. Thus the 
calculations of |)(| qD A  and |)()(| qq CDD �A  can 
be performed by simply counting compatible training 
patterns. On the other hand, each training pattern has a 
different compatibility grade )( pq

xAµ  with the 
antecedent part qA  when qq C�A  is a fuzzy 
association rule. Thus such a compatibility grade should 
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be taken into account. Since the consequent class qC  is 
not fuzzy, the confidence in (9) can be rewritten as 
follows (Ishibuchi, Yamamoto & Nakashima 2001): 

  
|)(|
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qq
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. (10) 

The compatibility grade )( pq
xAµ  is usually defined 

by the product or minimum operator. In this paper, we use 
the product operator as 

  )()()( 11 pnApAp xx
qnqq

µµµ ×⋅⋅⋅×=xA ,   (11) 

where )( piA x
qi

µ  is the membership function of the 
antecedent fuzzy set qiA  (i.e., each triangle in Fig. 3). 

On the other hand, the support of qq C�A  is defined 
as follows (Agrawal et al. 1996): 
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The support s indicates the grade of the coverage by 

qq C�A . That is, s ( × 100%) of all the training 
patterns are compatible with the association rule 

qq C�A  (i.e., compatible with both qA  and qC ). In 
the same manner as the confidence in (10), the support in 
(12) can be rewritten as follows (Ishibuchi, Yamamoto & 
Nakashima 2001):  
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3.2 CONSEQUENT CLASS AND RULE WEIGHT 

The consequent class qC  of the fuzzy rule qR  with the 
antecedent part qA  is determined as  

)( qq Cc �A  

   )}Class(...,),1Class(max{ Mcc qq ��= AA . 

                (14) 

That is, the consequent class has the maximum confidence 
among the M alternative classes. It should be noted that 
the same class qC  is obtained for qA  when we use the 
support s  instead of the confidence c . This is because 
the following relation holds between the confidence c and 

the support s from their definitions: 

||

|)(|
)Class()lassC(

D

D
hchs

q
qq

A
AA ×�=� , 

                Mt ,...,2,1= . (15) 

Since the second term (i.e., ||/|)(| DD qA ) of the right-
hand side is independent of the consequent class, the class 
with the maximum confidence is the same as the class 
with the maximum support. The same class also has the 
maximum product of these two criteria. Usually we can 
uniquely specify the consequent class qC  for each 
combination qA  of antecedent fuzzy sets. Only when 
multiple classes have the same maximum confidence 
(including the case of no compatible training pattern with 
the antecedent part qA : 0)Class( =� hc qA  for all 
classes), we cannot specify the consequent class qC  for 

qA . In this case, we do not generate the corresponding 
fuzzy rule qR . 

The confidence of qR  can be directly used as its rule 
weight as in Cordon et al. (1999). Our preliminary 
simulation results showed that better results were obtained 
from the following definition of the rule weight than the 
direct use of the confidence: 

   Second)( cCcCF qqq −�= A ,    (16) 

where Secondc  is the second largest confidence for the 
antecedent part qA : 

   }|)Class({maxSecond qq
h

Chhcc ≠�= A .    (17) 

Our preliminary computer simulations also showed that 
better results were obtained from the definition in (16) 
than the following definition used in some studies on 
fuzzy rule-based classification systems (e.g., Ishibuchi, 
Yamamoto & Nakashima 2001): 

    Average)( cCcCF qqq −�= A ,   (18) 

where Averagec  is the average confidence over fuzzy rules 
with the same antecedent part qA  but different 
consequent classes: 

  � �
−

=
≠ qCh

q hc
M

c )Class(
1

1
Average A .   (19) 

3.3 PRESCREENING PROCEDURE 

The generated fuzzy rules are divided into M groups 
according to their consequent classes. Fuzzy rules in each 
group are sorted in a descending order of the product of 
the confidence and the support (i.e., cs ⋅ ). For selecting N 
candidate rules, the first MN /  rules are chosen from 
each of the M groups. In this manner, we can choose a 
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pre-specified number of candidate rules as candidate rules 
in our genetic algorithm-based rule selection method. In 
our preliminary computer simulations, we also examined 
the confidence and the support as rule prescreening 
criteria. The best result among the three criteria for rule 
prescreening (i.e., confidence, support, and their product) 
was obtained when we used the product of the confidence 
and the support. 

As we have already mentioned, the total number of 
combinations of antecedent fuzzy sets is n15  for our n-
dimensional pattern classification problem. Thus it is 
impractical to examine all combinations when n is large. 
In this case, we examine only short fuzzy rules with only 
a few antecedent conditions (i.e., with many don’ t care 
conditions). The number of fuzzy rules of the length L is 
calculated as L

Ln C 14×  because we have 14 antecedent 
fuzzy sets for each input (excluding don’ t care). Even 
when n is large, L

Ln C 14×  is not so large for a small 
value of L. This means that the number of short fuzzy 
rules is not so large even when the total number of fuzzy 
rules is huge.  

4. GENETIC ALGORITHM 

Many genetic algorithms for multi-objective optimization 
problems have been proposed in the literature (Zitzler & 
Thiele 1999, and Zitzler et al. 2000). Since each rule set 
can be represented by a binary string, we can apply those 
algorithms to our three-objective rule selection problem in 
Section 2. In this paper, we use a slightly modified 
version of a three-objective genetic algorithm for rule 
selection in Ishibuchi, Nakashima & Murata (2001). This 
algorithm has two characteristic features. One is to use a 
scalar fitness function with variable random weights for 
evaluating each string (i.e., each rule set). Whenever a 
pair of parent solutions is selected for crossover, weights 
are randomly updated. That is, each selection is governed 
by a different weight vector. Genetic search in various 
directions in the three-dimensional objective space is 
realized by this random weighting scheme. The other 
characteristic feature is to store all non-dominated 
solutions as a secondary population separately from a 
current population. The secondary population is updated 
at every generation. A small number of non-dominated 
solutions are randomly chosen from the secondary 
population and their copies are added to the current 
population as elite solutions. The convergence speed of 
the current population to Pareto-optimal solutions is 
improved by the elitist strategy. Other parts of our three-
objective genetic algorithm are the same as standard 
single-objective genetic algorithms. Note that our task is 
to find multiple non-dominated solutions while the task of 
standard genetic algorithms is to find a single optimal 
solution. Of course, we can use other multi-objective 
genetic algorithms proposed in the literature.  

An arbitrary subset S of N candidate fuzzy rules can be 
represented by a binary string of the length N as 

     NsssS ⋅⋅⋅= 21 ,       (20) 

where 0=qs  means that the q-th rule qR  is not 
included in S  while 1=qs  means that qR  is included in 
S . An initial population is constructed by randomly 
generating a pre-specified number of binary strings of the 
length N.  

The first objective )(1 Sf  of each string S  is calculated 
by classifying all the given training patterns by S. We use 
a fuzzy reasoning method based on a single winner rule as 
in Ishibuchi, Nakashima & Murata (2001). In this fuzzy 
reasoning method, the classification of each pattern by the 
rule set S is performed by finding a single winner rule 
with the maximum product of the rule weight and the 
compatibility grade with that pattern. There are many 
cases where some fuzzy rules in S are not chosen as 
winner rules for any patterns. We can remove those fuzzy 
rules from S without degrading the classification accuracy 
of S. At the same time, the second and third objectives are 
improved by removing unnecessary fuzzy rules. Thus we 
remove all fuzzy rules that are not selected as winner 
rules of any patterns from the rule set S. The removal of 
those rules is performed for each string in the current 
population by changing the corresponding 1’s to 0’s 
before the second and third objectives are calculated.  

After the three objectives of each string (i.e., each rule 
set) in the current population are calculated, the secondary 
population of non-dominated rule sets is updated. That is, 
each rule set in the current population is examined 
whether it is dominated by other rule sets in the current 
and secondary populations. If it is not dominated by any 
other rule sets, its copy is added to the secondary 
population. Then all rule sets dominated by the newly 
added one are removed from the secondary population. In 
this manner, the secondary population is updated at every 
generation.  

The fitness value of each rule set S in the current 
population is defined by the three objectives as  

)()()()( 332211 SfwSfwSfwSfitness ⋅−⋅−⋅= , 
                (21) 

where 1w , 2w  and 3w  are weights satisfying the 
following conditions: 

    0,, 321 ≥www ,        (22) 

    1321 =++ www .       (23) 

Whenever a pair of parent strings is selected from the 
current population, these weights are randomly updated. 
The random specification of the rule weights is to search 
for a variety of non-dominated rule sets in the three-
dimensional objective space. Binary tournament selection 
with replacement is used for selecting a pair of parent 
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strings using the scalar fitness function in (21) with the 
randomly specified weights. That is, two strings are 
randomly selected from the current population and the 
better one is chosen as a parent string. Then the two 
strings are returned to the current population. The other 
parent string is also selected in the same manner using the 
same weight values. When another pair of parent strings 
is selected, the weight values are randomly updated.  

Uniform crossover is applied to each pair of parent strings 
to generate a new string. Then biased mutation is applied 
to the generated string for efficiently decreasing the 
number of fuzzy rules included in the string. In the biased 
mutation operation, a larger probability is assigned to the 
mutation from 1 to 0 (i.e., mutation for decreasing the 
number of fuzzy rules) than the mutation from 0 to 1 (i.e., 
mutation for increasing the number of fuzzy rules). 

The next population consists of the newly generated 
strings by the genetic operations. Some non-dominated 
strings in the secondary population are randomly selected 
as elite solutions and their copies are added to the new 
population. The outline of the three-objective genetic 
algorithm for rule selection is written as follows: 

Step 0: Parameter Specification. 
 Specify the population size popN , the number of elite 
solutions eliteN  that are randomly selected from the 
secondary population and added to the current population, 
the crossover probability cp , two mutation probabilities 

)01( →mp  and )10( →mp , and the stopping 
condition. 

Step 1: Initialization. 
 Randomly generate popN  binary strings of the length 
N  as an initial population. Calculate the three objectives 
of each string. In this calculation, unnecessary rules are 
removed from each string. Find non-dominated strings 
(i.e., non-dominated rule sets) in the initial population. A 
secondary population consists of copies of those non-
dominated strings.  

Step 2: Genetic Operations. 
 Generate )( elitepop NN −  strings using genetic 
operations (i.e., binary tournament selection, uniform 
crossover, and biased mutation) from the current 
population. 

Step 3: Evaluation. 
 Calculate the three objectives of each of the newly 
generated )( elitepop NN −  strings. In this calculation, 
unnecessary rules are removed from each string. The 
current population consists of the modified strings. 

Step 4: Secondary Population Update.  
 Update the secondary population by examining each 
string in the current population as mentioned above. 

Step 5: Elitist Strategy. 
 Randomly select eliteN  strings from the secondary 

population and add their copies to the current population. 

Step 6: Termination Test. 
 If the stopping condition is not satisfied, return to Step 
2. Otherwise terminate the execution of the algorithm. All 
the non-dominated strings among examined ones in the 
execution of the algorithm are stored in the secondary 
population. 

5. COMPUTER SIMULATIONS 

 We apply the proposed rule selection method to wine 
data available from the UCI Machine Learning Repository 
(http://www.ics.uci.edu/~mlearn/MLSummary.html). The 
wine data set consists of 178 samples with 13 continuous 
attributes from three classes. We normalized each 
attribute value into a real number in the unit interval [0, 1]. 
Thus the wine data set was handled as a three-class 
pattern classification problem in the 13-dimensional unit 
hypercube 13]1,0[ . The total number of possible 
combinations of antecedent fuzzy sets is 1315 . 

First we generated fuzzy rules of the length three or less 
using all the 178 samples as training patterns. The number 
of generated fuzzy rules of each length is summarized in 
Table 1. The fuzzy rule of the length zero has no 
antecedent conditions, Class 2 consequent, and a very 
small certainty grade (i.e., rule weight). This fuzzy rule 
can be generated because the number of Class 2 samples 
is the largest among the three classes in the wine data.  

 
Table 1: The number of generated fuzzy rules of each length. 

Length of rules 0 1 2 3 Total 

Number of rules 1 182 14,781 696,752 711,716 

 

The generated 711,716 fuzzy rules were divided into three 
groups according to their consequent classes. Fuzzy rules 
in each class were sorted in a descending order of the 
product of the confidence and the support. From each 
group, the first 300 fuzzy rules were selected as candidate 
rules ( 900=N : 900 candidate rules in total). Then the 
three-objective genetic algorithm was applied to the 900 
candidate rules using the following parameter 
specifications.  

      Population size: 50=popN , 

      Number of elite solutions: =eliteN 5, 

      Crossover probability: 9.0=cp , 

      Mutation probability: 1.0)01( =→mp , 

        Npm /1)10( =→ , 

      Stopping condition: 10,000 generations. 

Our computer simulations were iterated 20 times. Non-
dominated rule sets obtained from those 20 trials are 
summarized in Table 2. Examples of the obtained rule 

GENETIC ALGORITHMS404



 

sets in Table 2 are shown in Fig. 4 and Fig. 5. Fig. 4 
shows three fuzzy rules with only a single antecedent 
condition, which correspond to the second rule set with a 
94.9% classification rate in Table 2. Fig. 5 shows three 
fuzzy rules with a few antecedent conditions, which 
correspond to the sixth rule set with a 100% classification 
rate in Table 2.  

 
Table 2: Non-dominated rule sets obtained from 20 trials of the 

proposed method with 900 candidate rules. 

Number of 
rules  

Average rule 
length  

Classification 
rate (%) 

3 0.67  88.2 
3 1.00  94.9 
3 1.33  96.1 
3 1.67  98.3 
3 2.00  99.4 
3 2.33  100.0 
4 0.75  96.1 
4 1.00  97.2 
4 1.25  98.9 
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Figure 4: Three fuzzy rules with a 94.9% classification rate. 
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Figure 5: Three fuzzy rules with a 100% classification rate. 

 

From Table 2, we can see that our rule selection method 
found various rule sets with different classification rates 
and different sizes. The selected rule sets have high 
interpretability as shown in Fig. 4 and Fig. 5. From the 
comparison between Fig. 4 and Fig. 5, we can observe the 
existence of a tradeoff between classification accuracy 
and interpretability (i.e., the three fuzzy rules in Fig. 5 
have a higher classification rate but less interpretable). 

For examining the usefulness of the proposed 
prescreening procedure of candidate rules, the same 
computer simulation was performed using randomly 

selected 900 candidate rules from the generated 711,716 
fuzzy rules. Simulation results are summarized in Table 3. 
From the comparison between Table 2 and Table 3, we 
can see that the classification ability and/or the 
interpretability of obtained rule sets were deteriorated by 
the use of randomly selected candidate rules. 

We also performed the same computer simulation using 
no prescreening procedure. In this case, all the generated 
711,716 fuzzy rules were used as candidate rules. Thus 
the string length was 711,716. As we can expect, the 
execution of the three-objective genetic algorithm with 
such a long string required large memory storage and long 
CPU time. Table 4 shows non-dominated rule sets 
obtained from ten trials of the three-objective genetic 
algorithm. Since the search space was too large, good rule 
sets could not be obtained within a reasonable 
computation time (especially with respect to the number 
of fuzzy rules as shown in Table 4). The average CPU 
time for each trial was about 11 hours in Table 4 while it 
was about four minutes in Table 2 with 900 candidate 
rules selected by the proposed prescreening procedure. 

 
Table 3: Simulation results with randomly selected 900 

candidate rules. 

Number of 
rules  

Average rule 
length  

Classification 
rate (%) 

3 1.67  86.5  
3 2.00  93.3  
3 2.33  95.5  
3 2.67  96.1  
4 2.25  96.6  
4 2.50  97.2  
4 2.75  97.8  
5 2.40  98.3  
5 2.60  98.9  
6 2.50  99.4  
7 2.57  100.0  
8 2.13  100.0  

 

Table 4: Simulation results with 711,716 candidate rules. 

Number of 
rules  

Average rule 
length  

Classification 
rate (%) 

5 1.40  94.4  
5 1.60  96.1  
6 1.50  96.6  
6 1.83  98.3  
7 1.71  100.0  

 

Finally we examined the effect of using various fuzzy 
partitions for each input on the classification performance 
of fuzzy rule-based classification systems. In the same 
manner as the computer simulation for Table 2, we 
applied our rule selection method to the wine data set 
using only the finest fuzzy partition with five linguistic 
labels in Fig. 3 (i.e., the bottom-right fuzzy partition in 
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Fig. 3). Table 5 shows non-dominated rule sets obtained 
from 20 trials. From the comparison between Table 2 and 
Table 5, we can see that smaller rule sets with higher 
classification rates were obtained in Table 2 than Table 5. 
This result was expected from the fact that the three fuzzy 
rules with a 100% classification rate in Fig. 5 use various 
fuzzy partitions with different granularities. 

 
Table 5: Non-dominated rule sets obtained from 20 trials using 

only a single fuzzy partition with five fuzzy sets. 

Number of 
rules  

Average rule 
length  

Classification 
rate (%) 

3 0.67  85.4  
3 1.00  91.6  
3 1.33  93.3  
4 1.00  95.5  
4 1.25  96.1  
4 1.50  97.2  
5 1.00  97.2  
5 1.40  97.8  
5 1.60  98.3  
5 1.80  98.9  
6 1.00  97.8  
6 1.17  98.3  
6 1.33  98.9  
6 1.50  99.4  
7 1.57  100.0  

 

6. CONCLUSIONS 

In this paper, we extended the genetic algorithm-based 
rule selection method in Ishibuchi, Nakashima & Murata 
(2001) to the case where various fuzzy partitions with 
different granularities are used for each input. This 
extension leads to the increase in the number of candidate 
rules. Thus we proposed a prescreening procedure for 
decreasing the number of candidate rules. The proposed 
prescreening procedure is based on two rule evaluation 
criteria of association rules in the field of data mining. 
Through computer simulations, we demonstrated the 
necessity of candidate rule prescreening in genetic 
algorithm-based rule selection. The three-objective 
genetic algorithm could not find good rule sets when 
candidate rules were randomly chosen. In the case of no 
prescreening, the CPU time was very long (i.e., about 11 
hours) while it was a few minutes in the case with the 
proposed prescreening procedure. 
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Abstract

We propose an approach to improve the per-
formance of neuro-genetic hybrids. We used
a two-dimensional genetic encoding to repre-
sent the network with less information loss
and devised a careful restructuring of neu-
ral network so that the geographic contri-
butions of neurons can be better reected
in the genetic process. We test handwrit-
ten character recognition problem to examine
the performance of the proposed approach.
Experimental results showed signi�cant im-
provement by neuron reordering and two-
dimensional encoding.

1 Introduction

Arti�cial neural networks (ANNs) have been inten-
sively studied for Handwritten Character Recognition
(HCR) systems [2, 18, 19, 25]. There are a variety of
tuning methods for ANNs. Generally backpropagation

is the most popular local gradient training technique.
However, there is no guarantee with few exceptions
that such methods �nd an optimal neural network.
They tend to become stuck at local optima.

We propose a neuro-genetic hybrid approach for im-
proving the performance of neural networks. Genetic
algorithms (GAs) can provide diverse initial solutions
to backpropagation and have recently become popular
[9, 14, 17, 23]. To represent solutions, GAs for ANN
optimization have been using linear encodings follow-

ing the convention of the GA community [10, 14, 20].
Typically, every weight in an ANN takes a position
in a linear chromosome of a GA. However, linear en-
codings have limited capability in reecting the geo-
graphic linkages of genes [1, 7] and a number of two-
dimensional (2D) encodings have been used for other

Output Layer

Hidden Layer

Input Layer

Figure 1: The recurrent neural network architecture
we used

problems [1, 4, 7, 15]. The weights of an ANN can be
represented by a 2D matrix and thus they are intrin-
sically suitable for a 2D encoding.

In this paper, we use a 2D encoding for genetic rep-
resentation and employ 2D geographic crossover which
has demonstrated good performance for the graph par-
titioning problem [15, 21, 22]. Once the structure of
an ANN is �xed, the genotype depends on the order of
neurons in the structure. Even with a 2D encoding, the
geographic relationships between neurons may not be
well reected. We measure the relative relationships of
neurons and propose a restructuring algorithm based
on these relative relationships. This restructuring ap-
proach enables the hidden neurons with the relatively
high relationship to be clustered.

The remainder of this paper is organized as follows.
In the next section, we summarize the neural network
architecture that we used. In Section 3, we describe
our hybrid neuro-genetic approach and the reordering
approach. We present our experimental results in Sec-
tion 4 and state our conclusions in Section 5.

2 Neural Network Design

We use a recurrent neural network architecture based
on Elman's recurrent neural network [8]. It consists
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of two layers, excluding the input layer, as shown in
Figure 1.

Each hidden unit is connected to itself and also fully
connected to all the other units. These connections are
updated in the propagation phase every �t time inter-
val. The intermediate output (�j) of the j

th hidden
unit at cycle t is computed through the summation of
two factors as in the following:

�j(t) =

nX
i=1

wjiyi(t) + T �

pX
i=1

ujivi(t� 1)

vj(t) = '(�j(t))

where

vj(t) : the output value of the j
th hidden unit at

cycle t

yi(t) : the value of the i
th input unit at cycle t

wji : the weight between the jth hidden unit and
the ith input unit

uji : the recurrent weight between the jth hidden
unit and the ith hidden unit

n; p : the numbers of input units and hidden
units, respectively

T : the decay factor to control the reection ra-
tio of the recurrent factor

' : sigmoidal transfer function
1

1 + e��x
.

The �rst term is related to the feedforward connections
between the input and hidden layer and the second
term reects the recurrent factor.

We represent the set of weights by a matrixM = [mij ]
where mji = wji for 1 � i � n, and mji = uj;i�n for
n < i � n+ p. We will create a chromosome based on
this matrix. In the mji, i is the index of the source

unit and j is the index of the target unit. Then, in the
weight matrix, values on the same row are with the
same target unit and values on the same column are
with the same source unit.

The weight correction of the above recurrent neural
network during error backpropagation is determined
as follows:

@E

@wji

=

qX
k=1

f�(tk � ok)'
0( k)�kjg'

0(�j)yi

@E

@uji
= T

qX
k=1

f�(tk � ok)'
0( k)�kjg'

0(�j)vi

where

E : the error value in the training phase calcu-
lated using the mean square error

tk : the target output of the kth output unit
ok : the real output of the kth output unit
�kj : the weight between the k

th output unit and
the jth hidden unit

q : the number of output units

 k =
Pp

j=1 �kjvj .

We use 28 � 28 images of digits as input data of the
neural network. If the network has an input unit for
every one of the 28�28 = 784 pixels, the problem space
becomes very large and the backpropagation learning
speed is considerably reduced. Kohara and Nakamura
[16] suggested an alternative approach that counts the
density (number) of black pixels on each row and pro-
vides the vector of the counted numbers. The hor-
izontal density distributions (HDDs) { the spectrum
of black-pixel numbers in the horizontal rows { are
visibly di�erent digit by digit. This approach can sig-
ni�cantly decrease the number of units in the neural
networks. They reported an 85.3% recognition rate
for the handwritten digit recognition. When this ap-
proach is applied to our problem, the number of input
units reduces from 784 to 28. This speeds up the con-
vergence of network tuning at the cost of lower recogni-
tion quality. We �nd a compromise in between the two
extremes. In addition to the number of black pixels in
each row, we also count the number of black pixels in
each column (we call this the vertical density distribu-
tion (VDD)); thus we have 56 input units. In addition,
we shift every image upwards and to the left so that
both the leftmost column and the topmost row have
at least one black pixel. All our training patterns were
�tted to a 23�22 grid. Thus the number of input units
becomes 45. We used 20 units in the hidden layer; the
output layer naturally has 10 units corresponding to
the 10 digits. If any test pattern does not �t to the
23� 22 grid, the rightmost columns and bottommost
rows are thrown away. We use the 1-of-N approach as
output encoding. Each output neuron corresponds to
one of the 10 digits. For each input vector, only one
of 10 output neurons has value 1 and the others have
value 0.

3 The Proposed Neuro-Genetic

Hybrid

3.1 The GA Structure

The template of the proposed genetic algorithm is
shown in Figure 2. It is a typical steady-state hybrid
genetic algorithm. When a genetic algorithm is hy-
bridized with a local improvement heuristic, it called
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Create initial population of �xed size;
do f

choose parent1 and parent2 from population;
o�spring = g2d xover(parent1, parent2);
mutation(o�spring);
backpropagation(o�spring);
reordering(o�spring);
if suited(o�spring)
then replace(population, o�spring);

g until (stopping condition);
Return the best solution;

Figure 2: The template of the hybrid GA

a hybrid GA. We set the population size to be 50. Two
parents are selected according to probabilities that are
proportional to their �tness values. The probability
that the best solution is chosen was given as four times
that of the worst solution. The o�spring is produced
through geographic 2D crossover. The \g2d xover" in-
dicates the geographic 2D crossover in Figure 2. The
geographic 2D crossover is described in Section 3.4.
The o�spring is then modi�ed by a mutation operator
and locally optimized by backpropagation. The back-
propagation process helps the GA �ne-tune around lo-
cal optima. From another perspective, the GA pro-
vides diverse initial solutions to the backpropagation
routine. At this point, the o�spring is modi�ed by re-
ordering the hidden units. Of course, the modi�cation
does not a�ect the quality of the o�spring. Then the
o�spring replaces a solution in the population by the
following rule [5]: the more similar parent to the o�-
spring is replaced if the o�spring is better; otherwise,
the other parent is replaced if the o�spring is better; if
not again, the worst chromosome in the population is
replaced. The rational behind this is to maintain the
population diversity to the extent that not too much
time is wasted. For stopping, we use the �xed genera-
tion.

3.2 Problem Encoding

Most GAs for neural-network optimization encode a
solution (a set of weights) with a linear string following
the convention [10, 14, 20]. However, linear encodings
are known to be a factor limiting GAs' performance
in other problems [1, 7]. Two-dimensional encodings
have been proven to perform favorably [1, 4, 7, 21, 22].
Instead of transforming into a linear string, we repre-
sent a solution by a weight matrix. In the matrix,
each row corresponds to a hidden unit and each col-
umn corresponds to an input unit, a hidden unit, or
an output unit. Figure 3 shows an example of such en-
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Figure 3: A 2D encoding for a neural network.
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Figure 4: Examples of 2D schemata

coding. The relationships among the edges in the net-
work can be better reected in this 2D representation,
which will be experimentally supported in Section 4.
In addition, we suspect that some units have stronger
relationships with one another than with the others.
We further modify the chromosome by reordering the
units according to their relative relationships (See Sec-
tion 3.3). In summary, a chromosome is represented
by a p� (p+n+ q) matrix with columns and rows re-
ordered, where p, n, and q are the numbers of hidden
units, input units, and output units, respectively.

3.3 Neuron Reordering (Network

Restructuring)

3.3.1 Schemata

A schema is a similarity template describing a sub-
set of strings with similarities at certain string po-
sitions inside chromosomes [13]. In a linear encod-
ing of m genes, a schema is de�ned to be an m-tuple
hs1s2 � � � smi where si 2 U[f�g, given a set of alphabet
U . In a schema, the symbol `�' represents \don't-care"
locations and the other symbols represent speci�c sym-

bols which specify the pattern. In the study, a chromo-
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Calculate dij (i; j = 1; 2; � � � ; p);
Choose the pair (um; un) (m 6= n) s.t. dmn is maximum over all dij 's;
S = umun;
U = fu1; u2; � � � ; upg � fum; ung;
while (U 6= � ) f

Choose ul 2 U s.t. L(ul; S) is maximum over all L(ui; S)'s;
Choose ur 2 U s.t. R(ur; S) is maximum over all R(ui; S)'s;
if (L(ul; S) < R(ur; S)) f

S = S � ur; // concatenation
U = U � furg;

g else f
S = ul � S; // concatenation
U = U � fulg;

g
g

Figure 5: Reordering algorithm

some is a two-dimensional matrix of gene values. Here,
a schema can be represented by a p�(p+n+q) matrix
S where sij 2 U [ f�g, U = [�0:5; 0:5]. Although a
GA handles the chromosomes, it also implicitly han-
dles schemata. From one point of view, the process
of a GA is a struggle among schemata. Crossover
emergently creates new larger schemata from smaller
schemata. To construct a larger schema, correspond-
ing smaller schemata must be preserved through the
crossover. In the case of linear chromosomes, schemata
with short de�ning lengths1 or those with clustered
speci�c-symbol distribution turned out to be advanta-
geous in survival [6, 13]. It is intuitively clear that, in
2D chromosomes too, schemata with clustered speci�c-
symbol distributions would have an advantage. Figure
4 shows two examples of 2D schemata. For conve-
nience, we use `#' to represent the positions of speci�c

symbols. In the left-hand schema, the speci�c symbols
on the column l depart from the speci�c symbols be-
tween columns i and j. If the columns l and k are
swapped, the speci�c symbols are clustered and the
schema would be better preserved through crossover.
This swap corresponds to a swap between two hidden
nodes in the neural network structure. This is done
in the process of reordering which is described in the
next section.

3.3.2 Reordering

In the hidden layer, a unit inhibits or activates other
units. We believe that edges connecting units with
strong relationships would have stronger patterns than
a random set of edges. If units with a high relative

1The length between the leftmost speci�c symbol and
the rightmost speci�c symbol.

contribution can stay close to one another in the chro-
mosome, schemata related to those units would highly
probably survive better through crossover. The larger
the weight from unit ui to uj , the more strongly unit
ui activates unit uj . On the other hand, smaller neg-
ative weight means stronger inhibition. If the unit ui
strongly activates or inhibits unit uj , we consider unit
ui to have a high relative contribution to unit uj .

The reordering algorithm is shown in Figure 5. In the
algorithm, the function R; L computes the relative
contribution of unit ui on the string S = uaua+1 � � �ub
as follows:

R(ui; S) = � � di;b + (1� �) � di;b�1

L(ui; S) = � � di;a + (1� �) � di;a+1

where

dij = zij + zji,
zij = j (wij �mi)=�i j,
wij : the weight from hidden unit uj to ui,
mi = (

Pp

j=1 wij)=p, and

�i =
q
(
Pp

j=1(wij �mi)2)=p .

In the expression, dij is the relative contribution be-
tween ui and uj . The reordering algorithm helps units
with high relative contribution stay close together in
the array of neurons. This helps their relevant genes
(weights) stay close together in the 2D chromosomes,
too. Figure 6 shows an example of such unit reorder-
ing. By neuron reordering, schemata are transformed
to di�erent ones. The schema in Figure 6 was trans-
formed to a seemingly better one to survive. The e�ec-
tiveness of the reordering will be examined in Section
4.
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Figure 6: Example of unit reordering

offspring offspring

Figure 7: Example of 2D geographic crossover

Bui and Moon [3] proposed a static reordering tech-
nique where the genes are reordered just once before
the GA starts. The reordering here is di�erent from [3]
in that it reorders the neurons every time an o�spring
is created.

3.4 Geographic 2D Crossover

Two-dimensional encoding can preserve more ge-
ographical relationships among the genes [4, 15].
However, when traditional straight-line-based cutting
strategies are used, the power of new-schema creation
is far below that of crossovers on linear encodings
[15]. Geographic crossover was suggested to resolve
this problem [15]. In the case of a 2D encoding, it
chooses a number of lines, divides the chromosomal
domain into two equivalence classes, and alternately
copies the genes from the two parent chromosomes.
Figure 7 shows two example geographic crossover op-
erators. We used geographic crossover in this work.
By combining two-dimensional representation, unit re-
ordering, and 2D geographic crossover, we are pursu-
ing both reduced information loss in the stage of en-
coding and the power of new-schema creation.

Figure 8: Sample input data

4 Experimental Results

In this section, we examine the performance of the
proposed hybrid neuro-genetic algorithm. We used the
MNIST database2 for input patterns of 28� 28 grids.
We used 800 samples for training, 200 samples for the
validation set, and 2000 samples for the test set. The

samples are evenly classi�ed to ten digits. Figure 8
shows some samples. The digit images were written by
500 di�erent writers. Simard et al. [24] experimented
with the same data and used a 3-layer neural network.
In their experiment, the recognition rate of the test
data was 97.05%. However, they used one input unit
for each pixel (i.e., 28� 28 = 784 input units in total)
and 650 hidden units. We wish to obtain comparable
results to those of [24] using a much simpler model.
We used 45 input units and 20 hidden units.3

First, we examine the recognition power of the method
with HDD of the input images. The weights are tuned
by backpropagation only. The initial weights of the
network are initialized at random between �0:5 and
0:5. The learning rate is 0.8 and the momentum fac-
tor is used. All the other experiments in this paper
are also based on this scenario. This method with
only HDD input showed 86.00% recognition rate. This

recognition rate is consistent with the HDD model of
Kohara and Nakamura's (85.3%) [16]. Also, we ex-
amine the recognition power of the method with both
HDD and VDD information. The recognition power
was notably better than the HDD-only model. The
addition of VDD information was realized at negligi-
ble cost. We use the HDD+VDD model in the hybrid
GAs.

Next, we examine the performance of the neuro-
genetic hybrids. We tested four versions which are
classi�ed according to the utilization of reordering and

2http://www.research.att.com/~yann/exdb/mnist
3Since we used a recurrent model, the number of edges is

greater than the feed-forward model with the same number
of units. However, the total number of edges is 1,295, which
is much smaller than the 516,100 edges of Simard et al.'s
study.
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Table 1: Results of Neuro-Genetic Hybrid with Given
Ordering

0 1 2 3 4 5 6 7 8 9

Linear Xover (94.55%)
0 192 2 0 0 0 2 0 0 1 3

1 1 194 0 0 0 2 3 0 0 0

2 0 0 194 0 0 1 1 3 1 0

3 0 0 2 185 0 1 0 0 12 0

4 0 0 0 4 186 1 0 1 4 4

5 2 3 0 1 4 188 0 0 2 0

6 2 2 0 0 0 4 192 0 0 0

7 0 0 0 0 0 2 2 189 6 1

8 0 3 1 5 1 0 0 2 187 1

9 4 0 0 1 3 2 0 2 4 184

Geographic 2D Xover (95.20%)
0 190 0 0 0 0 3 0 0 1 6

1 0 195 0 0 0 2 2 1 0 0

2 1 4 193 0 0 0 1 1 0 0

3 0 2 9 183 0 0 0 0 6 0

4 0 0 0 3 186 0 0 1 1 9

5 4 0 0 0 4 189 0 0 1 2

6 1 1 0 0 1 2 195 0 0 0

7 0 0 1 0 0 0 3 195 0 1

8 4 0 0 3 0 0 0 1 191 1

9 4 0 0 1 3 0 0 1 4 187

2D geographic crossover. The framework of the neuro-
genetic hybrids was described in Figure 2. In this
framework, the backpropagation adopted the stopped
learning method [11, 12].

Table 1 represents the results without reordering. The
�rst group represents the recognition results with the
traditional multi-point crossover under the linear en-
coding. The second group represents the results with
the geographic crossover under the 2D encoding. They
were both superior to the neural network with only
backpropagation. The 2D encoding showed slight im-
provement over the linear encoding. Table 2 represents
the results with reordering. The e�ectiveness of the 2D
encoding and the 2D geographic crossover was notable.

Table 3 shows a summary of the experimental results.
The mean and best results are derived from 500 trials
for each version. BP1 represents the experimental re-
sults with HDD (Kohara { Nakamura version). BP2
indicates the version with HDD + VDD. BP1 and
BP2 used only backpropagation. The versions GA1
through GA4 are hybrid GAs with backpropagation
and correspond to Table 1 and Table 2. The e�ective-
ness of the geographic 2D crossover was consistent in
both non-reordered and reordered cases. The reorder-
ing signi�cantly improved the results with the 2D en-
coding. However, it was not helpful with the linear
encoding. This phenomenon appears to occur because
the reordering is performed not with the edges but
with the neurons (hidden nodes); the order of columns
and rows in the 2D encoding are determined by the
reordering of neurons. The combination of the 2D
crossover and reordering showed strong synergy. Note

Table 2: Results of Neuro-Genetic Hybrid with Re-
ordering

0 1 2 3 4 5 6 7 8 9

Linear Xover (93.85%)
0 187 0 0 0 0 8 2 0 1 2

1 0 193 2 0 0 0 1 3 1 0

2 0 4 192 1 1 0 0 1 1 0

3 0 0 8 183 1 1 0 2 5 0

4 1 0 0 0 185 0 0 0 0 14

5 6 2 0 0 1 188 3 0 0 0

6 0 3 0 0 1 2 194 0 0 0

7 0 1 1 1 0 1 2 190 4 0

8 1 0 0 6 1 4 0 3 183 2

9 3 2 0 0 7 2 0 2 2 182

Geographic 2D Xover (97.10%)
0 193 0 0 0 0 5 1 0 0 1

1 0 196 0 0 0 0 4 0 0 0

2 0 1 193 0 1 0 2 2 1 0

3 0 0 2 196 1 0 0 0 1 0

4 1 0 0 0 196 0 0 0 0 3

5 4 0 0 0 3 191 2 0 0 0

6 0 1 0 0 1 1 196 0 1 0

7 0 0 1 1 0 0 2 196 0 0

8 0 0 1 4 0 1 0 1 193 0

9 2 0 0 1 3 0 1 0 1 192

Table 3: Summarization of the Result over 500 Trials

Xover Reordering Mean (%) Best (%)
BP1 | | 85.35 86.00
BP2 | | 90.28 93.45
GA1 1D N 93.38 94.55
GA2 2D N 94.08 95.20
GA3 1D Y 93.49 93.85
GA4 2D Y 96.52 97.10

that the recognition rate 97.10% of GA4 (with 75 units
and 1,295 edges in total) is comparable to the value of
97.05% of Simard et al.'s study [24] which used a far
more complex structure (with 1,444 units and 516,100
edges in total).

5 Concluding Remarks

We proposed a neuro-genetic hybrid approach for
handwritten character recognition. To reduce the size
of ANNs, we used two vectors representing horizontal
density distributions and vertical density distributions
for input. This model provides a dimensional reduc-
tion of the problem and its actual performance was
comparable to the one-unit-per-pixel model.

We devised a reordering algorithm of neurons to e�ec-
tively reect the neurons' geographic relationship in
the genetic search. We also used a 2D encoding and
2D geographic crossover. The 2D encoding/crossover
and reordering showed strong synergy. It is notable
that we used an ANN model with 1,295 edges and ob-
tained results that are comparable to those achieved
with a huge model with 516,100 edges.
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The ideas we have presented here are applicable not
just to handwritten character recognition. Future
studies will include extending the experiments to other
problems.
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Abstract

The ordinary genetic algorithm may be
thought of as conducting a single market in
which solutions compete for success, as mea-
sured by the fitness funtion. We introduce
a two-market genetic algorithm, consisting
of two phases, each of which is an ordinary
single-market genetic algorithm. The two-
market genetic algorithm has a natural inter-
pretation as a method of solving constrained
optimization problems. Phase 1 is optimality
improvement; it works on the problem with-
out regard to constraints. Phase 2 is feasi-
bility improvement; it works on the existing
population of solutions and drives it towards
feasibility. We tested this concept on 14 stan-
dard knapsack test problems for genetic al-
gorithms, with excellent results. The paper
concludes with discussions of why the two-
market genetic algorithm is successful and of
how this work can be extended.

1 Motivation & Experimental Setup

Genetic algorithms (GAs), and more generally evolu-
tionary computation, have much to recommend them
as heuristics for unconstrained optimization. These
problems are often otherwise intractable and experi-
ence has yielded broadly successful results. The case
of constrained optimization is more problematic for
evolutionary computation and GAs in particular. In
spite of considerable attention paid to the matter (see
[2, 5, 6] for excellent reviews), there is no clearly
best approach to encoding constrained optimization
problems as GAs. Techniques are available and used,
largely based on penalty functions. Still, this impor-
tant class of problems remains somewhat recalcitrant.

We explore a conceptually new approach to con-
strained optimization, at least in the GA context.1

We interpret a constrained optimization problem as
a market between two players adapting as GAs: the
objective function player and the constraint player.
We explore how their markets behave (and how good
the solutions are they find), compared to standard GA
approaches for handling constraints. We use 14 well-
studied knapsack test problems for our benchmarking
[8]. Although the knapsack is perhaps the simplest of
integer constrained optimization problems, it is NP-
complete. Thus, we may hope its lessons apply to
other problems of interest.

1.1 Penalty Functions & Fitness Evaluation

Given a solution, ~s, to a constrained optimization
problem, its absolute fitness, W (~s), in the presence of
penalties for constraint violation is commonly (“stan-
dardly”) measured as:

W (~s) = Z(~s)− P (~s) (1)

where Z(~s) is the objective function value produced
by ~s,2 and P (~s) is the total penalty (if any) associ-
ated with constraint violations by ~s. We employed
two widely-used penalty functions in our investiga-
tions. Both assume that constraint i has the form:∑n

j=1 ai,jxj ≤ bi. (The xjs are the decision variables.)

sum-of-violations. With the αis as weights P (~s) =∑m
i=1 αi max{0,

(∑n
j=1 ai,jxj − bi

)
} (We set αi = 1.)

violation-product. P (~s) = s · max{ci}, where s
is the number of violated constraints and max{ci} is
the largest objective function coefficient. This is the
method used by Khuri [4] and others.

1We note a certain analogy between large-scale de-
composition methods in optimization theory and our two-
market GA.

2Or a linear transformation for computational conve-
nience.
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1.2 The Two-Market GA

In a GA the individuals in the population compete
for success in a single market, driven by the fitness
function and the consequences of the genetic opera-
tions. In our two-market GA (for constrained opti-
mization problems), two single-market GAs alternate
in acting upon a single (evolving) population of so-
lutions. A single two-market generation consists of a
phase 1 single-market treatment, “optimality improve-
ment”, followed by a phase 2 single-market treatment,
“feasibility improvement”.

During phase 1 of the two-market GA, a single-market
(standard) GA is conducted using only the uncon-
strained objective function, Z, as the fitness func-
tion. Upon completion of phase 1, phase 2 commences.
Phase 2 feasibility improvement uses a single-market
GA whose fitness function is a penalized version of the
problem’s constraint set. All solutions meeting the
constraint set are given an absolute fitness of 0. Any
solution, ~s, violating one or more constraints receives
an absolute fitness of −P (~s), where P is the penalty
function in use. In our experiments we investigated
two such functions, as indicated above: (a) sum-of-
violations (b) violation-product.3

In our experiments, one two-market generation con-
sists of one optimality improvement generation fol-
lowed by one feasibility improvement generation.4

Specifically, our experiments ran for 500 generations.
Our two-market GAs ran 250 phase 1 generations and
250 phase 2 generations. In contrast, we ran stan-
dard GAs (used for comparison) for the full 500 gen-
erations. Thus, the number of fitness evaluations were
equal between our experimental two-market GAs and
the standard GAs.

1.3 Benchmark Problems

We investigated 14 knapsack test problems from a
standard GA source site [8]. The problems and their
basic characteristics are indicated in Tables 1 and 2.
We conducted experiments on the 14 knapsack test
problems with 5 GAs: ksR, ks, ks2, ksc, and ksc2. ksR
is a standard, one-market GA, using a repair approach
to the 14 knapsack problems; it is present mainly for
comparison purposes. The remaining four cover the

3Clearly, many variants, indeed convex combinations,
of this two-market approach are possible and worth inves-
tigating. Each phase might take into account some con-
straints, the constraint set might be parcelled out to several
phases, and so on.

4It would be interesting to investigate whether it pays to
run more than one one-market generation per two-market
generation.

Problem Number of Number of Optimal
Name Variables Constraints Value
hp2 35 4 3186
pb6 40 30 776
pb7 37 30 1035
pet7 50 5 16537
sento1 60 30 7772
sento2 60 30 8722
weing7 105 2 1095445
weing8 105 2 624319
weish12 50 5 6339
weish17 60 5 8633
weish21 70 5 9074
weish22 80 5 8947
weish25 80 5 9939
weish29 90 5 9410

Table 1: Test Problems

four combinations of one- vs. two-market GA, and
sum-of-violations vs. violation-product penalties, as
follows:

sum-of-violations violation-product
one-market ks ksc
two-market ks2 ksc2

Thus, the ks-ks2 and ksc-ksc2 pairs are directly com-
parable because they use the same penalty functions.

We experimented with population sizes of 50, 500,
and 5000. Results were comparable; we focus here
on population size 5000. The number of generations
was 250×2 for the two-market GAs, and 500×1 for the
standard one-market GAs (which are used for compar-
ison). Single-point crossover was used with a rate of
0.6, and the mutation rate was 0.1. (Sensitivity runs
did not raise any anomalies.)

1.4 Initialization of Populations

We did use an innovative approach to initializing the
populations. Commonly, populations are initialized
with 1s and 0s by picking a probability that a site is
a 1 and drawing random numbers to make the spe-
cific assignments. Khuri et al. [12] call this the biased
approach to initialization. One has to wonder how
the choice of that probability affects the outcomes, es-
pecially when different methods are being compared.
We note that in the weing8 problem, Khuri et al. [12]
have to use a biased random initialization of the pop-
ulation such that the probability of a zero at a site
is 0.95. This allows, they discovered empirically, the
initial population to have enough feasible solutions for
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their algorithm to work. The feasible region in this
problem is extremely sparse. This biased approach in-
troduces two concerns. First, the biased population
may favor searching only initially and may lead to a
sub-optimal solution. A second concern is that choos-
ing the right probability is not trivial.

We introduce an alternate, non-empirical method of
randomly initializing a GA’s population. Khuri et al.
claim the purpose of the biased initial population is to
make sure the initial population has feasible solutions.
Our alternative method for population initialization is
very likely to have feasible solutions with large popu-
lation size.5 Our non-empirical procedure to generate
the initial population is given in Figure 0.

Set incr, popsize; Prob=0; popsofar=0;
Do until popsofar==popsize {

Produce one solution based on Prob;
Put the solution into the population;
popsofar++; Prob=Prob+incr;
If Prob > 1, Prob=incr;

}//End of Do until we reach the population size

Figure 0: Procedure to generate an initial population.
Prob, probability of a 1 bit in a solution; incr, small
number to increment Prob for each solution; popsize,
total size of population; popsofar, number of solu-
tions generated. In our experiments, incr = (# of
variables)−1.

2 Results

Our results for populations of 5000 are summarized
in Table 2. These data are qualitatively similar to
those we got for populations of 50 and 500, except that
there is a general trend, as expected, towards better
solutions with larger populations.

We draw the reader’s attention to Table 2 as follows.
Column 1 reports the results of ksR, a single-market
(standard) GA using repair to maintain a population
of feasible solutions. ksR is useful for comparison pur-
poses, but its computational cost was at least an order
of magnitude greater than the other 4 methods.

We shall focus on columns 2-5. Columns 2 and 3 are
directly comparable, as are columns 4 and 5. Columns

5Our procedure generates an all-0 solution, which is cer-
tain to be feasible in the case of knapsack. The larger point
is that if initializing a population with a constant value
for Prob will yield feasible solutions in the neighborhood
of some felicitous value, then our procedure will automati-
cally produce some initial solutions with Prob set near that
value. Further research is required to ascertain the value of
our method; it certainly worked well in the present cases.

2 and 3 report means and standard deviations for runs
using a penalty function based on the sum of the vio-
lations of the constraints. Column 2 is the standard,
single-market GA; column 3 is the two-market GA.
Columns 4 and 5 report means and standard devia-
tions for runs using a penalty function based on the
number of constraint violations times the maximum
objective function coefficient. The means and stan-
dard deviations are for the best feasible solution in
the 500th generation, across 5 runs using differently-
seeded random number streams.

Examination of Table 2 reveals a general pattern: As
we move from columns 2 to 3, and from 4 to 5, the
means increase and the standard deviations decrease.
That is, the two-market GAs typically find (on aver-
age, across 5 runs) a better feasible solution and do
so with a lower variance. (A standard deviation of 0
indicates that in all 5 runs the best solution in the last
generation was the same.) The comparison is summa-
rized in column 0, with the +/-/M notation. Of the
14 problems, in just two cases—pb6 and pb7—the two
two-market GAs did (slightly) worse than the two one-
market GAs. In one case—weing7—the results were
mixed: on one regime of constraint violation the two-
market GA did better and on the other it did worse,
albeit just slightly so. (We also note that in hp2, ksc
and ksc2 both find the optimal solution. Since ks2 does
significantly better than ks, we award the two-market
GA the +.) Finally, in 5 of 14 cases the two-market GA
did substantially better (++) than the one-market.

Even though it is not possible to have a random sam-
ple of knapsack problems, statistical-style reasoning
nonetheless offers some insight.6 We can take the null
hypothesis as stating that the two-market GA should
get a + as often as the one-market GA. Charitably,
we credit the M to the one-market GA, giving it a to-
tal of 3 victories in 14 trials. If the null hypothesis is
true, the probability of getting 3 or fewer successes in

14 trials is
∑3

x=0

(
14
x

) (
1
2

)14 = 0.029 which is bet-

ter than the generally accepted standard of 5%. That
there should be 5 of 14 cases highly favorable to the
two-market GA and 0 of 14 similarly favorable to the
one-market GA is highly improbable, if the null hy-
pothesis is true.

We note further that there are 3 smaller problems—
hp2, pb6 and pb7—having 35, 40 and 37 variables re-
spectively. These are the ones on which the one-market
GA did generally better, although the differences in
its favor are not great. The other 11 problems had

6For the record, we are not censoring any of our results.
We examined all and only the 14 problems reported here.
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between 50 and 105 variables. Among these problems,
the two-market GAs did substantially better on 5, and
clearly better on 5. On one, there was a tie.7

Thus, for these knapsack problems it appears that the
two two-market GA is definitely superior to its two
one-market analogs.8 We do want to note, however,
that four problems stand out in having larger num-
bers of constraints. On two of these—pb6 and pb7—
the standard one-market GA did better, and on two—
sento1 and sento2—the two-market GA did better.
One explanation (cf. discussion below) is that what
matters is how tightly the problem is constrained, not
how many constraints it has. Perhaps it is easy to
find feasible solutions for pb6 and pb7, and harder for
sento1 and sento2. At this point, conjecture would
be premature. We leave the issue for future research.

3 Discussion

What might explain why the two-market GA does so
much better than the standard GAs, especially on the
more complex problems (at least those with a higher
number of variables)? A full answer requires both an-
alytic and empirical work, which we are conducting. A
conjecture, however, is worth discussing. The intuition
may be explained as follows.

Recall from Expression (1) that given a solution, ~s, to
a constrained optimization problem, its absolute fit-
ness, W (~s), in the presence of penalties for constraint
violation is: W (~s) = Z(~s) − P (~s), where Z(~s) is the
objective function value produced by ~s, and P (~s) is
the total penalty (if any) associated with constraint
violation by ~s.

We discuss three cases. They are distinguished by their
positions with regard to what we shall call the (feasi-
ble) frontier. This is the border in fitness space be-
tween the feasible and infeasible regions.

7Even there, ks2 does better than ks (cf. the standard
deviations), while the mean for ksc2 divided by the mean
for ksc is: 1094409

1094677
= 0.999755. Perhaps we are too generous

in crediting the one-market GA with a victory.
8We note that Khuri et al. [4], using a penalty regime

comparable to ksc, report results for sento1, sento2 and
weing7 that are very close to those we report in Table 2.
Their result for weing8 is 613383. They were forced to re-
sort to a biased initialization to achieve this, however. “In
the case of the [weing8] problem a biased random initializa-
tion of the population . . . is used such that the probability
to generate a zero bit is 0.95. This simple but elegant so-
lution makes the problem more amenable to our genetic
algorithm approach.” And even simpler and more elegant
would be to consult an Oracle for the right answer.

3.1 Case 1: Feasible and Far from Frontier

First, all members of our population are feasible and
far from the (feasible) frontier. Here, all penalties will
be zero and a GA will favor—in the special case of the
knapsack—adding items to the knapsack having high
objective function coefficients, regardless of how much
of the constrained resources they consume. (The point
is generally valid, beyond just the knapsack problem.)
In this situation, the penalty functions do not come
into play; the standard GA (with penalties) becomes
simply a GA; and the two-market GA becomes a slower
version of the standard GA. (On the last point, recall
that for comparison purposes we do 1

2 generation of
two-market GA per generation of standard GA.) Thus,
when all (or most) solutions are feasible and far from
incurring penalties, we would expect the standard GA
to outperform the two-market GA.

3.2 Case 2: Population Infeasible

The second case to consider is when all (or most) mem-
bers of our population are infeasible. Let us assume
(without, we think, any real loss of generality) that fit-
ness proportional selection is being used and is roughly
correct; i.e., assume we agree that fitness proportional
selection is approximately correct in setting the incen-
tives to the GA for its search. Keeping the example
simple (but again, without essential loss of general-
ity), consider a population with just two solutions, ~s1

and ~s2. Let’s say that ~s1 is twice as good as ~s2, i.e.,
Z(~s1) = 2Z(~s2). When the penalties are zero (case 1),
the relative fitnesses, are:

F (~s1) =
Z(~s1)

(Z(~s1) + Z(~s2))
=

2
3

(2)

and F (~s2) = 1−F (~s1) = 1
3 . What if both solutions are

infeasible? Let us assume both solutions are equally
infeasible, so that their penalties are identical (again,
with essential loss of generality). Note that penalties,
however they are set, need to be relatively large in
order to drive the search towards feasible solutions. In
general, if P (~s) > 0 (that is, if there is any constraint
violation at all by ~s) then P (~s) � Z(~s). Thus, with
penalties kicking in, F (~s1) =

(Z(~s1)− P (~s1))
((Z(~s1)− P (~s1)) + (Z(~s2)− P (~s2)))

≈ 1
2
. (3)

The large P values overwhelm the Z values, greatly
reducing the relative fitness differences between infea-
sible solutions. Penalty functions may be excellent at
distinguishing feasible from infeasible solutions, but
at the price of obfuscating the differences between in-
feasible solutions. Note a numerical example. Let:

GENETIC ALGORITHMS418



0 1 2 3 4 5
Problem ksR ks ks2 ksc ksc2
hp2 3186 2948.6 3114.8 3186 3186
+ (0) (16.772) (14.307) (0) (0)
pb6 776 740.8 646.2 776 730.2
- (0) (19.176) (45.252) (0) (17.283)
pb7 1034.8 994.2 966 1034.4 1033
- (0.447) (11.946) (23.292) (0.894) (4.472)
pet7 16483.2 15811.8 16452 16457 16486.6
+ (20.969) (169.428) (11.726) (38.085) (21.984)
sento1 7743.2 7732.2 7758.2 7739.2 7769.8
+ (27.905) (23.626) (11.987) (27.563) (4.919)
sento2 8672.4 8669.2 8720.4 8671.4 8703.2
+ (20.379) (19.690) (3.050) (16.410) (3.701)
weing7 1089914 1084623 1094727 1094677 1094409
M (268.319) (3168.344) (398.92) (385.755) (407.547)
weing8 619925 342959 611820.2 321133.8 623627.8
++ (1461.077) (56711.01) (6930.155) (44832.01) (867.579)
weish12 6339 6009.2 6338.8 5689.4 6339
+ (0) (435.119) (0.447) (242.683) (0)
weish17 8624.2 8630.6 8633 7692.6 8633
+ (4.919) (5.366) (0) (522.115) (0)
weish21 9053 8538 9013.4 5369.4 9074
++ (7.969) (424.229) (21.686) (354.420) (0)
weish22 8921.4 5575 8891.4 5451.2 8939.8
++ (22.03) (436.584) (20.403) (189.254) (9.859)
weish25 9904 9758.4 9903.6 6083 9939
++ (16.325) (214.057) (30.411) (291.32) (0)
weish29 9383.2 5425 9203.2 5068 7530.2
++ (9.859) (215.431) (116.154) (267.685) (315.906)

Table 2: ksR = one market GA (repair). ks = standard GA, penalty based on sum of violations. ks2 = 2 market
GA, penalty based on sum of violations. ksc= standard GA, penalty based on number of violations × max
coefficient. ksc2= 2 market GA, penalty based on number of violations × max coefficient.
The problem names are key to their original sources: hp2, pb6, and pb7 [3]; pet7 [7]; sento* [9]; weing* [12];
and weish* [10]. (In virtue of being knapsack problems, all 14 are maximization problems.)
Key: mean , (standard deviation); for best solution after 500 generations, population size 5000, five runs.
+ two-market GAs did better. ++ two-market GAs did much better. - two-market GAs did worse. M mixed.

GENETIC ALGORITHMS 419



Z(~s1) = 1, Z(~s2) = 0.5, P = 2.25. Then the rel-
ative fitnesses are F (~s1) = 1 − 0.417 = 0.583 and
F (~s2) = 1−0.583 = 0.417 (switching signs for compar-
ison purposes) compared to 0.667 and 0.333 without
penalties. Even a small P value noticeably blurs the
differences.

The two-market GA in its phase 1 (optimality im-
provement) sees the Z values of the solutions, unen-
cumbered by the fog of penalties. Phase 2 of the two-
market GA (feasibility improvement) edits the popula-
tion in favor of feasibility. The process drives towards
feasible optimality. The advantage of the two-market
GA lies in its ability to respond more usefully to infea-
sible solutions. If you are going to have a population
with a large number of infeasible solutions, the two-
market GA is the GA for you.9

3.3 Case 3: Population on the Frontier

Finally, consider a third case: the solutions in the pop-
ulation are all (precisely) on the frontier (and thus
feasible). In the case of the knapsack this means that
setting any 0 to 1 (indeed increasing the value of any
variable) will turn a feasible solution infeasible.

The standard GA sees the relative fitnesses clearly as
in equation (2). The more optimal solutions (with
higher Z values) will contribute proportionately more
to the next generation. Since the GA operators (e.g.,
mutation and crossing over) are blind, a large percent-
age of the products of these operations will be infeasi-
ble, and receive very low fitness in the next generation.
If the operations find a better schema (setting values
higher for certain variables), the solution will be infea-
sible unless the values of other variables are reduced
sufficiently to ensure feasibility. Often it will be the
case that this does not happen; and the better schema
has no real chance to be tried in the population.

Suppose instead that we are in case three, with solu-
tions all on the frontier, and we are also in phase 2 of
the two-market GA. Because the population is entirely
feasible, the GA here sees each solution as equally fit.
A new population is accordingly formed after applica-
tion of the genetic operators. Again, suppose that the
genetic operations find a better schema. Phase 1 will
recognize it and with fitness proportional selection try
it out in relatively more solutions in the new popula-

9We suspect that the problem of finding optimal penalty
functions for incenting a standard GA cannot be solved a
priori, that the information is not available prior to under-
taking exploratory computations. Further, the two-market
GA can be thought of as circumventing this problem by
loosening the link between Z and P . These ideas require
further space than is available here for their exposition.

tion it sends to phase 2. This mechanism (probabilisti-
cally) gives the better schemas more chances to locate
themselves in feasible solutions. If it does, phase 2 will
let it pass and the schema stands a chance of surviving.

The considerations of this section lead us to conjecture
that the two-market GA will be superior to the stan-
dard, penalty-function GAs (on constrained optimiza-
tion problems), when feasible solutions are hard to find
and the GA must process many infeasible solutions.
(Compare cases 1 and 2 above.) Further, we conjec-
ture (case 3) that the two-market GA has a superior
“end-game” performance. Given a population on the
(feasible) frontier, the two-market GA provides a bet-
ter opportunity for trying out advantageous schemas.

Table 2 provides some evidence in favor of the case 3
factor. Note that ksR, a one-market GA using a repair
approach, maintains (at great computational expense)
a feasible population. The GA will drive this popu-
lation to the frontier. Because ksR keeps generating
solutions to maintain a feasible population, it does not
have the case 3 problem that the standard (penalty
function) GA has in not being able to explore with
new schemas once it gets to the frontier. For case
3, neglecting computational costs, we expect ksR and
the two-market GA to perform similarly. We note in
this regard that in, and only in, the five cases in which
the two-market GA performs substantially better than
the standard GA (++ in table 2), ksR also performs
substantially better than the standard GA.

Suggestive evidence is also available in Figures 1
through 6, comparing the progress over generations of
the 5 knapsack algorithms (ksR, ks, ks2, ksc, and ks2)
as they work on weish17 and weing8. The Figures
show typical runs. weish17 is a problem on which the
two-market GA does slightly better. We see in the Fig-
ures ksc quickly reaches a plateau of 80% of optimality
and gets stuck. ks does better and quickly reaches a
plateau close to optimality, but not as quickly as ks2.
weing8 is a problem on which the two-market GA does
substantially better than the standard GA. We see in
the Figures that the two-market GAs level off near
optimality by about 150 generations, while ksc and ks
level off immediately at less than 60% of optimality
and never improve. This suggests a case 3 situation.

On extensions to these ideas, we are particularly in-
trigued with the prospect of applying these results to
non-standard computational regimes, especially DNA
computing. Genetic Algorithms seem particularly
suited to implementation in DNA Computing [11, 1].
An originating impetus for this work was our formula-
tion of a bargaining problem as a two-market GA for
DNA computing. In DNA computing, it is awkward
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to make computations that combine both the objective
functions and the penalty functions—thus the incen-
tive for a two-market approach. Happily, this paper
reflects advantages of the two-market approach beyond
its convenience for DNA computing. In turn, DNA is
quite suitable for two-market GAs; the results here are
encouraging.

DNA computing features massively parallel process-
ing of huge populations of candidate solutions. Thus,
our work has an interesting sidelight in that there was
a clear benefit of increasing population size. We per-
formed runs with population sizes of 50, 500, and 5000.
The results for 50 and 500 were qualitatively like those
in Table 2, except that the general quality of the solu-
tions increased with population size. For example, for
ksc2 and averaging across all 14 problems, the mean
solution was 1.1% higher at 500 generations than it
was at 50 generations, and 3.2% higher at 5000 gen-
erations than it was at 50 generations. For the two-
market GAs, excellent results were obtained in much
less than 500 generations.

This has been an exploratory study. Much remains
to be done by way of testing our conjectures and in-
vestigating the two-market GA, including: study of
more knapsack problems, extension to other kinds of
constrained optimization problems, deepening and re-
fining mathematically the intuitions behind the three
cases, extending the 2-market case to N-markets, and
looking carefully at the GA histories. Finally, we re-
mark that all this is most encouraging for DNA com-
puting. Indeed, the results suggest many avenues of
fruitful exploration.
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Figure 1: ksc vs. ksc2 for weish17  Figure 2: ks vs. ks2 for weish17 
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Abstract

In this paper, we describe a multi-objective

evolutionary algorithm, that uses clustering

selection and does not need any additional

parameter like others. It clusters the popula-

tion into a exible number of clusters employ-

ing x-means from [Pelleg and Moore, 2000].

First, the selective �tness is assigned to clus-

ters and in second place to individuals of clus-

ters. We show three hybrid variants incorpo-

rating additional mechanisms from other eli-

tist multi-objective evolutionary algorithms

in order to increase selection pressure. Using

the test functions from Deb's T suite (T1-

T6), from Scha�er, Kursawe and Quagliarella

we evaluate the performance and the qual-

ity of our approach against the most recent

and performant elitist multi-objective evo-

lutionary algorithms, NSGA2, SPEA2 and

PESA2. The comparison yields promising re-

sults for region-based selection using cluster-

ing in combination with additional crowding

strategies.

1 Introduction

Multi-Objective Optimisation Problems (MOOP)

arise when at least two competing objectives (or cri-

teria) have to be optimised. If no preferences for any

objectives are given or known a priori, the task is to

optimise all objectives at the same time, which will

produce a set of optimal trade-o� solutions rather than

one single optimal solution. In general a MOOP is de-

�ned by a function f

(y1; y2; :::; ym) = f(xi; x2; :::; xn) with m > 1; n > 0

which maps a vector of n decision variables to a vector

of m objective variables, which has to be optimised.

Solutions may be better, equal or worse than others.

Better or dominating solutions are meant to be better

in at least one objective and not worse in all others.

All non-dominated solutions are called Pareto-optimal

and belong to the Pareto set.

Most Evolutionary Algorithms (EA) try to solve

MOOPs by using a priori knowledge |given or not|

to weight the di�erent objectives in order to construct

a single objective problem. But these approaches pro-

duce just one solution of the Pareto-optimal set. In

contrast, Evolutionary Multi-Objective Optimisation

Algorithms (EMO) try to �nd the whole Pareto set

or at least a good presentation of it. For further read-

ing in MOOP and EMO we suggest the comprehensive

book from Deb [Deb, 2001].

Since the �rst real EMO algorithm by Schaf-

fer [Scha�er, 1984], called VEGA, and the inspiring

lines in Goldberg's book [Goldberg, 1989], a num-

ber of seminal approaches have shown the capabil-

ity of EMOs to demonstrate that Pareto domination-

based EMOs can be reliably used to �nd and

maintain multiple trade-o� solutions of the Pareto

set. In the last years elitist EMOs have shown

best performance in order to �nd global Pareto-

optimal solutions and good diversity in presenting

the real global Pareto set: Non-dominated Sort-

ing Genetic Algorithm 2 (NSGA2) [Deb et al., 2000],

Strength Pareto Evolutionary Algorithm 2 (SPEA2)

[Zitzler et al., 2001] and Pareto Envelope based Se-

lection (PESA) [Corne et al., 2000] and PESA2

[Corne et al., 2001]. All these algorithms use the

framework of conventional EAs and di�er in �tness as-

signment, selection operator and an optional external

archive, storing the actual Pareto set.

In the following of the paper we show a new Multi-

Objective Clustering Selection operator (section 2),

compare it to the mentioned algorithms on commonly

used test problems (section 3), discuss the results (sec-
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tion 4), and conclude (section 5).

2 Multi-Objective Clustering
Selection (MOCS)

The Multi-Objective Clustering Selection (MOCS)

Evolutionary Algorithm works as follows:

Algorithm 1 (MOCS EA) Population Pt of

� � N individuals is evolved for T generations. An

additional archive population P �
t
of size � = N is

maintained. P �
T
gives the result of non-dominated so-

lutions.

1. Initialisation: Set t = 0, generate initial o�spring

population Pt, set population P �
t
= ;.

2. Evaluate and Assign Fitness: Evaluate �tness val-

ues of individuals of Pt.

3. Environmental Selection: Use a truncation oper-

ator in order to reduce the size of P �
t
= P �

t
[ Pt

to N (cf. section 2.1): We use \non-dominated

Pareto sorting" and \crowding distance measure"

from NSGA2.

4. Termination: If t � T then remove all dominated

individuals from PT and stop.

5. Mating Selection: Cluster P �
t
into k clusters us-

ing (c1; c2; :::; ck) = x-means(P �
t
; 1; N) with 1 �

k � N [Pelleg and Moore, 2000] (cf. section 2.2).

(a) Region-based selection: Perform binary tour-

nament selection on the k clusters found

where clusters with lower cardinality win

(like PESA does) ) � selected clusters.

(b) Local individual-based selection: For any of

the � selected clusters perform a binary tour-

nament selection on its individuals where the

crowding-distance measure from NSGA2 or-

ders individuals ) � selected individuals.

The mating pool Pt contains now � individuals.

6. Variation: Apply recombination and mutation to

Pt.

7. Increment: Set P �
t+1 = P �

t
and Pt+1 = Pt. Set

t = t+ 1 and go to 2.

As alternatives step 5a is replaced with random selec-

tion of clusters and step 5b is replaced with random

selection of individuals (PESA-like). Table 1 gives an

overview of our implemented combinations.

MOCS uses the basic Genetic Algorithm extended

by Environmental Selection and Mating Selection like

other elitist EMOs do. The archive is limited by N en-

tries and has to be reduced in the Environmental Se-

lection step, because the o�spring population has to be

merged into the archive, which yields a maximum size

of 2N . It is important to keep as many non-dominated

solutions as possible and a good diversity among them

in the archive. In the Mating Selection step individu-

als are chosen for the mating pool. Again the best and

most diverse solutions should be selected with higher

probability in order to increase selection pressure for

�nding better solutions in the variation step.

Besides its own clustering technique, MOCS uses or-

dering techniques from other EMOs (cf. table 1):

PESA2 [Corne et al., 2001] has a \squeeze"-factor,

which simply counts the individuals of each hyperbox

(see also section 2.2). We use this in a similar way:

In a binary tournament the cluster with less mem-

bers wins. From NSGA2 [Deb et al., 2000] we borrow

the \non-dominated Pareto sorting" and the \crowd-

ing distance measure" which orders individuals �rstly

by its Pareto-rank (lower is better) and secondly by

the volume enclosed by its next neighbours (larger is

better). In NSGA2 it is used for environmental and

mating selection.

Algorithm Mating Selection (after clustering

with X-means)

MOCS-1 randomly select clusters, then perform

binary tournament with crowding-

distance measure

MOCS-2 perform binary tournament on clus-

ters with \squeeze"-factor,

then perform binary tournament with

crowding-distance measure

MOCS-3 perform binary tournament on clus-

ters with \squeeze"-factor, then ran-

domly select individuals from winning

clusters

Table 1: Overview of implemented versions: MOCS

uses the crowding-distance measure from NSGA2 and

the \squeeze"-factor from PESA2 in order to rank in-

dividuals resp. clusters.

2.1 Environmental Selection

In a �rst step we remove all multiple points and keep

just one of each. This may reduce the population

(archive) size below N but gives all points the same

chance in the later steps of the algorithm. MOCS

uses Environmental Selection from NSGA2 in order

to reduce the population (archive) size. We also im-

plemented and tested a clustering technique for En-
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vironmental Selection similar to the NSGA2, but we

did not include it in this paper: First do a non-

dominated Pareto ranking, which assigns all individu-

als to r Pareto fronts; then successively add the ranked
fronts of individuals until the actual front does not �t

into the remaining s of N slots. For this actual front

�rst keep all boundary points b if possible then per-

form a clustering into s� b clusters and take the best

individual from each cluster into the population. Best

individuals are those who have the maximum average

distance to all others. Remaining fronts are discarded.

2.2 Mating Selection

Mating selection in MOCS is done region-based. Corne

and Knowles introduced this technique in EMOs with

PESA2 [Corne et al., 2001]. They showed that region-

based selection has advantages over individual-based

selection like all other elitist EMOs do: the probabil-

ity of selecting highly isolated individuals in contrast

to crowded individuals rises because the unit of selec-

tion is now the \region" and no longer the individ-

ual. Thus this technique removes selective attention

from crowded regions and assigns this attention more

equally over the whole population.

The drawback on PESA2 is its 'hypergrid'. The user

has to provide a parameter called grid-size g in order

to build gm hyperboxes in the m-dimensional objec-

tive hyperspace. The diÆculty is to choose the best

dimensions of the hyperboxes so that the resulting hy-

perboxes or regions are neither too �ne-grained nor

too large. The �rst extreme leads back to individual-

based selection and the second extreme could lead to

one hyperbox containing all individuals. Big advan-

tages of PESA2 and the hypergrid strategy are its low

performance complexity of O(mN) to �nd the hyper-

box for every individual per generation and the easy

implementation of the algorithm.

MOCS uses a more exible but also more expensive

technique: we cluster the population into k clusters,

where k is determined by the algorithm itself. k may

be in the range from 1 to population size N . The

used clustering algorithm x-means was introduced by

[Pelleg and Moore, 2000]. X-means extends and im-

proves k-means [Duda and Hart, 1973], which clusters

a dataset in k clusters. For detailed explanations of x-

means and k-means we refer to the cited papers, �gure

1 shows an example.

Related work has been done by

[Molyneaux et al., 2001]: They introduced the Clus-

tering Pareto Evolutionary Algorithm (CPEA), which

�nds and retains many local Pareto-optimal fronts in

contrast to our global Pareto-optimal algorithm. Ma-
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Figure 1: Population of 25 individuals in an EA run

for test function T3 (cf. table 2, minimise both, f1
and f2): 5 clusters (A-E) have been calculated. In the

Mating Selection of this population the cluster A down

right has the best chances in the tournament selection,

because it has the lowest number of elements.

jor drawbacks of CPEA are the unlimited number of

non-dominated (local) individuals, the �xed number k
of clusters, the local non-dominated sorting (which ob-

viously may be an advantage in the sense of searching

for local Pareto-optimal sets) and its poor computa-

tional performance due to the unlimited size of the

archive.

2.3 Complexity Issues

The most complex task in multi-objective optimisation

is to �nd an adequate process to calculate the selective

�tness in the sense of crowding in objective space. Iso-

lated individuals must have a higher selective �tness

than crowded ones. This selective �tness is used for

environment and mating selection to increase selective

pressure.

PESA2 has a complexity of O(mN) to calculate the

box of N individuals and the \squeezes" of the boxes

in an m-dimensional problem per generation. NSGA2

and SPEA2 require O(mN2) time.

Simple k-means has a performance complexity of

O(mNk) to calculate all distances between the N in-

dividuals and the k chosen centroids per internal iter-

ation, where the number of internal iterations is not

known and may be in�nite. X-means is approximately

equivalent to running k-means with k = 1; 2; 3:::N and

uses kd-trees to store data which are much more eÆ-

cient than the naive algorithm (for our low dimension-

ality). But anyway this yields a complexity of O(mN2)
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Name Domain Chromosome

Length L
Functions

[Zitzler et al., 2000] [Deb, 2001]

T1-T6 common frame f1(x)
f2(x) = g(x)h(f1(x); g(x))

T1 [0; 1]n 900 f1(x) = x1
n = 30 g(x) = 1 + 9

n�1

P
n

i=2
xi

h(f1; g) = 1�
p
f1=g

T2 [0; 1]n 900 f1(x) = x1
n = 30 g(x) = 1 + 9

n�1

P
n

i=2
xi

h(f1; g) = 1� (f1=g)
2

T3 [0; 1]n 900 f1(x) = x1
n = 30 g(x) = 1 + 9

n�1

P
n

i=2
xi

h(f1; g) = 1�
p
f1=g � (f1=g) sin(10�f1)

T4 x1 2 [0; 1] 300 f1(x) = x1
xi6=1 2 [�5; 5] g(x) = 1 + 10(n� 1) +

P
n

i=2
(x2

i
� 10 cos(4�xi))

n = 30 h(f1; g) = 1�
p
f1=g

T5 x1 2 f0; 1g30 80 u(xi) denotes the number of 1s in xi
xi6=1 2 f0; 1g5 f1(x) = 1 + u(x1), g(x) =

P
n

i=2
v(u(xi)), h(f1; g) = 1=f1

n = 11 v(u(xi)) = 2 + u(xi) if u(xi) < 5 else 1

T6 [0; 1]n 300 f1(x) = 1� exp(�4x1) sin
6(6�x1)

n = 10 g(x) = 1 + (n� 1) [(
P

n

i=2
xi)=(n� 1)]

0:25

h(f1; g) = 1� (f1=g)
2

[Scha�er, 1985]

SPH-m [�103; 103]n 400 fj(x) = (xj � 1)2 +
P

1�i�n;i6=j
x2
i

m = 2; 3; 4 n = 20 1 � j � m

[Quagliarella and Vicini, 1997]

QV [�5; 5]n 400 f1(x) = ( 1
n

P
n

i=1
(x2

i
� 10 cos(2�xi) + 10))0:25

n = 20 f2(x) = ( 1
n

P
n

i=1
((xi � 1:5)2 � 10 cos(2�(xi � 1:5)) + 10))0:25

[Kursawe, 1991]

KUR [�103; 103]n 400 f1(x) =
P

n�1

i=1
(�10 exp(�0:2

q
x2
i
+ x2

i+1
)

n = 20 f2(x) =
P

n

i=1
(jxij

0:8 + 5 sin3(xi))

Table 2: Test functions for performance comparisons. Deb's T test suite, QV and KUR are 2-dimensional,

SPH-m is evaluated in 2, 3 and 4 dimensions.

in best case.

3 Experiments

The MOCS approaches have been tested against

NSGA2, SPEA2 and PESA21. Table 2 shows the test

functions with domains of decision variables, dimen-

sion of variable space n, dimension of objective space

m and chromosome length L. All of them are min-

imisation problems. We used the same functions T1-

T6 like [Corne et al., 2001] did for testing PESA and

PESA2, like [Zitzler et al., 1999] did for testing SPEA

1We also tested against PESA and SPEA, but their per-
formance was too poor, which has also been proven by the
evaluation of its successors.

and 8 other EMOs and KUR, QV and SPH-m like

[Zitzler et al., 2001] did for testing SPEA2. But also

many other researchers have used these functions as

well.

Deb [Zitzler et al., 2000, Deb, 2001] provides a proce-

dure of constructing two-dimensional objective prob-

lems with a range of characteristics of varying degrees.

These include convexity (T1), concavity (T2), discon-

tinuity (T3,T5), multi-modality (T4), deception (T5)

and non-uniformity (T6) at the Pareto front. All these

problems have to be managed in multi-objective real

world problems by optimisers. T1 and T2 are the base-

line tests. T1 is convex and thus a simple hill-climber

would do the best job. T2 is concave, which yields

�rst diÆculties to overcome. T3 has a number (in
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this case 5) of disconnected Pareto-optimal fronts. T4

has a convex Pareto-optimal global front but further-

more there exist 8 � (1011) local fronts which produce

a large number of hurdles. T5 is a boolean function

over bit strings, has again many local fronts and at-

tempts to deceive in order to lead the algorithm to

a local instead to the global front. T6 is non-convex,

non-uniform and the density to the global front is thin.

We ran 2000 generations, which yields a total of 200K

�tness evaluations in place of 5K �tness evaluations in

other studies. We think looking at the whole optimi-

sation process gives more insight into the behaviour of

the algorithms. We tested all the algorithms with the

same parameter settings [Corne et al., 2001](PESA2)

and [Zitzler et al., 1999](SPEA) did for testing their

algorithms.

SPH-m is a multi-objective generalisation of the sphere

model [Scha�er, 1985], which is a symmetric unimodal

function where the isosurfaces are given by hyper-

spheres. We used versions with two, three and four

objectives. QV [Quagliarella and Vicini, 1997] con-

sists of two multi-modal functions, an extreme concave

Pareto-optimal front and a diminishing density of solu-

tions towards the Pareto front. KUR [Kursawe, 1991]

consists of a multi-modal function and function with

pair-wise interactions among the variables, the Pareto

front is disconnected consisting of concave and convex

parts and an isolated point. Again we used the same

parameter settings [Zitzler et al., 2001] did for testing

SPEA2.

All algorithms are implemented in Matlab, embedded

in a binary-coded Genetic Algorithm framework, but

Evolution Strategies or real-coded Genetic Algorithms

may be used as well. Table 3 shows the parameter

setting for the Genetic Algorithm. For each algorithm

and each problem, 20 runs with di�erent random seeds

have been evaluated and per run 200 intermediate re-

sults over time have been measured.

For measuring the quality of the results we have em-

ployed the hypervolume approach. The hypervol-

ume approach by [Zitzler et al., 1999] (modi�ed in

[Zitzler et al., 2001]) calculates the portion of the nor-

malised non-dominated hyperspace in a constructed

hyperspace. Zitzler e.a. state it as the most appropri-

ate scalar indicator since it combines both the distance

of solutions (towards some utopian trade-o� surface)

and the spread of solutions.

4 Results and Discussion

Figures 3 (T1-T6), 2 (KUR,QV) and 4 (SPH-m) show

the results of all runs over time. All algorithms reach

Population sizes T1-T6: � = 100; � = 10

(� = archive) KUR, QV, SPH-m: � = � = 100

#Generations T1-T3,T6: 20000, T4,T5: 4000

KUR, QV, SPH-m: 10000

Crossover method uniform

Crossover rate pc 0.7

Mutation rate pm 1=L, where L (bit-wise)

Additional

parameters

32x32 hypergrid used in PESA,

PESA2

Table 3: Parameter settings for Genetic Algorithm
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Figure 2: Performance values for QV and KUR. The

graphs show the average normalised non-dominated

portion of the hyperspace for 20 runs.

the Pareto fronts for the T functions except for T5,

where they are deceived and get stuck. On T1-T6 all

algorithms except PESA and PESA2 perform quite

well and show similar curves. PESA and PESA2 lack

the ability of keeping boundary points. They also do

badly after reaching the global Pareto-optimal front,

where it is crucial to spread uniformly over the front
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Figure 3: Performance values for T1-T6. The graphs show the average normalised non-dominated portion of the

hyperspace for 20 runs.

in order to lessen the non-dominated hyperspace. The

results for the T suite also shows that NSGA2, SPEA2

and our approaches are better than PESA and PESA2.

On the T suite test functions our approaches keep

track with NSGA2 and SPEA2.

On the QV, KUR and SPH-2 functions also all Pareto

fronts are reached by MOCS. Again PESA2 performs

worst and stagnates because boundary points are not

kept. On QV NSGA2 is slightly better than our ap-

proaches. On KUR our approaches all perform quite
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Figure 4: Performance values for SPH-[2,3,4]. The

graphs show the average normalised non-dominated

portion of the hyperspace for 20 runs.

better than all others. This is due to the fact that our

�rst fronts are always ahead the others before reaching

the global Pareto front, which is a quite small region

in a huge objective space. On SPH-m our MOCS ap-

NSGA2 SPEA2 PESA2 MOCS-1,2,3

QV 37 55 51 75 157 45

KUR 37 45 51 74 156 47

SPH-2 44 71 53 74 141 47

SPH-3 45 73 76 47 58 42

SPH-4 46 77 55 87 58 46

Table 4: Average time in minutes on 20 runs on the

same processors.

proaches are getting better with increasing dimension

m and outperform all others.

MOCS-2 seems to be the best of our approaches: It

uses the NSGA2 Environmental Selection, for Mating

Selection it �rst clusters the population with the x-

means technique into the best quantity of clusters then

it uses binary tournament region-based selection with

the \squeeze"-factor and lastly for every chosen clus-

ter it performs a binary tournament selection with the

NSGA2-crowding distance measure. This last binary

tournament is absent in PESA1 and PESA2. They

use just random selection to choose individuals from a

hyperbox, which may explain their bad performance.

Table 3 shows the average runtime in minutes of the al-

gorithms. Just MOCS-2 needs factor 3 more time com-

pared to NSGA2 on some problems. This shows ex-

perimentally that the time complexity of MOCS holds

O(mN2) as stated in section 2.3.

5 Conclusion

We described a region-based selection technique in

our Multi-Objective Clustering Selection EA, called

MOCS. The advantage of MOCS is its automated clus-

tering which clusters the individuals of the population

in a very exible way. In contrast to any hypergrid

strategy this prevents choosing the wrong grid size,

which leads to too large or too small hyperboxes. Ad-

ditionally, after the region-based selection step, MOCS

uses another binary tournament inside the clusters to

increase the selection pressure. Here we used the tech-

nique from NSGA2 to select individuals inside a clus-

ter.

MOCS has the same or better performance com-

pared to NSGA2, SPEA2 and PESA2. Furthermore

it shows better performance with higher dimensional

problems, which we will evaluate on real world prob-

lems like the calibration process of combustion engines

or in manufacturing industries [Koch et al., 1999,

Koch et al., 2001].
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Thus we showed that clustering region-based selection

with an additional local individual-based selection is

a promising alternative to existing methods. For fur-

ther investigation we want to incorporate other strate-

gies like SPEA2 into our hybrid framework. Also the

behaviour of the clustering technique needs to be in-

vestigated to get a deeper knowledge of how MOCS

works.
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Abstract

This paper presents a systematic

comparative study of CMEA (con-

straint method-based multiobjective

evolutionary algorithm) with several

other commonly reported mulitobjec-

tive evolutionary algorithms (MOEAs)

in solving a three-objective optimiza-

tion problem. The best estimate of the

noninferior space was also obtained by

solving this multiobjective (MO) prob-

lem using a binary linear programming

procedure. Several quantitative met-

rics are used to compare the noninfe-

rior solutions with respect to relative

accuracy, as well as spread and dis-

tribution of solutions in the noninfe-

rior space. Results based on multi-

ple random trials of the MOEAs indi-

cate that overall CMEA performs bet-

ter than the other MOEAs for this

three-objective problem.

1 Introduction

With the recent emergence of interest in solv-

ing realistic multiobjective (MO) problems, nu-

merous multiobjective evolutionary algorithms

(MOEAs) have been reported in the literature

(Deb 2001). While most of them have been

successfully tested and evaluated for an ar-

ray of two-objective test problems, little work

is reported on solving MO problems involving

more than two objectives. Building upon the

study reported by Zitzler et al. (2001) for a

three-objective problem, this paper compares

and contrasts the performance of the constraint

method-based evolutionary algorithm (CMEA)

(Ranjithan et al. 2001) with those of SPEA-II

(Zitzler et al. 2001), NSGA-II (Deb et al. 2000),

and PESA (Corne et al. 2000). These results are

also compared with the noninferior set obtained

using an MO analysis with a binary linear pro-

gramming procedure. An array of quantitative

metrics is used to conduct a systematic perfor-

mance comparison among the solutions gener-

ated by these MOEAs. In addition to several

existing metrics that are extended from the orig-

inal de�nitions for two objectives, a new metric

is de�ned to evaluate the relative degree of dom-

inance of one set of noninferior solutions over

another.

The next section provides a brief back-

ground on CMEA. The subsequent section de-

scribes the performance metrics used in this

study. Section 4 de�nes the test problem and

a comparison of the results, followed by conclu-

sions.

2 Background

The �-constraint method, typically employed

with traditional mathematical programming

methods, generates the noninferior set for mul-

tiple objectives through iterative solution of the
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following single objective problem:

Maximize Zh(x)

Subject to gi(x) � 8i = 1; 2; :::; c

Zl(x) � Z
t
l8l = 1; 2; :::; k; l 6= h

x 2 X

(1)

The problem is assumed to be a maximization

problem without loss of generality. Zh is one of

k objectives, Zt
l is the constraint value for objec-

tive l(l 6= h), x = fxj : j = 1; 2; :::; ng represents

the decision vector, X represents the decision

space, c is the total number of constraints, and

gi(x) is the i
th constraint. The value of Zt

l is

varied incrementally, making the search migrate

from one noninferior solution to another.

The evolutionary multiobjective opti-

mization algorithm CMEA combines the �-

constraint method for MO within an evolu-

tionary computation framework (Ranjithan et

al. 2001). Pareto optimality is achieved in an

implicit manner by ensuring the population to

migrate along the noninferior surface. A non-

inferior solution is generated by converging the

population to the optimal solution to the above

model corresponding to a set of values for Zt
l .

The population is then migrated gradually by

incrementally changing the values of Zt
l . (Please

see Ranjithan et al. (2001) for more details.)

A comparison of the results show that

the CMEA performs equally or better than

SPEA-II, NSGA-II, and PESA for a range of

two-objective test problems (Ranjithan et al.

2001, chapter 5 in Kumar 2002). Although

the results reported so far have focused on two-

objective problems, the underlying concepts and

procedures of CMEA are equally applicable to

higher order MO problems.

3 Performance Metrics

A spread metric (Spread) that determines in

each objective space the maximum range rep-

resented by the noninferior solutions, and a cov-

erage metric that represents the distribution of

the solutions along the noninferior surface were

introduced by Ranjithan et al. (2001). Using

Figure 1 for illustration, Spread in objective Z1
is the horizontal distance between C1 and Cq ,

the two extreme points generated by the MOEA.

Similarly, Spread in objective Z2 is the vertical

distance between C1 and Cq . A higher value

of the Spread metric indicates a better perfor-

mance.

Two di�erent estimates, V 1 and V 2,

are de�ned to characterize the coverage of the

noninferior space by the nondominated solutions

set (NDSMOEA) generated by an MOEA. Us-

ing the notations in Figure 1, V 1 is de�ned as

Maxfdh;8h 2 f0; 1; :::; qgg, where d is the dis-

tance between adjacent solutions. V 1 calcula-

tions include the set NDSMOEA and the ex-

treme noninferior solutions A and B, which rep-

resent the optimum solutions determined sep-

arately for each objective. V 2 is de�ned as

Maxfdh;8h 2 f1; :::; q � 1gg, which includes

only the set NDSMOEA. As V 1 and V 2 rep-

resent the largest gap between adjacent nonin-

ferior solutions in the objective space, they char-

acterize how well the solutions generated by an

MOEA are distributed to cover the noninferior

space. Smaller values for V 1 and V 2 indicate a

better performance.

Zitzler and Thiele (1999) introduced the

C factor that compares two noninferior sets.

This parameter can be used to show how the

noninferior set of one algorithm dominates the

noninferior set of another.

In addition to these metrics, this pa-

per introduces an alternative performance met-

ric called the D (dominance) factor that rep-

resents the degree of dominance of noninfe-

rior solutions produced by one algorithm over

another. For illustration, the two-objective

case in Figure 2 shows the noninferior sets

NDSMOEA�1 and NDSMOEA�2 generated by

two di�erent MOEAs. To calculate the domi-

nance factor of MOEA-1 over MOEA-2, a dis-

tance measure between a solution from the set

NDSMOEA�1 and the solutions it dominates

in the set NDSMOEA�2 is determined. In

this example, the distance measure for solu-

tion i from the set NDSMOEA�1 is de�ned as
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Table 1: Summary of Metrics Used for Performance Comparisons in This Paper

Metric Description Reference

C factor Measure of relative dominance of solutions generated Zitzler and Thiele (1999)

by one algorithm over another

V 1 Measure of the coverage including the known best extreme points Ranjithan et al. (2001)

V 2 Measure of the coverage excluding the known best extreme points Ranjithan et al. (2001)

Spread Measure of the maximum range covered by the noninferior solutions Ranjithan et al. (2001)

D factor Measure of the degree of dominance of solutions generated Figure 2

by one algorithm over another
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Figure 1: An Example of Two-objective Nonin-

ferior Tradeo� to Illustrate the Computation of

metrics. di represents the distance between two

adjacent solutions

di = Max fdij : j = 1; 2; :::;mg, where m is

the number of solutions it dominates in the set

NDSMOEA�2. Then the following aggregate

value D1=2 is used to de�ne the degree of domi-

nance of MOEA-1 over MOEA-2.

D1=2 =

PN
i=1 di

N
(2)

where N is the total number of solutions in the

set NDSMOEA�1. The corresponding value for

D2=1 can be computed similarly.

A summary of the performance metrics

used in this paper for the comparison of di�erent

algorithms is shown in Table 1. These metrics,

although described here for only a two-objective

case, are extended for the higher dimensional

MO problem presented in this paper.

noninferior solutions
generated by MOEA-1

noninferior solutions
generated by MOEA-2

i

1

di = Max(di1, di2, ..., dim)

d1 = Max(d11, d12,..., d1m)1

2

Z   (Maximize)

2
Z

   
(M

ax
im

iz
e)

d11

d12

di1
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dim

N

Figure 2: An Example of Two-objective Nonin-

ferior Tradeo� to Illustrate the Computation of

D factor
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4 Testing of CMEA for a

Three-Objective Problem

The extended 0/1 multiobjective knapsack

problem presented by Zitzler and Thiele (1999)

is a constrained, binary, combinatorial search

problem. This MO knapsack problem extends

a single objective problem by incorporating a

number of knapsacks that can be �lled by items

selected from a common collection of items. The

goal is to choose the allocation of items in di�er-

ent knapsacks so that the payo� of each knap-

sack is maximized without violating the respec-

tive weight capacity constraint. This problem is

de�ned mathematically as follows:

Maximize Zl(x) =

nX

j=1

pl;jxj 8l = 1; 2; :::; k

Subject to

nX

j=1

wl;jxj � cl 8l = 1; 2; :::; k

xj 2 f0; 1g

(3)

where, Zl(x) is the total pro�t associated with

the knapsack l, pl;j is the pro�t of placing item

j in knapsack l, wl;j is the weight of item j when

placed in knapsack l, cl is the capacity of knap-

sack l, x = (x1; x2; :::; xn) 2 f0; 1gn such that

xj = 1 if selected and = 0 otherwise, n is the to-

tal number of available items, and k is the total

number of knapsacks.

In this paper, an instance of this mul-

tiobjective knapsack problem with three knap-

sacks (k = 3), each with 750 items (n = 750)

is considered. In addition to solving this prob-

lem using CMEA, a binary linear programming

solver (BLP), CPLEXr, was also used to gen-

erate a set of noninferior solutions by solving

Model (1) iteratively. The problem was solved

using CMEA (with a population of 100, binary

tournament selection, uniform crossover, adap-

tive mutation, and 289 intervals in each objec-

tive) for 10 di�erent random seeds, and the per-

formance metrics listed in Table 1 are calculated

based on these 10 runs. The results obtained

using CMEA is compared with those obtained

BLP
CMEA

23000
24000

25000
26000

27000
28000

29000
30000

31000

z1
22000 23000 24000 25000 26000 27000 28000 29000 30000

z2

22000
23000
24000
25000
26000
27000
28000
29000
30000
31000

z3

Figure 3: A Comparison of the Noninferior Sets

Obtained Using CMEA and BLP

using SPEA-II, NSGA-II, and PESA. The per-

formance metrics for SPEA-II, NSGA-II, and

PESA are calculated based on 30 di�erent sets

of solutions reported by Zitzler et al. (2001).

Figure 3 compares the noninferior so-

lutions generated by CMEA and the BLP so-

lutions. The CMEA solutions appear to rep-

resent most of the noninferior surface de�ned

by the BLP solutions, which represent the best

estimate of the noninferior front available for

this problem. The extreme regions, associated

with the three \tail-like" sections, are well rep-

resented by the CMEA solutions. Figures 4

to 6 compare the noninferior solutions gener-

ated by SPEA-II, NSGA-II, and PESA, respec-

tively, with those generated by CMEA. The re-

sults from SPEA-II, NSGA-II, and PESA re-

quired approximately 576,000 function evalua-

tions (Zitzler et al. 2001), and the CMEA solu-

tions are based on approximately 594,000 func-

tion evaluations. While the solutions by SPEA-

II, NSGA-II, and PESA solutions well represent

the \center" region of the noninferior surface,

they entirely miss the three tail regions.

The performance metrics listed in Ta-

ble 1 were computed for the solutions generated

by the MOEAs, and are compared in Figures 7

to 15. These graphs show for each metric the av-

erage and the range based on di�erent random

trials. The Spread metrics in the three objective
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Figure 4: A Comparison of the Noninferior Sets

Obtained Using CMEA and SPEA-II
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Figure 5: A Comparison of the Noninferior Sets

Obtained Using CMEA and NSGA-II
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Figure 6: A Comparison of the Noninferior Sets

Obtained Using CMEA and PESA
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Figure 7: Z1 spread comparison for CMEA,

SPEA-II, NSGA-II, and PESA (a higher value

indicates a better performance)

spaces are shown in Figures 7 to 9. These �g-

ures indicate that CMEA outperforms the other

algorithms compared in this study. Figure 10

compares the coverage metric V 2. While all

MOEAs perform similarly, PESA shows a slight

edge over the others. When comparing metric

V 1 in Figure 11, CMEA clearly outperforms the

other MOEAs. This con�rms the observations

(from Figures 4 to 6) that SPEA-II, NSGA-II,

and PESA solutions cover only the central re-

gion of the noninferior surface while the CMEA

solutions are broadly distributed.

Comparisons of C factors are shown

in Figures 12 and 13. This further con�rms

the conclusions drawn above about coverage

based on the V 1 and V 2 metrics. Compar-

isons of D-factor are shown in Figures 14 and

15. By collectively interpreting the values of

DCMEA/another MOEA and Danother MOEA/CMEA

for each MOEA compared, it can be concluded

that CMEA solutions dominate those of the

other MOEAs to a higher degree than vice

versa. Alternatively, it implies that when

CMEA solutions dominate solutions of another

MOEA, they dominate them to a higher degree

than when solutions of another MOEA domi-

nate solutions of CMEA.
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Figure 8: Z2 spread comparison for CMEA,

SPEA-II, NSGA-II, and PESA (a higher value

indicates a better performance)
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Figure 9: Z3 spread comparison for CMEA,

SPEA-II, NSGA-II, and PESA (a higher value

indicates a better performance)
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5 Conclusions

Comparing the noninferior solutions obtained

using SPEA-II, NSGA-II, and PESA with those

obtained using BLP (which is the best available

estimate of the noninferior surface), CMEA per-

forms relatively well in �nding noninferior solu-

tions that are close to the best available esti-

mation, as well as in covering most of the non-

inferior surface for the thee-objective extended

knapsack problem. When comparing the solu-

tions obtained by the di�erent MOEAs tested

in this study, CMEA performs better than all

others with respect to the spread of solutions in

the noninferior space. While CMEA solutions

are able to cover a broader portion of the non-

inferior surface, the other MOEAs generate a

high density of solutions in the central portion

of the noninferior surface. In the context of ac-

curacy or degree of dominance, the CMEA so-

lutions dominate those generated by the other

MOEAs relatively more frequently.

While this study provides a system-

atic comparison of several MOEAs for only one

three-objective optimization problem, further

testing and evaluation studies are needed. Sim-

ilar to the large array of test problems used

in two-objective MO optimization, additional

three-objective test problems reecting di�er-

ent problem complexities need to be de�ned

and be used in further comparative studies of

these MOEAs. Also, the scale-up implications

of higher number of objectives on the computa-

tional needs of the di�erent MOEAs need to be

investigated.
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Abstract

Over the past few years, the research on evolu-
tionary algorithms has demonstrated their niche
in solving multi-objective optimization prob-
lems, where the goal is to find a number of
Pareto-optimal solutions in a single simulation
run. However, none of the multi-objective evo-
lutionary algorithms (MOEAs) has a proof of
convergence to the true Pareto-optimal solutions
with a wide diversity among the solutions. In
this paper we discuss why a number of earlier
MOEAs do not have such properties. A new
archiving strategy is proposed that maintains a
subset of the generated solutions. It guaran-
tees convergence and diversity according to well-
defined criteria, i.e. ε-dominance and ε-Pareto
optimality.

1 Introduction

After the doctoral study of Schaffer (1984) on the vector
evaluated genetic algorithm (VEGA), Goldberg’s sugges-
tion of the use of non-dominated sorting along with a nich-
ing mechanism (1989) generated an overwhelming interest
on multi-objective evolutionary algorithms (MOEAs). Ini-
tial MOEAs – MOGA (Fonseca and Fleming 1993), NSGA
(Srinivas and Deb 1994), NPGA (Horn et al. 1994) – used
Goldberg’s suggestion in a straightforward manner: (i) the
fitness of a solution was assigned using the extent of its
domination in the population and (ii) the diversity among
solutions was preserved using a niching strategy. The
above three studies have shown that different ways of im-
plementing the above two tasks can all result in successful
MOEAs. However, in order to ensure convergence to the
true Pareto-optimal solutions, an elite-preservation opera-
tor was absent in those algorithms. Thus, the latter MOEAs
mainly concentrated on how elitism could be introduced in

an MOEA. This resulted in a number of advanced algo-
rithms – SPEA (Zitzler and Thiele 1999), PAES (Knowles
and Corne 2000), NSGA-II (Deb et al. 2000), and others.
With the development of better algorithms, multi-objective
evolutionary algorithms have also been used in a number
of application case studies (Zitzler et al. 2001).

What is severely lacking are studies related to theoreti-
cal convergence analysis with guaranteed spread of solu-
tions. In this regard, Rudolph (1998, 2001) and Rudolph
and Agapie (2000) suggested a series of algorithms, all of
which guarantee convergence, but do not address the fol-
lowing two aspects:

1. The convergent algorithms do not guarantee maintain-
ing a spread of solutions.

2. The algorithms do not specify any time complexity for
their convergence to the true Pareto-optimal set.

Although the second task is difficult to achieve (and is
dependent on the fitness landscape and genetic operators
used) even in the case of single-objective evolutionary al-
gorithms, the first task is as important as the task of con-
verging to the true Pareto set. Deb (2001) suggested a
steady-state MOEA that attempts to maintain spread while
attempting to converge to the true Pareto-optimal front, but
there is no proof for its convergence properties. Knowles
(2002) has analyzed two further possibilities, metric-based
archiving and adaptive grid archiving. The metric-based
strategy requires a function that assigns a scalar value to
each possible approximation set reflecting its quality and
fulfilling certain monotony conditions. Convergence then
is proven as a local optimum of the quality function will
be reached, but how this optimum relates to the actual dis-
tribution of the solutions is unclear and the computational
overhead is enormous. The adaptive grid archiving strat-
egy implemented in PAES provably maintains solutions in
some ’critical’ regions of the Pareto set once they have been
found, but convergence can only be guaranteed for the so-
lutions at the extremes of the Pareto set.
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Algorithm 1 Iterative search procedure
1: t := 0
2: A(0) := ∅
3: while terminate(A(t), t) = false do
4: t := t + 1
5: f (t) := generate() {generates new search point}
6: A(t) := update(A(t−1), f (t)) {updates archive}
7: end while
8: Output: A(t)

In this paper, we propose an archiving/selection strategy
that guarantees at the same time progress towards the
Pareto-optimal set and a covering of the whole range of
the non-dominated solutions. The algorithm maintains a
finite-sized archive of non-dominated solutions which gets
iteratively updated in the presence of a new solution based
on the concept of ε-dominance. The use of ε-dominance
also makes the algorithms practical by allowing a decision-
maker to control the resolution of the Pareto set approxi-
mation by choosing an appropriate ε value.

In the remainder of the paper, we state the general structure
of an iterative archive-based search procedure which is usu-
ally used for multi-objective optimization. In section 3 we
formally define our concepts of ε-dominance and ε-Pareto
optimality. We present the new archiving algorithm and
prove the required convergence and distribution properties.
The simulation results in section 4 illustrate its practical rel-
evance in contrast to existing algorithms which either fail
with respect to convergence or to distribution behavior.

2 Structure of an Iterative Multi-Objective
Search Algorithm

The purpose of this section is to informally describe the
problem we are dealing with. To this end, let us first give
a template for a large class of iterative search procedures
which are characterized by the generation of a sequence of
search points and a finite memory.

The purpose of such algorithms is to find or approximate
the Pareto set of the image set F of a vector valued function
h : X → F defined over some domain X . In the context of
multi-objective optimization, h, F and X are often called
the multi-valued objective function, the objective space and
the decision space, respectively.

An abstract description of a generic iterative search algo-
rithm is given in Algorithm 1. The integer t denotes the
iteration count, the n-dimensional vector f (t) ∈ F is the
sample generated at iteration t and the set A(t) will be
called the archive at iteration t and should contain a rep-
resentative subset of the samples in the objective space F
generated so far. To simplify the notation, we represent

generate update
vector f

archive A

one sample per iteration

finite memory

finite size
representative subset of best samples

Figure 1: Representation of the generic search algorithm 1.

samples by n-dimensional real vectors f where each coor-
dinate represents one of the objective values. Additional
information about the corresponding decision values could
be associated to f , but will be of no concern in this paper.

The purpose of the function generate is to generate a new
solution in each iteration t, possibly using the contents of
the old archive set A(t−1). The function update gets the
new solution f (t) and the old archive set A(t−1) and deter-
mines the updated one, namely A(t). In general, the pur-
pose of this sample storage is to gather ’useful’ informa-
tion about the underlying search problem during the run.
Its use is usually two-fold: On the one hand it is used to
store the ’best’ solutions found so far, on the other hand the
search operator exploits this information to steer the search
to promising regions.

This algorithm could easily be viewed as an evolution-
ary algorithm when the generate operator is associated
with variation (recombination and mutation). However, we
would like to point out that all following investigations are
equally valid for any kind of iterative process which can be
described as Algorithm 1 and used for approximating the
Pareto set of multi-objective optimization problems, e.g.
simulated annealing or tabu search.

There are several reasons, why the archive A(t) should be
of constant size, independent of the number of iterations
t. At first, the computation time grows with the number
of archived solutions, as for example the function gener-
ate may use it for guiding the search, or it may simply be
impossible to store all solutions as the physical memory
is always finite. In addition, the value of presenting such
a large set of solutions to a decision maker is doubtful in
the context of decision support, instead one should provide
him with a set of the best representative samples. Finally,
in limiting the solution set preference information could be
used to steer the process to certain parts of the search space.

The paper solely deals with the function update, i.e. with an
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appropriate generation of the archive. Because of the rea-
sons described above, the corresponding algorithm should
have the following properties, see also Fig. 1:

• The algorithm is provided with one sample f (t) at
each iteration, i.e. one at a time.

• It operates with finite memory. In particular, it cannot
store all the samples submitted until iteration t.

• The algorithm should maintain a set A(t) of a limited
size which is independent of the iteration count t. The
set should contain a representative subset of the best
samples f (1), ..., f (t) received so far.

A clear definition of the term representative subset of the
best samples will be given in Section 3.1. But according
to the common notion of optimality in multi-objective op-
timization and the above discussion it should be apparent
that the archive A(t) should contain a subset of all Pareto
vectors of the samples generated until iteration t. In ad-
dition, these selected Pareto vectors should represent the
diversity of all Pareto vectors generated so far. Such an
algorithm in will be constructed in section 3.3.

3 Algorithms for Convergence and Diversity

Before we present the update functions for finding a diverse
set of Pareto-optimal solutions, we define some terminol-
ogy.

3.1 Concept of Pareto Set Approximation

In this section we define relevant concepts of dominance
and (approximate) Pareto sets. Without loss of generality,
we assume a normalized and positive objective space in
the following for notational convenience. The algorithms
presented in this paper assume that all objectives are to be
maximized. However, either by using the duality princi-
ple (Deb 2001) or by simple modifications to the domi-
nation definitions, these algorithms can be used to handle
minimization or combined minimization and maximization
problems.

Objective vectors are compared according to the domi-
nance relation defined below and displayed in Fig. 2 (left).

Definition 1 (Dominance relation)
Let f, g ∈ IRm. Then f is said to dominate g, denoted as
f � g, iff

1. ∀i ∈ {1, . . . ,m} : fi ≥ gi

2. ∃j ∈ {1, . . . ,m} : fj > gj

f1

f2 f

dominated by f

f2 f

-dominated by f�

f1(1+ )�f1

(1+ )� f2

Figure 2: Graphs visualizing the concepts of dominance
(left) and ε-dominance (right).

Definition 2 (Pareto set)
Let F ⊆ IRm be a set of vectors. Then the Pareto set F ∗

of F is defined as follows: F ∗ contains all vectors g ∈ F
which are not dominated by any vector f ∈ F , i.e.

F ∗ := {g ∈ F |  ∃f ∈ F : f � g} (1)

Vectors in F ∗ are called Pareto vectors of F . The set of all
Pareto sets of F is denoted as P ∗(F ).

From the above definition we can easily deduce that any
vector g ∈ F \F ∗ is dominated by at least one f ∈ F ∗, i.e.

∀g ∈ F \ F ∗ : ∃f ∈ F ∗ such that f � g. (2)

Moreover, for a given set F , the set F ∗ is unique. There-
fore, we have P ∗(F ) = {F ∗}. For many sets F , the Pareto
set F ∗ is of substantial size. Thus, the numerical determi-
nation of F ∗ is prohibitive, and F ∗ as a result of an op-
timization is questionable. Moreover, it is not clear at all
what a decision maker can do with such a large result of an
optimization run. What would be more desirable is an ap-
proximation of F ∗ which approximately dominates all ele-
ments of F and is of (polynomially) bounded size. This set
can then be used by a decision maker to determine interest-
ing regions of the decision and objective space which can
be explored in further optimization runs. Next, we define
a generalization of the dominance relation as visualized in
Fig. 2 (right).

Definition 3 (ε-Dominance)
Let f, g ∈ IR+m

. Then f is said to ε-dominate g for some
ε > 0, denoted as f �ε g, iff for all i ∈ {1, . . . ,m}

(1 + ε) · fi ≥ gi. (3)

Definition 4 (ε-approximate Pareto set)
Let F ⊆ IR+m

be a set of vectors and ε > 0. Then a set
Fε is called an ε-approximate Pareto set of F , if any vector
g ∈ F is ε-dominated by at least one vector f ∈ Fε, i.e.

∀g ∈ F : ∃f ∈ Fε such that f �ε g. (4)
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Figure 3: Graphs visualizing the concepts of ε-approximate
Pareto set (left) and ε-Pareto set (right).

The set of all ε-approximate Pareto sets of F is denoted as
Pε(F ).

Of course, the set Fε is not unique. Many different con-
cepts for ε-efficiency1 and the corresponding Pareto set ap-
proximations exist in the operations research literature, a
survey is given by Helbig and Pateva (1994). As most of
the concepts deal with infinite sets, they are not practical
for our purpose of producing and maintaining a represen-
tative subset. Nevertheless they are of theoretical interest
and have nice properties which can for instance be used in
convergence proofs, see (Hanne 1999) for an application in
MOEAs.

Using discrete ε-approximations of the Pareto set was sug-
gested simultaneously by Evtushenko and Potapov (1987),
Reuter (1990), and Ruhe and Fruhwirt (1990). As in our
approach, each Pareto-optimal point is approximately dom-
inated by some point of the representative set. The first two
papers use absolute deviation (additive ε, see Eqn. 7 below)
and the third relative deviation (multiplicative ε as above),
but they are not concerned with the size of the representa-
tive set in the general case.

Recently, Papadimitriou and Yannakakis (2000) and Er-
lebach et al. (2001) have pointed out that under certain as-
sumptions there is always an approximate Pareto set whose
size is polynomial in the length of the encoded input. This
can be achieved by placing a hyper-grid in the objective
space using the coordinates 1, (1+ ε), (1+ ε)2, . . . for each
objective. As it suffices to have one representative solution
in each grid cell and to have only non-dominated cells oc-
cupied, it can be seen that for any finite ε and any set F with
bounded vectors f , i.e. 1 ≤ fi ≤ K for all i ∈ {1, . . . ,m},

1The terms ”efficient” and ”Pareto-optimal” can be used syn-
onymously. While the former appears to be more frequent in oper-
ations research literature, we generally use the latter as it is more
common the field of evolutionary computation.

there exists a set Fε containing

|Fε| ≤
(

logK
log (1 + ε)

)m−1

(5)

vectors. A proof will be given in connection with Alg. 2 in
section 3.3.

Note that the concept of approximation can also be used if
other similar definitions of ε-dominance are used, e.g. the
following additive approximation

εi + fi ≥ gi ∀i ∈ {1, . . . ,m} (6)

where εi are constants, separately defined for each coor-
dinate. In this case there exist ε-approximate Pareto sets
whose size can be bounded as follows:

|Fε| ≤
m−1∏
j=1

K − 1
εi

(7)

where 1 ≤ fi ≤ K , K ≥ εi for all i ∈ {1, . . . ,m}. A
further refinement of the concept of ε-approximate Pareto
sets leads to the following definition.

Definition 5 (ε-Pareto set)
Let F ⊆ IR+m

be a set of vectors and ε > 0. Then a set
F ∗

ε ⊆ F is called an ε-Pareto set of F if

1. F ∗
ε is an ε-approximate Pareto set of F , i.e. F ∗

ε ∈
Pε(F ), and

2. F ∗
ε contains Pareto points of F only, i.e. F ∗

ε ⊆ F ∗.

The set of all ε-Pareto sets of F is denoted as P ∗
ε (F ).

The above defined concepts are visualized in Fig. 3. An
ε-Pareto set F ∗

ε not only ε-dominates all vectors in F , but
also consists of Pareto-optimal vectors of F only, therefore
we have P ∗

ε (F ) ⊆ Pε(F ).

Since finding the Pareto set of an arbitrary set F is usu-
ally not practical because of its size, one needs to be less
ambitious in general. Therefore, the ε-approximate Pareto
set is a practical solution concept as it not only represents
all vectors F but also consists of a smaller number of el-
ements. Of course, an ε-Pareto set is more attractive as it
consists of Pareto vectors only.

3.2 Convergence and Diversity

Convergence and diversity can be defined in various ways.
Here, we consider the objective space only. According to
Definition 3, the ε value stands for a relative “tolerance”
that we allow for the objective values. In contrast, using
equation (6) we would allow a constant additive (absolute)
tolerance.
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Algorithm 2 update function for ε-Pareto set
1: Input: A, f
2: D := {f ′ ∈ A|box(f) � box(f ′)}
3: if D = ∅ then
4: A′ := A ∪ {f} \D
5: else if ∃f ′ : (box(f ′) = box(f) ∧ f � f ′) then
6: A′ := A ∪ {f} \ {f ′}
7: else if  ∃f ′ : box(f ′) = box(f) ∨ box(f ′) � box(f)

then
8: A′ := A ∪ {f}
9: else

10: A′ := A
11: end if
12: Output: A′

Algorithm 3 function box

1: Input: f
2: for all i ∈ {1, . . . ,m} do
3: bi := � log fi

log (1+ε)�
4: end for
5: b := (b1, . . . , bm)
6: Output: b {box index vector}

The choice of the ε value is application specific: A deci-
sion maker should choose a type and magnitude that suits
the (physical) meaning of the objective values best. The
ε value further determines the maximal size of the archive
according to equations (5) and (7).

3.3 Maintaining an ε-Pareto Set

The Algorithm 2 has a two level concept. On the coarse
level, the search space is discretized by a division into
boxes (see Algorithm 3), where each vector uniquely be-
longs to one box. Using a generalized dominance re-
lation on these boxes, the algorithm always maintains
a set of non-dominated boxes, thus guaranteeing the ε-
approximation property. On the fine level at most one ele-
ment is kept in each box. Within a box, each representative
vector can only be replaced by a dominating one (similar
to Agapie’s and Rudolph’s algorithm), thus guaranteeing
convergence.

Now, we can prove the convergence of the above update
strategy to the Pareto set while preserving diversity of so-
lution vectors at the same time.

Theorem 1
Let F (t) =

⋃t
j=1 f

(j), 1 ≤ f
(j)
i ≤ K, be the set of all vec-

tors created in Algorithm 1 and given to the update func-
tion as defined in Algorithm 2. Then A(t) is an ε-Pareto set
of F (t) with bounded size according to Eq. (5), i.e.

1. A(t) ∈ P ∗
ε (F (t))

2. |A(t)| ≤
(

log K
log (1+ε)

)(m−1)

Proof.

1. Suppose the algorithm is not correct, i.e. A(t) ∈
P ∗

ε (F (t)) for some t. According to Def. 5 this occurs
only if some f = f (τ), τ ≤ t is (1) not ε-dominated
by any member of A(t) and not in A(t) or (2) in A(t)

but not in the Pareto set of F (t).

Case (1): For f = f (τ) not being in A(t), it can either
have been rejected at t = τ or accepted at t = τ and
removed later on. Removal, however, only takes place
when some new f ′ enters A, which dominates f (line
6) or whose box value dominates that of f (line 4).
Since both relations are transitive, and since they both
imply ε-dominance, there will always be an element
in A which ε-dominates f , which contradicts the as-
sumption. On the other hand, f will only be rejected
if there is another f ′ ∈ A(τ) with the same box value
and which is not dominated by f (line 10). This f ′, in
turn, ε-dominates f and – with the same argument as
before – can only be replaced by accepting elements
which also ε-dominate f .

Case (2): Since f is not in the Pareto set of F (t), there
exists f ′ = f (τ ′), τ ′ = τ, f ′ ∈ F ∗(t) with f ′ � f .
This implies box(f ′) � box(f) or box(f ′) = box(f).
Hence, if τ ′ < τ , f would not have been accepted. If
τ ′ > τ , f would have been removed from A. Thus,
f ∈ A(t), which contradicts the assumption.

2. The objective space is divided into
(

log K
log (1+ε)

)m

boxes, and from each box at most one point can
be in A(t) at the same time. Now consider the(

log K
log (1+ε)

)(m−1)

equivalence classes of boxes where

– without loss of generality – in each class the boxes
have the same coordinates in all but one dimension.
There are log K

log (1+ε) different boxes in each class con-
stituting a chain of dominating boxes. Hence, only
one point from each of these classes can be a member
of A(t) at the same time.

✷

As a result, Algorithm 2 uses a finite memory, successively
updates a finite subset of vectors that ε-dominate all vectors
generated so far. It can be guaranteed that the subset con-
tains only elements which are not dominated by any of the
generated vectors. Note that specific bounds on the objec-
tive values are not used in the algorithm itself and are not
required for the convergence proof (claim 1 of Theorem 1).
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They are only utilized to prove the relation between ε and
the size of the archive given in the second claim.

4 Simulations

This section presents some simulation results to demon-
strate the behavior of the proposed algorithm for two ex-
ample multi-objective optimization problems (MOPs). We
use instances of the iterative search procedure (specified
in Alg. 1) with a common generator and examine different
update operators.

An isolated assessment of the update strategy of course re-
quires the generator to act independently from the archive
set A(t) to guarantee that exactly the same sequence of
points is given to the update function for all different strate-
gies. Despite that, the exact implementation of the gener-
ator is irrelevant for this study, therefore we use standard
MOEAs here and take the points in the sequence of their
generation as input for the different update functions.

4.1 Convergence Behavior

At first we are interested in how different update strategies
affect the convergence of the sequence (A(t)). As a test
problem a two-objective knapsack problem with 100 items
is taken from (Zitzler and Thiele 1999). The low number
of decision variables is sufficient to show the anticipated
effects, and we found it advantageous for visualization and
comparison purposes to be able to compute the complete
Pareto set F ∗ beforehand via Integer Linear Programming.

The points given to update operator are generated by a
standard NSGA-II with population size 100, one-point
crossover, and bit-flip mutations (with probability 4/n =
0.04). Figure 4 shows the output A(t) of sample runs
for the different instances after t = 5, 000, 000 and t =
10, 000, 000 iterations (generated objective vectors), using
update operators from SPEA, NSGA-II (both with maxi-
mum archive size of 20 and Alg. 2 with ε = 0.01.

It is clearly visible that both the archiving (selection) strate-
gies from SPEA and NSGA-II suffer from the problem of
partial deterioration: Non-dominated points – even those
which belong to the “real” Pareto set – can get lost, and
on the long run might even be replaced by dominated solu-
tions. This is certainly not desirable, and algorithms rely-
ing on these strategies cannot be claimed to be convergent,
even if the generator would be able to produce all elements
of the Pareto set F ∗2. In contrast, Alg. 2 is able to maintain
an ε-Pareto set of the generated solutions over time.

2In our experiments almost all Pareto-optimal points have
been produced by the generator within t = 10, 000, 000 itera-
tions.
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Figure 4: Objective space of the knapsack problem, the
dots show the elements of the Pareto set F ∗. The dif-
ferent figures correspond to different instances of the up-
date operator in Alg. 1: NSGA-II (upper left), SPEA (up-
per right), and Alg. 2 (lower row). In each figure the
archive set A(t) is shown, for t = 5, 000, 000 (with dia-
monds) and for t = 10, 000, 000 (with boxes). A subset of
the samples is highlighted so visualize the negative effect
of losing Pareto-optimal solutions in many current archiv-
ing/selection schemes.
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Figure 5: Objective space of MOP (8). The discretization
into boxes according to Alg. 3 is indicated by showing all
boxes that intersect with the Pareto set F ∗ in dashed lines.
The non-dominated boxes are drawn in bold lines. The cir-
cles correspond to the output A of different instances of the
iterative search algorithm Alg. 1. For the upper figure an
update function according to AR-1 was used, for the lower
figure the function according to Alg. 2.

4.2 Distribution Behavior

In order to test for the distribution behavior only candi-
dates are taken into account which fulfill the requirements
for convergence: Rudolph’s and Agapie’s algorithm AR-
I (Rudolph and Agapie 2000) and Alg. 2. As a test case
the following continuous three-dimensional three-objective
problem is used:

Max f1(x) = 3 − (1 + x3) cos(x1π/2) cos(x2π/2),
Max f2(x) = 3 − (1 + x3) cos(x1π/2) sin(x2π/2),
Max f3(x) = 3 − (1 + x3) cos(x1π/2) sin(x1π/2),

0 ≤ xi ≤ 1, for i = 1, 2, 3,




(8)

The Pareto set of this problem is a surface, a quadrant of the
hyper-sphere of radius 1 around (3, 3, 3). For the results

shown in Figure 5 the real-coded NSGA without fitness
sharing, crossover with SBX (distribution index η = 5) and
population size 100 was used to generate the candidate so-
lutions. The distribution quality is judged in terms of the ε-
dominance concept, therefore a discretization of the objec-
tive space into boxes (using Alg. 3 with ε = 0.05) is plot-
ted instead of the actual Pareto set. As the multiplicative ε
is used, it can be seen that the box sizes vary and reflect
the relative deviations from different parts of the Pareto
set. From all boxes intersecting with the Pareto set the
non-dominated ones are highlighted. For an ε-approximate
Pareto set it is now sufficient to have exactly one solution
in each of those non-dominated boxes. This condition is
fulfilled by the algorithm using the update strategy Alg. 2,
leading to an almost symmetric distribution covering all re-
gions. The strategy from AR-1, which does not discrim-
inate among non-dominated points, is sensitive to the se-
quence of the generated solution and fails to provide an ε-
approximation of the Pareto set of similar quality even with
an allowed archive size of 50.

Looking at the graphs of Algorithm 2, one might have the
impression that not all regions of the Pareto set are equally
represented by archive members. However, these examples
represent optimal approximations according to the con-
cepts explained in section 3.2. They are not intended to
give a uniform distribution on a (hypothetical) surface that
might even not exist as in the discrete case.

4.3 Results

The simulation results support the claims of the preceding
sections. The archive updating strategy plays a crucial role
for the convergence and distribution properties. The key
results are:

• Rudolph’s and Agapie’s algorithm guarantees con-
vergence, but has no control over the distribution of
points.

• The current MOEAs designed for maintaining a good
distribution do not fulfill the convergence criterion, as
has been demonstrated for SPEA and NSGA-II for a
simple test case.

• The algorithm proposed in this paper fulfills both the
convergence criterion and the desired distribution con-
trol as it always maintains an ε-Pareto set of the gen-
erated solutions.

5 Possible Extensions

The above baseline algorithms can be extended in several
interesting and useful ways. In the following we discuss
two examples.
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5.1 Steering Search by Defining Ranges of
Non-acceptance

In most multi-objective optimization problems, a decision-
maker plays an important role. If the complete search space
is not of importance to a decision-maker, the above algo-
rithm can be used to search along preferred regions. The
concept of ε-dominance will then allow pre-specified pre-
cisions to exist among the preferred Pareto-optimal vectors.

5.2 Fixed Archive Size by Dynamic Adaptation of ε

Instead of predetermining an approximation accuracy ε in
advance, one might ask whether the algorithm would be
able to dynamically adjust its accuracy to always maintain
a set of vectors of a given size. A concept like this is im-
plemented in PAES, where the hyper-grid dividing the ob-
jective space is adapted to the current ranges given by the
non-dominated vectors. However, PAES does not guaran-
tee convergence.

The idea is to start with a minimal ε, which is systemati-
cally increased every time the number of archived vectors
exceeds a predetermined maximum. In Algorithm 2, a sim-
ple modification would be to start with a minimal ε using a
first pair of mutually non-dominated vectors. Afterwards,
the increase of ε is taken care of by joining boxes and dis-
carding all but the oldest element from the new box.

The joining of boxes could be done in several ways, how-
ever for ensuring the convergence property it is important
not to move or translate any of the box boundaries, in other
words, the assignment of the elements to the boxes must
stay the same. A simple implementation could join ev-
ery second box, while it suffices to join only in the di-
mensions where the ranges have been exceeded by the
new element. This will mean that in the worst case an
area will be ε-dominated which is almost twice the size of
the actual Pareto set in each dimension. A more sophisti-
cated approach would join only two boxes at a time, which
would eliminate the over-covering, but involve a compli-
cated book-keeping of several different ε values in each di-
mension.

6 Conclusions

In this study we have addressed the problem of simultane-
ously achieving convergence and distribution quality when
approximating Pareto sets of multi-objective optimization
problems. It was shown that none of the existing multi-
objective evolutionary algorithms is able to accomplish
both tasks.

We proposed the ε-(approximate) Pareto set as a solution
concept for evolutionary multi-objective optimization that

• is theoretically attractive as it helps to construct algo-
rithms with the desired convergence and distribution
properties, and

• is practically important as it works with a solution set
with bounded size and predefined resolution.

We constructed the first archive updating strategy that

• can be used in any iterative search process and

• allows for the desired convergence properties while at
the same time

• guaranteeing an optimal distribution of solutions.

As we have exclusively dealt with the update operator (or
the archiving/selection scheme of the corresponding search
and optimization algorithms) so far, all statements had to
be done with respect to the generated solutions only. In or-
der to make statements about the convergence to the Pareto
set of the whole search space one has of course to include
the generator into the analysis. However, with appropri-
ate assumptions (non-vanishing probability measure for the
generation of all search points at any time step) it is clear
that the probability of not creating a specific point goes to
zero as t goes to infinity. Analogously to (Hanne 1999)
or (Rudolph and Agapie 2000), results on the limit behav-
ior such as almost sure convergence and stochastic conver-
gence to an ε-Pareto set (including all nice features as de-
scribed in this paper) can be derived.

Though the limit behavior might be of mainly theoretical
interest, it is of high practical relevance that now the prob-
lem of partial deterioration, which was imminent even in
the elitist MOEAs, could be solved. Using the proposed
archiving strategy maintaining an ε-Pareto set the user can
be sure to have in addition to a representative, well dis-
tributed approximation also a true elitist algorithm in the
sense that no better solution had been found and subse-
quently lost during the run.

Interesting behaviors occur when there are interactions be-
tween the archive and the generator. Allowing the archive
members to take part in the generating process has empir-
ically been investigated e.g. by Laumanns et al. (2000,
2001) using a more general model and a parameter called
elitism intensity. Now, also the theoretical foundation is
given so that the archived members are really guaranteed
to be the best solutions found.
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Abstract

Based on negative correlation learning [1]

and evolutionary learning, evolutionary en-

sembles with negative correlation learning

(EENCL) was proposed for learning and de-

signing of neural network ensembles [2]. The

idea of EENCL is to regard the population of

neural networks as an ensemble, and the evo-

lutionary process as the design of neural net-

work ensembles. EENCL used a �tness shar-

ing based on the covering set. Such �tness

sharing did not make accurate measurement

on the similarity in the population. In this

paper, a �tness sharing scheme based on mu-

tual information is introduced in EENCL to

evolve a diverse and cooperative population.

The e�ectiveness of such evolutionary learn-

ing approach was tested on two real-world

problems.

1 Introduction

Neural network ensembles adopt the divide-and-

conquer strategy. Instead of using a single network

to solve a task, an neural network ensemble combines

a set of neural networks which learn to subdivide the

task and thereby solve it more eÆciently and elegantly

[1]. However, designing neural network ensembles is a

very diÆcult task. It relies heavily on human experts

and prior knowledge about the problem. Based on neg-

ative correlation learning [3, 1] and evolutionary learn-

ing, evolutionary ensembles with negative correlation

learning (EENCL) was proposed for learning and de-

signing of neural network ensembles [2]. The idea of

EENCL is to regard the population of neural networks

as an ensemble, and the evolutionary process as the

design of neural network ensembles.

The negative correlation learning and �tness sharing

[4, 5] were adopted in EENCL to encourage the forma-

tion of species in the population. The idea of negative

correlation learning is to encourage di�erent individ-

ual networks in the ensemble to learn di�erent parts or

aspects of the training data, so that the ensemble can

better learn the entire training data. In negative cor-

relation learning, the individual networks are trained

simultaneously rather than independently or sequen-

tially. This provides an opportunity for the individual

networks to interact with each other and to specialize.

Fitness sharing refers to a class of speciation tech-

niques in evolutionary computation. The �tness shar-

ing used in EENCL was based on the idea of the cov-

ering set that consists of the same training patterns

correctly classi�ed by the shared individuals. This �t-

ness sharing cannot accurately measure the similarity

between two individuals. For example, even two indi-

viduals have the same covering set, the outputs of two

individuals can be quite di�erent. A more accurate

similarity measurement between two neural networks

in a population can be de�ned by the explicit mutual

information of output variables extracted by two neu-

ral networks. The mutual information between two

variables, output Fi of network i and output Fj of

network j, is given by

I(Fi;Fj) = h(Fi) + h(Fj)� h(Fi; Fj) (1)

where h(Fi) is the di�erential entropy of Fi, h(Fj)

is the di�erential entropy of Fj , and h(Fi; Fj) is the

joint di�erential entropy of Fi and Fj . The equation

shows that joint di�erential entropy can only have high

entropy if the mutual information between two vari-

ables is low, while each variable has high individual

entropy. That is, the lower mutual information two

variables have, the more di�erent they are. By min-

imizing the mutual information between variables ex-

tracted by two neural networks, two neural networks

are forced to convey di�erent information about some
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features of their input.

This paper presents further results on how to evolve

a cooperative population of neural networks by min-

imizing mutual information [6]. Negative correlation

learning is �rstly analyzed in terms of minimization of

mutual information on a regression task. Secondly, a

�tness sharing based on mutual information is intro-

duced into EENCL. Through minimization of mutual

information, a diverse and cooperative population of

neural networks can be evolved by EENCL. The ef-

fectiveness of such evolutionary learning approach was

tested on two real-world problems.

The rest of this paper is organized as follows: Section 2

explores the connections between the mutual informa-

tion and the correlation coeÆcient, and explains how

negative correlation learning can be used to minimize

mutual information. Section 3 analyzes negative cor-

relation learning via the metrics of mutual information

on a regression task. Section 4 describes EENCL for

evolving a population of neural networks, and explores

the connections between �tness sharing and mutual in-

formation. Section 5 presents experimental results on

EENCL by minimizing mutual information. Finally,

Section 6 concludes with a summary of the paper.

2 Minimizing Mutual Information by

Negative Correlation Learning

2.1 Minimization of Mutual Information

Suppose the output Fi of network i and the output

Fj of network j are Gaussian random variables. Their

variances are �2i and �2j , respectively. The mutual in-

formation between Fi and Fj can be de�ned by Eq.(1)

[7]. The di�erential entropy h(Fi) and h(Fj) are given

by

h(Fi) =
1

2
[1 + log(2��2i )] (2)

and

h(Fj) =
1

2
[1 + log(2��2j )] (3)

The joint di�erential entropy h(Fi; Fj) is given by

h(Fi; Fj) = 1 + log(2�) +
1

2
log jdet(�)j (4)

where � is the 2-by-2 covariance matrix of Fi and Fj .

The determinant of � is

det(�) = �2i �
2
i (1� �2ij) (5)

where �ij is the correlation coeÆcient of Fi and Fj

�ij =
E[(Fi �E[Fi])(Fj �E[Fj ])]

�2i �
2
j

(6)

where E indicates the expectation value. Using the

formula of Eq.(5), we get

h(Fi; Fj) = 1 + log(2�) +
1

2
log[�2i �

2
i (1� �2ij)] (7)

By substituting Eqs.(2),(3), and (7) in (1), we get

I(Fi;Fj) = �

1

2
log(1� �2ij) (8)

From Eq.(8), we may make the following statements:

1. If Fi and Fj are uncorrelated, the correlation co-

eÆcient �ij is reduced to zero, and the mutual

information I(Fi;Fj) becomes very small.

2. If Fi and Fj are highly positively correlated, the

correlation coeÆcient �ij is close to 1, and mutual

information I(Fi;Fj) becomes very large.

Both theoretical and experimental results [8] have in-

dicated that when individual networks in an ensem-

ble are unbiased, average procedures are most e�ec-

tive in combining them when errors in the individual

networks are negatively correlated and moderately ef-

fective when the errors are uncorrelated. There is little

to be gained from average procedures when the errors

are positively correlated. In order to create a popu-

lation of neural networks that are as uncorrelated as

possible, the mutual information between each individ-

ual neural network and the rest of population should

be minimized. Minimizing the mutual information be-

tween each individual neural network and the rest of

population is equivalent to minimizing the correlation

coeÆcient between them.

2.2 Negative Correlation Learning

We consider estimating y by forming an neu-

ral network ensemble whose output is a sim-

ple averaging of outputs Fi of a set of neural

networks by given the training data set D =

f(x(1); y(1)); � � � ; (x(N); y(N))g. All the individual

networks in the ensemble are trained on the same

training data set D

F (n) =
1

M
�M
i=1Fi(n) (9)

where Fi(n) is the output of individual network i on

the nth training pattern x(n), F (n) is the output of the

neural network ensemble on the nth training pattern,

and M is the number of individual networks in the

neural network ensemble.

The idea of negative correlation learning is to intro-

duce a correlation penalty term into the error function
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of each individual network so that the mutual infor-

mation among the ensemble can be minimized. The

error function Ei for individual i on the training data

set D = f(x(1); y(1)); � � � ; (x(N); y(N))g in negative

correlation learning is de�ned by

Ei =
1

N
�N
n=1Ei(n)

=
1

N
�N
n=1

�
1

2
(Fi(n)� y(n))2 + �pi(n)

�
(10)

where N is the number of training patterns, Ei(n) is

the value of the error function of network i at presenta-

tion of the nth training pattern, and y(n) is the desired

output of the nth training pattern. The �rst term in

the right side of Eq.(10) is the mean-squared error of

individual network i. The second term pi is a correla-

tion penalty function. The purpose of minimizing pi
is to negatively correlate each individual's error with

errors for the rest of the ensemble. The parameter �

is used to adjust the strength of the penalty.

The penalty function pi has the form

pi(n) = �

1

2
(Fi(n)� F (n))2 (11)

The partial derivative of Ei with respect to the output

of individual i on the nth training pattern is

@Ei(n)

@Fi(n)
= Fi(n)� y(n)� �(Fi(n)� F (n))

= (1� �)(Fi(n)� y(n))

+�(F (n)� y(n)) (12)

where we have made use of the assumption that the

output of ensemble F (n) has constant value with re-

spect to Fi(n). The value of parameter � lies inside

the range 0 � � � 1 so that both (1� �) and � have

nonnegative values. The standard back-propagation

(BP) [9] algorithm has been used for weight adjust-

ments in the mode of pattern-by-pattern updating.

That is, weight updating of all the individual net-

works is performed simultaneously using Eq.(12) after

the presentation of each training pattern. One com-

plete presentation of the entire training set during the

learning process is called an epoch. Negative correla-

tion learning from Eq.(12) is a simple extension to the

standard BP algorithm. In fact, the only modi�cation

that is needed is to calculate an extra term of the form

�(Fi(n)� F (n)) for the ith neural network.

From Eqs.(10), (11), and (12), we may make the fol-

lowing observations:

1. During the training process, all the individual

networks interact with each other through their

penalty terms in the error functions. Each net-

work Fi minimizes not only the di�erence be-

tween Fi(n) and y(n), but also the di�erence be-

tween F (n) and y(n). That is, negative correla-

tion learning considers errors what all other neu-

ral networks have learned while training an neural

network.

2. For � = 0:0, there are no correlation penalty

terms in the error functions of the individual

networks, and the individual networks are just

trained independently using BP. That is, indepen-

dent training using BP for the individual networks

is a special case of negative correlation learning.

3. For � = 1, from Eq.(12) we get

@Ei(n)

@Fi(n)
= F (n)� y(n) (13)

Note that the error of the ensemble for the nth

training pattern is de�ned by

Eensemble =
1

2
(
1

M
�M
i=1Fi(n)� y(n))2 (14)

The partial derivative of Eensemble with respect

to Fi on the nth training pattern is

@Eensemble

@Fi(n)
=

1

M
(
1

M
�M
i=1Fi(n)� y(n))

=
1

M
(F (n)� y(n)) (15)

In this case, we get

@Ei(n)

@Fi(n)
/

@Eensemble

@Fi(n)
(16)

The minimization of the error function of the en-

semble is achieved by minimizing the error func-

tions of the individual networks. From this point

of view, negative correlation learning provides a

novel way to decompose the learning task of the

ensemble into a number of subtasks for di�erent

individual networks.

3 Simulation Results

In order to understand how negative correlation learn-

ing minimizes mutual information, this section analy-

ses it through measuring mutual information on a re-

gression task in three cases: noise free condition, small

noise condition, and large noise condition.
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3.1 Simulation Setup

The regression function investigated here is

f(x) =
1

13

�
10sin(�x1x2) + 20

�
x3 �

1

2

�2

+10x4 + 5x5

�
� 1 (17)

where x = [x1; : : : ; x5] is an input vector whose compo-

nents lie between zero and one. The value of f(x) lies

in the interval [�1; 1]. This regression task has been

used by Jacobs [10] to estimate the bias of mixture-of-

experts architectures and the variance and covariance

of experts' weighted outputs.

Twenty-�ve training sets, (x(k)(l); y(k)(l)), l =

1; � � � ; L, L = 500, k = 1; � � � ;K, K = 25, were created

at random. Each set consisted of 500 input-output

patterns in which the components of the input vectors

were independently sampled from a uniform distribu-

tion over the interval (0,1). In the noise free condition,

the target outputs were not corrupted by noise; in the

small noise condition, the target outputs were created

by adding noise sampled from a Gaussian distribution

with a mean of zero and a variance of �2 = 0:1 to the

function f(x); in the large noise condition, the target

outputs were created by adding noise sampled from a

Gaussian distribution with a mean of zero and a vari-

ance of �2 = 0:2 to the function f(x).

A testing set of 1024 input-output patterns,

(t(n); d(n)), n = 1; � � � ; N , N = 1024, was also gener-

ated. For this set, the components of the input vectors

were independently sampled from a uniform distribu-

tion over the interval (0,1), and the target outputs

were not corrupted by noise in all three conditions.

Each individual network in the ensemble is a multilayer

perceptron with one hidden layer. All the individual

networks have �ve hidden nodes in an ensemble archi-

tecture. The hidden node function is de�ned by the

logistic function

'(y) =
1

1 + exp (�y)
(18)

The network output is a linear combination of the out-

puts of the hidden nodes.

For each estimation of mutual information among an

ensemble, twenty-�ve simulations were conducted. In

each simulation, the ensemble was trained on a dif-

ferent training set from the same initial weights dis-

tributed inside a small range so that di�erent simu-

lations of an ensemble yielded di�erent performances

solely due to the use of di�erent training sets. Such

simulation setup follows the suggestions from Jacobs

[10].

3.2 Measurement of Mutual Information

The average outputs of the ensemble and the individ-

ual network i on the nth pattern in the testing set,

(t(n); d(n)), n = 1; � � � ; N , are denoted respectively by

F (t(n)) and F i(t(n)), which are given by

F (t(n)) =
1

K
�K
k=1F

(k)(t(n)) (19)

and

F i(t(n)) =
1

K
�K
k=1F

(k)
i (t(n)) (20)

where F (k)(t(n)) and F
(k)

i (t(n)) are the outputs of the

ensemble and the individual network i on the nth pat-

tern in the testing set from the kth simulation, respec-

tively, and K = 25 is the number of simulations. The

correlation coeÆcient between network i and network

j is given by

�ij =
�N
n=1�

K
k=1

�
F
(k)
i (t(n))� F i(t(n))

�
r
�N
n=1�

K
k=1

�
F
(k)
i (t(n))� F i(t(n))

�2 �
�
F
(k)
j (t(n)) � F j(t(n))

�
r
�N
n=1�

K
k=1

�
F
(k)
j (t(n))� F j(t(n))

�2 (21)

From Eq.(6), the integrated mutual information

among the ensembles can be de�ned by

Emi = �

1

2
�M
i=1�

M
j=1;j 6=ilog(1� �2ij) (22)

We may also de�ne the integrated mean-squared error

(MSE) on the testing set as

Etest mse =
1

N
�N
n=1

1

K
�K
k=1

�
F (k)(t(n)) � d(n)

�2
(23)

The integrated mean-squared errorEtrain on the train-

ing set is given by

Etrain mse =
1

L
�L
l=1

1

K
�K
k=1

�
F (k)(x(k)(l))� y(k)(l)

�2
(24)

3.3 Results in the Noise Free Condition

The results of negative correlation learning in the noise

free condition for the di�erent values of � at epoch

2000 are given in Table 1. The results suggest that
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Table 1: The Results of Negative Correlation Learning

in the Noise Free Condition for Di�erent � Values at

Epoch 2000.

� Emi Etest mse Etrain mse

0 0.3706 0.0016 0.0013

0.25 0.1478 0.0013 0.0010

0.5 0.1038 0.0011 0.0008

0.75 0.1704 0.0007 0.0005

1 0.6308 0.0002 0.0001

Table 2: The Results of Negative Correlation Learning

in the Small Noise Condition for Di�erent � Values at

Epoch 2000.

� Emi Etest mse Etrain mse

0 6.5495 0.0137 0.0962

0.25 3.8761 0.0128 0.0940

0.5 1.4547 0.0124 0.0915

0.75 0.3877 0.0126 0.0873

1 0.2431 0.0290 0.0778

both Etrain mse and Etest mse appeared to decrease

with increasing value of �. The mutual information

Emi among the ensemble decreased as the value of

� increased when 0 � � � 0:5. However, when �

increased further to 0:75 and 1, the mutual information

Emi had larger values. The reason of having larger

mutual information at � = 0:75 and � = 1 is that

some correlation coeÆcients had negative values and

the mutual information depends on the absolute values

of correlation coeÆcients.

In order to �nd out why Etrain mse decreased with

increasing value of �, the concept of capability of a

trained ensemble is introduced. The capability of a

trained ensemble is measured by its ability of produc-

ing correct input-output mapping on the training set

used, speci�cally, by its integrated mean-squared error

Etrain mse on the training set. The smaller Etrain mse

is, the larger capability the trained ensemble has.

3.3.1 Results in the Noise Conditions

Table 2 and Table 3 compare the performance of neg-

ative correlation learning for di�erent strength param-

eters in both small noise (variance �2 = 0:1) and large

noise (variance �2 = 0:2) conditions. The results show

that there were same trends for Emi, Etest mse, and

Etrain mse in both noise free and noise conditions when

� � 0:5. That is, Emi, Etest mse, and Etrain mse ap-

peared to decrease with increasing value of �. How-

ever, Etest mse appeared to decrease �rst and then in-

Table 3: The Results of Negative Correlation Learning

in the Large Noise Condition for Di�erent � Values at

Epoch 2000.

� Emi Etest mse Etrain mse

0 6.7503 0.0249 0.1895

0.25 3.9652 0.0235 0.1863

0.5 1.6957 0.0228 0.1813

0.75 0.4341 0.0248 0.1721

1 0.2030 0.0633 0.1512

crease with increasing value of �.

In order to �nd out why Etest mse showed di�er-

ent trends in noise free and noise conditions when

� = 0:75 and � = 1, the integrated mean-squared

error Etrain mse on the training set was also shown

in Tables 1, 2, and 3. When � = 0, the neural net-

work ensemble trained had relatively large Etrain mse.

It indicated that the capability of the neural network

ensemble trained was not big enough to produce cor-

rect input-output mapping (i.e., it was under�tting)

for this regression task. When � = 1, the neural

network ensemble trained learned too many speci�c

input-output relations (i.e., it was over�tting), and it

might memorize the training data and therefore be less

able to generalize between similar input-output pat-

terns. Although the over�tting was not observed for

the neural network ensemble used in noise free con-

dition, too large capability of the neural network en-

semble will lead to over�tting for both noise free and

noise conditions because of the ill-posedness of any �-

nite training set [11].

Choosing a proper value of � is important, and also

problem dependent. For the noise conditions used for

this regression task and the ensemble architectured

used, the performance of the ensemble was optimal

for � = 0:5 among the tested values of � in the sense

of minimizing the MSE on the testing set.

4 Evolving Neural Network

Ensembles

In EENCL [2], an evolutionary algorithm based on

evolutionary programming [12] has been used to search

for a population of diverse individual neural networks

that solve a problem together. Two major issues were

addressed in EENCL, including exploitation of the in-

teraction between individual neural design and combi-

nation, and automatic determination of the number of

individual neural networks in an ensemble. The major

steps of EENCL are given as follows [4]:
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1. Generate an initial population of M neural net-

works, and set k = 1. The number of hidden

nodes for each neural network, nh, is speci�ed

by the user. The random initial weights are dis-

tributed uniformly inside a small range.

2. Train each neural network in the initial popula-

tion on the training set for a certain number of

epochs using negative correlation learning. The

number of epochs, ne, is speci�ed by the user.

3. Randomly choose a group of nb neural networks

as parents to create nb o�spring neural networks

by Gaussian mutation.

4. Add the nb o�spring neural networks to the pop-

ulation and train the o�spring neural networks

using negative correlation learning while the re-

maining neural networks' weights are frozen.

5. Calculate the �tness of M + nb neural networks

in the population and prune the population to the

M �ttest neural networks.

6. Go to the next step if the maximum number of

generations has been reached. Otherwise, k =

k + 1 and go to Step 3.

7. Form species using the k-means algorithm.

8. Combining species to form the ensembles.

There are two levels of adaptation in EENCL: neg-

ative correlation learning at the individual level and

evolutionary learning based on evolutionary Forming

species by using the k-means algorithm in EENCL [2]

is not considered in this paper.

Fitness sharing used in EENCL is based on the idea

of covering the same training patterns by shared in-

dividuals. The procedure of calculating shared �tness

is carried out pattern-by-pattern over the training set.

If one training pattern is learned correctly by p indi-

viduals in the population, each of these p individuals

receives �tness 1=p, and the rest of the individuals in

the population receive zero �tness. Otherwise, all the

individuals in the population receive zero �tness. The

�tness is summed over all training patterns.

Rather than using the �tness sharing based on the cov-

ering set, a �tness sharing based on the minimization

of mutual information was introduced in EENCL [6].

In order to create a population of neural networks that

are as uncorrelated as possible, the mutual information

between each individual neural network and the rest

of population should be minimized. The �tness fi of

individual network i in the population can therefore

be evaluated by the mutual information:

fi =
1P

j 6=i I(Fi; Fj)
(25)

Minimization of mutual information has the similar

motivations as �tness sharing. Both of them try to

generate individuals that are di�erent from others,

though overlaps are allowed.

5 Experimental Studies

This section investigates EENCL with minimization of

mutual information on two benchmark problems: the

Australian credit card assessment problem and the di-

abetes problem. Both data sets were obtained from the

UCI machine learning benchmark repository. They are

available by anonymous ftp at ics.uci.edu (128.195.1.1)

in directory /pub/machine-learning-databases.

The Australian credit card assessment problem is to

assess applications for credit cards based on a number

of attributes. There are 690 patterns in total. The

output has two classes. The 14 attributes include 6

numeric values and 8 discrete ones, the latter having

from 2 to 14 possible values.

The diabetes data set is a two-class problem that has

500 examples of class 1 and 268 of class 2. There

are 8 attributes for each example. The data set is

rather diÆcult to classify. The so-called \class" value

is really a binarized form of another attribute that is

itself highly indicative of certain types of diabetes but

does not have a one-to-one correspondence with the

medical condition of being diabetic.

In order to tell the di�erence between EENCL and

EENCL with minimization of mutual information. We

name the later approach as EENCLMI. The experi-

mental setup is the same as the previous experimental

setup described in [13, 2]. The n-fold cross-validation

technique [14] was used to divide the data randomly

into n mutually exclusive data groups of equal size. In

each train-and-test process, one data group is selected

as the testing set, and the other (n�1) groups become

the training set. The estimated error rate is the aver-

age error rate from these n groups. In this way, the

error rate is estimated eÆciently and in an unbiased

way. The parameter n was set to be 10 for the Aus-

tralian credit card data set, and 12 for the diabetes

data set, respectively.

All parameters used in EENCLMI except for the num-

ber of training epochs were set to be the same for both

problems: the population size M (25), the number of

GENETIC ALGORITHMS 453



Table 4: Comparison of Accuracy Rates between EENCLMI and EENCL for the Australian Credit Card Data

Set. The Results Are Averaged on 10-Fold Cross-Validation. Mean and SD Indicate the Mean Value and

Standard Deviation, Respectively.

Simple Averaging Majority Voting Winner-Takes-All

Methods Mean SD Mean SD Mean SD

EENCLMI 0.864 0.038 0.870 0.040 0.868 0.039

EENCL 0.855 0.039 0.857 0.039 0.865 0.028

Table 5: Comparison of Accuracy Rates between EENCLMI and EENCL for the Diabetes Data Set. The Results

Are Averaged on 12-Fold Cross-Validation. Mean and SD Indicate the Mean Value and Standard Deviation,

Respectively.

Simple Averaging Majority Voting Winner-Takes-All

Methods Mean SD Mean SD Mean SD

EENCLMI 0.771 0.049 0.777 0.046 0.773 0.051

EENCL 0.766 0.039 0.764 0.042 0.779 0.045

generations (200), the reproduction block size nb (2),

the strength parameter � (0.5), the minimum number

of cluster sets (3), and the maximum number of clus-

ter sets (25). The number of training epochs ne was

set to 3 for the Australian credit card data set, and 15

for the diabetes data set. The used neural networks

in the population are multilayer perceptrons with one

hidden layer and �ve hidden nodes. These parame-

ters were selected after some preliminary experiments.

They were not meant to be optimal.

5.1 Experimental Results

Tables 4{5 show the results of EENCLMI for the two

data sets, where the ensembles were constructed by the

whole population in the last generation. Three com-

bination methods for determining the output of the

ensemble have been investigated in EENCLMI. The

�rst is simple averaging. The output of the ensem-

ble is formed by a simple averaging of output of in-

dividual neural networks in the ensemble. The sec-

ond is majority voting. The output of the greatest

number of individual neural networks will be the out-

put of the ensemble. If there is a tie, the output of

the ensemble is rejected. The third is winner-takes-

all. For each pattern of the testing set, the output of

the ensemble is only decided by the individual neu-

ral network whose output has the highest activation.

The accuracy rate refers to the percentage of correct

classi�cations produced by EENCLMI. In comparison

with the accuracy rates obtained by three combination

methods, majority voting and winner-takes-all outper-

formed simple averaging on both problems. Simple av-

eraging is more suitable to the regression type of tasks.

Because both problems studied in this paper are clas-

si�cation tasks, majority voting and winner-takes-all

are better choices.

Tables 4{5 compare the results produced EENCLMI

and EENCL using three combination methods. Ma-

jority voting supports EENCLMI, while winner-takes-

all favors EENCL. Since the only di�erence between

EENCLMI and EENCL is the �tness sharing scheme

used, the results suggest that combination methods

and �tness sharing are closely related to each other.

Further studies are needed to probe the relationship

of these two.
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Mutual Information among Population

Figure 1: The Evolution of the Mean of Sum of the

Mutual Information among the Population for the

Australian Credit Card Data Set. The Mean Is Av-

eraged on 10-fold Cross-Validation. The Vertical Axis

Is the Mutual Information Value and the Horizontal

Axis Is the Number of Generations.
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In order to observe the evolutionary process of the mu-

tual information among the population in EENCLMI,

Figure 1 show the evolution of the mean of sum of the

mutual information among the population for the Aus-

tralian credit card data set. The sum of the mutual

information among the population is calculated by

Ipopulation =
1

2

MX
i=1

MX
j=1;j 6=i

I(Fi; Fj) (26)

where Fi is the vector formed by the output of network

i on the training set, and Fj is the vector formed by the

output of network j on the training set. The mean of

Ipopulation is averaged on 10-fold cross-validation. The

evolutionary processes clearly shows that the value of

mutual information among the population steadily de-

creased through the whole evolution.

6 Conclusions

Minimization of mutual information has been intro-

duced as a �tness sharing scheme in EENCL. Com-

pared with the �tness sharing based on the covering

set originally used in EENCL [2], mutual information

provides more accurate measurement on the similarity.

By minimizing mutual information, a diverse popula-

tion can be evolved.

This paper has also analyzed negative correlation

learning in terms of mutual information on a regression

task in the di�erent noise conditions. Unlike indepen-

dent training which creates larger mutual information

among the ensemble, negative correlation learning can

produce smaller mutual information among the ensem-

ble.
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Abstract

Genetic algorithms are often well suited
for optimization problems because of their
parallel searching and evolutionary ability.
Crossover and mutation are believed to be
the main exploration operators in GA. In this
paper, we focus on how crossover and muta-
tion work in GA and investigate their e�ect
on bit's frequency of the population. To in-
crease robustness against uncertainty of GA,
a new recombination method based on bit's
frequency of the population and a new robust
generation strategy were proposed. The pro-
posed methods were tested on the problem
with many local minima. Simulation results
demonstrate the e�ectiveness of the proposed
methods.

1 Introduction

Genetic algorithm (GA) is a random searching method
with some special features. One feature is that
GAs are versatile evolutionary computation techniques
largely based on the principle of survival of the �ttest
[1]. Another is the genetic operators such as crossover
and mutation. When using GA for solving a given
problem, the user has to design so many parts to make
GA e�ective, such as the number of population, pop-
ulation size, mutation rate, crossover rate, selection
pressure and selection scheme. However, GA can not
always get good solutions we want, because it is dif-
�cult for users to design an e�ective GA which is a
random searching method.

A prevalent method in GA is to assign survival proba-
bilities to corresponding individuals and tune the prob-
abilities to obtain the balance between exploration and
exploitation[2]. In GA, the crossover and mutation are

believed to be the main exploration operators in the
working of GA as an optimization tool. In this paper,
we focus on the variance of the distribution of the indi-
viduals on a hyper-plane, through a new way to investi-
gate how the mutation and crossover work in GA. Fur-
thermore, a new recombination method based on bit's

frequency (RCBF) was proposed, which can make the
population distribute more uniformly than the \con-
ventional" crossover such as one point crossover, two
point crossover and uniform crossover. In addition,
because all messages from the population are stored
in bit's frequency, a new robust generation strategy
(RGS) is proposed where the t + m th generation is
determined not only by the t + m � 1 th generation
but also by generations from the t th to the t+m� 2
th. According to the simulation results, we can �nd
GA by using RCBF and RGS can search for the so-
lutions more robustly than \conventional" GA, espe-
cially when the feasible solution space is very large.

This paper is organized as follows. Next section is
about a new way of analyzing crossover and mutation
of GA. Section 3 introduces RCBF and give some simu-
lation results. Section 4 introduces RGS and give some
simulation results. The last section o�ers concluding
remarks and future perspectives.

2 A New Way of Analyzing GA

The GA studied in this paper is the one similar to
Simple Genetic Algorithm de�ned in [2].

2.1 Mathematical description

A k th binary individual Xk in a population can be
given by

Xk = (x1k ; : : : ; x
j
k; : : : ; x

L
k ); (1)

where L is the length of the binary individual, xjk
stands for the j th bit of the k th individual. A pop-
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ulation ~X can be de�ned as

~X = (X1; : : : ; Xk; : : : ; XN ); (2)

where N is the population size. The feasible space of
bit xjk is f0; 1g. The feasible space of the individual
Xk is f0; 1gL.

De�nition 2.1 (Bit's frequency) Let f j~X
be the j th

bit's frequency of the population ~X, where

f
j

~X
=

1

N

NX
k=0

x
j
k: (3)

The feasible space Sf of f j~X
is [0; 1]. The bit's fre-

quency string F ~X
can be given by

F ~X
= (f1~X ; : : : ; f

j

~X
; : : : ; fL~X

); (4)

where the feasible space SLf of the bit's frequency

string is [0; 1]L.

If the population is distributed in ZL, the population
~X is a set of the vertex of the unit-box with L di-
mensions. The bit's frequency string F ~X

can be repre-
sented in RL. We can see a population is a dynamical
structure with a centre of gravity F ~X

in RL. To inves-
tigate the e�ect of mutation and crossover, we will do
some research on the variance of the centre of gravity
of the population.

2.2 Crossover Operator

The crossover operator Tc is a very complex opera-
tor to recombine the gene of each individual in the
population. There exist a number of crossover opera-
tors in the GA literature, such as one point crossover,
two point crossover and uniform crossover. Accord-
ing to the quality of crossover, we know the crossover
operators don't change the bit's frequency string. To
investigate the e�ect of the crossover operator, let us
see the next de�nition.

De�nition 2.2 If F ~X
=F~Y , we can say the population

~X is similar to the population ~Y , denoted by ~X � ~Y .

Because we can not derive ~X = ~Y ( ~X and ~Y are the

same) from ~X � ~Y , the crossover operators can change
the population from one case to another with the same
bit's frequency string.

De�nition 2.3 (Distribution state function) we use a
two-order function to show the distribution state E~Y

of the population ~Y as follows,

E~Y
=
N2
(0;:::;0) +N2

(0;:::;1) + : : :+N2
(1;:::;1)

N2
; (5)
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1
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j

f i
X

f j
X

Fig. 1. Mechanism of mutation in F ~X
.

whereN(:::) is the overlapping number of the individual
(: : :), and N(0;:::;0) +N(0;:::;1) + : : :+N(1;:::;1) = N .

If the bit's frequency string F~Y of the population ~Y is
determined, using the following N(y1;:::;yj ;:::;yL)

N(y1;:::;yj ;:::;yL) = b(
LY
j=1

f̂
j

~Y
) N + 0:5c; (6)

where

f̂
j

~Y
=

8><
>:

f
j

~Y
if yj = 1

1� f
j

~Y
if yj = 0

then E~Y
has the minimum value, denoted by Emin.

Furthermore, as Emin is determined by the bit's fre-
quency string F~Y , when F~Y = F0:5 (where F0:5 =
(0:5; : : : ; 0:5)), Emin will be the most minimum.

Supposing we use Tc to make the population ~X

crossover d times where d = 1; 2; : : :, then we can
give E ~X

! Emin when d ! 1. In other words, the
crossover operator has an ability to make the popu-
lation distribute uniformly without changing the bit's
frequency string.

2.3 Mutation Operator

The mutation operator is a force Tm (a vector quan-
tity) to maintain the diversity in the population and is
used with a small probability, pm. To give the direction
and strength of the mutation force, we describe the
population ~X onto the plane, for example, (f i~X ; f

j

~X
)

plane shown in Fig.1, where f i~X and f
j

~X
are the lat-

eral and vertical coordinates. In Fig.1, F ij
0:5 is the two

dimensional point of F0:5 , F
ij

~X
is the two dimensional
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point of F ~X
, T ij

m is the two dimention vector quantity

of Tm on the plane (f i~X ; f
j

~X
), T i

m and T j
m are the com-

ponent quantities of Tm on the f i~X and f
j

~X
coordinates

respectively. We can easily give T i
m and T j

m as follows,

T
i
m =

N(xi=1) �N(xi=0)

N
pm;

T j
m =

N(xj=1) �N(xj=0)

N
pm;

where N(�) is the number of individuals of the popu-

lation ~X where xi or xj is equal to 0 or 1, therefore
N(xi=1) + N(xi=0) = N(xj=1) + N(xj=0) = N . So we
can easily give the strength of T ij

m as follows,

jT ij
m j =

q�N
(xi=1)

�N
(xi=0)

N

�2
+

�N
(xj=1)

�N
(xj=0)

N

�2
pm

= 2 j
����!
F
ij

~X
F
ij
0:5j pm;

where
����!
F
ij

~X
F
ij
0:5 is a vector from the point F ij

~X
to F

ij
0:5,

j
����!
F
ij

~X
F
ij
0:5j is the length of the vector

����!
F
ij

~X
F
ij
0:5. The di-

rection of T ij
m can be easily demonstrated to be the

same as the direction of the vector
����!
F
ij

~X
F
ij
0:5. Generally,

we can easily give the strength of Tm as follows,

jTmj = 2 j����!F ~X
F0:5j pm; (7)

where j����!F ~X
F0:5j is the distance between point F ~X

and
F0:5. The direction of Tm is from point F ~X

to F0:5.

According to Eq.(7), we can see mutation operator can
change the bit's frequency string, where the strength
of the mutation force is changed proportionally along
with the convergence status (represented by j����!F ~X

F0:5j)
of the population and the direction of the mutation
force is always from the point F ~X

to F0:5. In other
words, the mutation operator can change Emin which
is determined by the bit's frequency string.

Furthermore, the mutation operator has another abil-
ity which is the same as the crossover operator. For
example, if the bit's frequency string F ~X

=F0:5 and

E ~X
> Emin, mutating the population ~X in�nite times,

E ~X
should be Emin without changing the bit's fre-

quency string. Generally, this ability of the mutation
operator exists in the case even when F ~X

6= F0:5 and
is smaller and smaller along with the concentration of
the population.

There exist two kinds of abilities of the mutation
operator, so we can separate the mutation operator
into two parts: the �rst part which is determined by
jN(x�=1)�N(x�=0)j can change the the bit's frequency
string while the second part which is determined by

minfN(x�=1); N(x�=0)g can make the population dis-
tribute uniformly without changing the bit's frequency
string.

2.4 Concentration of the population

In a searching process by using GAs, the variance of
the individuals' �tness is reduced due to two factors.
One factor is selection pressure producing multiple
copies of �tter population members while the other
factor is independent of population member's �tness
and is due to the stochastic nature of the selection
operator, {genetic drift.[3]

Under the operation of selection, the �tter member of
the population have higher chance of producing more
o�spring than the less member. If the selection pres-
sure is greater than the mutation and crossover force,
selection pressure makes all individuals of the popula-
tion concentrate to the optimal points. We can sepa-
rate selection methods into two main categories: using
ranking methods [4][5] and not using ranking methods.
The selection pressure without ranking methods is de-
termined by the di�erence of the individuals' �tness, so
it changes along with the evolutionary process. The se-
lection pressure with ranking methods doesn't change
along with the di�erence of the individuals' �tness. So
the selection pressure with ranking methods can be
more easily controlled than without ranking methods.
But it takes much time to calculate the rank of each
individual. Genetic drift makes the population con-
centrate randomly. The e�ect of genetic drift is not
shown very clearly when the objective function is a
unimodal function. But for multimodal functions, ge-
netic drift should make the population concentrate to
one of the optimal solutions randomly.

Anyway, selection pressure and genetic drift make the
population concentrate. In other words, they make the
j����!F ~X

F0:5j and E ~X
large.

3 Recombination Method based on
Bit's Frequency

3.1 Species and Sampling

From the previous section, when ~X � ~Y and E~Y
=

Emin, the mutation (the second part) and crossover op-

erators make the population ~X approach ~Y . In other
words, the population ~Y is stabler than the population
~X. Using this, a new recombination method stated in
3.2 is proposed.

De�nition 3.1 (Species) A species can be de�ned as:
a group of individuals that 1)actually or potentially
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START

Reproduction
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the bit’s frequency

Sampling N times

Mutation

N

STOP

Sufficient
Iteration

t = t + 1

Y

Fig. 2. Structure of the proposed algorithm based on
bit's frequency.

interbreed with each other but not with other groups,
2)the distinction from other groups is the bit's fre-
quency string F , where F = (f1; : : : ; f j ; : : : ; fL), f j is
the frequency when `1' appears in the j th bit of the
species

De�nition 3.2 (Sampling) Sampling is an operator
such as getting sample individuals from a species. This
operator is given as follows: each bit of sample indi-
viduals is determined randomly according to the bit's
frequency string F of the species.

According to the de�nitions, a species is a population
with a certain bit's frequency string. The individuals
of the species can crossover with each other but can not
do with other species. Each bit's of the individualX of
the species can be determined by this bit's frequency.
It means the distribution of the individuals can satisfy
Eq.6 and is not changed by crossover and the second
part of mutation because E ~X

is minimum.

3.2 Flow of the proposed method

An simple genetic algorithm by using RCBF is shown
in this subsection. The basic structure is shown in
Fig.2, where the initial value of the bit's frequency
string F is F0:5. One iteration at the t th generation
can be described as follows: 1)after sampling N times
according to the bit's frequency string F(t) we can get

a population ~X(t) with N members; 2)after mutation

and reproduction we can get a population ~X 0

(t); 3)we
can calculate the bit's frequency string F ~X0

(t)
of the

population ~X 0

(t) and set the bit's frequency string for
the next generation.

In fact, we can consider RCBF as the strongest
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Fig. 3. The two-dimensional version of f8.

crossover, because it can make the population ~X 0

(t) to

be the population ~X(t+1) which is distributed the most
uniformly. It means RCBF can search more points
than \conventional" crossover method such as the uni-
form crossover method. In other words, although the
feasible search points of RCBF and uniform crossover
are the same, RCBF can search for more of them than
the uniform crossover. Especially when the feasible
solution space is very large, doing more searching is
very useful to increase the searching ability and the
robustness of GA. Furthermore, because all messages
from the environment are stored in the bit's frequency,
sometimes, it is very useful to use RCBF in order to
decrease the memory and time required for calculation.

3.3 Experiments

Generalized Schwefel's Problem which was examined
in [6]-[7] is used in our experimental studies.

min f8(x) = �
KX
i=1

(xi sin(
p
jxij));

where K = 1; 2; : : : ; 30

�500 < xi < 500

This function is a multimodal function with many lo-
cal minima, where the number of local minima in-
creases exponentially as the dimension of the function

increases like 7K . The global minimal function's value
is K � 418:98289. Fig.3 shows the two-dimensional
version of f8. To analyze the genetic algorithm by us-
ing the species concept, we can do some comparisons
of the proposed method with the uniform crossover
method.

3.3.1 Parameter Values

� Population size: Since the problem dimensions
are high, we choose a moderate population size
N=200;

� Representation: Each variable has 30 bits, so the
length of the individuals is 30�K.
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Fig. 4. Comparison between the proposed
recombination method and the uniform crossover
method in terms of the mean and the standard

deviation of function value.

� Crossover rate: We set crossover rate 1.0 and 0.5
for the uniform crossover method respectively.

� Mutation probability: We choose pm = 1
L
.

� Selection pressure: We use the nonlinear ranking
method[5] where the selection probability of the
k th individual can be calculated as pk = c� (1�
c)i�1, i is the rank of the k th individual. We set
the parameter c = 0:05.

� Iteration: The stopping generation is b50�
p
K+

0:5c.

3.3.2 Discussions

We performed 50 independent runs for the proposed
method and uniform crossover method from K = 1
to K = 30 and recorded 1)mean function value (the
mean value of the best individual of the last generation
over 50 runs) and 2)the standard deviation of function
value (the standard deviation of the best individual
of the last generation over 50 runs). Fig.4 shows the
simulation results. The upper part shows the mean
function value �f where the lateral coordinate is the
dimension of the test function, while the lower part
shows the standard deviation of the function value �f .
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uniform crossover 0.5

FX F0.5

generation

Fig. 5. Comparison of the convergence speed
between the proposed recombination method and the

uniform crossover method.

They can be calculated as follows:

�f =
1

50

50X
i=1

fi

K
;

�f =

vuut 1

50

50X
i=1

(
fi

K
� �f)2:

According to these results, we can see

� when the dimension of the function is large, the
mean function value of the proposed method is
smaller than that of the uniform method with
crossover rate 1.0, followed by that of the uniform
crossover with crossover rate 0.5. It means that
the search ability of RCBF is strongest compared
with the uniform crossover. The standard devia-
tion of RCBF is smaller than that of the uniform
method with 1.0 crossover rate, followed by that
of the uniform method with 0.5 crossover rate.
It means that RCBF can increase the robustness
against uncertainty of GA.

� when the dimension of function is small, the mean
function value and the standard deviation of the
proposed method is larger than those of the uni-
form crossover method.

Fig.5 shows the simulation results of the convergence
speed which was randomly selected when K = 20,
where the lateral coordinate is generation and the ver-
tical coordinate is j����!F ~X

F0:5j. According to these re-
sults, we can see that the population concentrating
rates of the proposed method is slower than that of
the uniform crossover with 1.0 crossover rate, followed
by that of the uniform crossover with 0.5 crossover
rate.
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4 Robust Generation Strategy (RGS)

4.1 Description of RGS

Because all messages from the population are stored
in the bit's frequency, in order to increase robustness
against uncertainty of GA, we calculate the bit's fre-
quency string F(t+m) of the t + m th generation as
follows,

Ft+m = (f1t+m; : : : ; f
j
t+m; : : : ; f

L
t+m); (m = 1; 2; 3; : : :)

where

f
j
t+m =

1

m+ 1
(f j~X0(t+m�1)

+

m�1X
i=0

f
j
t+i) (8)

f
j

~X0(t+m�1)
means the j th bit's frequency of the pop-

ulation ~X 0 at the t+m� 1 th generation. Eq.8 means
the bit's frequency string at the t +m th generation
is determined not only by the bit's frequency string
F ~X0(t+m�1)

but also by the bit's frequency string from

the t+m� 1 th to the t th generation. This method
is named robust generation strategy(RGS).

4.2 Reason of Robustness

To investigate the e�ect of RGS, let us see a special
case where m = 1. If m = 1, Eq.8 can be described as
follows,

f
j
t+1 =

1

2
(f j

~X0(t)
+ f

j
t ): (9)
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Fig. 7. Population concertrating rates by using RGS
under m = 1; 2 respectively.

Eq.9 is a recursion formula and can be easily converted
into as follows,

f
j
t+1 =

1

2
f
j

~X0(t)
+

1

22
f
j

~X0(t�1)
+ � � �+

1

2t
f
j

~X0(1)

+
1

2t
f
j
1 (10)

According to Eq.10, we can see the e�ect of genera-
tions from the �rst to the t th on the t + 1 th gener-
ation. This is reason why RSG can make GA search
for solutions robustly against uncertainty than \con-
ventional" GA. When m � 2, the relationship between
f
j
t+m and f

j

~X0(t+m�1)
; � � � ; f j~X0(1)

; f
j
1 is a little diÆcult

to be represented.

4.3 Experiments

The test function and all experiment's conditions are
the same as the subsection 3.3. Fig.6 shows the simu-
lation results under m = 1; 2 respectively. The upper
part shows the mean function value while the lower
part shows the standard deviation of function value.

According to the simulation results, we can get some
following conclusions.

� From comparison between Fig.4 and Fig.6, we can
see the mean fuction value and the standard de-
viation of Fig.6 are smaller than those of Fig.4.
It means RSG can increase the searching ability
and robustness of GA.

� Comparing m = 1 and m = 2, we can see the
mean fuction value and the standard deviation of
m = 2 are smaller than those of m = 1. It means
the increase of m can make GA search for solu-
tions more robustly.

From Fig.7 and Fig.5. we can see that the population
concentrating rates of Fig.7 are slower than those of
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Fig.5 while the concentrating rate of RGS underm = 2
is slower than that of RGS under m = 1.

5 Conclusion

In this paper, we focus on how the crossover and muta-
tion work in GA by analyzing the variance of the bit's
frequency and a new recombination method named
RCBF is proposed. This method can make the pop-
ulation to distribute uniformly as large as possible
without changing the bit's frequency string. It can
increase the searching ability and robustness against
uncertainty of GA, especially when the feasible solu-
tion space is very large. Based on RCBF, a new gener-
ation strategy named RGS is proposed where the t+m
th generation is determined not only by the t+m�1 th
generation but also by generations from the t+m� 2
th to the t th. Some experiments have clari�ed that
RGS increases the searching ability and roubustness of
GA as well.
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Abstract

The action of point crossover is modeled as

a random walk on a group, and convergence

and rate results are established for the walk.

Speci�cally, it is shown that there is a cut-o�

phenomenon in the rate at which the sample

get randomized. As long as the number of

crossover steps is less than a certain critical

number, the total variation distance (with re-

spect to the stationary distribution) is large,

and remains essentially constant. But once

the critical number has been crossed, the to-

tal variation distance goes to zero (at an ex-

ponential rate). The cut-o� number of steps

is of order of O(lN lnN) steps, where N is

the sample size, and l is the length of the

chromosome. Finally, it is shown by heuristic

arguments as well as by simulations, that if a

statistical criterion such as Kendall'sW coef-

�cient or the average Kendall's � coeÆcient is
used to measure randomness (rather than to-

tal variation distance), the sample can be said

to be random (upto statistical signi�cance) in

O(lnN) steps, rather than O(lN lnN) steps.

The properties of such criteria are character-

ized.

1 Introduction

The repeated application of point crossover on a �nite

set of chromosomes may be viewed as a random walk

on a certain graph. The aim of this paper is to show

that there is a cut-o� phenomenon associated with a

class of such \crossover walks." Roughly, the existence

of a cut-o� means that if the number of times point

crossover applied in the crossover phase, n, is less than
a certain critical number n�, the sample remains \far"

from stationarity, but for n > n�, the sample becomes
very \close" to stationarity.

There have been a variety of approaches to analyzing

the role of point crossover, including (to list a few) hy-

perplane and schema analysis[13], dynamical systems

models [5], and explicit Markov modeling [11]. How-

ever, despite the strong similarities between certain

random walks and the crossover operator (for exam-

ple, base swapping walks on matroids), not much work

has been done to explore this connection, though there

are a few outstanding exceptions [12]. In particular,

the relationship between crossover walks and cut-o�

phenomena appears to have been overlooked.

Cut-o� phenomena (\phase transitions") in random

walks, especially those associated with walks on

groups, have been intensely studied with great suc-

cess in the last two decades [2]. The basic machinery

behind these results draws upon deep results from the

representation theory of groups. The techniques were

�rst applied to study the e�ectiveness of various card

shu�ing operations, such as ri�e shu�es, perfect shuf-

es and transposition shu�es. Intuitively, there is a

great deal of similarity between shu�ing sets of cards

and the point crossover operator. In a sense, this pa-

per formalizes this intuition. We eschew a too-rigorous

presentation of results, and focus instead on heuristic

arguments and simulations that will, hopefully, inspire

a much more rigorous analysis.

The structure of the paper is as follows. In Section 2

the concept of a crossover walk is introduced. The

question of its convergence is resolved by using tech-

niques from the theory of doubly stochastic matrices.

An analysis of the rate of convergence of the crossover

walk is taken up in Section 3. In Section 4 it is argued

that the traditional criterion used to measure the de-

gree of randomness, namely, the variation distance,

may be unnecessarily strict, and two alternate criteria

are introduced. Section 5 presents simulations on the
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behavior of these alternate measures, and Section 6

introduces an informal model to explain them.

Notation: Sn will denote the symmetric group on n
symbols (the permutation group). All logarithms are

to base e. Results drawn from external sources are

referred to as \Propositions."

2 Crossover Walks

A chromosome is de�ned to be an element in �l, where

� is some �nite alphabet. Any set of chromosomes

de�nes a sample. The size of a sample is the number of

chromosomes in it and two samples are distinct if they

contain di�erent numbers of any given chromosome in

�l. Let Sl(N) (or simply, Sl) denote the set of samples
of size N .

The k-point crossover operator �k : Sl ! Sl maps
one sample to another, and is de�ned as follows. Select

a non-empty set of indices I � f1; 2; : : : ; lg with re-

spect to the \subset" measure Prk (explained below).

Let � = (�1; �2; : : : ; �l) and � = (�1; �2; : : : ; �l) rep-
resent two chromosomes drawn uniformly from the in-

put sample. Then, �k(�; �) = (�0; �0) where for all
j 2 I , �0

j
= �j and �0

j
= �j . For all j 62 I , �0

j
= �j

and �0
j
= �j . The resulting chromosomes �

0; �0 are re-
ferred to the \children" of the \parent" chromosomes

�; �.

The subset measure Prk is used to handle the dif-

ferences between 1-point, 2-point crossover etc. All

point crossover operators select a subset of indices

from f1; : : : ; lg, and swap the corresponding alleles

from the parents at these indices. 1-point crossover

(1PTX) will always select subsets of the form flg,
fl�1; lg, fl�2; l�2; lg etc. The symmetric version of
1PTX will also select subsets of the form f1g, f1; 2g,
f1; 2; 3g etc. 2-point crossover (2PTX) will select sub-
sets of the form fi; i+ 1; i + 2; : : : ; ikg for i � 1 and

ik � l. In other words, each point crossover variant

merely imposes an uniform probability measure on the

set of all subsets of f1; 2; : : : ; lg. This probability mea-
sure is unique to each point crossover, and is denoted

Prk.

The point crossover operator is usually seen as map-

ping chromosomal pairs to other chromosomal pairs,

rather than one sample to another. While opera-

tionally there is no di�erence between the two views,

modeling point crossover as taking samples to sam-

ples is analytically more convenient (at least for our

purposes).

De�ne the crossover graph G(S) = (V (S); E) where
the node set V (S) = fv1; : : : ; vjV j) is the set of all

distinct samples that can be generated from the initial

sample S by means of k-point crossover. V (S) has at
least one member, namely S, and V (S) is a �nite set

because Sl is �nite. Since k-point crossover replaces
one pair with another, all samples in G have the same

number of chromosomes.

Two nodes vi and vj in G are connected by an edge in

the edge set E i� it is possible to generate vj from vi
in one application of the �k operator. In particular,

every node vi is connected to itself (self loop). The

graph G is also connected (every node is reachable

from every other node).

Let �(S) = f�j

k
(S)gj� 0 denote the sequence of sam-

ples that is generated by repeated applications of �k

on a sample S. Clearly, the sequence of samples in

�(S) then represents a random walk | the crossover

walk | on the graph G(S).

The two fundamental questions concerning the

crossover walk on G are:

� Does the walk converge to a stationary distribu-

tion?

� If so, what is its rate of convergence?

The remainder of this section tackles the �rst question,

and the rest of the paper considers the second.

2.1 Walk Convergence

The convergence to an stationary distribution can

be established using a technique due to Feller [4,

section XV.10]. As mentioned earlier, �(S) repre-

sents the sequences of samples (nodes) encountered

in walking the graph G = (V;E). De�ne P t =

(p1(t); p2(t); : : : ; pjV j(t)) where pi(t) is the probability
that at time instant t, the walk �nds itself at node vi
of the graph G. In other words, it is the probability

that �t

k
(S) = vi. Initially, P 0 is a vector of all ze-

ros except at one index r (say), corresponding to the

fact that the walk starts at S = vr 2 V . From the

de�nition of point crossover, the distributions at two

successive instants of time are related by,

P t+1 = QP t (1)

where Q = [qi;j ] is a jV j � jV j sized matrix. The

elements of Q can be assumed to be time indepen-

dent, since the probability of moving to vj given that

the walk is at vi should depend only the composition

of the sample represented by vi and vj . Theorem 1

states the conditions under which the walk de�ned by

Equation (1) converges.
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Theorem 1 Let Q be the aperiodic, time indepen-

dent transition matrix for a walk on the crossover

graph G(S) = (V (S); E). Then, Q is a doubly

stochastic matrix, and the sequence P 0; P 1; P 2; : : : ;
converges to the stationary distribution P1 =

(1=jV j; : : : ; 1=jV j).

Proof: We �rst show that Q is a doubly stochastic

matrix, that is,
P

jV j

j=1
qi;j = 1 and

P
jV j

i=1
qi;j = 1.

The matrix element qi;j is actually a conditional prob-
ability representing the probability of reaching vj in

one step, given that the walk is at vi. By de�nition of

conditional probabilities,
P

j
qi;j = 1.

Observe that for every transition (�; �) ! (�0; �0)
produced by a k-point crossover operator, there corre-
sponds a transition (�0; �0) ! (�; �). In other words,

if the k-point crossover operator transforms a sam-

ple vi ! vj , then it can also transform vj ! vi.
Now, the expression

P
i
qi;j represents the probabil-

ity that the vertex i can be reached from some vertex

j. Since this can always be done, we conclude thatP
i
qi;j = 1. Since Q is both column stochastic as

well as row stochastic, Q is doubly stochastic.

From a standard result in Markov chain theory (for

example, [4, section XV.7]) we know that if Q is per-

sistent, irreducible and aperodic1 then the sequence

P 0; P 1; P 2; : : : converges to a stationary distribution.

Because Q is doubly stochastic, it converges to the sta-

tionary distribution P1 = (1=jV j; 1=jV j; : : : ; 1=jV j)
[4, section XV.7, example 7(h)]. Q is persistent be-

cause it is doubly stochastic, and the construction of

G guarantees that the walk on G is irreducible. From

the aperiodicity, persistence and irreducibility of the

walk, it follows that it converges to the stationary dis-

tribution P1. Q.E.D

The stationary distribution in Theorem 1 is related to

but not the same as the linkage equilibrium distribu-

tion (which refers to the distribution of chromsomes in

a sample randomized by crossover operations). Also,

the assumption that Q is aperiodic is a trivial one,

since any Markov chain can be rede�ned to be aperi-

odic [4, section XV.5].

Theorem 1 asserts that the repeated application of

k-point crossover on a sample eventually random-

izes it, and shows that point crossover belongs to a

class of models known as quadratic dynamical sys-

tems [9]. The relationship between double stochas-

1A Markov chain Q = [qi;j ] is said to be persistent if
it is certain that the chain starting from a state vi will
eventually return to vi. The chain is said to be irreducible

i� every state vi can be reached from any other state vj .
Q is said to be aperiodic if qti;i 6= 0 for any t > 1.

ticity and point crossover leads to the Theorem 2.

It shows that the class of Schur-convex functions are

Lyapanuv functions for the crossover walk. A great

deal is known about this class [8], and its functions

occupy much real estate in mathematics2. A neces-

sary and suÆcient condition for a continuous function

� : Rn ! R to be Schur-convex is that it be symmet-

ric (�(x1; : : : ; xn) = �(xi1 ; : : : ; xin) and for any i; j,
(xi � xj)(@�=@xi � @�=@xj) � 0.

Theorem 2 Let Q be the transition matrix for a walk

on the crossover graph G(S) = (V (S); E). Let P t =

(p1(t); p2(t); : : : ; pjV j(t)) where pi(t) is the probability
that at time t � 0, the walk �nds itself at node vi. If
F : RjV j ! R is a Schur-convex function, then for all

t � 0, F (P (t+ 1) � F (P (t)).

Proof: The theorem is an immediate consequence of

three facts: (1) P (t + 1) = QP (t), (2) Q is doubly

stochastic (Theorem 1) and (3) the Hardy, Littlewood,

Polya theorem (see [8, chap. 2, B.2] and [8, chap. 3,

A.1]. Q.E.D.

3 Rate of Convergence

Any analysis of the convergence rate of a crossover

walk depends on the \intrinsic" aspects of the walk

such as the transition probabilities, and the exact k-
point crossover used. In particular, it depends on the

structure of the graph G. Since the structure of the

graph is determined by the initial sample, the conver-

gence rate of the walk is dependent on it.

The dependency of the walk on the initial sample

complicates matters, perhaps unnecessarily so. Sup-

pose initial sample consists of identical chromosomes.

Clearly, point crossover is not going to change the

composition of the sample. In this scenario, �(S) =

fS; S; : : :g and G(S) = (fSg; E) where E consists of a

single self-loop. On the other hand, consider the e�ect

of point crossover on a sample drawn randomly from

�l. In this case too, point crossover has no e�ect since

the sample is already randomized, and a walk on G is

essentially a walk on a random graph. It is diÆcult to

study the general walk on G, because G can take on so

many di�erent \shapes" depending on how the initial

sample was set up.

An analogy might make this idea clearer. Suppose one

wished to analyze the shu�ing of a pack of cards (pos-

2For example, the Shannon Entropy function is a Schur-
concave function (that is, negentropy is Schur-convex). So
are almost all of the popular diversity metrics, such as sam-
ple variance and the Gini coeÆcient. It is not necessary
that a function be continuous in order for it to be Schur-
convex.
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sibly incomplete), where the shu�e operation consists

of transposing (with some probability) pairs of cards

drawn from the pack w.r.t some probability measure.

As stated, the problem is hard to study because it

mixes the critical issue (the e�ect of random transposi-

tion) with the less important ones (possibly incomplete

packs, unknown initial card distribution, transposition

frequency, a measure on drawing cards etc). It is for

this reason that most random transposition models

assume an initially sorted, complete pack, where ev-

ery shu�ing step results in a transposition (unless the

same card is picked twice).

Of course, the decision as to which factors are impor-

tant and which ones are not, depends on the problem

one is interested in. For example, if the problem is to

study how point crossover \undoes" the e�ect of pro-

portional selection, then the dependency on the ini-

tial sample has to be taken into account. But if the

problem is (say) to prove that repeated applications of

point crossover leads to linkage equilibrium, then the

speci�cs of the initial sample is not too important (as

Theorem 1 demonstrates).

What is needed is a reference sample against which the

e�ectiveness (as measured by rates of convergence) of

various crossover operators can be tested. In other

words, a reference sample will enable the distinction

between \what crossover does" from \what crossover

is applied to."

The de�nition of the point crossover operator suggests

that its action is roughly analogous to a shu�ing op-

eration on sets of decks of cards. Accordingly, a good

reference sample to study its convergence rates should

be an array of permutations. Speci�cally, consider an

array of numbers (N rows and l columns), arranged as
follows:

S =

0
BBB@

1 1 � � � 1

2 2 � � � 2
...

... � � �
...

N N � � � N

1
CCCA (2)

Each row in the array is interpreted as a \permuta-

tion" chromosome of length l. Upon applying k-point
crossover on S, the columns of the array will tend to

get randomized. For example, one such sample is,

S0 =

0
BBB@

1 2 � � � 2

2 1 � � � 1
...

... � � �
...

N N � � � N

1
CCCA (3)

Of course, k-point crossover only disarrays a column,

and does not change the allelic composition, at any

step of the walk. Hence, the sample can be represented

as a vector of permutations (�1; : : : ; �l), with �j 2 SN

where SN is the permutation group onN symbols. Ini-

tially, S � ((1; 2; : : : ; N); : : : ; (1; 2; : : : ; N)). The ac-

tion of k-point crossover at any step consists of select-

ing at random a non-empty, proper subset of compo-

nents from (�1; : : : ; �l) and applying a random trans-

position drawn from the permutation group SN to

each of those components. For example the move from

S ! S0 involves selecting the components 2 through l
and applying the transposition (1; 2) on each of those

components.

In other words, the underlying crossover graph has

(N !)l nodes. An edge connects two nodes vi =

(�1; : : : ; �l) and vj = (�1; : : : ; �l) i� there exists a

transposition � 2 Sn and a subset I � f1; 2; : : : ; lg,
such that,

�j =

(
�(�j) if j 2 I;

�j otherwise:
(4)

The e�ect of k-point crossover on theN \permutation"

chromosomes is thus identical to a nearest-neighbor

random walk on the nodes of the crossover graph.

Of course, real GAs do not typically operate on per-

mutation strings, so the relevance of the above ref-

erence sample may be in question. It would appear

however that the walk on G(N; l) provides a good test
case for analytic techniques, is related to active ar-

eas of research in probability theory, and focuses on

point crossover's central feature, namely, its tendency

to \shu�e" a sample's alleles. Furthermore, there

are techniques to \lift" walks on symmetric groups to

walks on the hypercube [2, pp. 19-20], so results may

transfer as well.

3.1 Walks on G(N; l)

Since the structure of this graph is completely deter-

mined by the parameters N and l, it will be denoted
G(N; l) rather than the usual G(S). It is not hard to

show that G(N; l) is a regular graph, where each node
is connected to d = (2l � 1)

�
N

2

�
other nodes.

The analysis of the convergence rate of the walk on

G(N; l) depends on the criterion used to measure the

\degree of randomness." One criterion popular in

models of random walk on groups [2, chap. 3B] is

the variation distance of two discrete distributions P
and P 0 de�ned by,

jjP � P 0jj =
1

2

nX
i=1

jpi � p0
i
j (5)

In particular, if for any speci�ed � > 0, there exists

a tc such that for all t > tc, jjP
t � P1jj < �, then
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the walk is said to converge to P1 w.r.t the variation

distance.

A formal analysis of the rate of convergence of jjP t �
P1jj is complicated and involves the machinery of the
representation theory of the symmetric group. Also, in

this paper, the quantity of interest is not the variation

distance but a di�erent function (described in the next

section). Hence, we will only present heuristic argu-

ments for the rate of convergence of the total variation

distance on G(N; l).

Consider the case when l = 1. The problem then re-

duces to the random walk induced by the action of

random transpositions on the symmetric group SN .

P. Diaconis and M. Shahshahani proved the following

result regarding such walks [3].

Proposition 1 Let k = 1

2
N lnN+cN , where c > 0.

Then, there exists an universal constant a such that,

jjP t � P1jj � a exp(�2c). Correspondingly, let k =
1

2
N lnN � cN , where c > 0. Then, there exists an

universal constant b such that, jjP t � P1jj � 1 �
b exp(�2c).

Proposition 1 shows that k = 1

2
N lnN + cN are suf-

�cient for the variation distance to become \small".

Conversely, k = 1

2
N lnN � cN are also necessary.

This is the celebrated \cut-o�' phenomenon, the value

of jjP t � P1jj is large for k < 1

2
N lnN � cN , but is

small after k � 1

2
N lnN + cN .

This case provides a lower bound on the convergence

rate of the random walk on G(N; l). On the other

hand, it can be shown using several di�erent ways3

that Nl

2
lnN steps is an upper bound on the number

of steps necessary to achieve stationarity

In summary, it takes at most O(Nl lnN) k-point

crossover operations to randomize an array of N chro-

mosomes of length l, where the starting sample is given
by Equation (2). If the reference sample consists of N
binary chromosomes each of length l, rather than per-

mutation strings, the conclusions of the analysis of the

walk on G(N; l) does not fundamentally change. For

example, consider the crossover walk on a reference

sample of binary chromosomes where half the sample

is initially \all 0"' chromosomes, and the other half are

\all 1" chromosomes. This walk can be shown to be

closely related to the Bernoulli-Laplace urn model [2,

pp. 56-58], for which the cuto� number of steps again

turns out to be O(Nl lnN).

3Wald's principle o�ers one route. Another option is
to note that a walk on G(N; l) can be described as a walk
on the Cartesian product of the transposition graph of the
symmetric group, and then use Chung's results [1, pp. 36-
41].

But are such "O(N lnN)" results of any practical use?

In most GAs, the sample size N , and the chromo-

some length l, are both quite large (typically). For

N = 500 and l = 30, the above result would indicate

that the number of crossover steps is of the order of

100; 000 steps. Thus, the number of crossover steps

required to randomize the sample is quite large, and

it would appear that randomization of the sample in

the point crossover phase never happens in real GA

deployments.

However, in the next section it will be argued that

the large number of crossover steps required to ran-

domize the walk on G(N; l) (and by association, walks
on general samples), is an artifact of the variation dis-

tance criterion. The rate of convergence of two alterna-

tive criterion, the Kendall's average � coeÆcient, and

Kendall's W coeÆcient, give a very di�erent picture

on the minimal number of steps required to random-

ize the walk on G(N; l).

4 Convergence Criteria

As far as convergence is concerned, the exact norm

used to measure the distance between two distribu-

tions is not of great importance, since norms are (topo-

logically) equivalent (so convergence w.r.t one norm

implies convergence w.r.t another). But for bounds

on convergence rates , the choice of the norm is very

important [14].

The variation distance may be inappropriate in some

natural context. Suppose one is given a set of decks,

where each deck is arranged in some manner (not nec-

essarily sorted). It is now required to be determined

whether the cards in the decks are randomly ordered

or not. The variation distance is not a very meaningful

measure in this case. The statistical solution is to com-

pute some ranking statistic on the card arrangements,

and see if the null hypothesis (card are randomly ar-

ranged in each deck) can be rejected. Clearly, this

idea can be also applied to each sample produced in

the random walk on G(N; l). Statistical tests have

been evolved to test for randomness (upto speci�ed

levels of signi�cance). It makes sense to use them to

test whether the sample produced by crossover at any

stage passes these tests. If it does, then we have a

rigorous basis for a stopping rule.

In this case, the sample consists of permutations, and

it is natural to study the change in rank-based con-

cordance measures as a function of the stage in the

random walk on the crossover graph. Two such mea-

sures will now be considered. The �rst, Kendall's W

coeÆcient, is a measure of ranking concordance and
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the second, Kendall's average tau coeÆcient, is usu-

ally interpreted as a measure of disarray of in a set of

permutations.

Consider l judges ranking N objects. Each judge as-

signs a distinct rank to each object. The rankings can

be arranged in an array of the type shown in Equa-

tion (2), where each column represents a ranking, and

the ith row reects how each judge ranks the ith ob-

ject. Let sij denote the ranking of the ith object by

the jth judge.

If all the columns are identical as in Equation (2), it

indicates complete concordance between the judges.

A standard measure of concordance is Kendall's W
coeÆcient [6, chap. 6] de�ned as follows:

W =
12D

l2N(N2 � 1)
; (6)

where, D =

nX
i=1

(

lX
j=1

si;j � �)2; (7)

and, � =
l(N + 1)

2
: (8)

The idea is to compute for each object, the sum of the

ranks assigned to it by the l judges. The sum of the

squares of the deviation of each sum from the expected

value � then gives D. Kendall's W is the ratio of

D with the maximum possible value. Kendall's W
coeÆcient is widely used to measure the agreement in

l rankings of a common set of objects [6]. W always lies

between 0 and 1, with 1 indicating complete agreement

between the rankings of the l judges.

The second ranking statistic is the average Kendall co-

eÆcient [2, chap. 6]. Let � and � be any two permu-

tations in SN (permutation group on N symbols). Let

K(�; �) (= K(�; �)) be the number of adjacent trans-

positions required to convert the permutation ��1 to

��1. Kendall's � coeÆcient for the pair � and � is

de�ned by,

�(�; �) = 1 �
4K(�; �)

N(N � 1)
: (9)

The � coeÆcient lies between �1 and 1 (inclusive) and
behaves likes a correlation coeÆcient. When � = 1,

the permutations are identical, and when � = �1,
� = ��1. The average Kendall coeÆcient for a set of

permutations (�1; �2; : : : ; �l) is given by,

�� =
2
P

l

i;j=1
�(�i; �j)

l(l � 1)
: (10)

Both these measures are designed to measure the de-

gree of disarray in a sample of permutations, and their

asymptotic behavior is well understood4[6, chap. 6].

This enables their practical use in statistical signi�-

cance tests.

The next section studies the change in these ranking

statistics as a function of the crossover walk on G(N; l)
for various values of N and l. The associated graphs

not only show the existence of cut-o� behavior in these

functions for crossover walks, but also show that, re-

markably, the number of steps required to achieve ran-

domness (upto statistical signi�cance) is of the order

of O(lnN) rather than O(lN lnN).

5 Simulations

Here the behavior of the crossover walk on the graph

G(N; l) for various values of N and l are studied. The
basic procedure for setting up the simulations was to

start with the ordered N � l array shown in Equa-

tion (2). Then, k-point crossover was repeatedly ap-

plied (usually for 100,000 steps). Each application

of the operator corresponds to a step on the graph

G(N; l). After applying the operator, the values of

the average � and/or Kendall's W -coeÆcient for the

sample are computed. These values are then plotted

against the logarithm of the step number 5. The shape

of the curve, its critical points and sensitivity to the

three independent variables, namely, N; l and k, are
the main topics of interest. Here, only the results for

�xed l and k but varying N are presented. It is worth

mentioning however, that all scenarios show the exis-

tence of the cut-o� phenomena, though the exact point

at which cut-o� happens, changes as the dependent

variables are changed.

Figure 2 and Figure 3 show the plots obtained by

sampling the values of Kendall's W coeÆcient and

Kendall's average � after every 1PTX step of the ran-

dom walk on G(N; l) for N = 50; 100; 150; 200 and

l = 15. The curves become smoother for larger values

of N , but in general the behavior is relatively insen-

sitive to changes in values of N . Consider the point

at which the Kendall's W coeÆcient falls below 0:5.
For N = 50; 100; 150; 200, this happens (roughly) at
exp(3:2) � 25, exp(4:8) � 122, exp(5:2) � 181 and

4For example, the asymptotic distribution of Fried-
man's function �2r = l(N � 1)W can be shown to be ap-
proximately �2 with N � 1 degrees of freedom for large
l. On the other hand, the average � can be shown to dis-
tributed normally.

5The cuto� phenomenon implied by the sigmoid growth
curve disappears if the ranking statistics is plotted directly
against the step number. This may be one reason why the
cut-o� phenomena in ranking statistics for random walk
models appears to have escaped the attention of probability
theorists.
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Figure 2: Kendall's W versus Ln(Crossover Step) for

various population sizes

exp(5:57) � 262 number of steps, respectively. This

may seem like a signi�cant change, but if considers

the ratio of the number of steps (to get to the half-

way point) to the sample size, the ratios are roughly

constant.

The most signi�cant aspect of these �gures is how soon

the cut-o� point manifests itself. For N = 200, by

about exp(2) to exp(3) number of steps, the Kendall's

W starts to fall sharply, and by about exp(7) to exp(8)

number of steps, it reaches its equilibrium value. Thus

a few hundred applications of point crossover does have

a signi�cant impact on the value of Kendall's W coef-

�cient for the walk on G(N; l). Similar comments hold
for the average � .

6 Logistic Models

A rigorous analysis of the behavior of Kendall's W
coeÆcient, or the average � coeÆcient is likely to be

very complicated. Yet, the curves are so simple in

their shape that it is very tempting to believe that an

equally simple explanation must be available.

In this section, an explanation based on an population

growth model will be developed; it is simplistic, but

the basic idea is very general and holds much promise

(e.g. [7, 10]).

The problem is to model the change in a statistic Y
w.r.t. the step number. Suppose it was the case that

there were two kinds of events that a�ected the growth

Figure 3: Kendall's Average Tau versus Ln(Crossover

Step) for various population sizes

of Y . The \good" events cause it to increase, but the
\bad" events cause it to decrease. It is also given that

if only bad events happen, then the relative change in

Y is inversely (directly) proportional to the relative

change in r. One way to model this is,

�Y

Y
= �(Y )

�t

t
; � > 0; (11)

�Y

Y
= ��(Y )

�t

t
; � > 0: (12)

The linear relationship has been setup not between Y
and t, but between the relative growths �Y=Y and

�t=t. The basic reason for this is that cuto� phe-

nomena persist under scaling changes, that is, cannot

be removed by ratio transformations of the dependent

and independent variables. If the di�erential equation

we are constructing is to exhibit cut-o� phenomenon,

then it has to be invariant under ratio transformations

as well. Equations (11) and (12) have this property.

The quantities � and � have been marked as a func-

tion of Y but not time. The reason for this is that the

dynamics of any two variables U and V can be related

vacuously by a \constant" that varies with respect to

U and V . To prevent this, the proportionality con-

stants can depend at most on Y . The dependency on

Y models the fact that Y , being a ranking statistic,

cannot grow ceaselessly. Since it is a ranking statistic,

it takes on at a �nite number of values (there are only

a �nite number of rankings, and each ranking corre-

sponds to one value for the statistic).
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� and � are duals to each other. Assume without loss

of generality that � + � = 1 and � � 1 (if they are

not, the equations can always be rescaled to make it

so). Then, for some function g(Y ), the functions �
and � can be expressed as,

�(Y ) = 1 �
g(Y )

K
; (13)

�(Y ) =
g(Y )

K
: (14)

where K is large enough to make �; � � 1. Putting

the above equations together,

�Y

Y
=

�t

t
(1 � 2

g(Y )

K
): (15)

Passing to the limit implies,

dy

dt
=

y

t
(1 � 2

g(y)

K
): (16)

To \draw" the above curve with respect to the loga-

rithmic axis, set t = lnx. Consequently,

dy

dx
= y(1 � 2

g(y)

K
): (17)

Equation 17 produces a sigmoid curve under very mild

restrictions on the function g(y). The case g(y) = y
leads it to the classic Verhulst-Pearl equation of (sig-

moid) growth.

The assumptions behind this heuristic argument are

minimal. All that is required is that Y be density

limited, its growth has to be explainable by a two fac-

tor model (good events/bad events), and (�Y=Y ) /
(�t=t).

Consider Kendall's average � coeÆcient. Since it is a

ranking statistic, it cannot grow without bounds. Ev-

ery application of point crossover splits the permuta-

tions in the sample into two groups, namely, those that

got a�ected by the crossover, and those that didn't.

The � coeÆcient of each pair changes only linearly with
every crossover step6. The � coeÆcients within each

group do not change, but the inter-group � -coeÆcients
do change. The extent of that change is proportional

to the product of the relative sizes of the two groups,

and hence the log of the changes is linearly propor-

tional to the logs of the relative sizes.

The growth in the average � is also driven by a two-

factor model, because the change in � is driven by

a two factor-model. A \good" change consist of a

6Recall that the � -coeÆcient of a pair of permutations is
an aÆne function of the number of adjacent transpositions
needed to transform one permutation to the other.

Figure 4: Kendall's W versus Ln(Crossover Step) for

1PTX walk on G(300; 30) (sample of 300 chromosomes
each of length 30)

transposition which reduces the disarray, and hence in-

creases the value of � . Correspondingly, a bad transpo-
sition is one which increases the disarray and reduces

the value of � .

Similar arguments can be made for Kendall's W coef-

�cient, though the details are a lot more tedious. In

any event, these arguments are meant to be suggestive

of the possibilities of an alternative to the currently

popular group-theoretic approaches.

Finally, Figure 4 shows a plot of Kendall's W for re-

peated applications of 1PTX on a population of 300

permutations each of length 30. Clearly, even for

these small population sizes and non-trivial chromo-

some lengths, the sigmoid growth curve is obtained.

Notice that by approximately 6 log(N) steps, the mea-

sure falls to its mid value (0:5).

7 Conclusion

What does point crossover do? The results of the pa-

per formalize the intuition that repeated applications

of point crossover \shu�es" a sample's alleles. The

formalization was achieved by modeling the action of

point crossover as a random walk on the crossover

graph. Two aspects of this walk were studied. First,

it was demonstrated that this walk is characterized by

a homogeneous doubly stochastic Markov chain and

hence may be shown to converge to a stationary distri-
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bution. Second, the rate of convergence was analyzed,

and it was shown that there is a cut-o� phenomenon

in the rate at which the original sample get random-

ized by the repeated action of point crossover. As long

as the number of crossover steps is less than a certain

critical number, the total variation distance (with re-

spect to the stationary distribution) is large, and re-

mains essentially constant. But once the critical num-

ber has been crossed, the total variation distance goes

to zero (at an exponential rate). The cut-o� number

of steps is of order of O(lN lnN) steps, where N is the

sample size, and l is the length of the chromosome.

If di�erent metrics are considered, say, Kendall's W

or average � coeÆcient, then simulation indicate that

cut-o� occurs at O(N lnN) rather than O(lN lnN). A

heuristic explanation based on population arguments

was provided for the general sigmoid nature of these

curves. The existence of the cut-o� suggests that point

crossover is something of an all-or-nothing randomiza-

tion operator. Apply it for more than the cut-o� num-

ber, and the sample is rapidly randomized. Apply it

for less, and as far as randomization is concerned, the

sample remains far from random. Whether such phase

transitions exist for other crossover operators remains

an open question.
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Abstract

Several memetic algorithms (MAs) – evolu-
tionary algorithms incorporating local search
– have been proposed for the traveling sales-
man problem (TSP). Much effort has been
spent to develop recombination operators for
MAs which aim to exploit problem charac-
teristics to achieve a highly effective search.

In this paper, several recombination oper-
ators for the TSP are compared. For the
purpose of identifying the important prop-
erties of a recombination operator, a new
generic recombination operator (GX) is pro-
posed which is comprised of four phases.
These phases can be controlled by parame-
ters reflecting the most important properties
of recombination operators. It is shown that
GX recombination is superior to MPX and
DPX when all common edges are preserved
in the offspring.

1 INTRODUCTION

The traveling salesman problem (TSP) is one of the
best-known combinatorial optimization problems. It
can be stated as follows: Given n cities and the geo-
graphical distance between all pairs of these cities, the
task is to find the shortest closed tour in which each
city is visited exactly once. From a graph theoretical
point of view, this is equivalent to finding the shortest
Hamiltonian cycle in a complete graph.

The TSP has been widely used as a problem for test-
ing new heuristic algorithms and general purpose opti-
mization techniques. In particular, several evolution-
ary algorithms have been proposed to tackle this NP-
hard problem. Simple evolutionary algorithms have
been shown to be ineffective in finding near optimum

solutions [9]. Therefore, several researchers incorpo-
rated local search into an evolutionary framework such
that all individuals in the population are local optima,
leading to highly effective algorithms, known as genetic
local search or memetic algorithms (MAs)[23, 24].
Memetic algorithms have been shown to be among the
best heuristics for the TSP [18, 13, 17, 12, 10, 1]. Other
important aspects of MAs not covered in this paper
include spatial population structures [7], MA theory
[29], and self-adaptation [14].

In this paper, memetic algorithms for the TSP are
studied by concentrating on the most important part
of the evolutionary framework – the recombination of
solutions. A new generic greedy recombination opera-
tor is introduced to the study three important aspects
of TSP tour recombination: the inheritance of com-
mon edges to both parents, the insertion of new edges,
and the inheritance of edges found in just one of the
parents. The greedy operator can be controlled by
three parameters in respect to these aspects. Several
parameter settings of GX are compared with maxi-
mally preserving crossover (MPX) [25, 8] and distance
preserving crossover (DPX) [6, 18]. The experiments
show the importance of inheriting common edges and
provide a meaningful choice of the remaining two pa-
rameters. The effectiveness of the MA with GX is
demonstrated on several instances form TSPLIB [28].

The paper is organized as follows. In section 2, the
memetic algorithm framework used in this paper, as
well as the new greedy recombination operator is in-
troduced. In section 3, a comparison of memetic re-
combination operators is performed on selected TSP
instances. And results are presented of the MA us-
ing GX on 15 TSP instances. Section 4 concludes the
paper and outlines areas for future research.
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2 MEMETIC ALGORITHMS FOR
THE TSP

Although there are other effective evolutionary algo-
rithms incorporating sophisticated problem dependent
procedures such as Nagata and Kobayashi’s [26] evolu-
tionary algorithm with edge assembly crossover, MAs
provide a general framework for hybrid algorithms that
can be applied to other combinatorial problems such
as the quadratic assignment problem [20], the binary
quadratic programming problem [19], and graph bi-
partitioning [21].

procedure MA;

begin
initialize population P ;
foreach i ∈ P do i := Local-Search(i);
repeat

for i := 1 to #recombinations do
select two parents ia, ib ∈ P randomly;
ic := Recombine(ia, ib);
ic := Local-Search(ic);
add individual ic to P ;

endfor;
for i := 1 to #mutations do

select parent ia ∈ P randomly;
ic := Mutate(ia);
ic := Local-Search(ic);
add individual ic to P ;

endfor;
P := select(P );
if P converged then

foreach i ∈ P\{best} do
i := Local-Search(Mutate(i));

endif
until terminate=true;

end;

Figure 1: The Memetic Algorithm

MAs for the TSP are similar to other evolutionary al-
gorithms: a population of locally optimal solutions
is evolved over time by applying evolutionary vari-
ation operators (mutation and recombination opera-
tors), and by selection of the best individuals from the
pool of parents and offspring. The pseudo code for the
MAs used in this contribution is shown in Fig. 1. To
ensure that the individuals in the population are local
optima, after each application an evolutionary varia-
tion operator, local search is applied. This includes
the initialization phase of the population in which so-
lutions are constructed from scratch: A local search
procedure is applied to these solutions so that even the
first generation consists exclusively of local optima.

The problem-specific parts of the algorithm comprise

initialization, local search, and the evolutionary varia-
tion operators: recombination and mutation. In com-
parison to other evolutionary algorithms, the role of
mutation and recombination is different. Firstly, mu-
tation and recombination are performed independently
from each other. Secondly, the phenotypic changes
caused by the variation operators must be large enough
to reach the basin of attraction of new local optima,
since local search is always applied after mutation or
recombination.

2.1 Initialization and Local Search

To initialize the population of the MA, TSP tours have
to be generated either randomly or by a randomized
tour construction heuristic such as nearest neighbor
or the greedy heuristic [11]. After the generation of
feasible tours, a local search is applied.

The most effective local search procedures for the TSP
are 2-opt, 3-opt, and the Lin-Kernighan (LK) heuristic
[15, 11]. These heuristics exchange 2, 3, or a variable
number of edges in each iteration, respectively. Gen-
erally, the stronger the local search used the better the
performance of the MA. Therefore, the Lin-Kernighan
heuristic has been used in [6, 5, 18].

2.2 Recombination Operators

During recombination, a new offspring is generated by
copying edges from the parents. However, the TSP
tour constraints have to be obeyed: each node (city) is
connected with exactly two other nodes via two edges
and the tour is required to have only one cycle. These
constraints are hard to obey, hence many proposed re-
combination operators introduce foreign edges which
are not contained in one of the parents to meet the
constraints. These foreign edges can be considered
as implicit mutations, and have a high impact on the
performance of EAs for the TSP [16], since they can
be very long, destroying the benefit of combining the
short edges from the parents.

2.2.1 Properties of Recombination Operators

The use of local search after the application of a re-
combination operator – as is the case in memetic al-
gorithms – can compensate for the disruptive effects
of implicit mutations. In some cases, implicit muta-
tions have a positive effect on the performance of the
local search, and in some situations they have not.
Thus, it is important that implicit mutations can be
controlled in some way. Besides the number of for-
eign edges introduced during recombination, another
aspect appears to be important: which edges are in-
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herited from the parents and which are not. More
formally, recombination operators can be classified ac-
cording to Radcliffe and Surry [27] as

Respectful: The alleles that are identical in both
parents are preserved in the offspring, i.e. all
edges found in both parent tours (common edges)
are found in the offspring tour

Assorting: The offspring contain only alleles from ei-
ther one of the parents, i.e. all edges in the child
tour are found in at least one of the parent tours,
thus no implicit mutation occurs

While respectful recombination can be easily achieved
by a recombination operator for the TSP, assorting
recombination is hardly accomplished. Note, that for
binary representations a respectful recombination is
also assorting.

2.2.2 MPX and DPX

Although there are many recombination operators pro-
posed for the TSP, we concentrate on those especially
useful in combination with local search und thus in a
memetic framework. Other recombination operators
such as the edge recombination operator family [16, 3]
or the edge assembly crossover [26] are aimed at pre-
serving edges without additional local search. These
operators are inferior to other more disruptive opera-
tors if local search is used [3, 17].

In the MPX proposed in [8] a sub-path between two
randomly chosen crossover points is copied from the
first parent to the offspring. The first crossover point
is chosen to be at an edge not contained in the sec-
ond parent. The partial tour is extended by copying
edges from the second or first parent afterwards. If no
parental edge can be included a foreign edge is intro-
duced to maintain feasibility. To a high extent, edges
from the parents are retained. This operator does not
guarantee to be respectful.

The DPX proposed in [6, 5] is an operator that is only
useful in combination with local search. In contrast
to MPX or other recombination operators such as the
edge recombination operators [30], it forces the inclu-
sion of foreign edges in the offspring instead of pre-
venting it.

DPX tries to generate an offspring that has equal dis-
tance to both of its parents, i.e., its aim is to achieve
that the three distances between offspring and parent
1, offspring and parent 2, and parent 1 and parent 2
are identical. It works in two phases: (1) all common
edges are copied to the offspring, and (2) the tour frag-
ments present in the offspring are reconnected based

on a nearest neighbor algorithm where edges contained
in one of the parents are not considered.

2.2.3 The Generic Greedy Recombination
Operator

A new recombination operator is proposed in the fol-
lowing that utilizes the greedy construction scheme of
the greedy heuristic [11]. The generic greedy recombi-
nation operator (GX) consists of four phases:

Phase I: (common edges)
In the first phase, some or all edges contained in
both parents are copied to the offspring tour.

Phase II: (new edges)
In the second phase, new short edges are added
to the offspring that are not contained in one of
the parents. These edges are selected randomly
among the shortest edges emanating from each
node. These edges are with high probability con-
tained in (near) optimum solutions and are thus
good candidates for edges in improved tours.

Phase III: (non-common edges)
In a third phase, edges are copied from the par-
ents by making greedy choices. Edges are inserted
in order of increasing length, and only candidate
edges are considered, i.e., edges that violate the
TSP constraints.

Phase IV: (remaining edges)
In the fourth and last phase, further edges are
included in order of increasing length until the
child consists of n edges and is thus a feasible
TSP tour.

All greedy choices in the fourth step are randomized by
selected the shortest remaining edge with a probability
of 0.66 and the second shortest edge with a probability
of 0.33.

The GX operator has three parameters: the com-
mon edges inheritance rate (cRate) that determines
the probability that a common edge is added to the
child and is thus a control parameter for the first
phase. With a rate of 1.0, respectful recombination
is achieved, all other rates lead to disrespectful recom-
bination. The second phase is controlled by the new
edges insertion rate (nRate) that determines the num-
ber of new edges to include. A rate of 0.5, for example,
determines that half of the remaining edges to insert
after phase one are new edges that are short but not
contained in one of the parent solutions. The maxi-
mum number of edges to inherit from the parents is
determined by the inheritance rate (iRate). In the
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last phase, allowed edges in increasing length are cho-
sen that may or may not be found in the parents. For
am more detailed explanation see [17].

2.3 The Mutation Operator

Simple mutation operators are not suited for use in
MAs, since subsequently applied local search proce-
dures will usually revert the changes made. For exam-
ple, the inversion operator randomly exchanging two
edges is ineffective when 2-opt, 3-opt or LK local search
is used. Therefore, in MAs alternative mutation oper-
ators are required.

The non-sequential four change (NS4) is an edge ex-
change involving four edges [15]. It is especially use-
ful in connection with the LK heuristic. Since LK
only performs sequential exchanges, it cannot reverse
a non-sequential four change in one iteration. The
NS4 is used in the iterated Lin-Kernighan heuristic
[11], which is known to be very effective.

2.4 Selection and Restarts

In this work, a single panmictic population structure
is used. Thus selection utilized in the memetic algo-
rithms is a global selection strategy and similar to the
selection in the (µ + λ)-ES (Evolution Strategy): The
new population is derived by selecting the best indi-
viduals out of the pool of parents and children. Dupli-
cates are eliminated such that a solution is contained
no more than once in the population.

Due to small population sizes and the use of local
search in memetic algorithms, the problem of prema-
ture convergence arises. Therefore, the restart tech-
nique proposed by Eshelman [4] is employed. Dur-
ing the run, it is checked whether the search has con-
verged. If so, the whole population is mutated except
for the best individual. The mutation used here ex-
changes k edges with k being high compared to the
mutation operator described above.

3 EXPERIMENTAL RESULTS

Several experiments have been conducted to evaluate
the performance of MAs for the TSP. All experiments
described in the following were conducted on a PC
with Pentium III Processor (500 MHz) under Linux
2.2. All algorithms were implemented in C++. For
details of the algorithms see [17].

3.1 Comparison of Recombination Operators

In a first set of experiments, several recombination op-
erators for the TSP were tested under the same con-
ditions on three selected TSP instances contained in
TSPLIB: att532, pr1002, and fl1577. To get a clear
picture of the operator effectiveness, no additional mu-
tation was performed and the restart mechanism was
disabled during the runs. Furthermore, a fast 2-opt lo-
cal search was used in the MAs that is not as effective
as 3-opt local search or the Lin-Kernighan heuristic to
reduce the strong influence of the (sophisticated) lo-
cal search. The recombination operators MPX, DPX,
and the generic greedy recombination operator were
studied with various parameter settings. The popula-
tion was set to P = 100 in all runs, and the variation
operator application rate was set to 0.5, i.e., 50 off-
spring were generated per generation. The results of
the experiments are summarized in Table 1. For each
instance/operator, the average number of generations,
the shortest tour length found, and the percentage ex-
cess over the optimum solution value is provided. For
the GX operator, the values for cRate, nRate and iRate
are provided in the form cRate/nRate/iRate. For ex-
ample, a parameter setting of 1/0.25/0.75 means that
the common inheritance rate cRate was set to 1.0, the
new edges insertion rate nRate was set to 0.25, and
the inheritance rate iRate was set to 0.75. The dot in
each column block indicates the best result within this
block.

For all three instances, MPX and DPX are outper-
formed by GX for some of the parameter settings: all
GX variants with a common inheritance rate of 1.0
and a new edge introduction rate of 0.25 perform bet-
ter than MPX and DPX. However, the best parameter
setting for GX is for each of the instances a different
one implying that there is no “golden rule” leading to
the best recombination strategy for all TSP instances!
For example, the best setting for fl1577 is 1/0/0.75 but
all other combinations with nRate set to 0.0 do not
perform as well as the GX variants with nRate set to
0.25. Furthermore, it becomes apparent that respect-
fulness is a very important property of recombination
operators since all GX versions with a common in-
heritance rate less than 1 perform significantly worse
than the respectful greedy recombination operators.
However, choosing a high inheritance rate can com-
pensate the phenomenon to an extent since the com-
mon edges of the parents have a chance to be included
in the offspring in the third phase of the generic re-
combination. Additionally, iterated 2-opt local search
(ILS) and a MA with the non-sequential four-change
mutation (NS4) and no recombination has been ap-
plied to the three instances. The mutation based al-
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Table 1: Comparison of MA Recombination Strategies for the TSP (2-opt)

Operator att532 pr1002 fl1577
DPX 1565 27793.0 - 0.386% 664 266240.5 - 2.778% 653 22314.0 - 0.292%
MPX 2691 27772.0 - 0.311% 3404 261695.5 - 1.023% 1240 22347.8 - 0.444%

GX-Params
1/1/1 650 27738.7 - 0.190% 307 268183.5 - 3.528% 554 22295.6 - 0.210%
1/1/0.75 708 27744.7 - 0.212% 354 268072.9 - 3.485% 592 22306.7 - 0.259%
1/1/0.5 725 27740.0 - 0.195% 415 267033.1 - 3.084% 585 22304.0 - 0.247%
1/1/0.25 669 27772.0 - 0.311% 304 268487.4 - 3.645% 580 22296.5 - 0.213%
1/0.5/1 868 27729.8 - 0.158% 759 260907.8 - 0.719% 624 22294.8 - 0.206%
1/0.5/0.75 929 27727.0 - 0.148% 733 261981.0 - 1.133% 713 22294.6 - 0.205%
1/0.5/0.5 923 27725.2 - 0.142% 808 261121.2 - 0.801% 682 22296.7 - 0.214%
1/0.5/0.25 892 27723.9 - 0.137% 832 260723.4 - 0.648% 641 22303.5 - 0.245%
1/0.25/0 928 27724.5 - 0.139% 1223 260671.2 - 0.628% 690 22304.5 - 0.250%
1/0.25/0.75 1091 • 27719.2 - 0.120% 1430 260683.9 - 0.633% 769 22294.8 - 0.206%
1/0.25/0.5 1065 27722.4 - 0.131% 1422 260585.9 - 0.595% 684 22311.7 - 0.282%
1/0.25/0.25 998 27723.3 - 0.135% 1334 • 260508.6 - 0.565% 696 22307.0 - 0.261%
1/0/1 956 27763.5 - 0.280% 1321 261379.9 - 0.901% 736 22323.4 - 0.335%
1/0/0.75 1071 27728.0 - 0.152% 1481 260894.8 - 0.714% 735 • 22287.8 - 0.174%
1/0/0.5 1035 27725.4 - 0.142% 1434 260949.5 - 0.735% 744 22312.0 - 0.283%
1/0/0.25 1006 27737.7 - 0.186% 1412 260984.0 - 0.749% 719 22326.2 - 0.347%
0.75/0.5/1 201 28429.8 - 2.686% 226 269423.5 - 4.007% 212 22725.8 - 2.143%
0.75/0.5/0.75 224 28435.5 - 2.707% 254 269423.5 - 4.007% 230 22725.8 - 2.143%
0.75/0.5/0.5 215 28435.5 - 2.707% 243 269423.5 - 4.007% 225 22725.8 - 2.143%
0.75/0.5/0.25 206 28434.8 - 2.705% 232 269423.5 - 4.007% 219 22725.8 - 2.143%
0.75/0.25/0 233 27986.0 - 1.084% 229 269271.2 - 3.948% 227 22679.0 - 1.932%
0.75/0.25/0.75 269 28230.8 - 1.968% 288 269423.5 - 4.007% 269 22671.2 - 1.897%
0.75/0.25/0.5 254 28063.3 - 1.363% 258 269335.2 - 3.972% 254 22657.9 - 1.838%
0.75/0.25/0.25 243 27976.5 - 1.049% 240 269384.7 - 3.991% 239 22649.5 - 1.800%
0.75/0/1 407 27869.0 - 0.661% 422 263536.0 - 1.734% 270 22583.3 - 1.503%
0.75/0/0.75 517 27771.5 - 0.309% 705 • 261696.8 - 1.024% 620 • 22319.3 - 0.316%
0.75/0/0.5 457 • 27747.2 - 0.221% 558 262236.0 - 1.232% 398 22415.2 - 0.747%
0.75/0/0.25 415 27750.5 - 0.233% 435 262634.5 - 1.386% 298 22492.2 - 1.093%
0.5/0.25/0 156 28394.2 - 2.558% 179 269400.0 - 3.998% 161 22725.8 - 2.143%
0.5/0.25/0.75 191 28433.2 - 2.699% 224 269423.5 - 4.007% 187 22725.8 - 2.143%
0.5/0.25/0.5 172 28414.0 - 2.630% 201 269423.5 - 4.007% 178 22724.8 - 2.139%
0.5/0.25/0.25 162 28373.5 - 2.483% 187 269423.5 - 4.007% 170 22725.8 - 2.143%
0.5/0/1 195 28041.8 - 1.285% 216 266696.7 - 2.954% 174 22693.8 - 1.999%
0.5/0/0.75 403 27870.7 - 0.667% 455 • 263020.8 - 1.535% 363 • 22416.0 - 0.751%
0.5/0/0.5 293 • 27838.5 - 0.551% 316 263258.8 - 1.627% 242 22530.1 - 1.263%
0.5/0/0.25 220 27894.7 - 0.754% 227 265673.8 - 2.559% 192 22628.6 - 1.706%

ILS 61365 27777.7 - 0.331% 126457 260683.6 - 0.633% 150797 22369.2 - 0.540%
NS4 744 27860.2 - 0.629% 1438 261922.0 - 1.111% 1633 22304.0 - 0.247%

Time: 60 sec. 120 sec. 200 sec.

gorithms perform relatively well but can not compete
with the greedy recombination MAs. For the instance
fl1577, the MA with NS4 performs much better than
ILS indicating that for this type of landscape search
from multiple points (population-based search) is more
promising.

In the second experiment, we replaced the fast 2-opt
local search with the Lin-Kernighan heuristic. The
population size was set to 40, the variation operator
application rate was set to 0.5, i.e., 20 offspring were
generated per generation, and restarts were enabled
with a diversification rate of 0.3 (0.3 × n edges were

randomly exchanged with n denoting the number of
cities). The results obtained from experiments with
MAs using DPX, MPX, respectful GX, non-sequential-
four-change mutation (denoted NS4) in comparison
to the iterated Lin-Kernighan heuristic (ILK) are dis-
played in Table 2. For each instance/operator pair, the
average number of generations, and the percentage ex-
cess over the optimum solution value is provided. For
the GX operator, the values for nRate and iRate are
provided in the form nRate/iRate. cRate was set to
1.0 in all experiments. The dot in each row indicates
the best result for an instance.
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Table 2: Comparison of MA Recombination Strategies for the TSP (LK)

Operator att532 rat783 pr1002 fl1577 pr2392 pcb3038

DPX 0.030 % 0.004 % 0.023 % • 0.028 % 0.068 % 0.113 %
MPX • 0.021 % • 0.001 % 0.169 % 0.142 % 0.054 % 0.128 %
GX 1.0/1.0 0.030 % 0.007 % 0.036 % 0.055 % 0.042 % 0.132 %
GX 1.0/0.75 0.035 % 0.026 % 0.022 % 0.058 % 0.053 % 0.211 %
GX 1.0/0.5 0.040 % 0.008 % 0.011 % 0.045 % 0.050 % 0.171 %
GX 1.0/0.25 0.043 % 0.006 % 0.013 % 0.051 % 0.047 % 0.146 %
GX 0.5/0.5 0.033 % 0.006 % 0.009 % 0.042 % 0.037 % 0.112 %
GX 0.5/0.75 0.031 % 0.007 % 0.031 % 0.048 % 0.055 % 0.175 %
GX 0.5/0.5 0.035 % 0.008 % 0.005 % 0.046 % 0.051 % 0.143 %
GX 0.5/0.25 0.037 % 0.009 % 0.011 % 0.037 % 0.044 % 0.136 %
GX 0.25/0 0.026 % 0.002 % 0.017 % 0.044 % 0.022 % 0.125 %
GX 0.25/0.75 0.038 % 0.012 % 0.003 % 0.041 % 0.031 % 0.151 %
GX 0.25/0.5 0.035 % 0.006 % 0.002 % 0.036 % 0.025 % 0.111 %
GX 0.25/0.25 0.041 % 0.005 % 0.002 % 0.040 % 0.023 % • 0.111 %
GX 0.0/1.0 0.045 % 0.008 % 0.006 % 0.052 % • 0.020 % 0.123 %
GX 0.0/0.75 0.036 % 0.003 % • 0.000 % 0.043 % 0.027 % 0.115 %
GX 0.0/0.5 0.034 % 0.011 % 0.008 % 0.052 % 0.029 % 0.122 %
GX 0.0/0.25 0.037 % 0.004 % 0.002 % 0.050 % 0.035 % 0.123 %

ILK 0.046 % 0.018 % 0.065 % 0.158 % 0.215 % 0.135 %
NS4 0.055 % 0.010 % 0.020 % 0.181 % 0.119 % 0.171 %

Time: 60 sec. 80 sec. 200 sec. 300 sec. 400 sec. 800 sec.

Here, the performance differences of the MAs are in
most cases not significant. For the problems att532,
rat783, and pr1002 all algorithms perform well with
only small differences, except for the MA with MPX
recombination in case of pr1002. Surprisingly, this MA
performs significantly worse than the other algorithms.
For fl1577, the MAs with DPX and GX outperform
all other competitors, with the MA using DPX be-
ing the best. For pr2392, all recombination based al-
gorithms perform similarly, but the MAs with muta-
tion and ILK perform significantly worse. In case of
pcb3038, the largest instance considered, all results lie
close together. The MAs with DPX and MPX out-
perform ILK and the MA with NS4. In the greedy
recombination MAs, high differences can be observed.
The best results are obtained with a new edge inser-
tion rate of 0.25. The results show no clear tendency,
and often the values lie too close together to be signifi-
cantly different. However, in none of the cases, ILK or
the MA with mutation is able to outperform the MA
using DPX or the best greedy recombination. The
performance differences between mutation and recom-
bination operators have become more apparent using
2-opt local search. For larger instances, this may be
also observed for MAs with the LK heuristic.

3.2 DPX vs. GX Recombination

Using a NS4 mutation application rate of m = 0.1,
the MAs have been run on a variety of problem in-
stances contained in TSPLIB, to show the robustness

and scalability of the memetic approach. In Table 3,
the results are shown for five instances up to a problem
size of 1002. The population size was set to P = 40 in
all runs, the recombination application rate was set to
0.5, and the diversification rate to 0.1. Two MAs were
run on each instance, the first one with DPX recombi-
nation and the second one with GX recombination. In
the latter, cRate was set to 1.0, nRate was set to 0.1
which appears to be a good compromise between 0.25
and 0.0, and iRate was set to 0.5. The programs were

Table 3: Average Running Times of two MAs to find
the Optimum

Instance Op gen quality Nopt t in s

DPX 19 42029 30/30 8
lin318 GX 13 0.00% 30/30 8

DPX 824 50778 30/30 147
pcb442 GX 286 0.00% 30/30 68

DPX 560 27686 30/30 127
att532 GX 289 0.00% 30/30 106

DPX 122 8806 30/30 26
rat783 GX 136 0.00% 30/30 35

DPX 333 259045 30/30 112
pr1002 GX 182 0.00% 30/30 98

terminated as soon as they reached an optimum solu-
tion. In the table, the average number of generations
(gen) and the average running time of the algorithms
(t in s) in seconds is provided. In 30 out of 30 runs, the
optimum could be found for all instances in less than
two minutes. The average running time for rat783 is
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much lower than for att532 due to the structure of
the fitness landscapes (see [22] for details): In most
cases, the MA with greedy recombination appears to
be slightly superior to the MA with DPX.

Additional experiments have been performed on
TSPLIB instances up to a problem size of 85900. Due
to the limited number of pages in this contribution,
the results are not displayed here. They can be found
in [22].

4 Conclusions

In an extensive study, several recombination operators
including a newly proposed generic greedy recombina-
tion operator (GX) are compared in a MA framework.
The MAs show significant performance differences if a
simple fast 2-opt local search is employed. For MAs
with the sophisticated Lin-Kernighan local search, the
results lie much closer together. The study has shown
that respectfulness is the most important property of a
recombination operator. Furthermore, we have shown
that the MA with the newly proposed greedy recombi-
nation operator outperforms all its competitors: MAs
with DPX or MPX recombination, MAs with non-
sequential four change mutation, and iterated local
search.

MAs with DPX and GX recombination and mutation
have been applied to various instances contained in
TSPLIB to show robustness and scalability of the ap-
proach. For problems with up to 1000 cities the op-
timum could be found in all runs in an average time
of less than two minutes on a personal computer with
500 MHz.
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