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Abstract

The cart centering problem is well known in

the �eld of evolutionary algorithms and has

often been used as a proof of concept prob-

lem for techniques such as Genetic Program-

ming. This paper describes the application of

a grammar based, position independent en-

coding scheme, Chorus, to the problem. It

is shown that using the traditional experi-

mental setup employed to solve the problem,

Chorus is able to come up with the solutions

which appear to beat the theoretically opti-

mal solution, known and accepted for decades

in the �eld of control theory. However, fur-

ther investigation into the literature of the

relevant area reveals that there is an inher-

ent error in the standard E.C. experimental

approach to this problem, leaving room for a

multitude of solutions to outperform the ap-

parent best. This argument is validated by

the performance of Chorus, producing better

solutions at a number of occasions.

1 Introduction

The cart centering problem is a well known problem

that often appears in the introductory literature of op-

timal control (see [Athans, Falb, 66]). In its most basic

form, it involves a cart of massmmoving in one dimen-

sion on a frictionless horizontal surface. The cart can

be moving with any velocity v and can have any po-

sition x along the x-axis. The problem is to bring the

cart to the origin in a position-velocity space with the

values of both x and v approaching zero in minimum

amount of time. The literature shows that the prob-

lem already has a well de�ned solution, which guar-

antees that the cart is centered in minimum amount

of time. Genetic programming (GP) [Koza, 92] (pages

122 through 147) has been shown to have successfully

solved this problem. The experimental setup described

therein shows the absence of any success predicate,

meaning that the system is free to wander in the solu-

tion space and come up with anything that minimizes

the time required to center the cart.

This paper describes the application of a relatively

new, position independent, evolutionary automatic

programming system, Chorus [Ryan et al, 02a] on this

problem. The system involves a genotype pheno-

type distinction and like [Horner, 96], [Paterson, 97],

[Whigham, 95], and Grammatical Evolution (GE)

[Ryan, Collins, O'Neill, 98] [O'Neill, Ryan, 01] evolves

programs using grammars. While our aim initially for

this paper was to demonstrate that Chorus could be

successfully applied to the problem, we were surprised

to discover that our results showed that the system

produced expressions that were able to centre the cart

in less time compared to the theoretical optimal con-

trol strategy. However a closer examination of the

problem, as described in the control genre, reects that

the approach traditionally employed to solve the prob-

lem involves an inherent error. As a result there is

no unique solution for this problem under the circum-

stances.

The paper �rst describes a context free grammar in

Backus Naur form, which is used to partially spec-

ify the behaviour of Chorus, similar to the way in

which one speci�es functions and terminals in GP.

We then describe the Chorus system and the process

involving the mapping from a genotype to phenotype

is discussed, with an example. Section 5 describes the

application of Chorus on the cart centering problem,

the theoretical background, the experimental setup

and then discusses the results in the light of literature

from control theory. Section 6 draws some conclusions

based on the experiences and results presented in the

paper.

GENETIC PROGRAMMING 707



2 Backus Naur Form

Backus Naur Form (BNF) is a notation for describ-

ing grammars. A grammar is represented by a tuple

fN;T; P; Sg, where T is a set of terminals, i.e. items

that can appear in legal sentences of the grammar, and

N is a set of non-terminals, which are interim items

used in the generation of terminals. P is the set of

production rules that map the non-terminals to the

terminals, and S is a start symbol, from which all le-

gal sentences may be generated.

Below is a sample grammar, which is similar to that

used by Koza [Koza, 92] in his symbolic regression and

integration problems. Although Koza did not employ

grammars, the terminals in this grammar are similar

to his function and terminal set.

S = <expr>

<expr> ::= <expr> <op> <expr> (0)

| ( <expr> <op> <expr>)(1)

| <pre-op> ( <expr> ) (2)

| <var> (3)

<op> ::= + (4) | - (5) | % (6)

| * (7)

<pre-op> ::= Sin (8) | Cos (9)

| Exp (A)| Log (B)

<var> ::= 1.0 (C) | X (D)

3 The Chorus System

Chorus[Ryan et al, 02a] is an automatic programming

system based coarsely on the manner in which en-

zymes regulate the model of a cell. Chorus belongs

to the same family of algorithms as Grammatical Evo-

lution [Ryan, Collins, O'Neill, 98] [O'Neill, Ryan, 01],

and shares several characteristics with it. In particu-

lar, the output of both systems is governed by a BNF

grammar as above, and the genomes, variable length

binary strings, interpreted as 8 bit integers (referred to

as codons), are used to produce legal sentances from

the grammar.

There is, however, a crucial di�erence. It concerns

the interpretation of each codon, which, when being

processed is moded with the total number of produc-

tion rules in the grammar. Thus each codon repre-

sents a particular production rule, regardless of its

position on the chromosome. This behaviour is dif-

ferent from GE, where an integer is moded with only

the number of rules that are relevant at that point in

time, and the meaning of a codon is determined by

those that precede it, leading to the so-called \ripple

e�ect"[Keijzer et al, 01].

For example, consider the individual:

18 28 32 27 42 17 18 31 27 14

45 46 45 18 27 55 65

which can be looked upon as a collection of hard coded

production rules. When moded with the number of

rules in the grammar (see section 2), which in this

case is 14, the same individual can now be represented

as follows (using hexadecimal numbers):

4 0 4 D 0 3 4 3 D 0

3 4 3 4 D D 9

Each gene encodes a protein which, in our case is a pro-

duction rule. Proteins in this case are enzymes that

regulate the metabolism of the cell. These proteins

can combine with other proteins (production rules in

our case) to take particular metabolic pathways, which

are, essentially, phenotypes. The more of a gene that

is present in the genome, the greater the concentra-

tion of the corresponding protein will be during the

mapping process [Zubay, 93] [Lewin, 99]. In a coarse

model of this, we introduce the notion of a concentra-

tion table. The concentration table is simply a mea-

sure of the concentrations of each of the proteins at any

given time, and is initialised with each concentration

at zero. At any stage, the protein with the greatest

concentration will be chosen, switching on the corre-

sponding metabolic pathway, thus, the switching on

of a metabolic pathway corresponds to the develop-

ment of the forming solution with the application of a

production rule.

Many decisions are made during the mapping process.

For example, the start symbol <expr> has four possi-

ble mappings. When such a situation occurs, the rel-

evant area from the concentration table is consulted

and the rule with the maximum concentration is cho-

sen. In case there is a tie, or the concentrations of all

the rules are zero, the genotype is searched for any of

the applicable rules, until a clear winner is found. This

is analogous to the scenario where there are a number

of voices striving for attention, and only the loudest is

heard.

While searching for an applicable production rule, one

may encounter rules that are not relevant at that point

in time. In this case, the concentrations of those rules

are increased, so when that production rule is involved

in a decision, it will be more likely to win. This is what

brings position independence into the system; the cru-

cial thing is the presence or absence of a gene, while

its position is less so. Importantly, absolute position

almost never matters, while occasionally, relative po-

sition (to another gene) is important.
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Once chosen, the concentration of that production rule

is decremented. However, it is not possible for a con-

centration to fall below zero.

Sticking to the left most non-terminal in the current

sentence, mapping continues until there are none left

or we are involved in a choice for which there is no

concentration either in the table or the genome. An

incompletely mapped individual is given a �tness value

of exactly zero in the current version of Chorus, thus

removing its chances of indulging into any reproduc-

tive activity.

3.1 Example Individual

Using the grammar from section 2 we will now demon-

strate the genotype-phenotype mapping of a Chorus

individual. The particular individual is encoded by

the following genome:

18 28 32 27 42 17 18 31 27 14

45 46 45 18 27 55 65

For clarity, we also show the normalised values of each

gene, that is, the genes mod 14. This is only done

for readability, as in the Chorus system, the genome is

only read on demand, and not decoded until needed.

4 0 4 D 0 3 4 3 D 0

3 4 3 4 D D 9

The �rst step in decoding the individual is the creation

of the concentration table. There is one entry for each

production rule (0..D), each of which is initially zero.

The table is split across two lines to aid readability.

Rule # 0 1 2 3 4 5 6

Concentration

Rule # 7 8 9 A B C D

Concentration

The sentence starts as <expr>, so the �rst choice must

be made from productions 0..3, that is:

<expr> ::= <expr> <op> <expr> (0)

| ( <expr> <op> <expr>)(1)

| <pre-op> ( <expr> ) (2)

| <var> (3)

None of these have a value yet, so we must read the

�rst gene from the genome, which will cause it to pro-

duce its protein. This gene decodes to 4, which is not

involved in the current choice. The concentration of 4

is incremented, and another gene read. The next gene

is 0, and this is involved in the current choice. Its con-

centration is amended, and the choice made. As this

is the only relevant rule with a positive concentration,

it is chosen and its concentration is reduced, and the

current expression becomes:

<expr><op><expr>

The process is repeated for the next leftmost non-

terminal, which is another expr. In this case, again the

concentrations are at their minimal level for the pos-

sible choices, so another gene is read and processed.

This gene is 4, which is not involved in the current

choice, so we move on and keep reading the genome till

we �nd rule 0 which is a relevant rule. Meanwhile we

increment the concentrations of rule 4 and D. Similar

to the previous step, production rule #0 is is chosen,

so the expression is now

<expr><op><expr><op><expr>

Reading the genome once more for the non-terminal

expr, produces rule 3 so the expression becomes

<var><op><expr><op><expr>

The state of the concentration table at the moment is

given below.

Rule # 0 1 2 3 4 5 6

Concentration 2

Rule # 7 8 9 A B C D

Concentration 1

The next choice is between rules #C and #D, however,

as at least one of these already has a concentration,

the system does not read any more genes from the

chromosome, and instead uses the values present. As

a result, rule <var> -> X is chosen to introduce �rst

terminal symbol in the expression.

Once this non-terminal has been mapped to a termi-

nal, we move to the next left most terminal, <op> and

carry on from there. If, while reading the genome, we

come to the end, and there is still a tie between 2 or

more rules, the one that appears �rst in the concen-

tration table is chosen. However if concentrations of

all the relevant rules is zero, the mapping terminates

and the individual responsible is given a suitably chas-

tening �tness.

With this particular individual, mapping continues

until the individual is completely mapped. The in-

terim choices made by the system are in the order:

4; 3; D; 4; 0; 3; D; 4; 3; D. The mapped individual is

X + X + X + X

The state of the concentration table at the end of the

mapping is given in the next table.

Notice that there are still some concentrations left in

the table. These are simply ignored in the mapping
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Rule # 0 1 2 3 4 5 6

Concentration 2

Rule # 7 8 9 A B C D

Concentration

process and, in the current version of Chorus, are not

used again. Notice also that the rule #9 is not read

because the mapping terminates before reading this

codon.

4 Genetic Operators

The binary string representation of individuals e�ec-

tively provides a separation of search and solution

spaces. This permits us to use all the standard genetic

operators at the string level. Crossover is implemented

as a simple, one point a�air, the only restriction be-

ing that it takes place at the codon boundaries. This

is to permit the system to perform crossover on well-

formed structures, which promotes the possibility of

using schema analysis to examine the propagation of

building blocks. Unrestricted crossover will not harm

the system, merely make this kind of analysis more

diÆcult.

Mutation is implemented in the normal fashion, with a

rate of 0.01, with crossover occuring with a probability

of 0.9. Steady state replacement is used, with roulette

wheel selection.

As with GE, if an individual fails to map after a com-

plete run through the genome, wrapping operator is

used to reuse the genetic material. However, the exact

implemenation of this operator has been kept di�er-

ent. Repeated reuse of the same genetic material e�ec-

tively makes a wrapped individual behave like multiple

copies of the same genetic material stacked on top of

each other in layers. When such an individual is sub-

jected to crossover, the stack is broken into two pieces.

When linearized, the resultant of crossover is di�erent

from one or the other parent at regular intervals. In or-

der to minimize such happenings, the use of wrapping

has been limited to initial generation. After wrapping,

the individual is attened or unrolled, by putting all

the layers of the stack together in a linear form. The

unrolled individual then replaces the original individ-

ual in the population. This altered use of wrapping

in combination with position exibility, promises to

maintain the exploitative e�ects of crossover. Unlike

GE, the individuals that fail to map on the second

and subsequent generations are not wrapped, and are

simply considered infeasible individuals.

5 The Cart Centering Problem

The cart centering problem is well known in the area

of evolutionary computation. Koza[Koza, 92] success-

fully applied GP to it, to show that GP was able to

come up with a controller that would center the cart

in the minimum amount of time possible.

The problem, also referred to as the double integrator

problem, appears in introductory optimal control text-

books as the classic application of Pontryagin's Prin-

ciple (see for instance [Athans, Falb, 66]). There has

been considerable research conducted into the theo-

retical background of the problem, and the theoreti-

cal best performance can be calculated, even though

designing an expression to produce this performance

remains a non-trivial activity.

As Evolutionary Computation methods are bottom up

methods, they do not, as such, adhere to problem spe-

ci�c (be it theoretic or practical) information. This

means that E.C. can be used as a testing ground for

theories - if one can break the barriers proposed by

theoreticians, then it probably means that there is a

aw in the theory concerned. However, another possi-

bility is that there is a aw in the experimental set up,

that makes it appear as though the theoretical best

has been surpassed.

This section describes the application of Chorus to the

cart centering problem, an exercise which ppears to

consistently produce individuals that surpass the the-

oretical best, before discussing the implications of the

result.

5.1 Theoretical Background

In its most basic form, we consider a \cart" as a parti-

cle of massmmoving in one dimension with position at

time t of x(t) relative to the origin, and corresponding

velocity v(t). The cart is controlled by an amplitude

constrained thrust force u(t); ju(t)j � 1, and the con-

trol objective is to bring the cart to rest at the origin

in minimum time on a frictionless track. The state

equations are

dx

dt
= v

dv

dt
=

1

m
u

or

d

dt

�
x

v

�
=

�
0 1

0 0

��
x

v

�
+

�
0

1=m

�
u (1)

The solution is a unique \Bang-Bang " control (u(t)

takes only the values +1 or -1) with at most 1 switch
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which is expressible in feedback form (u = u
�(x; v))

in terms of a \switching curve" S in the x � v plane.

Following the approach of [Athans, Falb, 66] we �nd

that S is given by

x+
m

2
vjvj = 0; (2)

the optimal control by

u
� =

8<
:

�1; if x+ m

2
vjvj > 0

+1; if x+ m

2
vjvj < 0

�v=jvj; if x+ m

2
vjvj = 0

(3)

and the minimum time T to reach (0; 0) from (x; v) by

T =

8<
:

mv +
p
2m2v2 + 4mx; if x+ m

2
vjvj > 0

�mv +p
2m2v2 � 4mx; if x+ m

2
vjvj < 0

mjvj; if x+ m

2
vjvj = 0

(4)

The above formulae assume that the system can switch

precisely when condition (2) is met. In practice, this

is only approximated. The engineering literature con-

tains analyses of what happens when non-ideal switch-

ing (deadband and/or hysteresis) occurs using real

hardware with the resultant cycling, chattering and

steady state error. (see [Gibson, 63] for more details).

5.2 Experimental Setup

GP has been shown to be able to successfully evolve

the time optimal control strategy (see [Koza, 92]). The

same experimental setup is used by Chorus except

where mentioned otherwise. The simulation essen-

tially entails a discretisation of the problem so as to

enable a numerical approximation of the derivatives in-

volved. This is referred to as an Euler approximation

of the di�erential equations given in (1), i.e.,

x(t+ h) = x(t) + hv(t);

v(t+ h) = v(t) +
h

m
u(t);

where m is the mass of the cart, h represents the time

step size, v(t+ h) and x(t+ h) represent velocity and

distance from the origin respectively at time t+h and

v(t) and x(t) represent velocity and distance from the

origin respectively at time t. The desired control strat-

egy should satisfy the following conditions.

It should specify the direction of the force to be

applied for any given values of x(t) and v(t).

The cart approximately comes to rest at the ori-

gin, i.e., the Euclidean (x; v) distance from the

origin is less than a certain threshold.

The time required is minimal.

The exact time optimal solution is characterised by

the switching condition

�x(t) > v
2(t)Sign v(t)

2jumaxj=m ; (5)

which applies the force in the positive x direction if the

above condition is met and in the negative direction

otherwise. Note that umax represents the maximum

value of u(t), which is 1 here. The Sign function re-

turns +1 for a positive argument and -1 otherwise. For

the sake of simplicity m is considered to be equal to

2.0 kilograms and the magnitude of the force u(t) is

1.0 Newtons, so that the denominator equals 1.0 and

can be ignored. The experimental settings employed

by Koza are summarised in table 1. Note that (5)

does not incorporate the equality condition mentioned

in (3).

Table 1: A Koza-style Tableau For The Cart Centering

Problem.

Objective: Find a time optimal bang-bang
control strategy to center a cart on a
one dimensional frictionless track.

Terminal Set: The state variables of the system:
x (position of the cart along X
axis), v (velocity V of the cart)
and -1.0.

Function Set: +,-,*,%,ABS,GT.
Fitness cases: 20 initial condition points (x; v)

for position and velocity chosen
randomly from the square in
position-velocity space having
opposite corners, (�0:75; 0:75)
and (0:75;�0:75).

Fitness: Reciprocal of sum of the time, over
20 �tness cases, taken to center the
cart. When a �tness case times out,
the contribution to the sum is 10.0
seconds.

Hits: Number of �tness cases that did
not time out.

Wrapper: Converts any positive value
returned by an expression to +1 and
converts all other values
(negative or zero) to -1.

Parameters: M = 500, G = 75
Success Predicate: None.

The grammar used for the problem is:

S = <expr>

<expr> ::= <expr> <op> <expr>

| ( <expr> <op> <expr>)
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| <pre-op> ( <expr> )

| <var>

<op> ::= + | - | % | * | GT

<pre-op> ::= ABS

<var> ::= X | V | -1.0

The randomly generated 20 �tness cases used by Cho-

rus are given in the table 2.

Table 2: Randomly Generated 20 Starting Points,

given as ((x; v) pairs).

0.50,0.67 -0.65,0.40 -0.16,-0.57 0.10,0.50

-0.71,0.66 0.43,0.01 -0.28,-0.71 0.27,-0.73

-0.50,0.34 -0.57,0.32 0.43,-0.69 -0.52,-0.16

-0.33,-0.21 -0.16,-0.06 0.71,-0.69 -0.04,-0.63

0.39,0.70 -0.52,-0.42 -0.59,0.38 0.58,-0.35

The cart is considered to be centered if the Euclidean

distance from the origin (0; 0) is less than or equal to

0.01. The total time taken by the strategy (5) over all

the given set of starting points is 56.07996 seconds. On

average it takes 2.803998 seconds per �tness case for

the cart to be centered. This means that any strategy

which centers the cart in less time, does better than

the theoretical solution (5) for this experimental setup.

5.3 Experimental Results

The work of Koza [Koza, 92] shows that the optimal

control strategy can be evolved using GP. However,

it has not been shown that even in the absence of

any success predicate, any strategy was evolved which

could beat the result as described by the inequality

(5). When the same task is given to the Chorus sys-

tem, 17 times out of 20 independent runs, it evolves

what appears to be a better strategy in terms of time

minimisation. Out of those 17 runs, on the average,

a better strategy is produced in the 39th generation,

the earliest being 20th and the latest being 65th.

One of the samples which broke the barrier is given as

(�1:0 �X) GT (V �ABS(V ) + V � V � V );

which can be rewritten as

�x(t) > v
2(t)Sign v(t) + v

3(t); (6)

returning +1 if the condition is satis�ed and �1 oth-

erwise. Total time recorded for this control law men-

tioned by inequality (6) is 50.799965 seconds over 20

�tness cases which is clearly less than the solution

shown by the inequality (5). However, the least time

that was recorded was 49.919968 seconds. A plot of x

versus v for the control strategy given in (5) is shown

in Fig 1(a) for the starting point (0:50; 0:67). A simi-

lar plot for the strategy evolved by the Chorus system

is shown in Fig 1(b). Notice that in (a) the control

strategy crosses the y-axis leading into the negative

x-axis region and then it returns to the origin. This

shows the longer route traversed by (a) compared to

(b) where there is no such occurrence, thus reecting

the time di�erence between the two strategies.

(a)
x

v

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

(b)
x

v

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

Figure 1: .Trajectories traversed by the two strategies

to reach the origin. (a) represents inequality (5) and

(b) represents the evolved strategy (6)

5.4 Discussion

It appears from the results in the previous section

that a solution better than the theoretical has been

achieved. However, a careful consideration of the

problem undertaken shows otherwise. This problem

has been solved by �rst discretising the main di�eren-

tial equations as mentioned earlier. The discretisation

brings with it an element of error. The time step h
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used now plays a major role, in the sense that a smaller

time step would lead to a better solution i.e., closer to

the theoretical solution (3), and as h! 0 the solution

converges to (3).

The time step employed by Koza [Koza, 92] is h =

0:02, and using this time step, the error in the deriva-

tives is substantial enough to cause the systems to con-

verge to control laws other than the theoretical result

in (3). In this sense Chorus actually validates this by

evolving to what is a better solution than (5).

A study of the appropriate literature in the control

theory genre indicates that the theoretical model is

just that, theoretical. Practical implementation of a

control system which brings the cart to the target po-

sition is not even \bang-bang" (i.e u(t) is either +1 or

-1). Instead, the magnitude of the applied force is any

real number between 0 and 1.

One approach is to model the situation as one in which

the control can change only at discrete-time steps, ei-

ther as a sampled data system or a discretised version

of eq(1). The former leads to state equations

x(t + h) = x(t) + Æv(t) +
Æ
2

2m
u(t)

v(t+ h) = v(t) +
Æ

m
u(t)

where 1=Æ is the sampling rate. The latter, using an

Euler discretisation scheme, leads to state equations

x(t+ h) = x(t) + hv(t)

v(t+ h) = v(t) +
h

m
u(t)

where h is the step size.

When Æ = h, both models are of the form

�
x(t+ h)

v(t+ h)

�
=

�
1 h

0 1

��
x(t)

v(t)

�
+

�
b

h=m

�
u(t)

(7)

where b = h
2
=2m for the sampled data model and

b = 0 for the discretised model.

The control objective is again to bring the state of eq

(7) to the origin in minimum time using a sequence of

amplitude constrained controls juj � 1. However, due

to the discrete time steps, the solution of the problem

is fundamentally di�erent to that of the continuous

time problem of (1). The optimal control is in general

no longer unique, nor except for a set of isolated points

in the x� v plane is it Bang-Bang throughout. Hence

there are di�erent approaches and algorithms.

The more general problem in n dimensions was

initially formulated in [Kalman, 57], and then

analysed comprehensively in [Desoer, Wing, 61a] -

[Desoer, Wing, 61c]. This analysis, when applied to

the cart centering problem recursively constructs a se-

quence of convex sets fCkg, where Ck is the set of

states for which there exists an admissible input se-

quence which transfers the state to the origin in k time

steps but no fewer (C0 = f(0; 0)g). For instance, if we
want to centre the cart in 1 time step then C1 rep-

resents the region of interest. For any (x1; v1) 2 C1,

the cart is guaranteed to be centered in exactly 1 time

step. In addition, a piecewise linear switching curve

is constructed which divides the plane into regions of

positive and negative control values (see �gure 2).

x

v

Figure 2: The sets C1 - C8 for the Euler discretised

system with a cart of mass m = 2 and h = 0:02

Later work has looked at describing the Ck in

terms of their facets with associated algorithms

[Keerthi, Gilbert, 87], and there is still much interest

in improving the eÆciency of the existing algorithms

(see [Jamak, 00] for a good review).

6 Conclusions

We have described the application of a position inde-

pendent, representation scheme for Evolutionary Algo-

rithms, termed Chorus, on the cart centering problem.

Much to our surprise, Chorus apparently succeeded in

producing individuals that performed better than the

theoretical best. However, further analysis of the prob-

lem and traditional experimental set up revealed aws

that changed the nature of the problem.
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The paper describes how Chorus was able to exploit

these aws to produce surprisingly �t individuals, and

how an Evolutionary Computation system can be used

to help test models of physical systems. Also, it re-

emphasizes the point that while attempting to solve

continuous problems numerically, we should be ware

of the resultant discretisation errors. It is also worth

noting that the way these problems are typically solved

by control engineers is by starting with the discretised

analogues of the continuous problems and then pro-

ceeding to solve. It might be worth exploring what a

system like Chorus may have to o�er in the solution

process of such a discretised problem.

6.1 Future Work

The results shown in the cart centering problem en-

courage the use of Chorus for real world problems.

Coupled with the strengths of the system discussed in

[Ryan et al, 02a], the system can be applied but not

limited to the problems in the �eld of control theory

and uid dynamics.

Chorus diverges considerably from algorithms in the

same \family", e.g. Grammatical Evolution and

GAUGE[Ryan et al, 02b] in that it does not exploit

the ripple e�ect, and instead uses position indepen-

dent, absolute genes. This makes Chorus very suit-

able for schema analysis, and also possible that the

Genetic Algorithm Schema Theory could, with very

little extension, be applied to an automatic program-

ming system.
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Abstract

This paper presents a survey and comparison
of the signi�cant diversity measures in the
genetic programming literature. The over-
all aim and motivation behind this study is
to attempt to gain a deeper understanding
of genetic programming dynamics and the
conditions under which genetic programming
works well. Three benchmark problems (Ar-
ti�cial Ant, Symbolic Regression and Even-
5-parity) are used to illustrate di�erent di-
versity measures and to analyse their corre-
lation with performance. The results show
that diversity is not an absolute indicator of
performance and that phenotypic measures
appear superior to genotypic ones. Finally
we conclude that interesting potential exists
with tracking ancestral lineages.

1 INTRODUCTION

Maintaining population diversity in genetic program-
ming (Banzhaf et al., 1998) is referred to as the key
in preventing premature convergence and stagnation
in local optima (McPhee and Hopper, 1999)(Ryan,
1994)(Ek�art and N�emeth, 2000)(McKay, 2000)(Rosca,
1995a). Diversity is the amount of variety in the pop-
ulation de�ned by what genetic programming indi-
viduals `look' like or how they `perform'. The num-
ber of di�erent �tness values (phenotypes) (Rosca,
1995b), di�erent structural individuals (genotypes)
(Langdon, 1996), edit distances between individuals
(Ek�art and N�emeth, 2000), and complex and com-
posite measures (McKay and Abbass, 2001)(Keijzer,
1996)(D'haeseleer, 1994) are used as measures of di-
versity. At the individual level, diversity measures dif-
ferences between individuals and is used to select in-

dividuals for reproduction or replacement (Eshelman
and Scha�er, 1993).

In this study, we examine the previous uses and mean-
ings of diversity, compare these di�erent measures on
three benchmark problems and discuss the results. As
far as the authors are aware, all the signi�cant diver-
sity measures that occur in the genetic programming
literature are reported.

The ultimate goal is to determine a good measurement
of population diversity and understand the e�ects of
its inuence as the evolutionary search progresses. The
overall motivation of this study is that a better under-
standing of diversity and diversity measures will lead
to a better understanding of genetic programming and
the advantages and disadvantages of employing it in
any given situation.

The following sections examine di�erent measures of
diversity, how these measures relate to each other and
how they relate to the performance of three genetic
programming problems. Section 2 describes measures
of population diversity and previous methods of pro-

moting diversity in populations. Section 3 describes
the experiments. Section 4 presents and discuss re-
sults. Section 5 draws some brief conclusions and Sec-

tion 6 outlines some ideas for future work.

2 DIVERSITY MEASURES

Some measures of diversity are intended to quantify
the variety in a population and others are used to
measure the di�erence between individuals. The lat-
ter type is used to attempt to control or promote high
diversity during a run. The following section surveys
both measures that provide a quanti�cation of popu-
lation diversity and methods used to actively promote
and maintain diversity within genetic programming.
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2.1 POPULATION MEASURES

The most common type of diversity measure is that of
structural di�erences between programs. Koza (1992)
used the term variety to indicate the number of di�er-
ent programs his populations contained. In this mea-
sure, two programs are structurally compared, looking
for exact matches. Landgon (1996) felt that genotypic
diversity was a suÆcient upper bound of population
diversity as a decrease in unique individuals must also
mean a decrease in unique �tness values. More com-
plex genotype measures count subtrees, size, and type
and frequencies of nodes.

Keijzer (1996) measures program variety by the num-
ber of unique individuals and subtree variety by count-
ing unique subtrees. Population diversity is a ratio of
the number of unique individuals over population size
and subtree variety is the ratio of unique subtrees over
total subtrees. Tackett (1994) also measures struc-
tural diversity using unique subtrees and schemata fre-
quencies. D'haeseleer and Bluming (1994) de�ne the
frequency of terminals and functions as \genotypical
diversity" and �tness case results as \phenotypical di-
versity", which are correlated within the population
for their study of local populations and demes.

When tree representations of genetic programs are
considered as graphs, individuals can be compared for
isomorphism (Rosca, 1995a) to obtain a more accurate
measure of diversity. Determining graph isomorphism,
however, is computationally expensive for an entire
population. We could count the number of nodes, ter-
minals, functions and other graph properties in a rea-
sonable time and use this n-tuple to determine whether
trees are possible isomorphs of each other.

McPhee and Hopper (1999) investigate diversity at the
genetic level by tagging each node created in the initial
generation with a unique id. Root parents, the par-
ents whose tree has a portion of another individual's
subtree swapped into it during crossover, are assigned
new memids, an auxiliary tag that is initially the same
value of the id. All the nodes from the root down to
the crossover point are assigned new memids to indi-
cate that these nodes have one new child. If there is
no mutation in the genetic programming system (as
here), then no new ids will be created after the initial
generation, only memids. McPhee and Hopper found
that the number of unique ids dramatically falls after
initial generations and, by tracking the root parents,
after an average of 16 generations, all further individ-
uals have the same common root ancestor.

Phenotypic measures compare the number of unique
�tness values in a population. When the genetic pro-

gramming search is compared to traversing a �tness
landscape, this measure provides an intuitive way to
think of how the population covers that landscape.
Other measures could be created by using �tness val-
ues of a population, as done by Rosca (1995a) with
entropy and free energy. Entropy here represents
the amount of disorder of the population, where an
increase in entropy represents an increase in diver-
sity. Bersano-Begey (1997) track how many individu-
als solve which �tness cases. By monitoring the pop-
ulation, a pressure is added to individuals to promote
the discovery of di�erent or less popular solutions.

2.2 PROMOTING DIVERSITY

Several measures and methods have been used to pro-
mote diversity by measuring the di�erence between in-
dividuals. These methods typically use a non-standard
selection, mating, or replacement strategy to bol-
ster diversity. Neighborhoods, islands, niches, crowd-
ing and sharing from genetic algorithms are common
themes to these methods.

Eschelman and Scha�er (1993) use Hamming distances
between individuals to select individuals for recombi-
nation and replacement to improve over hill-climbing-
type selection strategies for genetic algorithms.

Ryan's (1994) \Pygmie" algorithm builds two lists
based on �tness and length to facilitate selection for
reproduction. The algorithm maintains more diver-
sity and prevents premature convergence. The advan-
tage of this algorithm is that it does not attempt to
\over-control" evolution and uses simple measures to
promote diversity.

De Jong et al (2001) use multiobjective optimisa-
tion to promote diversity and concentrate on non-
dominated individuals according to a 3-tuple of
<�tness,size,diversity>. Diversity is the average
square distance to other members of the population,
using a specialised measure of edit distance between
nodes. This multiobjective method promotes smaller
and more diverse trees.

McKay (2000) applies the traditional �tness sharing

concept from Deb and Goldberg (1989) to test its fea-
sibility in genetic programming. Diversity is the num-
ber of �tness cases found, and the sharing concept as-
signs a �tness based on an individual's performance
divided by the number of other individuals with the
same performance. McKay also studies negative corre-
lation and a root quartic negative correlation in (2001)
to preserve diversity. Ek�art and N�emeth (2000) apply
�tness sharing with a novel tree distance de�nition and
suggest that it may be an eÆcient measure of struc-
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tural diversity.

By surveying previous work using diversity measures,
we designed several experiments to determine relation-
ships between di�erent population measures of diver-
sity and how they correlate to the best �tness of a
run.

3 EXPERIMENTS

In this study we would like to answer two questions:
One, how do di�erent measures of diversity relate to
each other, and two, how do those measures correlate
to the best �tness of a run. Three common problems
are used with common parameter values from previous
studies. For all problems, a population size of 500 in-
dividuals, a maximum depth of 10 for each individual,
a maximum depth of 4 for the tree generation half-n-
half algorithm and internal node selection probability
of 0.9 for crossover is used. Additionally, each run
consists of 51 generations, or until the ideal �tness is
found.

The Arti�cial Ant, Regression and Even-5-Parity
problems are used. All three problems are typical to
genetic programming and can be found in many stud-
ies, including (Koza, 1992). The ant problem is con-
cerned with �nding the best strategy for picking up
pellets along a trail in a grid. The �tness for this
problem is measured as the number of pellets missed.
The regression problem attempts to �t a curve for the
function x4+x3+x2+x. Fitness here is determined by
summing the squared di�erence for each point along
the objective function and the function produced by
the individual. The parity problem takes an input of
a random string of 0's and 1's and outputs whether
there are an even number of 1's. The even-5-parity
�tness is the number of wrong guesses for the 25 com-
binations of 5-bit length strings.

To produce a variety of run performances, where we
consider the best �tness in the last generation, we
designed three di�erent experiments, carried out 50
times, for each problem. The �rst experiment ran-

dom performs 50 independent runs. The experiment

stepped-recombination does 50 runs with the same ran-
dom number seed, where each run uses an increasing
probability for reproduction and decreasing probabil-
ity for crossover. Initially, probability for crossover
is 1:0, and this is decreased by 0:02 each time, skip-
ping the value of reproduction set to :98 to allow for
exactly 50 runs and ending with reproduction prob-
ability of 1:0 and crossover probability 0:0. The last
experiment stepped-tournament is similar but we begin
with a tournament size of 1 and increment this by 1

for each run, until we reach a tournament size of 50.
In the random and stepped-tournament experiments,
crossover probability is set to 1:0 and the tournament
size in random and stepped-recombination is 7. The
Evolutionary Computation in Java (ECJ), version 7.0,
(Luke, 2002) is used, where each problem is available
in the distribution.

In analysing the results, we compare the 50 runs for
uctuations of diversity levels in the di�erent mea-
sures and examine the standard deviation across ex-
periments for each problem. Additionally, the Spear-
man correlation coeÆcient (Siegel, 1956) is computed,
comparing the ranking of a run's performance and di-
versity measure for that run (also taken from the last
generation's population).

The following measures of diversity were introduced
previously and are described next as they are collected
for each generation in every run.

Unique Node id: Tag each node with id:memid as

in (McPhee and Hopper, 1999) and count number of
distinct ids in each generation.

Size of Ancestral Pool: Since each individual has
one root ancestor, in any generation each individuals'
line of root ancestors can be traced to the initial gen-
eration. It is possible to consider the size of the set
that is formed by a set of root parents from the ini-
tial generation, and then replacing this set with its
intersection with the next generation's root parents.
A common ancestor exists when the size becomes 1.

Entropy: Calculate the entropy of the population as
in (Rosca, 1995a). Entropy is represented as, where
\pk is the proportion of the population P occupied by
population partition k":

�
X

k

pk � logpk

Here a partition is assumed to be each possible dif-
ferent �tness value, but could be de�ned to include a
subset of values.

Pseudo-Isomorphs: Calculate pseudo isomorphs by
de�ning a 3-tuple of <terminals,nonterminals,depth>,

for each individual and count the number of unique
3-tuples in each population. Two identical 3-tuples
represent trees which could be isomorphic.

Genotypes and Phenotypes: Count the number
of unique trees for the genotype measure (Langdon,
1996). The number of unique �tness values in a
population represents the phenotype measure (Rosca,
1995b).

The Spearman correlation coeÆcient is computed as
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follows (Siegel, 1956):

1�
6
P

N

i=1
d2
i

N3 �N

Where N is the number of items (50 runs), and di is
the distance between each run's rank of performance

and rank of diversity in the last generation. A value
of -1.0 represents negative correlation, 0.0 is no cor-
relation and 1.0 is positive correlation. For our mea-
sures, if we see ideal low �tness values, which will be
ranked in ascending order (1=best,: : :,50=worst) and
high diversity, ranked where (1=lowest diversity and
50=highest diversity), then the correlation coeÆcient
should be strongly negative. Alternatively, a positive
correlation indicates that either bad �tness accompa-
nies high diversity or good �tness accompanies low di-
versity.

4 RESULTS AND DISCUSSION

Graphs of 50 runs for each of the three experiments
and each problem were examined. Graphs for the ant
and regression problems are shown in Figures 1-4. The
min, max and standard deviation of each measure (in-
cluding best �tness) were calculated for each run and
the Spearman correlation coeÆcient was calculated for
each of the six diversity measures versus run perfor-
mance, found in Table 1. This study involved 450 runs
of 51 generations each, with each population consist-
ing of 500 individuals, or 13,500,000 individual evalu-
ations.

We found relatively stable standard deviations of
best �tness in the ant problem experiments (11.8575,
12.9049, 12.0785) but there were large di�erence in
standard deviations of genotype diversity (14.4554,
124.7823, 37.3990). This variation in best �tness is
not indicated by the number of unique trees (geno-
types): There is a minimum value of 428 and a maxi-
mum of 489. This consistently high genotype diversity
does not suggest a strong relationship with the varying
performance.

Unique node ids and root ancestors converge early in

each run. This con�rms the results found in (McPhee
and Hopper, 1999) that genetic-level diversity is lost
very quickly, even with widely varied performance, re-
combination and tournament values. A further study
to consider when these measures converge could be an
interesting indicator of other diversity or run perfor-
mance values. In nearly all of the graphs of diversity
measures and best �tness, the most dramatic activ-
ity occurs when the number of unique ids and root
ancestors converges. This activity can been seen in
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Figure 1: 50 runs of best �tness per generation (top
graph) for the ant stepped-tournament experiment.
Here, low �tness is better. Also a graph for each of
the diversity measures of entropy, genotype, unique
node ids.
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Figure 2: 50 runs of the ant stepped-tournament ex-
periments, showing a graph for each of the diversity
measures of phenotype, pseudo-isomorphs, and root
ancestors.

Figures 1 through 4. It is not clear, however, how this
phenomenon e�ects evolution and loss of diversity (ac-
cording to other measures) since, when the number of
unique ids is reduced and even when a common root
ancestor is found, runs are still capable of �nding good
solutions.

Using the Spearman correlation coeÆcient we inves-
tigated whether runs that produced good �tness had
low/high diversity, where ties in ranks were resolved
by splitting the rank among tying items (add possi-
ble ranks and average). Remembering that negative
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Figure 3: 50 runs of best �tness per generation (top
graph) for the regression random experiment. Here,
low �tness is better. Also a graph for each of the di-
versity measures of entropy, genotype, unique node ids.
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Figure 4: 50 runs of the ant stepped-tournament ex-
periments, showing a graph for each of the diversity
measures of phenotype, pseudo-isomorphs, and root
ancestors.

correlation (values close to -1.0) suggest that high di-
versity is correlated with good performance. Table 1
provides the data for all experiments. High negative
correlation is seen most consistently with entropy and
phenotype diversity. Genotype diversity showed high
negative correlation on the regression problem but oth-
erwise varied between little to positive correlation on
other problems. While phenotype and entropy always
had a negative correlation with performance, values
ranged from -0.1608 to -0.8893 with an average corre-
lation of -0.6019 for phenotype and -0.6054 for entropy
diversity across all experiments. These were the only

Table 1: Problems ant (a), regression (r) and parity (p)
with experiments random (rand), stepped-tournament

(step-t) and stepped-recombination (step-r). Values are
from the �nal population. Best �tness (\b.�t") is the
best �tness in the �nal generation. The Spearman cor-
relation coeÆcient shows perfect correlation with value
1.0 and perfect negative correlation with value -1.0.

prob. expr. col. spearman min max stand.dev

a rand b.�t 0.0 39.0 11.8575

a rand ids 0.1727 25.0 145.0 22.4092

a rand roots 0.5014 1.0 1.0 0.0

a rand phene -0.1608 16.0 59.0 8.0181

a rand gene 0.4081 428.0 489.0 14.5543

a rand isom 0.5391 121.0 350.0 63.3594

a rand entro -0.4195 0.4215 1.1566 0.1702

a step-r b.�t 0.0 62.0 12.9049

a step-r ids 0.0155 15.0 110.0 24.1658

a step-r roots 0.1740 1.0 4.0 0.5291

a step-r phene -0.4088 1.0 47.0 9.6260

a step-r gene 0.0799 1.0 477.0 124.7823

a step-r isom 0.3532 1.0 348.0 83.0020

a step-r entro -0.5590 -0.0 1.1457 0.2160

a step-t b.�t 0.0 65.0 12.0785

a step-t ids 0.2351 14.0 242.0 42.4240

a step-t roots 0.4253 1.0 15.0 1.9673

a step-t phene -0.2854 17.0 57.0 8.9314

a step-t gene 0.3040 294.0 488.0 37.3990

a step-t isom 0.3394 83.0 372.0 67.0498

a step-t entro -0.3461 0.4525 1.5702 0.2155

r rand b.�t 0.0 0.9399 0.2310

r rand ids -0.6552 16.0 342.0 89.9100

r rand roots -0.6393 1.0 21.0 5.3113

r rand phene -0.7159 66.0 377.0 95.6887

r rand gene -0.5779 72.0 448.0 114.2444

r rand isom -0.5321 32.0 268.0 53.2196

r rand entro -0.6882 0.9297 2.5029 0.4044

r step-r b.�t 0.0 2.8999 0.4552

r step-r ids -0.5228 4.0 99.0 14.9947

r step-r roots 0.0244 1.0 8.0 1.5133

r step-r phene -0.8703 1.0 303.0 61.0422

r step-r gene -0.8318 1.0 347.0 76.7983

r step-r isom -0.8082 1.0 165.0 36.1054

r step-r entro -0.8430 -0.0 2.2878 0.4713

r step-t b.�t 0.0 2.8999 0.4338

r step-t ids -0.5199 8.0 208.0 39.7216

r step-t roots -0.0021 1.0 16.0 3.3859

r step-t phene -0.5797 22.0 428.0 88.6046

r step-t gene -0.5043 28.0 458.0 108.1168

r step-t isom -0.4479 17.0 249.0 49.4191

r step-t entro -0.4001 1.0748 2.5894 0.3214

p rand b.�t 3.0 12.0 1.9267

p rand ids -0.0142 29.0 93.0 12.6820

p rand roots 0.5189 1.0 1.0 0.0

p rand phene -0.6950 7.0 16.0 1.9489

p rand gene 0.2001 422.0 478.0 14.2580

p rand isom 0.2635 46.0 92.0 11.5526

p rand entro -0.6777 0.5138 0.9241 0.08773

p step-r b.�t 5.0 14.0 2.1462

p step-r ids -0.4573 15.0 57.0 12.4997

p step-r roots 0.5119 1.0 1.0 0.0

p step-r phene -0.8119 1.0 13.0 2.4278

p step-r gene -0.5957 1.0 471.0 103.8743

p step-r isom -0.0526 1.0 111.0 18.3605

p step-r entro -0.7039 -0.0 0.8291 0.1801

p step-t b.�t 1.0 15.0 2.6510

p step-t ids 0.2629 20.0 225.0 32.6593

p step-t roots 0.5934 1.0 16.0 2.1344

p step-t phene -0.8893 3.0 17.0 2.5258

p step-t gene 0.4247 344.0 485.0 28.9229

p step-t isom 0.2311 39.0 102.0 13.9385

p step-t entro -0.8115 0.0445 0.9432 0.1325

measures that did not show some positive correlation.

Correlation values were not consistently high (statis-
tical signi�cant) but indicate that a relationship may
be present. Scatter plots show trends indicated by the
Spearman correlation, and Figure 5 shows plots for
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the regression problem and stepped-recombination ex-
periment. Notice the obvious correlation between low
�tness rankings and high diversity rankings for each
of the 50 runs for the phenotype, genotype, pseudo-
isomorphs and entropy measures. Results suggest that
one measure is not de�nitive but di�erent measures
may provide useful information for di�erent problems.

The appearance of consistent negative correlations
suggests that better performing runs do have higher di-
versity. Also con�rmed by the correlation study is that
the entropy and phenotype measures, and the geno-
type and pseudo-isomorph measures each have similar
results. Since phenotype and pseudo-isomorphs would
seem to be less computationally expensive, these mea-
sures may be more desirable to track in evolutionary
computation systems.

5 CONCLUSIONS

The measures of diversity surveyed and compared here
demonstrate that the typical genotype measure may
not be suÆcient to accurately capture the dynamics
of a population, which is also suggested in (Ryan,
1994)(Keijzer, 1996).

High variance in performance was not indicated by
genotype diversity. The phenotype and entropy mea-
sures appear to correlate better with run performance
and are less expensive to compute.

The pseudo-isomorph measure appeared to be as in-
formative as genotype diversity and suggests that this
simpler measure may be more desirable. Additionally,
the consistent early convergence of unique node ids

and root ancestors, coupled with signi�cant activity
in the other measures and performance, show interest-
ing potential for more study.

The relationship between diversity and run perfor-
mance is not straightforward, and our results indicated
some measures had a stronger correlation than others,
but not in all experiments and in all problems. This
study illustrates the need to carefully de�ne diversity
and consider the e�ects of problem and �tness repre-
sentation.

6 FUTURE WORK

Several extensions to this research were identi�ed and
are currently underway. Further experiments on more
problems (including real-world) will provide a more

thorough investigation. By tracking the convergence
of unique ids, root ancestors and other measures dur-
ing evolution, it is hoped that an early indicator for run
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Figure 5: Scatter plots of diversity measures (6=phe-
notype, 7=genotype, 8=pseudo-isomorphs, 9=en-
tropy) versus best �tness from last generation.
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success or failure can be found. Also of interest is using
methods to promote diversity and then applying these
di�erent diversity measures to determine their e�ects
of improving diversity. Several di�erent and novel di-
versity measures are also being investigated. The last
item of current work examines the computation needed
for maintaining the most eÆcient knowledge (of the
evolutionary computation system) to determine e�ec-
tive diversity measures. The research reported is being
extended and early experiments indicate that diversity
measures based on edit distances provide complimen-
tary and interesting results.
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Abstract

The growth of program size during evolu-
tion (code “bloat”) is a well-documented
and well-studied problem in genetic program-
ming. This paper examines the use of “size
fair” genetic operators to combat code bloat
in the PushGP genetic programming system.
Size fair operators are compared to naive op-
erators and to operators that use “node se-
lection” as described by Koza. The effects of
the operator choices are assessed in runs on
symbolic regression, parity and multiplexor
problems (2,700 runs in total). The results
show that the size fair operators control bloat
well while producing unusually parsimonious
solutions. The computational effort required
to find a solution using size fair operators is
about equal to, or slightly better than, the
effort required using the comparison opera-
tors.

1 INTRODUCTION

Code bloat in genetic programming has been docu-
mented since the field came into existence a decade
ago. In the past few years bloat has been studied
extensively, with researchers examining the causes of
bloat as well as testing new operators designed to
limit code bloat (D’haeseleer, 1994; Angeline, 1994;
Langdon and Poli, 1997; Poli and Langdon, 1997;
Banzhaf, et al., 1998; Soule and Foster, 1998; Lang-
don, et al., 1999; Francone, et al., 1999; Langdon,
1999; Luke, 2000). Recently, “size fair” operators
have been shown to limit bloat significantly without
decreasing the problem-solving ability of the genetic
programming system (Langdon, et al., 1999; Langdon,
1999).

This paper extends Langdon’s work by testing size fair
operators in a genetic programming system that uses
unusual representations for programs. The PushGP
system is conventional in most respects but it ma-
nipulates and produces Push programs rather than
the Lisp-like program trees used in more conventional
genetic programming systems (for example (Koza,
1992)). Push programs, like Lisp programs, are vari-
ably sized strings of symbols and balanced (possibly
nested) sets of parentheses. On the other hand, Push
programs are interpreted quite differently from Lisp
programs; Push program interpretation is more simi-
lar to the interpretation of stack-based languages like
Forth or Postscript. The applicability of Langdon’s
work to PushGP is therefore an interesting test of the
generality of his findings.

A detailed description of the Push programming lan-
guage is beyond the scope of this paper; see (Spector
and Robinson, 2002) for a full introduction and lan-
guage reference, or (Spector, 2001; Robinson, 2001)
for brief introductions. The essential feature of the
Push language for the present study is just that the
programs are syntactically similar to, yet semantically
quite different from, the Lisp-like programs used in tra-
ditional genetic programming systems. Push’s unique
structure supports many enhancements to genetic pro-
gramming systems (for example, efficient and fully au-
tomatic evolution of modular programs) but none of
these are relevant to the present study; see (Spector
and Robinson, 2002) for details.

In Langdon’s prior work he tested a 50%-150% fair
mutation operator in stochastic problem solving sys-
tems (e.g., hill climbing and simulated annealing sys-
tems) but not specifically in genetic programming sys-
tems. In this study we apply a variant of this op-
erator in PushGP and demonstrate its utility for ge-
netic programming. We also describe a new size fair
crossover operator and describe the performance of the
size fair operators in all possible combinations with
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naive operators and operators that use node selection
(a technique based on Koza’s 90%-10% tree/leaf selec-
tion method (Koza, 1992)).

2 Bloat in PushGP

Nested parentheses in the Push syntax make it pos-
sible to model a Push program as a tree, and ther-
fore to apply standard, tree-based genetic operators in
PushGP. The original version of PushGP used what
we will call “naive” operators which were meant to
be as simple as possible while capturing the essential
ideas of traditional genetic programming operators.
The naive mutation operator selects a random “point”
of the program to replace, with each point having an
equal probability of being chosen. Each symbol and
each parenthesized expression in the program counts
as a point. The chosen point is then replaced with a
new randomly generated expression, which will have
a size uniformly selected from the range [1, n], where
n is a system parameter. The naive crossover oper-
ator selects random points in both parent programs
(again with all points having an equal probability of
being chosen) and returns a copy of one of the parents
with the chosen point from its mate replacing its own
chosen point.1

Bloat is quite strong in PushGP when the naive opera-
tors are used, in large part because the naive mutation
operator generates random subtrees that are larger,
on average, than the subtrees they replace. In order
to keep program lengths manageable, PushGP imple-
ments a size ceiling. Any program exceeding the size
ceiling is discarded, and a clone of one of its parents is
used in its place; in the tables below we refer to this
as a “size limit replication.” Most runs with the naive
crossover and mutation operators exhibit rapid code
bloat, with program sizes climbing steadily toward the
size ceiling. It has been shown that when put to work
on simple symbolic regression problems, 20%-45% of
the children were over the size limit at Generation 50,
and thus discarded in favor of a clone of the parent
(Robinson, 2001). (Robinson, 2001) also discovered
that the naive crossover and mutation operators were
more likely to select leaf nodes than internal nodes,
resulting in little variation in the internal structure of
programs across the population.

3 What Causes Bloat?

Code bloat is not a phenomenon particular to GP. It
has been shown to occur in several non-GP stochastic

1The random code generator is described in (Spector
and Robinson, 2002).

search techniques (Langdon, 1998). There are many
studies on the origins of bloat. Some findings suggest
that because there are more large programs than small
ones in a search space, fitness-based selection on av-
erage finds larger programs with better fitness than
smaller or equal-sized programs (Langdon and Poli,
1997). Others suggest that bloat occurs as an evolu-
tionary defense mechanism against destructive opera-
tors. Traditional crossover and mutation can often be
fatal when applied to a small, fit program as they ran-
domly rip out a chunk of the fit program and replace
it with a different random chunk of program. Thus,
programs evolve “introns” (segments of neutral code)
as a means to preserve fitness when subjected to de-
structive evolutionary operators (Nordin and Banzhaf,
1995). Similar to defense theory, (Soule and Foster,
1998) suggest that individuals are penalized when a
large chunk of code is removed, but not so when a
large chunk is inserted, thus driving up the size of the
program. This is called “removal bias”. More recently,
(Luke, 2000) suggested that introns are not the cause
of code growth, but rather a symptom, and that a bias
towards deeper crossover points drives code growth.

The underlying cause of bloat is still open to debate.
What is universally agreed upon, however, is that bloat
occurs and often has detrimental effects on the im-
provement in fitness in genetic programming runs. In
addition, it clearly slows down genetic programming
runs by consuming CPU cycles and large amounts of
memory.

4 New Operators

We studied four variations of the genetic operators
(two variations of mutation, two of crossover), in ad-
dition to the naive operators described above.

Node Selection, a method described in (Koza, 1992),
chooses an internal node 90% of the time and a leaf
node 10% of the time for either mutation or crossover.
Node selection was implemented both for mutation
and crossover in PushGP.

“Size Fair” crossover and mutation operators are op-
erators that on average produce children of the same
size as their parents. The size fair mutation operator
we use is identical to the 50%-150% operator described
in (Langdon, 1998; Langdon, et al. 1999), except that
it produces mutations of length `± `

4 instead of `± `
2 ,

where ` is the number of points in the subtree to be
mutated.2 The size distribution of the replacement

2The fraction `
4

was chosen arbitrarily, prior to reading
Langdon’s work. We assume the specific fraction has little
effect on performance.
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subtrees (and thus the resulting children) is uniform.

Our new crossover operator, Fair Crossover, differs
from the size fair crossover operator described in
(Langdon, 1999). Langdon’s operator selects the first
crossover point at random from Parent 1. The size
(`) of the subtree at the first crossover point is cal-
culated, and the lengths of all subtrees in Parent 2
are also calculated. All subtrees from Parent 2 whose
size is larger than 1+2` are excluded. This limits the
amount by which the child can increase in size to 1+`
larger than its parent. For the remaining subtrees, the
number that are smaller, the same size and larger than
` are each counted, along with the mean size difference
for the larger and smaller subtrees. A roulette wheel
is used to select the size of the subtree to be crossed
over. The selection method is biased using calculated
mean size differences such that on average there is no
change in program size after crossover is performed.

With our new Fair Crossover operator, the first
crossover point is selected at random from Parent 1,
and the length of the subtree at that point is mea-
sured. Then a randomly selected subtree from Parent
2 is measured. If its length is within the range ` ± `

4
(where ` is the length of the subtree from the first
parent), the subtree from Parent 2 replaces the sub-
tree in Parent 1. If not, another subtree is randomly
selected from Parent 2, and the test is repeated. If
no subtrees are found within the range ` ± `

4 after n
attempts, the subtree whose size was closest to `± `

4 is
used in crossover. The size distribution of replacement
subtrees is dependent on the parents, and may not be
uniform.3

For the experiments described in this paper, Fair
Crossover would perform 20 retries before giving up
and using the subtree with the closest length. We will
call this a “punt”. In the 300 runs on symbolic regres-
sion of a sextic polynomial that used Fair Crossover,
the operator punted just over 80% of the time. This
means that if 2250 crossovers were performed, the
operator only found replacement subtrees within the
length `± `

4 about 450 times. However, since the sub-
tree whose size is closest to `± `

4 is used after 20 tries,
Fair Crossover still has an effect close to that of a size
fair operator. In the same 300 runs, replacement sub-
trees found by Fair Crossover were on average only 0.8
points larger than the original subtree. Given the low
bloat observed when Fair Crossover is used, it appears
that while Fair Crossover may not be perfectly size
fair, it is quite close.

3Fair Crossover was used instead of Langdon’s size fair
crossover operator because it was simpler to implement.

- push-base-type:
dup, pop, swap, rep, =, set, get, convert,
pull, pulldup, noop

- number: +, -, *, /, >, <
- integer: pull, pulldup, /

- boolean: not, and, or
- expression:

quote, car, cdr, cons, list, append, subst,
container, length, size, atom, null, nth,
nthcdr, member, position, contains, insert,
extract, instructions, replace-atoms,
discrepancy

- code: do, do*, if, map

Figure 1: Push function set used for the PushGP runs.

5 Results

All combinations of crossover and mutation operators
were used in sets of 100 independent genetic program-
ming runs on 3 different problems: Sextic Regression,
Even-5 Parity, and 6-Bit Multiplexor.

For all problems, the population size was 5000, the
program size ceiling 50 points, and the runs were lim-
ited to 50 generations. The size of mutant subtrees
added by the Naive Mutation operator was limited to
10 points. The operator rates were 45% crossover, 45%
mutation and 10% straight reproduction. The tourna-
ment size was 7. The function set is listed in Figure 1.
See (Spector and Robinson, 2002) additional informa-
tion on the Push functions.

Computational Effort was computed in the standard
way, as described by Koza on pages 99 through 103 of
(Koza, 1994). To summarize briefly, one conducts a
large number of runs with the same parameters (ex-
cept random seeds) and begins by calculating P (M, i),
the cumulative probability of success by generation i
using a population of size M. For each generation i
this is simply the total number of runs that succeeded
on or before the ith generation, divided by the total
number of runs conducted. From P (M, i) one can cal-
culate I(M, i, z), the number of individuals that must
be processed to produce a solution by generation i with
probability greater than z. Following the convention
in the literature we use a value of z=99%. I(M, i, z)
can be calculated using the following formula:

I(M, i, z) = M ∗ (i + 1) ∗
⌈

log(1− z)
log(1− P (M, i))

⌉

The more steeply the graph of I(M, i, z) falls, and the
lower its minimum, the better the genetic program-
ming system is performing. Koza defines the mini-
mum of I(M, i, z) as the “computational effort” re-
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Table 1: Results for symbolic regression of x6 − 2x4 + x2, sorted by computational effort.

Crossover Mutation Successful Average Average Average Computational
Method Method Runs Solution Size Limit Size Limit Effort

Size Replications Replications
(Gen. 25) (Gen. 49)

Fair Node Sel 93/100 31.29 363.00 715.71 450000
Fair Naive 85/100 32.66 965.76 1456.47 480000

Node Sel Fair 87/100 39.29 725.46 948.71 495000
Naive Node Sel 88/100 37.10 941.20 1216.17 540000
Fair Fair 88/100 21.77 10.19 64.85 540000

Naive Fair 87/100 33.63 362.70 587.21 585000
Naive Naive 71/100 38.17 1519.24 1920.52 800000

Node Sel Node Sel 76/100 40.58 1328.78 1576.00 820000
Node Sel Naive 61/100 42.36 2024.82 2280.97 960000

Table 2: Results for Even-5 Parity, sorted by computational effort.

Crossover Mutation Successful Average Average Average Computational
Method Method Runs Solution Size Limit Size Limit Effort

Size Replications Replications
(Gen. 25) (Gen. 49)

Fair Naive 100/100 34.85 318.50 * 240000
Naive Naive 98/100 36.62 1201.22 850.00 250000
Fair Node Sel 99/100 29.32 29.69 281.00 270000

Naive Node Sel 99/100 36.06 413.65 386.00 280000
Node Sel Naive 100/100 41.58 1659.48 * 290000

Naive Fair 96/100 29.56 214.06 258.60 310000
Node Sel Fair 96/100 31.75 342.15 793.50 320000

Fair Fair 97/100 20.99 8.23 0.00 330000
Node Sel Node Sel 98/100 37.89 657.51 1016.00 350000

* All runs completed before 49th Generation

Table 3: Results for 6-Bit Multiplexor, sorted by computational effort.

Crossover Mutation Successful Average Average Average Computational
Method Method Runs Solution Size Limit Size Limit Effort

Size Replications Replications
(Gen. 25) (Gen. 49)

Fair Fair 30/100 19.80 0.46 28.56 1870000
Fair Node Sel 36/100 27.58 71.41 428.67 1885000

Naive Fair 32/100 27.53 127.00 410.82 2080000
Naive Node Sel 26/100 30.96 389.41 749.47 2520000
Fair Naive 26/100 32.27 623.75 1388.20 2635000

Node Sel Naive 23/100 37.57 1375.40 1725.29 2835000
Node Sel Fair 26/100 27.96 325.13 673.92 3120000

Naive Naive 26/100 37.92 972.08 1519.34 3200000
Node Sel Node Sel 18/100 31.11 697.06 1014.76 4320000
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quired to solve the problem. Computational effort is
not a perfect measure (see, for example, (Luke and
Panait, 2002)) but we believe it is sufficient for the
modest uses to which it is put here.

5.1 Symbolic Regression of x6 − 2x4 + x2

As shown in Table 1, the combination of Fair Crossover
and Node Selection Mutation yielded the most solu-
tions, least computational effort and the second-most
parsimonious solution sizes. The combination of Fair
Mutation and Fair Crossover yielded the second most
solutions (tied with Naive Crossover and Node Selec-
tion mutation) and the most parsimonious ones as well
(by nearly 10 points), but scored in the middle of the
field in terms of computational effort. Notable also
is that the operators causing the greatest amount of
bloat (and thus the greatest number of replications due
to hitting the size ceiling) finished in the last three
spots in terms of solutions found and computational
effort.

5.2 Even-5 Parity

Even-5 Parity is a fairly easy problem for PushGP
to solve, as shown by the high number of solutions
found. Interestingly, one of the least successful combi-
nations from the regression runs, Naive Crossover with
Naive Mutation, scored just behind Fair Crossover
with Naive Mutation in terms of computational effort.
Again, Fair Crossover with Fair Mutation found the
most parsimonious solutions by nearly 10 points, and
kept replications down to almost nothing, but scored
next to last in terms of computational effort.

5.3 6-Bit Multiplexor

When applied to the 6-bit Multiplexor problem dif-
ferent operators performed best. The pairing of size
fair mutation and crossover found the third most so-
lutions with the least computational effort. The size
fair operators also found the most parsimonious solu-
tions, beating the next best pair of operators by al-
most 8 points. The rest of the top performers all had
performed well in previous runs. Performing particu-
larly poorly was the pairing of Node Selection muta-
tion and crossover, which found the fewest solutions
and required the most computational effort.

6 Discussion

The efficacy of the size fair operators in controlling
bloat and in producing parsimonious solutions is clear
from the data. Certainly for the cases in which fair

mutation and fair crossover were used together the
improvements in these measures were dramatic. Ad-
ditionally, in many cases the use of just one size fair
operator, in conjunction with a non-size-fair operator,
seems to confer advantages.

It should come as no surprise that it is impossible to
declare one operator or combination of operators as
clearly being better than the rest with respect to the
computational effort required to find a solution. How-
ever, we do note that all of the runs with size fair
operators performed at least reasonably well; the use
of size fair operators does not appear to be detrimen-
tal with respect to this measure. We also note that
the better combinations often included one size fair
operator and one non-size-fair operator. One could
speculate that size fair operators, used by themselves,
slow the genetic programming system in its progress
to larger areas of the search space (where solutions are
more plentiful) thus increasing the time it takes to find
solutions. If so then one might further speculate that
the judicious mixing of non-size-fair operators, which
can have more dramatic impacts on program size, with
size fair operators would be the best way to encourage
robust problem solving performance. More research
would be required to confirm or falsify these specula-
tions.

7 Conclusions

The size fair operators examined in this work appear
to control bloat well and to encourage the production
of parsimonious solutions without negative impacts on
the computational effort required to find a solution.
This is important because unchecked bloat limits the
applicability of genetic programming by requiring ex-
orbitant computational resources, and because naive
approaches to bloat control can change the system’s
evolutionary dynamics in ways that make it harder to
find solutions. Solution parsimony is also important
because it simplifies the work of humans who must
interpret the output of genetic programming systems,
and because more parsimonious solutions may in some
cases also be more general.

This work was conducted using the PushGP system
which is similar to traditional genetic programming
systems in some ways but different from them in oth-
ers. The reported work extends Langdon’s earlier
work, demonstrating that the idea of size fair opera-
tors has utility across a broader range of program rep-
resentations. The obvious next step is to repeat this
study, using Langdon’s operators and the new size fair
crossover operator that we have developed, in a more
traditional genetic programming system. If they per-
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form as well in such a follow-up study, controlling bloat
and producing parsimonious solutions without sacrific-
ing the problem-solving capacity of the system, then
we would recommend their wide-spread adoption.
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Abstract

This contribution introduces a hybrid GP/ES

system for the evolution of chess playing com-

puter programs. We discuss the basic system

and examine its performance in comparison

to pre-existing algorithms of the type alpha-

beta and its improved variants. We can show

that evolution is able to outperform these

algorithms both in terms of eÆciency and

strength.

1 Introduction

Computer programs capable of playing the game of

chess have been designed for more than 40 years, start-

ing with the �rst working program that was reported

in 1958 [BR58]. Since then countless numbers of pro-

grams were developed and appropriate hardware was

designed.

This article introduces a chess program which learns

to play the game of chess under limited resources. We

want to demonstrate the capabilities of Computational

Intelligence (CI) methods to improve the abilities of

known algorithms. More precisely we investigate the

power of Genetic Programming (GP) [BNKF98] and

Evolutionary Strategies (ES) [Sch96] using the exam-

ple of computer chess. The relevance of computer chess

is probably comparable to that of fruit ies in genetics,

it is a laboratory system with paradigmatic character.

In previous work we have studied the evolution of

chess-playing skills from scratch [BKA+00]. In this

contribution we do not want to create an entirely new

program to play chess. Instead, we start with a scaf-

folding algorithm which can perform the task already

and use a hybrid of GP and ES to �nd new and bet-

ter heuristics for this algorithm. We try to improve a

simple algorithm, the alpha-beta algorithm. In order

to evolve good standard heuristics we use evolutionary

techniques.

It is very time consuming to evolve chess playing indi-

viduals. Thus the basis of our evolutionary system is

a distributed computing environment on the internet

called qoopy . Distributed computing is necessary be-

cause of the high costs of one �tness evaluation for a

chess program. Each individual has to perform several

games against computer programs and a game might

last several hours in worst case. The additional com-

puter power needed to perform the evolution of chess

programs is borrowed from participating users world-

wide through the internet.

The performance of our evolved programs is neither

comparable to Deep Blue [Kor97] nor to other com-

puter chess programs playing at expert level. This

was not intended at the present stage of development.

2 The Chess Individuals

We use an alpha-beta algorithm [Sch89] as the kernel

of an individual which is enhanced by GP- and ES-

modules. The goal of these modules is the evolution

of smart strategies for the middle game. So no open-

ing books or end game databases have been used to

integrate knowledge for situations where a tree search

exhibits weak performance. Also, GP/ES individuals

always play white and standard black players are em-

ployed to evaluate the individuals. The black players

are �xed chess programs which think a certain number

of moves ahead and then choose the best move (accord-

ing to the minimax-principle, restricted by the search

horizon) [Bea99, BK77]. The individuals are limited

to search not more than an average of 100,000 nodes

per move to ensure an acceptable execution speed.

Like standard chess programs, individuals perform a

tree search [IHU95]. In particular, they use an alpha-

beta-algorithm. Three parts of this algorithm are
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Table 1: The pseudocode shows the �� algorithm with

the evolutionary parts (bold).

��max (position K; integer �; �) f
integer i; j; value ;

nodes = nodes+ 1;

IF POSITION DECIDED(K) THEN

RETURN position module (K);

IF (depth == maxdepth) THEN

RETURN position module (K);

restdepth = depth module (restdepth);

IF (((restdepth == 0) OR

(nodes > maxnodes))

AND (depth >= mindepth)) THEN

RETURN position module (K);

determine successor positions K:1; : : : ;K:w;

move ordering module (K:1; : : : ;K:w);

value = �;

FOR j = 1 TO w DO f
restdepthBackup = restdepth;

restdepth = restdepth� 1;

value=max(value; ��min(K:j; value; �));

restdepth = restdepthBackup;

IF value � � THEN f
ADJUST KILLERTABLE;

RETURN value;

g
g
RETURN value;

g

evolved:

� The depth module, which determines the remain-

ing search depth for the given node.

� The move ordering module, which changes the or-

dering of all possible moves.

� The position module, which returns a value for a

given chess position.

Evaluation of a chess individual is performed in the

following way (see table 1): The depth module deter-

mines the remaining depth for the current level in the

search tree. If the position is a leaf then the position

module is called to calculate a value for it. Other-

wise the node (move) will be expanded and all possi-

ble moves will be calculated. Subsequently the move

ordering module for these moves is called and changes

the order of the moves, so that moves which are more

important can be evaluated �rst in the search tree.

2.1 Depth module

Table 2: The terminal set of the depth module with a

short description. With chess-speci�c operations the

depth module receives chess knowledge.

terminal description of the terminal

accumulator Default register for all func-

tions, initialized each node.

level register Special register which holds in-

formation of the current level in

the search tree, initialized each

search.

search/game register Special register, initialized each

search/game.

search depth Returns the current search

depth of the tree.

search horizon Value of the current search hori-

zon.

piece value Value of a piece given by the ac-

cumulator.

captured piece Value of a captured piece, if the

last move was a capture move.

alpha/beta bound Value of alpha/beta bound.

move number Number of current move, given

by the move ordering module.

# pieces Number of knights, bishops,

rooks and pawns of the board.

# expanded nodes Number of expanded nodes for

the current position, in percent.

value of move Value of the move which led to

the current position, given by

the move ordering module.

branching factor Number of moves of the prece-

dent position.

position score Value of the current position,

given from the position module.

The depth module decides for each position whether

the search tree should be expanded and to what depth.

Normally chess programs have a �xed search hori-

zon [PSPDB96]. This means, that after a certain num-

ber of plies the expansion in the search tree will be

terminated. In contrast, the depth module should give

the individual a higher exibility in the search to avoid

the search horizon e�ect.

The depth module has two limitations, the search

depth and the amount of nodes used in a search tree.

The maximal depth is 10 plies but if all moves until

ply 10 would be executed approximately 1014 nodes

would be expanded. Therefore the amount of ex-
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panded nodes in the search tree was limited to 100,000

nodes on average per move. On average means, that

the individual might save nodes in particular periods

of the game to spend them later.

The depth module is a GP-program of branched op-

eration sequences. The structure is an acyclic graph

where each node holds a linear program and each if-

then-else condition makes a decision which node of the

program will be executed next (see section 2.4). Its

function set holds very simple functions but its termi-

nal set is more chess-speci�c, see tables 2 and 3.

Table 3: The function set of the depth module with

a short description. No function of the set has chess

knowledge.

function description of the function

+, -, *, / Arithmetic functions; result is

written to the accumulator.

inc/decHorizon Function to increment/decre-

ment the search depth by one,

but the search depth can only

be increased/decreased by 2 per

level.

sine The sine function.

sigmoid The sigmoid function
1

1+e
�terminal .

store in level/game/ Stores the terminal in the

search register level/game/search register.

load Loads the terminal to the accu-

mulator.

if If the condition is true the left

branch will be executed, other-

wise the right one. A condition

can be a comparison of two ter-

minals.

The depth module does not de�ne the depth of search

directly, rather it modi�es how much depth is left

for searching - the restdepth. It can be incremented

or decremented by the operation incHorizon and de-

cHorizon, or stay untouched. The restdepth is initial-

ized with a value of 2. Once a move is executed the

restdepth is automatically decremented by 1.

2.2 Position module

The position module of an individual calculates a value

for the current position.

The position module is a �xed algorithm which evalu-

ates the position by using evolved values for the di�er-

ent chess pieces and some structural values of a check.

These values are accumulated whereas bonus values

are added and punish values are subtracted - a higher

value corresponds to a better position. We used a sim-

ple ES to evolve these values. The idea of this module

is to �nd a better set of parameters than a �xed po-

sition evaluation algorithm would provide. Values of

hand-written programs are determined through expe-

rience of the programmer or by taking parameters from

the literature.

Our ES evolves the following weights for the position

evaluation algorithm. The �rst two numbers in brack-

ets reects the range within which the values can be

chosen, the last number is the standard value which

was chosen for the black players (see 3.3).

� Values of di�erent pieces: pawn [85-115, 100],

knight [290-360, 340], bishop [300-370, 340], rook

[440-540, 500], queen [800-1000, 900].

� Bishops in the initial position are punished [0-30,

15].

� Center pawn bonus: Pawns in the center of the

chessboard get a bonus [0-30, 15].

� Doubled pawn punishment: If two pawns of the

same color are at the same column [0-30, 15].

� Passed pawn bonus: A pawn having no opponent

pawn on his and the neighboring columns [0-40,

20].

� Backward pawn punishment: A backward pawn

has no pawn on the neighboring columns which is

nearer to the �rst rank [0-30, 15].

� If a pawn in end game is near the �rst rank of the

opponent it gets a promotion bonus depending on

the distance, this value �xes the maximal bonus

[100-500, 300].

� Two bishops bonus: If a player has both bishops

it gets a bonus [0-40, 20].

� A knight gets a mobility bonus, if it can reach

more than 6 �elds on the board [0-30, 15].

� Knight bonus in closed position: A closed position

is de�ned if more than 6 pawns occupy the center

of the board. The center consists of the 16 �elds

in the center of the board [0-40, 20].

� Knight punishment: If opponent pawns are on

each side in end game [0-50, 25].

� Rook bonus for a half open line: A half open line

is a line with no friendly pawn that does have an

enemy pawn [0-30, 15].

GENETIC PROGRAMMING742



� Rook bonus for an open line: An open line is a

line without a pawn on this line [0-30, 15].

� Rook bonus for other positional advantages [0-20,

10].

� Rook bonus: If a rook is on the same line as a

passed pawn [0-30, 15].

� King punishment, if the king leaves the �rst rank

during the opening and the middle game [0-20,

10].

� Castling bonus, if castling was done [0-40, 20].

� Castling punishment for each weakness of pawn

structure (exception: end game) [0-30, 15].

� Castling punishment, if the possibility was missed

[0-50, 25].

� Random value, this is a random value which will

be added or subtract from the position value [0-

30, 20].

The structure of the position evaluation algorithm for

the chess individual and the black player is identical.

However there is a di�erence: Values for individuals

are evolved, values for black players are prede�ned and

�xed.

2.3 Move ordering module

The move ordering module of an individual orders the

moves for each chess position by assigning a real num-

ber to every possible move. The value of a move is the

sum of several weighted features of the move. Moves

are sorted according to these values and moves will

be expanded by this order. By default the value of a

feature is in [0; 100].

An ES evolves the following weights for the sorting

algorithm:

� Piece values in the opening/middle and end game:

Each piece are assigned three values which reect

how important this piece is in the opening/middle

and end game.

� Most valuable victim/Least valuable aggressor:

The ratio of aggressor and victim move values is

calculated. A position with a high ratio is better

than one with a smaller value.

� Check: If the move leads to a check position then

the move ful�lling this feature gets a bonus.

� Capture move: These are moves which can cap-

ture a piece of the opponent.

� Pawn moves that can attack a piece of the oppo-

nent.

� Pawn moves that do not attack a piece of the op-

ponent.

� Pawn moves that lead to a promotion of a queen.

� Center activity: Pieces which move from and/or

to the center of the chess board gets a bonus.

� Killer moves: Killer moves are moves which of-

ten lead to a cut in the search tree. The table

contains at most 4 killer moves for each level in

search tree. The table will be �lled during the

search, and if a move is in the killer table it gets

a bonus depending on its rank, a lower and upper

bound is given by this feature. Besides, the com-

position of the killer table which changes during

search is inuenced by the move ordering module

of an individual.

Based on these weights, the value for moves will be

calculated. Sorting of the moves is very important

for the alpha-beta search algorithm. If the best move

is visited �rst, the following moves don't need to be

considered. A very good move ordering module results

in a better performance of the alpha-beta algorithm.

2.4 GP structure of the depth module

The depth module of an individual, as illustrated in

Figure 1, is represented by a program with nested if-

then-else statements [KB01]. This representation has

been developed with the goal of giving a GP-program

greater exibility to follow di�erent execution paths

for di�erent inputs. It also achieves a reuse of the

evolved code more frequently than is the case in linear

GP [Nor94, NB95].

A program consists of a linear sequence of statements

and if-then-else statements, that contain a bifurca-

tion into two sequences of statements. Nested if-then-

else statements are allowed up to a constant recur-

sion depth. The resulting structure is a graph where

each node contains a linear GP-program and a deci-

sion part. During the execution of the program only

one path of the graph will be executed for each input.

Crossover of two programs can be realized in di�er-

ent ways. We have chosen the following two types.

The �rst crossover operator selects a sequence of state-

ments in each program. In case of selected if-then-else

statements, the associated statements of the then- and
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Figure 1: The representation of the GP program,

which is a graph structure. The squares represents

the linear programs and the circles represents the if-

then-else decisions.

else- parts are selected, too. Then the selected se-

quences are swapped. Secondly, a swapping of branch-

free sequences is allowed for an exchange of informa-

tion between individuals.

Mutation is performed subsequently to crossover or in-

dependently from it. There are two types of mutation

operators. The �rst one performs a crossover with a

randomly generated individual. The second one selects

a sequence of statements (in case of if-then-else state-

ments including the statements belonging to the asso-

ciated then- and else- parts). Afterwards each state-

ment other than an if-then-else one will be mutated

with an adjustable probability (see [KB02]).

3 Evolution

Evolution is based on populations of several individ-

uals. Each individual has to be evaluated by deter-

mining its �tness. In our system a �tness case is a

chess game and an individual has to play several chess

games before its �tness can be assigned. We used the

approach of distributed computing [GCK94] to allow

for enough computing power. We developed the qoopy

system in order to spread our task among the internet.

As opponents of GP-/ES-programs, chess programs

with �xed depth were used. Fitness was calculated

based on the number of wins, losses and draws against

these opponents.

In the following sections we describe this system in

more detail.

3.1 Internet-wide evolution based on qoopy

qoopy is an environment for distributed computing

tasks [GCK94, Far98]. It is possible to develop dis-

tributed programs for the qoopy environment and use

qoopy to run these programs.

The �rst application of qoopy is EvoChess, a dis-

tributed software system which creates new chess pro-

grams in an evolutionary process. After qoopy is in-

stalled on a machine each participant runs a deme

containing a variable number of individuals (default

value is 20). In each deme evolution begins and, dur-

ing the evolution, individuals might be copied between

demes (pollination) to create o�springs. qoopy pro-

vides the necessary infrastructure for communication

between demes and the connection to an application

server.

The application server is necessary because qoopy has

to register users being online to let them connect to

each other and to exchange data. The server holds

results of the internet evolution, and each deme sends

its best individuals and other statistics back to the

server on a regular basis.

3.2 Fitness evaluation

The �tness of an individual is a real number between

1 and 15, with higher values corresponding to better

individuals. In order to determine �tness, individuals

have to play chess games against �xed algorithms of

strength 2, 4, 6, 8, 10, 12 and 14. For �tness evaluation

an individual always plays white (see 3.3).

The result of a game is a real number between -1 and

1. It is 1 in case that the individual wins the game, -1

if the standard algorithm wins the game and 0 in case

of draw. Sometimes it is obvious that one side can

win or that the game has to end draw. In such a case

the game is stopped to save time. In rare cases lengthy

games are aborted because nothing happens anymore.1

Then the position is evaluated and the result reects

the advantage of white (positive) or black (negative)

as a value in the range of [�1; : : : ; 1].

Fitness is initialized with a value of 1. Resulting val-

ues are weighted with the number of games played

relative to the strength of the opponent. If, e.g., the

individual loses twice and wins once against an oppo-

nent of strength 6 (�1;�1; 1), this results in values

(5:0; 5:0; 7:0), and the �tness is 5:667.

In general, the �tness of an individual is calculated by

the following function:

fitness =
X

j2C

n
jX

i=1

j + result
j

i

nj � jCj

Classes C are the classes with wins, draws and losses of

the individual. These classes lie in an interval whose

1There are several criteria to prevent games to be can-

celed in interesting situations, e.g. when a king has been

checked or a piece has been captured within the last moves.
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bounds are de�ned by the following rules: If an in-

dividual wins all its games up to class i, these results

are ignored and if an individual loses all its games from

class i to the highest class, these results are ignored.

For example if an individual i wins all games of classes

2, 4, and 8, and has wins, draws and losses in the

classes 6 and 10, and loses all games in the classes 12

and 14, Ci holds the classes 6, 8 and 10. The �rst rule

de�nes the lower bound of the interval (4), and the

second rule de�nes the upper bound of the interval

(12). The �rst rule does not hold for class 8 because

in class 6 the individual has had a draw or loss.

In general, the �tness of an individual is calculated in

four phases. Thus weak individuals can be dropped

from �tness evaluation in the �rst or second phase.

Fitness evaluation in phase three and four is very CPU

time expensive and we try to reduce the computation

time by removing inviable programs.

In phase one the individual plays two games against 2.

If the individual is very weak it can be identi�ed by the

�tness function and replaced immediately. In the sec-

ond phase the individual plays against 4, 6, 8 and 10.

If the �tness is at least 4.5 at the end of phase two, the

evaluation is continued in phase three. In phase three

the individual plays 1-2 games against 2, 4, 6, 8 and 10.

Successful individuals might skip games against 2 and

4. These are individuals which win each game up to

strength 6 and receive good results in games against 8

and 10. In phase four games are performed against 12

and 14. Only the best individuals play in this phase,

however. Games against the standard algorithm of

class 12 and 14 are very expensive.

To play more than twice against class 12 (or 14) it is

required to win in one of the two games before. Every

draw results in 1 point, every loss in 2 points. If the

individual has more than 6 (5) points it does not play

any more against class 12 (14). If the individual is

good enough it will play 4 times against 12 and then

3 times against 14.

3.3 Opponents of the individuals (black

players)

The opponents of individuals are chess programs which

can fully traverse the search tree up to a �xed depth.

We use these players to calculate the �tness of an indi-

vidual, by playing against �xed programs of di�erent

search depth. Fixed programs can play to a depth of

1, 2, 3, 4, 5, 6 and 7. Each of these programs de�nes

a corresponding �tness class of 2, 4, 6, 8, 10, 12 and

14. The value for a �tness class is the search depth

multiplied with 2, so that an individual which defeats

Figure 2: Average number of nodes used in the search

tree for di�erent �xed search depths. For search depth

6 the plot shows a large di�erence between a random

move ordering and an evolved move ordering module.

Even the f-negascout search algorithm requires more

resources than an evolved individual. The data are av-

erage values of more than 1000 moves (from reference

games).

an individual of class 4 but loses against an individual

of class 6 can be inserted into class 5.

The GP/ES individuals use a position evaluation of

the same structure and the same criteria - but their

weights are determined by the individual's genotype.

To reduce the number of nodes of the game tree an

f-negascout algorithm [Rei89] combined with iterative

deepening is performed for the black players. The f-

negascout algorithm is an improved variant of alpha-

beta, which is the most wide-spread tree search algo-

rithm. Iterative deepening performs a search to depth

d� 1 before searching to depth d (recursively). In ad-

dition, so-called killer moves are stored and tried �rst

whenever possible. Killer moves are moves which re-

sult in the cut of a subtree. This means that much of

the game tree can be discarded without loss of infor-

mation!

4 Results

In this section we describe the current results of an

ongoing evolution on the internet.

First we look at the evolved individuals and their eÆ-

ciency in search. The question is: How many resources

are needed by the evolved move ordering modules in

case of a �xed-depth search in comparison to other

move ordering strategies. Figure 2 shows the number

GENETIC PROGRAMMING 745



Figure 3: Box plot diagram of average number of used

nodes during a game with one of an evolved individual

combined with a simple �xed-depth alpha-beta algo-

rithm, average taken over more than 5000 moves from

50 reference games. The bar in the gray boxes is the

median of the data. A box represents 50 % of the

data, this means that 25 % of the data lies under and

over a box. The smallest and biggest usual values are

connected with a dashed line. The circles represents

outliers of the data.

of nodes examined in the search tree of an alpha-beta-

algorithm with a random move ordering, an evolved

individual and the f-negascout algorithm (the oppo-

nent of an individual (the black player) is always an

f-negascout algorithm). The �gure shows that a ran-

dom move ordering algorithm calculates seven million

nodes with a search tree of depth 6. The f-negascout

algorithm needs one million nodes. An evolved in-

dividual only needs 250,000 nodes. So evolution has

managed to create individuals which perform a very

eÆcient search through the tree.

Figures 3 and 4 show a box plot diagram investigat-

ing the number of search nodes visited by an evolved

and a random move ordering module combined with a

simple �xed-depth alpha-beta algorithm. The evolved

individual clearly outperforms the random one. Be-

sides, the �gures show that most nodes during a game

are used between ply 10 and 60.

The other aspect of the evolved chess programs is the

quality of the selected moves. Currently evolution suc-

ceeded to evolve a chess playing program, with a �t-

ness of 10.48. This means that the evolved program is

better than the opponent program of �tness class 10.

The �tness value was measured by a post-evaluation of

best programs: An individual plays 20 games against

class 8, 10 and 12, so that the �tness value is the re-

Figure 4: Box plot diagram of average number of used

nodes during a game with a random individual (see

also �gure 3).

sult of 60 games. Note that the individual achieves

this result by expanding on average 58,410 nodes per

move in the search tree. A simple alpha-beta chess pro-

gram needs 897,070 nodes per move for search depth

of 5, which corresponds to class 10. The f-negascout

algorithm which is an improved variant of alpha-beta,

needs 120,000 nodes per move for this search depth.

In other words evolution has improved the search al-

gorithm, so that it wins by only using 50% of the re-

sources of a f-negascout algorithm which, in turn, out-

performs an alpha-beta-algorithm. Evolved individu-

als win against a simple alpha-beta-algorithm by using

only 6% of the resources.

5 Summary and Outlook

We have shown, that it is possible to evolve chess play-

ing individuals superior to given algorithms. At this

time evolution is still going on and results are still im-

proving.

Next we shall develop this approach by using other

search algorithms as the internal structure, and by ex-

changing the di�erent modules. A further feature will

be that individuals will play against each other.

The ultimate goal of our approach is to beat computer

programs like Deep Blue, which to this day use brute-

force methods to play chess.
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Abstract

Concept learning is the induction of a de-
scription from a set of examples. Inductive
logic programming can be considered a spe-
cial case of the general notion of concept
learning specifically referring to the induction
of first-order theories. Both concept learn-
ing and inductive logic programming can be
seen as a search over all possible sentences
in some representation language for sentences
that correctly explain the examples and also
generalize to other sentences that are part of
that concept. In this paper we explore in-
ductive logic programming with equational
logic as the representation language and ge-
netic programming as the underlying search
paradigm. Equational logic is the logic of
substituting equals for equals with algebras
as models and term rewriting as operational
semantics.

1 INTRODUCTION

The aim of concept learning is to induce a description
of a concept from a set of examples. Typically the set
of examples are ground sentences in a particular rep-
resentation language. Concept learning can be seen as
a search over all possible sentences in the representa-
tion language for sentences that correctly explain the
examples and also generalize to other sentences that
are part of that concept [11, 16]. Inductive logic pro-
gramming (ILP) can be considered a special case of the
general notion of concept learning specifically referring
to the induction of first-order theories as descriptions
of concepts [17].

Specialized search mechanisms for specific representa-
tion languages have been devised over the years. For

example, in the propositional setting we have Quin-
lan’s entropy based decision tree algorithm ID3 [21].
In the first-order logic setting we have Muggleton’s
inductive logic programming system Progol whose un-
derlying search paradigm is based on inverting logical
entailment [19].

Since concept learning and inductive logic program-
ming imply complex searches, it is natural to ask
whether evolutionary algorithms are applicable in this
area. Briefly, evolutionary algorithms are a class of al-
gorithms that traverse complex search spaces by mim-
icking natural selection. The algorithms maintain a
large population of individuals with different charac-
teristics where each individual represents a point in the
search space. By exerting selective pressures on this
population, fitter individuals representing better solu-
tion points according to the search criteria will emerge
from the population. These fitter individuals in turn
are allowed to reproduce in a preferential manner in
subsequent generations increasing the overall fitness of
the population. At the end of the run the fittest indi-
viduals in the final population represent the final solu-
tion points in a complex search space [9, 14]. To date
evolutionary algorithms, particularly genetic program-
ming systems, have successfully been applied to con-
cept learning and inductive logic programming tasks in
a variety of formalisms. For example, they have been
successfully applied in the propositional case [13], in
the first-order logic setting [24, 10], as well as in the
higher-order functional logic programming setting [11].

In this paper we examine an evolutionary approach to
concept learning based on another formalism – many-
sorted first-order equational logic. Equational logic is
the logic of substituting equals with equals. Here the
examples are ground equations and the induced con-
cept descriptions are first-order equational theories.
We have implemented a prototype by incorporating a
specialized genetic programming engine into the equa-
tional logic programming system and algebraic speci-
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fication language OBJ3 [5, 6]. Informally, the system
operates by maintaining a population of candidate the-
ories that are evaluated against the examples using
OBJ3’s deductive machinery. The fittest theories are
allowed to reproduce in accordance to standard ge-
netic programming practices. Because of the fact that
we are inducing first-order equational theories we tend
to refer to this approach as inductive equational logic
programming.

This search based view of inductive logic programming
is a very operational view. It is possible to formulate
a semantics to inductive logic programming that is in-
dependent of any particular search strategy. We will
discuss this normal semantics to ILP in more detail
below. Equational theories have a very strong notion
of sorts and operators; i.e., they have a very strong
notion of signatures. We recast the first-order logic
normal semantics for ILP into an algebraic light that
deals with the strong notion of signature effectively.
This algebraic formulation of the normal semantics for
ILP forms the basis of our system implementation with
the genetic programming strategy as the operational
semantics.

The system most closely related to ours is the FLIP
system [2, 7]. It also concerns itself with the induction
of first-order equational theories from ground equa-
tions. However, the FLIP system uses inverse narrow-
ing as a search strategy instead of the evolutionary ap-
proach as advocated here. On a technical equational
logic level the FLIP system deals with signatures only
implicitly, which means that by design it is limited to
single-sorted equational logic.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief introduction to many-sorted
equational logic, algebra and term rewriting. In Sec-
tion 3 we examine the normal semantics for inductive
logic programming. We develop an algebraic seman-
tics for our setting in Section 4. Section 5 sketches
our system implementation. In Section 6 we take a
critical look at results obtained with the preliminary
implementation so far. We end with the conclusions
in Section 7.

2 EQUATIONAL LOGIC

Equational logic is the logic of substituting equals for
equals with algebras as models and term rewriting as
the operational semantics [15, 23, 1]. The following
formalizes these notions.

An equational signature defines a set of sort symbols
and a set of operator or function symbols.

Definition 1 An equational signature is a pair
(S,Σ), where S is a set of sorts and Σ is an (S∗×S)-
sorted set of operation names. The operator σ ∈ Σw,s
is said to have arity w ∈ S∗ and sort s ∈ S. Usually
we abbreviate (S,Σ) to Σ. 1

We define Σ-algebras as models for these signatures as
follows:

Definition 2 Given a many sorted signature Σ, a Σ-
algebra A consists of the following:

• an S-sorted set, usually denoted A, called the car-
rier of the algebra,

• a constant Aσ ∈ As for each s ∈ S and σ ∈ Σ[],s,

• an operation Aσ : Aw → As, for each non-
empty list w = s1 . . . sn ∈ S∗, and each s ∈ S
and σ ∈ Σw,s, where Aw = As1 × . . .×Asn.

Mappings between signatures map sorts to sorts and
operator symbols to operator symbols.

Definition 3 An equational signature morphism
is a pair of mappings φ = (f, g) : (S,Σ)→ (S′,Σ′), we
write φ : Σ→ Σ′.

A theory is an equational signature with a collection
of equations.

Definition 4 A Σ-theory is a pair (Σ, E) where
Σ is an equational signature and E is a set of Σ-
equations. Each equation in E has the form (∀X)l =
r, where X is a set of variables distinct from the equa-
tional signature Σ and l, r ∈ TΣ(X) are terms over the
set Σ and X. If X = ∅, that is, l and r contain no
variables, then we say the equation is ground. When
there is no confusion Σ-theories are referred to as the-
ories and are denoted by their collection of equations,
in this case E.

The above can easily be extended to conditional
equations2. However, without loss of generality we
continue the discussion here based on unconditional
equations only. Also, our current prototype solely

1Notation: Let S be a set, then S∗ denotes the set
of all finite lists of elements from S, including the empty
list denoted by []. Given an operation f from S into a
set B, f : S → B, the operation f∗ denotes the exten-
sion of f from a single input value to a list of input val-
ues, f∗ : S∗ → B, and is defined as follows: f∗(sw) =
f(s)f∗(w) and f∗([]) = [], where s ∈ S and w ∈ S∗.

2Consider the conditional equation, (∀X)l = r if c,
which is interpreted as meaning the equality holds if the
condition c is true.
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considers the evolution of theories with unconditional
equations.

The models of a theory are the Σ-algebras that sat-
isfy the equations. Intuitively, an algebra satisfies an
equation if and only if the left and right sides of the
equation are equal under all assignments of the vari-
ables. More formally:

Definition 5 A Σ-algebra A satisfies a Σ-equation
(∀X)l = r iff θ(l) = θ(r) for all assignments
θ : TΣ(X) → A. We write A |= e to indicate that
A satisfies the equation e.

We define satisfaction for theories as follows:

Definition 6 Given a theory T = (Σ, E), a Σ-algebra
A is a T -model if A satisfies each equation e ∈ E. We
write A |= T or A |= E.

In general there are many algebras that satisfy a par-
ticular theory. We also say that the class of algebras
that satisfy a particular equational theory represent
the denotational semantics of that theory.

Semantic entailment of an equation from a theory is
defined as follows.

Definition 7 An equation e is semantically en-
tailed by a theory (Σ, E), write E |= e, iff A |= E
implies A |= e for all Σ-algebras A.

Mappings between theories are defined as theory mor-
phisms.

Definition 8 Given two theories T = (Σ, E) and
T ′ = (Σ′, E′), then a theory morphism φ : T → T ′

is a signature morphism φ : Σ → Σ′ such that E′ |=
φ(e), for all e ∈ E.

In other words, the signature morphism φ is a theory
morphism if the translated equations of the source the-
ory T are semantically entailed by the target theory
T ′.

Goguen and Burstall have shown within the framework
of institutions [1] that the following holds for many
sorted algebra3:

Theorem 9 Given the theories T = (Σ, E) and T ′ =
(Σ′, E′), the theory morphism φ : T → T ′, and the T ′-
algebra A′, then A′ |=Σ′ φ(e) ⇒ φA′ |=Σ e, for all
e ∈ E.

3Actually, Goguen and Burstall have shown the much
more powerful result that the implication holds as an equiv-
alence relation. However, for our purposes here we only
need the implication.

In other words, if we can show that a given model of
the target theory satisfies the translated equations of
the source theory, it follows that the reduct of this
model, φA′, also satisfies the source theory, thus, the
models behave as expected.

Our approach to equational logic so far has been purely
model theoretic. A proof theory for many-sorted equa-
tional logic is defined by the following rules of deduc-
tion. Given a signature Σ and a set of Σ-equations,
the following are the rules for deriving new equations
[15] (here t, u, and v denote terms over the signature
Σ and an appropriate variable set):

1. Reflexivity. Each equation (∀X)t = t is derivable.

2. Symmetry. If (∀X)t = t′ is derivable, then so is
(∀X)t′ = t.

3. Transitivity. If the equations (∀X)t = t′,
(∀X)t′ = t′′ are derivable, then so is (∀X)t = t′′.

4. Substitutivity. If (∀X)t1 = t2 of sort s is deriv-
able, if x ∈ X is of sort s′, and if (∀Y )u1 = u2
of sort s′ is derivable, then so is (∀Z)v1 = v2,
where Z = (X − {x}) ∪ Y , vj = tj(x ← uj) for
j = 1, 2, and ‘tj(x ← uj)’ denotes the result of
substituting uj for x in tj.

5. Abstraction. If (∀X)t = t′ is derivable, if y is a
variable of sort s and y is not in X, then (∀X ∪
{y})t = t′ is also derivable.

6. Concretion. Let us say that a sort s is void in a
signature Σ iff TΣ,s = ∅. Now, if (∀X)t = t′ is
derivable, if x ∈ Xs does not appear in either t or
t′, and if s is non-void, then (∀X − {x})t = t′ is
also derivable.

Given a theory (Σ, E), we say that an equation
(∀X)t = t′ is deducible from E if there is a deduc-
tion from E using rules 1-6 whose last equation is
(∀X)t = t′ [23]. We write: E ` (∀X)t = t′.

The model theoretic and the proof theoretic ap-
proaches to equational logic are related by the notion
of soundness and completeness.

Theorem 10 (Soundness and Completeness of
Equational Logic) Given an equational theory
(Σ, E), an arbitrary equation (∀X)t = t′ is semanti-
cally entailed iff (∀X)t = t′ is deducible from E. For-
mally, E |= (∀X)t = t′ iff E ` (∀X)t = t′, where
t, t′ ∈ TΣ(X).

This theorem is very convenient, since it lets us use
equational deduction to check the theory morphism
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conditions above which plays an important part in our
system implementation.

Term rewriting [12, 15] can be considered an efficient
implementation of unidirectional equational deduction
by viewing equations as rewrite rules from left to right.
Given a Σ-equation (∀X)t = t′, consider: a term t0 can
be rewritten into a term t1 provided that t0 contains a
subterm that is a substitution instance of the left side
t of the equation. Then t1 is the result of replacing the
substitution instance of t with the appropriate substi-
tution instance of t′ in t0. Given this, every term can
be rewritten to a unique canonical form under mild
conditions on the set E of Σ-equations, such as every
variable of a right side of an equation must also appear
in the left side. This forms the basis of the operational
semantics of the OBJ specification language [5, 6].

3 INDUCTIVE LOGIC
PROGRAMMING

Traditionally, inductive logic programming has con-
cerned itself with the induction of first-order logic
theories from facts and background knowledge. The
normal semantics for ILP is usually stated as follows
[3, 20],

Definition 11 Given a set B of horn clause defini-
tions (background theory), a set P of ground facts to
be entailed (positive examples), a set N of ground facts
not to be entailed (negative examples), and a hypothe-
sis language L, then a construct H ∈ L is an hypoth-
esis if

B ∪H |= p, for every p ∈ P (Completeness),
B ∪H 6|= n, for every n ∈ N (Consistency).

Here, L is the set of all well-formed logical formu-
lae over a fixed vocabulary. Completeness states that
the conjunction of the background and the hypothesis
entail the positive facts. Consistency states that the
background and the hypothesis do not entail the neg-
ative facts or counter examples. Logical entailment is
derived by interpreting the clauses in the appropriate
Herbrand models [22].

Please note that this semantic definition does not say
anything about the quality of a particular hypothe-
sis. In fact, it is interesting to note that this seman-
tic definition admits a number of trivial solutions; for
instance, let H = P . Also consider the case where
B |= p for every p ∈ P . Typically, the weighing of
one hypothesis over another is left to the operational
or search semantics of an ILP system. In practical
ILP systems trivial solutions like the ones above are

typically immediately dismissed by the system on its
search for an “optimal” hypothesis, since these trivial
solutions tend not to pass a set of performance criteria
when compared to other more general hypotheses.

4 AN ALGEBRAIC SEMANTICS

The above semantics for ILP treats signatures implic-
itly. However, type information and signatures play
a central role in many-sorted equational logic. There-
fore, we recast the above semantics in an algebraic
setting based on signatures, equational theories, and
theory morphisms. We start by defining what we mean
by facts.

Definition 12 A theory (Σ, E) is called Σ-facts if
each e ∈ E is a ground equation.

This allows us to define our notion of induced theory.

Definition 13 Given a background theory B =
(ΣB , EB), positive facts P = (ΣP , EP ), and nega-
tive facts N = (ΣN , EN ), then an induced theory
H = (ΣH , EH), is a theory with a pair of mappings
φB and φP

H

B

φB

>>~~~~~~~~
P

φP

``@@@@@@@

such that

• φB : B → H is a theory morphism,

• φP : P → H is a theory morphism,

• and H 6|= φN (e), for all e ∈ EN , and signature
morphism φN : ΣN → ΣH .

Our induced theory is not unlike the hypothesis in the
normal semantics. In fact, by making φB an inclu-
sion morphism we have the algebraic equivalent for-
mulation of the normal semantics for ILP. We like the
added generality our semantics supports and will ex-
plore this in future implementations. Currently, the
prototype interprets φB as the inclusion morphism.

Taking a closer look at φB , from the definition we have
φB : B → H is a theory morphism if H |= φB(e), for
each e ∈ EB . This is equivalent of saying that in order
for this mapping to be valid the induced theory must
semantically entail the given background knowledge.
Of course this holds trivially if φB is the inclusion mor-
phism.

A closer look at the theory morphism φP that maps the
positive facts into the induced theory reveals a similar
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relationship. Again from the definition, φP : P → H
is a theory morphism if H |= φP (e), for each e ∈ EP .
This can be considered the algebraic formulation of
the completeness criteria of the normal ILP seman-
tics. Please note, by replacing the semantic entailment
with proof theoretic deduction which follows from the
soundness and completeness of equational logic we ob-
tain a computable relation. This is precisely what we
use in our system implementation below.

The last part of the definition above is the algebraic
formulation of the consistency statement: negative
facts should not be entailed by the induced theory.
Similar to the normal semantics our algebraic seman-
tics says nothing about the quality of the induced the-
ory. This is left to the search semantics of the system;
in our case this is left to the genetic programming en-
gine.

So far we have treated models that satisfy H implicitly.
It is interesting to take a look at the models per se.

Proposition 14 Given an induced theory H, with the
background theory B, the positive facts P , and the neg-
ative facts N , then each model m that satisfies the
induced theory H and is consistent with the negative
facts N also satisfies the background theory B and the
positive facts P .

Proof: From the previous section we know that for
every theory morphism φ : T → T ′ and a model m′ |=
T ′ there is a reduct φm′ such that φm′ |= T . Let
us assume that there exists a model m that satisfies
the induced theory H and is consistent with N , i.e.,
m |= H and m 6|= N . We then have two reducts along
the theory morphisms φB : B → H and φP : P → H,
namely φBm and φPm, respectively, where φBm |= B
and φPm |= P . Thus, consistent models that satisfy
the induced theory H have reducts along the theory
morphisms and behave as expected. 2

5 SYSTEM IMPLEMENTATION

We have implemented our prototype system within the
OBJ3 algebraic specification system [5, 6]. OBJ3 im-
plements many-sorted equational logic4 with algebras
as its denotational semantics and many-sorted term
rewriting as its operational semantics.

The following specification of a stack of elements can
be considered a prototypical OBJ3 specification.

4Actually, OBJ3 implements order-sorted equational
logic, which means that the sorts are related to each other
through a type lattice. In our current implementation we
do not support this type ordering.

obj STACK is sorts Stack Element .
op empty : -> Stack .
op push : Stack Element -> Stack .
op top : Stack -> Element
op pop : Stack -> Stack .
var X : Element . var S : Stack .
eq top(push(S,X)) = X .
eq pop(push(S,X)) = S .

endo

The first line of the specification names the theory and
also defines two sorts; namely, Stack and Element.
The following four lines define the operations on the
stack. We then define the variables we need in the
equations on the following two lines.

The current prototype incorporates a genetic program-
ming engine based on Koza’s canonical LISP imple-
mentation [14] into the OBJ3 system. The engine
performs the following steps given a (possibly empty)
background theory and the facts:

1. Compute initial (random) population of candi-
date theories;

2. Evaluate each candidate theory’s fitness using the
OBJ3 rewrite engine;

3. Perform candidate theory reproduction according
to the genetic programming paradigm;

4. Compute new population of candidate theories;

5. Goto step 2 or stop if target criteria have been
met.

This series of steps does not significantly differ from
the standard genetic programming paradigm. The
fittest individual of the final population is considered
to be the induced theory satisfying the given facts.

A couple of things are noteworthy. The signatures of
the candidate theories are computed using the signa-
ture morphism constructions underlying the algebraic
semantics outlined above. Both, for the background
theory as well as for the positive facts we let the sig-
nature morphisms be inclusions. In order to complete
the candidate theories the system adds equations to
the computed signatures according the to the genetic
programming paradigm.

For the negative facts we take advantage of OBJ3’s
builtin boolean operator =/=. This operator allows
us to recast negative facts as inequality relations that
need to hold in the candidate theories. In effect, these
inequalities become positive facts and we treat them
as such by adding them to the positive facts theory.
Consequently we set the negative fact theory to the
empty theory. This technique facilitates the coding
for the genetic programming engine, since the notion
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of positive facts aligns very nicely with the notion of
fitness cases in the genetic programming paradigm. An
example of this technique can be seen in the results
section.

The system uses the OBJ3 rewrite engine to evalu-
ate candidate theories against the positive facts. The
proof obligation arises from the theory morphism con-
dition for the positive facts. Given a fact equation
and a candidate theory, the theory morphism condi-
tion is tested by rewriting the left and right sides of
the fact equation to their unique canonical forms using
the equations of the candidate theory as rewrite rules.
If the unique canonical forms of the left and right sides
are equal then the fact equation is said to hold.

Since the equations in the candidate theories are gener-
ated at random, there is no guarantee that the theories
do not contain circularities throwing the rewriting en-
gine into an infinite rewriting loop when evaluating the
facts. To guard against this situation we allow the user
to set a parameter that limits the number of rewrites
the engine is allowed to do per fact evaluation. This
pragmatic approach proved very effective. The alter-
native would have been an in-depth analysis of the
equations in each candidate theory adding significant
overhead to the execution time of the evolutionary al-
gorithm. In some sense this is analogous to guarding
against division by zero when evaluating arithmetic
expressions within the canonical genetic programming
paradigm.

The fitness function used by the system to evaluate
each candidate theory is

fitness(T ) = (facts(T ))2 +
1

length(T )
,

where T denotes a candidate theory, facts(T ) is the
number of facts or fitness cases entailed by the can-
didate theory, and length(T ) is the number of equa-
tions in the candidate theory. The fitness function is
designed to primarily exert evolutionary pressure to-
wards finding candidate theories that match all the
facts (the first term of the function). In addition, in
the tradition of Occam’s Razor [8] the function also ex-
erts pressure towards finding the shortest theory that
supports all the facts (second term). The system at-
tempts to maximize this function in each generation
of candidate theories.

The genetic programming engine itself is implemented
as a strongly typed genetic programming system [18, 4]
in the sense that it knows about the syntactic structure
of theories and equations and does not have to redis-
cover these notions with every run. The only genetic
operators we have implemented so far are fitness pro-
portionate reproduction and a type sensitive crossover

operator. We found that mutation proved too disrup-
tive probably due to our incomplete type system im-
plementation, as the current prototype does not prop-
erly support user declared equational logic types. This
did not prevent us from performing some interesting
experiments, however. We are currently working on
the next generation system that supports user defined
types fully.

6 EXPERIMENTS AND RESULTS

To study the system we performed three experiments
with encouraging results. These experiments were in-
spired by case studies on the FLIP home page [2].

6.1 INFERRING STACK PROPERTIES
FROM EXAMPLES

In the first example we were looking for the general
concept of the stack operator top given a set of facts.
The facts are as follows:

obj STACK-FACT is sort Sort .
ops a b u v s: -> Sort .
op top : Sort -> Sort .
op push : Sort Sort -> Sort .
eq top(push(v,a)) = a .
eq top(push(push(v,a),b)) = b .
eq top(push(push(v,b),a)) = a .
eq top(push(push(v,u),s)) = s .

endo

Each ground equation in the fact theory gives a spe-
cific application instance of the operator top. We ex-
pect the equational inductive logic system to discover
a theory that generalizes the description the operator
beyond the seen instances. After 28 generations with
200 individuals the system discovered the following in-
duced theory:

obj STACK is sort Sort .
ops a b u v s: -> Sort .
op top : Sort -> Sort .
op push : Sort Sort -> Sort .
vars X1 X2 X3 X4 X5 : Sort .
eq top(push(X4,X2)) = X2 .

endo

This theory correctly characterizes all the ground
equations in the fact theory by stating that the top
of a stack is the last element pushed. The following
parameters were used during this run:

Maximum number of Generations: 60
Size of Population: 200
Maximum equations for theories: 4
Maximum Rewrites: 20
Maximum depth of new individuals: 5
Maximum depth of new subtrees for mutants: 5
Maximum depth of individuals after crossover: 10
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.8
Crossover at function points fraction: 0.1
Number of fitness cases: 4
Selection method: fit-prop
Generation method: ramped
Randomizer seed: 1.0
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The Maximum Rewrites parameter limits the number
of rewrites the OBJ3 rewriting engine is allowed to
perform when evaluating a fact. Readers familiar with
Koza’s implementation will notice that the above pa-
rameter setting does not allow for mutation.

6.2 INFERRING A RECURSIVE
FUNCTION DEFINITION

In the following example we want to infer the recur-
sive definition of the function sum from a set of ground
equations. The fact theory is given in Peano nota-
tion where the naturals are represented as s(0) 7→ 1,
s(s(0)) 7→ 2, etc. The fact theory is as follows:

obj SUM-FACT is sort Sort .
op 0 : -> Sort .
op s : Sort -> Sort .
op sum : Sort Sort -> Sort .
eq sum(0,0) = 0 .
eq sum(s(0),s(0)) = s(s(0)) .
eq sum(0,s(0)) = s(0) .
eq sum(s(s(0)),0) = s(s(0)) .
eq sum(s(0),0) = s(0) .
eq sum(s(0),s(s(0)))= s(s(s(0))) .
eq sum(s(s(0)),s(s(0)))= s(s(s(s(0)))) .
eq sum(s(s(s(0))),s(0)) = s(s(s(s(0)))) .
eq sum(s(s(s(0))),s(s(0))) = s(s(s(s(s(0))))) .
eq (s(0) =/= 0) = true .
eq (s(s(0)) =/= 0) = true .
eq (s(s(s(0))) =/= 0) = true .
eq (sum(s(0),0) =/= 0) = true .
eq (sum(0,0) =/= s(0)) = true .
eq (sum(s(0),s(0)) =/= s(0)) = true .
eq (sum(s(0),0) =/= s(s(0))) = true .
eq (sum(0,s(0)) =/= s(s(0))) = true .
eq (sum(0,s(0)) =/= 0) = true

endo

The first half of the theory are positive facts and
the second half are negative facts coded as positive
facts taking advantage of OBJ3’s builtin boolean op-
erator =/=. As hinted at before, we take advantage
of this builtin capability to express everything as posi-
tive facts rather than trying to prove that the negative
facts do not hold in the induced theory. Additionally,
this is more inline with the notion of fitness cases in
the genetic programming engine.

After 10 generations with 200 individuals the system
converged on the following theory as the induced the-
ory:

obj SUM is sort Sort .
op 0 : -> Sort .
op s : Sort -> Sort .
op sum : Sort Sort -> Sort .
vars X0 X1 : Sort .
eq sum(X1,0) = X1 .
eq sum(X1,s(X0)) = s(sum(X1,X0)) .

endo

The first equation of this recursive definition of the
operator sum states that that adding 0 to a value leaves
the value unchanged. The second equation states that
adding a value to the successor of another value is the
same as the successor of the sum of the two values.

The parameters for the genetic programming engine in
this experiment were:

Maximum number of Generations: 20
Size of Population: 200
Maximum equations for theories: 8
Maximum Rewrites: 25
Maximum depth of new individuals: 5
Maximum depth of new subtrees for mutants: 5
Maximum depth of individuals after crossover: 10
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.8
Crossover at function points fraction: 0.1
Number of fitness cases: 18
Selection method: fit-prop
Generation method: ramped
Randomizer seed: 1.0

6.3 INFERRING ANOTHER RECURSIVE
FUNCTION DEFINITION

In this last example we would like to infer the concept
of even from a set of facts. Again we use the Peano
notation for naturals. The fact theory is given as fol-
lows:

obj EVEN-FACT is sort Sort .
op 0 : -> Sort .
op s : Sort -> Sort .
op even : Sort -> Bool .
eq even(0) = true .
eq even(s(s(0))) = true .
eq even(s(s(s(s(0))))) = true .
eq (s(0) =/= 0) = true .
eq (s(s(0)) =/= 0)= true .
eq (s(s(s(0))) =/= 0) = true .
eq (s(s(s(s(0)))) =/= 0) = true .
eq (even(s(0)) =/= true) = true .
eq (even(s(s(s(0)))) =/= true) = true .

endo

Please note that as in the previous example we employ
the convention of coding negative examples as inequal-
ities that must hold in the induced theory.

Unfortunately, here the system did not converge on
a sensible induced theory even after as many as fifty
generations with 200 individuals. We had expected
something like the following:

obj EVEN is sort Sort .
op 0 : -> Sort .
op s : Sort -> Sort .
op even : Sort -> Bool .
var X0 : Sort .
eq even(s(s(X0))) = even(X0) .
eq even(0) = true .

endo

We suspect that the failure to converge is due to the
fact that in this particular case it is paramount to dis-
tinguish between the user defined type Sort and the
builtin type Bool. Due to the incomplete implemen-
tation of our type system the genetic programming
engine is allowed to produce too many “junk” terms,
i.e., syntactically malformed terms, which prevents the
system from converging. We suspect that the system
will not have any problems with this specification once
we implement our type system fully.
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7 CONCLUSIONS

Starting with the general notion of concept learning
we developed an approach to inductive logic program-
ming based on many-sorted equational logic with ge-
netic programming as the underlying search paradigm.
Many-sorted equational logic has a strong notion of
signature and we accommodated this by developing an
algebraic semantics for inductive equational logic pro-
gramming using the the normal semantics for inductive
logic programming as a starting point. Based on these
underpinnings we implemented a prototype inductive
equational logic programming system within the alge-
braic specification language OBJ3. Results of initial
experiments looked encouraging and we expect that a
more complete implementation of the type system in
the prototype will remedy the current short comings.
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A�� ��F� �� � �@�
1@� (� )� I� J =��� K �>�

#�=���>� #�;=���>�
� =� � �> �$�� 	 ���� 


�@� (� )� I� J =��� K �>�
#�=���>� #�;=���>�
� =� � �> �$�� 	 ���� 
�
��01	�	�� �	?@�	�

��� (� )� I� J =��� K �>�
#�=���>� #�;=���>�
� =� � �> �$�� 	 ���� 


� ���/ @����� �����$ =�@�>

� ������ ������ �����$ =���>

A�� � ������� �� ���� 1@� ��� �@� #��- �#�� 3��
��$����� �$� 3����$�� ��� ���������� ��� ���/� ��
�$� F@ #�#��- ��
��� 3- A�� �� ��� 3� �;2�����
�$����-� 	��$ 3����$ �����#��� � �2��6� 2��2���- ��
�$� �������� ��� ���$ $�� �� ��� ��� �� ���#���� ���
��������� �����
��� ��#� $�
� ������ �� ���/ �2��6�
���/�� #�#����'

� A.?< #�#��-

� �L�"0:< #�#��-

� �LE	 #�#��-

	��$ ��
���� #������ �$��� #�#���� �� ��
� �)
���#���� �3��� �� 2��� �;2������� @��� ������� ��)
������ ���� �$��$�� �� ��� �� #��/ �$� #��� ��$
� 9��� ��&��� � #�#��- �� 2��� �
���� �$�$ ������
�$� ���� ������� �� ������� ��� �������� 2��
��� �)
���#���� 2��� �� � �������

A��� ���/�� ��$ �$� 1@� ��� �@�� ����� �$�
���� ������� �� �;2���� �$� #��� � �$� ���� 6���� ���
�� ��2��� � ��#3�� �� 59���7 �� #��� ������ L��� �$�
2������ � ��#2������ �$� ����#���� ��� ���/� ���#
���� �� �$� 3���- F@ #�2 �� 59���7 ��� 5�� 9���7� 1$�
��� �$�� ������ �$��$�� �$� ������ ������� 2���
��� ��������- ������� �� � ���� ������� �� �$��$�� �
��� � ����� ����#� 1�3��� � ��� F �
� �$� �������
��� ���#��� ���� ��� ���$ <! 3����$�

��� ��
�� ������ �
���� �����

1$� ���� ������� $�� �#����- ��$ �$� ����� A� ����
��� � ="�8�� �,,F>� ���� �$� ���� �������� ��F ���
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1�3�� F' 1��#��� ���� =��� ��;�>�

�
���� ��
�����
A�� �� 1@�
1@� �&

��
� �&

��
� �1

��
� �1

��
� �(

��
� �(

��
� �6

��
� �6

��
�

�:
��
� �:

��
� �	?@A.?<� �	?@�LE	�

������� � ���� =F��'*��>
�@� �GLVN� �GLVN�

������� � ���� =F��'*��>�
�	?@A.?<� �	?@�LE	

��� �� 9�� 3���� ���#�����
������� � ���� =F��'*��>�
�� ��;����� ���� ��������

�� ��� �$� � �� 5#�
� ���#���7 �� #�
� �$� �������
��� 2;�� � �$� ������� �� �� ���
��� C���
��� �$� .
=����> ��� � =��$�> ���#���� ���� �� ���� �$� �����
A� ���� ��� ��� ��2����� 3- 1@� �$�$ 6��� ����� ���
�$�� #�
�� �$� ��������

1$� A�� � �;������ ���� �$� ���� ������� $�� #�
��
� 2�������#��� ��#3�� �� �#��� ��� , �  �#���
�$���  � �$� ���$ �� � 
�$���� 1$� ���$ � ����)
#������- ������ 3- ������� ������� �� �$��  �� *����
� $���  ��  ���� =��3���� ��� C������ �,,,>� A��
� �����
��- �
������� ���� �$� ������� �;������ �$�
2�������#��� ��#3�� �� #�
��� 0� ������ �������$
�$� ��#3�� �� #�
�� ��� ��� 3� 2�������#��� 3��
��� ���� 3� ������� �� �
��
��

1$� ��#3�� �� #��� ����� �$�� ����� 3� 9����� ���
�#��� �� ��� �$�� �$� �#� ��� �;������� �$� A��
�3����� ��� �������� �$� ����� ����� �� ����

��� ��
� �������� �
���� �����

1@� 6��� ������ �� � ������� �� ���
�� ��� �$��
#�
�� �$� ������� � �$� �������� 1��#���� �&

��
� �&

��

��� �
������ ��� �������� ��
����� �3����� ���#
�$� 2;�� 
����� � �� ���
�� 2;�� �&���� ����� ���)
���� �� �$� �������� .�3��� 	����� ��� ����� ���
������� ����$� ����� ����$ ��� ���� �������� �� �$���
� A���� F� 1$� ����� �8� � ����#������- ������
�������� �� ��������

1@� � ����-� �
������� ���� �#��� ���� ��� ���$ 2��)
#������ �� �$� ����� �� �$� ���#���� �� �������� :�
	� �� ��� �� ��� �$� 2������� ���� ���2���� 0� �$�
������� #2��#�������� �$� �$���� ���� ������� ����)
��� � �
�� 3- �$� 2��#������ �������� �$� �������
���2�� ��� ������� ������ ������

1$� �LE	 #�#��- � �2����� ����� �
��- ����
������� #�
�� ��� �$�� �$� A�� �
�/�� � �� 1@��
1$� #�#��- ������� �$� ����� ����� �� �$� �������'

A���� F' .���' 1@� ���#����' #��� ��� ��������
��
���� ��#2���� �
�� �&���� ����� �3�
�� 3����� ��
�$� ��$�� �� �$� ����� ��� ������� �� �$� 2;��� 1$���
��� �$� 5�������7 �� �$� ���� �������� ��$�' A��� ���)
������ 2;�� ���� ������� �� � 
�$��� ��$ ��#�����'
���� ���� ��� ��� F�� 
�$��� ���$��

�������� ��$�� 3��/� ���� =A� �� �� .> ���$�� �$�� �$�
�3������ �������� :� 	� �� ��� �� !;�� �������� ���
���� �������� ��� �� �$� �LE	 #�#��- ������� ��'

�� ���� �� ��������� ���� A�������A�A���.���. �
������ �� M��F� � ����� ���F��NO

F� ���� �� �&
��
O

 � ���� �� �&
��
O

?� �$� ����� �� ���
��� �$� ������� #�#��- ��������
��� ����8�� �� � ��� ��� ��� 
����� � ���$ �������
#�#��- ������� ��� ��� �� �$� ���� �&

��
��� �&

��
�

���  �
! �������� �
���� � ���

�@� �����#��� �$��$�� � 9�� �$���� 3� ���� �� �$�
������� 2;�� 2����� � �$� ���� �� ������ �$� 2���)
���� �� �� 5#��� ����7� 0� �$� �@� ������� � 2���
�
��#3�� � ��2���� � 9��� 1$� ������ � 3���� ��
2;�� ���� ��� ���� ����� �@� ���� �� �� 50A7 �����)
#��� � �$� A��� !����� � 9�� �;������ � 1C	:
��3����� ��$����� �� 	.�	 ��3���� � �;������� 1$�
�;������ 2����� � �������� �� A���

1��#���� �GLVN ��� �GLVN � 1�3�� F ��� �
������ ���
�������� ��
����� �$�� ��� ���������� �
�� � �#���
��/ ������� �� �$� ������� 2;��� 1$� ��/ ��#���� �
$��� �$� ���$ �� � ��� ��� ������2���� �� �$� �#������
��/ �� �$� ��$� �� A���� F� 1$� ��/ � ������ 3-
������� �������� ��� � � �������� ��� �� ���2�� �$��
�$� #��� � �� 2���2���
� ��� �� ������� �����

1$� A.?< #�#��- � �2����� �������� �$� ���� ��
�@�� 1$� #�#��- ������� ��'

�� ���� �� �@� �������� ���� M)��)����������)����)��)�NO
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F� ���� �� �GLVNO

 � ���� �� �GLVNO

C��� �� ������ ��� 5�� 9��7� ��� � ������ ��� 59�� ���7�
0�����-� ��� 
����� � �$� 
����� �� ������� ��� ��� ��
�� ��� � �$� ��$�� ��� #�#��- 
������ ��� ��� �� �$�
���� �GLVN ��� �GLVN ���2���
��-�

��01	�	� ��� �	?@�	� ���� �� ��� ���� ���#
�$� ���;�� �L�"0:< #�#��-� �$�$ ������� ��
�$��� �������� �� ������ ?�� �$��� �������� ��� �)
���8�� �� ��� 3����� �$� ������ :��� �$�� ������)
�
� ����� �� �@� ���# A�� ��� ��� #�
� �$� ����
�������� 1$� ������ �� �$� ��2����� ������ $���
��� ���
�G�� ���# ��� ����$�� 3������ �$� #�#��- ������ ���
�$���� 3������ ������ :��� ���� �$�� �$� ���� �������
#�- ��
�� � 2;�� ��� �$���� �� ������ �3��� 9��
2����#����

��" ������ ������ �
���� �����

��� ������� � ���� ��#3���� 
���� �$�� ��� 3� ��$��
2���
� =������ � 2������> �� �����
� =�� ������ �
2������>� 1$� ��� � ���- �;������ ����� �$� A��
$�� ��#2������

1$� A�� ���� � F@ �&���� #�2 �� ����� �$� ��2�����
9���� 1$� #�2 � ����8�� �� � 
����� ��� 9�� ����)
���� ��� ������� 3- � 
������ 1$� ���2���� 2;��
�$�$ � �$� ������� 2��� �� �$� ������ � �� �$� ������
�� �$� #�2� 0� �$� #�2 ������ ����� �$�� � �$���$���
��#3�� �� 9���� �) K �� �$�� �$� ���2���� 2;�� �
��3����� 5�����
�7 =�� ������ 2������>� ��� �$� ��� �
��� �
�/��� 0� �$� #�2 ������ �� ����� �) 9���� �$��
�$� ��� 2�������� ��������� #������� 3���� �� �$�
����3���� �� �$� 9����

1$� ��� 9�� 3���� ���#���� � 1�3�� F ��&��� ��#)
2������ �� �$� ������ �� #��� �� �$� 9���� 1$�- ���
��3�����- 3���� �� ��������� #������� �
�� �$� 
��)
��� �� �������� 3������ �$� ������ �� #��� ��� ���$
9��� ?�� ��� �������� ��� 2���
� � 
����'

�� �$� ��#3�� �� 9���O

F� �$� ������� ���# �$� ������ �� #��� �� �$� ���)
�$��� 9��O

 � �$� ������� ������� 3������ ��- ��� 9���O

�� �$� �
����� ������� 3������ ��- ��� 9���O

�� �$� �������� ��
���� � ������� 3������ ��-
��� 9���O

*� �$� �
����� ������� 3������ �$� ������ �� #���
��� ���$ 9��O

1�3��  ' <! 2���#������

#�
����
 ������$
/�� ������#��� �8� F ��� �����-)����� <!
3���� ������#��� �8� � ��� �����-)����� <!
����������� ,�P ;)�
��� �P ������

��P ��������� #������
2�2������ ���
#�; ���������� ��
#�; 3����$ �8� ���� �����

Q� �$� �������� ��
���� � ������� 3������ �$�
������ �� #��� ��� ���$ 9��O

+� �$� ������ �� ��-##���- �� �$� ������� ����3�)
��� =�/������>O

,� �$� �����
� �$�2� �� �$� ����3���� ��#2����
��$ � ���#�� ����3���� =/������>O

��� �$� ��)
������ ����� �$� 
����� � ������ ���
�������� ����� ��� $��
�� �� ���# ��� ��3)
����3������

1�;����� �������� �
�� � ��� ���� ��� �2�� �� ��� ��
�$�� �$� 3����$ ��� ���# �� ��� #��� ���#��������
0� �$� ��-� �$� ��� ��� �
� �G����� ��������� ���
�$� ��#� 9�� ����3���� �22����� � �G����� ��;��)
��� �����;��� A�� �;�#2��� � $���� � � ����� ���� #�-
����
� �$� ��#� 9�� ����3���� �� � 
�$��� � �� ��)
3�� ����� 3�� �$� ��� ����� ����#���� �$� $���� ��
� ����� ����#� �$��� �������� �$� 
�$���� ��� �� �$�
�G������� � ����� ��� ��3�� ��;����� =��3���� ���
C������ �,,,>� 1$��� ��;����� �������� ��� 3���� ��
� ��)���������� #���; ��� ��� ��/�� �
�� �� ���� ��
� ���)�����$� �&�����

# �� ������������
�

1$� <! ��� 2���#����� ��� �
�� � 1�3��  �
������
�� ��� 3����$ �-2��� #����� �$�� � �����
���- �;�$���� ������ #������ 3������ �/� 3����$���
���� �� A�� ���- ��$ ����$�� A��� 	��$ 3����$
��� ������� � 2��3�3��- �� 2����2��� � ������
���
1$� A�� $�� � 2��3�3��- �� ��P ��� �$� ��$�� �$���
3����$�� $�� � 2��3�3��- �� F�P� 1�������� #���)
��� ������� ��- ���� =��� �$� ��������� ��3����> ���
��2����� � ��$ � ���#��� ���# �$� ����
��� ���#���
����

1$� ���2���� 2���� �������� 3- �$� =��3���� ���
C������ �,,,> ��$�#� ���������� �$� 6����� ������
1$��� 2���� ���� /���� �� 3� 5���� 2���
��7 =1!>
�� 5����� 2���
��7 =A!>� ��� ����� ����#�� 1$� 6�����
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A����  ' 1��� ���#����� �� �$� ��$� �� � 
�$����

#������ ��� ��#2���� ���� ��� 6����� ����� $�� 3���
2��������'

6����� K
���

��� ( �E�$����

1$� 2���#����� � ��� � 3������ �$� #2������� ��
1! �����
� �� A!� 1$��� 2���#����� ���� �2�#8��
�� #�#8� A! �$��� ������� ����)#�;#�� 1!�

$ ����������� %�	���	

1$� ��$�#� ��� #2��#����� �� 2������ 2��
����-
�������� 
�$���� ��� ����� ����#� � ��3���� �����)
�������� 0�.� #����- =��3���� ��� C������ �,,,>�
1$� 
�$���� �22��� � #��- �8�� ��� ����������� �
#��- 2���2���
�� ��� �$��#�� ������� ��;� �� 
�����
�34���� =���$ �� 3������> �$�$ ���� �$��#�� �$��)
��� ���� �$� 
�$����� ��� � #��- ��
���#���� ���
����$�� ��������� C����� �$� 
�$��� �������� ���/
� �$��� �2�������� #���� � �;���#��- �$���������

1$� ������ 2������� �;�#2��� �� �$� ����� 2�������
3- � ���� ������� �
��
�� ��$ � K F�* ��� � K ����
1$� ����� ��� ����� �� ��3)#���� ���22�� ���# 0�.�
#����- ��$ �22��;#��� �#������ ��  ������� ���
2;���� 1$� ��� �� ���$ ���� � ������� ��$ ��� �����
�;��2� �$�� �$� ���� � �����
��

A�����  ��� � �$�� �$�� �$� ������� ��� #�/� � �#)
��� ���� �� �G����� 
�$����� 	��$ ���� ������ �� �$�

�$���7� ���� 3������ �$� ��� �$� ������� 2��� ��
�������� 3- �$� =��3���� ��� C������ �,,,> ��$�#��
0����������- $���
��� ���$ ���� ���#����� �� �$� 
�)
$���7� ���� �
�� �$���$ �$� 
�$���� ��� ������� ��)
�������-�

<�������-� �$�� �$� ������� � �22��� �� �$� ��� 
�)

A���� �' 1��� ���#����� �� �$� ���� �� � 
�$����

A���� �' �2��� ���� �� � 
�$����

$���� 3�� ��$ �G����� ������� 2����� � ��� ��/�
�G����� ������ 3�� ���� ������ �$� 
�$���� A���� �
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Abstract
We present an adaptation of the standard genetic
program (GP) to hierarchically decomposable,
multi-agent learning problems. To break down a
problem that requires cooperation of multiple
agents, we use theteam objective functionto
derive a simpler, intermediate objective function
for pairs of cooperating agents. We apply GP to
optimize first for the intermediate, then for the
team objective function, using the final
population from the earlier GP as the initial seed
population for the next. Thislayered learning
approach facilitates the discovery of primitive
behaviors that can be reused and adapted towards
complex objectives based on a shared team goal.
We use this method to evolve agents to play a
subproblem of robotic soccer (keep-away
soccer). Finally, we show how layered learning
GP evolves better agents than standard GP,
including GP with automatically defined
functions, and how the problem decomposition
results in a significant learning-speed increase.

1 INTRODUCTION

For complex problems with low-level primitive
operations, such as robotic soccer [Ki97, MNH97], it is
intractable to search for a direct solution using genetic
programming (GP). This is due in part to the
combinatorial explosion of the GP search space as a
function of the problem state space – e.g., the size of the
playing field. [SVR99] Other factors, such as operator
granularity, also contribute to this growth. Many of GP
researchers who have worked on robotic soccer have
simplified the GP search space through problem
redefinition: raising the level of terminals in order to
evolve higher-level behaviors [Lu98] or using a more
sophisticated fitness function [AT99]. Because robotic
soccer is a multi-agent system (MAS) problem that is
based upon a real game played by humans, it is helpful to
compare learning strategies with those of human teams,
even if we use a different approach to automatically
develop a solution. One important observation is that the

structure of team training in real soccer involves
individual, pair, and small group drills, resulting in a well-
defined hierarchy of behaviors. Traditional GP produces
hierarchical programs by evolving and reusing
automatically defined functions (ADFs). [Ko94, RB94]

In this paper, we show howlayered learningcan also
achieve reuse – faster and more reliably than GP with
ADFs – in developing a solution to an MAS subproblem
of robotic soccer. Just as ADFs provide reusable code
and subroutine structure [Ko94], layered learning
provides a way to build solutions using a divide-and-
conquer approach [St00, SV00a]. The difference between
ADF learning and layered learning, using GPs or other
methods, is that layered learning describes a way totrain
a learning intelligent agent, while ADFs describe a way to
implement structurein the agent representation – i.e.,
code.

Layered learning GP (LLGP ) [GH01] can be used to
break down MAS learning tasks by first evolving
solutions for smaller fitness cases or for smaller groups of
agents with a more primitive fitness criterion. While our
adaptation of layered learning to GP is based in part upon
Stone and Veloso’s work in reinforcement learning
[SV00a], similar approaches have been developed that
perform sequential evolution of populations using
different fitness functions [De90, HHC94].

This paper extends our previous study of LLGP for an
MAS task in the robotic soccer domain [GH01] with
further experiments and analysis of LL behavior. We
focus on automatic tuning and validation ofintermediate
representationsin incremental LL. The purpose of our
test bed is to facilitate development of fitness criteria for
“coaching” or training agents based upon their strictly
cooperative performance in a two-agent task. We then
use the evolved individuals to seed a population of agents
to be further improved in three-way competitive
interaction against a fourth agent, the opponent. This new
population and the associated GP form the second layer of
the LLGP system. The product of LLGP is an agent that
is evolvedusing highly fit primitive agents, but does not
necessarily contain exact copies of these primitive agents
as subroutines.
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Another advantage of layered learning is that it provides a
logical methodology for implementing a hierarchical
approach to teamwork. In order to evolve more complex
teamwork, we may be able to take advantage of the
dependency of behaviors involving three or more
teammates upon primitive behaviors involving just two.
For example, a low-level primitive in soccer is passing the
ball, a two-agent activity that is incorporated into several
multi-agent activities: guarding the ball; moving the ball
downfield; setting up for a goal attempt; etc. In the rest of
this paper, we shall explore LLGP for MAS problems
using keep-away soccer, a subproblem of robotic soccer
[SV00a, GH01] that shows how complex teamwork can
be hierarchical in nature and therefore can be learned
efficiently in a hierarchical fashion.

2 THE KEEP-AWAY SOCCER DOMAIN

2.1 DEFINITION AND JUSTIFICATION

We call keep-away soccerthe task of keeping the ball
away from a defensive player who is attempting to
capture it from multiple offensive opponents. We chose
keep-away soccer as a learning test bed for MAS because
it:

1. captures a compositional element of teamwork,
composing and refining passing behaviors to
achieve full keep-away soccer behavior, that
occurs in real and robotic soccer

2. elides some objectives of soccer (such as moving
the ball downfield and attempting to score) that,
while crucial, would overcomplicate our study of
basic low-level MAS

3. allows us to easily adjust opponent difficulty

Figure 1. Screen capture of simulator. 1, 2, and 3 are
offensive agents, 4 is the defender, and 5 is the ball,

which moves in trajectory 3-1-2-3-1.

Although there is a strong compositional element,
learning to pass the ball effectively is only part of the
keep-away soccer learning task. In real soccer, human
players learn to minimize the number of turnovers to the
offensive opponent by passing accurately, move to
receive a pass, and make themselves open to receive a
pass, and control the ball effectively. For 3 or more

agents to coordinate effectively, each must be able, when
in possession of the ball, to: select a teammate to pass to,
time the pass appropriately, and maintain open at least
one passing lane.

Figure 1 shows a text-mode screen capture from the
simple program that we used to visualize and animate
games of keep-away soccer. The figure depicts three
offensive agents passing the ball in a counterclockwise
motion (agent 3 passes the ball twice) about a defender.
The trail of the ball is denoted by ’-’. The symbols ’+’,
’;’, and ’*’ show the paths of agents 1, 3, and 4,
respectively. The simulation and visualization were run
for about 30 time steps to collect the screen capture.

Several MAS variants of robotic soccer exist; keep-away
soccer belongs to the category of multi-agent learning
with homogeneous, noncommunicatingagents [SV00b] –
those that share identical code but have no direct channels
of communication other than by observing the behavior of
teammates. This type of problem requires more robust,
autonomous solutions and is therefore an interesting
framework for teamwork learning.

Soccer, whether analyzed as a human or robotic game,
can be broken down into skill-optimization subproblems
such as ball control, passing, and moving. Keep-away
soccer can be decomposed in the same manner. A natural
way to reduce complex, MAS problems, such as that
investigated in keep-away soccer, could generalize to
other cooperative MAS problems [Ta97].

2.2 PROBLEM SPECIFICATION

Test beds for robotic soccer-playing agents have been
framed through theRoboCup competition [KAK+95,
As99]. These have been found to be rich experimental
environments for many MAS research areas, including
flexible teamwork learning [TAA+99], and
methodologies, including hierarchical sensing and
reinforcement learning by Q-learning, temporal
differences, team-partitioned algorithms [SV98], artificial
neural networks, and genetic programming [As99]. At
present, however, hand-coded and hybrid learning
techniques that employ a large amount of hand-coded
domain-specific knowledge still outperform strategies that
are learned automatically.

In keep-away soccer, three offensive agents are located on
a rectangular field with a ball and a defensive agent. The
defensive agent moves twice as quickly as the offensive
agents, and the ball, when passed, moves twice as quickly
as the defensive agent. This is similar to the predator-
prey problem in [LS96], where more than one agent is
required to solve the problem. The objective in keep-
away soccer is to minimize the number of times the ball is
turned over to the defender. A turnover occurs at every
discrete time step in which the defender is within one grid
unit of the ball. Thus, subsidiary objectives for offensive
agents are to continuously move and pass the ball to one
another in order to minimize turnovers.
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We think of keep-away soccer as consisting of two layers
of behavior: passing accurately with no defensive agent
present, and moving and passing with a defender to
minimize the number of turnovers that occur during a
game. The two layers of behaviors come from a human-
like view of soccer, but are not heavily dependent upon
domain knowledge. Both types of behavior are important
to playing good keep-away soccer, but the operational
definition does not necessarily give us a way to measure
the effectiveness of a team of agents who have just played
keep-away soccer, which would be useful for finding a
fitness function.

Next, we present the application of layered learning to GP
and explain further how the keep-away soccer is a good,
illustrative test bed for LLGP.

3 LAYERED LEARNING

Layered learningis a term used in the machine learning
and intelligent agents literature [St00, SV00a] to describe
a task-driven and often incremental approach to acquiring
hierarchies of behaviors by reinforcement learning.

de Garis [De90] introduced a very similar concept that he
called behavioral memoryfor a genetic algorithm that
encoded neural networks. Weights and signs of the
networks evolved for one behavior were used to construct
a new population, evolved for a second behavior. Some
of the initial network persisted in the solutions for the new
behavior. Schoenauer and Xanthakis [SX93] then later
applied this concept for constrained genetic algorithm
optimization.

Harvey et al [HHC94] used a layered, incremental
learning approach to robot control in a vision-based
navigation system. The authors achieved this by
sequentially evolving a population using a range of targets
from simple to complex. Winkeler and Manjunath
[WM98] and Eriksson [Er00] later analyzed this approach
toward incremental learning.

Dorigo et al [DC97] developed another hierarchical
learning system that is somewhat different from layered
learning as we have adapted it. In this method, inputs and
processing elements are organized into a hierarchy (from
simple to complex), each of whose layers is incrementally
trained and frozen. This is similar to previous work
applied in domains such as robot soccer, but is not
identical to layered learning or behavioral memory as
these methods do not arrest learning in a particular
portion of the hierarchical model.

Applying the layered learning paradigm to a problem
consists of breaking that problem up into a hierarchy of
subproblems. The original problem is then solved
sequentially, by using the learning results from all the
member problems of each layer in the next layer. This is
conceptually similar to many other divide-and-conquer
learning paradigms, but a key difference is that the
structure of thesolutiondoes not necessarily reflect this
procedural hierarchy oftraining. For example, programs

evolved for a subtask in LLGP are used to seed an initial
population for the next layer, but they may not be
incorporated verbatim in the overall solution as ADFs are.
This type of hierarchical solution is different from the
type that ADF-based GP learning proposes to find, which
focuses on code reuse and structure rather than on how
the subtasks are learned.

Problems that attempt to achieve human-competitive
behaviors [Ko98], such as robotic soccer and keep-away
soccer, lend themselves well to bottom-up decomposition.
This is because human task learning, especially of
cooperative multi-agent behavior, often occurs in a
bottom-up fashion where individuals or small groups first
learn smaller tasks, then how to compose and coordinate
them to solve larger tasks. When the problem is of this
type and we are already using a biologically motivated
method such as GP, it seems very natural to use a bottom-
up decomposition of the problem that simulates this
aspect of human learning and allows GP to learn each of
the smaller problems.

Table 1 is a variant of the table found in [SV00a], which
we have adapted to correlate each prerequisite of layered
learning with a property of genetic programming for
keep-away soccer.

Table 1: Requirements for using layered learning and GP
keep-away soccer justifications.

Layered Learning Genetic Programming

1. Learning from raw
input is not tractable

Complex MAS problems
for GP need to be defined
at multiple levels ÿ

2. A bottom-up
decomposition is given

MAS learning task is
compositional ÿ

3. Learning occurs
independently at each
level

GP can be applied to each
layer independently ÿ

4. The output of one
layer feeds the next
layer’s input

The population in the last
generation of one layer is
used as the next layer’s
initial population ÿ

When we modify standard GP for layered learning, we
need to develop a learning objective for each layer, i.e.,
the fitness at each layer that selects ideal individualsfor
the subtask. As seen in [Lu98], using a single-objective
fitness value often leads to the best performance, and is
much easier than trying to define multi-objective fitness
functions. While multi-objective fitness functions should
allow GP to evolve more complex behaviors, it becomes
more difficult to decide what the components of fitness
should be and how important each one is to the solution.
In preliminary experiments, we found that it was
infeasible to develop either a set of Pareto optimization
criteria or a weighted function over multiple objectives
for keep-away soccer. Instead, we chose to focus on
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automatically discovering how to composepassing agents
into keep-away soccer agents.

Another issue we addressed for layered learning in GP is
the transfer of the population from the last generation of
previous layer to the initial population of the next. The
ideal team will consist of individuals with high fitness on
the coordinated MAS task. Meanwhile, in every
population, there are certain individuals that have a better
fitness than others. We might therefore consider copying
that best individual only and seeding the entire initial
population of the subsequent layer with it. However, this
duplication removes the diversity that was evolved in the
previous layer, which may be detrimental because the best
individual on the subtask may be a suboptimal problem
solver for the overall coordinated team activity. Thus, we
designed two experiments using LLGP: one that
duplicates the best individual and one that simply copies
the entire population.

The final issue we address for LLGP is learning-speed
improvement: to what degree can layered learning
simplify the learning problem, allowing the target fitness
to be reached faster than with standard GP? This increase
in the slope of the learning-speed curve [Ka95] is to be
distinguished from speed-up learning, wherein the
efficiency of the learned problem solver is improved. We
show how layered intermediate and team fitness
objectives achieve greater learning-speed than a
monolithic fitness objective in the keep-away soccer test
bed. We also demonstrate a technique for empirically
choosing a point at which to stop learning primitive MAS
behaviors and switch to the high-level MAS behavior.

4 GP AND EXPERIMENT DESIGN

We designed four initial GP experiments to investigate
and benchmark the performance of LLGP: standard GP
(SGP), GP with ADFs (ADFGP), LLGP with the best
individual duplicated to fill initial populations (LLGP-
Best), and LLGP with the entire final population of the
first layer used to seed the next (LLGP-All ). SGP and
ADFGP use the singlemonolithic (i.e., non-layered)
fitness function of minimizing the number of turnovers
that occur in a simulation. ADFGP allows each tree for
kicking and moving to have two additional trees that
represent ADFs, where the first ADF can call the second,
and both have access to the full function set available for
SGP. LLGP-Best and LLGP-All both have two layers;
the fitness objective for the first layer is to maximize the
number of accurate passes (a two-agent task evaluated
over teams of three copies of the same individual, on the
same size field as the keep-away soccer task), while
fitness objective for the second layer is to minimize the
number of turnovers.

We developed two variations on each experiment, with
maximum generation values of 51 and 101. The stopping
criterion for both variations is achieved when an ideal
fitness measure of 0 (where fewer turnover turns are
better) is found, or the maximum generation is reached.

Our preliminary experiments indicated that a population
size of 2000 yielded good results for the keep-away
soccer domain using both SGP and ADFGP. We also
found that the 101-generation SGP achieved better
convergence in fitness and individual size and the 51-
generation SGP, with negligible fitness improvement after
101 generations.

The genetic crossover operator generates 90 percent of the
next generation; tournament selection generates the other
10 percent. [Ko92] The tournament size is 7, with
maximum depth 17. Table 2 summarizes the terminal set
used, consisting of vectors that are egocentric, or relative
to the agent whose tree is being evaluated. Table 3
summarizes the function set used, where all functions
operate on and return vectors. Both sets are similar to
those used in [Lu98] and [AT99].

Table 2: Keep-away soccer terminals (egocentric vectors)

Terminal Description

Defender Vector to opponent

Mate1 Vector to first teammate

Mate2 Vector to second teammate

Ball Vector to ball

Table 3: Keep-away soccer function set

Function
(arguments) Description

Rotate90(1) Rotate current vector 90 degrees
counter-clockwise

Random(1) New random vector with magnitude
between 0 and current value

Negate(1) Reverse vector direction

Div2(1) Divide vector magnitude by 2

Mult2(2) Multiply vector magnitude by 2

VAdd(2) Add two vectors

VSub(2) Subtract two vectors

IFLTE(4) if ||v1|| < ||v2|| thenv3 elsev4

The GP system we use was developed by Luke and is
called Evolutionary Computation in Java (ECJ) [Lu00].
The simulator we developed for keep-away soccer
abstracts some of the low-level details of agents playing
soccer from theTeamBots[Ba01] environment, which in
turn abstracts low-level details from theSoccerServer
[An98] environment. Abstractions of this type allow the
keep-away soccer simulator to be incorporated later to
learn strategies for theTeamBots environment and
SoccerServer.
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In SoccerServerand TeamBots, players push the ball to
maintain possession. To kick the ball, the player needs to
be within a certain distance. For keep-away soccer, we
eliminate the need for low-level ball possession skills and
allow offensive agents to have possession of the ball.
Once an agent has possession, it can only lose possession
by kicking the ball, i.e., by evaluating its kick tree.
Because we use vectors that have direction and
magnitude, this implementation would allow for dribbling
actions to be learned, where the agent simply passes the
ball a few units away. This abstraction greatly simplifies
the problem and still allows for a wide range of behaviors
to be learned.

At each simulation step that allows agents to act, if the
agent has possession of the ball – i.e., the agent and ball
occupy the same grid position – the agent’s kick tree is
evaluated. The kick tree evaluates to a vector that gives
the direction and distance to kick the ball. Otherwise, the
agent’s move tree is evaluated. Both trees are composed
of terminals listed in Table 2 and functions listed in Table
3.

For layered learning experiments, the first 5-50 percent of
the maximum number of generations are spent in Layer 1
learning accurate passing without a defender present. To
evaluate accurate passes, we count the number of passes
that are made to a location within 3 grid units of another
agent. The fitness function for thisintermediate objective
is then (200 –passes), where there are 200 time steps per
simulation; a fitness of 0 is best and one of 200 is worst.
The remaining 50-95 percent of the generations are spent
in Layer 2 with a fitness value that is inversely
proportional to the number of turnovers that occur with a
defender present. This is theteam objective. The
defender uses a hand-coded strategy, based upon one of
the standardTeamBots[Ba01] defensive agents, that
always moves towards the ball to cause a turnover.

Each evaluation of an individual in the simulator takes
200 time steps, where the ball can move on each step, the
defender moves on every other time step, and all
offensive agents move together on every fourth time step.
The initial configuration of the simulation places the
defensive agent in the center of a 20-by-20 unit grid. The
field is then partitioned into three sections: the top half
and the bottom left and right quadrants. One offensive
agent is placed randomly in each section, and the ball is
placed a few units from one of the offensive agents,
chosen at random.

Early runs of the system resulted in local optima being
achieved; the most common of these was a control policy
in which all offensive agents crowded the ball to prevent a
defender from stealing it, causing turnover. To eliminate
this “loophole”, the defender, if blocked from the ball, can
move through an offensive agent without the ball by
simply trading places with the opponent if the two are
adjacent on the grid.

5 RESULTS
Each experiment was run 10 times, and averages were
taken across the runs. For all experiments, we achieved
the best convergence behavior with 100 generations, so
this was used as the baseline for SGP, ADFGP, and all
LLGP variants.

Table 4 shows our initial experimental results. For
ADFGP, Good-Average represents the average of the 10
best runs selected from among 20. ADFGP experiments
converged to two clusters of fitnesses – one better than
SGP, the other much worse. When we considered the
individual size of the good cluster, we found that the poor
cluster contains individuals with about half the number of
nodes as individuals in the good cluster. Prefiltering
ADFGP runs based upon individual size may be an
appropriate remedy, but this is beyond the scope of this
paper, as we are focusing on LLGP. We report both
overall and good averages here, however, to show that
LLGP can achieve performance as high as the good
cluster’s.

As shown in Table 4, our first LLGP experiment divided
101 generations into 40 for Layer 1 (successful pass
criterion) and 61 for Layer 2 (minimum turnover
criterion). Copy-Best represents the LLGP-Best seeding
method for Layer 2; Copy-All, the LLGP-All method.
These initial results did not indicate any notable
advantage or disadvantage of LLGP, indicating only that
we can obtain comparable solutions using LLGP-All,
SGP, and ADFGP.

Table 4: Results for experiments with population size =
4000, max generations = 101, averaged over 10 runs.

Lower f (anti-fitness) values are better.

ADFGP LLGP, 40-61SGP

Avg. Good-
Avg.

Copy-
Best

Copy-
All

Best f
gen.
101

11.25 19.67 8.75 23.71 12.67

Mean f
gen.
101

66.89 60.21 64.27 82.03 64.64

Avg.
ind. sz.
gen.
101

228.74 113.25 123.07 161.71 171.40

First
gen. f
≤≤≤≤ 20

33 62 22 101 55

Best f
of run 9.0±

4.98

16.56
±

17.45
6.83 19.29 9.0±

2.73
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Table 5: Results for different Layer 1 durations
(population size = 2000), averaged over 10 runs.

Lower f (anti-fitness) values are better.

Layer 2
Start

Generation

First
Gen.
f ≤≤≤≤ 20

First
Gen.
f ≤≤≤≤ 15

Best f
Gen.
101

Best f
of Run

5 62 79 12 11.75

10 18 30 11.4 9.7

15 24 43 9.63 9.38

20 38 47 9.6 9.6

25 47 80 11.88 11.25

30 51 58 14.1 12.7

35 46 55 7.75 7.25

40 57 82 13.6 13.2

45 67 93 14.11 13.11

50 62 82 11.5 11.1

We hypothesized that we were not yet realizing the full
improvement in learning-speed that could be achieved
using LLGP. To test this hypothesis, we plotted the Layer
2 learning-speed curves [Ka95] shown in Table 5 and
Figure 1 for the following LLGP-All configurations: 5
generations in Layer 1 and 96 in Layer 2, 10 and 91, up to
50 and 51. The 10-91, 15-86, and 20-81 versions of
LLGP-All achieve better convergence than those that start
Layer 2 later, except for 35-66. Even accounting for the
“early start”, we can see that the convergence rate is faster
and the final fitness is better for LLGP when Layer 1 lasts
between 10 and 20 generations. We ran a second series of
Layer 2 learning-speed curves (6 through 15, step 1) that
indicated that the learning rates for 10 through 15 were
not significantly different. We have not yet evaluated the
inherent benefit to generalization quality – i.e., overfitting
control and reusability – of stopping Layer 1 earlier,

though this may be a good question for future
experimentation.

A population size of 2000 is used for the fitness curves, as
the performance for 2000 is similar to that for 4000, as
reported in [Gu00]. Note that if the learning-speed curve
for Layer 1 duration of 0 were plotted in Figure 2 above,
it would be equivalent to that of the SGP, because the
SGP runs for 101 generations with only the team
objective function (Layer 2 fitness).

Table 6: Results for experiments with population size =
4000, max generations = 101, averaged over 10 runs.

Lower f (anti-fitness) values are better.

SGP Good-
ADFGP

LLGP-All,
10-91

Best f
gen. 101 11.25 8.75 9.43

Mean f
gen. 101 66.89 64.27 70.39

Avg.
ind. sz.
gen. 101

228.74 123.07 249.21

1st gen.
f ≤≤≤≤ 20 33 22 26

Best f of
run 9.0± 4.98 6.83 5.78± 2.28

Having found that the 10-91 LLGP exhibited a better
learning speed curve, we repeated the LLGP-All
experiment with population size 4000 and found that it
was able to match the Good-ADFGP performance,
converged at least as quickly as any other GP, and
resulted in the lowest best-of-run fitness values we found
(fewer than 6 turnovers per simulation). This result is
shown in Table 6, with the SGP and Good-ADFGP results
repeated for comparison. We note that the Layer 2
individuals are much larger for LLGP-All-10-91 than for
LLGP-All-40-61. That is, while stopping Layer 1 early
yields a slight improvement in overall fitness and a
significant improvement in learning-speed, it does not
necessarily result in a more streamlined agent code. This
is intuitive because more learning is deferred to Layer 2,
where “passing” behavior is incorporated into the more
sophisticated “keep-away” agents.

6 CONCLUSIONS
We have shown that using layered learning, genetic
programming can evolve intelligent agents for a
cooperative MAS task such as keep-away soccer more
quickly, with better fitness. Additionally, layered
learning GP allows for a natural decomposition of the
MAS learning problem into subproblems, each of which
is more easily solved with GP. The keep-away soccer
problem is a good test bed for abstracting away the
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complexities of simulated soccer and allows for different
GP methods to be evaluated and their relative merits
compared. It is also easily extended to the full game of
robotic soccer, and is highly portable across platforms
because our simulator,TeamBots[Ba01], SoccerServer
[An99], andECJ [Lu00] are all written in Java.

Conceptually, we can liken our success with LLGP to the
success of human soccer teams. Successful teams are
usually made up of players with unique strategies, where
learning took place in a bottom-up fashion and individuals
first learned to play well together in pairs and small
groups, then as a coordinated team. The LLGP-All
experiments simulate this kind of behavior, where we
attempt to minimize the number of generations needed per
layer. Our results indicate that layered learning in GP
yields benefits over both standard GP and over hand-
coded hierarchical approaches that depend on a large
volume of domain knowledge. This is because it is easier
and more natural to use the team fitness function to derive
an intermediate fitness function, evolve primitive MAS
agents, then let the higher-level (Layer 2) GP discover
how to compose and refine primitive MAS behavior into
complex MAS behavior.

We have considered several extensions to this research.
First, developing a full-scale team for theRoboCup
competition using LLGP would be a good way to test its
abilities more thoroughly (however, the focus in this
paper was on evaluating MAS task decomposition and
improvement of learning accuracy and learning speed).
Diversity in populations is also an interesting issue, and
our continuing research in LLGP investigates how and
whether LLGP promotes diversity. A related question is
the degree to which LLGPreusescode versusrefining it
in higher layers. Other interesting modifications include
developing heterogeneous teams, adding additional lower-
and higher-level layers, and hybridizing ADFs and
layered learning GP.
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Abstract 
 
 

The HFC model for parallel evolutionary 
computation is inspired by the stratified 
competition often seen in society and biology.  
Subpopulations are stratified by fitness.  
Individuals move from low-fitness to 
higher-fitness subpopulations if and only if they 
exceed the fitness-based admission threshold of 
the receiving subpopulation, but not of a higher 
one. The HFC model implements several critical 
features of a competent parallel evolutionary 
computation model, simultaneously and 
naturally, allowing rapid exploitation while 
impeding premature convergence. The AHFC 
model is an adaptive version of HFC, extending it 
by allowing the admission thresholds of fitness 
levels to be determined dynamically by the 
evolution process itself. The effectiveness of the 
Adaptive HFC model is compared with the HFC 
model on a genetic programming-based 
evolutionary synthesis example.   

1 INTRODUCTION 
Parallel evolutionary algorithms (PEA’s) have gained 
increasing attention in many large-scale application 
problems including graph-partitioning problems, set 
partitioning problems, and many commercial efforts in 
analog circuit synthesis at Analog Design Automation Co. 
(Liang, 2001), Neolinear Inc (Ochotta, 1996; Krasnicki, 
1999) and Genetic Programming Inc. (Andre, 1996). 
Parallel evolutionary computation models can be largely 
categorized into three classes (Cantu-Paz, 1998; 
Nowostawski, 1999): (1) global single- population 
master-slave models (2) single-population fine grained 
models, and (3) multi-population coarse-grained (or 
island) models. As cluster computing and networked PC's 

have become available in many companies, 
multi-population parallel models (sometimes combined 
with master-slave models) have become increasingly 
popular. Parallel evolutionary algorithms have major 
advantages over single-population models, including 
parallel evaluation and rapid exploration with decreased 
risk of premature convergence. However, current parallel 
EA's are still not competent vis-a-vis scalability, either 
with respect to increasing degree of difficulty of the 
problem or to speedup with an increasing number of 
processors. It is clear that a competent parallel 
evolutionary algorithm should have the capability to: 

(1) quickly exploit high-fitness individuals as they 
are discovered. One of these mechanisms is 
Elitism, which is effective in preserving good 
individuals, as has been demonstrated in several 
of the most successful evolutionary 
multi-objective optimization algorithms, such as 
NSGAII and SPEAII (Zitzler, 2000). 

(2) keep multiple high-fitness individuals 
simultaneously to facilitate exploration in 
multiple search areas or directions 

(3) maintain diversity of the population to avoid 
premature convergence 

(4) be scalable with respect to increasing number of 
processors 

(5) adapt its parameters for autonomous 
evolutionary computation. 

Multi-population PEA’s can be classified into 
homogeneous models and heterogeneous models. Sprave 
(1999) proposed a unified model of population structures 
in PEAs, but his model doesn’t concern with the 
heterogeneity of the sub-populations. In homogeneous 
parallel EA models, each subpopulation is regarded as 
playing the same role in evolution. Homogeneous PEA’s 
often lack efficient mechanisms to exploit the newly 
discovered high-fitness individuals. Although they may 
keep several high fitness individuals in different demes, 
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they suffer from the fact that high-fitness individuals may 
easily dominate all subpopulations by means of the 
exchange (“migration”) process. Heterogeneous parallel 
EA’s are typically more resistant to this phenomenon. For 
example, the injection island GA (iiGA) (Lin, 1994; Eby, 
1999) uses a hierarchical structure, typically stratifying 
subpopulations according to the level of resolution of the 
representation, allowing control of the tradeoff between 
low-resolution exploration and high-resolution 
exploitation.  The iiGA has also been used with different 
fitness functions in various subpopulations, even if they 
used the same problem representation.   Aickelin (1999) 
also proposed such a PEA, which he called a pyramidal 
EA, in which the hierarchical structure of the 
subpopulations is defined by a hierarchy of fitness 
functions.  

In a recent paper (Hu and Goodman, 2002), we proposed 
the Hierarchical Fair Competition (HFC) model for 
parallel evolutionary computation. The HFC model is 
inspired by the observation of a strategy employed in 
some societal and biological systems to maintain different 
high-fitness individuals in a whole population. HFC turns 
out to have the features of a competent PEA cited above 
except the adaptability of (6). In this paper, we introduce 
an adaptive version of the HFC model, in which the 
admission thresholds are automatically determined and 
adjusted in the evolutionary process. In Section 2, the 
metaphor and the HFC model are described relative to the 
above features. In Section 3, an adaptive mechanism for 
determining the parameters of the HFC model is 
presented, along with the algorithm. We apply the AHFC 
model to a genetic programming problem and compare it 
with the static HFC model in Section 4. The conclusions 
and discussion are provided in Section 5.  

2 THE HIERARCHICAL FAIR 
COMPETION MODEL (HFC) FOR 
PARALLEL EVOLUTION 

2.1 MOTIVATION AND BACKGROUND OF 
HFC 

The HFC model originates from an effort to combat the 
premature convergence phenomenon in traditional genetic 
algorithms and genetic programming. In a traditional GA, 
as the evolutionary process goes on, the average fitness of 
the population gets higher and higher, so that new 
individuals tend to survive only if they have similarly 
high fitness.  New “explorer” individuals in fairly 
different regions of the search space usually have low 
fitness, until some local exploration and exploitation of 
their beneficial characteristics has occurred.  So a 
standard EA tends to concentrate more and more of its 
search effort near one or more early-discovered peaks, 
and to get “stuck” near these attractors (or local optima). 
It is clear that in a standard EA, there exists a severely 
unfair competition. That is, selection pressure makes 
high-fitness individuals reproduce quickly and thus 

supplant other individuals with lower fitness, some of 
which may lie in the vicinity of the global optimum, when 
if their neighborhood were explored more thoroughly, 
much higher-fitness individuals would be found. This fact 
holds true even when we find search points near a global 
optimum, as long as they are not close enough to have 
high fitness relative to those near other, earlier-explored 
local optima. This “unfair” competition contributes a lot 
to the slow search progress of many EA’s when 
confronted with difficult, high- dimensionality, 
multi-modal problems. To address this unfair competition 
problem, we need allow young but promising individuals 
(i.e., those in relatively newly-found regions, which may 
ultimately give rise to high-fitness offspring, but which 
are currently not of high fitness) to “grow up” and, at an 
appropriate time, join in the cruel competition process and 
be kept for further exploitation or be killed (as appropriate) 
when they are demonstrated with some confidence to be 
bad. At the same time, we hope to maintain the 
already-discovered high-fitness individuals and select 
from them even more promising individuals for 
exploitation without killing younger individuals. 
Following the tradition of getting inspiration from biology, 
we find that in some societal and biological systems, there 
exists an efficient mechanism that can maintain and foster 
potentially-high-fitness individuals (or, more accurately, 
potential progenitors of high-fitness individuals) 
efficiently. This is the hierarchical fair competition (HFC) 
principle as discussed below. 

2.2 THE METAPHOR OF HFC: 
HIERARCHICAL FAIR COMPETITION IN 
SOCIETAL AND BIOLOGICAL SYSTEMS 

Competition is widespread in societal and biological 
systems, but diversity remains large.  After close 
examination, we find there is a fundamental principle 
underlying many types of competition in both societal and 
biological systems: the Fair Competition Principle. 

2.2.1 The Fair Competition Principle in Societal 
Systems 

In human society, competitions are often organized into a 
hierarchy of levels. None of them will allow unfair 
competition – for example, a young child will not 
normally compete with college students in a math 
competition. We use the educational system to illustrate 
this principle in more detail. 

In the education system of China and many other 
developing countries, primary school students compete to 
get admission to middle schools and middle school 
students compete for spots in high schools. High school 
students compete to go to college and college students 
compete to go to graduate school (Fig. 1) (in many 
Western countries, this competition starts at a later level, 
but is eventually present, nonetheless). In this 
hierarchically structured competition, at each level, only 
individuals of roughly equivalent ability will participate 
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in any competition; i.e., in such societal systems, only fair 
competition is allowed. This hierarchical competition 
system is an efficient mechanism to protect young, 
potentially promising individuals from unfair competition, 
by allowing them to survive, learn, and grow before 
joining more intense levels of competition. Individuals 
that “lose” in these fair competitions were selected against 
while competing fairly only against their peers.  Students 
compete fairly against others in their grade level because 
they are usually of similar absolute fitness levels, having 
been exposed to similar amounts of education and 
experience. 

An interesting phenomenon sometimes found in societal 
competitions is the “child prodigy.” A ten-year-old child 
may have some extraordinary academic ability. These 
prodigies may skip across several educational levels and 
begin to take college classes at a young age.  An 
individual with sufficient ability (fitness) is allowed to 
join any level of competition.  This also suggests that in 
subpopulation migration, we should migrate individuals 
according to their fitness levels, rather than according to 
“time in grade.” 

With such a fair competition mechanism that exports 
high-fitness individuals to higher-level competitions, 
societal systems reduce the prevalence of unfair 
competition and the unhealthy dominance or disruption 
that might otherwise be caused by “early-achieving” 
individuals. 

2.2.2 The Fair Competition Principle in Biological 
Systems 

It is somewhat surprising that in “cruel” biological/ 
ecological systems, the fair competition principle also 
holds in many cases. For example, there are mechanisms 
that reduce unmatched or unfair competition between 
young animals and mature ones. Among mammals, young 
individuals often compete with their siblings under the 
supervision of parents, but not directly with other mature 
individuals, since their parents protect them against other 

adults. When the young grow up enough, they leave their 
parents and join the competition with other mature 
individuals. Evolution has found the mechanisms of 
parental care and sibling competition to be useful in 
protecting the young and allowing them to grow up and 
develop their full potentials. Fair competition seems to be 
beneficial to the evolution of many species. 

2.3 THE HFC MODEL 

Inspired by the fair competition principle and the 
hierarchical organization of competition within 
subpopulations in societal systems, we propose the 
Hierarchical Fair Competition parallel model (HFC), for 
genetic algorithms, genetic programming, and other forms 
of evolutionary computation.  
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In this model (Fig 3), multiple subpopulations are 
organized in a hierarchy, in which each subpopulation can 
only accommodate individuals within a specified range of 
fitness. The entire range of possible fitnesses is spanned 
by the union of the subpopulations’ ranges. Conceptually, 
each subpopulation has an admission buffer that has an 
admission threshold determined either initially (fixed) or 
adaptively. The admission buffer is used to collect 
qualified candidates, synchronously or asynchronously, 
from other subpopulations. Each subpopulation also has 
an export threshold (fitness level), defined by the 
admission threshold of the next higher-level 
subpopulation. Only individuals whose fitnesses are 
between the subpopulation’s admission threshold and 
export threshold are allowed to stay in that subpopulation. 
Otherwise, they are exported to the appropriate 
higher-level subpopulation. Exchange of individuals is 
allowed only in one direction, from lower-fitness 
subpopulations to higher-fitness subpopulations, but 
migration is not confined to only the immediately higher 
level.  

Each subpopulation can have the same or different sizes, 
operators, and other parameters. However, considering 
that there are often more low-fitness peaks than 
high-fitness peaks, we tend to allocate larger population 
sizes or more subpopulations to lower fitness levels, to 
provide extensive exploration; and we tend to use higher 
selection pressures in higher-fitness-level subpopulations 
to ensure efficient exploitation.  As it is often easier to 
make a big fitness jump in a lower level subpopulation, 
we often end up using larger fitness ranges for low-level 
subpopulations, and smaller ranges for high-level 
subpopulations (Fig. 2), but, of course, that depends on 
the properties of the fitness landscape being explored. The 
critical point is that the whole range of possible fitnesses 
must be spanned by the union of the ranges of all levels of 
subpopulations.  Of course, the highest-level 
subpopulation(s) need no export threshold (unbounded 
above) and the lowest-level subpopulation(s) need no 
admission threshold (unbounded below). 

Exchange of individuals can be conducted synchronously 
after a certain interval, or asynchronously, as in many 
parallel models. At each moment of exchange, each 
individual in each subpopulation is examined, and if it is 
outside the fitness range for its subpopulation, it is 
exported to the admission buffer of a subpopulation with 
an appropriate fitness range. When a new candidate is 
inserted into an admission buffer, it can be inserted into a 
random position or inserted by sorting (or a null buffer 
may be used, inserting migrants directly into the receiving 
subpopulation, using some replacement rule). After export, 
each subpopulation imports the appropriate number of 
qualified candidates from its admission buffer into its 
pool. Subpopulations (especially at the base level) fill any 
spaces still open after emptying their admission buffers by 
generating new individuals at random to fill the spaces 
left by the exported individuals. 

The number of levels in the hierarchy or number of 
subpopulations (if each level has only one subpopulation) 
can be determined initially or adaptively. In the static 
HFC model, we must manually decide into how many 
levels the fitness range will be divided, the fitness 
thresholds, and all other GA parameters. In a dynamic 
HFC model, we can dynamically change the number of 
levels, number of subpopulations, size of each 
subpopulation, and admission and export fitness 
thresholds. As will be seen below, a benefit of the 
adaptive HFC model (an example of a dynamic HFC) is 
that it can adaptively allocate search effort according to 
the characteristics of the search space of the problem to be 
solved, thereby searching more efficiently (initial research 
on various methods for adaptation of thresholds is in 
preparation for reporting elsewhere).  However, even 
“coarse” setting of the parameters in a static HFC model 
has yielded major improvement in search efficiency over 
current EA’s on example problems.  

Another useful extension to HFC used here is to introduce 
one or more sliding subpopulations, with dynamic 
admission thresholds that are continually reset to the 
admission threshold of the level in which the current best 
individual has been found.  Thus, these subpopulations 
provide additional search in the vicinity of the advancing 
frontier in the hierarchy. 

2.3.1 HFC as a competent parallel model for 
parallel evolutionary computation 

(1) While low-fitness individuals can persist long enough 
to allow thorough exploration, as soon as they 
produce high-fitness offspring, the offspring can 
advance to higher-fitness levels immediately for 
further exploitation, to compete and be recombined 
with other high-fitness individuals. 

(2) The HFC model maintains a large number of 
high-fitness individuals in high-fitness-level 
subpopulations without threatening lower-fitness (but 
perhaps promising) individuals. Thus possibly 
promising new search locales can persist long enough 
to be appropriately exploited. 

(3) HFC provides another mechanism for maintaining 
diversity. First, the diversity of the population is 
ensured by the stratification in the fitness space. 
Second, continuous introduction of random 
individuals into the lowest-level subpopulations and 
the promotion of their high-fitness offspring to 
upper-level subpopulations can be regarded as the 
introduction of entropy and randomness into the 
overall evolutionary system. Actually, looking from 
low-fitness levels to higher-fitness levels, we observe 
increasing order in the population. The HFC 
evolution is thus a self-organizing process in which 
the highest order is achieved at the top fitness level. 
This mechanism reduces the chance of HFC 
becoming “stuck” at local optima and helps it explore 
new search areas. HFC thus implements implicitly a 
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multi-start or re-initialization mechanism on a 
continual basis.  

(4) The HFC model quickly captures superior offspring 
and moves them to a place where they are free to 
compete with, and be recombined with, each other.  
This produces an effect similar to the elitism often 
used in multi-objective evolutionary computation, 
such as NSGAII or SPEAII (Zitzler et al., 2000), in 
which superior individuals are also kept separately. 
At that level, we can control the intensity of selection 
to determine the tradeoff between exploitation of 
those high-fitness individuals and exploration in their 
neighborhoods.   

(5) HFC has a good scalability to more processing hosts. 
As more processors are available, they can be 
distributed to different fitness levels – either to 
low-level subpopulations for more extensive 
exploration, or to the higher-level ones for intensive 
exploitation of high-fitness individuals.  

One of the major difficulties in the HFC evolutionary 
algorithm is the determination of the admission thresholds 
for a given problem. As the fitness landscape is often 
unknown before evolutionary search, it is hard to define 
these admission thresholds initially. Considering that 
admission thresholds in HFC are only used to segregate 
the whole population to avoid unfair competition, the 
behavior of the search is generally not extremely sensitive 
to the values of these admission thresholds, so that it is 
not necessary to set them to exactly optimal values. The 
only requirement for these thresholds is that the union of 
the fitness level ranges (which is determined by these 
admission thresholds) span the entire range of possible 
fitnesses. Based on this analysis, we propose an automatic 
admission thresholds determination mechanism for HFC 
model. 

3 THE ADAPTIVE HFC MODEL 
In the static HFC model, we need to determine the 
number of subpopulations, the number of fitness levels, 
the relationship of subpopulations to fitness levels and the 
admission thresholds of each fitness level. All the 
admission thresholds are determined based on some initial 
exploration of the fitness landscape of the problem, such 
as the range of the fitness or distribution of 
early-discovered peaks. The threshold adaptation 
mechanism proposed here enables us to be relieved from 
this prerequisite expertise in the problem space. All we 
must decide is the number of admission levels ( lN ). 

Since in HFC, random individuals are continuously 
inserted into subpopulations of the base fitness level, the 
export threshold of the base fitness level can be set as the 
average fitness of the whole population after several 
(nCalibGen) generations. In AHFC, this is called the 
calibration stage, which determines the level of the 
fitness value of frequently encountered (“normal”) 
individuals with respect to random individuals. So the 
base level is used to export normal individuals to higher 

levels for further exploitation. At the end of the 
calibration process, the standard deviation fσ and the 
max fitness maxf of individuals at the highest level, the 
average fitness fµ of individuals at the base level are 
calculated. Then the fitness range of each level can be 
calculated by the following formula: 

Admission threshold of base level= -∞       (1) 

Admission threshold of the first level = fµ    (2) 

Admission threshold of the highest fitness level =  

maxf fσ−                       (3) 

Admission thresholds of other fitness levels iL , are 

determined by: 

 ( )/( 2) 1,..., 1maxf L f f N i Ni f l lσµ µ+ × − − − = −        (4) 

Table 1: Adaptive Heterogeneous HFC Algorithm for 
Parallel EA’s 

1. Initialization 
Determine EAP : parameters for standard
multi-population EA. (We assume here using one set
of parameters for all subpopulations) 

    lN :Number of levels of the hierarchy 
nCalibGen: calibration generations 
nUpdateGen: admission threshold update 

interval 
nExch: generations between admission process 

exchanges 
     gen = 1: current generation 
2. Do 

if gen < nCalibGen (in calibration stage)  
      run EA without exchange 
 else if gen = nCalibGen (calibration stage ends) 

determine the admission thresholds for each 
level by formulas (1) - (4) 

     else if gen% nExch = 0 
Do for each subpopulation from lowest level to
highest level { 

Examine fitness of each individual and
export to corresponding subpopulation at
higher level for which fitness range
accommodates this exported individual
(replacing worst individual in target
subpopulation)} 

end do 
else if gen % nUpdateGen =0 
update admission thresholds of all but the base
level by (3), (4) 
gen ++ 

until the stopping criterion is satisfied. 
return the highest-fitness individual(s) from the
highest-level subpopulation 

End 
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However, it is clear that as the evolutionary search goes 
on, higher-fitness individuals are continuously discovered 
that ruin the segregation by the above admission 
thresholds determined at the initial calibration stage. So a 
dynamic admission threshold updating mechanism is 
proposed here. After each nUpdateGen generations, the 
maximal fitness, maxf , and the fitness standard deviation 
of the top level sub-populations, fσ , are recomputed to 
determine the admission threshold of all the fitness levels 
except the base level and the first level, by (3) - (4).  

To enable efficient search, the mapping relationship of 
sub-populations to all levels also needs to be adapted 
dynamically. It is obvious that at initial stage, as all 
individuals are randomly generated, these individuals 
usually have low fitness. So most of the subpopulations 
should belong to the base level. As higher-level 
individuals discovered, more subpopulations should be 
allocated to higher levels to exploit high-fitness 
individuals. The following scheme is used in this paper: 
firstly, all subpopulations are allocated to base level. After 
the calibration stage, subpopulations are then evenly 
allocated to each level. Extra subpopulations can be 
allocated to higher levels (if aggressive exploitation is 
desired) or to lower level (if intensive exploration is 
desired).  

This AHFC algorithm works like a string. At the initial 
stage, it is quite compressed, but gradually, the string 
stretches to accommodate individuals with a larger range 
of fitness. The whole algorithm of AHFC is given in Table 
1. For simplicity, we give the pseudo code only for the 
adaptive HFC model with synchronous exchanges (no 
buffers).  

4 EXPERIMENTS 
The adaptive HFC model for Genetic Programming 
(HFC-GP) has been applied to a real-world analog circuit 
synthesis problem that was first pursued using GP with a 
static HFC (Hu, 2002). In this problem, an analog circuit 
is represented by a bond graph model (Seo, 2001; Fan, 
2001) and is composed of inductors (I), resistors (R), 
capacitors (C), transformers (TF), gyrators (GY), and 
Sources of Effort (SE). Our task is to synthesize a circuit, 
including its topology and sizing of components, to 
achieve specified behavior. The objective is to evolve an 
analog circuit with response properties characterized by a 
pre-specified set of eigenvalues. By increasing the 
number of eigenvalues specified, we can define a series of 
synthesis problems of increasing difficulty, in which 
premature convergence problems become more and more 
significant when traditional GP methods are used.  

Circuit synthesis by GP is a well-studied problem that 
generally demands large computational power to achieve 
good results. Since both topology and the parameters of a 
circuit affect its performance, it is easy to get stuck in the 
evolution process.  

4.1.1 Experiments on an Analog Circuit Synthesis 
Problem 

Four circuits with increasing difficulty are to be 
synthesized, with eigenvalue sets as specified in Table 2. 
Circuits were evolved with single-population GP, 
multiple-population GP, HFC-GP, and AHFC-GP. The GP 
parameter for the single-population GP is shown in cell 
(1,2) of Table 3. The GP parameters for the 
multi-population GP were the same as for the 
single-population GP, except that the total population is 
divided into subpopulations with sizes shown in cell (2, 2) 
of Table 3. A one-way ring migration topology was used.  

The parameters for the HFC-GP were the same as for the 
multi-population GP, except that the ring migration was 

replaced by the HFC scheme.  The fitness admission 
thresholds were set based on our prior experience with 
such eigenvalue problems. In this problem, we defined a 
fitness admission threshold for each subpopulation (one 
subpopulation per level, in this case) as shown in cell (2, 
3) of Table 3.  Subpopulation 15 was used as a “sliding” 
subpopulation to aggressively explore the fitness frontier. 

Table 3:  Parameter Settings for GP 

 
Parameters of 

Single Population 
GP 

Popsize: 2000 
init.method = half_and_half   
init.depth = 3-6    
max_nodes = 800 
max_depth = 13 
crossover rate = 0.9  
mutation rate = 0.1 
max_generation = 1000 

 
Additional 

Parameters of  
Multi-Population 

GP 

Number of subpopulations  = 15; 
Size of subpop 2 to 14 = 100  
size of subpop 1 = 300 
size of subpop 15 = 400 
migration interval = 10 generations 
migration strategy: migrate (copy) 10  
  best individuals to the next    
  subpopulation in the ring to replace its 
  10 worst individuals 

 
Additional 
Parameters
of HFC-GP 

admission_fitnesses of:  
  subpop 1 =  -100000.0 
  subpop 2 to 14: 0.65, 0.68, 0.72,  
     0.75, 0.78, 0.80, 0.83,  
     0.85, 0.87, 0.9, 0.92, 0.95  
  subpop 15 = varying 

Additional 
Parameters of 

AHFC-GP 

nUpdateGen= nCalibGen = 10 
nExch = 10 
Nl =8 

Table 2: Target Eigenvalues 
Problem 1:  6-eigenvalue problem 

2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0i i i+ + +
− − −− − −  

Problem 2:  8-eigenvalue problem 
2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0 , 3 .4 12 .0i i i i+ + + +
− − − −− − − −  

Problem 3:  10-eigenvalue problem 
2 3.3 , 7.5 4.5 , 3.5 12.0 , 3.4 12.0 , 10.0 8.0i i i i i+ + + + +

− − − − −
− − − − −
Problem 4:  12-eigenvalue problem 

2 3 .3 , 7 .5 4 .5 , 3 .5 12 .0 ,i i i+ + +
− − −− − −  

3 .4 12 .0 , 10 .0 8 .0 , 1 .5 3 .0i i i+ + +
− − −− − −  
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The parameters of AHFC-GP were nearly identical to 
those of the HFC, except that we don’t need to determine 
the admission thresholds of each level. 

The performances of the four approaches were assessed 
on four problems with increasing difficulty.  Each 
experiment was run ten times, with the average of the 
results reported in Fig.4, where the four GP methods are 
indicated by 
  OnePop: Single-population GP 
  MulPop: multi-population GP (ring topology) 
  HFC-GP: HFC model for GP 
  AHFC-GP: Adaptive HFC model for GP 

From Figure 4, it is impressive to see that in all four 
problems, both AHFC and HFC performed dramatically 
better than the other algorithms vis-à-vis best of run, and 
the improvement was more dramatic on the more difficult 

problems. The superior performance at the initial 
generations may have resulted from the rapid exploitation 
of superior individuals, in a single subpopulation, in 
comparison to the ring parallel GA. Yet convergence in 
the HFC and AHFC was much slower than in the single- 
and multi-population GP runs. In fact, we observe 
relatively steady improvement during the runs for this set 
of problems. For the easier problems, the (dynamic) 
AHFC actually out-performed the (static) HFC slightly, in 
spite of the rich experience on this class of problems that 
was used for setting the HFC thresholds.  The fact that 
the HFC ultimately surpassed the AHFC on the two 
harder problems indicates that there is room for 
improvement of the AHFC scheme used here.  However, 
the fact that it is competitive with human-determined 
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a) 6-eigenvalue problem 
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c) 10-eigenvalue problem 
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static values based on prior experience shows that it is a 
step in a beneficial direction. 

5 CONCLUSIONS AND FUTURE WORK 
Based on our analysis of the role of admission thresholds 
used in the HFC model and our experiments on a series of 
difficult, highly epistatic real-world problems, it has been 
demonstrated that the adaptive HFC model can work 
nearly as well as the original HFC model, and even better 
in some cases, without any prerequisite knowledge of the 
fitness landscape of the problem. The dynamic allocation 
of the subpopulations to fitness levels also improves the 
search efficiency. These adaptation mechanisms make our 
algorithm to be easily plugged into new problems without 
much parameter tuning. Our experiments demonstrated 
the effectiveness of the HFC and AHFC models in 
improving significantly both the search speed and the 
quality of the best solutions found compared with 
standard EAs.  

This paper represents a first step toward autonomous 
parallel evolutionary computation based on the HFC 
model. The second step is the automation of the adaptive 
distribution of the computing resource among levels. We 
expect that the number of subpopulations, the number of 
fitness levels, the distribution of subpopulations to each 
level, along with the admission thresholds, can all be 
determined adaptively, in which case we would have an 
autonomous parallel evolutionary computation model in 
which the communication topology and migration scheme 
are all decided by the evolutionary process itself, 
according to the characteristics of the problem at hand.  

In this paper, we implemented the synchronous version of 
the AHFC model and simulated parallel genetic 
programming on a single PC. More consideration about 
the communication cost and asynchronous adaptation 
mechanism of the AHFC model in the case of a large 
population is needed. The scalability of the AHFC model 
with respect to more processors also needs to be proved 
with experiments on real parallel cluster computing 
facilities, which is on the top of our task list.  
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Structure Fitness Sharing (SFS) for Evolutionary Design by Genetic 

Programming 

 
 

Abstract 
 

Balanced structure and parameter search is 
critical to evolutionary design with genetic 
programming (GP). Structure Fitness Sharing 
(SFS), based on a structure labeling technique, is 
proposed to maintain the structural diversity of a 
population and combat premature convergence 
of structures. SFS achieves balanced structure 
and parameter search by applying fitness sharing 
to each unique structure in a population, to 
prevent takeover by the best structure and 
thereby maintain the diversity of both structures 
and parameters simultaneously. SFS does not 
require definition of a distance metric among 
structures, and is thus more universal and 
efficient than other fitness sharing methods for 
GP. The effectiveness of SFS is demonstrated on 
a real-world bond-graph-based analog circuit 
synthesis problem.  

1  INTRODUCTION  
Genetic programming has been applied successfully to a 
rich variety of problems such as machine code evolution 
(Nordin, 1997), quantum algorithm design (Spector, 
1999), cellular automaton rule discovery, and 
soccer-playing program evolution (Andre 1999). GP has 
been particularly effectively used as an efficient 
Darwinian Invention Machine that enabled Koza et al. to 
achieve human-competitive results in analog circuit 
design and in the transmembrane segment identification 
problem (Koza 1999). Indeed, one of GP’s most 
significant features is the ability to simultaneously evolve 
both a structure and its parameters, opening up promising 
applications in many real-world engineering design 
problems and in neural network design. In all of these 
problems, the objective is to search for an open-ended 
structure, together with its related parameters, to achieve 
several desired goals. Genetic programming – especially 
evolutionary design by genetic programming – is 
recognized as making a high demand on computational 

resources (Koza, 1999). To some extent, this demand can 
be traced to the premature convergence problem, 
especially convergence of the structures in a GP 
population; it can be ameliorated using diversity- 
maintenance techniques for the population. Based on an 
analysis of the weak causality of GP, the new concept of 
Structure Fitness Sharing (SFS), based on a structure 
labeling technique, is proposed to achieve balanced 
structure and parameter search by maintaining the 
diversity of both structures and parameters at all times.  
This method does not require definition of a distance 
metric, and is thus very efficient compared to other fitness 
sharing methods. Its effectiveness is demonstrated on a 
real-world bond-graph-based analog circuit synthesis 
problem using GP. 

2   THE DIVERSITY PROBLEM IN 
EVOLUTIONARY DESIGN BY GP 

2.1  CATEGORIES OF EVOLUTIONARY DESIGN 
PROBLEMS 

Most evolutionary design problems can be classified into 
one of three types: 

TYPE I: Fixed structure with fixed number of 
parameters. 

These problems are essentially parameter 
optimization problems – the task is to optimize the 
parameters of a given structure. Genetic algorithms, 
simulated annealing, evolutionary programming, 
evolution strategies, and even gradient-based 
optimization techniques are often used here.  

TYPE II: Variable structure with no parameters. 

This type includes problems such as algorithm 
design, program induction and logic design, in which 
only structure search is needed. These problems are 
well suited for GP, which intrinsically manipulates 
the program structure, often represented as a tree. Of 
course, some of these problems can be solved with 
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genetic algorithms, simulated annealing, and other 
techniques, by using a somewhat indirect 
representation of the structure.  

TYPE III: Variable structure with variable number of 
parameters (of course, there can also be variable 
structure with a fixed number of parameters, but that 
is not the typical case – number of parameters 
usually varies with the size of the structure). 

Many of the most interesting evolutionary design 
problems belong to this third category, in which a 
structure is sought within a topologically open-ended 
space, but the fitness of a structure can often only be 
evaluated after parameters are assigned to key variables 
associated with the structures evolved.  Since the structure 
is varied during the search process, the number of 
parameters and their semantics change frequently. Such 
problems include analog circuit design (Koza, 1999), 
mechanical system design (Fonseca, 1993), and neural 
network design (Oliker, 1992). Although a GA with a 
variable-length representation can be used here, GP, with 
its outstanding capability to search simultaneously for a 
good structure and for appropriate parameters, 
distinguishes itself as the most important tool for this kind 
of open-ended design problem. 

2.2  PREMATURE CONVERGENCE AND 
DIVERSITY IN THREE TYPES OF 
EVOLUTONARY DESIGN PROBLEMS 

TYPE I problems are often described as parameter 
optimization problems, readily addressable by GA.  
Premature convergence in GA has been well studied.  
Common diversity maintenance techniques include 
crowding (DeJong, 1975), deterministic crowding 
(Mahfoud, 1992), and fitness sharing (Goldberg, 1989).  
The fitness derating method (Beasley, 1993), a 
multi-objective method, employs fitness sharing in a 
popular and effective way.  

The premature convergence problem when GP is applied 
to TYPE II problems has also been well studied. Most of 
the resulting methods are derived from GA, but with some 
specific consideration of the GP context. In 
multi-objective genetic programming, Rodriguez 
(Rodriguez-Vazquez, 1997) uses the MOGA approach 
with fitness sharing being performed in the fitness space, 
and extends it to genetic programming. Though easier to 
implement, it remains an open question whether diversity 
of fitness values is generally a true indicator of the 
diversity of a population – a measure which should 
actually be based on the parameter space.  DeJong et al. 
(DeJong, 2001) use the multi-objective method to 
explicitly promote diversity by adding a diversity 
objective. In their method, a distance measure defined as 
follows is used in the diversity objective. The distance 
between two corresponding nodes is zero if they are 
identical and one if they are not. The distance between two 
trees is the sum of the distances of the corresponding 

nodes – i.e., distances between nodes that overlap when 
the two trees are overlaid, starting from the root. The 
distance between two trees is normalized by dividing by 
the size of the smaller of the two trees. The diversity 
objective is defined as the average squared distance to 
other members of the population. An improved version of 
the above distance metric between two trees is proposed in 
Ekart and Nemeth (2000) and used to do fitness sharing in 
GP. Their method includes the following three steps: 

1) The two GP trees to be compared are brought to 
the same tree-structure (only the contents of the 
nodes remain different). 

2) The distance between each pair of symbols 
situated at the same position in the two trees is 
computed. 

3) The distances computed in the previous step are 
combined in a weighted sum to form the 
distance of the two trees. 

The major improvement of this method is that it 
differentiates the types of nodes when calculating the 
distance between two nodes. It first divides the GP 
functions and terminals into several subsets. For nodes 
with types belonging to the same subset, it calculates the 
relative distance. For nodes with types belonging to 
different subsets, it uses a defined function to make sure 
that the distance between nodes from different subsets is 
larger than that between nodes of the same subset. It also 
considers the fact that a difference at some node closer to 
the root could be more significant than a difference at 
some node farther from the root, using a multiplier K to 
distinguish them.  Edit distance and phenotypic distance 
for fitness sharing for GP are also tested in their 
experiment. The former gets slightly better accuracy but 
with relatively high computational cost. The latter doesn’t 
provide much improvement over the original GP without 
fitness sharing.  

Implicit fitness sharing (McKay, 2000) has also been 
applied to GP. Instead of calculating the distance between 
the structures of GP trees, it is a kind of phenotypic 
(behavior-based) fitness sharing method. The fitness is 
“shared” based on the number of other individuals who 
have similar behaviors, capabilities or functions. Implicit 
fitness sharing provides selection pressure for each 
individual to make different predictions from those made 
by other individuals.  

Population diversity of TYPE III problems in GP has not 
been investigated thoroughly. These problems are 
characterized by the need for simultaneous optimization 
of topology and parameters. In a GP population, structure 
diversity is needed to enable efficient topology 
exploration, which is the main objective, in most case, for 
discovery of innovative designs. At the same time, the 
goodness (or fitness) of a structure can only be evaluated 
after sufficient parameter exploration within the same 
structure. Thus, the parameter diversity of each structure 
also needs to be maintained. As a result, in the context of 
variable structure and parameter design by GP, the 
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population diversity has some significant differences from 
that of a GA, in the following respects: 

• Number of peaks 

When applying fitness sharing in GA, two 
assumptions are made. One is that the number of 
peaks is known or can be estimated. The second 
is that the peaks are almost evenly distributed. In 
many problems of GA, a relatively limited 
number of peaks is expected to enable efficient 
use of fitness sharing. However, in TYPE III 
problems, each structure may have a huge 
number of peaks with respect to its parameter 
space, while in the structure space, each structure 
is a distinct peak, since the structure space is not 
a continuous space, but rather a highly nonlinear 
discrete space.  

• Continuity of search space 

In GA, many problems can be considered as 
defined in an approximately continuous space, 
although sometimes certain aspects have 
distinctly discrete behavior.  However, in TYPE 
III problems, GP deals with a highly discrete 
structure space that also has a huge continuous 
space (of parameter values), since for each 
structure, the search for appropriate parameters 
can be regarded as an instance of GA search.   

• Constraints 

In GA, only parameter constraints exist. 
However, in TYPE III problems, GP must deal 
with both structure constraints and parameter 
constraints. 

The demand for structure diversity as well as parameter 
diversity makes the existing fitness sharing methods 
inefficient for Type III problems. For fitness-space-based 
fitness sharing (Rodriguez-Vazquez, 1997) and the 
implicit fitness sharing (McKay, 2000) methods, 
significant parameter diversity is lost since they do not 
promote coexistence of  individuals with the same 
structure but with different parameters in order to enable 
efficient parameter search. Fitness sharing with the 
distance metric, as in (Ekart, 2000; KeJong, 2001), is also 
inefficient in this case.  First, the computational cost is still 
demanding, since in TYPE III problems, a complex 
structure and its parameters often require a big tree – 
perhaps 1000 - 2000 nodes in most of our experiments – 
especially when parameters are normally represented by a 
numeric subtree such as Koza uses (Koza, 1999). Second, 
but more importantly, the underlying assumption of the 
above distance metrics is that structural dissimilarity 
measured between two GP trees meaningfully reflects the 
dissimilarity in function between the two structures. 
However, as the structure space represented by a GP tree 
is a highly non-linear space, in most cases, a change of a 
single (non-parameter) node changes the behavior of the 
GP tree dramatically. This phenomenon can be traced to 
the weak causality of GP (Rosca, 1995), which means that 

small alterations in the underlying structure of a GP tree 
cause big changes in the behavior of the GP tree. So 
measuring a sort of "Hamming" distance between the 
structures of two GP trees to predict the difference of the 
behavior/function is not well founded, and thus inefficient. 
This makes a useful definition of a sharing radius hard to 
determine. It seems that distance metrics in the structure 
space and the parameter space and the association of a set 
of parameters with the structure to which they apply must 
be faithfully captured in order to most effectively maintain 
both structure diversity and parameter diversity and 
thereby to achieve efficient search.  Therefore, given the 
inherent difficulty of structure/function mapping, perhaps 
it is counterproductive to use any structural similarity 
measure beyond the most basic and completely faithful 
one – the identity mapping:  two structures are either 
identical, or they are not.  That is the structural distance 
measure used here.  While it is possible to define a broader 
relationship that still captures identity of function (for 
example, if swapping of the order of two children of a 
node has no effect on the function computed), such 
definitions depend on the semantics of the functions, and 
were not implemented here. 

3 BALANCED STRUCTURE AND 
PARAMETER SEARCH IN 
EVOLUTIONARY DESIGN BY GP 

In design problems involving both variable structure and 
variable parameters, search must be balanced between the 
structure and parameters. On one hand, each structure 
needs sufficient exploration of its parameters to develop 
its potential to some extent, which means that a reasonable 
number of individuals of the same structure must probably 
be kept in the population. On the other hand, no structure 
should dominate the population, or it would prevent 
sufficient future exploration of the structure space.  

Premature convergence of structures in evolutionary 
design by GP can be caused by neglecting the different 
roles of structure and parameter search. In standard GP, 
nodes at which to perform crossover and mutation are 
selected randomly from the entire set of nodes, treating 
those specifying structure modifications identically with 
those specifying numerical modifications (provided that 
numerical subtrees are used to define the parameters of 
components, as is often done). This means that a new 
circuit structure is often discarded by the selection process 
if its fitness is low with its initial set of parameters. The 
result is that often, structures of moderate quality with 
slightly better parameters proliferate and dominate the 
population, while inherently better structures with bad 
parameters are discarded.  This is called the premature 
structural convergence problem. This phenomenon arises 
from the fact that ’’promising’’ structures are often 
discarded just because their current parameters are not 
adjusted well enough to demonstrate their potential. 
Ideally, a structure should be discarded only when it is 
demonstrated to be bad after a sufficient effort to adjust its 
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parameters. In addition, since there are often many more 
numeric nodes than structure modifying nodes, premature 
structural convergence is accentuated, since there is a 
lower probability of choosing a structure modifying node 
that will generate a new structure than of choosing a node 
that changes only parameters. 

In order to address this problem, structure and parameter 
search must be controlled explicitly. In our work, a 
probabilistic method is first devised to decide whether GP 
does a structure modification (crossover or mutation on a 
structure modifying node) or does parameter modification 
(crossover or mutation on a parameter modifying node). 
Since structure changes have a more fundamental effect 
than the parameter changes on the performance of the 
system, we introduce a bias toward more parameter 
modifications than structure modifications by controlling 
the probability of selecting these types of nodes for 
crossover and mutation sites. The following example 
probabilities are defined to facilitate keeping the structure 
and its function stable and to allow parameters to be 
adjusted well enough to demonstrate the potential of a 
structure. 

We also use explicit control of the node selection process 
to achieve balanced parameter evolution for all 
parameters in a structure. During the parameter 
modification stage, we first establish a list of all variables 
whose values need to be established during evolution, 
then we randomly select a variable as the current variable 
to be changed. We then select a node in the numeric 
subtree of this variable and do a crossover or mutation 
operation. In this way, each variable has an equal 
opportunity to be changed during evolution. This 
improvement speeds the evolution of balanced numeric 
subtrees. All variables tend to have numeric subtrees with 
similar depths.  

Even with the methods above, premature structural 
convergence still often occurs as structures with 
well-fitted parameters quickly dominate the whole 
population. The Structure Fitness Sharing (SFS) method is 
proposed to control the reproduction of high-fitness 
structures. Our assumptions are that fitness sharing can 
profitably be based on the number of individuals with the 
same structure, and that distance between the structures of 
two GP trees with distinct structures is not generally an 
adequate predictor of the differences between their 
behaviors. Thus, any “counting of positions where the 
trees differ” distance metric is not well founded.  Instead, 
a simple labeling technique is used to distinguish 
structures.  

4 STRUCTURE FITNESSS SHARING 
(SFS)  

Structure Fitness Sharing is the application of fitness 
sharing to structures in GP. In contrast to the GA fitness 
sharing using a distance measure to identify peaks, in SFS, 
fitness sharing is based on the tree structures, treating each 
tree structure in GP as a peak in the space of parameters 
and structures.   

In SFS, each structure is uniquely labeled, whenever it is 
first created.  So long as GP operations on an individual do 
not change its structure, but only its parameters, the 
structure label of this individual is not changed.  
Parameter crossover and mutation, or replication of the 
individual, simply increase the number of individuals with 
this structure (label) in the population.  If structure 
modifications are conducted on an individual that change 
the structure – for example, we change a Rep_C (a GP 
function node replacing a resistor or inductor of the circuit 
with a capacitor) to a Rep_I (a GP function replacing a 
resistor or capacitor of the circuit with an inductor) node – 
then a new structure label (structureID) is created and is 
attached to this new individual. Our assumption is that the 
possibility that any particular structure-altering operation 
produces exactly the same structure possessed by other 
individuals in the current population is relatively low, so it 
is not necessary (or worthwhile) to check a new structure 
against all other existing structures to see if it is identical 
with one of them (and so could use its label), although a 
hashing technique might make this relatively easy to do. 
Furthermore, even if some newly created individual 
shares the same structure with another individual but is 
labeled with a different structure label, the algorithm is not 
strongly affected, so long as it occurs infrequently. 

In standard GP, individuals with certain structures will 
prosper while others will disappear because of their low 
fitnesses. If this process is allowed to continue without 
control, some good structures (usually one) tend to 
dominate the population and premature convergence 
occurs. To maintain diversity of structures, fitness sharing 
is applied to individuals of each structure. SFS decreases 
the fitness of the individual as follows:  SFS penalizes 
only those structures having too many individuals, 
according to the following fitness adjustment rule used for 
the experiments in this paper: 

sN : Number of structures to be searched simultaneously 

espN : Expected number of search points (individuals) 
for each structure in the whole population  

: Number of individuals with structure is (of 
which individual iind is one)  
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With this method, each structure has a chance to do 
parameter search. Premature convergence of structures is 
limited, and we can still devote more effort to high-fitness 
structure search. 

4.1  LABELING TECHNIQUE IN SFS 

A labeling technique is used in SFS to distinguish 
different structures efficiently. A similar technique has 
been used by Spears (1994), in which tag bits are used to 
identify different subpopulations. Spears’s result suggests 
that in crowding and fitness sharing in GA, we only need 
to decide whether or not two individuals have the same 
label. The added precision of the distance metric for 
maintaining the diverse state of a subpopulation is often 
unnecessary. In SFS, the label is used only to decide 
whether or not two individuals have the same label (i.e., 
structure). We use simple integer numbers as labels rather 
than more complicated tag bits. Ryan (1994, 1995) also 
uses similar labelling ideas to decide which race an 
individual belongs to in his racial GA (RGA). 

4.2  HASH TABLE TECHNIQUE IN SFS 

In order to keep track of all individuals with each 
particular label, SFS uses a hash table is used -- this 
speeds up the access to the structure by each individual 
when we do crossover, mutation, and reproduction. Each 
time we create a new structure, we create an entry in the 
hashtable with the structureID (next integer) as the key. 
The size of the hash table is controlled to accommodate at 
most 500 structures in our experiments. Whenever the 
number of structure entries in the hashtable exceeds 500, 
those structure entries with no individuals in the current 
population or with a low fitness of its best individuals and 
with old ages (generations since their labels were created) 
are removed from the hashtable. The corresponding 
individuals of these structures are removed from the 
current population at the same time. 

4.3  THE STRUCTURE FITNESS SHARING 
ALGORITHM IN GP 

The following is the outline of the algorithm of SFS as 
applied to GP: 

Step 1: Initialize the population with randomly 
generated individuals. Initialize the structure hash 
table. 

Step 2: Assign each individual a unique label. Here a 
label is just an unassigned integer number 
incremented by one at each assignment. 

Step 3: Loop over generations 

3.1 Select the parents for a genetic operation 
according to their standard fitness 

3.2: If current operation is an operation that 
changes the structure from that of the parent(s), 
(including crossover and mutation at structure 
operator nodes of GP trees) 

Create a new label for each new structure 
created and add the new structure item to 
the structure hash table.  

3.3: If the current operation is a parameter 
modification (mutating the parameter nodes or 
crossing over at a parameter node) or only 
replication of an existing individual, do not 
create a new label. New individuals inherit the 
labels from their parents. Update information 
about the structure items in the hash table, 
including the best fitness of this structure, 
number of individuals, age, etc. 

3.4: If the maximum number of structures in the 
hash table is reached, first purge those structures 
that have no individuals in the current 
population. If there are still too many structures, 
then delete those structures whose best 
individuals have lower fitness and high age (>10 
generation, in our case) and delete their 
individuals in the population and replace them 
with new individuals formed by crossover or 
mutation until the maximum number of 
structures in hash table is kept. 

3.5: Adjust the fitness of each individual 
according to equation (1). 

Step 4:  If stopping criterion is satisfied, stop; else go 
to step 3. 

5  EXPERIMENTS  

5.1  PROBLEM DEFINITION 

GP with the SFS technique has been applied to an analog 
circuit synthesis problem that was previously approached 
using GP without SFS (Rosenberg, 2001). In this problem, 
an analog circuit is represented by a bond graph model 
(Fan, 2001) and is composed of inductors (I), resistors (R), 
capacitors (C), transformers (TF), gyrators (GY), and 
sources of effort (SE). The developmental evolution 
method similar to (Koza, 1999) is used to evolve both the 
structure and parameters of a bond graph representation of 
a circuit that achieves the user-specified behavior. With 
this method, a set of structure modifying operators (e.g. 
Rep_C, Rep_I) are provided to operate on the embryo 
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bond graph. A set of numeric operators (such as +, -, *, /) 
are provided to modify the parameters of the structure.  

In this paper, the design objective is to evolve an analog 
circuit with response properties characterized by a 
pre-specified set of eigenvalues of the system equation. 
By increasing the number of eigenvalues specified, we 
can define a series of synthesis problems of increasing 
difficulty, in which premature convergence problems 
become more and more significant when traditional GP 
methods are used. This eigenvalue assignment problem 
has received a great deal of attention in control system 
design.  Control over eigenvalues in designing systems, in 
order to avoid instability and to provide particular 
response characteristics, is often an important and 
practical problem.  

Circuit synthesis by GP is a well-studied problem that 
generally demands large computational power to achieve 
good results.  Since both the topology and the parameters 
of a circuit affect its performance, it is easy to get stuck in 
the evolution process.  

5.2  EXPERIMENTAL SETUP  

In the example that follows, a set of target eigenvalues 
was given and a bond graph model with those eigenvalues 
was generated. Table 1 shows the three sets of 6, 8, and 10 
target eigenvalues used as targets for example genetic 
programming runs:  

We applied single population GP with and without SFS 
and multi-population GP with and without SFS to all three 
problem instances. Each experiment was repeated 10 
times with different random seeds.  

The embryo model used is shown in Figure 1. It represents 
an embryo bond graph with three initial modifiable sites 
(represented as dotted boxes). In each case, the fixed 
components of the embryo are sufficient to allow 
definition of the system input and output, yielding a 
system for which the eigenvalues can be evaluated, 
including appropriate impedances. The construction steps 
specified in the GP tree are executed beginning from this 
embryo. The numbers in parentheses represent the 
parameter values of the elements. 

Three circuits of increasing complexity are to be 
synthesized, with eigenvalue sets as specified above. The 
GP parameter tableau for the single population method is 
shown in Table 2 below. 

These problems exhibit a very high degree of epistasis, as 
a change in the placement of any pair of eigenvalues has a 

strong effect on the location of the remaining eigenvalues.  
Eigenvalue placement is very different from “one-max” or 
additively decomposable optimization problems, and 
these problems become increasingly difficult with the 
problem order.  The performance of each of the three GP 
approaches is reported in Figure 2, in which the four GP 
methods are indicated by 

OneGP:  single population GP, no SFS 
MulGP:  multi-population GP, no SFS 
ONE.SFS: single population GP with SFS  
MULPOP.SFS: multi-population GP with SFS  

To observe the effect of structure fitness sharing, we 
monitor the number of distinct structures in the 
experiments with and without SFS techniques. From Fig 2, 
one can see that Structure Fitness Sharing can 
significantly improve the performance for single 
population GP and also does better in multi-population GP, 

Table 2. Parameter Settings for GP

 

Parameters of 
Single Population 

GP 

Popsize: 1000 
init.method = half_and_half   
init.depth = 3-6    
max_nodes = 1000 
max_depth = 15 
crossover rate = 0.9  
mutation rate = 0.1 
max_generation = 1000 

Additional 
Parameters of   

Multi-Population 
GP 

Number of subpopulations  = 10; 
Size of subpop  = 100  
migration interval = 10 generations 
migration strategy:  ring topology, 
migrate 10 best individuals to the 
next subpopulation in the ring to 
replace its 10 worst individuals 

SFS 
Parameters 

sN : 50 

espN : 20 = popsize/ sN  

Table 1.  Target Eigenvalues 

Problem 1:  6-eigenvalue problem 

0.1 5.0 , 1.0 2.0 , 2.0 1.0j j j− ± − ± − ±  

Problem 2:  8-eigenvalue problem 

0.1 5.0 , 1.0 2.0 , 2.0 1.0 , 3.0 0.7j j j j− ± − ± − ± − ±  

Problem 3:  10-eigenvalue problem 

0.1 5.0 , 1.0 2.0 , 2.0 1.0 , 3.0 0.7j j j j− ± − ± − ± − ±  

4.0 0.4 j− ±  

Figure 1.  The Embryo Bond Graph Model 
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though the difference is not as significant. The reason may 
be that multi-population runs already provide an inherent 
diversity maintenance mechanism. We also find that SFS 
can help to provide probabilistic control of structure and 
parameter modifications to maintain a stable number of 
search structures in the whole population, as illustrated in 
Fig 3.  

6  CONCLUSIONS 

  In this paper, Structure Fitness Sharing (SFS) is proposed 
to achieve balanced structure and parameter search in 
evolutionary design by Genetic Programming. SFS can 
effectively prevent the dominance of any specific 
structure and when combined with probabilistic control of 
structure and parameter modification, SFS can maintain a 
stable number of structures for simultaneous structure and 
parameter search. The labeling technique in SFS 
eliminates the necessity of computing the distance 
between two individuals, which saves computing effort 
that we believe is often largely wasted when attempting to 
measure GP structural similarity. The user parameters of 
the standard fitness sharing method are also eliminated 
(e.g. the sharing radius). All that must be done is to define 
the fitness adjustment scheme:  how to penalize the fitness 
of a structure when the number of individuals with that 
structure label grows large enough to threaten the 
diversity of the population. The hash table technique 
allows SFS to quickly update the structure information 
about the current population during evolution. More 
complicated balanced structure parameter search methods 
can be derived using the concept of structure diversity. For 
example, the authors intend to incorporate the age concept 
and the elitism method of multi-objective evolutionary 
computation into SFS. We also intend to explore use of a 
separate GA for explicit exploration of the parameter 
spaces of individual structures, with the expectation of a 
significant impact on the selection, crossover and 
mutation dynamics of the overarching simultaneous 
evolutionary search of structure and parameters.  
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Abstract

This paper describes an evolutionary method
for identifying a causal model from the ob-
served time series data. We use a system
of ordinary differential equations (ODEs) as
the causal model. This approach is well-
known to be useful for the practical applica-
tion, e.g., bioinformatics, chemical reaction
models, controlling theory etc. To explore
the search space more effectively in the course
of evolution, the right-hand sides of ODEs
are inferred by Genetic Programming (GP)
and the least mean square (LMS) method is
used along with the ordinary GP. We apply
our method to several target tasks and em-
pirically show how successfully GP infers the
systems of ODEs.

1 Introduction

Ordinary differential equations (ODEs) are one of the
easiest media for modeling complex systems, where
basic differential relationships are known between the
system components. Solving a set of differential equa-
tions to produce their equivalent functions is relatively
easy so as to obtain useful time-series data. On the
other hand, the inverse problem, i.e., the inference of
the system of ODE from the observed time-series data,
is not necessarily easy, although very important for
many fields. This is because there is no knowing the
appropriate form, i.e., the order and terms of ODEs,
beforehand.

In this paper, we deal with an arbitrary form in the
right-hand side of the system of ODEs to allow the
flexibility of the model. More precisely, we consider
the following general form:

dXi

dt
= fi(X1,X2, . . . ,Xn) (i = 1, 2, . . . , n), (1)

where Xi is the state variable and n is the number of
the observable components.

For the sake of identifying the system, we use Genetic
Programming (GP) to evolve the ODEs from the ob-
served time series. Although GP is effective in finding
the suitable structure, it is sometimes difficult to opti-
mize the parameters, such as constants or coefficients
of the polynomials. This is because the ordinary GP
searches for them simply by combining randomly gen-
erated constants. To avoid this difficulty, we introduce
the least mean square (LMS) method.

There have been several studies for identifying differ-
ential equation models by means of EAs (Evolution-
ary Algorithms). For instance, GP was used to find a
function in a symbolic form, which satisfies the differ-
ential equation and initial conditions [Koza92]. Cao
and his colleagues used hybrid evolutionary model-
ing algorithms [Cao00]. The main idea was to em-
bed GA in GP, where GP was employed to discover
and optimize the structure of a model, while GA
was used to optimize its parameters, i.e., coefficients.
[Babovic00] also applied GP to approximate several
ODEs from the domain of ecological modeling, e.g.,
Lotka-Volterra and logistic equations. They showed
that the GP-based approach introduced numerous
advantages over the most available modeling meth-
ods. In our previous researches [Sakamoto and Iba00]
and [Sakamoto and Iba01], we proposed another inte-
grated scheme, in which the least mean square (LMS)
method is used along with GP. In this scheme, some
individuals were created by the LMS method at some
intervals of generations and they replaced the worst
individuals in the population.

In this paper, we extend our previous approach so
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as to achieve the inference of the ODEs more effec-
tively. More precisely, we empirically show the follow-
ing points:

• The success in the acquisition of ODEs, which are
close to the observed time series.

• The inference of the exact equation form, i.e., the
exact causal relationship.

• The effectiveness of the LMS method.
• The superiority of our approach over the previous
methods.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the details of our method, i.e., how
GP and LMS methods are integrated to work in the
course of evolution. Three examples are used to exam-
ine the effectiveness of our method. Their experimen-
tal results are shown in Section 3. Then, we discuss
the results in Section 4 and give some conclusion in
Section 5.

2 Integration of GP and LMS

We use GP to identify a causal model in the form of
the system of ODEs. Though GP is capable of finding
a desirable structure effectively, it cannot always be
effective in finding the proper coefficients because GP
uses the combination of randomly selected ones. We
have chosen the least mean square method (LMS) to
tackle this defect of the ordinary GP. For this purpose,
coefficients are not included in the terminal set for a
GP individual tree. The coefficients of each term of
a GP tree are calculated by the LMS method and a
table of them composes a GP individual along with a
tree.

2.1 Inference of the form of equations using
GP

We use GP to identify the form of the system of dif-
ferential equations. For this purpose, we encode right-
hand sides of ODEs into a GP individual. Each in-
dividual contains a set of n trees, i.e., an n-tuple of
trees(f1, . . . , fn). For example, consider the two trees
in Fig.1. This shows the following system of ODEs:

{
Ẋ1 = aX1X

2
2 + b

Ẋ2 = cX1X2 + dX2,
(2)

where the coefficients a, b, c, d, are derived by LMS de-
scribed later. Note that the constant term b is added
to the right hand side of the first equation, because of

the constant terminal, i.e., 1. Thus, each equation uses
a distinct program. A GP individual maintains mul-
tiple branches, each of which serves as the right-hand
side of a differential equation.

Crossover operations are restricted to the correspon-
dent branch pairs. Actually, each tree, i.e., each right
hand side of the ODE sytem, is evolved independently
in parallel.

Figure 1: Example of a GP individual.

2.2 Optimization of models using LMS
method

Coefficients of a GP individual is derived by the LMS
method described below. Assume that we want to
acquire the approximate expression in the following
form:

y(x1 , . . . , xL) =
M∑

k=1

akFk(x1 , . . . , xL), (3)

where Fk(x1, . . . , xL) is the basis function, x1, . . . , xL

are the independent variables, y(x1, . . . , xL) is the de-
pendent variable, and M is the number of the basis
functions. Let a be the vector of coefficients, i.e.,
(a1, . . . , aM ). Then, our purpose is to minimize χ2

described in (4) to acquire a.

χ2 =
N∑

i=1

(
y(i)−

M∑
k=1

akFk(x1(i), . . . , xL(i))
)2

, (4)

where x1(i), . . . , xL(i) and y(i) are data given for the
LMS method and N is the number of data points. Let
b be the vector of (y(1), . . . , y(N)) andA be theN×M
matrix described below:



F1(x1(1), . . . , xL(1)) . . . FM (x1(1), . . . , xL(1))
F1(x1(2), . . . , xL(2)) . . . FM (x1(2), . . . , xL(2))

...
. . .

...
F1(x1(N), . . . , xL(N)) . . . FM (x1(N), . . . , xL(N))
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Then, (5) should be satisfied to minimize χ2.

(AT · A) · a = AT · b (5)

Thus, a can be acquired by solving this equation.

When applying to the time-series problem, y(i) for the
jth equation of the system of differential equations is
calculated according to the following discrete differ-
ence of the time-series xj(t):

y(i) = Ẋj |t=ti =
xj(ti +∆t)− xj(ti −∆t)

2∆t
, (6)

where ti is the time of the ith selected data point.
For example, consider the first ODE (Ẋ1) of the sys-
tem (2), in which the number of the components is
two (L = n = 2). In this case, we are using two
basis functions, i.e., M = 2 and (F1, F2)=(X1X

2
2 , 1).

Then, the ith row of the matrix A is determined as
(x1(ti)x2(ti)2,1).

The coefficients in the approximate expressions of the
right-hand sides of the equations can be derived by
using A and b(y(1), . . . , y(N)) acquired above.

2.3 Fitness definition

The fitness of each individual is defined as the sum of
the squared error and the penalty for the degree of the
equations:

fitness =
n∑

i=1

T−1∑
k=0

(x′
i(t0+k∆t)−xi(t0+k∆t))2+a·m,

(7)




t0 : the starting time
∆t : the stepsize
n : the number of the observable components
T : the number of the data points




where xi(t0+k∆t) is the given target time series (k =
0, 1, · · · , T −1). x′

i(t0+k∆t) is the time series acquired
by calculating the system of ODEs represented by a
GP individual. All these time series are calculated by
using the forth-order Runge-Kutta method. m is the
number of terms and a is the weight constant. In other
words, the individual which has a smaller number of
terms and is closer to the target time series has the
higher possibility to be selected and inherited to the
next generation. This fitness derivation is based on the
MDL (Minimum Description Length) criterion, which
has been often used in GP (see [Iba94], [Zhang95] and

Exp.1 Exp.2 Exp.3 Exp.4

Population size 1000 1000 1000 3000
Generation 100 100 100 100
Crossover rate 0.80 0.80 0.80 0.80
Mutation rate 0.10 0.10 0.10 0.10
# time series 1 1 3 3
Stepsize 0.01 0.01 0.01
# data points 100 40 30

Table 1: GP and LMS parameters for experiments.

[Nikolaev and Iba01] for examples). When calculating
the time series, some individuals may go overflow. In
this case, the individual’s fitness value gets so large
that it will be weeded out from the population.

We use several sets of time series as the training data
for GP. This is to acquire the equations as close to the
target as possible. Each data set was generated from
the same target by using different initial values.

3 Experimental results

We have prepared three different tasks to test the ef-
fectiveness of our method. Experimental parameters
are summarized in Table 1. Function and terminal sets
F and T are as follows:

F = {+,−, ∗}
T = {X1, . . . ,Xn, 1}

3.1 Example 1 : Chemical reaction model

The reaction between formaldehyde (X1) and car-
bamide in the aqueous solution gives methylol urea
(X2) which continues to react with carbamide and
form methylene urea (X3) (see [Cao00] for details).
The reaction equations are described as below:

HCHO + (NH2)2CO
k1−→ H2N · CO · NH · CH2OH

(8)

H2N · CO · NH · CH2OH + (NH2)2CO
k1−→ (NH2CONH)2CH2 (9)

As a kind of typical consecutive reaction, the concen-
trations of the three components in the system satisfy
the following system:




Ẋ1 = −1.4000X1

Ẋ2 = 1.4000X1 − 4.2000X2

Ẋ3 = 4.2000X2

(10)
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Experimental parameters for this task are shown in
Table 1. By applying our method, we have acquired
the system of eq.(11), which gave the sums of square
errors as (X1,X2,X3) = (0.000, 2.082 ∗ 10−11, 1.883 ∗
10−11). The time series generated by this system is
shown in Fig.2 along with that of the target.




Ẋ1 = −1.4000X1

Ẋ2 = 1.4004X1 − 4.2006X2

Ẋ3 = 4.1998X2

(11)
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Figure 2: Time series of the acquired model for chem-
ical reaction.

The best kinetic model acquired in [Cao00] was as fol-
lows:




Ẋ1 = −1.400035X1

Ẋ2 = 1.355543(X1 + t)− 4.482911X2

Ẋ3 = 4.069420X2 + t − 0.002812
(12)

where the sums of square errors were (X1,X2,X3) =
(1.600∗10−11, 3.240∗10−8, 3.025∗10−9). Note that the
terminal set used in [Cao00] included the time variable
t.

3.2 Example 2 : Three-species
Lotka-Volterra model

The Lotka-Volterra model describes interactions be-
tween two or more species, i.e., predators and preys,
in an ecosystem [Takeuchi96]. The following DOEs
represent a three-species Lotka-Volterra model:




Ẋ1 = (1− X1 −X2 − 10X3)X1

Ẋ2 = (0.992− 1.5X1 − X2 − X3)X2

Ẋ3 = (−1.2 + 5X1 + 0.5X2)X3

(13)

This system models the introduction of the third
species, i.e., a predator, into a two-species system of
competition, i.e., preys. More precisely, X1 and X2

are the number of preys competing with each other,
whereas X3 represents the number of predators.

The GP and LMS parameters we used are shown in Ta-
ble 1. As a result of experiments, the following DOEs
were acquired in a typical run:




Ẋ1 = −10.001X1X3 − 1.000X1X2 − 0.999X2
1 + 1.000X1

Ẋ2 = 0.992X2 − 1.500X1X2 − 0.996X2X3 − 1.000X2
2

Ẋ3 = 4.998X1X3 + 0.500X2X3 − 1.200X3

(14)

Note that the two systems of DOEs, i.e., eqs.(13) and
eqs.(14), are almost identical except for slightly dif-
ferent coefficients. In all runs, we have succeeded in
acquiring almost the same DOEs. The MES (Mean
Square Error) of the above DOEs are very small
(4.78 ∗ 10−11).

We have conducted the further experiments with this
Lotka-Volterra model to compare the performances of
the following methods:

• Standard GP
• Old version of GP with LMS
• Proposed method of GP with LMS

As mentioned in Section 1, in our previous papers
[Sakamoto and Iba01] and [Sakamoto and Iba00], we
used the least mean square (LMS) method along with
GP in a different way, i.e., some individuals were cre-
ated by the LMS method at some intervals of gener-
ations and they replaced the worst individuals in the
population. We compared the performance of the old
version to see the effectiveness of the approach pro-
posed in this paper.

The experimental results are given in Table 2. The ta-
ble shows the MSE data and hit percentages, i.e., the
ratios of successes in acquiring the target DOEs, aver-
aged over ten runs. As clearly shown in the table, GP
with LMS performed better than GP alone (standard
GP), in view of MSE values. Moreover, the superior-
ity of the proposed approach over the old version has
been confirmed by the hit percentage.

3.3 Example 3 : E-cell simulation

We have conducted the experiment on the data of a
metabolic network that consists of three substances.
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MSE Hit(%)
Standard GP 4.47 ∗ 10−5 0%
Old version 2.85 ∗ 10−7 0%
Proposed method 4.78 ∗ 10−11 100%

Table 2: Comparision of Three methods.

This target network is a part of the biological phos-
pholipid pathway. The data were derived from the E-
cell simulation model. E-cell Simulation Environment
(E-CELL SE) is a software package for cellular and
biochemical modeling and simulation (see [Tomita99]
for details of bioinformatics). This network can be
approximated as (15).




Ẋ1 = −k1X1X3

Ẋ2 = k1X1X3 − k2X2

Ẋ3 = −k1X1X3 + k2X2

(15)

Note that the parameters k1, k2, and k3 are unknown
for the simulation experiment.

Three sets of time series generated by E-cell with a
different initial value were used for the training of GP.
Experimental parameters are shown in Table 1. By
applying our method, we have acquired the following
equations in a typical run:




Ẋ1 = −10.3176X1X3

Ẋ2 = 9.7149X1X3 − 17.5084X2

Ẋ3 = −9.7018X1X3 + 17.4766X2

(16)

When we compare the two systems, i.e., eq.(16) and
eq.(15), we can confirm the success in acquiring the
almost identical model to the target ODEs. The time
series generated by eq.(16) is shown in Fig.3 along with
that of the target. The average MSE (Mean Square
Error) of 10 runs was 2.545 ∗ 10−3.

We have also conducted a comparative experiment
without the LMS method to confirm its effectiveness
(in this case, coefficients are added to the terminal
set). The average MSE of 10 runs is 5.328 ∗ 10−3,
whereas that of the experiment with the LMS method
is 2.545 ∗10−3. Besides, the correct form of ODEs was
not always acquired without the LMS method. For
example, in no runs, the correct ODE for X3 was ac-
quired without the LMS method.

3.4 Example 4 : S-system model

S-system is a type of power-law formalism and has
been proposed for the causality model. The concrete
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Figure 3: Time series of the acquired model for E-cell
simulation.

form of S-system is given as follows:

dXi

dt
= αi

n∏
j=1

X
gij

j − βi

n∏
j=1

X
hij

j (i = 1, 2, . . . , n),

where Xi is a state variable. The first term repre-
sents all influences that increase Xi, whereas the sec-
ond term represents all the influences that decrease
Xi [Savageau76]. S-system is commonly used in many
fields and its parameters were optimized by using GA
[Tominaga00].

We tested on the gene regulatory network which con-
sists of five nodes and had been generated from the
S-system. This causality model can be approximated
as follows (see [Tominaga00] for details):




Ẋ1 = 15.0X3X
−0.1
5 − 10.0X2.0

1

Ẋ2 = 10.0X2.0
1 − 10.0X2.0

2

Ẋ3 = 10.0X−0.1
2 − 10.0X−0.1

2 X2.0
3

Ẋ4 = 8.0X2.0
1 X−1.0

5 − 10.0X2.0
4

Ẋ5 = 10.0X2.0
4 − 10.0X2.0

5

(17)

Three sets of time series with a different initial value
were used for the training of GP. Experimental pa-
rameters are shown in Table 1. To cope with the real-
valued power of the component variables, we used the
following terminal set:

T = {X1,X
−1
1 ,X0.1

1 ,X−0.1
1 ,X2,X

−1
2 ,X0.1

2 ,X−0.1
2 ,

· · · ,X5,X
−1
5 ,X0.1

5 ,X−0.1
5 } (18)

By applying our method, we have acquired the follow-
ing equations in a typical run:
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Figure 4: Acquired and target time series data of S-system.




Ẋ1 = 14.926X3X
−0.1
5 − 9.941X2.0

1

Ẋ2 = 9.950X2.0
1 − 9.938X2.0

2

Ẋ3 = 10.010X−0.1
2 − 10.005X−0.1

2 X2.0
3

Ẋ4 = 7.880X2.0
1 X−1.0

5 − 9.826X2.0
4

Ẋ5 = 9.935X2.0
4 − 9.919X2.0

5

(19)

Note that two systems, i.e., eq.(19) and eq.(17), are
almost identical. The acquired and the given target
time series are shown in Fig.4. As can be seen, the
acquired time series is quite close to the target one.

For the above task, the average MSE (Mean Square
Error) of 10 runs was 4.532∗10−6. On the other hand,
that of the experiment without the LMS method was
6.145 ∗ 10−4. The equations of the correct forms were
acquired in 92% of the runs with LMS, whereas in no
runs the correct form of equations was acquired with-
out the LMS method. Fig.5 shows the fitness transi-
tions for both methods in typical cases. Thus, we can
confirm that the search became more effective by using
GP along with LMS method.
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Figure 5: Typical case of the evolution for S-sytem.

4 Discussion

Although the above section shows the effectiveness of
our approach in acquiring the exact form which is very
close to the target observed data, there is another
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factor to be considered, i.e., the robustness. To test
the robustness of our method to the real noisy world,
we conducted the E-cell experiment (i.e., Exp.2) with
noise-added data sets. 5% and 10% random noises
were added to the target time series. The acquired
time series are plotted in Fig.6 with the target data.
The MSE values and the success ratios averaged over
15 runs are shown in Table 3. The table compares
these values by our approach and the standard GP,
in which the right hand sides of ODEs are evolved in
a similar way to the symbolic regression (see [Koza92]
for details). We can observe that the proposed method
worked effectively to acquire the better individual with
noisy environments than the standard GP.
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Figure 6: Acquired time series of noisy data.

As can be seen in Section3.1, the proposed approach
is superior to the traditional method [Cao00]. Re-
member that the coefficients of ODEs were derived
by means of GA in Cao’s scheme, whereas we used
LMS for this purpose. Therefore, the superiority of
our approach can also be confirmed when we consider
the difference of computational burden of these tech-

niques.

As with many other proposed models, the solution
which fits the given time series quite well is not nec-
essarily determined uniquely. In other words, there
may exist more than one solution which behave consis-
tently with the target. Therefore, even if one system
of ODEs is acquired as a solution, we cannot disre-
gard other candidates. Our aim is to obtain the candi-
dates scattered in the huge search space and to propose
to users the possible causal relationship among the
observable components. Therefore, as future works,
we will concentrate on the construction of the inter-
active system, which proposes the possible solutions
and tells users what kinds of data are needed to de-
termine the relationship among the components (see
[Mimura and Iba02] for details).

5 Conclusion

We have proposed the inference method of the system
of ODEs from the observed time series by using GP
along with the LMS method. We showed how success-
fully our method can infer the causal model by several
experiments. More precisely, we succeeded in acquir-
ing the system of ODEs which is very close to the
observed time series and inferring the exact equation
form. The effectiveness of the LMS method and the
superiority of our approach over the previous method
were confirmed by comparative experiments.

As a future research, we will apply our approach to
some real-world tasks. For this purpose, we are work-
ing on the development of the interactive inference sys-
tem, in which users will be able to pick up the cor-
rect equations or discard the meaningless equations
from the suggested ones. We are trying to solve some
of the real biological problems by using this system
[Mimura and Iba02].
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ABSTENTION REDUCES ERRORS DECISION ABSTAINING 
N-VERSION GENETIC PROGRAMMING 

 
 Abstract 

 

Optimal fault masking N-Version Genetic 
Programming (NVGP) is a technique for building 
fault tolerant software via ensemble of 
automatically generated modules in such a way as 
to maximize their collective fault masking ability. 
Decision Abstaining N-Version Genetic 
Programming is NVGP that abstains from 
decision-making, when there is no decisive vote 
among the modules to make a decision. A special 
course of action may be taken for an abstained 
instance. We found that decision abstention 
contributed to error reduction in our experimental 
Escherichia coli DNA promoter sequence 
classification problem. Though decision 
abstention may reduce errors, high abstention rate 
makes the system of little use. This paper 
investigates the trade-off between abstention rate 
and error reduction. 

1 INTRODUCTION 

This paper investigates the effect of an abstention threshold 
on the trade-off between abstention rate and error 
reduction, using an N-Version Genetic Programming 
ensemble classifier [1].  

An ensemble binary classifier makes a yes/no decision 
based on votes from the participating ensemble member 
classifiers. A decision abstention occurs, when there is no 
decisive vote among the ensemble modules to make 
decision. An unanimous vote is the most decisive (highest 
ensemble confidence), while a tie vote is the least decisive 
(lowest ensemble confidence). The abstention threshold is 
set somewhere between these two extremes. If the vote 
count of either “yes” or “no” does not reach to this 
threshold, the ensemble abstains from decision-making. 
The ensemble, thus, produces three outputs: yes, no, and 
don’t know. A special course of action may be taken for an 
abstained instance (such as classification by human 
experts) [2]. Abstention reduces the number of errors, 

potentially avoiding overfitting [2]. However, if the 
ensemble classifier abstains too often, it is of little use. Our 
experimental test problem is Escherichia coli DNA 
promoter sequence classification. This problem has been 
explored with artificial neural networks [3][4][5] and 
genetic programming [6]. 

1.1  BRIEF INTRODUCTION OF N-VERSION 
GENETIC PROGRAMMING (NVGP) 

N-Version Genetic Programming (NVGP), which provides 
an optimal fault masking ensemble of automatically 
generated modules, is a new technique for building fault 
tolerant software that significantly reduces errors when 
applied to an E. coli promoter sequence classification 
problem [1]. Genetic programming is used to provide a 
large pool of candidate modules with sufficient diversity to 
allow us to select an ensemble whose faults are nearly 
uncorrelated. We find ensembles with a high degree of 
fault masking by randomly sampling from this large pool 
of modules. The ensembles that produce the expected error 
rate are retained. The expected failure rate f for n 
independent components, each of which fails with 
probability p, where the composite system requires m 
component faults in order to fail (initially derived for n-
modular redundant hardware systems [7]) is  

For an N-version classifier system, such as ours, the i-th 
individual fault rate pi is the ratio of misclassified examples 
to the total number of training instances. In this case, f is 
the failure rate of an ideal ensemble. If the fault rate is the 
same for every pi, f is an area under a binomial probability 
density function as shown in the above formula. The failure 
rate of an ensemble is close to the theoretically optimal rate 
f precisely when component failures are not correlated. 
This is our criterion for selecting the qualified ensembles. 
Explicit quantification of the module diversity with the 
theoretical failure probability is a distinct feature of NVGP, 
guaranteeing phenotypic diversity and the optimal 
ensemble. 
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N-version programming (NVP) was an early approach to 
building fault tolerant software that adapted proven 
hardware approaches to fault tolerance [8]. A fundamental 
assumption of the NVP approach was that independent 
programming efforts would reduce the probability that 
similar errors will occur in two or more versions [9]. But 
this assumption was questioned, because experiments 
showed that modules developed for NVP tended to fail 
under similar circumstances. For example, Knight and 
Leveson rejected the hypothesis of the assumed 
independence of faults by independently developed 
programs [10]. However, this conclusion does not 
invalidate NVP in general. Hatton showed that his 3-
version NVP system increased the reliability by a factor of 
45. Though this is far less than the theoretical improvement 
of a factor of 833.6, it is still a significant improvement in 
system reliability [11].  

The next section reviews previous work on abstention and 
ensemble methods. 

2 PREVIOUS WORK  
Different ensemble construction methods have been studied 
in an effort to enhance accuracy. This section reviews 
abstention, averaging, median selection, boosting, and 
bagging. All methods exploit heterogeneity of ensemble 
components in one way or another. 

2.1  ABSTENTION 

Freund, et al., showed the error bound of averaging 
classifier with abstention [2]. The abstention threshold is 
based on the log ratio of the weighted sum of positive 
predictions and negative predictions. If the absolute value 
of this log ratio is smaller than the threshold, the ensemble 
classifier abstains from predicting. They identify the region 
of abstention as the locations of potential overfitting. Their 
theoretical work shows that the error of such predictor 
cannot be worse than twice of the best individual.  

2.2 AVERAGE AND MEDIAN 

A simple averaging method gathers outputs from all 
component modules and calculates their arithmetic 
average. Imamura and Foster showed simple averaging 
reduces error margins in path prediction [12] and function 
approximation with evolved digital circuits [13]. Another 
approach is weighted averaging, in which component 
modules are assigned optimal weights for computing a 
weighted average of the module outputs. Linearly optimal 
combination of artificial neural networks takes this 
approach [14][15]. Zang and Joung proposed Mixing 
Genetic Programs (MGP). MGP chooses a pool of 
individuals from a population and the master unit assigns 
the voting weights to these individuals using an additive 
weighting scheme [16]. The median value of the outputs is 
then the ensemble output. Soule approximated the sine 
function by taking the median of individuals, which were 
evolved, with subset of the entire training set for 
specialization [17]. Brameier and Banzhaf evolved teams 

of predictors. The individuals are coevolved as a team as 
opposed to post-evolutionary combination [18].  

2.3 BOOSTING AND BAGGING 

Boosting and bagging are methods that perturb the training 
data by resampling to induce classifier diversity. The 
AdaBoost algorithm trains a weak learner (slightly better 
than random guessing) by iterating training while 
increasing the weights of misclassified samples and 
decreasing the weights of correctly classified ones [19]. 
The effect is that the weak learner focuses more and more 
on the misclassified samples. The trained classifiers in each 
successive round are weighted according to their 
performance.  The final decision is a weighted majority 
vote. Bagging (Bootstrap aggregating) replicates training 
subsets by sampling with replacement [20]. It then trains 
classifiers separately on these subsets and builds an 
ensemble by aggregating these individual classifiers. For 
evolutionary computation, Iba applied Boosting and 
Bagging to genetic programming and his experiment 
validated their effectiveness and their potential for 
controlling bloat [21]. Land used a boosting technique to 
improve performance of Evolutionary Programming 
derived neural network architectures in a breast cancer 
diagnostic application [22]. However, both techniques have 
limitations. Boosting is susceptible to noise, Bagging is not 
any better than a simple ensemble in some cases, neither 
Boosting nor Bagging is appropriate for data poor cases, 
and bootstrap methods can have a large bias [19, 23, 24, 
25, 26, 27].  

2.4 CLASSIFICATION OF ENSEMBLES 

Table 1 categorizes current ensemble methods in genetic 
programming in terms of their sampling technique in 
combination with the evolutionary approach. In cooperative 
methods [17][28], speciation pressure (such as that caused 
by crowding penalties [28]) plays a vital role in evolving 
heterogeneous individuals, while in isolation methods there 
is no interaction between individuals during evolution. 
Resampling methods create different classifiers by using 
different training sets (bagging) or varying weights of 
training instances (boosting). Non-resampling methods 
create different classifiers from the same training set with 
or without explicit speciation pressure. NVGP and 
Decision abstaining NVGP are non-resampling techniques 
based on isolated evolution of diverse individuals. 

   Table 1. Classification of ensemble creation methods. 

Evolutionary Training set selection 

Approach Resampling Non-resampling 

Non-Isolation Boosting Crowding 

Isolation Bagging NVGP 
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3 EXPERIMENT 
This section briefly summarizes the NVGP computational 
method (for detail description, see [1]) and presents the test 
results. We first run NVGP then incorporate abstention 
threshold to it. Our experimental problem is to classify 
whether a given DNA sequence is an E. coli promoter, 
using a decision abstaining NVGP. The data set is taken 
from UCI ML repository [29]. It contains 53 E. coli DNA 
promoter sequences and 53 non-promoter sequences of 
length 68. 

3.1 COMPUTING ENVIRONMENT 

The cluster supercomputing facilities from the Initiative for 
Bioinformatics and Evolutionary STudies (IBEST) is used 
to implement distributed computation. This device uses 
commodity computing parts to build substantial computing 
power for considerably less money than traditional 
supercomputers1. (http: //www.cs.uidaho.edu/ 
thecollective).  This machine enabled experiments that 
would normally run for a month to complete in half a day. 

3.2 INPUT AND OUTPUT 

We used 2-gram encoding for input [30]. The 2-gram 
encoding counts the occurrences of two consecutive input 
characters (nucleotides) in a sliding window. Since there 
are four characters in DNA sequences (“a”, “c”, “g”, “t”), 
we have 16 unique two-character strings to count. For 
example, a sequence “caaag” will be encoded as {ca=1, 
aa=2, ag=1}. The classifier clusters the positive instances 
and places the negative instances outside the cluster. The 
cluster is defined by the mean output value of postitve 
instances ± 3*(standard deviation). If an output value from 
a given sequence falls in the cluster, it is classified as a 
promoter. Otherwise, it is classified as a non-promoter.  

3.3 CLASSIFIER 

3.3.1 Target Machine Architecture  

Our classifier is a linear genome machine [31], which 
mimics MIPS architecture [32]. There are two instruction 
formats in this architecture: (Opcode r1,r2,r3) and 
(Opcode r1,r2,data). The instructions are ADDI, 
ADDR, MUL, DIV, MULI, DIVI, SIN, COS, LOG, EXP, 
NOP, MOVE, LOAD, CJMP, and CJMPI. The length of an 
individual program is restricted to a maximum of 80 
instructions. Each evolving individual (a potential 
component for our NVGP ensemble system) used sixteen 
read-only registers for input data, which contained counts 
for individual nucleotide 2-grams as described above, and 
four read/write working registers. 

                                                        
1 The total cost of the machine is about US$44,000. Micron Technology 
generously donated all of the memory for the machine. 
 

3.3.2 Genetic Programming  

We used 5 crossover methods. Methods (1) and (2) are 
traditional one and two point crossover, respectively. 
Method (3) is one point crossover with inversion applied to 
each crossover segment.  Methods (4) and (5) use four 
random crossover points, with (5) being a single parent 
recombination operator. Fitness is calculated by the 
following correlation formula  

where P and N are numbers of correctly identified positives 
and negatives, and Pf and Nf are the numbers of falsely 
identified positives and negatives [33]. Steady state is used 
for population replacement. Evolution continues until an 
individual of fitness 0.8 or above appears. 

3.3.3 Evolution and Ensemble Testing  

A common holdout test divides the dataset into 2 exclusive 
sets, 2/3 for the training set and 1/3 for the test set [27]. 
Our training sets used a random sample of 35 (53*2/3) 
positive and 35 negative examples, and used the remaining 
examples for the test sets. We performed experiments for 
10 different holdout sets. The evolution and ensemble 
procedures are described below: 

1. Create a training set and test set.  

2. Evolve 40 isolated islands with 100 individuals each in 
parallel. Add an individual whose fitness is 0.8 from 
each island to a set B of single best versions.  

3. Select N individuals by uniform-random sampling from 
B for N=15, 31 to form an NVGP ensemble. See 3.4.1 
for the sampling frequency. 

4. Evaluate the performance of each ensemble. If the 
ensemble is qualified, then retain it for a test set trial. 
Goto 3. The ensemble is qualified if the difference 
between the number of errors expected when versions 
have independent faults and the number of errors 
observed is small (less than one in our case). 

3.4 EXPERIMENTAL RESULTS 

The evolution and ensemble testing procedure described in 
section 3.3 is repeated for 10 different holdout tests in an 
attempt to reduce stochastic errors caused by sampling in 
performance estimation. We first show the performance of 
NVGP without abstention, then with abstention. We 
assume the number of errors have a normal distribution, 
since each test instance can be viewed as a Bernoulli trial 
[27]. 

3.4.1 Performance of NVGP 

There are 40×109 and 27×107 possible ensembles to be 
formed respectively for 15 and 31 voter systems out of 40 
candidate modules. Uniform random search sampled 
approximately 40×103 and 27×103 ensembles for 15 and 31 
voter ensembles respectively, from which we selected 
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qualified ensembles for statistics. Table 2 shows the 
numbers of qualified ensembles found for each test. For 
example, we found 23199 qualified 15-voter ensembles out 
of 40×103 samples for the test 1. Table 3 is the result of t-
test on the null hypothesis that average performance of the 
ensembles and the single best versions is not significantly 
different. Table 4 is the result of F-test on the null 
hypothesis that standard error of the ensembles and the 
single best versions is not significantly different. Table 5 
shows error reduction percentage observed in ensembles 
relative to the error rates of the single best versions in the 
set B (see 3.3.3). It represents the average error reduction 

achieved by NVGP over single modules produced by 
genetic programming.  

Figure 1 presents the performance distribution intervals of 
the single best versions and the corresponding N-voter 
NVGP ensemble at a 90% limit. For each holdout test, we 
present statistics for the single best versions, and for each 
of the four NVGP ensembles (N=15, 31). For example, the 
leftmost bar in holdout test 1 is the performance 
distribution of the 40 single best versions, showing that the 
best is estimated to be 20% error and the worst to be 48%, 
with a mean of 34%. The middle bar is 15-voter and the 
rightmost bar is 31-voter ensembles.  

Table 2. The number of sampled qualified-ensembles 

 test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 

15-voter 23199 29370 11596 8601 15973 4267 30455 32141 13171 17279 

31-voter 19650 27205 9910 3197 13778 814 27340 27340 7672 23113 

 

Table 3.  The result of t-test, degree of freedom .≅ 40 for all the test cases. 

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10 

15-voter 11.07 9.10 3.27 8.67 9.67 10.21 8.80 6.06 6.64 5.46 

31-voter 14.08 10.47 2.14 8.17 10.54 13.53 9.30 5.78 6.62 6.94 

 

Table 4. The result of F test on error rate standard deviations 

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10 

15voter 3.15 4.10 4.98 3.53 4.01 2.22 2.71 4.37 7.22 3.76 

31-voter 7.17 6.47 12.03 9.36 10.89 4.71 8.13 24.11 47.44 8.07 

 

Table 5. Percentage error reduction of NVGP relative to set of best individual in isolation 

 

 

 

 test1 test2 test3 test4 test5 test6 test7 test7 test9 test10 

15-voter 44 33 14 31 40 31 37 22 25 24 

31-voter 56 38 9 29 43 42 39 21 25 31 

Figure 1. Error rate distribution intervals of the single best versions and the corresponding N-
voter NVGP ensemble at a 90% limit. Leftmost, middle, and rightmost bars are distribution of
single-version, 15-voter, and 31 voter system respectively.  
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3.4.2 Behavior of Decision Abstaining NVGP 

The abstention thresholds are incorporated into the NVGP 
outputs of 3.4.1. The decision abstaining ensemble 
requires abstention threshold, h, and needs ((N+1)/2 + h) 
votes, either positive or negative, to make a decision, 
where N (odd) is the number of vote participating 
individuals. The voting scheme is a simple majority rule, 
if h=0. Figure 2 and 3 are the plots of the abstention rates 
and the error rates of 15 and 31 voter ensemble for the 10 
holdout tests with respect to the abstention threshold, h. 
Figure 4 represents the average abstention and error rates 
from figure 2 and 3 for collective analysis. The error rate 
is a decreasing function and the abstention rate is an 
increasing function. 

4 DISCUSSION 

4.1 NVGP 

Though a holdout test is commonly used to measure 
performance of evolutionary algorithms, it is not reliable. 
Kohavi argues that holdout testing does not provide a 
good estimate of error rate [27]. Nonetheless, we repeated 
the holdout test 10 times with different training/test sets 
for somewhat fair statistics. In figure 1, the hold-out test 3 
does not exhibit apparent superiority of NVGP as in the 
test 1, though we reject the null hypothesis that average 
performance of single best version and NVGP are not 
significantly different at α=0.975. For all the other nine 
test cases, we reject the hypothesis virtually at 100% and 
conclude that NVGP is superior. NVGP error rates in all 
ten tests are far below the theoretical bound shown by 

Freund [2] even without abstention. Table 4 indicates that 
performance fluctuation of NVGP is statistically 
significantly smaller than single versions. Apparently, as 
the ensemble size approaches to the pool size, the 
performance fluctuation becomes smaller. If we combine 
all the individuals in the pool, there is no performance 
fluctuation. Therefore, a larger fluctuation may be 
expected for NVGP if the component pool size is huge. 
But, also true is that duplicate phenotypes start populating 
the pool as the pool size becomes larger. In fact, our 
experiment witnessed that an exhaustive search for an 
optimal ensemble of 39 voters from the pool failed in 
three out of the ten holdout tests.  This possibly indicates 
that the entropy of the pool may have reached a plateau 
with the given training data and training method. If this is 
the case, the small performance fluctuation for optimally 
sized NVGP will still hold regardless of the pool size 
increase. Further study is needed for an optimal size of 
NVGP. 

Notice that a single best individual has a chance to 
become practically a random classifier (error rate above 
0.4) roughly 10%-20% of the time on unseen data. 
Unfortunately, we have no way of knowing which 
individual would become a random classifier beforehand, 
because they all have the same fitness (0.8) on the 
training set. This is the risk we must bear with a single 
best classifier. Fluctuation in performance is the very 
reason why we compared the distributions, and why 
NVGP has superior performance.  

4.2 ABSTENTION 

Figure 4 shows (see dashed lines) that the decision 
abstaining NVGP achieved a near zero error rate, at high 
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rate for 15 voter system 

Figure 3. abstention rate and error 
rate for 31 voter system 
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cost of abstention rate, approximately 80%, for both 15-
voter and 31-voter ensembles. Abstention rates 29% of 
15-voter and 28% of 31-voter ensembles give 50% error 
reduction over NVGP alone (no abstention). Whether 
these abstention rates are acceptable for error reduction 
depends on how critical it is to have wrong predictions.  

The abstention rates and the error rates are monotonic 
with respect to the abstention thresholds, and the trade-off 
between abstention and error reduction can be estimated 
almost linearly. Consequently, there is no analytically 
measurable peak gain by abstention. Subjective judgment 
must be used to set the abstention threshold. The 
following formula may be used to numerically measure 
the effect of abstention: Q= Ea + ρN, where Ea is the 
number of errors with abstention, N is the number of 
don’t know outputs, and 0�ρ��� ,I ρ=1, then don’t know is 
as bad as wrong prediction and counted as an error.  On 
the other extreme, if ρ=0, it is as good as correct 
prediction. The larger the ρ value is the more penalties for 
don’t know outputs.  

Let the number of errors of NVGP alone (no abstention) 
be Ez. If Q � (z, then we are unconditionally better off 
with abstention. For example, setting ρ=0.5 (half way 
between correct and incorrect prediction), we obtain Q 
values for 31-voter ensembles as shown in Table 6. The Q 
values are fairly close to Ez when the threshold is 1, which 
gives 3.2% error reduction (Figure 4 data). In other 
words, threshold = 1 is a break-even point for the trade-
off between abstention and error reduction for ρ=0.5. For 
safety critical applications, such as medical diagnostics, a 
smaller ρ value would be appropriate for the trade-off 
analysis. That is to say, do not penalize heavily when an 
ensemble is trying to avoid a random guess. It may well 
be the case where the training set was inappropriate for 
particular instances. 

4.3 POST-EVOLUTIONARY COMBINATION 

Post-evolutionary combination is thought to be 
computationally inefficient, because many runs are 
required to obtain a sufficient number of individuals [18]. 
However, inexpensive cluster computing alleviates this 
problem (see section 3.1). Not only can the post-
evolutionary search for the optimal NVGP ensemble be 
performed in parallel, but also the search may no longer 
need to be continued after an optimal ensemble is found. 

5 CONCLUSION AND FUTURE 
RESEARCH 

We showed the experimental classification result by 
NVGP, which significantly improved accuracy and 
reduced the performance fluctuation. Then, we 
incorporated decision abstention to it. Abstention in effect 
avoids random guesses when the ensemble confidence is 
low, i.e., votes are too close to call. It is a viable method 
to reduce errors. The trade-off between abstention and 
error reduction is subjective. The abstention threshold 
value depends on how critical an application is. 

It is important to curve the abstention rate increase. We 
plan to embed the individual confidence to enhance the 
ensemble confidence. The individual confidence, in our 
case, can be measured by the distance of an instance from 
the cluster center. The further the distance, the lower the 
confidence. The ensemble confidence in prediction is 
measured by the level of disagreement among the voters. 
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Abstract

While the choice of a set of primitives can
strongly e�ect the performance of genetic
programming, the design of such a set re-
mains more of an art than a science. We
look at a joint approach that combines both
hand-coding and genetic programming to de-
�ne and re�ne primitives in the context of
a creating distribute control code for modu-
lar robots. We give some rules of thumb for
designing and re�ning sets of primitives, il-
lustrating the rules with lessons we learned
in the course of solving several problems in
control code for modular robots.

1 INTRODUCTION

It is well-known, from various \no free lunch" the-
orems, that no single approach can e�ectively solve
all problems (Wolpert, 1996; Wolpert and Mecready,
1997). Thus it is necessary to tailor techniques to the
problem at hand. For genetic programming this tailor-
ing can be done in three primary ways: choosing the
primitives, choosing the �tness functions, and choosing
parameters for the algorithm such as the percentage of
use of various operators. Here we look at the problem
of e�ectively choosing primitives.

We describe techniques for and experiences with the
joint use of genetic programming and hand-coding to
design and re�ne sets of primitives for a variety of mod-
ular robotics problems. The creation of decentralized
control software for modular robots is a diÆcult prob-
lem due to both the decentralized nature of the soft-
ware and the fact that the connectivity relations be-
tween the modules constantly change. Yet, in spite of

�* Supported by FXPAL

these diÆculties, or perhaps because of them, modular
robotics provides an ideal domain in which to exper-
iment with automated software generation methods;
there are many robotic tasks that are easily speci�ed
but for which it is highly non-obvious what distributed
software would create the desired behavior.

Ideally, for the problem of robotic control, a set of

primitives could be derived directly from a description
of the hardware capabilities. While a description of
such capabilities is an excellent place to start, �nd-
ing a solution given only the most basic actions can
be prohibitively time consuming. Another approach is
to tailor the primitives to the task, which may require
signi�cant development time. In fact, the development
time required for the primitives can approach that of
actually solving the problem. We take an intermediate
approach. Except for primitives that encode informa-
tion speci�c to the problem (as opposed to its solu-
tion), we try to provide primitives that would appear
to be useful in a wide range of problems and are still
reasonably low-level. We use insights gained from both
human and machine attempts to solve the problems to
design e�ective sets of primitives.

2 MODULAR ROBOTIC

HARDWARE AND SIMULATOR

2.1 TELECUBE MODULES

Modular self-recon�gurable robots are systems consist-
ing of a collection of simple and identical robotic mod-
ules that can form connections to and move relative
to each other (Yim, 1994; Murata et. al., 1994; Rus
and Vona, 2000). These modules function together to
produce an overall behavior of the robot, analogous
to the way cells in a body function together. The fact
that both the connectivity and relative positions of the
modules can change allows the overall robot to recon-
�gure and take on di�erent shapes. Modular robotic
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Figure 1: One telecube module.

systems provide possible bene�ts in terms of exibility,
adaptability, and robustness.

2.2 MODULE CAPABILITIES

2.2.1 Physical Capabilities

The robot modules we consider are the TeleCube mod-
ules currently being developed at Xerox PARC and
shown in Figure 1 (Suh et. al., 2002). They are sim-
ilar in design to modules being designed and build at
Dartmouth (Rus and Vona, 2000), which can expand
in two dimensions. The modules are cube shaped with
an extendable arm on all six faces. The arms are as-
sumed to extend independently up to half of the body
length, giving the robot modules an overall 2:1 expan-
sion ratio. For simplicity, we restrict the arms to fully
extended or fully retracted states. The expansion and
contraction of these arms provide the modules with
their only form of motion. Latches on the plates at
the end of each arm allow two aligned modules to con-
nect to each other. The arm motion together with
the latching and unlatching capability means that the
connectivity topology of a modular robot can change
greatly over time. As shown in (Vassilvitskii et. al.,
2002), this motion is suÆcient to enable arbitrary re-
con�guration within a large class of shapes.

2.2.2 Sensors, Communication, and Memory

Each module is assumed to have simple sensing and
communication abilities that resemble those that will
be given to the TeleCube modules currently being built
at Xerox PARC. Modules can send limited bandwidth
messages to their immediate neighbors. Each mod-
ule is also assumed to be able to sense contact at the
end of each arm, sense how far each of their arms is
extended, determine whether they are connected to a
neighboring module, and detect nearby, adjacent mod-

ules. Each module has a small memory capacity, which
is initialized to all zeros. We also give the modules sim-
ple computational abilities such as the capability to

determine the opposite of a given direction, the ability
to generate a random direction, and to calculate and
store the value of each of its position coordinates.

2.3 TELECUBE SIMULATOR

The experiments reported here were run by connecting
FXPAL's genetic programming system to a simulator,
written by J. Kubica and S. Vassilvitskii, for the Tele-
Cube modular robots. The module control code is
represented in a LISP-like parse tree that is evaluated
once per time step for each module.

3 PROBLEM CONTEXTS

For all of the problems described here we are interested
in a completely decentralized solution in which the de-
sired global behavior of the robot emerges from control
code that is run locally on each of the modules that
make up the robot. Decentralized control software is
a challenging domain to begin with, and the fact that
the connectivity relations between the modules con-
stantly change makes modular robotic problems even
harder. The collaboration between hand-coding and
automatic generation of solutions is described below
in the context of three speci�c modular robotic con-
trol problems to which we have applied this technique:
the tunnel problem, the �ltering membrane problem,
and the sorting membrane problem.

The tunnel problem consists of a long thin world, 40
x 10 x 2 arm lengths, that is enclosed on all sides by
walls. During each of the trials an object is placed
randomly \in" one of the long walls. This means that
a module adjacent to this location along the wall can
sense the object, but will not be blocked by it or stuck
behind it while moving along the wall. The goal of the
modules is to �nd the object and all move as close to
it as possible. Thus, we de�ne our �tness function as
the sum of each module's distance to the object at the
end of a run. The modules start out as a 3 x 3 x 1 grid
con�guration in one corner of the world.

The membrane problems consist of a membrane, a
three-dimensional lattice of modules, and a foreign
object which, depending on its attributes, should or
should not be accepted into the membrane and ma-
nipulated by it. In the case of a �ltering membrane,
the object is either accepted or rejected. Accepted ob-
jects are passed through the membrane and out the
bottom, whereas rejected objects remain on top. A
sorting membrane accepts all objects, but sorts them
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along some axis. We looked at the case of a binary
sorting membrane, which moves an object towards one
of two opposite ends depending on its value. For both

membrane problems we use �tness functions that mea-
sure the distance of the object from where it ought
to end up and a penalty for the membrane breaking
apart. Since the modules are unable to directly grasp
or pull the objects, all solutions to the membrane prob-

lem require the use of gravity, by having modules move
out from under the objects and allowing them to fall
through the membrane. For more details on the mem-
brane problems, including some pictures, see (Kubica
and Rie�el, 2002).

4 RELATED WORK

A number of researchers have looked at enabling a ge-
netic programming system to add primitives on its own
in the course of its runs. Approaches include ADFs
(Koza, 1994), libraries (Angeline and Pollack, 1994),
subroutines (Rosca and Ballard, 1996), and subtree
encapsulation (Roberts et al., 2001). While such tech-
niques might help with some of the problems we de-
scribe here, we are particularly interested in how to
add primitives that the system would be unlikely to
�nd for itself. Furthermore, there are many situa-
tions, perhaps the majority, in which one is most in-
terested in solving the problem at hand in any way
possible, rather than being concerned about the ex-
tent to which the solution was automatically attained.
We hope that what we write here can help others to
have more productive collaborations with a genetic
programming system in order to more e�ectively solve
practical problems of interest.

The problem of automatic code generation for mod-
ular robots has also seen interest recently. Kubica
et. al. (Kubica et. al., 2001) hand-coded control
programs for internal object manipulation with robots
made of TeleCube modules. Bennett et. al. (Bennett
et. al., 2001) used genetic programming to generate
distributed control programs for modular robots con-
sisting of sliding-style modules (Bennett and Rie�el,
2000; Pamecha et al., 1996). It is important to note
however that this sliding-style module design enables
movement with primitive operations directly suggested
by the hardware. In particular, movement in that set-
ting, unlike for the TeleCube modules, does not require
explicit connection and disconnection actions. Thus
movement in their case avoids some of the diÆculties
we faced when attempting to generate e�ective soft-
ware for robots made from Telecube style modules.

5 DEVELOPING EFFECTIVE SETS

OF PRIMITIVES

5.1 BASIC PRIMITIVES

Each of the basic capabilities of the modules can be
captured by a primitive operation.

� Physical actions: (ExtendArm direction),
(RetractArm direction), (Connect

direction), (Disconnect direction)

� Communication: (SendMessage direction type

value), (GetMessage direction type)

� Sensors: (HasNeighbor direction),
(ReadSensorNeighborDist direction),
(ReadSensorObjectDist direction)

� Memory: (ReadReg index), (SetReg index

value)

� Other: (OppDirdirection direction),
(RandDir), and (GetX), (GetY), (GetZ).

In addition to these module speci�c primitive, we al-
low the module control programs to use the following
basic programming primitives: (Add), (Sub), (If),
(ProgN) (LT), (And), and (Not), and the numeric
constants 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0.

The primitives described above all mirror basic hard-
ware capabilities of Telecube modules. For more de-
tails on these primitives, see (Kubica and Rie�el,
2002). However these primitives do not form an opti-
mal set of primitives for either a human or a genetic
programming system to construct e�ective software for
the tasks we described above. We look at how genetic
programming experiments and hand-coding attempts
together enabled the development of e�ective sets of
primitives.

5.2 INITIAL CHOICE OF PRIMITIVES

Ask the system only to discover a solution, not aspects

of the problem

One important consideration when choosing primitives
is to give the system full information about the prob-
lem. Even researchers more concerned with automati-
cally generating code than solving problems per se and
who are resistent to giving the system any hints as to
how to solve the problem, should feel comfortable giv-
ing the system enough information so that it does not
have to guess the problem as well as the solution.
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Figure 2: Average solution performance on �ltering
membrane problem with and without ReadSensor-
ShouldPass primitive.

In the �ltering membrane problem, the modules must
determine whether or not to accept an object. In
our case the criterion for the �lter to accept an ob-
ject was that the value returned by (ReadObjectVal

direction) be above 0.5. In order to solve the prob-
lem in our initial runs the GP system had to create a
subtree testing for the acceptance criterion.

As we tried to gauge how the system was doing, we
realized that we were using the existence of such a
subtree to determine how close the GP system was to
a solution. We soon realized that one should not re-
quire an automatic code generation technique to guess
the problem as well as the solution, even if it can.
Thus we added a primitive that encapsulates the �lter-
ing criterion: the Boolean (ReadSensorShouldPass

direction) primitive

(LT(Add(0.4 0.1))(ReadObjectVal direction)).

Figure 2 shows the performance of two GP runs,
one with the ReadSensorShouldPass primitive and
one without it. While the system could solve
the problem without the (ReadSensorShouldPass

direction) primitive, its addition certainly helped.
Further, for the evolution of the membrane control
there is no reason to withhold this type of informa-
tion about the problem statement itself. Note that
this situation is di�erent from one in which one might
be trying to learn a good criterion, say for identifying
defective parts or a distinguishing characteristic of a
set of objects.

Avoid large needle-in-the-haystack searches

The tasks we describe above all require movement, as

Figure 3: Module in white moves towards right.

do most modular robotic tasks including recon�gura-
tion, locomotion, and internal manipulation. But none
of the �tness functions we used give any reward to
programs that have put together part, but not all, of
a sequence that would result in movement. Since no
reward is given, the genetic programming system has
nothing to guide it towards movement.

Even at its simplest level, movement of a single Tele-
Cube module is a complex process, involving bonding
with and unbonding from neighbors, expanding and
contract arms, and checking that the move is possible.
To get an impression the complexity of a single move-
ment, it is only necessary at look at the movement
subtree involved in disconnecting from the perpendic-
ular neighbors:

(ProgN (ProgN (Disconnect 0.0) (RetractArm

0.0)) (ProgN (Disconnect 0.2) (RetractArm

0.2)) (ProgN (Disconnect 0.4) (RetractArm

0.4)) (ProgN (Disconnect 0.6) (RetractArm

0.6)))

The code above disconnects from the correct neigh-
bors in the case the module is moving along the �X
axis. Just to choose Disconnect and Retract arm
from just the four physical primitives has probablility
less than 10�3. Choosing the appropriate constants for
the Disconnect and Retract functions from the seven
numeric constants also has probability less than 10�5.
And choosing the �ve ProbN primitives has probabil-
ity less than 10�5. So the probability of �nding the
correct components is less than 10�13.

Up to now we have only considered a subtree of the
sort that would correctly disconnect a module. In ad-
dition, one would need appropriate if statements to
determine the correct direction, the appropriate arm
expansions and contractions to accomplish the move-
ment, and a similar subtree to handle reconnection
with any new neighbors. Thus, the simple move il-
lustrated in Figure 3, given only the basic primitives
described above, would require at least 12 di�erent
primitives and well over 50 nodes. More code would
be required to enable moves in all six directions, not
just one, and the graceful handling of movement fail-
ures would require considerably more code. Thus the
likelihood that such a program would be created given
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no guidance is impractically small.

With the basic primitives, and a simple �tness func-

tion with no gradient towards movement from none,
the GP system would be searching blindly. Thus it is
extrodinarily unlikely that the GP system would suc-
ceed even in evolving movement. In fact the problem
is harder still since only useful and used motion would
be rewarded. By asking genetic programming to evolve

movement, we are asking it to search for a needle, or
rather a few needles, in a very large haystack.

A number of solutions are possible. One solution
would be to change the �tness function so that it re-
wards partial programs out of which movement could
be constructed. Another possibility is to simply evolve
movement �rst and then use that solution as a prim-
itive when evolving solutions to more complex tasks.
Note that this approach still requires determining a
�tness function that rewards partial solutions. It is
highly non-trivial to see how to design a principled re-
ward system. Figuring out principled approaches to
this problem, and other similar problems, is an open
research issue that ought to be of great interest to any-
one trying to automatically solve problems. An un-
principled way of solving this problem is to hand-code
a solution and then reward programs based on simi-
larity with this solution. One might as well use the
hand-coded solution as a primitive in the �rst place,
which is what we do.

Achieving simple motion, for instance the motion illus-
trated in Figure 3, only requires reasoning at the local
level and is thus easier for a human to do than solu-
tions to tasks that require global behavior to emerge
from the local actions. Following basic operations used
by Kubica, et. al. (Kubica et. al., 2001), we created
a movement primitive that enables modules to move a
distance of one arm length in any of the six directions.
The movement is accomplished by simultaneously con-
tracting the front arm and expanding the back arm
to e�ectively \slide along the arms." The movement
primitive also checks whether movement is possible,
reverses any steps taken prior to a failed check, and
returns whether or not the movement has succeeded.

This example also serves to illustrate another principle
useful for e�ective collaboration with a GP system in
solving a problem.

Hand-design parts that are easy for a human to write

but hard for a GP system to discover.

5.3 REFINING THE PRIMITIVES

Delete or replace unused primitives

If the system is solving a problem without certain
primitives consider removing or replacing them. Use
this information to update your intuition if possible.

Encapsulating such primitives is a particularly attrac-
tive choice in a number of situations.

Encapsulate hard-to-use primitives

If the system is not using a primitive, or a set of prim-

itives, e�ectively, consider giving the system higher
level primitives that it may be able to use more easily.
The best time to encapsulate actions into primitives is
when a certain subtree is needed.

The clearest case for removing a primitive is when a
higher level primitive replaces it. For example, the
implied TeleCube primitive (Disconnect direction)
is automatically handled by such primitives as (Move
direction) and (RetractArm direction). Further,
maintaining global connectivity is vital for power rout-
ing and facilitates alignment of connecting modules
and inter-module communication. Thus, we wish to
maintain a high level of connectivity at all times and
additional uses of disconnection may not only be un-
necessary, but also detrimental. Thus, it can be said
that the disconnect primitive was replaced by incorpo-
rating it into higher-level primitives.

A second example of the removal of primitives is in
the more complex problem of module communication.
Since control is local, it would seem that communica-
tion between the modules would be required in order
for the robot to achieve a task of any complexity. Mes-
sages would enable modules to share information and
coordinate actions. However, communication may not
be as necessary for modular robotic tasks as humans
tend to think. Bennett and Rie�el comment in their
conclusions that none of the solutions to any of the �ve
tasks they studied (Bennett and Rie�el, 2000) used the
communication capabilities provided. Similarly, while
the solution given in (Bennett et. al., 2001) contains
two (SendMessage) commands, since it contains no
(ReadMessage) commands, one can deduce that the
communication capabilities were not used.

The lack of use of the communication primitives in
solutions to various problems suggest that a wider
class of problems can be solved without communica-
tion than most humans would generally think. How-
ever, it also suggests that the provided communica-
tion primitives may be hard for a genetic program-
ming system to use. E�ective communication requires
the generation of a quantity that would be useful to
communicate, the sending of that quantity, the receipt
of that quantity, and the use of that quantity by the
receiver. In most cases, until all of these steps are in
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place and correct there is no bene�t. So for a genetic
programming system, with a simple �tness function in
which there are no explicit rewards for partial com-

munication, the generation of e�ective communication
is reduced to a large needle-in-the-haystack problem
similar to the movement problem we described above.
Unfortunately, in this case it is less clear what to do
by hand since what sort of communication would be

useful is less clear.

One problem with the message primitives described
above is that it is diÆcult to send out information to
all neighbors or send direction dependent information,
such as \move away." One interesting extension to the
communications capabilities described above is the ad-
dition of gradients. Gradients are messages that are
broadcast to all surrounding neighbors. These neigh-
bors in turn rebroadcast them to their neighbors, with
the strength of the gradient decayed with each broad-
cast.

Previous work with gradient messages in hand-coded
solutions was shown e�ective in (Bojinov et. al., 2000;
Kubica et. al., 2001) and in (Shen et. al., 2000; Shen
et. al. 2000) where the gradients were called scents
and hormones respectively. Of particularly interest is
the use of gradients for internal manipulation of ob-
jects. The use of scents applied to the problem of
internal object manipulation in (Kubica et. al., 2001)
limited the scents to positive and negative, where mod-
ules were inclined to move towards the positive scent
and away from the negative scent. This implies further
specializing the messaging primitives to:

� (SendPositiveGradient) Emits a positive gra-
dient

� (SendNegativeGradient) Emits a negative gra-
dient

� (HandleGradient) Tries to follow the gradients,
move towards positive gradient and away from

negative gradient. Returns true if a gradient was
detected and the module was able to move to fol-
low it.

These communication primitives illustrate how human
experience and intuition can be encoded in general
primitives. These primitives have the potential to
greatly reduce the space of programs that might be
searched in order to �nd a solution. For example, the
positive and negative gradients above do not require
the use of constants, simplifying the coordination and
handling of messages.

The tunnel world problem was designed as a test of
the communication primitives. It is relatively easy for
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Figure 4: Average solution performance on the tunnel
problem for runs with di�erent sets of communication
primitives.

the modules to move randomly around the world in
a group and for a single module to stop moving if it
detects an object. The problem gets increasingly non-
trivial when all of the modules are required to move as
close as possible to the object. This implies the need
for at least implicit communication between the mod-
ules. Speci�cally, when a module detects the object it
must be able to say \move towards me" or something
similar.

To determine the e�ectiveness of various communi-
cation primitives, the problem was run 24 times in
each of three conditions: 1) no communication prim-
itives, 2) only the messaging primitives, and 3) only
the positive gradient primitives (SendPositive and
HandleGradients). The average cost for these trials
during each generation of the GP runs was recorded
and is shown in Figure 4. Once again, the intuitive dif-
ference is reected in the success of the runs that were
able to use the positive gradients. The solutions that
can contain positive gradients perform the best after
the 150 generations, while the solutions that could not
have any message passing commands in them perform
noticably worse.

Consider deleting unused primitives

A case can be made for keeping primitives that imme-
diately appear to have no bene�t. The argument goes
that if they are not needed, GP will evolve solutions
that do not use them. Despite this argument, it is
important to place some restrictions on the number of
primitives. As the number of primitives increases, the
search space of possible programs increases. Thus one
should consider deleting unused primitives, as well as
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replacing or encapsulating them.

In addition to using hand-coding and genetic program-

ming to develop primitives, the combination of tech-
niques lead to cases where primitives were found to
be ine�ective and thus could be removed. For ex-
ample, in the �ltering membrane problem described
above, the primitives (HasNeighbor direction)

and (ReadSensorNeighborDist direction) were

not used in early successful solutions. In addition,
early attempts to hand-code the solution did not re-
veal any apparent bene�t to them. Thus, they were
removed for later runs. A viable solution was found
without these primitives.

Consider adding primitives

It may become apparent after some runs that certain
primitives might be necessary or helpful. In particu-
lar, revisit the points of previous section. In our case,
it was at this point that we realized a movement prim-
itive was necessary, even though that could have been
clear at the start. Also, some of the gradient primi-
tives could be viewed in this way, since it is arguable
that they replace rather than encapsulate the initial
message primitives.

5.4 PRIMITIVES FOR RELATED

PROBLEMS

Consider using results, or partial results, from similar

problems as primitives.

Solutions, or piece of solutions, found by genetic pro-
gramming to similar problems, including easier ver-
sions of problems or related subproblems, can provide
useful and robust primitives for more complex prob-
lems.

A sorting membrane needs to be able to pass objects
through its structure just as a �ltering membrane does.
The solution found for the �ltering membrane prob-
lem contains a quick and eÆcient way to pass objects
through a structure of modules. By examining the
solution provided by genetic programming, we can re-
move unnecessary sub-trees to obtain:

(If (ReadSensorObjectShouldPass 0.0) (If (If

(ProgN (Move 1.0) (RetractArm 0.8)) (ProgN

(ProgN (Move 1.0) (RetractArm 0.8)) (Move

1.0)) (RetractArm 0.1)) Move 1.0) (Move

0.4)) NormalizeDensity)

Although this program does not provide for 100% suc-
cess on all problems (Kubica and Rie�el, 2002), the
result is a relatively eÆcient �ltering program. At the
highest level of the primitive is an If clause dependent
on the ReadSensorShouldPass primitive. By simply

replacing (ReadSensorObjectShouldPass 0.0) with
(ReadSensorIsObject 0.0) we were able to provide
later membrane problems with a robust (Drop) prim-

itive.

6 FUTURE WORK

Ideally, a system for automatically generating modu-
lar robotic code would only need a description of the
capabilities of the modules and the desired behavior
for the system to �nd a solution. Unfortunately, we
are currently far from such a system. In particular,
current evolutionary approachs are not suÆciently ad-
vanced to be able to solve many complex problems on
their own.

One diÆculty facing such systems is that they are of-
ten not capable of deriving an e�ective set of prim-
itives from the information they are given. Deter-
mining �tness functions is also a nontrivial problem,
particularly how to reward useful pieces that are not
measured by a �tness function coming directly from
a problem statement. The problem of modular robot
control, particular that of generating e�ective commu-
nication for modular robotic systems, provides a good
area in which to explore approaches to this problem.

A �rst step towards a more automated system is to
identify situation in which current systems need help.
A better understanding of how a human and a system
can collaborate to e�ectively solve a problem, can lead
not only to guidelines that can help humans solve prob-
lems more eÆciently with the help of machines, but
could lead to insights that could ultimately enable the
automation of some of the processes currently requir-
ing human input. Our hope is that our e�ort here not
only contributes to this direction, but will also encour-
age others to do more work along these lines. These
problems are diÆcult, but not so hard that progress
cannot be made.
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Abstract

Fitness distributions (landscapes) of pro-
grams tend to a limit as they get bigger.
Markov chain convergence theorems give gen-
eral upper bounds on the linear program sizes
needed for convergence. Tight bounds (ex-
ponential in N , N logN and smaller) are
given for five computer models (any, aver-
age, cyclic, bit flip and Boolean). Mutation
randomizes a genetic algorithm population in
1
4 (l + 1)(log(l) + 4) generations. Results for
a genetic programming (GP) like model are
confirmed by experiment.

1 INTRODUCTION

We have shown that the fitness distribution of suffi-
ciently large programs will converge eventually [Lang-
don and Poli, 2002]. We now use standard results from
Markov chain theory, to give quantitative bounds on
the length of random linear genetic programs, such
that the distribution of their outputs is independent
of their size. The bounds depend heavily on the type
of computer, the fitness function, and scale with the
size of the computer’s memory. Proving general con-
vergence rates for the fitness of programs requires de-
tailed consideration of the interaction within random
programs between different input values. In some cases
we can do this, while in others we leave this for future
work.

The next section summarises the Markov model of lin-
ear genetic programming (GP). Sections 3.1–3.5 de-
scribe a wide range of models of computers for running
linear GP and prove their convergence properties. Sec-
tions 3.1 and 3.2 highlight the importance of internal
coupling. Section 3.3 and 3.4 use Markov minorization
to prove upper bounds for, firstly any computer (3.3)

and secondly average computers (3.4). Section 3.5 is
close to some practical GP systems [Banzhaf et al.,
1998], while Section 3.6 gives an interesting result on
the convergence of bit string genetic algorithms. The
application of our results are given in Section 4 and
we conclude in Section 5.

2 MARKOV MODELS OF
PROGRAM SEARCH SPACES

[Langdon and Poli, 2002] deals with both tree based
and linear GP. For simplicity we will consider only
large random linear programs. However we anticipate
similar bounds also exist for large random trees.

In the following models, the computer is split in two.
The random program and all control circuitry form one
part, while the computer’s data memory, inputs and
outputs form the second. The memory is treated as a
finite state machine (FSM) with 2N states. (Where N
is the number of bits of data in the machine.) Each
time a program instruction is executed, data are read
from the memory, the result is calculated and written
into the memory. This changes the pattern of bits
inside the memory. This is modelled as moving the
FSM from one state to another. This is deterministic.
Given a bit pattern and an instruction, the bit written
to memory is also fixed. That is, given a particular
state, executing a particular instruction will always
move the FSM to the same state. Of course, in general,
executing a different instruction will move the FSM to
a different state.

Before starting a program, the memory is zeroed and
the inputs are loaded1. As each instruction in the pro-
gram is executed, the FSM is updated. If the program
is l instructions long, the memory (FSM) is updated
l times and then the program halts. The program’s

1Some practical GPs, e.g. Discipulus, write protects the
inputs.
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answer is then read from the memory. I.e. the output
is determined by the last state reached by the FSM.

If there are I instructions then there are I l possible
programs of length l. Suppose we calculate each one’s
fitness by running it on a fix set of tests and then
compare its answers with the tests’ target values. The
fitness distribution is given by plotting a histogram
of the number of programs (divided by I l) with each
fitness value. [Langdon and Poli, 2002] shows, for big
enough l, the distribution for one length is pretty much
the same as for any another.

It is usually impractical to generate every program of
a given length. Instead we consider a large randomly
drawn sample of the possible programs. To generate a
random program of length l, we simply choose at ran-
dom l times from the instruction set. When this pro-
gram is executed, the FSM (i.e. the computer’s mem-
ory) is updated randomly at each step. But note that
the FSM can only move to one of a small number of
possible states at each step. Which ones are possi-
ble depends only on its current state. These are the
conditions for a Markov process.

Provided it is possible for a program to set any pattern
of bits and there is an instruction which leaves a bit
pattern unchanged (no-op), then the Markov process
will converge. These conditions mean the FSM is con-
nected, i.e. it is possible to move, in a finite number
of steps, from any state to any other. The require-
ment for at least one no-op keeps the maths simple
later by avoiding cycles but its not fundamental. If
these conditions hold, then the process of randomly
updating the FSM is a Markov process with nice lim-
iting properties. For example, this means if we run the
process for long enough (i.e. execute enough random
instructions) the probability of the FSM being in any
particular state will be a constant. I.e. the probability
does not change as more random instructions are exe-
cuted. (Although it may depend upon which state we
are considering.) Secondly it does not depend on how
the FSM was started. Since the program’s answer is
read from the memory, it is determined by the FSM
final state. I.e. the probability of any particular an-
swer being given by a random sequence of instructions
does not depend on how many instructions there are
(provided there are sufficient). As the probability is
independent of starting conditions, which include the
program’s inputs, it does not depend on them either.
However if the inputs are write protected, then they
are external to the computer’s data memory. In which
case changes to the inputs have to be considered as
changes to the state machine and hence may change
the limiting distribution of its outputs.

This convergence applies to the whole of the com-
puter’s memory. We expect shorter random programs
(i.e. fewer instructions) to be needed if less memory is
used. Therefore, depending upon the type of the com-
puter, we might expect much shorter programs to be
sufficient to give convergence of just the (small) output
register. Indeed, in some cases, we can prove this.

3 CONVERGENCE RESULTS

3.1 SLOW CONVERGENCE EXAMPLE

[Rosenthal, 1995] gives several results on the number
of random steps needed by a Markov process to reach
equilibrium. In this section we chose what appears
to close to a worst case, in order to show an exam-
ple where the random programs have to be very long
indeed. The example is a frog’s random walk around
a circle of W lily pads. At each time step, the frog
can only jump clockwise, anti-clockwise or stay still.
[Rosenthal, 1995] uses Markov analysis to show that
after sufficient time steps the frog may be found on any
lily with equal probability ( 1

W ) and to show O(W 2)
steps are needed before the chance of any of them be-
ing occupied is approximately the same.

We shall use the total variation distance between two
probability distributions to indicate how close they
are. The total variation distance between probabil-
ity distributions a and b is defined as ||a − b|| =
supx⊆χ |a(x)−b(x)|. I.e. the largest value (supremum)
of the absolute difference in the probabilities [Rosen-
thal, 1995]. The sup is taken over all subsets, i.e. every
possible grouping of states x, not just single points.
(Otherwise it would be small as long as a(x) and b(x)
are both always small, even if the distributions a and
b are not similar).

Suppose there are three instructions: do nothing, add
one to memory and subtract one from memory. We
have carry over from one memory word to the next and
wrap around if all memory bits are set or all are clear.
This corresponds to the frog jumping from lily pad W
to 1 or 1 to W . (Remember the lilies are arranged in
a circle.) Part of the memory is loaded with inputs
and part designated the output register. (Read only
inputs are not permitted in this example.)

[Rosenthal, 1995] shows that the actual probability
distribution µl after l random instructions is exponen-
tially close for large l to the limiting distribution π (in
which each of the 2N states is equally likely). Actually
(if there more than two bits of memory, i.e. N > 2)
we have both lower and upper bounds on the maxi-
mum difference (sup) between the actual distribution
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of outputs of length l random programs and the uni-
form 2−N distribution:

1
2

(
1− 4π2

3 22N
l

)
≤ ||µl − π|| ≤

√√√√ e−
4π2

3 22N l

1− e−
4π2

3 22N l

That is the programs have to be longer than O(22N ) for
the distribution of FSM states to be very close to the
limiting distribution. E.g. to make ||µl − π|| < 0.1 the
lower bound says l must exceed 0.8 3

4π2 22N, while the
upper bound says it need not exceed log(101) 3

4π2 22N .
For a computer with 1 byte of memory, programs with
between 4,000 and 23,000 random instructions need to
be considered before each state is equally likely.

The output is read from part of the whole computer’s
memory (the m bit output register). Since in the limit
each of the 2N states is equally likely, each of the 2m

possible answers is also equally likely. The special in-
struction set means, the distribution of answers takes
just as long to converge as does the whole of the com-
puter. This is despite the fact that the output register
only occupies a fraction of the whole of the computer.

The output of any program is x + p mod 2m, where
x is the input and p is a constant (specific to that
program). Note this computer can only implement 2m

functions. The probability distribution of functions
clearly follows the distribution of outputs. So when l
is long enough to ensure each output is equally likely,
then so too is each function.

In general, the distribution of program fitnesses will
also take between 0.06 22N and 0.35 22N to converge
(assuming large N). Of course specific fitness func-
tions may converge more rapidly.

3.2 FAST CONVERGENCE EXAMPLE

The second example also uses results from [Rosenthal,
1995] (Bit flipping) [Diaconis, 1988, pages 28–30]. As-
sume a computer with N bits of memory and N + 1
instructions. The zeroth instruction does nothing (no-
op) while each of the others flips a bit. I.e. executing
instruction i, reads bit i, inverts it and then writes
the new value back to bit i. Again input (n bits) and
output (m bits) registers are defined (and read only
inputs are forbidden).

Once again the limiting distribution is that each of
the states of the computer is equally likely. How-
ever the size of programs needed to get reason-
ably close to the limit is radically different. Only
1
4 (N + 1)(log(N) + c1) program instructions are re-
quired to get close to uniform [Diaconis, 1988, page 28]
[Rosenthal, 1995]. In fact, for large N , it can also

be shown that, in general, convergence will take more
than 1

4 (N + 1)(log(N)− c2) instructions.

Using the upper bound and setting c1 ≥ 4 will ensure
we get sufficiently close to convergence. Since then
||µk − π|| ≤ 10%. I.e. random programs of length
1
4 (N + 1)(log(N) + 4) will be enough to ensure each
bit of the computer is equally likely to be set as to be
clear, regardless of the programs’ inputs. (Section 3.5
explains why c1 = 4 is sufficient.) Again in the limiting
distribution each state is equally likely.

Returning to our computer with 1 byte of memory,
programs with no more than 14 random instructions
are needed to ensure each state is equally likely.

Only m/(N + 1) bit flips actually effect the output, so
1
4 (N + 1)(log(m) + 4) random instructions will suffice
for the each of the 2m outputs to be equally likely (cf.
Section 3.5).

Assume s bits are shared by the input and output reg-
isters. We can construct a truth table for each pro-
gram. It will have 2s rows. (The non-overlapping
bits of the input register are discarded.) The zeroth
row gives the output of the program (in the range
0 . . . 2m − 1) when all s bits of the input register are
zero. Each bit of the row is equal to the number of
times the corresponding memory bit has been swapped
by the program, modulo two. Each of 2s−1 other rows
is determined by the zeroth row. I.e. the complete
table and hence the complete function implemented
by a program, is determined by its output with input
zero. Therefore 1) for large programs, each of the 2m

functions is equally likely and 2) the distribution of
functions converges with the distribution of outputs.
Finally the distribution of program fitnesses converges
at least as fast. However, since a given fitness function
need not treat each of the m output bits equally, its
limiting distribution need not be uniform and it can
converge faster.

This suggests 9 random instructions will be enough to
ensure the output of a 1 byte Boolean (i.e. one bit)
computer is random. Further that every Boolean fit-
ness function will also be close to its limiting distribu-
tion. Note this does not depend upon the number of
input bits n (although n cannot exceed 8 of course).

3.3 ANY COMPUTER

This section gives a quantitative upper bound on the
convergence of the distribution of outputs produced by
any computer which fits the general framework given
in Section 2.

The general Markov minorization condition [Rosen-
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thal, 1995] is fairly complex. Fortunately for this proof
(and Section 3.4) we can use a simplified special case.

Define Pij to be the probability that starting in state i
the next operation will take us to state j. (If j cannot
be reached from i in one move, then Pij = 0.) The
complete matrix P formed from all the Pij is known as
the transition matrix. A simple Markov minorization
condition is that there is at least one state which can
be reached from all the others in one step. That is,
there is at least one column of the transition matrix P
whose entries are all positive (not zero). Given this the
corresponding Markov chain converges geometrically
quickly [Rosenthal, 1995].

||µk − π|| ≤ (1− β)k

where
β =

∑
y=1..2N

min
x=1..2N

P (x, y)

I.e. β is the sum of the minimum values of the entries
in each column of P .

All fine and dandy, however, there are 2N elements
in each column of P but only a small number I of
possible instructions. Thus there will be at least 2N−I
elements in each column of P that are zero. Thus
β = 0. This does not mean that the Markov process
will not converge or even that it will take a long time.
It just means the simple application of a minorization
condition does not take us very far.

One way round this difficulty is to replace P by P k

in the minorization condition. This means, instead of
looking at the available state transitions if each of the
I instructions is used once, we consider the transitions
possible when they are used k times. For any given
state there are up to Ik states the FSM could be in
after k instructions. (Ignoring overlaps, each is equally
likely.) So if Ik ≥ 2N it is now possible that in at least
one column of P there will be no zero entries.

From the way that we constructed our computer, it is
possible, eventually, to move from the starting state s0

to any state y. Let a be the number of steps required.
This meets the minorization condition for P a. In fact
P a(s0, y) ≥ I−a > 0 ∀y. Therefore β ≥ I−a and so for
any computer:

||µk − π|| ≤ (1− I−a)bk/ac

Setting || · || to 10% yields a convergence length k for
any computer with I instructions k ≤ 2.3025851aIa.
Where a is the number of instructions to reach any
state. (a < 2N ).

3.4 AVERAGE COMPUTER MODEL

Suppose given any possible data in memory each of
the I instructions independently randomises it.

Thus for any state x P (x, y) = 0 or 1/I or 2/I
or . . . or I/I. Most elements of the transition ma-
trix P (x, y) will be zero but between 1 and I elements
in each column will be non zero. The chance of any
given P (x, y) being zero is (1− 2−N )I .

Consider two instructions chosen at random.
P 2(x, y) = 0, or 1/I2 or . . . or 2I/I2. The chance
of any given element of P 2(x, y) being zero is
(1− 2−N )2I .

For l instructions, each element of P l(x, y) will be a
multiple i (possibly zero) of I−l. The values of i will
be randomly distributed and follow a binomial distri-
bution with p = 1/2N , q = 1− p and number of trials
= IN . So the distribution of i’s mean is I l/2N and its
standard deviation is

√
I l × 1/2N × (1− 1/2N ). For

large I l the distribution will approximate a Normal
distribution. If I l � 2N , even for large 2N , practi-
cally all i will lie within a few (say 5) standard devi-
ations of the mean. I.e. the smallest value of i in any
column will be more than I l/2N − 5

√
I l × 1/2N . So

β will be at least 2NI−l(I l/2N − 5
√
I l × 1/2N ). I.e.

β ≥ (1− 5
√
I−l × 2N ).

Let α = 5
√
I−l × 2N . So β ≥ (1 − α). Next chose a

particular value of l so that α is not too small. E.g.
set α = 0.5 so β ≥ 0.5.

α = 5
√
I−l × 2N√

I−l × 2N = α/5
0.5(−l log I +N log 2) = log(α/5)

l =
−2 log(α/5) +N log 2

log I

Now we have a practical value of β we can use the
minorization condition on P l to give

||µk − π|| ≤
(

1− (1− 5
√
I−l × 2N )

)bk/lc
=

(
5
√
I−l × 2N

)bk/lc
= αbk/lc

Choosing a target value of ||µk − π|| of 10% gives:

αbk/lc ≥ ||µk − π|| = 0.1
bk/lc logα ≥ −2.3025851

k ≤ −2.3025851 l
logα

=
−2.3025851 (−2 log(α/5) +N log 2)

logα log I
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=
−2.3025851 (2 log 10 +N log 2)

− log 2 log I

k ≤ 15.298044 + 2.3025851 N
log I

(1)

Note this predicts quite rapid convergence for our ran-
domly wired computer. E.g. if it has 8 instructions
k ≈ 7 + N . That is for a one byte 8 random instruc-
tion computer programs longer than 16 will be close
to the computer’s limiting distribution.

Inequality (1) bounds the length of random programs
need to be to ensure, starting from any state, the whole
computer gets close to its limiting distribution. Again
we define parts of the memory as input and output
registers. Each program’s output is given by m output
bits.

Due to the random interconnection of states, on av-
erage we can treat each of the 2m states associ-
ated with the output register as projection of 2N−m

states in the whole computer, so Inequality (1) be-
comes k ≤ (15.298044 + 2.3025851 m)/log I. E.g. for
Boolean problems (m = 1). Only about 9 random in-
structions are need for an 8 random instruction com-
puter to have effectively reached the programs’ outputs
limiting distribution.

As in Section 3.2, we can construct a look up table for
a particular program which contains the value it yields
for each input. It will have 2n rows, each of which can
have one of 2m values. As in Section 3.2, the relation-
ship between each row is determined by the program.
However, the more powerful architecture means that
each row can have an apparently independent value.
So there are (2m)2n possible tables (and hence 2m×2n

possible functions). For a given input (i.e. row in the
lookup table) each output is equally likely. If each
row were independent then every complete table (and
hence each function) would be equally likely. A loose
argument says, we can fill the table by running k ran-
dom instructions and storing the output register in
the table. We then re-use the current contents of the
memory (first noting the contents of the input regis-
ter). We run another k random instructions. This
yields another random output value, which is effec-
tively independent of the first. This is stored in the
table row corresponding to the intermediate value of
the input register. It will take at least 2n such opera-
tions to fill the table but each row will be independent
and so each of the 2m×2n possible tables will be equally
likely. I.e. running O(2nm/log I) random instructions
will ensure each function is equally likely (cf. no free
lunch, NFL [Wolpert and Macready, 1997]). Finally
the distribution of program fitness’ will also have con-
verged by this point (though its distribution need not

be uniform and, for a specific fitness function, it may
have converged more quickly).

While such a random connection machine might seem
perverse, and we would expect it to be hard for a hu-
man to program, on the face of it, it could well be
Turing complete (taking into account its finite mem-
ory). However since it lacks any particular regularities,
we would anticipate random search to be as effective
as any other technique (such as genetic programming)
at programming it.

3.5 FOUR BOOLEAN INSTRUCTION
COMPUTER

This model is the closest to actual (linear) GPs. The
CPU has 4 Boolean instructions: AND, NAND, OR
and NOR. Before executing any of these, two bits of
data are read from the memory. Any bit can be read.
The Boolean operation is performed on the two bits
and a one bit answer is created. The CPU then writes
this anywhere in memory, overwriting what ever was
stored in that location before.

Note the instruction set is complete in the sense that,
given enough memory, the computer can implement
any Boolean function.

As before, we look at the distribution of memory pat-
terns that are produced by running all programs of a
given length, l, by considering a large number of ran-
dom programs of that length. I.e. programs with l
randomly chosen instructions.

Each time a random instruction is executed, two mem-
ory locations are (independently) randomly chosen.
Their data values are read into the CPU. The CPU
performs one of the four instructions at random. Fi-
nally the new bit is written to a randomly chosen mem-
ory location.

Now it considerably simplifies the argument to note
that the four instructions are symmetric. In the sense
that no matter what the values of the two bits read are,
the CPU is as likely to generate a 0 as a 1. That is,
each instruction has a 50% chance of inverting exactly
one bit (chosen uniformly) from the memory and a
50% chance of doing nothing. Thus we can update the
analysis in Section 3.2 based on [Diaconis, 1988, pages
28–30] and [Rosenthal, 1995].

||µl − π||2 ≤ 1
4

N∑
j=1

N !
j!(N − j)!

∣∣∣∣1− j

N

∣∣∣∣2l (2)

=
2
4

dN+1
2 e∑
j=1

N !
j!(N − j)!

(
1− j

N

)2l
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Figure 1: Convergence of outputs of random 3 bit
Boolean (AND, NAND, OR, NOR) linear programs
with different memory sizes. Note the agreement with
upper bound

√
1/2(exp(me−2l/N )− 1) (dotted lines).

<
1
2

∞∑
j=1

N j

j!
e−

2j
N l

||µl − π||2 ≤ 1
2

(
eNe

− 2
N l − 1

)
Requiring ||µl−π|| not to exceed 10% gives the upper
bound l ≤ 1

2N(log(N) + 4). That is, programs need
only be twice as long on this computer (which is capa-
ble of real computation) as on the simple bit flipping
computer of Section 3.2.

In this computer the chance of updating the output
register is directly proportional to its size. So the num-
ber of instructions needed to randomised the output
register is given by its size (m bits). But we need to
take note that most of the activity goes on the other
N −m bits of the memory. Therefore Inequality (2)
becomes

1
4

m∑
j=1

m!
j!(m− j)!

∣∣∣∣1− j

N

∣∣∣∣2l
which leads to l ≤ 1

2N(log(m) + 4). Figure 1 confirms
this.

On this computer, the output of a program given one
input is strongly related to its output with another
input. This means the loose lookup table argument of
Section 3.4 breaks down. The distribution of functions
does converge (albeit more slowly than the distribution
of outputs) but in the limit each of the 2m×2n possible
functions are not equally likely (see Figure 2). Detailed
modelling of this is left to further work.

How long it takes for a fitness distribution to con-
verge will depend upon the nature of the fitness func-
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Figure 2: Convergence of Even-3 parity fitness. Even
in the limit some functions are more common than
others. Longer programs are needed to achieve conver-
gence of functions than of outputs, (Figure 1, 8 bits)

tion. Once its function distribution has converged, the
fitness distribution must also converge. However, it
could require substantially shorter programs.

3.6 CONVERGENCE IN BIT STRING GAs

The bit flipping model (in Section 3.2) is very close
to standard mutation in bit string genetic algorithms
(GAs). The principle difference is in GAs the num-
ber of bits flipped follows a Poission distribution (unit
mean is often recommended [Bäck, 1996]). Thus 0.38
(rather than 1/(l + 1) ) of chromosomes are not mu-
tated and 0.26 (rather than zero) chromosomes have
two or more bits flipped. (In this section, the length of
the bit string chromosome is denoted by l.) Ignoring
these differences, it takes only 1

4 (l+ 1)(log(l) + 4) mu-
tations to scramble a chromosome from any starting
condition.

It is no surprise to find asymptotic bounds of O(l log(l))
reported before [Garnier et al., 1999], but note that
1
4 (l + 1)(log(l) + 4) is quantitative and does not re-
quire l→∞. Also it is a reasonably tight bound in
the sense that replacing “+4” by a modest negative
constant leads to a lower bound. However we include
this section mainly because the answer comes straight
from standard results without hard work.

Since each chromosome in a GA population is mu-
tated independently, the time taken to scramble an en-
tire GA population is scarcely more than to scramble
each of its chromosomes. Crossover makes the analysis
more complex but since it moves bit values rather than
changing them, we do not expect it to radically change
the time needed [Gao, 1998]. E.g. for a GA population
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of 32 bit strings, mutation alone (note we turn off se-
lection) will scramble it within about 61 generations.
(For standard mutation the value may be slightly dif-
ferent.) Notice this is independent of population size,
in contrast the number of generations taken by selec-
tion to unscramble the population depends on the size
of the population but not l [Blickle, 1996]. According
to [Bäck, 1996, Table 5.4] binary tournament selection
(without mutation or crossover) takes only 9 genera-
tions to remove all diversity from a population of 100.

4 APPLICABILITY

The results in Section 3 refer to specific types of com-
putation, nevertheless we feel they are useful, particu-
larly for common varieties of genetic programming.

The model does not cover programs that contain in-
structions that are executed more than once. I.e. no
loops or backward jumps. (Forward jumps are in prin-
ciple acceptable, as long as the number of executed
instructions remains large.) This is, of course, a big
restriction. However, many problems have been solved
by GP systems without such loops or recursive func-
tion calls [Banzhaf et al., 1998]. The difficulty for the
proofs is that, in general, repeating (a sequence of) ran-
dom instructions does not give, on average, the same
results as the same number of random instructions
chosen independently. (If the loop contains enough
random instructions to reach the limiting distribution
then the problem does not arise because the input to
the next iteration to the loop is already in the limiting
distribution and so will remain there.) Similarly, there
is no problem if the loop is followed by a large number
of random instructions.

While the proofs suggests that the program will halt
after l instructions, they can be made slightly more
general by extracting the answer from the output reg-
ister after l time intervals, allowing the program to
continue (or to be aborted). These have been called
“any time algorithms”. They have been used in GP,
e.g. [Teller, 1994].

The dominant factors in determining length required
for near convergence are the type of computer consid-
ered and the size of its (data) memory. The scaling
law is given by the type. Comparing the four types in
Section 3 suggests that the degree of interconnections
in the state space is the important factor. The ability
to move directly from one memory pattern to another
leads to linear scaling, while only being able to move
to 2 adjacent data patterns lead to exponential scal-
ing. We suggest that the “bit flipping” and “4 Boolean
Function” models are more typical and so we suggest

O(N logN) would be found on real computers.

Most computers support random access at the byte or
word level. This would suggest N should be the num-
ber of bytes or words in the data memory. However
then we would expect the individual bits in each byte
or word to be highly correlated, and so we would an-
ticipate the simple O(N logN) law would break down.
I.e. further random instructions will be required to ran-
domise them. This might result in a multiplicative
factor of 8 log 8 or 32 log 32 but this yields the same
scaling law ((8 log 8)N/8 logN/8 = O(N logN)) pos-
sibly with different numerical values.

Some linear GP systems write protect their inputs.
The proofs can be extended to cover this by viewing
the read-only register as part of the CPU (i.e. not part
of the data memory). Then we get a limiting distribu-
tion as before, but it depends on the contents of the
read-only register, i.e. the programs’ input. In general
we would expect this to give the machine a very strong
bias (i.e. an asymmetric limiting distribution) and in
some cases this might be very useful.

All of the calculations in Section 3 have been explicitly
concerned with the distribution of answers produced
by the programs and the functions implemented by
them. In principle we can use the Markov arguments
to consider the distribution of functions implemented
by the programs in other types of computer. The
Markov process now becomes a sequence of changes
in function. We start with the identity function and
the distribution of functions rapidly spreads through
the 2N

2N

functions. An obvious difficulty is that the
size of the transition matrixes increases exponentially
(from 2N × 2N to 2N

2N× 2N
2N

). This might lead to
an exponential (or worse) increase the upper bound
scaling laws.

The random computer (cf. Section 3.4) gives an in-
teresting model. Indeed it represents the average be-
haviour over all possible computers (of this type).

Finally an alternative view is to treat random instruc-
tions as introducing noise. Some instructions, e.g.
clear, introduce a lot of noise, while others e.g. NAND,
introduce less. So we start with a very strong, noise
free, signal (the inputs) but each random instruction
degrades it. Eventually, in the limiting distribution,
there is no information about the inputs left. Thus
the entropy has monotonically increased from zero to
a maximum.
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5 CONCLUSIONS

The distribution of outputs produced by all comput-
ers converges to a limiting distribution as their (linear)
programs get longer. We provide a general quantita-
tive upper bound (2.31aIa, where I is the number of
instructions and a is the length programs needed to
store every possible value in the computer’s memory,
Section 3.3). Tighter bounds are given for four types of
computer. There are radical differences in their con-
vergence rates. The length of programs needed for
convergence depends heavily on the type of computer,
the size of its (data) memory N and its instruction set.

The cyclic computer (Section 3.1) converges most
slowly, ≤ 0.35 22N , for large N . In contrast the bit flip
computer (Section 3.2) takes only 1

4 (N+1)(log(m)+4)
random instructions (m bits in output register). How-
ever in both, the distributions of outputs and of func-
tions converge at this same rate to a uniform limiting
distribution.

In Section 3.4 we introduced a random, model of com-
puters. This represents the average behaviour over all
computers (cf. NFL [Wolpert and Macready, 1997]).
It takes less than (15.3 + 2.3m)/ log I random instruc-
tions to get close to the uniform output limit. However
a less formal arguments suggests a multiplicative fac-
tor of 2n needs to be included before the distribution
of functions is also close its limit.

Section 3.5 shows the output of programs comprised
of four common Boolean operators converges to a uni-
form distribution within 1

2N(log(m) + 4) random in-
structions. The importance of the pragmatic heuristic
of write protecting the input register, is highlighted,
since without it there are no “interesting” functions in
the limit of large programs.

Section 3.6 shows the number of generations
( 1

4 (l + 1)(log(l) + 4)) needed for mutation alone to
randomise a bit string GA (chromosome of l bits).

Practical GP fitness functions will converge faster
than the distribution of all functions, since they typ-
ically test only a small part of the whole function.
Real GP systems allow rapid movement about the
computer’s state space and so appear to be close to
the bit flipping (Section 3.2) and four Boolean in-
struction (Section 3.5) models. We speculate rapid
O(|test set|N logm) convergence in fitness distribu-
tions may be observed.

It is ten years since Jaws 1, these are the first general
quantitative scaling laws on the space that genetic pro-
gramming searches. They provide theoretical support
for some pragmatic choices made in GP.
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Abstract

Much of the genetic programming literature
compares techniques using counts of ideal solu-
tions found. These counts in turn form common
comparison measures such as Koza’s Computa-
tional Effort or Cumulative Probability of Suc-
cess. The use of these measures continues de-
spite past warnings that they are not statistically
valid. In this paper we too criticize the mea-
sures for serious statistical problems, and also ar-
gue that their motivational justification is faulty.
We then present evidence suggesting that ideal-
solution counts are not necessarily positively re-
lated to best-fitness-of-run statistics: in fact they
are often inversely correlated. Thus claims based
on ideal-solution counts can mislead readers into
thinking techniques will provide superior final
results, when in fact the opposite is true.

1 INTRODUCTION

The best is the enemy of the good.
— Voltaire (1694–1778)

He who is determined not to be satisfied with
anything short of perfection will never do any-
thing to please himself or others.
— William Hazlitt (1778–1830)

The research methodology in the genetic programming
(GP) has many unusual features. Some of these features are
good. Some are not. But we tend to stick with the bad ones
out of inertia: we do it that way because others did. Sur-
prisingly, the literature does not have a large number of crit-
ics of the existing methodology. One notable exception is
Jason Daida, who has criticized poor random number gen-
erator usage [1997], evaluation and verification methodol-
ogy [1999a], and historical metaphors [1999b]. Paterson

and Livesey [2000] have decried the poor statistics behind
many claims, noting that many papers do no means testing
at all. Angeline [1996] has criticized the statistical reliabil-
ity of Koza’s Cumulative Probability of Success measure,
a criticism echoed in [Paterson and Livesey 2000].

Here we will continue the criticism of the popular Cumu-
lative Probability of Success and other measures based on
counting the number of ideal solutions discovered. There
are serious statistical flaws with such measures, but that
is not all. These measures also have questionable motiva-
tional philosophy, and most importantly, they are poorly
correlated with other more accepted measures of run qual-
ity in the evolutionary computation community.

This paper was born out of experiments for another pur-
pose: to test whether fitness might be improved and tree
size reduced by increasing the noise of a GP breeding op-
erator. The operator chosen was subtree crossover, and it
was made noisier through increasing the number of times
two parents were crossed over to create a child. Crossing
over more times does in fact decrease the mean tree size
by statistically significant amounts, but it also worsens the
best fitness of the run by a statistically significant margin.
But these experiments yielded another odd fact: ideal solu-
tion counts were not necessarily tied to fitness results, and
in some cases were inversely correlated with them.

The remainder of the paper will discuss common ideal-
solution count measures and their statistical weaknesses,
and question the motivational philosophy behind them.
Then the paper will present the evidence stemming from
these experiments. The paper then finishes with discussion
and recommendations.

2 A TALE OF TWO MEASURES

The non-GP evolutionary computation literature has tra-
ditionally compared techniques using the mean best fit-
nesses of a large (>30) sample of runs per technique, ac-
companied with so-called “best-so-far-curves” (plots of the
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mean best fitness discovered so far), plus a t-test1 or other
difference-of-means test. When generalizability is impor-
tant, the mean best fitness results are supplemented with
generalization ratings on a test set.

Koza [1992] presented a very different metric for comput-
ing the “quality” of an evolutionary procedure: how often
and how rapidly it discovered the ideal solution. From this
data were derived a variety of statistical metrics ultimately
computing how many individuals would need to be evalu-
ated before an ideal solution was expected to be found with
some probability.

Koza defined four dependent statistical measures, given as
follows. The instantaneous probability of success measure
Y (m, i) is the probability that a run with a population size of
m will discover an ideal solution for the first time on gen-
eration i. From this it is simple to determine P(m, i), the
cumulative probability of success, which is the probability
that a run will discover an ideal solution before or on gener-
ation i. Koza writes R(m, i,z) as the number of evolutionary
runs required to have a probability z = 99% of discovering
a solution before generation i. He defines this as

R(m, i,z) =

⌈

log(1− z)
log(1−P(m, i))

⌉

Sometimes this is shortened to just R(z). The individuals to
be processed measure I(m, i,z) is then defined straightfor-
wardly as I(m, i,z) = m(i + 1)R(m, i,z), at least for gener-
ational evolutionary procedures. The computational effort
measure E is the minimum of I(m, i,z) over all values of i.

Ideal-solution count measures have since taken root in the
GP community. Of these four, the two most common mea-
sures in the literature are Cumulative Probability of Suc-
cess, for which higher values are better, and its derived
measure Computational Effort, for which lower values are
better. We performed an informal survey of the genetic pro-
gramming and evolvable hardware non-poster papers in the
three GECCO conferences so far (1999, 2000, 2001). Of
these, 44 compared two or more techniques for solution
quality. Eighteen compared the mean best fitness of run
between techniques.2 Twelve instead used statistics based
on the number of ideal solutions discovered (most used the

1The validity of the t-test and ANOVA for GP were examined
in [Paterson and Livesey 2000]. As the t-test and ANOVA assume
normality, the authors had expected to find them wanting in the
GP realm, but astonishingly they significantly outperformed non-
parametric tests. Even so, the authors warned about the dangers of
relying too much on t-tests for the skewed distributions common
to GP. We agree! Still, we think that t-tests and ANOVAs should
at least be the bare minimum for means testing in GP.

2Of the eighteen experiments which used fitness curves to
compare techniques, only seven used good statistics. The other
eleven had sample sizes that were too small (much less than 30)
or unreported, or they did not indicate statistical significance re-
sults or variance information. One of us (Sean Luke) hastens to

Koza measures). Fourteen used a train/test methodology
borrowed from the machine learning community: typically
they measured how long it took to discover a perfect solu-
tion to a training set, then tested generalization ability.3

We feel there are three problems with ideal-solution count
measures. First, they rely on unacceptably poor statistics, at
least as generally practiced in the community, and to rem-
edy this would require a very large sample size. Second,
they are founded on, in our opinion, an unclear motiva-
tional philosophy. The third problem, and most troubling,
is that they appear to be uncorrelated with best-fitness-of-
run comparisons. These problems call a fair chunk of the
literature into question.

2.1 STATISTICAL PROBLEMS

Ideal solution count measures are statistically suspect.

First, the measures are based on a single point sample of
the number of ideal solutions and the generations in which
they were found. A point sample does not have a mean
test: there is no accepted procedure to state that two such
samples differ in a statistically significant way.

The point sample difficulty might be alleviated by doing
a large number of runs, then dividing them into at least
thirty piles, then counting the ideal solutions in each pile
and using the mean number of ideal solutions per pile as a
sample statistic. For Symbolic Regression this is feasible,
as a large number of runs end in perfect solutions. But for
many problem domains, ideal solutions are typically few
and far between. In this paper we gathered samples of five
hundred each, typically five to ten times the number found
in most of the experimental literature. And still, the ideal-
solution counts for the Artificial Ant and 11-Bit Boolean
Multiplexer were so small (at most sixteen and twelve re-
spectively) that dividing into piles was not doable.

Second, several of the measures are statistically dependent
across generations. For example, to truly compute statisti-
cally independent Cumulative Probability of Success mea-
sures for both generation 4 and for generation 8 would re-
quire two separate, independent samples.

Third, changes in the Individuals to be Processed mea-
sure and its derived Computational Effort measure are both
greatly exaggerated when small changes occur in ideal so-

note that he too has published papers with statistical difficulties,
though in his defense they were either corrected ([Luke and Spec-
tor 1997] fixed in [Luke and Spector 1998]) or openly acknowl-
edged and justified in the paper itself [Luke 2001b].

3As many machine learning algorithms are deterministic, they
do not require statistical mean tests. This is not true for stochastic
evolutionary computation algorithms: yet relatively few train/test
methodology papers in this survey presented statistical signifi-
cance results.
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lution counts. For example, note that the Computational
Effort in Figure 12 is a strongly nonlinear function of the
number of ideal solutions found, shown in Figure 10.

To overcome all the statistical problems detailed here
would require multiple independent samples across gener-
ations, plus dramatically larger sample sizes for the more
difficult domains. We feel these statistical flaws would be
forgivable only if ideal-solution counts were the only feasi-
ble way to compare techniques. But they are not.

2.2 MOTIVATIONAL PHILOSOPHY

The evaluation functions used in the assessment of a GP
individual’s fitness do not correspond well to a stated goal
of an ideal-solution end result. GP optimizes for as good a
fitness as it can get, not for increasing probability of attain-
ing the ideal. Many GP problem domains are highly de-
ceptive, leading the evolutionary trajectory away from the
ideal rather than toward it. Consider the Symbolic Regres-
sion domain: if the ideal solution is not found early on, and
the population has fixated on certain near-solutions, it will
continue to tack on code to the bottom of trees which can
make the solutions only incrementally fitter. Many Sym-
bolic Regression runs will ultimately generate very large
trees with solutions very close to the answer, but far (in
makeup) from anything remotely resembling the answer.

Given this, and given the statistical problems behind ideal-
solution count measures, what is the GP community’s mo-
tivational justification for using ideal-solution counts at all?
We believe that counts are popular because of a philo-
sophical conceit that GP operates over problem domains
which demand correct programs. More generally this can
be thought of as an absolute hard constraint on the desired
outcome: either the program works or it doesn’t work, and
a highly fit but suboptimal solution is not valuable. A term
peculiar to GP, “discovery”, reinforces this notion: either
GP “discovers” the answer, or it doesn’t.4

4In fact, though his influential text introduced the ideal-
solution count measures discussed in this paper, Koza couched
his support of this philosophy, writing:

“Several pages ago, when I spoke of writing a computer pro-
gram to center the cart in optimal time, you probably assumed that
I was talking about writing a correct computer program to solve
the problem. Nothing could be further from the truth. In fact, this
book focuses almost entirely on incorrect programs. In particular,
I want to develop the notion that there are gradations in perfor-
mance among computer programs. Some incorrect programs are
very poor; some are better than others; some are approximately
correct; occasionally, one may be 100% correct. Expressing this
biologically, one could say that some computer programs are fit-
ter than others in their environment. It is rare for any biological
organism to be optimal.” [Koza 1992, p. 130]

Regression 3 2 4 1 5 6 7 10 8 9

Multiplexer 2 1 3 4 5 6 7 8 9 10

Ant 2 1 4 6 3 5 7 8 9 10

Table 1: Statistical significance groupings for the mean
best-fitness-of-run for each problem domain, using the
Tukey post-hoc ANOVA test. Numbers indicate the num-
ber of crossovers for a given multi-crossover technique.
Techniques are ordered by increasing (poorer) mean best-
fitness-of-run. Bars connect techniques with statistically
insignificant differences in means among them. Note that
more crossovers generally results in worse mean best-
fitness-of-run. Compare to Figures 1, 5, and 9.

It is clear that there exist valid and important GP prob-
lem domains where discovery is of paramount importance.
However, we believe that many, and likely most, new prob-
lems in GP rarely require 100% correctness as a necessary
attribute. These problems include neural networks, molec-
ular structures, soccer softbot programs, probabilistic and
quantum algorithms, analog electrical circuits, etc. The
primary reason for this, we think, is that these new do-
mains are significantly harder and their optima are often
unknown. Discovering the optimum, and particularly dis-
covering it enough times to make statistical conclusions, is
a luxury usually reserved for only the simplest of problem
domains.

We are now out of the proof-of-concept period for GP. For
the technique to now be used realistically as a tool, we must
assume it will typically be used to attack hard problems for
which we do not know the optimum, do not expect it to dis-
cover the optimum, nor even know if there is an optimum.
An engineer would ask: if we already know the answer,
why bother to use GP to find it? What matters is not if tech-
nique A finds more perfect solutions than technique B does
to Easy Problem C. What usually matters is that technique
A gets a better answer than B does for Hard Problem D.
We submit that if one can “discover” the optimum enough
times to validly measure the performance of a technique
against a given problem domain, then we are dealing with
a toy problem.

If past literature used a weak methodology, we should dis-
continue its use. Nonetheless, we recognize that for those
problems which demand perfection, ideal-solution-count
statistics may have some usefulness. Later in this paper we
will recommend experimental protocols which may incor-
porate ideal solution counts as one part of a comprehensive
analysis. At the same time, we will propose an alternative
which we think provides more useful information.

GENETIC PROGRAMMING822



1 2 3 4 5 6 7 8 9 10
Number of Crossovers

0

0.5

1

1.5

2

2.5

3

B
es

tF
itn

es
s

of
R

un

Figure 1: Boxplots of the distribution of best-fitness-of-
run, by number of crossovers, Symbolic Regression do-
main. Lower fitness is better. Compare to Table 1.
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Figure 2: Number of ideal solutions found, by number of
crossovers, Symbolic Regression domain.

3 A TROUBLING LACK OF
CORRELATION

At first it seems intuitive that a system which searches bet-
ter for high-fitness solutions would also tend to find more
ideal solutions. An experiment gone awry shows us that in
fact this is not necessarily the case.

The experiment we performed applied what we call multi-
crossover to GP. Ordinarily GP crossover selects two indi-
viduals, and performs one swap of randomly-chosen sub-
trees, producing two children. If a child passes validity
constraints (such as maximal depth), it then enters the next
generation; otherwise a copy of the child’s mother enters
in its stead. Multi-crossover is simply a composition of GP
crossover operators: two parents are selected and crossover
is performed, including validity constraints. Then the chil-
dren become the “parents” for the next crossover operator,
which produces two new children. This happens N times,
then the final results enter the next generation.

We had two reasons for doing multi-crossover experiments.
First, some models of code bloat (our own depth-based
theory [Luke 2000], Defense Against Crossover [Banzhaf
et al. 1998], and Removal Bias [Langdon et al. 1999]) as-
sume that there is a single crossover per individual; hence
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Figure 3: Cumulative Probability of Success per genera-
tion, by number of crossovers, Symbolic Regression do-
main.
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Figure 4: Computational Effort by number of crossovers,
Symbolic Regression domain.

the probabilities of choosing crossover point A or B respec-
tively were not independent. While increasing the num-
ber of crossover events would not break this dependency, it
could lower the effect the dependency had in causing bloat.

Second, adding more nonhomologous crossover events
meant adding more variation (more noise) into the breed-
ing procedure. This gave us a dial to turn which would ef-
fectively change the amount that crossover “randomized”
individuals (an idea inspired by arguments made in [An-
geline 1997]). Would more randomization be beneficial or
detrimental to GP?

The experiments were done as follows. We ran for 51 gen-
erations, including the initial generation, using a population
of 500, and tournament selection of size 7. Multi-crossover
was the sole operator used. The three problem domains
chosen were Symbolic Regression, 11-Bit Boolean Mul-
tiplexer, and Artificial Ant. Symbolic Regression used
no Ephemeral Random Constants. Artificial Ant used the
Santa Fe Trail. All other run and problem domain param-
eters were done as stipulated in [Koza 1992]. The evolu-
tionary computation system used was ECJ [Luke 2001a].
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Figure 5: Boxplots of the distribution of best-fitness-of-
run, by number of crossovers, 11-Bit Boolean Multiplexer
domain. Lower fitness is better. Compare to Table 1.
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Figure 6: Number of ideal solutions found, by number of
crossovers, 11-Bit Boolean Multiplexer domain.

We performed ten different experiments, with multi-
crossover set to 1 through 10 crossovers respectively. Each
experiment consisted of 500 independent runs. This num-
ber of runs is much higher than is necessary to produce
best-fitness-of-run results, but we needed as many runs as
possible to feel at least partially confident in our ideal-
solution counts, and 15,000 total runs was the most we
could afford to do. For each problem domain we used box-
plots5 to plot best-fitness-of-run distributions for different
numbers of crossovers. We also plotted the number of ideal
solutions found, and the Cumulative Probability of Success
and Computational Effort measures.

3.1 SYMBOLIC REGRESSION RESULTS

Symbolic Regression did in fact lower tree size. But it did
so at the cost of a statistically significant worsening of fit-
ness, though only gradually: large swaths of crossover ex-
periments were in the same statistical equivalence class, as
shown in Table 1. Increasing the amount of noise in the
crossover procedure, thus moving the system more towards

5In a boxplot, the rectangular region covers all values between
the first and third quartiles, the stems mark the furthest individual
within 1.5 of the quartile ranges, and the center horizontal line
indicates the median. Dots show outliers, and × marks the mean.
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Figure 7: Cumulative Probability of Success per genera-
tion, by number of crossovers, 11-Bit Boolean Multiplexer
domain.
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Figure 8: Computational Effort by number of crossovers,
11-Bit Boolean Multiplexer domain.

random search, yielded worse results on average, using the
mean best-fitness-of-run measure as shown in Figure 1.

But one would not have known this from the ideal-solution
counts. As noise in crossover increased, the number of
ideal solutions increased rapidly from 150 per 500 runs
with a single crossover, to stabilizing at about 350 per 500
runs with seven crossovers or more, as shown in Figure 2.
This in turn resulted in an unexpected Cumulative Proba-
bility of Success curve, and a major decrease in Compu-
tational Effort as the number of crossovers increased, as
shown in Figures 3 and 4.

Symbolic Regression is the easiest of the three problem do-
mains presented: it finds the ideal solution very often (no
less than 30% of the time in these experiments). Thus our
counts were very high and the Cumulative Probability of
Success curve was very smooth.

This outcome was very disturbing. Were we to have used
ideal-solution count measurements as our basis of compar-
ison in this experiment, our conclusions wouldn’t just have
been uncorrelated with best-fitness-of-run results: they
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Figure 9: Boxplots of the distribution of best-fitness-of-run,
by number of crossovers, Artificial Ant domain. Lower fit-
ness is better. Compare to Table 1.
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Figure 10: Number of ideal solutions found, by number of
crossovers, Artificial Ant domain.

would have been the opposite. We would have concluded
that increasing number of crossovers does a better job.

3.2 11-BIT BOOLEAN MULTIPLEXER RESULTS

11-Bit Boolean Multiplexer was to yield another surprise.
First, it too lowered tree size, and like Symbolic Regres-
sion, it did so by statistically significantly worsening the fit-
ness results. Again, increasing the amount of noise yielded
worse results on average, when using the mean best-fitness-
of-run measure, as shown in Figure 5. This time, the fit-
nesses worsened rapidly, with few in the same statistical
equivalence class, as seen in Table 1.

Given its tendency to bloat like Regression does, we
fully expected Multiplexer to have similar ideal-solution
counts. But this was not quite the case. As the number
of crossovers increased, the number of ideal solutions in-
creased, but then it then decreased again. Multiplexer is a
relatively more difficult problem domain to find ideal so-
lutions in: thus we found no more than thirteen ideal so-
lutions in 500 runs, with the maximum peaking when we
applied five crossovers. The nadir was a single solution
discovered, when we applied nine crossovers, as shown in
Figure 6.
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Figure 11: Cumulative Probability of Success per genera-
tion, by number of crossovers, Artificial Ant domain.
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Figure 12: Computational Effort by number of crossovers,
Artificial Ant domain.

The Cumulative Probability of Success similarly followed
a bell curve distribution, as is shown in Figure 7. The
relatively low number of ideal solutions resulted in the
expected exaggerated swings in Computational Effort, as
shown in Figure 8.

Here, while a best-fitness-of-run measure would state
that increasing crossovers generally decreased quality, an
ideal-solution count measure would argue that increasing
crossovers somewhat (to five) made the result twice as
good.

3.3 ARTIFICIAL ANT RESULTS

Artificial Ant gave us yet another result. Again, it low-
ered tree size, and once again, it also did so by statisti-
cally significantly worsening the fitness results (Figure 9)
though like Symbolic Regression the results worsened only
slightly, resulting in large numbers of experiments in the
same statistical equivalence class (Table 1).

Figure 10 reveals that this time, the ideal-solution counts
followed the statistically significant fitness: increasing the
amount of noise decreased the number of ideal solutions
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discovered. As shown in Figure 11, the Cumulative Prob-
ability of Success followed a radically different curve than
was the case in Symbolic Regression. Like Multiplexer,
Artificial Ant discovers relatively few ideal solutions (no
more than sixteen out of 500). And like Multiplexer, this
exaggerates the Computational Effort results (Figure 12).

Here, as in Symbolic Regression, one would conclude on
the basis of the best-fitness-of-run measure that the mean is
getting just a little worse, though statistically significantly.
But here an ideal-solution-count measure suggests that in-
creasing the number of crossovers considerably worsens
the result.

4 WHAT’S GOING ON?

For all three problems, fitness gradually worsened as the
number of crossovers increased. But each problem yielded
a wildly different result in the ideal-solutions count, and
thus in the Cumulative Probability of Success and Compu-
tational Effort metrics. In short, the ideal-solution counts
were not correlated with the best-fitness-of-run measure.

We think the reason for this phenomenon is that, as shown
in Figures 1, 5, and 9, the number of ideal solutions is more
closely linked to the variance of — rather than the mean of
— the best-fitness-of-run distribution. As the variance in-
creases, fitness is increasingly scattered both up and down.
But there is a bound at zero (one cannot be better than per-
fect), whereas there is no bound on getting worse. Thus a
wider variance tends to rack up more perfect scores. This
trend is echoed in the data for all three problem domains,
although the ideal-solution counts in the Artificial Ant and
Multiplexer domains are low enough to make us wary about
making a pronouncement.

In the Symbolic Regression domain, the distributions are
skewed. As the number of crossovers increases, the mean
increases a little, but not nearly as much as the variance
does. Thus a worsening in the mean is not able to pre-
vent ideal solutions from piling up. In the Multiplexer do-
main, the mean worsens only a little initially but rapidly
at the end, while the variance generally increases steadily.
This allows the mean to lose to, then catch up with the
variance, which might explain the ideal-solution counts.
Lastly, the Artificial Ant domain’s mean worsens slowly
while the variance decreases, which can explain the steady
decrease in ideal-solution counts.

This combination of mean and variance has a closely re-
lated effect: even if low-variance technique A has a higher
expected value than high-variance technique B for a single
run, B can still have a higher expected best result of N inde-
pendent runs (Figure 13). This phenomenon was explored
in [Luke 2001b].

Figure 13: Example of two distributions which differ in
mean and in variance. While one sample from the flatter
distribution will give a lower expected result (the mean)
than the tall distribution, in this case the best of two or more
samples from the flatter distribution will give a higher ex-
pected result.

We will not venture a guess as to why increasing the num-
ber of crossovers changed the mean and variance results in
the way it did. We had expected that increasing the number
of crossovers would consistently increase the variance, but
clearly it does not.

Regardless of the outcome, we do not believe that these ex-
periments bode well for the body of GP literature which
relies on ideal-solution counts to compare the quality of
different techniques. We are concerned that upon reading
this literature, experimenters may mistakenly conclude that
certain techniques are better than others on average, when
in some cases better ideal-solution counts are actually in-
dicative of a worse result in mean best-fitness-of-run.

5 RECOMMENDATIONS

One downside to mean-best-fitness-of-run results is
demonstrated in the Symbolic Regression domain: tech-
niques which produce large, bloated trees that are function-
ally “close” to the ideal are given high marks, even though
the results do not remotely resemble our notion of what the
ideal individual ought to look like. Ideal-solution counts
can be somewhat useful here in weeding these pretenders
out. But given their statistical problems, we feel that ideal-
solution count results alone simply cannot be justified.

If such incrementalism is the critical sticking-point tempt-
ing an author to only report ideal-solution counts, we sug-
gest instead that the author produce results showing both
mean best fitness of run and mean tree size. If a tech-
nique is superior both in tree size and mean best fitness, it is
more difficult to argue that the improvements in mean best-
fitness-of-run are due to incrementalism, since this would
likely also increase tree size. Another approach would be
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to change the methodology to one showing generalization,
using training and testing sets. Incrementalism tends to re-
sult in solutions custom-tailored to the training set: such
poor generalizability would then show up when the final
solution is compared to the testing set.

If instead one were performing runs in a domain which de-
manded perfection, then it would obviously be useful to
know how often a technique was likely to find the ideal so-
lution. Another situation also commonly arises: trying to
beat an existing record, where it’s useful to know not if a
technique is likely to find the ideal, but whether or not it is
likely to find any solution better than the record. In these
situations we suggest that counts could supplement, but not
replace, the mean best-fitness-of-run results.

But for most cases we suggest a different point statistic
to use as a supplement. The procedure specified in [Luke
2001b] gives the expected maximum best-fitness-of-run for
N total runs. This procedure, like the ideal-solution-count
procedure, suffers statistically from the assumption that the
sample is exactly representative of the population, and from
its reuse of statistically dependent data. However, as a sup-
plement to mean best-fitness-of-run results, we think it is a
more useful metric than ideal solution counts in most cases.

The procedure is as follows. Perform a large number m runs
for a given technique T . Sort the runs by fitness and assign
ranks 1, ...,m to the runs, where rank 1 is the worst-fitness
run for the technique. Let F(r) be the fitness of the run
ranked r. Then if one were to perform N runs and return
the best run, the expected best fitness E(T,N) among those
N runs would be:

E(T,N) =

m
∑

r=1

F(r)
rN − (r−1)N

mN

This presumes that higher fitness values are better. Now
consider two techniques A and B, where beyond some point
N ≥C, E(B,N) is consistently greater than or equal to
E(A,N). Ideally, C would be 1. This would lend evidence
to the belief that not only is A better than B on average, but
it is also superior no matter how many runs you are likely
to perform. This gives strong weight to the claim that A
really is better than B. Further, it seems likely that if tech-
nique A finds many more ideal solutions than technique
B, that E(A,N) will surpass E(B,N) above some point N
where finding ideal solutions with A becomes sufficiently
common.

In any case, given their grievous statistical problems, we
strongly urge that an ideal solution count measures never
be used alone as proof that one technique is superior to
another, except under special circumstances and with the
appropriate disclaimers. If used at all, they should be only
used to bolster a more statistically viable fitness compari-
son procedure.

Last, we recommend that experimenters more closely adopt
difference-of-means tests (at least t-tests and ANOVAs),
and a reasonable sample size (30 at a minimum) in pub-
lished evolutionary computation experiments, or give justi-
fications for doing otherwise.

6 CONCLUSION

Many papers in the GP literature use ideal-solution counts
in one way or another, usually to compare the quality of
techniques. This notion was popularized by Koza’s Cumu-
lative Probability of Success, Individuals to be Processed,
and Computational Effort measures. This use continues de-
spite warnings that counts are poor estimates, as they are a
point statistic with no associated means test; as they make
assumptions about dependencies across generations; and as
they are exaggerated by small count sizes.

In this paper we reiterated this warning about counts, and
noted motivational concerns. Specifically, we noted that for
most “difficult” problems, the goal is to find as good a so-
lution as possible. Counting the number of times the ideal
solution is found does not help achieve this goal. Further,
if one can find the ideal reliably, then the problem is trivial.

We also demonstrated the disturbing fact that ideal solution
counts are not well correlated with mean best-of-fitness
measures. In fact, for some problem domains, we showed
that ideal solution counts may lead to the opposite conclu-
sion that mean best-of-fitness measures lead to. This begs
a reevaluation of much of the GP literature, as published
results may be dubious, and in some cases the opposite of
their intended meaning.
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Abstract

We introduce a technique called lexicographic
parsimony pressure, for controlling the signifi-
cant growth of genetic programming trees dur-
ing the course of an evolutionary computation
run. Lexicographic parsimony pressure modifies
selection to prefer smaller trees only when fit-
nesses are equal (or equal in rank). This tech-
nique is simple to implement and is not affected
by specific differences in fitness values, but only
by their relative ranking. In two experiments we
show that lexicographic parsimony pressure re-
duces tree size while maintaining good fitness
values, particularly when coupled with Koza-
style maximum tree depth limits.

1 INTRODUCTION

Like many arbitrary-sized representations in evolutionary
computation, genetic programming (GP) individuals tend
to grow significantly in size when no code growth counter-
agents are applied. This growth is relatively independent of
significant increases in fitness. The phenomenon, known in
GP circles as bloat, is shaping up to be a major impedi-
ment to GP’s scalability to more difficult problems which
necessitate longer evolutionary runs.

The chief way bloat is controlled in GP is through the
use of breeding restrictions stipulating the maximum depth
of a GP parse tree individual. Lately other approaches
have taken root, most popularly various forms of parsi-
mony pressure, where the size of an individual is taken into
consideration during selection. Parsimony pressure has to
date taken two basic forms: parametric parsimony pres-
sure, where an individual’s size directly changes its fitness,
and pareto parsimony pressure, where an individual’s size
is considered as an additional objective in a pareto opti-
mization scheme.

In this paper we present a new family of parsimony pres-
sure techniques which we think may be particularly apro-
pos to GP and other evolutionary systems with large num-
bers of fitness-equivalent individuals in a population. This
family is collectively known as lexicographic parsimony
pressure, and is based on the idea of placing fitness, then
size in lexicographic order; that is, preferring smaller indi-
viduals only when fitness is identical (or in some versions,
similar). Lexicographic parsimony pressure is simple to
implement, and it is less tied to the specific absolute fit-
ness values in the population than parametric techniques
are, much in the same way that tournament selection touted
over fitness-proportionate selection.

We open the paper with discussions of current bloat-control
techniques, followed by a description of lexicographic par-
simony pressure and variations we have tried. We then give
the results of an experiment showing that in most cases lex-
icographic parsimony pressure produces equivalent best-
fitness-of-run results with significantly smaller trees than
does depth restriction, except in the Symbolic Regression
domain, where it performs poorly. We then give the re-
sults of a second experiment where we show that combina-
tions of lexicographic parsimony pressure and depth limit-
ing work very well compared to depth limiting alone.

2 CONTROLLING BLOAT

The evolutionary computation community has tried a num-
ber of approaches to controlling the growth of arbitrary-
sized individuals. First and foremost are a number of parsi-
mony pressure techniques, which include consideration of
an individual’s size as part of the selection procedure. Ge-
netic programming has popularized some other techniques.
Below we list four such techniques, followed by a range of
parsimony pressure approaches.

Maximum Size or Depth Restriction This approach
simply limits the maximum size of an individual, usually
by rejecting large children as part of the breeding process.
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For example, much work in GP follows the technique used
in Koza [1992], which restricts modification operators to
produce new trees of depth less than 17.

Explicitly Defined Introns This GP-specific technique
allows the inclusion of special nodes which adapt the likeli-
hood of subtree crossover or mutation at specific positions
in the tree [Nordin et al. 1996].

Code Editing One easy way to attack growth is to di-
rectly simplify and optimize an individual’s parse tree.
Soule et al. [1996] for example report strong results with
this approach. However, Haynes [1998] warns that editing
can lead to premature convergence.

Pseudo-Hillclimbing This technique rejects children if
they are not superior to (or simply different from) their par-
ents in fitness. If a child is rejected from joining the next
generation, a copy of its parent joins the next generation in
its stead. One effect of this technique is to replicate large
numbers of parents into future generations; earlier individ-
uals are generally smaller than later individuals (hence the
bloat), this results in slower growth in average size. This
technique has been reported with some success in [Lang-
don and Poli 1998; Soule and Foster 1998b].

2.1 PARSIMONY PRESSURE

Unlike the techniques mentioned earlier, parsimony pres-
sure is not GP-specific and has been used whenever
arbitrary-sized representations tended to get out of hand.
Such usage to date can be divided into two broad cate-
gories: parametric parsimony pressure, where size is a di-
rect numerical factor in fitness, and pareto parsimony pres-
sure, where size is considered as a separate objective in a
pareto-optimization procedure.

Parametric Parsimony Pressure This includes size
metrics, along with raw fitness, as part of an equation in
computing the final fitness of an individual. For purposes of
the discussion, let f be the individual’s raw fitness, where
higher is better, and g be the fitness after parsimony pres-
sure is considered. Let s be an individual’s size, and let
a,b,c be arbitrary constants.

The most widely-used approach to parametric parsimony
pressure is to treat the individual’s size as a linear factor in
fitness, that is, g = a f − bs. This technique has been used
in both GP [Koza 1992] and in non-GP [Burke et al. 1998].
Soule and Foster [1998a] present an interesting analysis of
linear parsimony pressure and when and why it can fail.
Linear parsimony pressure is occasionally augmented with
a limit, that is if s� c then g = a f , else g = a f + b(c− s)
[Cavaretta and Chellapilla 1999]. Belpaeme [1999] used a

similar limit, but considered maximal tree depth rather than
size as the parameter. Nordin and Banzhaf [1995] also ap-
plied parametric parsimony pressure, believed to be linear,
to evolve machine language GP strings.

Linear parsimony pressure has been used in combina-
tion with adaptive strategies. Zhang and Mühlenbein
[1995] adjusted b based on current population quality. Iba
et al. [1994] propose a similar technique, except they use
information-theoretic functions for f and s. Linear par-
simony pressure has also been applied in stages: first by
setting g = f , then factoring in size only after the pop-
ulation has reached a sufficient quality [Kalganova and
Miller 1999]. Some non-GP papers [Wu et al. 1999; Bas-
sett and De Jong 2000] use a nonlinear parsimony pressure:
g = (1− as) f . Bassett and De Jong note that this has the
added feature of increasing the penalty proportionally to
the fitness.

The problem with parametric parsimony pressure is exactly
that: it is parametric, rather than based on rank. One must
tune the parsimony pressure so as not to overwhelm the
fitness metric. This can be difficult when the fitness as-
sessment procedure is nonlinear, as is usually the case: it
may well be that a difference between 0.9 and 0.91 in fit-
ness is much more significant than a difference between
0.7 and 0.9. Parametric parsimony pressure can thus give
size an unwanted advantage over fitness when the differ-
ence in fitness is only 0.01 as opposed to 0.2. Unexpected
strength in the size parameter can also arise when the pop-
ulation’s fitnesses are converging late in the evolution pro-
cedure. These issues are similar to those which gave rise
to the preference of tournament selection and other non-
parametric selection procedures over fitness-proportionate
selection.

Pareto Parsimony Pressure The recent trend in parsi-
mony pressure has been to treat it as a separate objective in
a nonparametric, pareto optimization scheme. Pareto opti-
mization is used when the evolutionary system must opti-
mize for two or more objectives at once, but it is not clear
which objective is “more important”. An individual A is
said to pareto-dominate another individual B if A is as good
as B on all objectives, and better than B in at least one ob-
jective. One pareto optimization scheme assumes that one
individual has a higher fitness than another if it dominates
the other. Another scheme bases the fitness of individuals
on the number of other individuals they dominate.

Pareto parsimony pressure treats raw fitness as one objec-
tive to optimize, and the individual’s size as another objec-
tive. One particularly enticing feature of pareto parsimony
pressure is that there is nothing to tune. Unfortunately,
the technique has so far had mixed results in the literature.
Some papers report smaller trees and the discovery of more
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ideal solutions [Bleuler et al. 2001; DeJong et al. 2001], but
tellingly they omit best-fitness-of-run results.1 Ekart and
Nemeth [2001] report the mean best-fitness-of-run, but it is
worse than when not using the technique.

3 LEXICOGRAPHIC PARSIMONY
PRESSURE

Lexicographic parsimony pressure is a straightforward
multiobjective technique for optimizing both fitness and
tree size, by treating fitness as the primary objective and
tree size as a secondary objective in a lexicographic order-
ing. The procedure does not assign a new fitness value,
but instead uses a modified tournament selection operator
to consider size.

To select an individual, two individuals are chosen at ran-
dom, and their fitnesses compared. If an individual has su-
perior fitness, it is selected. If the fitnesses are the same,
then sizes are compared, and the smaller individual is se-
lected. If both fitness and size are the same, an individual
is selected at random.

We think the procedure is attractive because it is based on
the relative rank of individuals in a population rather than
their explicit fitness values: thus specific differences in fit-
ness are immaterial. All that matters is that one fitness is
greater than another. Additionally, plain lexicographic par-
simony pressure has nothing to tune. However, the proce-
dure only works well in environments which have a large
number of individuals with identical fitness. As it so hap-
pens, genetic programming is just such an environment,
thanks to a large amount of inviable code (regions where
crossover has no effect) and other events causing neutral
crossovers and mutations.

Of course, there exist problem domains where few in-
dividuals have the same fitness. For these domains we
propose two possible modifications of lexicographic par-
simony pressure, both based on the notion of sorting the
population, putting it into ranked buckets, and treating each
individual in the bucket as if it had the same fitness. These
two modifications are:

Direct Bucketing The number of buckets, b, is speci-
fied beforehand, and each is assigned a rank from 1 to b.
The population, of size p, is sorted by fitness. The bottom
dp= be individuals are placed in the worst ranked bucket,
plus any individuals remaining in the population with the
same fitness as the best individual in the bucket. Then the
second worst dp= be individuals are placed in the second

1As we argue in an accompanying paper, ideal-solution counts
are a very poor measure of quality. Not only are they statistically
invalid, but in fact are not correlated, or as badly as inversely cor-
related, with mean best-fitness-of-run results.

worst ranked bucket, plus any individuals in the popula-
tion equal in fitness to the best individual in that bucket.
This continues until there are no individuals in the popu-
lation. Note that the topmost bucket with individuals can
hold fewer than dp= be individuals, if p is not a multiple of
b. Depending on the number of equal-fitness individuals
in the population, there can be some top buckets that are
never filled. The fitness of each individual in a bucket is set
to the rank of the bucket holding it. Direct bucketing has
the effect of trading off fitness differences for size. Thus
the larger the bucket, the stronger the emphasis on size as a
secondary objective.

Ratio Bucketing Here the buckets are proportioned so
that low-fitness individuals are placed into much larger
buckets than high-fitness individuals. A bucket ratio 1= r
is specified beforehand. The bottom d1= re fraction of indi-
viduals of the population are placed into the bottom bucket.
If any individuals remain in the population with the same
fitness as the best individual in the bottom bucket, they too
are placed in that bucket. Of the remaining population,
the next d1= re fraction of individuals are placed into the
next bucket, plus any individuals remaining in the popu-
lation with the same fitness as the best individual now in
that bucket, and so on. This continues until every mem-
ber of the population has been placed in a bucket. Once
again, the fitness of every individual in a bucket is set to the
rank of the bucket relative to other buckets. As the remain-
ing population decreases, the d1= re fraction also decreases:
hence higher-ranked buckets generally hold fewer individu-
als than lower-ranked buckets. Ratio bucketing thus allows
parsimony to have more of an effect on average when two
similar low-fitness individuals are considered than when
two high-fitness individuals are considered.

Both bucketing schemes fill the buckets with remaining
individuals equal in fitness to the best individual in the
bucket. The purpose of this is to guarantee that all indi-
viduals of the same fitness fall into the same bucket and
thus have the same rank. This removes artifacts due to the
particular ordering of the population. Bucketing schemes
require that the user specify a bucket parameter (either the
number of buckets or the bucket ratio). This parameter
guides how strong an effect parsimony can have on the se-
lection procedure. Note however that this parameter is not
a direct factor in fitness. Thus the specific difference in
fitness between two individuals is still immaterial; all that
matters is fitness rank.

We are aware of two papers in the literature which have
used variations on lexicographic parsimony pressure. Lu-
cas [1994] used a linear parametric function to evolve bit-
strings used in context-free grammars: but the size was
multiplied by a constant small enough to guarantee that
the largest possible advantage for small size was less than
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Figure 1: Boxplots of distributions of mean-tree-size-of-run for various parsimony pressure methods, as compared com-
pared to plain depth limiting (labeled D). Lexicographic parsimony pressure is labeled L. Direct bucketing is labeled B,
with the given number of buckets. Ratio bucketing is labeled R with the given ratio value.

the smallest difference in fitness. We believe the fitness
was then fed into a fitness-proportional selection operator.
In the pygmies and civil servants algorithm [Ryan 1994],
crossover is always between one “civil servant” and one
“pygmy”. A pygmy is selected using linear parsimony
pressure with a heavy weight for small size. A civil ser-
vant is selected using plain lexicographic selection. Both
papers mention parsimony advantages only in passing.

4 EXPERIMENTS

Like most parsimony pressure literature, we chose to com-
pare against the most popular technique for size restric-
tion, namely Koza-style depth limiting. We performed two
sets of experiments. The first experiment compared lexi-
cographic parsimony pressure against depth limiting. The
second experiment used lexicographic parsimony pressure
in combination with depth limiting.

The experiments used population sizes of 1000. Without
parsimony pressure, the depth ordered runs used plain tour-
nament selection with a tournament size of 2. We chose
four problem domains: Artificial Ant, 11-bit Boolean Mul-

tiplexer, Symbolic Regression, and Even-5 Parity. We fol-
lowed the parameters specified in these four domains as
set forth in Koza [1992]. Symbolic Regression used no
ephemeral random constants. Artificial Ant used the Santa
Fe food trail. Statistical significance was determined with
ANOVAs at 95%. The evolutionary computation system
used was ECJ 7 [Luke 2001].

As lexicographic ordering is influenced by likelihood of in-
dividuals having the same (or similar) fitness, it is useful
to note the features of these four problem domains in this
respect. Artificial Ant evolves trees to control an ant to
eat as many food pellets as possible within 400 time steps.
Fitness is simply the number of pellets, and the trail has
only 89 of them, so there are relatively few fitness values
an individual may take on. The 11-bit Boolean Multiplexer
and Even-5 Parity problems both require the individual to
learn a complex boolean function. 11-bit Boolean Multi-
plexer has integer fitness values ranging from 0 to 2048.
It is known that 11-bit Boolean Multiplexer has relatively
little inviable code, but most individuals’ fitnesses fall into
multiples of 32 or 64. Even-5 Parity has the fewest num-
ber of fitness values: only integer fitness values ranging
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Figure 2: Boxplots of distributions of best-fitness-of-run for various parsimony pressure methods, as compared compared
to plain depth limiting (labeled D). Lexicographic parsimony pressure is labeled L. Direct bucketing is labeled B, with the
given number of buckets. Ratio bucketing is labeled R with the given ratio value. Lower fitness is better.

from 0 to 33. Symbolic Regression asks trees to fit a real-
valued function within the domain [-1,1] but with any valid
range; thus individuals can take on any real-valued fitness.
However, Symbolic Regression suffers from a very large
amount of inviable code, so many individuals in the popu-
lation have the same fitness.

4.1 FIRST EXPERIMENT

The first experiment compared depth limiting against pure
parsimony pressure approaches. Specifically, the tech-
niques compared are:

� Lexicographic parsimony pressure with direct bucket-
ing, using 10, 25, 50, 100, 250, or 500 buckets.

� Lexicographic parsimony pressure with ratio bucket-
ing, using bucket ratios of 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,
1/8, 1/9, or 1/10.

� Plain lexicographic parsimony pressure.

� Depth limiting (to 17).

We did 50 runs per technique, and plotted boxplots2 show-
ing the distribution of the best fitness per run, and also of
the average tree size per run. Runs continued for 51 gen-
erations, and did not stop on the discovery of the optimum.
Results are shown in Figures 1 and 2.

In the Artificial Ant and Even 5-Parity problems, all parsi-
mony pressure techniques yielded statistically significantly
superior tree size results to depth limiting, and had statis-
tically insignificant differences in fitness, except for direct
bucket numbers of 10, 25, and 50 for Even 5-Parity, which
had worse fitness values. Small-numbered direct bucket-
ing yielded much better tree sizes. For Even-5 Parity, this
came at the cost of much worse fitness values. Artificial
Ant, there was no difference in fitness.

For 11-bit Boolean Multiplexer, all parsimony pressure
techniques had smaller mean tree sizes than depth limit-
ing, but only direct bucketing numbers of 10, 25, 50, and
100 had statistically significant differences. Similarly, all

2In a boxplot, the rectangular region covers all values between
the first and third quartiles, the stems mark the furthest individual
within 1.5 of the quartile ranges, and the center horizontal line
indicates the median. Dots show outliers, and × marks the mean.
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Figure 3: Boxplots of distributions of mean-tree-size-of-run for various parsimony pressure methods in combination with
depth limiting, as compared compared to plain depth limiting (labeled D). Lexicographic parsimony pressure is labeled L.
Direct bucketing is labeled B, with the given number of buckets. Ratio bucketing is labeled R with the given ratio value.

techniques had statistically insignificant differences in fit-
ness except for direct bucking numbers of 10, 25, and 50,
which had worse fitness.

The surprise came with Symbolic Regression. We had ex-
pected lexicographic parsimony pressure to yield poor tree
sizes in this domain relative to depth limiting, and it did.
But interestingly, bucketing also had poor tree sizes. Only
direct bucking with 10 buckets yielded statistically signifi-
cantly worse fitness than depth limiting.

Growth Curves For the Even-5 Parity problem, parsi-
mony pressure techniques generally held tree growth to a
standstill or began lowering tree sizes it by generation 30.
For Artificial Ant, this occurred by about generation 10.
In 11-bit Boolean Multiplexer, generation 40; most parsi-
mony pressure techniques were lowering tree sizes by then
as well. In Symbolic Regression, tree growth for all the
parsimony pressure techniques rose in a quadratic curve
similar to that found for unrestricted GP in this problem.
With depth limiting in all four problem domains, mean tree
growth continued to rise linearly.

Lexicographic parsimony pressure has an Achilles’ heel: if

GP can create incrementally better trees by tacking subtrees
onto their periphery, then lexicographic parsimony pressure
cannot act against it. As long as the trees are infinitesimally
better, size does not come into play. Symbolic Regression
has this property, and we had expected plain lexicographic
parsimony pressure to do badly in this domain. But we
were very surprised to see the poor performance of bucket-
ing approaches as well.

4.2 SECOND EXPERIMENT

If depth limiting did well compared to lexicographic parsi-
mony pressure in Symbolic Regression, and held its own
reasonably in 11-bit Boolean Multiplexer, we wondered
how the combination of the two techniques would fare.
Our second experiment compared the same techniques as
in the first experiment, but combined the parsimony pres-
sure techniques with depth limiting. Again, we did 50 runs
per technique. These results are shown in Figures 3 and 4.

This time, parsimony pressure plus depth limiting signifi-
cantly outperformed depth limiting alone. In the Symbolic
Regression, Artificial Ant, and Even-5 Parity problems, all
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Figure 4: Boxplots of distributions of best-fitness-of-run for various parsimony pressure methods in combination with
depth limiting, as compared compared to plain depth limiting (labeled D). Lexicographic parsimony pressure is labeled L.
Direct bucketing is labeled B, with the given number of buckets. Ratio bucketing is labeled R with the given ratio value.
Lower fitness is better.

applications of parsimony pressure plus depth limiting had
statistically significantly superior tree sizes when compared
to plain depth limiting. In the 11-bit Boolean Multiplexer,
this was also the case except for ratio buckets of size 1/5,
1/7, and 1/10, which had statistically insignificant differ-
ences with depth limiting.

As before, there were no statistically significant differences
in fitness in the Artificial Ant problem. Direct bucketing
with 10, 25, and 50 buckets yielded statistically signifi-
cantly worse fitness than depth limiting for the Even-5 Par-
ity and 11-bit Boolean Multiplexer problems. In the Sym-
bolic Regression problem, only direct bucketing with 10
buckets had statistically worse fitness than depth limiting.

Growth Curves In the Symbolic Regression and Even-
5 Parity problems, parsimony pressure plus depth limiting
flattened out tree growth by about generation 25. In the Ar-
tificial Ant problem, parsimony pressure plus depth limit-
ing dropped sizes after about generation 5, flattening out at
about generation 20. In the 11-bit Boolean Multiplexer, the
same techniques began slowly lowering tree sizes at about
generation 35.

5 CONCLUSIONS AND FUTURE WORK

In three of four problem domains, lexicographic parsi-
mony pressure and its variants (direct bucketing and ra-
tio bucketing, given reasonable parameter values) main-
tained the same mean best-fitness-of-run as did Koza-style
depth limiting, with equivalent or significantly lower mean
tree sizes. But in Symbolic Regression, where incremen-
tally larger trees are often (just barely) superior in fitness,
lexicographic techniques were practically helpless to stop
bloat. However, a combination of depth limiting and lex-
icographic parsimony pressure consistently outperformed
depth limiting in capping bloat, while maintaining statisti-
cally equivalent mean best-fitness-of-run values. Given its
simple implementation and general applicability, we hope
lexicographic parsimony pressure may prove a popular ap-
proach to bloat control. We plan to extend this work to
other techniques such as layered tournaments which al-
ternately consider fitness and size. We also plan to com-
pare directly to parametric parsimony pressure and pareto-
optimization-based methods in the future.
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Abstract

This paper analyses the effect of using different
random number generators (RNG) in a hardware
implementation of Genetic Programming using
Field Programmable Gate Arrays. Hardware sys-
tems have typically used RNGs based on Logical
Feedback Shift Registers or Cellular Automata.
Different configurations of these generators are
evaluated as well as using a source of true ran-
dom numbers and a standard multiply/add gener-
ator. The results show that using a more sophisti-
cated generator than a simple LFSR slightly im-
proves the performance of GP.

1 Introduction

Previous work [11] described an implementation of Ge-
netic Programming using a Field Programmable Gate Ar-
ray (FPGA) and a high level language to hardware compi-
lation system called Handel-C. Subsequent work [12] de-
scribed a pipelined implementation that improved the per-
formance and demonstrated that the technique could be
used to solve the artificial ant problem . In both cases the
work concentrated on the implementation issues and im-
proving the clock speed of the implementation, but put to
one side the performance of the system with respect to its
ability to solve GP problems. Now that the raw through-
put issues have been addressed it is time to look at how
good the hardware implementation performs, in particular
the effectiveness of the Random Number Generator (RNG)
used.

A comment often made about Genetic Programming and
other stochastic search methods is that a good random num-
ber generator is needed. The evidence so far is that the
quality of the RNG is probably not as important as often
stated. Nevertheless, it is important to consider the effect of

design decisions and to investigate alternatives where prac-
ticable.

In the hardware implementation of GP, the random num-
ber generator is implemented using a Logical Feedback
Shift Register (LFSR) which has a number of known weak-
nesses. This suggests that other random number generators
should be investigated. This paper begins with a brief de-
scription of the hardware GP system and Handel-C. This
is followed by a review of previous work on random num-
ber generation that has been implemented in hardware. We
then present an analysis of the pseudo random number gen-
erator used in the original design, and investigate other ran-
dom number generators. We finish with a discussion of the
results and draw some conclusions.

2 A Hardware Implementation of GP using
FPGAs

Implementing GP in hardware is motivated by the potential
speedups that can be obtained. The platform chosen is an
FPGA which is a reconfigurable logic circuit than can be
programmed to perform a wide range of logic functions. A
typical FPGA is arranged as an array of configurable logic
cells, input-output circuits and programmable interconnec-
tions. A typical FPGA architecture is shown in Figure 1.

Traditionally FPGAs have been programmed using hard-
ware design languages such as VHDL1, but an alternative
approach using high level language to hardware compila-
tion techniques has been developed, which allows a high
level imperative language to be used to generate the con-
figuration information for the FPGA. Handel-C is one ex-
ample of this technology, and has been used for the work
described in this paper.

1VHDL is a standard hardware design language. It stands
for VHSIC Hardware Design Language. VHSIC itself stands for
Very High Speed Integrated Circuit.
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Figure 1: Typical FPGA architecture. The CLBs are
the configurable logic blocks, IOBs are the Input Output
Blocks and the RAMs are on-chip Random Access mem-
ory blocks.

Handel-C is a high level language that is at the heart of a
hardware compilation system known as Celoxica DK1 [4]
which is designed to compile programs written in a C-like
high level language into synchronous hardware. The out-
put from Handel-C is a file that is used to create the con-
figuration data for the FPGA. A description of the process
used by Handel-C to transform a high level language into
hardware and examples of the hardware generated can be
found in [19]. The C-like syntax makes the tool appealing
to software engineers with little or no experience of hard-
ware. They can quickly translate a software algorithm into
hardware, without having to learn about VHDL or FPGAs
in detail.

2.1 Target Hardware

The target hardware for this work is a Celoxica RC1000
FPGA development board fitted with a Xilinx XCV2000E
Virtex-E FPGA having 43,200 logic cells and 655,360 bits
of block ram. The board also has a PCI bridge that commu-
nicates between the RC1000 board and the host computer’s
PCI bus, and four banks of Static Random Access Memory
(SRAM). Fast switches isolate the FPGA from the SRAM,
allowing both the host CPU and the FPGA to access the
SRAM, though not concurrently.

2.2 Program Representation

The lack of a stack in Handel-C means that a standard tree
based representation is difficult to implement because re-
cursion cannot be handled by the language. An alternative
to a tree representation is a linear representation which has
been used by others to solve some hard GP problems [18].
Using a linear representation, a program consists of a se-

quence of words which are decoded by the problem specific
fitness function.

2.3 Previous work using FPGAs in Evolutionary
Computing

A detailed review of previous work using FPGAs in Evolu-
tionary Computing can be found in [11].

3 Previous Work on Pseudo Random
Numbers for Genetic Programming and
Hardware

This section reviews the types of random number genera-
tors that have been used by hardware implementations of
GA, GP and other applications of hardware to probabilistic
algorithms.

Linear Feedback Shift Register (LFSR) or Tauseworth gen-
erators have been used by Maruyama et al [14]. In their
paper they referred to the generator as a m-sequence, or
maximal sequence. This means that the generator of length
n generates 2n

� 1 numbers. Graham [5] implemented a
single cycle LFSR.

An interesting hybrid approach was used by Tommiska and
Vuori [23] where three coupled LFSRs were used to pro-
vide a random sequence. An interesting feature of this
work is that the RNG was combined with a source of noise.
The amplified noise from a diode was fed into an analogue
to digital converter, and the resulting digital values were
used to seed the RNG, and also added to the LFSR at inter-
vals.

The manufacturers of FPGAs provide example designs of
LFSRs to be used as random sequence generators. For ex-
ample Xilinx [25], and Altera [2] provide Hardware Design
Language (HDL) code for LFSRs.

Aporntewan [3] used a one dimensional 2-state Cellular
Automata (CA). Shackleford et al [21] implemented a CA
based on the work by Wolfram [24].

In the field of GP, the behavior of GP and GAs has been
investigated using different RNGs. Meysenburg and Foster
considered the effect of different RNGs on GAs [16] and
GP [15]. Their conclusions were that there were no statis-
tically significant differences in the performance of GA or
GP when different RNGs were used.

4 Experimental setup

The performance of the various RNGs was evaluated using
three methods. Firstly, the Diehard test suite maintained
by Marsaglia [10] was used to gauge the general perfor-
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mance of the RNG. This suite consists of up to 15 tests that
are modeled on applications of random numbers. All the
RNGs considered in this paper were implemented in ISO-
C and were submitted to all 15 tests. The test method for
Diehard is similar to that described in Meysenburg and Fos-
ter [15]. Each RNG was used to generate a binary file of
about 10 MiB2. Each Diehard test produces one or more p-
values. A p-value can be considered good, bad, or suspect.
Meysenburg used a scheme by Johnson [6] which assigns
a score to a p-value as follows. If p� 0:998 then it is clas-
sified as bad. If 0:95 � p < 0:998 then it is classified as
suspect. All other p-values are classified as good. Every
bad p-value scores 4, every suspect p-value scores 2 and
good p-values score zero. For each RNG, the scores for
each test were summed, and the total for each RNG is the
sum of all the test scores for that RNG. Using this scheme,
high scores indicate a poor RNG and low scores indicate a
good RNG. The results for each test are given in Appendix
A.

Each RNG was then implemented using Handel-C and used
in the hardware implementation of the artificial ant prob-
lem [8][12]. In the hardware implementation the function
set differs from the standard example in only having two
functions: F = fIF_FOOD; PROGN2gwhere IF_FOOD
is a two argument function that looks at the cell ahead and
if it contains food it evaluates the first terminal, otherwise
it evaluates the second terminal. PROGN2 evaluates its
first and second terminals in sequence. The terminal set
T = fLEFT; RIGHT; MOVE; NOPg, where LEFT and
RIGHT change the direction the ant is facing, MOVE
moves the ant one space forwards to a new cell, and if
the new cell contains food, the food is eaten. NOP is a
no-operation terminal and has no effect on the ant but is in-
cluded to make the number of terminals a power of 2, which
simplifies the hardware logic. Each time LEFT; RIGHT or
MOVE is executed, the ant consumes one time step. The
run stops when either all the time steps have been used, or
the ant has eaten all the food. All the experiments use the
Santa Fe trail, which has 89 pellets of food. Each experi-
ment was run 500 times and the total number of 100% cor-
rect programs recorded. This is used as a measure of how
well the RNG performs. In all cases the population size is
1024, the maximum program length is 31 and all experi-
ments were run for 31 generations. The ant was allocated
600 timesteps. The probability of selecting crossover was
67%, mutation 10% and reproduction 23%. The crossover
operator used the truncating method of limiting the maxi-
mum program length, as described in [13].

Each RNG was also implemented as a stand alone appli-
cation for an FPGA using Handel-C, and the number of
slices used and the maximum attainable clock frequency

2The notation MiB indicates 220 (1048576) bytes. This paper
uses the binary prefixes from the NIST.[17]

was recorded. This gives a measure of the hardware re-
sources needed to implement the RNG, and also an indica-
tion of the logic depth required.

5 Random Number Generator
Implementations

5.1 LFSR RNG

Figure 2 shows a schematic of the LFSR used in this work.

bit32 bit3bit4bit5bit6bit 8 .. bit30bit31 bit1bit2

Direction of shift

bit7

Figure 2: Logical Feedback Shift Register Random Num-
ber Generator

The random number is read from the highest bits as re-
quired. The obvious weakness of this type of RNG is that
sequential values fail the serial test described by Knuth [7,
pp 55-56]. At any time step t there is a 50% probability that
the value at time t +1 can be predicted. If for an LFSR of
length n at time t the value is v, then at time t+1 the value
will be v=2 or v=2+2n�1. This is shown in Figure 3 where
pairs of values vt and vt+1 are plotted.
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v(
t)

v(t+1)

Figure 3: Serial test of a simple LFSR RNG

It can be seen that for any value vt there are only two pos-
sible values of vt+1. Though the random number generator
runs in parallel with the main GP machine, it is possible to
access sequential values when creating an initial program,
or when choosing crossover points. There is then a possi-
bility of a potentially degrading bias by using such an RNG.
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5.2 Multiple LFSRs

One method of obtaining better serial test results for the
LFSR of length n is to allow the LFSR to run for n cycles
before reading another number. Since this would limit the
rate at which random numbers could be generated in the
present design it is not explored any further. However, an
equivalent result can be obtained by implementing n LF-
SRs of length m and using a single bit from each LFSR at
each time step. This can also be done using a single long
LFSR of n�m bits, [22] effectively implementing n par-
allel LFSRs. However, implementing a long shift register
in a Xilinx Virtex FPGA is not efficient because the look
up tables can implement a 16 bit shift register very easily,
but longer shift registers require more extensive routing re-
sources.

The effect of using a better RNG was investigated by im-
plementing 32 16 bit LFSR machines that run in parallel,
and initializing each LFSR to a different value. Bit32 from
each LFSR is used to construct a 32 bit random number.
The serial test result is shown in Figure 4, which shows
the serial test result for 32 LFSRs is better than the single
LFSR. This generator is referred to as the 32LFSR.
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Figure 4: Serial test for an RNG using 32 parallel LFSRs

5.3 Cellular Automata RNG

Another popular RNG for hardware implementations is
based on Cellular Automata (CA). A one-dimensional (1D)
CA consists of a string of cells. Each cell has two neighbors
- left and right, or in some literature west and east respec-
tively. At each time step, the value of any cell c is given by a
rule. For this implementation, rule 30 is used, which states
that for any cell c at time t, ct+1 = ((westt +ct)� eastt),
where� denotes the exclusive OR function. In practice the
CA is implemented using a single 32 bit word, and for cell
0, its right-hand neighbor is cell 31, and similarly for cell
31 its left hand neighbor is cell 0. Figure 5 shows the result

of running this RNG using the serial test. As in the simple
LFSR RNG there is a distinct pattern to the numbers, but
for most values of vt there are several possible values for
vt+1. This generator is referred to as 1DCA.
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Figure 5: Serial test for a 1DCA RNG

5.4 Multiple CA generators

As in the case of the LFSR RNG, if several CAs are com-
bined, the results should be much better. For this test, 32
CAs were implemented, and by taking one bit from each
CA, a 32 bit random number can be generated. The serial
test appears to be much more random, as shown in Figure
6. Each CA is initialized with a different pattern. This gen-
erator is referred to as the 32CA
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Figure 6: Serial test for a 32CA

5.5 Standard C RNGs

Another frequently used RNG is the linear congruential
(LC) generator that is often found in implementations of
the standard C library. The general equation for these is
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I j+1 = (aIj + c) mod m, where a;c and m are constants
chosen to produce a maximal length RNG. However, as
pointed out by many authors (eg:[20]) these generators are
not good. Another factor against such a generator for im-
plementing in hardware is that it requires one addition,
one multiplication, and one modulus operator, which in
Handel-C would consume a large amount of silicon and
because of the deep logic produced, would be slow. An
alternative given by [20] avoids the modulus operator, and
is called the Even Quicker Generator (EQG). It is claimed
that this is about as good as any 32 bit linear congruen-
tial generator. Its equation is I j+1 = aIj + c, and values for
a = 1664525 and c = 1013904223 are suggested.

As a sanity check that the experimental method of ranking
the RNGs using Diehard was the same as that used by Mey-
senburg, the generator known as “the mother of all gener-
ators” was also implemented and run against the Diehard
suite. This is a multiply with carry generator and is de-
scribed by Marsaglia [9]. It was not implemented in the
hardware GP system.

5.6 Non random sequences

Until now we have considered pseudo random sequences.
These are sequences where it is hard to guess the next
number in a sequence. As an experiment, a further set of
runs were performed with an obviously non-random num-
ber generator. For this a sequential generator which gen-
erates the sequence n;n+ 1;n+ 2; : : : was used. Rather
surprisingly this also worked to produce 100% correct pro-
grams, though substantially fewer than the other generators
achieved.

5.7 Truly Random Sequences

All the RNGs considered so far are not true random se-
quences, relying on the manipulation of objects of finite
size, and so fail one or more of the Diehard battery of
tests. So a set of random numbers was obtained from a
source generated by using the atmospheric noise captured
by a radio receiver[1]. Each GP run for the ant problem
needs about half a million random numbers, so a block of
10 MiB was downloaded from www.random.org, and a ran-
domly selected 2 MiB block was transferred to one of the
SRAM on the FPGA system using DMA. The FPGA read
this block sequentially to get its random numbers.

As reported in [23], RNGs based on sampling a source of
noise are often slow, so they are not always applicable to
high speed systems.

6 Experimental Results

The results from running the Diehard tests are given in Ap-
pendix A and are summarized in Table 1. This shows the
total results for each test and ranks them according to the
Diehard score.

Table 1: Summary results of running the Diehard tests on
the RNGS.

RNG Score
Mother 20
True 22
32LFSR 162
EQG 288
32CA 640
CA 676
LFSR 756

The number of correct programs that were produced by
running the ant problem on the hardware using each ran-
dom number generator was recorded and is shown in Ta-
ble 2. The results are ranked according to how many cor-
rect programs were found and shows how each RNG per-
formed. The table also shows the slice count for the RNG
implemented using Handel-C and the maximum clock rate
as reported by the place and route tools. The slice count is
a vendor and device dependent measure of the number of
FPGA logic blocks that have been used. The clock rate is
an indication of the logic depth required to implement the
generator, with deeper logic having a greater gate delay,
and therefore a lower maximum clock rate. The slice count
and clock rate for the true RNG assumes that the source of
random numbers is supplied by an external device to the
FPGA, and that the FPGA simply reads the value from a
port and writes it to a register.

Table 2: Summary of GP performance for all random num-
ber generators tested from 500 runs of the artificial ant
problem

RNG Rank Correct Slice Clock
rate Fmax

(MHz)
32CA 1 82 284 105
True 2 81 6 >200
32LFSR 3 79 130 134
EQG 4 78 288 42
ID CA 5 78 22 125
LFSR 6 68 18 188
Sequential 7 39 21 155

GENETIC PROGRAMMING 841



7 Discussion

The score obtained by the Mother RNG was close to that
obtained by Meysenburg (19), the difference being ex-
plained by the fact that Meysenburg used the average of
32 runs using 32 different seeds, while the work described
here used only a single run. It is likely that using 32 dif-
ferent seeds, that different scores would be observed. This
confirms that the experimental method used for ranking the
RNGs using Diehard is comparable.

Despite the apparently serious deficiencies found in both
the simple LFSR used in the original implementation and
the simple one dimensional CA random number genera-
tor, the overall effect of implementing a more sophisticated
RNG on the overall GP performance appeared to be small.
This result generally agrees with the work by Meysenburg
and Foster [15], with the exception that they did not con-
sider a single-cycle LFSR or an obviously non-random gen-
erator. The single-cycle LFSR performs the least well of
the RNGs considered in this paper.

A surprising result was the emergence of programs when a
non-random sequence was used. Clearly a non-random se-
quence does not allow GP to operate as efficiently in terms
of producing 100% correct programs, presumably because
of the failure to explore some areas of the search space.

Despite the small differences in performance, from the re-
sults we can say that using a different RNG from the sin-
gle LFSR would improve the performance of the hardware
GP implementation by a measurable and therefore useful
amount, and that an RNG based on multiple LFSRs or mul-
tiple CAs would be a better choice for a hardware GP sys-
tem. The use of a truly random number source did not ap-
pear to improve performance over the 1DCA, 32CA and
32LFSR RNGs. This provides more evidence countering
the notion that GP needs a very high quality RNG.

Table 2 shows that the difference in GP performance be-
tween the 32CA, True, 32LFSR, EQG and 1DCA genera-
tors is small. However, these 5 generators have very dif-
ferent Diehard scores, so there does not appear to be a
straightforward relationship between the Diehard score and
the performance of GP. This raises a question about the role
that RNGs play in GP. Is a RNG that scores well in the stan-
dard tests for randomness the best RNG for GP?

When looking at the FPGA slice counts and maximum
clock rates, it is clear that the 32LFSR uses about half the
FPGA resources of the 32CA, and the 32LFSR exhibits a
smaller delay than the 32CA. As predicted, the EQG uses
the most FPGA resources and has very deep logic, mean-
ing that it can only run at a much slower rate than the other
generators. The EQG RNG could be re-implemented in the
FPGA using pipelines to achieve a higher clock rate, but

since it performed no better than the 32CA and 32LFSR,
this was not investigated any further.

Random numbers are used in several functions within a GP
system: Initial population creation, selection and crossover
point selection. In common with all reported GP systems,
the same RNG is been used for all these functions within
a run. From a practical point of view it would appear that
there is little point in using more than one type of RNG for
different functions, but from the result using a non-random
sequence a question arises about the role that random se-
quences play as opposed to sequences that simply enumer-
ate a set of numbers. From this it follows that different
stages in GP may use random number sequences in differ-
ent ways, and that using an enumeration may be helpful
when investigating the dynamics of GP.

8 Conclusions

The main conclusion from this investigation is that for the
hardware GP system, the simple LFSR used in the original
design can be improved upon by using a generator based on
multiple LFSRs, multiple CAs, or if available, a high speed
source of true random numbers. A secondary conclusion
is that with the exception of the non-random sequence and
the single LFSR, there is no significant difference in GP
performance when different hardware RNGs are used.
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Appendix A

Results of the Diehard Tests

This appendix contains the results of running the Diehard tests for all RNGs in this paper. Max score represents the case
where an RNG fails all the tests.

Table 3: Diehard test results for all RNGs considered in this paper.
Test Max

score
LFSR EQG 32LFSR IDCA 32CA True Mother

Birthday 36 36 8 2 0 8 0 0
Overlapping permutation 8 8 0 4 8 8 0 0
Binary Rank 32x32 8 8 2 8 2 6 0 0
Binary Rank 6x 104 104 40 8 140 70 4 6
Bitstream 80 80 0 0 80 80 4 0
Overlapping pairs tests 328 328 188 94 328 320 6 2
Count the ones (stream) 8 8 8 8 8 8 0 0
Count the ones (specific) 100 100 42 30 100 100 2 4
Parking Lot 44 4 0 0 4 2 0 0
Minimum Distance 4 4 0 4 4 4 0 0
3D spheres 84 4 0 2 4 2 4 4
Squeeze 4 4 0 0 4 4 0 0
Overlapping Sums 44 44 0 0 6 0 2 2
Runs 16 16 0 2 16 8 0 2
Craps 8 8 0 0 8 12 0 0
Total 876 756 288 162 676 640 22 20
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Abstract

This paper analyses the behavior of the crossover
operator in a hardware implementation of Ge-
netic Programming using Field Programmable
Gate Arrays. Three different crossover operators
that limit the lengths of programs are analysed: A
truncating operator, a limiting operator that con-
strains the lengths of both offspring and a limit-
ing operator that only constrains the length of one
offspring. The latter has some interesting prop-
erties that suggest a new method of limiting code
growth in the presence of fitness.

1 Introduction

Previous work has described an implementation of Ge-
netic Programming using a Field Programmable Gate Ar-
ray (FPGA) and a high level language to hardware com-
pilation system called Handel-C [6]. This was tested us-
ing the XOR and symbolic regression problems. Further
work described a pipelined implementation that improved
the performance and demonstrated that the technique could
be used to solve the artificial ant problem [7]. In both cases
the work concentrated on the implementation issues and in-
creasing the clock speed of the implementation, but put to
one side the study of the behavior of the system. Now that
the raw throughput issues have been considered it is time
to look at the behavior, and investigate and analyse some
alternative implementation issues.

Because of limited hardware resources in an FPGA and to
keep the design simple and therefore efficient, the maxi-
mum program size is fixed. To ensure that crossover al-
ways generates programs that are shorter than the maxi-
mum length, the crossover operator limits the program size
by truncating programs that exceed the maximum length.
The effect of this decision is investigated in this paper and
some other alternative methods of limiting program length

are explored.

The paper begins with a brief description of the implemen-
tation of a GP system using FPGAs. This is followed by
an analysis of the crossover operator, with comparisons to
standard tree based GP [3]. We then consider two alter-
native crossover operators and analyse their behavior. The
analysis is then discussed and finally some further work is
suggested and some conclusions are given.

2 A Hardware Implementation of GP using
FPGAs

Implementing GP in hardware is motivated by the potential
speedups that can be obtained. The platform chosen for
this work is a Field Programmable Gate Array (FPGA). An
FPGA is a reconfigurable device than can be programmed
to perform a wide range of logic functions. A typical FPGA
is arranged as an array of configurable logic cells, input-
output circuits and programmable interconnections, and is
shown in Figure 1.

Traditionally FPGAs have been programmed using hard-
ware design languages such as VHDL1, but alternative ap-
proaches using high level language to hardware compila-
tion techniques have also been developed, in which a high
level imperative language is used to generate the configu-
ration information for the FPGA. Handel-C [1] is one ex-
ample of this technology, and has been used for the work
described in this paper.

For a detailed review of previous work using FPGAs in
Evolutionary Computing refer to [6].

2.1 Target Hardware

The target hardware is a Celoxica RC1000 FPGA devel-
opment board fitted with a Xilinx XCV2000E Virtex-E

1VHDL is a standard hardware design language. It stands
for VHSIC Hardware Design Language. VHSIC itself stands for
Very High Speed Integrated Circuit.
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Figure 1: Typical FPGA architecture. The CLBs are
the configurable logic blocks, IOBs are the Input Output
Blocks and the RAMs are on-chip Random Access mem-
ory blocks.

FPGA having 43,200 logic cells and 655,360 bits of block
ram. The board also has a PCI bridge that communicates
between the RC1000 board and the host computer’s PCI
bus, and four banks of Static Random Access Memory
(SRAM). Fast switches isolate the FPGA from the SRAM,
allowing both the host CPU and the FPGA to access the
SRAM, though not concurrently.

2.2 Program Representation

Handel-C does not support a stack, which means that a
standard tree based representation is not straightforward
to implement because recursion is not supported by the
language. An alternative to a tree representation is a lin-
ear representation which has been used by others to solve
some hard GP problems, for example [8]. Using a linear
representation, a program consists of a sequence of words
which are interpreted by the problem specific fitness func-
tion. The hardware design uses a linear program repre-
sentation with a fixed maximum size. Choosing a fixed
maximum size made the storage of programs in on-chip
RAM and off-chip RAM efficient and simple to implement.
Consequently a method of limiting the program size dur-
ing crossover was needed. The first implementation used a
truncating crossover. This is compared to a second method
of limiting lengths, called the limiting crossover operator.

3 Analysis of the crossover operator

Two separate implementations were used for the analysis.
Firstly, a simple program that simulated the effects of GP
crossover was used to show the expected program length
distributions in the absence of fitness. We refer to this as
the GP simulator in this paper. Secondly, the hardware im-

plementation was used to obtain results both with and with-
out fitness. The test problem for all the experiments where
fitness is used is the artificial ant problem.

3.1 Artificial Ant

This popular test problem was originally described by Jef-
ferson [2] and in the context of GP by Koza [3]. It in-
volves finding a program for an ant-like machine that en-
ables it to navigate its way round a trail of food on a
32x32 toroidal grid of cells within a fixed number of time
steps. In the hardware implementation the function set dif-
fers from the standard example in only having two func-
tions: F = fIF_FOOD; PROGN2g where IF_FOOD is a
two argument function that looks at the cell ahead and if
it contains food it evaluates the first terminal, otherwise
it evaluates the second terminal. PROGN2 evaluates its
first and second terminals in sequence. The terminal set
T = fLEFT; RIGHT;MOVE; NOPg, where LEFT and
RIGHT change the direction the ant is facing, MOVE
moves the ant one space forwards to a new cell, and if
the new cell contains food, the food is eaten. NOP is a
no-operation terminal and has no effect on the ant but is in-
cluded to make the number of terminals a power of 2, which
simplifies the hardware logic. Each time LEFT; RIGHT or
MOVE is executed, the ant consumes one time step. The
run stops when either all the time steps have been used, or
the ant has eaten all the food. This test problem was chosen
because it is known to be a hard problem for GP to solve
[5].

All the results use the Santa Fe trail, which has 89 pellets of
food. Each experiment was run 500 times and the mean of
all the runs taken. Unless stated otherwise, the population
size is 1024, the maximum program length is 31 and all
experiments were run for 31 generations. The ant was allo-
cated 600 timesteps. The probability of selecting crossover
was 67%, mutation 10% and straight reproduction 23%.

3.2 Behavior Analysis

The measurement of overall GP behavior is frequently lim-
ited to plotting the mean population fitness vs. genera-
tion. This is shown for the artificial ant problem using the
hardware implementation in Figure 2 over 500 runs. This
will be used as a baseline when looking at changes to the
original design. However, when looking for the reasons
to explain why a feature of an operator or representation
has an effect, raw performance gives us a very restricted
view of what is happening, and more analytical methods
are needed. One such method is to consider one or more as-
pects of the internal population dynamics during a run. Re-
cently a lot of work has been done to develop exact schema
theories for Genetic Programming [10][11], which, among
other things, give us a description of the expected changes
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Figure 2: GP Performance of the artificial ant problem us-
ing a hardware GP system. Average of 500 runs.

in the program length distribution during a GP run. The
asymptotic distribution of program lengths is important to
us because it is a way of comparing the sampling behavior
(search bias) of different crossover operators and replace-
ment strategies.

Starting with the GP simulator with a uniform initial length
distribution and ignoring the effects of fitness, Figure
3 shows the expected length distribution for generations
0,1,10 and 31. In this case there is no maximum program
size. This agrees with the results in [11] where the distri-
bution asymptotically converges to a discrete Gamma dis-
tribution.

0
5

10
15

20
25

30
35

40
45

50

0 5 10 15 20 25 30

Nu
m

be
r o

f P
ro

gr
am

s

Program Length

Gen 0
Gen 1

Gen 10
Gen 31

Figure 3: Program length distribution for standard GP
crossover using a linear program representation, a global
replacement strategy, non-steady state without fitness.

3.3 Truncating Crossover Operator

This crossover operator ensures programs do not exceed
the maximum program length by selecting crossover points
in two individuals at random and exchanging the tail por-
tions up to the maximum program length. Crossovers that
result in programs exceeding the maximum length are trun-
cated at the maximum length. This crossover operator was
devised to minimize the amount of logic required and the
number of clock cycles needed. This is illustrated in Fig-

ure 4. For two programs a and b that have lengths la and

X1=1

X2=11

I

lb

Ia'

Ib'

Len=9

Len=12

Len=2

Len=16

Crossover

a

b

a'

b'

la

Figure 4: Truncating crossover operator

lb, two crossover points xa and xb are chosen at random
so that 0 � xa < la and 0 � xb < lb. The program size
limit is Lmax. After crossover the new lengths are l0

a =

min((xa+ lb�xb);Lmax) and l0

b =min((xb+ la�xa);Lmax).

When the GP simulator is modified to implement the trun-
cating crossover, the result is shown in Figure 5 without fit-
ness. The behavior of the hardware implementation using
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Figure 5: Program length distribution with truncating
crossover for standard GP without fitness.

the truncating crossover operator is shown in Figure 6. A
feature of these results is that there is initially a large peak
at the maximum program size of 31, but in subsequent gen-
erations the distribution tends to resemble a Gamma distri-
bution like the one in Figure 3. However, it is important to
note that it is not the same Gamma distribution, because the
mean program length tends to decrease with this crossover
operator. The reason is that with the truncation the amount
of genetic material removed from the parents when creating
the offspring may be bigger than the amount of genetic ma-
terial replacing it. The differences between Figures 5 and
6 are believed to arise because the simulator uses genera-
tional GP, while the hardware implementation uses steady
state GP.

When fitness is used, the length distribution changes as
shown in Figure 7, but it still retains some of the features
of a Gamma distribution. The striking feature is the large
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Figure 6: Program length distribution using truncating
crossover using a linear program representation without fit-
ness. From the hardware implementation.

peak at the maximum program length limit which repre-
sents nearly 10% of the total population.
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Figure 7: Program length distribution using truncating
crossover using a linear program representation with fit-
ness. From the hardware implementation.

3.4 Limiting Crossover Operator

An alternative method of ensuring that programs do not ex-
ceed the fixed limit is to repeatedly choose crossover points
until both programs are below the program size limit Lmax.
For two programs a and b, with lengths la and lb, two
crossover points xa and xb are chosen so that 0 � xa < la
and 0 � xb < lb. After crossover the new lengths are sim-
ply l0

a = xa + lb � xb and l0

b = xb + la � xa. If l0

a > Lmax

or l0

b > Lmax the selection of xa and xb is repeated until
l0

a � Lmax AND l0

b � Lmax.

This is the approach taken in lilgp (versions 1.02 and 1.1)
when the keep_trying parameter is enabled [12] to limit
the tree depth and the total number of nodes in a program
tree during crossover. When this crossover operator is im-
plemented in the GP simulator the program length distribu-
tion changes, as shown in Figure 8. A feature of this result
is that the mean program length moves towards smaller val-
ues. After 31 generations, the population size distribution
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Figure 8: Program length distribution using limiting
crossover operator and a global replacement strategy with-
out fitness.

shape resembles the one produced with standard GP.

When this method of limiting the program length was im-
plemented in the hardware version, we obtained the distri-
bution shown in Figure 9. In contrast to the GP simulator
the program length distribution remains reasonably static
between generations 1 and 31. In an effort to understand
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Figure 9: Program length distribution using limiting
crossover without fitness, from the hardware implementa-
tion.

the different behavior between the results in Figures 8 and
9 it was noted that the hardware implementation required
both of the offspring programs a0 AND b0 to be shorter than
Lmax but that the simulation only considered one offspring
at a time, effectively requiring a0 OR b0 to be shorter. The
latter case is referred to as the single-child variant in the
rest of this paper, and the original the dual-child variant. In
the case of the single-child variant, if one of the programs
was larger than the maximum, it was simply discarded and
the parent substituted in its place, and if both children were
larger than the limit, the two crossover points would be cho-
sen again. If both children were smaller than the limit, they
would both be available as candidates in the next gener-
ation. When the hardware implementation was modified
to incorporate the single-child variant limiting method, the
result shown in Figure 10 was obtained, closely matching
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that from the simulation. Again, the difference between
Figure 8 and Figure 10 is believed to be due to the use of
steady-state GP in the hardware implementation. When fit-
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Figure 10: Program length distribution using limiting
crossover without fitness and the single-child variant. From
the hardware implementation.

ness is enabled using the dual-child variant, there is a large
bias in favor of longer programs as shown in Figure 11.
An interesting artifact of this graph is the sharp rise in pro-
gram lengths for generations 10 and 31 above length 15.
This is likely to be due to the distribution of fitness in the
program search space and can be seen as a form of what
is commonly termed bloat. However, when the program
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Figure 11: Program length distribution using limiting
crossover with fitness and the dual-child variant. From the
hardware implementation.

length distribution using the single-child variant was plot-
ted, shown in Figure 12, the length distribution peaks at
around the mean of Lmax. This unexpected behavior is in-
teresting since it appears to have avoided the phenomenon
of bloat.

The effect of using the limiting crossover operator with and
without the single-child variant on the behavior of the sys-
tem is shown in Figure 13 together with the original be-
havior. This graph shows that all three crossover imple-
mentations have a similar rate of improvement, with the
limiting crossover operator with single-child variant maybe
performing slightly better on the ant problem.
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Figure 12: Program length distribution using limiting
crossover with fitness and the single-child variant. From
the hardware implementation.
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Figure 13: Comparative GP behavior of the hardware
implementation for the ant problem using truncating
crossover and limiting crossover.

Finally, the distribution of 100% correct program lengths
was measured for truncating and both limiting crossovers.
The hardware implementation was run 500 times, and if
a 100% correct program was generated, the length was
recorded. These are shown in Figures 14, 15 and 16 re-
spectively.

From these plots we can see that truncating crossover has
allowed GP to find more 100% correct programs than the
limiting crossover using the dual-child variant. However,
when using the single-child variant, limiting crossover
found the most 100% correct programs.

It is interesting to note that the results shown in Figure 13
do not obviously show this difference in the outcome, high-
lighting the weakness of using the standard measure of per-
formance.

The results shown in Figures 14,15 and 16 suggest that for
the artificial ant problem implemented in hardware, pro-
grams of length 4 or 5 are most likely to be correct. It
was then observed that the peak program length in Figure
12 was larger than length 4. From this it was conjectured
that if the maximum program length was reduced from 32,
moving the peak closer to the program length that occurred
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Figure 14: Distribution of lengths of 100% correct pro-
grams using the truncating crossover operator.
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Figure 15: Distribution of lengths of 100% correct pro-
grams using the dual-child variant limiting crossover op-
erator.

most frequently, that GP may find even more successful
programs. Two further experiments were therefore per-
formed using maximum lengths of 16 and 8. The results
of running the hardware implementation with these modi-
fied lengths is shown in Figures 17 and 18.

This confirmed the idea that, by limiting the program
lengths that GP is allowed to create, that GP produced
more 100% correct programs. The corresponding program
length distributions are shown in Figures 19 and 20. These
both have similar characteristics to Figure 12 and show that
the program length distribution peaks close to the peak of
the successful programs.

4 Discussion

The differences between the dual-child and single-child
variants can be explained by considering first the dual-
child case. Starting with a uniform distribution of program
lengths 0 < l � Lmax, the average program length is given
by Lavg =

Lmax
2 and the average crossover point is Lavg

2 . Ev-
ery crossover produces two offspring, the average length
of which is Lmax

2 , with one smaller and one larger program
produced. When one of the offspring exceeds Lmax both

0
20

40
60

80
10

0
12

0

0 5 10 15 20 25 30

Fr
eq

ue
nc

y

Program Length

Lengths of 100% correct programs

264 correct programs out of 500 runs

Figure 16: Distribution of lengths of 100% correct pro-
grams using the the single-child variant limiting crossover
operator.
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Figure 17: Distribution of lengths of 100% correct pro-
grams using the the single-child variant limiting crossover
operator and a length limit of 16

crossover points are re-selected until both programs satisfy
the length constraint. The result is that the average pro-
gram length using this crossover will remain Lmax

2 . How-
ever, in the single-child case, only one child needs to meet
the length constraint. With one long and one short off-
spring, the short offspring will be more likely to satisfy the
constraint and so be selected for propagation. Because the
shorter program is preferred, the mean program length will
tend to continually decrease. In summary, in the absence
of fitness, the single-child variant selects programs that are
on average smaller than Lmax

2 . In the presence of fitness
we believe that this pressure to decrease the mean program
length competes with the well documented tendency of GP
programs to grow in the presence of fitness. The result is
that when using the single length constraint and an upper
bound on the program length, the program length distribu-
tion does not have a strong bias to longer lengths.

A side effect of using the single child variant is that when a
long program is rejected, a copy of the parent is propagated
to the next generation. This means that even if crossover is
used as the only operator, a proportion of straightforward
reproduction will be present.
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Figure 18: Distribution of lengths of 100% correct pro-
grams using the the single-child variant limiting crossover
operator and a length limit of 8
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Figure 19: Program length distribution using limiting
crossover with fitness and the single-child variant. Maxi-
mum length limited to 16. From the hardware implementa-
tion.

A practical penalty of the limiting crossover approach
is that multiple passes may be required to obtain two
crossover points that satisfy the length constraints. De-
pending on the implementation this could have an impact
on the time needed to complete a GP run. In practice for
most problems the time required for crossover in a stan-
dard GP system is much smaller than the time for evaluat-
ing programs, and so will only extend the time required by
a small factor. In the hardware implementation, crossover
is performed in parallel with evaluation, so there will be
no impact for most problems where fitness evaluation takes
longer than selection and breeding. For the artificial ant
problem implemented in hardware, the limiting crossover
operators did not have any effect on the overall perfor-
mance of the design, both the clock speed and number of
clock cycles remained the same as the truncating crossover
implementation. It is worth noting that the single-child lim-
iting crossover will need fewer iterations to find a legal off-
spring, so this will have a smaller effect on the overall per-
formance.

The effect of adjusting the program length limit so that the
peak in the length distribution is closer to the peak of opti-
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Figure 20: Program length distribution using limiting
crossover with fitness and the single-child variant. Maxi-
mum length limited to 8. From the hardware implementa-
tion.

mal program lengths suggests that allowing programs to be
unlimited in length may be detrimental to using GP effec-
tively.

5 Further work

From the results in [10] we would expect similar behavior
when these techniques are applied to standard tree based
GP, and this is currently being investigated.

Other techniques have been suggested for controlling the
program size during evolution, such as the smooth oper-
ators [9], homologous and size fair operators [4] which
could also be adapted to a hardware implementation.

So far, only one problem has been analysed using the hard-
ware implementation of GP and to get a more complete
picture of the effects of the design decisions more problems
need to be implemented and analysed.

6 Conclusions

This analysis, based on measuring the program length dis-
tributions was prompted by the results from the work on
a general schema theory of GP. It has led us to an imple-
mentation of crossover that allows us to constrain the max-
imum program lengths. For the ant problem implemented
in hardware we have discovered a mechanism that avoids
the effects of unconstrained program growth, and indeed
allows us to obtain more correct programs.

In conclusion, all three crossover operators are effective
in the hardware implementation when applied to the arti-
ficial ant problem, with the single-child limiting crossover
performing ahead of the other two. The behavior of the
single-child limiting crossover in the presence of fitness is
interesting and suggests another mechanism for controlling
code growth.
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Abstract

In the last two years the schema theory for Ge-
netic Programming (GP) has been applied to the
problem of understanding the length biases of a
variety of crossover and mutation operators on
variable length linear structures. In these initial
papers, operators were studied in isolation. In
practice, however, they are typically used in var-
ious combinations, and in this paper we present
the first schema theory analysis of the complex
interactions of multiple operators. In particular,
we apply the schema theory to the use of standard
subtree crossover, full mutation, and grow muta-
tion (in varying proportions) to variable length
linear structures in the one-then-zeros problem.
We then show how the results can be used to
guide choices about the relative proportion of
these operators in order to achieve certain struc-
tural goals during a run.

1 Introduction

Most (if not all) Genetic Programming (GP) operators have
a variety of biases with respect to both the syntax and the
semantics of the trees they produce. These biases can work
against or in favor of the biases implied by the fitness func-
tion, which makes understanding these biases crucial to un-
derstanding the behavior of and relationships among the
various operators.

These interactions can be quite complex, however, and con-
sequently understanding them can be difficult. While there
is a considerable literature examining the interactions of
mutation and crossover in areas like Genetic Algorithms
(GAs), there is much less reported work on the interactions
of operators in GP. Notable exceptions include the work
of O’Reilly [10], Banzhaf, et al [1], and Luke and Spec-
tor [5, 6, 4]. These studies are primarily experimental in

nature, and all suggest that understanding operator interac-
tions is difficult. It would thus be useful to have a theoreti-
cal approach to these problems that might allow us to better
understand operator interactions, and choose combinations
of operators in a more principled manner.

In the last few years work on schema theory for GP has
made huge progress, generating not only an exact the-
ory, but also one applicable to a variety of operators used
in practice, including: one-point crossover [12, 14, 11,
13], standard and other subtree-swapping crossovers [14,
16, 7], different types of subtree mutation and headless
chicken crossover [15, 8], and the class of homologous
crossovers [17].

In [16, 7] we showed how these recent developments in GP
schema theory can be used to better understand the biases
induced by the standard subtree crossover when genetic
programming is applied to variable length linear structures.
In particular we showed that subtree crossover has a very
strong bias towards oversampling shorter strings and, in
some senses, works against bloat. In [15, 8] we derived ex-
act schema equations for subtree mutation on linear struc-
tures, using both the full and grow methods to generate the
new, random subtrees. Iterating those equations on both a
flat fitness landscape and a needle-in-a-haystack style prob-
lem, called the one-then-zeros problem, we showed that
both of these subtree mutation operators have strong biases
with regard to the population’s length distribution. Similar
to the bias of subtree crossover, we found that these muta-
tion operators are strongly biased in favor of shorter strings
in both these fitness domains.

In this paper we combine the schema theory for different
operators and apply them to the problem of better under-
standing the behavior produced by their interaction. Study-
ing these complex interactions is particularly easy using
the schema formalization because we can simply use a
weighted sum of the schema equations generated for each
operator in isolation. We also show how the theory can be
used to design competent GP systems by guiding the choice

GENETIC PROGRAMMING 853



of combinations of operators together with their parameter
settings.

The work reported here is all on GP with linear structures
(not unlike those used in, e.g., [9, 2]), although the schema
theory on which it is based is much more general. We have
chosen in these applications to focus on linear structures
because the theoretical analysis is more manageable and
the computations are more tractable. This has yielded a
number of important results for the linear case, and prelim-
inary results further suggest that many of the key ideas here
are also applicable (at least in broad terms) to the non-linear
tree structures typically used in GP.

In Sec. 2 we will introduce the schema theorem for GP us-
ing linear structures, standard crossover and mutation, and
we will show how easily the theory for different operators
can be combined. We then apply the theory in Sec. 3 to
the one-then-zeros problem and use the theory to both pre-
dict and better understand the changes in the distribution of
fit individuals and of sizes (Sec. 4). We finish with some
conclusions and ideas for future research (Sec. 5).

2 Schema theory for GP on linear structures

2.1 Operators

In this paper we will consider three common GP operators:
the standard subtree-swapping GP crossover operator, and
the full and grow mutation operators. Each operator acts by
removing a non-empty suffix of an individual and replacing
it with a new suffix, with the production of that suffix being
the primary difference between the operators.

More formally, in a linear-structure GP where F is the
set of non-terminal nodes and T is the set of terminal
nodes, individuals can be seen as sequences of symbols
c0c1 : : : cN�1 where ci 2 F for i < N � 1 and cN�1 2 T .
Each of the operators, then, starts by removing a non-empty
suffix cjcj+1 : : : cN�1 (where j is chosen uniformly such
that 0 � j < N ) and replacing it with a new non-empty
string.1

In the case of crossover, the new string is taken to be a
suffix dj0dj0+1 : : : dN 0

�1 of another parent d0d1 : : : dN 0
�1,

where j0 (which could differ from j) is chosen uniformly
such that 0 � j

0
< N

0.

1The requirement that suffixes be non-empty while prefixes
are allowed to be empty comes from standard practice in GP. It
does, however, create a number of mild but annoying asymmetries
which often clutter up the analysis (see, e.g., [18]).

Both full and grow mutation generate the new suffix ran-
domly, and they differ in how the new random subse-
quences are generated, and in particular how their sizes are
determined. In full mutation, the subsequence has a spec-
ified length D; thus non-terminals are selected uniformly
from F until length D � 1 is reached, at which point a ter-
minal is selected uniformly from T . In grow mutation, on
the other hand, one chooses from the set of all functions
and terminals every time, only terminating the creation of
the subsequence when a terminal is chosen; thus for grow
mutation there is no a priori limit on the size of the result-
ing sequences.

2.2 Schema theory definitions

In this section we will present a series of crucial definitions
that allow us to represent schemata, and count and build
instances of schemata.

Just as we defined a linear GP structure to be a sequence
of symbols, we will also define a linear GP schema as
the same kind of sequence c0c1 : : : cN�1 except that a new
“don’t care” symbol ‘=’ is added to both F and T .2 Thus
schemata represent sets of linear structures, where the po-
sitions labelled ‘=’ can be filled in by any element of F (or
T if it is the terminal position). A few examples of schema
are:3

� (=)N : The set of all sequences of length N .

� 1(=)a: The set of all sequences of length a+1 starting
with a 1.

� 1(0)a: The singleton set containing the symbol 1 fol-
lowed by a 0’s.

Now that we can represent schemata, we present a series of
definitions that allow us to count instances of schemata.

Definition 1 (Proportion in population) �(H; t) is the
proportion of strings in the population at time t matching
schema H . For finite populations of size M , �(H; t) =

m(H; t)=M , where m(H; t) is the number of instances of
H at time t.

Definition 2 (Selection probability) p(H; t) is the proba-
bility of selecting an instance of schema H from the pop-
ulation at time t. This is typically a function of �(H; t),
the fitness distribution in the population, and the details

2This new ‘=’ symbol plays a role similar to that of the ‘#’
“don’t care” symbol in GA schema theory. For historical reasons,
however, ‘#’ has been assigned another meaning in the more gen-
eral version of the GP schema theory [14].

3We will use the superscript notation from theory of computa-
tion, where xn indicates a sequence of n x’s.
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of the selection operators. With fitness proportionate se-
lection, for example, p(H; t) = �(H; t) � f(H; t)=f(t),
where f(H; t) is the average fitness of all the instances of
H in the population at time t and f(t) is the average fitness
in the population at time t.

Definition 3 (Transmission probability) �(H; t) is the
probability that an instance of the schema H will be con-
structed in the process of creating a new individual for the
population at time t+1 out of the population at time t. This
will typically be a function of p(K; t), the various schemata
K that could play a role in constructing H , and the details
of the various recombination and mutation operators being
used.

Definition 4 (Creation probability) �mut(H; t) is the
probability that some GP subtree mutation operator will
generate a new, random subtree that is an element of the
schema H in generation t.

To clarify which operator we are working with, we in-
troduce specialized forms of the transmission probability
function �, namely �xo for the transmission probability due
specifically to crossover, �FULL for the transmission prob-
ability due specifically to subtree mutation using the full
method, and �GROW for the transmission probability due
specifically to subtree mutation using the grow method.

We can now model the standard evolutionary algorithm as
the transformation

�(H; t)
select
�! p(H; t)

mutate
XO
�! �(H; t)

sample
�! �(H; t+ 1):

Here the arrows indicate that some new distribution (on
the RHS of the arrow) is generated by applying the speci-
fied operation(s) to the previous distribution (on the LHS).
So, for example, the process of selection can be seen as a
transformation from the distribution of schemata �(H; t) to
the selection probability p(H; t). A crucial observation is
that, for an infinite population, �(H; t + 1) = �(H; t) for
t � 0, which means we can iterate these transformations
to exactly model the behavior of an infinite population over
time.

To formalize the creation of instances of a linear schema
H = c0c1 : : : cN�1 we define

u(H; i; k) = c0c1 : : : ci�1(=)
k�i

l(H; i; n) = (=)n�N+i
cici+1 : : : cN�1

Here u(H; i; k) is the schema of length k matching the left-
most i symbols of H , and l(H; i; n) is the schema of length
nmatching the rightmostN�i symbols ofH .4 The impor-
tant property of u and l is that if one uses standard crossover

4
u and l are based on operators U and L (see, e.g., [14])

which match the upper and lower parts of general, non-linear, GP
schemata.

to crossover any instance of u(H; i; k) at position i with
any instance of l(H; i; n) at position n � N + i, the re-
sult will be an instance of H , provided5

k + n > N , and
0 " (N � n) � i < N # k. Further, these are the only
ways to use standard crossover to construct instances ofH ,
so these definitions fully characterize the mechanism for
constructing instances of H .

2.3 The schema theorem

[7, 8] provide schema theorems for each of our three opera-
tors when used in isolation. Here we extend these results to
the case where all three operators can be used in the same
run, each with specified proportions. Since we use exactly
one operator to generate any given individual, the probabil-
ity that we construct an instance of a schema (i.e., �(H; t))
is simply the sum of the probabilities of each specific op-
erator constructing such an instance, each weighted by the
likelihood of choosing that operator. This leads to the fol-
lowing:

Theorem 1 (Schema theorem for combined operators)
For GP on linear structures using standard crossover with
probability pxo, full mutation with length D and probability
pFULL, and grow mutation with probability pGROW, such that
pxo + pFULL + pGROW = 1, we have

�(H; t) = pxo � �xo(H; t)

+ pFULL � �FULL(H; t) + pGROW � �GROW(H; t)

where

�xo(H; t) =
X
k>0
n>0

k+n>N

� 1

k � n

�
X

0"(N�n)�i<N#k

p(u(H; i; k); t)

�p(l(H; i; n); t)
�
;

�FULL(H; t) =
X
k>0

0�i<N#k

�
1

k
� p(u(H; i; k); t)

� �FULL(cici+1 : : : cN�1)

�

�GROW(H; t) =
X
k>0

0�i<N#k

�
1

k
� p(u(H; i; k); t)

� �GROW(cici+1 : : : cN�1)

�
;

and q = jFj=(jFj+ jT j).

5We will use " as a binary infix max operator, and # as a binary
infix min operator.
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Due to space restrictions we simply report the general ex-
pressions for the quantities �xo, �FULL, and �GROW for the
linear case without providing any proofs. The interested
reader can find these, together with extensive characteriza-
tions of the behavior of crossover and mutation when used
separately, in [7, 8].

3 The one-then-zeros problem

We will now apply the Schema Theorem to the one-then-
zeros problem. We will start by defining and motivating the
problem, and then show how the schema theorem can be
used to better understand the effects of multiple operator
interaction on this problem.

3.1 One-then-zeros problem definition

In this problem we have F = f0; 1g and T = f0g, where
both 0 and 1 are unary operators. This gives us a prob-
lem that is essentially equivalent to studying variable length
strings of 0’s and 1’s, with the constraint that the strings
always end in a 0. Fitness in this problem will be 1 if the
string starts with a 1 and has zeros elsewhere, i.e., the string
has the form 1(0)a where a > 0; fitness will be 0 otherwise.

One of the reasons for studying this problem is that un-
der selection and crossover this problem induces bloat [7],
whereas this does not happen when using the full and grow
mutation operators [8]. The key advantage of this prob-
lem is that in order to fully and exactly describe the length-
evolution dynamics and the changes in solution frequency
of infinite populations, it is necessary to keep track of only
two classes of schemata: those of the form (=)N and those
of the form 1(0)a. Unfortunately most problems are not so
restricted, and one is typically forced to track the propor-
tion of many (possibly intractably many) more schemata.

3.2 Analyzing one-then-zeros

To apply the schema theorem to the one-then-zeros prob-
lem one needs to calculate the probabilities �xo, �FULL, and
�GROW for both of the schema (=)N and 1(0)a, and the
probabilities �FULL and �GROW for both of the schema 1(0)a

and (0)a. These can be calculated from the equations re-
ported above and are also provided in explicit form in [7, 8],
so we will not re-derive these results here.

If we assume an infinite population, we can numerically
iterate the equations in the Schema Theorem to better un-
derstand the behavior of an infinite GP population on this
problem. Tracking these distributions over time becomes
expensive in terms of computational effort.6 A crucial

6We have found, though, that ignoring values of � below some
small threshold (we have used 10

�10) seems to have little impact
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Figure 1: The distributions of lengths after 50 generations when
using the three recombination operators individually on the one-
then-zeros problem. The tail of the crossover distribution contin-
ues past the right hand side of the graph, with lengths above 300
still having proportions above 10�10 .

point, though, is that these equations only need to be run
once, and have no stochastic effects. They are exact cal-
culations of the relevant quantities (up to the limitations
of the floating point representation), and once computed
need never be computed again. This is in contrast to typical
empirical results in evolutionary computation, where com-
binations of large populations and multiple runs are nec-
essary to smooth out the stochastic effects, and even then
there is no guarantee that any two sets of runs will have
similar behavior.

4 One-then-zeros results

We know (see, e.g., [7, 16, 8, 15]) that each of these op-
erators has significant biases when used on its own, and
Fig. 1 summarizes some of the earlier results by presenting
the final length distributions for each of the operators when
acting alone on the one-then-zeros problem. This makes it
clear that the three operators all have very different length
biases, which suggests that they may indeed demonstrate
interesting behaviors when used in combination.

We can now iterate this new combined schema equation to
study these combined interactions and their biases, and to
use such results to guide the choices of the proportions of
operators to help satisfy a variety of goals. As an example
in this paper we will consider the following goals:

1. Avoid both bloating and shrinking, by having the av-
erage size after 50 generations be as close as possible
to the initial average size.

on the numeric results and can greatly speed up the calculations
since it significantly slows the growth of the number of strings
that need to be tracked.

GENETIC PROGRAMMING856



2. Avoid both bloating and shrinking (as above), but also
maximize the number of correct individuals.

3. Maximize the proportion of small solutions (as op-
posed to just short strings).

4. Reach a state where the proportion of 1(0)30 exceeds
0.01 as early as possible.

In all these simulations we will be applying the three oper-
ators discussed earlier (standard subtree crossover, full mu-
tation, and grow mutation) on the one-then-zeros problem.
A depth limitD = 5will be used for full mutation. Our ini-
tial population will consist of equal proportions (10% each)
of the strings 1(0)i for 1 � i � 10; thus the average length
in the initial population is 6.5.

To study the interaction of the operators, the schema equa-
tions from Theorem 1 were iterated 66 different times, us-
ing each of the legal combinations of proportions of (stan-
dard) crossover, grow mutation, and full mutation with val-
ues from the set f0; 0:1; 0:2; 0:3; : : : ; 0:9; 1g. We’ll use
triples of the form (pxo; pFULL; pGROW) to indicate a combi-
nation of parameter settings where the first is always the
proportion of crossover, the second the proportion of full
mutation, and the third the proportion of grow mutation.

4.1 General observations

While the majority of these iterations had converged after
50 generations, there were several which had not. These
were typically those with sufficiently high crossover prob-
abilities that bloat was occurring and the average lengths
were clearly still growing after 50 generations. As an ex-
ample, the configuration (0.8, 0, 0.2) has an average length
of 7.98 after 50 generations, and is thus not a terrible so-
lution to the problem of avoiding bloat and shrinkage as
defined in Sec. 4.2 below. It seems highly likely, how-
ever, that if we were to continue iterating the equations with
these parameters for another 100 generations we would get
higher average length, thereby doing a worse job of meet-
ing the goal of avoiding bloat and shrinkage. This isn’t
necessarily a concern, however, since actual GP runs al-
ways have a finite number of generations. Thus if we know
we’re likely to run our GP for 100 generations, we can it-
erate these schema equations and try to find settings that
meet our goals (whatever they happen to be) at the end of
100 generations regardless of whether further generations
would take us away from our goals.

It should also be noted that the initial uniform distribution
of lengths is very unstable in the sense that any combina-
tion of operators will generate a very different distribution
immediately in the first generation. As an example, the
settings (0.1, 0.7, 0.2) have an average length after 50 gen-
erations that’s very close to the average length in the initial

distribution (6.5). The distribution itself (shown in Fig. 3)
is far from uniform, however. This seems to be a general
property of “interesting” operators, namely that they have a
favored length distribution that they move to quite quickly,
and while fitness can modify that tendency, it rarely elimi-
nates it entirely.

4.2 Avoid bloat and shrinkage

In our first example the goal will be to avoid both bloat-
ing and shrinkage by searching for a collection of operator
probabilities such that the average length after 50 genera-
tions is as close as possible to the initial average size.

Out of our 66 configurations, five had a final average fitness
that was less than 0.15 away from the initial average of 6.5
(see Table 1); the next closest combination of parameter
settings had an absolute difference of over 0.23. Note that
in each case the proportion of grow mutation was 0.2. In
fact the 20 configurations whose final average lengths were
closest to 6.5 all had small non-zero proportions for grow
mutation (between 0.1 and 0.4); at the same time, however,
those 20 configurations had a broad range of full mutation
proportions (ranging from 0 to 0.9) and crossover propor-
tions (from 0 to 0.8). Those combinations where the pro-
portion of crossover was over 0.5, however, all had average
lengths that were still climbing after 50 generations, so it’s
likely that they would continue to diverge from 6.5 if we
iterated the equations for more generations. Thus the cru-
cial factors for long-term size stability in this problem seem
to be a small non-zero proportion of grow, and a crossover
proportion of at most 0.5 so the sizes don’t bloat above 6.5.

Most (but not all) of the configurations where the pro-
portion of grow was 0.2 had final average lengths close
to 6.5; the smallest average length after 50 generations
was 6.36 (for (0:4; 0:4; 0:2)), and the largest was 7.98 (for
(0:8; 0; 0:2)). As discussed above, however, those parame-
ter sets with higher crossover proportions probably hadn’t
converged after just 50 generations, and their final averages
would likely continue to grow if we iterated more genera-
tions. Taking that into account the range of final average
lengths is quite small, being from 6.35 to 6.46 when the
proportion of grow is 0.2 and the proportion of crossover is
at most 0.5.

Looking at Fig. 2, we can see that in each of these cases
there was an initial jump away from 6.5 (caused by the in-
stability of the initial uniform length distribution), followed
by a fairly rapid convergence to an average value close to
6.5. The slowest to converge was the case where we had
50% crossover, and that curve in fact looks similar to the
bloating seen in [7], with an asymptote close to 6.5.

Fig. 3 shows the final distribution of lengths for each of
these five parameter settings. While each of these distribu-
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XO Full Grow Diff. from 6.5 Prop. fit
0.1 0.7 0.2 0.081 0.19
0.2 0.6 0.2 -0.045 0.26
0.3 0.5 0.2 -0.131 0.31
0.4 0.4 0.2 -0.147 0.37
0.5 0.3 0.2 -0.045 0.43

Table 1: Parameter settings for the five configurations that came
closest to having the same average length after 50 generations as
the average length of the initial distribution. “XO” is the pro-
portion of crossover, and “Full” and “Grow” are the proportions
of full and grow mutation. “Diff. from 6.5” is the difference be-
tween the actual final average length for this set of parameters and
the initial average length (6.5); negative values mean that the final
average length was less than 6.5. “Prop. of fit” is the proportion
of the individuals produced in the last generation that were fit.
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Figure 2: Average lengths over time for the five collections of
parameter settings leading to a final average length closest to the
initial average length (6.5).

tions has an average length that is nearly equal to that of
the initial uniform distributions, none of these distributions
is remotely uniform. They instead exhibit combinations of
features seen in earlier studies of using single recombina-
tion operators on this problem (see Fig. 1). In each case,
for example, we see a peak at length=5 which is due to full
mutation with depth 5, and the height of the peak is clearly
correlated to the full mutation probability.

4.3 Avoid bloat and shrinkage, maximizing correct
proportion

In the preceding example we looked for parameter settings
that avoided both bloat and shrinkage. It’s possible, how-
ever, that this goal was met at the expense of correctness. A
given collection of parameter settings could, for example,
generate the desired average size, but have a very low pro-
portion of fit individuals. This would in turn greatly reduce
the effective population size since most of the generated
individuals can never be selected for recombination.
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Figure 3: Final length distributions of the five parameter settings
whose final average length was closest to the initial average length
(6.5).

We can assess this by looking at the proportion of correct
individuals in the final generation for each set of parameter
values, and we indeed see that there are substantial differ-
ences among these five configurations (see Table 1), with
the values ranging from 0.19 to 0.43. It’s also clear that
increased probabilities of crossover correspond with in-
creased proportion of fit individuals. This is not surprising
since increased probabilities of crossover also correspond
to decreased probabilities of full mutation, and full muta-
tion is rarely going to produce a fit offspring in this prob-
lem [8]. Crossover on the other hand, has a high probability
of generating correct offspring, especially when given two
correct, fairly long individuals as parents [7].

Another approach to optimizing these two criteria would
be to start by identifying the configurations with high pro-
portion of fit individuals in the final generation, and then
choosing from those the parameter settings that also lead to
final average lengths near 6.5. The settings with the highest
proportion of fit individuals are those with high crossover
probabilities, but these configurations also have the highest
final average lengths (because high crossover probabilities
lead to bloat in this problem [7]). One of the best settings
is (0.8, 0.0, 0.2), which has a final average length of 7.98
(nearly 1.5 nodes longer than the original average of 6.5)
but a final proportion of fit individuals of 0.65 (about 0.22
higher than the proportion generated by (0.5, 0.3, 0.2)).

4.4 Maximize proportion of small solutions

Now consider the case where we want to minimize the av-
erage size of the fit individuals (i.e., those of the form 1(0)a

for a > 0). There are quite a few combinations of param-
eter settings that lead to average size of fit individuals that
are just above 3. The three smallest are (0, 0, 1), (0.1, 0,
0.9), and (0.2, 0, 0.8) with final average sizes of fit individu-
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als 3.02, 3.04, and 3.07 respectively. This suggests that (for
this problem) the best way to make short correct solutions
is to primarily use grow mutation, with small amounts of
crossover being acceptable as well. Adding small amounts
of full mutation doesn’t lead to much bigger average sizes
(the average size for (0, 0.1, 0.9), for example, is 3.13) de-
spite the fact that depth mutation always generates strings
of length at least 1+D (or 6 in our case). This is probably
due to the fact that full mutation will very rarely generate
correct individuals in this problem.

If one wanted to further maximize the proportion of fit in-
dividuals, then the three candidate combinations have pro-
gressively increasing proportion of fit individuals; the high-
est is (0.2, 0, 0.8), which has a proportion of 0.41. If we
look more broadly, we find that (0.6, 0, 0.4) has a some-
what higher proportion of fit individuals after 50 genera-
tions (0.49), with the average size of fit individuals being
only slightly higher (3.54).

4.5 Find solutions of length 31 quickly

For our final example we will consider the goal of find-
ing solutions of the form 1(0)30 as quickly as possible.
There are a variety of motivations for this sort of goal,
but one might be that instead of only having a two level
fitness function, we might have a three level fitness func-
tion: Fitness 0 for individuals that don’t have the “one then
zeros” pattern, fitness 1 for individuals of the form 1(0)a,
a 6= 30, and fitness 2 for individuals of the form 1(0)30. If
we further assume that our run will terminate as soon as we
discover a target individual 1(0)30, then dynamics of such
a run are identical to the original one-then-zeros problem,
except they terminate upon discovery of a target individual.

Thus we can use our schema theory results to discover what
parameter settings lead most quickly to the discovery of
a target individual. Because of the infinite population as-
sumption, however, we may find that early in a run there
is a very small, but still positive, proportion of target in-
dividuals, yet with such small proportions the likelihood
is minuscule of actually generating a target individual that
quickly in a “real” (finite population) run. We will, there-
fore, look for the collection of parameter settings that first
achieves a proportion of target individuals exceeding 0.01.

Only four of our tested parameter settings ever obtain a pro-
portion of at least 0.01 target individuals (see Table 2), with
all crossover (1, 0, 0) reaching the target the most quickly
(in 26 generations). Adding small amounts of full mutation
still allows the goal to be satisfied, but even a proportion of
0.3 is enough to increase the number of generations by 12.
Grow mutation clearly interferes with this goal, as none of
the four parameter settings that achieve the goal have any
grow mutation.

XO Full Grow First gen to 0.01
1.0 0.0 0.0 26
0.9 0.1 0.0 28
0.8 0.2 0.0 32
0.7 0.3 0.0 38

Table 2: Parameter settings for the four configurations that even-
tually achieve a proportion of 0.01 target individuals 1(0)30 . The
first three columns are as in Table 1. “First gen to 0.01” is the first
generation for a given collection of parameter settings where the
proportion of target individuals exceeded 0.01.

If we relax the target proportion to 0.001 there are a to-
tal of 12 parameter settings that achieve this new goal. Of
these only four have non-zero grow mutation probabilities,
all of which are the lowest possible value (0.1). Similarly,
all but three of these 12 settings have crossover probabil-
ities exceeding 0.5, although one (0.3, 0.7, 0) managed to
reach the target of 0.001 in 21 generations despite the low
crossover probability. It’s interesting to note, however, that
two of the settings with non-zero grow mutation probabili-
ties ((0.7, 0.2, 0.1) and (0.6, 0.3, 0.1)) both reached the goal
more slowly (in 23 and 29 generations respectively) despite
having much high crossover probabilities.

It’s not terribly surprising that crossover is useful in in-
creasing the length of fit strings, since we’ve previously
seen that crossover can lead to bloat (presumably due to
replication accuracy) [7]. Further, one would expect both
mutation operators to at least slow down the process of gen-
erating a target string containing thirty 0’s, and thus having
length 31 (see [18] for details):

� Given a parent string of length l, full mutation gener-
ates (on average) a string of length roughly l=2+D, so
full mutation tends to generate shorter offspring once
l > 2D. Since D = 5 in our examples, full muta-
tion will tend to reduce the size of strings once their
lengths begin to exceed 10.

� Given a parent string of length l, grow mutation in the
one-then-zeros problems will generate (on average) a
string of length roughly l=2 + 3. Thus grow muta-
tion will tend to reduce the size of strings once their
lengths begin to exceed 6.

What’s perhaps more surprising is that grow mutation in-
terferes with the process of finding a target string so much
more than full mutation does. The likely reason is that
grow mutation is more likely to produce fit offspring than
full mutation (see [8, 18] for details). Because of the infi-
nite population assumption, generating unfit offspring has
no substantial effect on the dynamics of the system, as do-
ing so has no effect on the selection probabilities. Gen-
erating short, fit individuals, however, will change the dy-
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namics by increasing the probability that short individuals
are selected as parents in the next generation. In our case
its likely that grow mutation creates a sufficient number of
short, fit strings that it can significantly hamper the process
of generating fit strings of length 31.

5 Conclusions and future work

It’s clear, then, that there is a fairly complex set of interac-
tions between these three recombination operators, making
it quite difficult to guess a priori what proportions of oper-
ations would aid in satisfying goals that might be important
in a particular domain. For this problem, however, we were
able to iterate the schema equations on many different com-
binations of operator proportions, generating a useful map
of the interactions.

In this paper the number of different combinations of pro-
portions was small enough to make manual searches for de-
sirable values feasible. With more operators, or a larger va-
riety of different proportions, the number of combinations
would quickly grow out of control, making it prohibitive to
iterate the equations for every combination and then search
the results by hand. Since this is essentially just another pa-
rameter optimization problem, one possibility would be to
apply a GA, although in many cases something simpler like
a hill-climber would probably also work. Another possibil-
ity (which could potentially dramatically reduce the num-
ber of different combinations that would need to be iter-
ated) would be to use factorial design of experiments [3].

Perhaps the key observation here is that there is clearly no
“best” set of operator proportions, and that the desirabil-
ity of a combination of operators will depend critically on
the specific goals. It is therefore particularly important that
we have tools that help us understand not only the general
interactions of operators, but also understand the more spe-
cific interactions in order to guide our choices.
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Abstract

We present a new approach for applying ge-

netic programming to lossless data compres-

sion. Unlike programmatic compression the

evolved programs are preprocessors. These

preprocessors aim at enhancing the compres-

sion rate of the given data by transform-

ing it. The entropy based �tness function

is both fast and independent of the type of

information being processed. The obtained

results are encouraging in sense that signi�-

cant improvements can be achieved. Further-

more the required computation time is much

smaller than in the case of programmatic

compression, making the presented approach

more viable. We used a strongly typed GP

kernel. The kernel o�ers the extra advan-

tage of being able to exploit parallel execu-

tion through the island model.

1 Introduction

Compression has been a research topic for many years.

In 1940 Claude Shannon already studied what later be-

came information theory. His research has determined

the theoretical limits of data compression. Current re-

search focuses mainly on the development of applica-

tion speci�c compression algorithms. Generic lossless

compression algorithms can however be considered at a

stand still. A recent algorithm is the Burrows-Wheeler

transform (1993) [1] which is used in the bzip2 com-

pression program.

Record compression rates can be achieved using a good

model of the data, e.g. true color images. Here we in-

vestigate how a program can be evolved to transform

the data so that it matches the model used by a given

compression algorithm. The exact transformation is

not explicitly known but one can formulate certain

conditions the latter should possess (see section 3).

Our attention goes toward lossless compression algo-

rithms. Examples of popular lossless compression pro-

grams are gzip [8] and Winzip [2].

This document is structured as follows. In section 2

related research is presented. The problem and the

chosen approach are described in section 3. Section

4 details the experimental setup. Sections 5 and 6

present the results and the conclusion respectively.

2 Related work

Evolutionary algorithms have been used in the past

for data compression purposes. Two approaches can

be distinguished.

Genetic algorithms were used to �nd parameters for

a compression algorithm in order to maximize com-

pression Driesen [4]. Feiel and Ramakrishnan [6] have

used genetic algorithms to optimize the compression

of color images using vector quantization.

Genetic programming was used for what is called pro-

grammatic compression. This approach is closely re-

lated to algorithmic complexity were one looks for the

shortest program that produces the given data [13].

De Falco et al. [5] have used genetic programming for

string compression. Fukunaga and Stechert [7] have

used genetic programming for lossless compression of

gray-scale images. Nordin and Banzhaf [10] achieved

lossy programmatic compression of images and sound.

Noteworthy is the fact that [10] [7] both used a geno-

compiler for their experiments. This software elimi-

nates the function call overhead incurred by other sys-

tems during the evaluation of the individuals. Luke

[9] reports on a relative improvement in speed of 2000

times compared to LISP code and of 100 times com-

pared to interpreted C (like used for this experiment).
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3 Preprocessing

Data compression is already a highly specialized do-

main. Therefore it seems too far fetched to use genetic

programming to generate an algorithm that would

compress data and do so in a competitive way.

We formulate our objective as follows: instead of aim-

ing for a program that recodes the data we seek a

transformation.

This transformation is applied to the data before com-

pressing it. It is used as a preprocessing step in the

entire compression process. Of course, after decom-

pressing the data the transformation needs to be re-

versed in order to obtain the original data (since we

focus on lossless compression).

P C C
-1

P
-1SEND

STORE

Figure 1: The preprocessing takes place before the ac-

tual compression and is reverserd after decompression.

Such a preprocessing program can be formalized as a

function P that works on a string S over an alphabet.

The length of a string S is denoted as jSj. C repre-

sents a data compression algorithm. The result we are

looking for is a transformation P , so that the condition

denoted in equation 1 holds.

jC(P (S))j < jC(S)j (1)

Stating the problem in these terms makes it easy to

fold it into the genetic programming framework since

both the program we are looking for, being P , and the

�tness function are easily identi�ed. Formulating the

problem in this way has some serious disadvantages

though. First, computing the result of equation1 is

rather expensive. The compression algorithm has to

be applied to the transformed data for every individ-

ual in the population. Second, the transformation will

depend on the compression algorithm used. To avoid

this problem we reformulated it using a metric from

information theory, the entropy.

1Notwithstanding the increase in computation speed [7]
[10] report runs lasting several tens of hours on powerful
workstations. The results presented here required far less
time while working on a bigger amount of data.

3.1 Entropy

Consider a message as a series of symbols. The entropy

can be thought of as a measure for the information

content of a message. The entropy gives the average

information content of a symbol 2, this is typically

expressed in bits per symbols. The formula for the

entropy is given below, note that Pi represents the

probability of symbol i in the message.3

H = �
X

n
Pi: logPi (2)

Using the entropy (equation 2) we have a means to

determine how much information is present in a given

message. The entropy is the theoretical lower bound

on the size of the data (in bits). Any representation

of the data with a size lower than the one predicted by

the entropy loses information. Important is the fact

that this measure is independent of the type of data

being represented.

3.2 Reducing the entropy

We will evolve a transformation for the given data us-

ing the entropy as an objective criterion. The pur-

pose of this transformation is: lowering the entropy

of a message (data). The information content can be

reduced without loss by exploiting redundancies that

might be hidden in the data (as will be shown in sec-

tion 5.2). By lowering the entropy we reduce the in-

formation content, this means that the data can be

recoded to occupy less space. This property is inde-

pendent of any compression algorithm. Compression

algorithms are designed so as to recode data in order

to match the real size of the data.

The instruction set of the genetic programming soft-

ware is designed to reduce the entropy, albeit under

the good circumstances. It is up to the evolutionary

pressure to bring forth the best transformation. Using

the entropy we now can de�ne a new condition for the

transformation we wish to evolve.

Hout � Lout

Hin � Lin

< 1 (3)

Equation 3 is a computationally cheaper �tness func-

tion. It is furthermore independent of any data com-

2Entropy has a much more rigorous mathematical foun-
dation but the description given here suÆces for the pur-
pose of this text.

3The model used here is a �rst order model (marginal
probability). Higher order models are based on conditional
probabilities.
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pression algorithm. Since on the average a symbol rep-

resents H bits of information, a message with length L

gives H � L bits of information in total. The formula

expresses that the total information of the transformed

data has to be lower than the information of the initial

data. Note that we impose no limit on the length of

the transformed data. Since we do not immediately

compress the data, Lout can either be greater than or

equal to Lin.

4 Experimental setup

The setup used for the experiments will now be pre-

sented. The transformation one seeks is represented by

an S-expression. The function and terminal set used

here relies on a simple virtual machine. The use of

a virtual machine gives a limited function and termi-

nal set with clear semantics without sacri�cing perfor-

mance or introducing limits on the data size.

The instruction set of the virtual machine has been

wrapped to form the function and terminal set used by

the genetic programming software. To structure the

S-expressions strong typing has been used.

4.1 Input data

For the experiments the Canterbury Corpus [3] as well

as various bitmaps and word processor �les were used.

This means that the size of the input tape usually

exceeded the order of several kilobytes and grew even

up to more than 1 megabyte.

4.2 Parallel and strongly typed

The approach presented here uses a strongly typed ge-

netic programming kernel written in C that produces

LISP-like programs. This package is a modi�ed ver-

sion of the Lil-gp package [12]. This modi�ed version

can run on parallel using multi processor machines and

clusters of workstations [11].

4.3 Virtual machine

The virtual machine bears some resemblance with an

automaton as it uses an input and an output tape. The

instruction set can be divided into two categories. In-

structions that control the input tape and instructions

that process the data read from it. Note that there

are no operations that directly inuence the output

tape in the instruction set. The output tape is ma-

nipulated implicitly whenever new data is read from

the input tape. This is done through two bu�ers inside

the machine as depicted in the �gure 2. The processed

data, which is stored in the output bu�er, is copied to

the output tape when new data is loaded in the input

bu�er.

�������������
�������������
�������������
�������������

����������������
OUTPUT TAPE

INPUT TAPE

IN BUFFER

OUT BUFFER INSTR

Figure 2: A simple virtual machine has been de�ned

which bears some resemblance with an automaton.

The internal bu�ers are resized to accommodate the

data read from the tape.

A status variable is used in order to control the correct

operation of the virtual machine. In certain circum-

stances the execution of an instruction can be illegal.

In this case the status of the virtual machine is set

accordingly. Whenever an attempt has been made to

perform an illegal instruction the execution of subse-

quent instructions is aborted. The execution of the

program is thereby limited to the correct portion of

the program.

4.3.1 Tape operations

The machine needs to read data from the input tape.

To that end two instructions were de�ned. Note that

the size of the internal bu�ers is adjusted so that it

can contain all the symbols read from tape.

� load : this instruction takes 1 parameter, an inte-

ger. This instruction reads the speci�ed number

of symbols from the input tape and copies them in

the input bu�er. This operation is always valid.

� fwd : is identical to load except that it does not

take any parameter. Instead it uses the value of

the parameter passed to the last load instruction.

If there was no load instruction preceding the fwd

this operation is invalid.

A third rewind instruction makes it possible to apply

several operations on data read from the input tape.

� rew : no new data is read or written from or to the

tapes. Instead the previously read and processed

data is processed again. The content of the output

bu�er is simply copied in the input bu�er.

4.3.2 Data operations

Next to operations for reading data, operations were

de�ned for processing the data. The data operations
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are performed on the data present in the input bu�er.

Data produced by data operation is stored in the out-

put bu�er.

Since we are working with lossless compression each

of the data operations needs to be reversible. Each of

these operations needs to be reversible in order to be

useful within the lossless compression context. Hence,

for each data operation there is a reverse operation

de�ned in the virtual machine. These operations are

however not made available in the instruction set of

the genetic programming software.

The choice of the data operations was guided by their

capability to reduce the entropy of the data. This is

typical done by exploiting patterns that exist in the

data. A stride parameter was introduced for some op-

erations. The stride speci�es the step size when going

over the data. For example all the symbols 3 positions

apart (in this case the stride would be 3). The stride

allows data operations to work on patterns that may

be spread within the data.

� dpcm : stands for di�erential pulse code modula-

tion. fx0; x1; x2; x3; . . . , xng ) fx0; x1�x0; x2�
x1; x3 � x2; . . . , xn � xn�1g This operation has a

stride parameter.

� min : This operation uses the average of all

the symbols (binary representation) in the input

bu�er. A symbol is replaced by the di�erence be-

tween the average and the symbol. This operation

does expand the data by 1 symbol, the symbol

which represents the average4.

fx0; x1; x2; x3; . . . , xng ) fxavg ; x0 � xavg ; x1 �
xavg ; x2 � xavg ; x3 � xavg ; . . . , xn � xavgg This

operation has a stride parameter.

� raw : no transformation is applied at all to the

data. fx0; x1; x2; x3; . . . , xng ) fx0; x1; x2; x3;
. . . , xng This may seem like a quite useless in-

struction. But it allows for jumps in the data

processing since we maybe do not need to trans-

form the entire tape. An alternative would be the

de�nition of a jump tape instruction.

� pec : pseudo exponential code. This operation

produces an output with double size of the input.

The output data represents an input symbol as

a couple of numbers. The output is based on the

number of the input symbol. A couple is a pseudo

exponent and a pseudo remainder. The pseudo

exponent is the largest exponent used as a power

4min (stride=1) changes the series 2 5 3 2 5 6 7 to -
2 1 -1 1 2 3 + 4 (the average)

of 2 which doesn't exceed the input number, e.g.

3 for 10. The remainder is the di�erence between

the power of two and the input number, in the

previous example this would be 2 (10 - 2 3). The

reason for calling this pseudo5 is that it has been

modi�ed for numbers bigger than 128.

� mtf : move to front. This operation is a stan-

dard encoding scheme which uses a map of all

the possible symbols. The symbols are replaced

by their position in the map. Each time a sym-

bol is replaced by its current position in the map

the latter is updated. The symbol is put in front

of the map thereby assigning it a small number.

This allows to encode the symbols that appeared

recently with small numbers.

� inv : inversion. fx0; x1; x2; x3; . . . , xng
) fMAX(x) � x0;MAX(x) � x1;MAX(x) �
x2;MAX(x) � x3; . . . , MAX(x) � xng Here

MAX(x) represents the maximum value that can

be represent by the data type used to represent

the symbols. This operation has a stride parame-

ter.

� sub : substitution. This operation substitutes the

symbol that appears most frequently in the in-

put bu�er with the most frequent symbol in the

output tape so far. This operation has a stride

parameter.

4.4 Types

Typing is used in the �rst place to structure the pro-

grams that can be evolved. Evaluating the functions

and terminals corresponds to the execution of an in-

struction by the virtual machine. For the experiments

four types were used for the functions and terminals

of the genetic programming software. The �rst two

types are integer types, int and num. The num type

represents small integers in the range [0,20]. In order

to integrate the instruction of the machine two types

were de�ned for the operations: tape and data.

The reason for the de�nition of two separate types for

the instruction is the need to combine these instruc-

tions to make correct programs. Indeed, the data op-

erations are invalid when no data has been read from

the tape. And for the same reason tape operations

make no sense if the data is not processed afterwards.

5pec The symbols 1 123 250 are replaced by
(3,4) (6,59) (13,58). The last couple allows to repre-
sent 250 with two smaller numbers ( 27 + 26 +58) where
as log 2 would give the couple (7,122).
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4.5 Function and terminal set

Here we present the function and terminal set provided

to the genetic programming system. Apart from the

operations provided by the virtual machine a few other

functionalities have been introduced.

The programs one can evolve consist of series of tape

operations. In order to obtain those series a special

function called SEQ has been used. The SEQ func-

tion will evaluate its �rst then its second arguments.

Arguments which in turn can be other SEQ functions

or real operations on the data.

The ERC INT and ERC NUM are used to create

ephemeral random constants. These values are either

used for the stride parameter expected by some data

operations or for the number of symbols to read from

tape using load. Related to this is the terminal END.

This terminal returns the number of symbols remain-

ing on the input tape. The introduction of this termi-

nal made it possible to evolve programs that processed

the entire input tape.

Table 1: Overview of the return types of the terminal

and function set.

Name ret type type arg1 type arg2

LOAD tape int data

FWD tape data /

REW tape data /

SEQ tape tape tape

END int / /

DPCM data num /

INV data num /

MIN data num /

SUB data num /

MTF data / /

RAW data / /

PEC data / /

DIV int int num

ERC INT int / /

ERC NUM num / /

4.6 Parameter settings

The experiments presented here were done using 2

populations of 500 individuals. The selection prob-

abilities of the di�erent genetic operations were:

� standard uniform subtree crossover 75%

� standard uniform mutation 20%

� reproduction 5%

� no depth or node count limit

� The selection strategy for the 3 genetic operators

was tournament selection with a tournament size

of 4

The island model requires additional parameters:

� exchange rate of 3 individuals every 10 genera-

tions

� the exchanged individuals (the ones being ex-

ported) were selected using tournament selection

� The worst individuals in destination subpopula-

tion were replaced by the imported ones

5 Results

5.1 Tool-box and decoder

To validate the presented results a set of software tools

have been implemented. The functions and terminals

needed by the gp software are provided by an imple-

mentation of the virtual machine.

In order to reverse the transformation an encoding for-

mat has also been designed. When executing an in-

struction, the data produced by the virtual machine

actually comprises a header and the processed input

data. This header describes the instruction used to

produce the data, the length of the data as well as

possible parameters required by the instruction. In

the present implementation this header is 9 bytes in

size. It is important to point out that the program

that produced the transformed data is encoded in the

output data. The entropy used as an objective crite-

rion in the �tness function, is thus the entropy of the

data and the program that created it.

Of course a decoder is required to reconstruct the orig-

inal data. Using the headers present in the data the

di�erent transformations can be reversed one by one.

One can decode the preprocessed �les and compare

them with the original data with a program such as

di�. The size of the statically linked decoder is 23534

bytes on a Linux x86 platform. Both the data and the

decoder should be transmitted to obtain the original

data. The gain in compression should exceed the size

of the decoder.

5.2 Entropy reduction

Files from the Canterbury Corpus were used as input

data and a separate preprocessor evolved for each of

them. The reduction of the entropy obtained for some
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of the �les is given in table 2. The standard image

compression image lena, for example, has been trans-

formed so that is retains only 68.3% of its original

entropy. And this without any loss of information.

Table 2: Comparison between the initial entropy and

the entropy after preprocessing

File original H new H % reduction

kennedy.xls 3.57 0.7 78.4

laptop.bmp 7.76 3.3 56.5

lena std.ppm 7.75 5.2 31.7

mosaic.pnm 7.78 4.1 46.6

peppers.ppm 7.66 5.3 30.1

This reduction in entropy without loss of information

is not impossible. The evolved preprocessor exploits

the redundancy that is present in the data. This can

not be modeled by the formula for the entropy given by

equation 2. One would have to use conditional proba-

bilities when computing the entropy to account for this

kind of redundancy. This higher order redundancy is

however very much there and is (partially) exposed by

transforming the data. Although reducing the entropy

of given data is not an easy task, it is of no immedi-

ate use as such. The idea behind reducing the entropy

is to improve the compression rate. To illustrate this

table 3 gives a comparison between the compression

ratio of the data with and without preprocessing. The

compression algorithm used here is bzip2. 6

Table 3: Di�erence in compression ratio after prepro-

cessing. Initially the lena could be compressed to 74%

of its initial size. After preprocessing the compression

ration is 68% of the size.

File ratio new ratio % reduction

kennedy.coded 0.12 0.02 80.8

laptop.coded 0.53 0.43 19.1

lena std.coded 0.74 0.68 7.9

mosaic.coded 0.72 0.52 28.3

peppers.coded 0.80 0.69 14.3

One can notice some di�erence between the gain in

entropy and the gain in compression size. The gain in

compressed size can be smaller than the reduction in

6Bzip2 is free implementation of the Burrows-Wheeler
transform. Bzip2 was invoked with the maximum compres-
sion parameter -9.

entropy because Burrows Wheeler transform [1] used

by bzip2 can to some extent model the redundancy be-

yond the single symbol probabilities. In other words,

bzip2 already breaks the theoretical limit computed

using the entropy formula in equation 2. That is why

the gain is somewhat lower in this case.

5.3 Filters

It was initially expected that, given the operations

which can process chunks of data, the evolved pro-

grams would process the entire input data in a piece-

wise manner. That is, the programs would consist of a

sequence of operations on contiguous parts of the data.

The function set provided to the genetic programming

framework certainly would allow for such programs to

be evolved.

This was however not the case, in the �rst experiments

only small fractions of the data were being processed.

In their experiments Nordin and Banzhaf [10] have

chosen to evolve separate programs for segments of

�xed size, chunking, to avoid a similar problem.

The reason behind this phenomenon is that the en-

tropy is a global measure over the entire output tape.

Initial programs may indeed reduce the entropy. But

the growth of these programs can adversely a�ect the

initial changes to the entropy. Thereby making the

results of the genetic operations like crossover less �t.

This has been observed even when the initial popula-

tion was seeded with full grown trees.

(SEQ (SEQ (SEQ (LOAD (DIV 67 2)(DPCM 1))

(SEQ (LOAD END (DPCM 1))

(REW (DPCM 3))))

(SEQ (REW (SUB 1))

(REW (DPCM 3))))

(SEQ (REW (SUB 1))

(REW (DPCM 3))))

However with the introduction of the special END

terminal in the set an interesting result showed up.

This dynamic terminal returns the number of symbols

left on the input tape. The evolved programs became

�lters. Most of the data goes through several trans-

formations. In the example above, the program can

be divided in 2 parts. First, 33 symbols are load into

the machine and DPCM coded using the (LOAD (DIV

67 2) (DPCM 1)) instruction. The second part of the

program processes far more symbols. The instruction

(LOAD END (DPCM 1)) instruction loads all the sym-

bols remaining on the input tape and DPCM codes

these. Using the (REW (DPCM 3)) instruction the

DPCM coded data is used again as input. This time

the data is DPCM coded again but only every 3-th
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symbol is being processed. The data will undergo 4

more transformation after this step. The remain trans-

formation are in order: SUB, DPCM, SUB, DPCM.
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Figure 3: Evolution of the adjusted �tness of the best

individual for the di�erent data �les, average of 8 runs.

6 Conclusion

This experiment presents a new approach for combin-

ing genetic programming and lossless data compres-

sion. The chosen approach develops preprocessing pro-

grams which are tailored to the data one wishes to

compress. The obtained results are encouraging both

in terms of gain in compression as for the computation

time required to evolve the programs. One should note

that, although the experiments were done using a par-

allel software package, the speed improvement results

from the �tness function as well as the fact that we

focus on preprocessors. Surprisingly the evolved pro-

grams were mostly �lters although the provided func-

tions and terminals allowed to evolve to more complex

preprocessors.
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Abstract

With a schema-theoretic approach and experi-
ments we study the search biases produced by
GP/GA homologous crossovers when applied
to linear, variable-length representations. By
specialising the schema theory for homologous
crossovers we show that these operators are unbi-
ased with respect to string length. Then, we pro-
vide a fixed point for the schema evolution equa-
tions where the population presents a statistically
independent distribution of primitives. This is an
important step towards generalising Geiringer’s
theorem and the notion of linkage equilibrium.

1 INTRODUCTION

Search algorithms typically include three main steps which
are iterated in succession: choosing one or multiple points
of the search space the neighbourhood of which to explore
further, applying expansion operators to obtain a new set
of points, deciding what to do with the points previously
visited and with the newly generated ones. For example, in
the case of genetic algorithms and genetic programming,
selection corresponds to the first task, crossover and muta-
tion are the expansion operators, and the replacement strat-
egy corresponds to the third task. Note that many more
steps may be included if one looks at search algorithms at
a finer level of abstraction (Poli & Logan, 1996), but this
is not particularly important for the purposes of this dis-
cussion. What is important is that different algorithms will
use different strategies to realise the different steps. This
leads to the sampling of the search space according to dif-
ferent schedules. With the exception of random search, this
means that some areas of the search space will be explored
sooner, will be allocated more samples, or will be ignored
altogether. This is what we mean by search bias.

Clearly the bias of an algorithm is the result of the interac-
tion of the biases of all its components. In the case of fixed

length genetic algorithms, a lot of attention has been de-
voted to the biases of all such components: selection, muta-
tion and crossover, and replacement. Some of the resulting
studies apply also to the case of variable-length-structure
evolution. For example, the focusing effects of selection
will be exactly the same, since selection is representation-
independent. However, very little is known about the biases
of the genetic operators used to evolve variable length rep-
resentations, such as those used in linear GP (Nordin, 1994;
O’Neill & Ryan, 2001) or in variable-length GAs.

Knowing the biases introduced by the operators is very
important, since it leads to a deeper understanding of the
search algorithm under investigation. This, in turn, allows
an informed choice of operators, parameter settings and
even initialisation strategies for particular problems. How
can one investigate these biases? One possibility is to use
carefully designed empirical studies. In the past these have
shed some light on the internal dynamics of GP (e.g. on
bloat (McPhee & Miller, 1995; Soule et al., 1996; Lang-
don et al., 1999)), but rarely has the evidence been general
and conclusive. This is because these studies can only con-
sider a limited number of benchmark problems, and so it
is impossible to know whether, and to which extent, the
observed behaviour is applicable to other problems. An al-
ternative is to perform theoretical studies. Often these may
lead to more general and precise conclusions, but they are
definitely much harder and slower to carry out. Also, some-
times the complexity of the mathematics involved in these
studies forces the researcher to make simplifying hypothe-
ses which may limit the explanatory power of the results.

A class of recent theoretical results which require very
few, if any, simplifications goes under the name of exact
schema theorems.1 These provide probabilistic models (the
schema evolution equations) of the expected behaviour of
a GA or a GP system over one, or, under certain assump-
tions, multiple generations (Poli, 2001b; Langdon & Poli,

1The word “exact” refers to the fact that, unlike earlier results,
these theorems provide an exact value, rather than a lower bound,
for the expected number of individuals in a schema in the next
generation.
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2002). The main advantage of these exact models is that
they provide a natural way of coarse graining the huge
number of degrees of freedom present in a genetic algo-
rithm (Stephens & Waelbroeck, 1997). Exact schema theo-
rems have recently become available for fixed-length GAs
with one-point crossover and mutation (Stephens & Wael-
broeck, 1997; Stephens & Waelbroeck, 1999), and general
homologous crossover and mutation (Vose & Wright, 2001;
Stephens, 2001). Even more recent is the development
of exact schema theorems for variable-length GAs, linear
GP and tree-based GP. These cover a variety of crossover
and mutation operators including one-point crossover (Poli,
2000; Poli, 2001b), subtree-swapping crossovers (Poli,
2001a; Poli & McPhee, 2001b; McPhee & Poli, 2001),
different types of subtree mutation and headless chicken
crossover (Poli & McPhee, 2001a; McPhee et al., 2001),
and homologous crossovers (Poli & McPhee, 2001c).

These exact models can be used to understand an evolution-
ary system and study its behaviour in two different ways.
This can be done either through simulation (i.e., by numeri-
cally iterating the equations) or through mathematical anal-
ysis. Although exact GP schema equations have become
available only very recently, early studies indicate their use-
fulness, for example, in providing a deeper understanding
of emergent phenomena such as bloat (Poli & McPhee,
2001b; McPhee & Poli, 2001). Also, in general, as indi-
cated above the availability of exact models for different
operators allows a formal study of the biases of those op-
erators. Steps forward in this direction have recently been
made in (Poli & McPhee, 2001b; McPhee & Poli, 2001;
McPhee et al., 2001), where a class of Gamma program-
length distributions has been shown to represent a natural
attractor for variable-length linear systems under GP sub-
tree crossover and in (Poli et al., 2002) where we have ex-
tended the study to other biases of subtree crossover.

In this paper we study the biases of the whole class of ho-
mologous GP crossover operators for the case of linear GP
and variable-length GAs. These are a set of operators, in-
cluding GP one-point crossover (Poli & Langdon, 1997)
and GP uniform crossover (Poli & Langdon, 1998a), where
the offspring are created preserving the position of the ge-
netic material taken from the parents. These operators are
important because they are the natural generalisation of the
corresponding GA operators. So, the theory presented here
is a generalisation of corresponding GA theory.

The paper is organised as follows. We start by provid-
ing some background information on the exact GP schema
theory for homologous crossover and Geiringer’s theorem
in Sections 2 and 3. Then, we simplify the theory for
the case of linear, but variable-length, structures in Sec-
tion 4, and show that homologous crossover is totally unbi-
ased with respect to string length (Section 5). In Section 6
we provide a fixed point for the schema evolution equa-
tions which is a first step towards generalising Geiringer’s

theorem (Geiringer, 1944) and the notion of linkage equi-
librium, which, until now, were applicable only to fixed-
length representations. The fixed point and some experi-
mental evidence (reported in Section 7) indicate the pres-
ence of a bias which pushes the population towards a statis-
tically independent distributions of primitives, as discussed
in Section 8, where we also draw some conclusions.

2 SCHEMA THEORY BACKGROUND

Schemata are sets of points in a search space sharing some
syntactic feature. For example, for GAs operating on bi-
nary strings the syntactic representation of a schema is usu-
ally a string of symbols from the alphabet f0,1,*g, where
the character * is interpreted as a “don’t care” symbol. Typ-
ically schema theorems are descriptions of how the number
of members of the population belonging to a schema vary
over time. If �(H; t) denotes the probability that at time t a
newly created individual samples (or matches) the schema
H , which we term the total transmission probability of H ,
then an exact schema theorem for a generational system is
simply

E[m(H; t+ 1)] =M�(H; t);

where M is the population size, m(H; t + 1) is the num-
ber of individuals sampling H at generation t + 1 and
E[�] is the expectation operator. Holland’s (Holland, 1975)
and other (e.g. (Poli & Langdon, 1998b)) worst-case-
scenario schema theories normally provide a lower bound
for �(H; t) or, equivalently, for E[m(H; t + 1)]. How-
ever, recently exact schema theorems (Stephens & Wael-
broeck, 1997; Stephens & Waelbroeck, 1999; Poli, 2000;
Poli, 2001b; Poli, 2001a; Poli & McPhee, 2001b; McPhee
& Poli, 2001; Poli & McPhee, 2001a; McPhee et al., 2001;
Stephens, 2001; Poli & McPhee, 2001c) which provide the
exact value for �(H; t) have become available for GAs and
GP with a variety of operators. In the remainder of this
section we will introduce the various elements which are
necessary to understand the exact schema equations for GP
homologous crossover, since these will be the starting point
for the new results in this paper.

Let us start from our definition of schema for GP. Syntac-
tically a GP schema is a tree composed of functions from
the set F [f=g and terminals from the set T [f=g, where
F and T are the function and terminal sets used in a GP
run. The primitive= is a “don’t care” symbol which stands
for a single terminal or function. A schema H represents
the set of all programs having the same shape as H and the
same non-= nodes as H . Particularly important for the GP
schema theory are schemata containing “don’t care” sym-
bols only, since they represent all the programs of a par-
ticular shape. Let G1, G2, � � � be an enumeration of such
shape-representing schemata.

In GP homologous crossovers the offspring are created
by exchanging genetic material (nodes and subtrees) taken
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from the same position in the parents trees. To account for
the possible structural diversity of the two parents, the se-
lection of the nodes and the roots of the subtrees to swap
are constrained to belong to the common region. This is the
largest rooted region where the two parent trees have the
same topology.

In order to define more precisely how GP homologous
crossovers work, we start by providing a formal defini-
tion of common region. The common region between
two generic trees h1 and h2 is the set C(h1; h2) =
f(d; i)jC(d; i; h1; h2)g, where (d; i) is a pair of coordi-
nates in a Cartesian node reference system (Poli, 2001a;
Poli & McPhee, 2001c). The predicate C(d; i; h1; h2) is
true if (d; i) = (0; 0) (i.e., if (d; i) is the root node). It
also true if A (d� 1; i0; h1) = A (d� 1; i0; h2) 6= 0 and
C (d� 1; i0; h1; h2) is true, where A(d; i; h) returns the ar-
ity of the node at coordinates (d; i) in h, i0 = bi=amaxc,
amax is the maximum arity of the functions in the func-
tion set, and b�c is the integer-part function. The predicate
is false otherwise. The notion of common region can be
applied to schemata, too.

To complete our formal description of the class of GP ho-
mologous crossovers, we need to extend to GP the no-
tions of crossover masks and recombination distributions
used in genetics (Geiringer, 1944) and in the GA litera-
ture (Booker, 1992; Altenberg, 1995; Spears, 2000). Let
us first briefly recall the definition of these notions for a
GA operating on fixed-length binary strings. In this case a
crossover mask is simply a binary string. When crossover
is executed, the bits of the offspring corresponding to the
1’s in the mask will be taken from one parent, those corre-
sponding to 0’s from the other parent. If the GA operates
on strings of length N , then 2N different crossover masks
are possible. If, for each mask i, one defines a probability,
pi, that the mask is selected for crossover, then it is easy
to see how different crossover operators can simply be in-
terpreted as different ways of choosing the probability dis-
tribution pi. The distribution pi is called a recombination
distribution.

For the more general case of GP and variable-length GAs,
for any given common region c we can define a set of GP
crossover masks, �c, which contains all different trees with
the same size and shape as c which can be built with nodes
labelled 0 and 1 (Poli & McPhee, 2001c; Poli et al., 2001).
Each crossover mask represents one of the ways in which
one could generate an offspring through crossover: nodes
of the offspring corresponding to internal 1’s in the mask
will be taken from the first parent, nodes corresponding
to internal 0’s from the second parent, subtrees of the first
parent whose root corresponds to leaves labelled with a 1
in the mask will be transferred to the same position in the
offspring, and, finally, subtrees of the second parent whose
root corresponds to leaves labelled with a 0 in the mask will
be transferred to the same position in the offspring. The GP

recombination distribution pcl gives the probability that, for
a given common region c, crossover mask l will be chosen
from the set �c. Each GP homologous crossover is char-
acterised by a different recombination distribution. Since
the size and shape of the common region can be inferred
from the mask l, in the following we will often omit the
superscript c from p

c
l .

Finally, before we introduce the exact schema equation for
GP homologous crossover developed in (Poli & McPhee,
2001c) we need to define the notion of hyperschema. A GP
hyperschema is a rooted tree composed of internal nodes
from F [ f=g and leaves from T [ f=;#g. Again, = is
a “don’t care” symbols which stands for exactly one node,
while # stands for any valid subtree. In the theory we use
hyperschemata to represent the characteristics the parents
must have to produce instances of a particular schema of
interest.

The exact schema equations for GP with homologous
crossover are

�(H; t) = (1� pxo)p(H; t) + pxo�xo(H; t) (1)

where

�xo(H; t) =
X
j

X
k

X
l2�C(Gj ;Gk)

pl (2)

p(�(H; l) \Gj ; t)p(�(H; �l) \Gk; t);

pxo is the crossover probability, p(H; t) is the selection
probability of the schema H and �l is the complement of the
GP crossover mask l (i.e. it is a tree with the same structure
as l but with the 0’s and 1’s swapped). �(H; l) is defined to
be the empty set if l contains any node not in H . Otherwise
it is the hyperschema obtained by replacing certain nodes in
H with either = or # nodes: (1) if a node in H corresponds
to (i.e., has the same coordinates as) a non-leaf node in l

that is labelled with a 0, then that node in H is replaced
with a =, (2) if a node in H corresponds to a leaf node in l
that is labelled with a 0, then it is replaced with a #, (3) all
other nodes in H are left unchanged.

As discussed in (Poli & McPhee, 2001c), it is possible
to show that, in the absence of mutation, Equations 1
and 2 generalise and refine not only approximate GA and
GP schema theorems (Holland, 1975; Poli & Langdon,
1997; Poli & Langdon, 1998b) but also more recent exact
schema theorems (Stephens & Waelbroeck, 1997; Stephens
& Waelbroeck, 1999; Poli, 2000; Stephens, 2001).

In the following we will use a slightly different form for
Equation 2 which exploits the symmetries in the process
of selection of the parent programs. This can be ob-
tained by dividing each set of crossover masks �C(Gj;Gk)
into two non-overlapping sets �0

C(Gj;Gk)
and ��0

C(Gj;Gk)

such that for each mask x 2 �0
C(Gj;Gk)

, there is a mask

y 2 ��0
C(Gj;Gk)

such that y = �x, and vice versa. Then, by
reordering the terms, it is easy to prove that:
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Theorem 1.

�xo(H; t) =
X
j

X
k

X
l2�0

C(Gj ;Gk)

(pl + p�l) (3)

p(�(H; l) \Gj ; t)p(�(H; �l) \Gk; t)

3 GEIRINGER’S THEOREM

In this section we briefly introduce Geiringer’s theo-
rem (Geiringer, 1944), an important result with implica-
tions both for natural population genetics and evolutionary
algorithms (Booker, 1992; Spears, 2000). Geiringer’s the-
orem indicates that, in a population of fixed-length chro-
mosomes repeatedly undergoing crossover (in the absence
of mutation and selective pressure), the probability of find-
ing a generic string h1h2 � � �hN approaches a limit distri-
bution which is only dependent on the distribution of the
alleles h1, h2, etc. in the initial generation. More precisely,
if �(h1h2 � � �hN ; t) is the proportion of individuals of type
h1h2 � � �hN at generation t and �(hi; t) is the proportion
of individuals carrying allele hi then

lim
t!1

�(h1h2 � � �hN ; t) =
NY
i=1

�(hi; 0): (4)

This result is valid for all homologous crossover operators
which allow any two loci to be separated by recombina-
tion. Strictly speaking the result is valid only for infinite
populations.

If one interprets �(h1h2 � � �hN ; t) as a probability distri-
bution of the possible strings in the population, we can
interpret Equation 4 as saying that such a distribution is
converging towards independence. When, at a particular
generation t, the frequency of any string in a population
�(h1h2 � � �hN ; t) equals

QN

i=1�(hi; t), the population is
said to be in linkage equilibrium or Robbins’ proportions.

It is trivial to generalise Geiringer’s theorem to obtain
the expected fixed-point proportion of a generic linear
fixed-length GA schema H for a population undergoing
crossover only:

lim
t!1

�(H; t) =
Y

i2�(H)

�(�i�1hi�
N�i

; 0); (5)

where �(H) is the set of indices of the defining symbols
in H , hi is one such defining symbols and we used the
power notation xy to mean x repeated y times. (Note that
�(�i�1hi�

N�i
; t) coincides with �(hi; t).)

4 EXACT SCHEMA THEORY FOR
LINEAR STRUCTURES

As indicated in Section 1 in this paper we will consider the
biases of the homologous crossovers in the case of variable-

size linear representations. We start by specialising Equa-
tion 3 to this case.

When only unary functions are used in tree-based
GP, schemata (and programs) can only take the form
(h1(h2(h3::::(hN�1hN )::::))) whereN > 0, hi 2 F[f=g
for 1 � i < N , and hN 2 T [ f=g. Therefore, they can
be written unambiguously as strings of symbols of the form
h1h2h3::::hN�1hN . It should be noted that these strings of
symbols do not have to be necessarily interpreted as rep-
resenting programs. If one uses a special terminal set T
including only one terminal, say EOR (for End Of Repre-
sentation), which will be ignored when the representation
is interpreted, then strings of the form h1h2h3::::hN�1hN

can be interpreted as chromosomes of length N � 1 (since
hN can only be EOR). So, if F = f0; 1g, where 0 and 1 are
“unary functions”,2 our GP system will explore the space
of variable length binary strings. If instead F includes
the “unary functions” fADD R0 R1;MUL R0 R1; : : :g,
then our tree-based GP system explores the same search
space as a machine-code GP system with the same primi-
tive set (Nordin & Banzhaf, 1995). So, in general our spe-
cialisation of Equation 3 will be valid for variable-length
GAs and linear GP.

In the specialisation to the linear case we replace the “don’t
care” symbol “=” with the more standard symbol “*”. Also,
as we did previously, we represent repeated symbols in
a string using the power notation. Since in this case all
trees are linear, the space of program shapes can be enu-
merated by fGng where Gn is �n for n > 0. Given this,
the common region between shapes Gj and Gk is simply
the shorter of the two schemata, i.e. C(Gj ; Gk) = Gj#k =
�j#k where the operator # returns the minimum of its two
arguments. Therefore, the set of crossover masks in the
common region, �C(Gj ;Gk) = �

�j#k , can be identified with
the set f0; 1gj#k. Below we will use N(l) to denote the
length of mask l, and the notation li to indicate the i-th
element of bitmask l. We will also use the operators

a � b =

�
a if b = 1
* otherwise,

a1a2 � � � Æ b =

�
a1a2 � � � if b = 1
# otherwise,

where a and b are bits, a1a2 � � � is a bit string and # stands
for any sequence of at least one primitive. With this no-
tation, it is easy to show that, in a linear representation, if
N(l) > N then�(H; l) is the empty set and�(H; l)\Gj =
; \ �j = ;. If N(l) � N , �(H; l) is

(h1 � l1) � � � (hN(l)�1 � lN(l)�1)(hN(l) � � �hN Æ lN(l))

and

2We are not interested in the output of these functions, but
simply in their topological organisation within the individual.
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�(H; l) \Gj = �(H; l) \ �j = (6)8>>><
>>>:

(h1 � l1) � � � (hN(l)�1 � lN(l)�1)�
j�N(l)+1

if j � N(l) and lN(l) = 0;

(h1 � l1) � � � (hN(l)�1 � lN(l)�1)hN(l) � � �hN
if j = N and lN(l) = 1,

; otherwise.

Thus, p(�(H; l) \ Gj ; t) = 0 for all j 6= N for all the
masks l for which lN(l) = 1. So, if we choose�0

C(Gj ;Gk)
=

f0; 1gj#k�1�f1g, in Equation 3 only the terms for j = N

can be non-zero. Using this simplification and the previous
results, one can transform Equation 3 into:

Theorem 2. If �0
�N#k = f0; 1gj#k�1 � f1g, then

�xo(h1:::hN ; t) =
X
k>0

X
l2�0

�N#k

(pl + p�l) (7)

p((h1 � l1) � � � (hN#k�1 � lN#k�1)hN#k � � �hN ; t)

p((h1 � �l1) � � � (hN#k�1 � �lN#k�1)�
k�N#k+1

; t):

5 LENGTH EVOLUTION

Equation 7 can be used to study, among other things, the
evolution of size in linear GP/GA systems. This is because
it can be specialised to schemata of the form �N obtaining:

�xo(�
N
; t) =

X
k>0

X
l2�0

�N#k

(pl + p�l) p(�
N
; t)p(�k; t)

= p(�N ; t)
X
k>0

p(�k; t)
X

l2�0

�N#k

(pl + p�l) :

But
P

l2�0

�N#k
(pl + p�l) = 1 and

P
k>0 p(�

k
; t) = 1, so:

Theorem 3.
�xo(�

N
; t) = p(�N ; t): (8)

This result indicates that in linear representations length
evolves under homologous crossovers as if selection only
was acting. So, homologous crossovers are totally unbiased
with respect to program length. The lack of length bias of
homologous crossovers is made particularly clear if one as-
sumes a flat fitness landscape in which p(H; t) = �(H; t)
for allH . In these conditions all the dynamics in the system
must be caused by crossover or by sampling effects. In the
infinite population limit, the total transmission probability
�(H; t) can also be interpreted as the proportion of individ-
uals in the population in H at generation t+1,�(H; t+1).
So, for an infinite population and a flat landscape Equa-
tion 8 becomes �(�N ; t+ 1) = �(�N ; t), whereby

Corollary 4. For a flat landscape, an infinite population
and any t > 0

�(�N ; t) = �(�N ; 0):

This equation is important because it shows that when a ho-
mologous crossover alone is acting, any initial distribution
of lengths is a fixed point length distribution for the system.

6 EXTENSION OF GEIRINGER’S
THEOREM

A full extension of Geiringer’s theorem to linear, variable-
length structures and homologous GP crossover would re-
quire two steps: (a) proving that, in the absence of mutation
and of selective pressure and for an infinite population, a
distribution �(h1h2 � � �hN ; t), where the alleles/primitives
can be considered independent stochastic variables, is a
fixed point, and (b) showing that the system indeed moves
towards that fixed point. In this paper we prove (a) mathe-
matically and provide experimental evidence for (b).

Theorem 5. A fixed point distribution for the proportion of
a linear, variable-length schema h1h2 � � �hN under homol-
ogous crossover for an infinite population on a flat fitness
landscape in the absence of mutation is

�(h1h2 � � �hN ; t) = �(�N�1hN ; 0)

N�1Y
i=1

�(�i�1hi#; 0)

�(�i#; 0)
;

(9)
where

�(�i�1hi#; 0) =
X
n>0

�(�i�1hi�
n
; 0)

and
�(�i#; 0) =

X
n>0

�(�i+n; 0):

Proof. Since the fitness landscape is flat, p(H; t) =
�(H; t) for any schema. Also, because the population is
infinite, �(H; t) = �(H; t+1). So, combining Equations 1
and 7 yields

�(h1:::hN ; t+ 1) (10)

= (1� pxo)�(h1:::hN ; t) + pxo

X
k>0

X
l2�0

�N#k

(pl + p�l)

� �((h1 � l1) � � � (hN#k�1 � lN#k�1)hN#k � � �hN ; t)

� �((h1 � �l1) � � � (hN#k�1 � �lN#k�1)�
k�N#k+1

; t):

We prove that Equation 9 represents a fixed point for Equa-
tion 10 by substituting the former in the latter and reorder-
ing the terms, obtaining

�(h1:::hN ; t+ 1)

= (1� pxo)�(�
N�1

hN ; 0)

N�1Y
i=1

�(�i�1hi#; 0)

�(�i#; 0)

+ pxo�(�
N�1

hN ; 0)
X
k>0

�(�k; 0)
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�
X

l2�0

�N#k

(pl + p�l)

�

N#k�1Y
i=1

�
�(�i�1(hi � li)#; 0)�(�

i�1(hi � �li)#; 0)

(�(�i#; 0))2

�

�
N�1Y
i=N#k

�(�i�1hi#; 0)

�(�i#; 0)
:

Whatever the value of bit li in the mask, either hi � li = hi

and hi � �li = �, or hi � li = � and hi � �li = hi. In
either case �(�i�1(hi � li)#; 0)�(�

i�1(hi � �li)#; 0) =
�(�i�1hi#; 0)�(�

i#; 0). So, after reordering the terms,
we obtain:

�(h1:::hN ; t+ 1)

= (1� pxo)�(�
N�1

hN ; 0)

N�1Y
i=1

�(�i�1hi#; 0)

�(�i#; 0)

+ pxo�(�
N�1

hN ; 0)

N�1Y
i=1

�(�i�1hi#; 0)

�(�i#; 0)

�
X
k>0

�(�k; 0)
X

l2�0

�N#k

(pl + p�l)

= �(�N�1hN ; 0)

N�1Y
i=1

�(�i�1hi#; 0)

�(�i#; 0)
2

It is important to note that, although Equation 9 provides a
family of fixed points, this does not prove rigorously that
any population will always converge to one of them. Prov-
ing this is complex and requires much more space than is
available for this conference. We will provide the proof
in a future more extended publication. Instead, in the fol-
lowing section we will describe experimental results which
strongly suggest that indeed populations move toward an
independent allele/primitive distribution.

7 EXPERIMENTAL RESULTS

In order to check the theoretical results in this paper we
set up a population of variable length strings consisting of
1,000,000 individuals. All individuals had the same termi-
nal allele, 0, while two types of non-terminal alleles were
used: alleles of type 0 and alleles of type 1. The majority
of alleles were of type 0 and represented a “background”
against which alleles of type 1 (the “contrast medium” we
used to study the dynamics of non-terminal alleles) could
be more easily traced. Initially, alleles of type 1 occupied
all the non-terminal loci of strings of a given length only
(which was varied between experiments). The terminal lo-
cus of those strings was occupied by an allele of type 0.
All other terminal and non-terminal alleles in the popula-
tion were of type 0.

In our experiments we used two different initial length
distributions: a Gamma distribution with mean 10.5, and
a uniform distribution with lengths between 1 and 20.
Each population was run for 100 generations. The system
was a generational GP/GA system with either one-point
crossover or uniform crossover (applied with 100% proba-
bility) and a flat fitness landscape. One-point crossover is a
homologous crossover operator which, for variable length
strings, is characterised by the recombination distribution

p
�
n

l =
n
1=n if l 2 f0n; 10n�1; 110n�2; : : : ; 1n�10g,
0 otherwise.

Uniform crossover has the recombination distribution
p
�
n

l = 2�n.

Multiple independent runs were not required since the pop-
ulation size was sufficiently large to remove any signifi-
cant statistical variability and therefore to approximate the
infinite-population behaviour (for each program length we
had tens of thousands of individuals on average).

We start by checking what happens to the length distri-
bution over time. Figure 1 shows that the distribution of
program length is at a fixed point when the population is
initialised using either a uniform length distribution or a
discrete Gamma distribution. This corroborates our finding
that any length distribution is a fixed point (Corollary 4).
Note that the small variations in the plots are due to genetic
drift (i.e. a finite population effect).

Let us now consider the allele dynamics. Figure 2 shows
how the distribution of alleles of type 1 varies over a num-
ber of generations in a population initialised with the uni-
form length distribution. In Figure 2(a) only strings of
length 2 included alleles of type 1 (in locus 1). However,
under one-point crossover within a few generations (see
Figures 2(b) and (c)) the relative proportion of strings with
a 1 in locus 1 reached the equilibrium value predicted by
applying Equation 9 to the schema 1�N�1:

lim
t!1

�(1�N�1; t)

�(�N ; 0)
=

�(1#; 0)

�(�#; 0)

N�1Y
i=2

�(�i�1 �#; 0)

�(�i#; 0)

�
1
20
19
20

�
N�1Y
i=2

1 =
1

19
� 0:0526:

The same asymptotic value is approached when only
strings of length 10 included alleles of type 1 at genera-
tion 0, as shown in Figures 2(d)–(g). Qualitatively the be-
haviour of other loci is the same, but the asymptotic values
reached are slightly different, which is predicted by Theo-
rem 5.

Figure 2 reveals that the speed with which alleles in dif-
ferent loci approach their asymptotic value varies. While
alleles in locus 1 move quickly towards their fixed point,
the convergence speed decreases as the locus position in-
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Figure 2: Plots of the relative proportion of non-terminal alleles of type 1 vs. locus position and program length for different
generations under different crossover operators. The population was initialised with a uniform length distribution, where
only programs of length ` contained non-terminal alleles of type 1. The value of ` was 2 in (a)–(c) and 10 in (d)–(i).
One-point crossover was used in (b), (c), (e), (f) and (g), uniform crossover in (h) and (i).

creases. This is due to the fact that alleles occupying non-
terminal loci that are present in a large number of individu-
als will be swapped more frequently than alleles occupying
loci present in a small number of individuals.

The behaviour of uniform crossover is almost identical.
Analysis of our results revealed that the only difference is
the speed with which alleles in different loci approach their
asymptotic value. Uniform crossover mixes alleles more
quickly as can easily be seen, for example, by comparing
Figures 2(e) and (f) with Figures 2(h) and (i), respectively.

To further verify that under homologous crossover the pop-
ulation tends towards an independent allele distribution, we
performed an experiment with exactly the same set up as in
Figures 2(h) and (i) but this time we kept track of the co-
occurrence of pairs of non-terminal alleles within the class
of programs of length 10. So, for each generation we ob-
tained a set of four 9�9 co-occurrence frequency matrices,

one for each possible choice of a pair of the non-terminal
alleles 0 and 1. An element at position (r; c) of the co-
occurrence matrix for non-terminal alleles a and b, repre-
sented the average number of times allele a was present in
locus r while at the same time allele b was present in lo-
cus c in strings of length 10. Once normalised by the total
number of strings of length 10, the diagonal elements of the
0/0 and 1/1 matrices represent the proportions of alleles of
type 0 and 1, respectively, present at each locus.

For all allele pairs the co-occurrence matrices tended to
those predicted by the theory. For example, for the allele
pair 0/0 the theoretical values for the off-diagonal elements
can be calculated using the following equation (obtained
from Equation 9)

lim
t!1

�(�a0 �b 0�10�a�b�2; t)

�(�10; 0)
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Figure 1: Plots of the number of programs vs. program
length for different generations for populations initialised
with a uniform (a) and a Gamma (b) length distribution.
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These values are extremely close to the frequency of 0/0
co-occurrence measured at generation 100 in our runs, the
root mean square error between the above-diagonal ele-
ments being 0.004 (note that the co-occurrence matrix is
symmetric). This is a tiny error considering that all fre-
quencies were bigger than 0.8.

8 DISCUSSION AND CONCLUSIONS

Characterisations of the genetic biases of the operators
(such as the ones offered in this paper and in (Poli et al.,
2002)) are important because they allow the users of
GP/GA systems to evaluate whether their operators provide
the desired search behaviour for the system. If this is not
the case, then the knowledge of the search biases of other
operators allows for an informed choice for an alternative.

Here we have focused our attention on the biases of ho-
mologous crossovers with respect to length and allele dis-
tribution in a population of variable length linear structures
and presented theoretical results describing the asymptotic
behaviour for a GP/GA system evolving in a flat fitness

landscape. In addition, we have provided experimental evi-
dence that firmly corroborates the theory, showing a perfect
match (within experimental errors) between the predictions
of the theory based on generation 0 data and the observed
length and allele frequencies at later generations.

The behaviour we have observed and characterised is sim-
ple: a) homologous crossovers are totally unbiased with
respect to program length, and b) crossover shuffles the al-
leles present in different individuals and pushes the string
distribution towards locus-wise independence.

A mixing behaviour is present in most crossover operators
described in the literature on fixed length GAs. It is well
known that this destroys “linkage”, i.e. correlations, be-
tween different allele positions in the population. In the
fixed length case the asymptotic convergence towards in-
dependence described by Geiringer’s theorem is the result
of the decay of correlations due to the mixing effect of
crossover. Because the representation and operators con-
sidered in this paper are generalisations of the correspond-
ing fixed-length ones, it is not so surprising to see that lin-
ear GP is also moving towards an independent fixed-point
string distribution. In other words, allele mixing is the rea-
son why the right hand side of Equation 9 is a product,
like the right hand side of Equation 4. We have no reason
to believe that the situation would be significantly differ-
ent in tree-based GP. Because our extension of Geiringer’s
theorem is the result of specialising and studying the GP
schema theorem’s equations, it is not unlikely that in the
future we will be able to provide a Geiringer-like theorem
for tree-based GP.

Our theoretical results were obtained for the extreme case
of infinite populations and flat fitness landscapes. So, why
should these be of any relevance to finite GP/GA popula-
tions and realistic landscapes? Firstly, because the biases
of homologous crossovers in the absence of selection indi-
cate the precise way in which this type of operators would
naturally tend to explore the search space. When selection
is added, the search bias will be modified by the focusing
bias of selection, but, except in cases of very strong selec-
tion, many of the features of the search bias shown on a flat
landscape will be retained. Secondly, because as shown in
our experiments, the results obtained with real (but large)
populations match very closely the infinite population the-
ory. For smaller populations, the theory can still be used to
give short term indications of the behaviour of the system.
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Abstract 
 
Previous work has shown that genetic 
programming is capable of creating analog 
electrical circuits whose output equals common 
mathematical functions, merely by specifying the 
desired mathematical function that is to be 
produced.  This paper extends this work by 
generating computational circuits whose output 
is an approximation to the error function 
associated with an existing computational circuit 
(created by means of genetic programming or 
some other method).  The output of the evolved 
circuit can then be added to the output of the 
existing circuit to produce a circuit that computes 
the desired function with greater accuracy.  This 
process can be performed iteratively.  We 
present a set of results showing the effectiveness 
of this approach over multiple iterations for 
generating squaring, square root, and cubing 
computational circuits.  We also perform 
iterative refinement on a recently patented cubic 
signal generator circuit, obtaining a refined 
circuit that is 7.2 times more accurate than the 
original patented circuit.  The iterative 
refinement process described herein can be 
viewed as a method for using previous 
knowledge (i.e. the existing circuit) to obtain an 
improved result. 

1 INTRODUCTION 
An analog electrical circuit whose output is a well-known 
mathematical function (e.g., square, square root) is called 
a computational circuit. 

Analog computational circuits are especially useful when 
the mathematical function must be performed more 
rapidly than is possible with digital circuitry (e.g., for 
real-time signal processing at extremely high 
frequencies). Analog computational circuits are also 
useful when the need for a single mathematical function 
in an analog circuit does not warrant converting an analog 

signal into a digital signal (using an analog-to-digital 
converter), performing the mathematical function in the 
digital domain (requiring a general purpose digital 
processor consisting of millions of transistors), and then 
converting the result to the analog domain (using a 
digital-to-analog converter). 

The design of computational circuits is exceedingly 
difficult even for seemingly mundane mathematical 
functions. Success usually relies on the clever exploitation 
of some aspect of the underlying device physics of the 
components (e.g., transistors) that is uniquely suited to the 
particular desired mathematical function. Because of this, 
the implementation of each different mathematical 
function typically requires an entirely different design 
approach (Gilbert 1968, Sheingold 1976, Babanezhad and 
Temes 1986). 

The topology of a circuit involves specification of the 
total number of components in the circuit, the identity of 
each component (e.g., resistor, transistor), and the 
connections between each lead of each component. Sizing 
involves the specification of the values (typically 
numerical) of each component possessing a component 
value (e.g., resistors, capacitors).  Genetic programming 
(Koza 1992; Koza and Rice 1992; 1994a, 1994b) is a 
technique for automatically creating computer programs 
to solve, or approximately solve, problems. Genetic 
programming is an extension of the genetic algorithm 
(Holland 1975). Genetic programming is capable of 
synthesizing the design of both the topology and 
component values (sizing) for a wide variety of analog 
electrical circuits from a high-level statement of the 
circuit’s desired behavior and characteristics (Koza, 
Bennett, Andre, and Keane 1999; Koza, Bennett, Andre, 
Keane, and Brave 1999; Mydlowec and Koza 2000). 

This paper extends previous work on synthesis of 
computational circuits using genetic programming by 
applying genetic programming in an iterative manner to 
obtain successively more accurate computational circuits.  
Specifically, we employ a multiple-run process in which 
each run involves generating a computational circuit that 
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produces as output an approximation to the error function 
(i.e. the difference between the target function and the 
circuit’s actual output) of the best-of-run circuit from the 
previous run. 

Section 2 of this paper presents a proof-of-principle 
experiment involving iterative refinement of rational 
polynomial approximations to the sine function.  Section 
3 describes automatic synthesis of electrical circuits by 
means of developmental genetic programming.  Section 4 
itemizes the preparatory steps required to apply genetic 
programming to the problem of synthesizing 
computational circuits.  Section 5 describes our 
experiments involving iterative refinement of squaring, 
square root, and cubing computational circuits.  Section 6 
describes an experiment involving iterative refinement of 
a post-2000 patented cubic signal generator circuit.  
Section 7 is the conclusion. 

2 ITERATIVE REFINEMENT OF 
NUMERICAL APPROXIMATIONS TO 
FUNCTIONS  

Iterative refinement as described in this paper can be 
applied to other problem areas involving the synthesis of 
structures or entities that generate a specified target curve 
as output.  In particular, it can be applied to the problem 
of generating numerical approximations to mathematical 
functions.  As a proof-of-principle experiment that could 
be conducted using relatively modest computational 
resources, we evolved successively more accurate rational 
polynomial approximations to the function sin(x) over the 
interval [0,π/2].   
The function set for this problem consisted of the four 
arithmetic operators {+,*,-,%}.  The terminal set 
consisted of the variable X and the random numeric 
terminal R.  Fitness was defined as the sum of absolute 
error over 100 uniformly spaced points.  We used a 
population size, M, of  100,000 and tournament selection 
with a tournament size of 10.  The remaining control 
parameters are the same as those described in section 4.6 
of this paper.  Each run was conducted on a single 
Pentium workstation. 
A first run (iteration 0) was conducted using the target 
function sin(x).  The best-of-run individual from this first 
run produces an output a0(x), with an associated error 
function defined as sin(x)-a0(x).  We then perform a 
second run (iteration 1) using the target function sin(x)-
a0(x).  This second run yields a best-of-run individual 
whose output a1(x) can be added to the result of the first 
run to produce a more accurate approximation a0(x)+a1(x).  
This process was continued iteratively for a total of 6 runs 
including the initial run (with target function sin(x)).  The 
best-of-run rational polynomial from each of the runs was 
imported into the Maple symbolic mathematics package 
to calculate average error (using the integral of the error 
functions).  Table 1 presents the average error of the best-
of-run individuals for iteration N=0 through iteration N=5.  

Rprev indicates the ratio of improvement in average error 
over the previous iteration.  Rfinal at the bottom of the table 
gives the ratio of improvement in accuracy of the best 
individual from all iterations over the best individual from 
the first iteration, i.e. the total ratio of improvement over 
all iterations. 
 
Table 1 : Error of Rational Polynomial Approximations to 

sin(x), [0,π/2] over Successive Iterations 

N ERROR Rprev 

0 4.554574e-6  

1 3.483825e-8 130.73 

2 2.093228e-8 1.6643 

3 1.039170e-8 2.0143 

4 6.302312e-9 1.6489 

5 2.200276e-6 3.4912e-4  

Rfinal: 772.65 

 

As shown in Table 1, we obtain a significantly more 
accurate approximation for iterations 1 through 4 of our 
experiment.  With each successive iteration, the error 
function being approximated becomes more complex (i.e. 
has more local extrema and sharper spikes).  On iteration 
5, we obtain a high-degree rational polynomial that, as 
evaluated under our genetic programming system over 
100 fixed points, represents an improvement over the 
previous iteration.  However, when imported into a 
symbolic mathematics package this approximation is 
revealed to have a large spike in between two of these 100 
fixed points, giving it a substantially higher average error 
than the approximation produced by the previous 
iteration. 

3 AUTOMATIC CIRCUIT SYNTHESIS 
USING DEVELOPMENTAL GENETIC 
PROGRAMMING 

Both the topology and sizing of an electrical circuit can be 
created by genetic programming by means of a 
developmental process (Koza, Bennett, Andre, and Keane 
1999; Koza, Bennett, Andre, Keane, and Brave 1999). 
This developmental process entails the execution of a 
circuit-constructing program tree that contains various 
component-creating, topology-modifying, and 
development-controlling functions. A simple initial circuit 
is the starting point of the developmental process for 
creating a fully developed electrical circuit. The initial 
circuit consists of an embryo and a test fixture.  The 
embryo contains at least one modifiable wire. The test 
fixture is a fixed (hard-wired) substructure composed of 
nonmodifiable wire(s) and nonmodifiable electrical 
component(s). The test fixture provides access to the 
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circuit’s external input(s) and permits probing of the 
circuit’s output. All development originates from the 
modifiable wires. The execution of the component-
creating, topology-modifying, and development-
controlling functions in the program tree transforms the 
initial circuit into a fully developed circuit.  We use the 
methods described by Koza, Bennett, Andre and Keane 
(1999) in combination with the four technical 
modifications described by Streeter, Keane, and Koza 
(2002). 

4 PREPARATORY STEPS 

4.1 INITIAL CIRCUIT 
A one-input, one-output initial circuit with one modifiable 
wire was used for all problems described in this paper 
with the exception of the problem involving the patented 
cubic signal generator circuit (described in section 6).  
The initial circuit has an incoming signal source, a 1 
µOhm source resistor, a voltage probe point VOUT, and a 
1 gigaOhm load resistor.  The topology of the circuit is 
the same as that shown in figure 30.1 of Koza, Bennett, 
Andre, and Keane 1999. 

4.2 PROGRAM ARCHITECTURE 
The circuit-constructing program tree has one result-
producing branch for each modifiable wire in the embryo 
of the initial circuit. Thus, each program tree has one 
result-producing branch for each of the problems 
described in this paper.  Automatically defined functions 
were not used. 

4.3 TERMINAL SET 
The value of each component in a circuit possessing a 
parameter (e.g., resistors) is established by an argument of 
its component-creating function. The argument is a 
numerical terminal whose value can be perturbed by a 
special genetic operation for mutation of constants.  Aside 
from the numerical constants, the terminal set for each 
result-producing branch is  
Trpb = {END, SAFE_CUT, B_C_E ... E_C_B, 
BIFURCATE_POSITIVE, BIFURCATE_NEGATIVE, 
Q2N3906, Q2N3904, UP_OR_LEFT, 
DOWN_OR_RIGHT}.   
These terminals are each described in detail in Koza, 
Bennett, Andre, and Keane 1999 and Streeter, Keane, and 
Koza 2002. Briefly, the END terminal is a development-
controlling function that ends the developmental process 
for a particular path through the circuit-constructing 
program tree. SAFE_CUT is a topology-modifying 
function that deletes a modifiable wire or component from 
the developing circuit while preserving circuit validity.  
The B_C_E through E_C_B terminals specify which of 
six possible permutations to use for the three leads of a 
transistor when inserting a transistor into a circuit.  The 
BIFUCATE_POSITIVE and BIFURCATE_NEGATIVE 

terminals specify which end of the modifiable wire to 
bifurcate when inserting a transistor.  The Q2N3906 and 
Q2N3904 terminals specify which of two available 
transistor models to use when inserting a transistor.  The 
DOWN_OR_RIGHT and UP_OR_LEFT terminals specify 
the two possible pairs of directions in which parallel 
division can be performed. 

4.4 FUNCTION SET 
The function set for each result-producing branch is 
Frpb = {R, Q, SERIES, PARALLEL,  NODE, TWO-LEAD, 
TWO_GROUND, THREE_GROUND}. 
See Koza, Bennett, Andre, and Keane 1999 and Streeter, 
Keane, and Koza 2002 for a detailed description of each 
of these functions. Briefly, the R function is a component-
creating function that creates a resistor with a resistance 
specified as an argument to the function.  A function that 
creates a two-leaded component (with R here being the 
only choice) can be used as an argument to the TWO-
LEAD function, which inserts two-leaded components into 
the circuit.  The Q function inserts transistors into a 
developing circuit. The SERIES and PARALLEL 
functions modify the topology of the developing circuit 
by performing a series or parallel division (respectively). 
The NODE function is used to connect distant points in a 
circuit.  The TWO_GROUND and THREE_GROUND 
functions each create a via to ground. 

4.5 FITNESS MEASURE 
The evaluation of each individual circuit-constructing 
program tree in the population begins with its execution.  
The execution progressively applies the component-
creating, topology-modifying, and development-
controlling functions in the program tree to the embryo of 
the initial circuit (and to intermediate circuits during the 
developmental process), thereby eventually yielding a 
fully developed circuit. A netlist is then created that 
identifies each component of the fully developed circuit, 
the nodes to which each component is connected, and the 
numerical value of each component. The netlist becomes 
the input to our modified version of the SPICE 
(Simulation Program with Integrated Circuit Emphasis) 
simulation program (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994). SPICE determines the 
circuit’s behavior in terms of the output voltage VOUT in 
the time domain. Each individual circuit in the population 
is exposed to two time-domain signals for a (simulated) 
duration of either one or one hundred seconds.  The first 
time domain signal is a straight line rising from 0 to 1 volt 
over a period of one second.  The second time domain 
signal is a straight line falling from 1 volt to 0 volts over 
100 seconds.  Each time-domain simulation is run for 100 
time steps. 
Absolute error is defined as the sum, over each time step, 
of the absolute difference between the output of the 
circuit and the value of the target function (which varies 
from problem to problem).  Overall fitness consists of a 
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weighted sum of absolute error.  The error of each point is 
weighted by a factor of 10 if it is not a hit, and a factor of 
1 otherwise.  A hit is defined as an output that is within 
1% of the desired value. 

4.6 CONTROL PARAMETERS 
For the computational circuit problems described in this 
paper, the population size, M, was 20,000. A (generous) 
maximum size of 500 points (i.e., total number of 
functions and terminals) was established for the result-
producing branch. The percentages of the genetic 
operations are 60% one-offspring crossover on internal 
points of the program tree other than numerical constant 
terminals, 10% one-offspring crossover on points of the 
program tree other than numerical constant terminals, 1% 
mutation on points of the program tree other than 
numerical constant terminals, 20% perturbation on 
numerical constant terminals, and 9% reproduction. The 
other parameters are the same default values that we have 
used previously on a broad range of problems (Koza, 
Bennett, Andre, Keane 1999). 

4.7 TERMINATION 
Each run (performed as part of a multi-run process) was 
allowed to perform 100 generations before being 
terminated. 

4.8 PARALLEL IMPLEMENTATION 
Each of the problems described in this paper was run on a 
home-built Beowulf-style (Sterling, Salmon, Becker, and 
Savarese 1999; Bennett, Koza, Shipman, and Stiffelman 
1999) parallel cluster computer system consisting of 20 
350 MHz Pentium II processors (each accompanied by 64 
megabytes of RAM).  These 20 processors were isolated 
into a logically separate cluster for the purpose of these 
experiments.  They normally act as part of a larger 1,000 
processor cluster which we apply to more difficult 
problems involving genetic programming.  The system 
has a 350 MHz Pentium II computer as host. 
The processing nodes are connected with a 100 megabit-
per-second Ethernet. The processing nodes and the host 
use the Linux operating system. The distributed genetic 
algorithm with unsynchronized generations and semi-
isolated subpopulations was used with a subpopulation 
size of Q = 1,000 at each of D = 20 demes. As each 
processor (asynchronously) completes a generation, four 
boatloads of emigrants from each subpopulation are 
dispatched to each of the four toroidally adjacent 
processors. Emigrants are selected randomly and the 
migration rate is 5% (10% if the adjacent node is in the 
same physical box). 

5 ITERATIVE REFINEMENT OF 
EVOLVED COMPUTATIONAL 
CIRCUITS 

5.1 RESULTS 
We applied our iterative refinement process to the 
generation of squaring, square root, and cubing 
computational circuits.  In each case, a first run of genetic 
programming was conducted to create a circuit which 
output the desired function with some degree of accuracy.  
A second run was then performed in which the target 
function was taken as the error function associated with 
the best-of-run circuit from the previous run.  This 
process was continued for successive iterations until a run 
produced an improvement in accuracy over the previous 
iteration of 5% or less.  Tables 2, 3, and 4 present the 
results of these experiments for squaring, square root, and 
cubing computational circuits, respectively.  Figures 1, 3, 
and 5 present the output curves for the circuits produced 
by successive iterations for the squaring, square root, and 
cubing functions, respectively.  Figures 2, 4, and 6 present 
the error curves over successive iterations for the 
squaring, square root, and cubing circuits, respectively. 
 
Table 2 : Error of Squaring Computational Circuits over 

Successive Iterations 

N ERROR (mV) Rprev 

0 46.84  

1 5.836 8.0260 

2 5.5635 1.0490 

Rfinal: 8.4193 
 

Table 3 : Error of Square Root Computational Circuits 
over Successive Iterations 

N ERROR (mV) Rprev 

0 11.835  

1 3.4445 3.4359 

2 3.398 1.0137 

Rfinal: 3.4830 
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Table 4 : Error of Cubing Computational Circuits over 
Successive Iterations 

N ERROR (mV) Rprev 

0 22.312  

1 20.198 1.1047 

2 17.510 1.1535 

3 17.061 1.0263 

Rfinal: 1.3078 
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Figure 1: Output of Squaring Computational Circuits over 

Successive  Iterations 
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Figure 2: Error of Squaring Computational Circuits over 

Successive Iterations 
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Figure 3: Output of Square Root Computational Circuits 

over Successive Iterations 
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Figure 4: Error of Square Root Computational Circuits 

over Successive Iterations 
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Figure 5: Output of Cubing Computational Circuits over 

Successive Iterations 
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Figure 6: Error of Cubing Computational Circuits over 

Successive Iterations 

5.2 EFFICIENCY OF EVOLVING 
COMPUTATIONAL CIRCUITS USING 
ITERATIVE REFINEMENT 

It is not necessarily (and almost undoubtedly not) the case 
that the experiments described above produce their results 
with the most efficient possible use of available 
computational resources.  Since our multi-run process 
involved 6 separate GP runs, the same computational 
resources could be expended by executing (for example) a 
single run for 6 times as long or a single run using 6 times 
the population.  We have no evidence to show that either 
of these approaches, or some other approach which used 
the same amount of computational resources as our 
experiments, would not produce better results than the 
ones given here.  However, our purpose here is to 
establish that genetic programming is capable of creating 
computational circuits whose output is an approximation 
to the error function of another computational circuit, and 
that the iterative process used in these experiments is 
indeed able to create successively more accurate 
computational circuits. 
Also note that the results presented in this section and in 
section 2 in no way imply that the error functions being 
targeted in each successive iteration are somehow more 
amenable to approximation by genetic programming than 
are the original target functions (i.e. sqrt(x), x2, and x3).  
Rather, it is the fact that genetic programming is able to 
produce circuits whose outputs approximate the error 
functions with any degree of accuracy at all that allows 
successively more accurate circuits to be obtained. 

6 REFINEMENT OF A POST-2000 
PATENTED CIRCUIT 

U.S. patent 6,160,427 covers a low-voltage cubic signal 
generator circuit that produces an output current 
approximately equal to the cube of its input current 
(Cipriani and Takeshian, 2000).  In a previous paper, we 
successfully applied genetic programming to the synthesis 
of a computational circuit that duplicates the functionality 
of this patented circuit.  Specifically, we evolved a circuit 

that meets the low voltage criteria defined in the patent 
and has an average error that is 59% of that of the 
patented circuit over the four fitness cases on which it was 
evaluated (Streeter, Keane, and Koza 2002). 
We now apply our iterative refinement process to this 
patented circuit.  The preparatory steps for the runs 
performed in this experiment differ from the preparatory 
steps given in section 4 in four minor ways.  First, we 
force the evolved circuit to conform to the low voltage 
specification in the patent by including only a 2V power 
supply in the function set, rather than the 15V and –15V 
supplies we had included in previous run.  Second, we 
desire that this circuit make full use of the voltage range 
provided by the power supply, i.e. the circuit’s output 
should range from 0V to 2V.  This means that the input 
voltage  should have a minimum value of 0V and a 
maximum voltage equal to the cube root of 2.  The two 
time-domain curves described in section 4.5 are modified 
accordingly.  Third, for this problem we use only a 
minimal embryo consisting of a single modifiable wire 
initially not connected to the test fixture, in contrast to the 
embryo consisting of a modifiable wire connected to 
source and load resistors as described in section 4.1.  We 
generally use this minimal embryo when dealing with a 
test fixture that has multiple inputs or outputs.  In this 
case there is one input (representing an input current 
flowing down from a 2V supply) and two outputs 
(representing the high and low points at which the output 
current is to be probed).  Additional functions are 
included in the function set that allow connections to be 
made to the single input and the two outputs.  For more 
information on these functions see Koza, Bennett, Andre, 
Keane 1999.  Finally, each of the runs described in this 
section was manually monitored and terminated when it 
appeared to have reached a plateau. 
When building upon a patented circuit, the first iteration 
(iteration 0) of our iterative process does not involve a GP 
run, but rather involves building and simulating the 
patented circuit based on the schematics given in the 
patent document.  Our first GP run (iteration 1) involves 
the synthesis of a computational circuit whose output 
approximates the error function associated with the 
patented circuit.  Our second GP run (iteration 2) involves 
the synthesis of a circuit whose output approximates the 
error function of the best-of-run circuit from our first GP 
run.  The results of these runs are presented in Table 5. 
 

Table 5 : Error of Low-Voltage Cubing Circuits over 
Successive Iterations 

N ERROR (mV) Rprev 

0 7.128  

1 0.9873 7.2197 

2 0.9236   1.0690 

Rfinal: 7.2197 (see below) 
 

GENETIC PROGRAMMING882



The first iteration of our experiment produced a circuit 
whose average error was 7.2 times better than that of the 
patented circuit (over our two fitness cases).  This circuit 
was created after 147 generations.  The circuit was tested 
on a variety of unseen fitness cases, and outperformed the 
patented circuit on those fitness cases as well.  The 
second iteration of our experiment produced a circuit that 
was approximately 1.07 times better than the circuit of the 
previous iteration.  This circuit was created after 80 
generations.  However, examination of the output of this 
circuit reveals that it contains a number of sharp spikes 
which indicate instability in the circuit’s output.  This 
circuit generally does not perform better that the circuit of 
the previous iteration when tested on unseen fitness cases. 
The output curves for the circuits produced in iterations 0 
and 1 of our experiment are given in Figure 7.  The error 
curves for these two circuits are given in Figure 8.   
Figure 9 presents the refined computational circuit 
obtained by adding the output of the patented cubic signal 
generator circuit to the output of the evolved circuit.  In 
this figure there are two rectangles drawn using dotted 
lines.  The top rectangle encloses the circuitry from the 
patented cubic signal generator, while the bottom 
rectangle encloses the evolved circuitry.  Components 
which are outside both rectangles are part of the test 
fixture for the problem.  The two outputs labeled VITER0 
(for the output of the patented circuit) and VITER1 (for 
the output of the evolved circuit) are passed through a 
voltage addition block to produce the final output 
(VFINAL) of the refined circuit. 
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Figure 7: Output of Low-Voltage Cubing Circuits over 

Successive Iterations 
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Figure 8: Error of Low-Voltage Cubing Circuits over 

Successive Iterations 
 
 

 

 
Figure 9: Refined Low-Voltage Cubic Signal Generator 

Circuit 
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As previously mentioned, computational circuits are 
valuable in that they are able to produce the output of 
complex mathematical functions at near-instantaneous 
analog speed.  However, no human-designed 
computational circuit (or circuit designed by any other 
means) is likely to produce the desired output with  
perfect accuracy.  For this reason, an error correction 
process is desireable.  Genetic programming has been 
shown in this paper to provide such a process.  Since the 
shape of the error functions associated with computational 
circuits are rather arbitrary and do not correspond to 
simple mathematical functions, it would be difficult if not 
impossible for an analog engineer to generate a circuit 
that produced these functions.  The synthesis of 
computational circuits that produce these error functions 
as output is therefore an especially suitable application of 
genetic programming. 

7 CONCLUSIONS 
We have shown that an iterative refinement process can 
be applied both to the generation of rational polynomial 
approximations to functions and to the synthesis of 
computational circuits using genetic programming.  In 
particular, we have applied this process to the synthesis of 
squaring, square root, and cubing computational circuits, 
obtaining an increase in accuracy with each successive 
iteration of refinement.  We further applied this iterative 
process to a recently patented low-voltage cubic signal 
generator circuit, and achieved an improvement in 
accuracy of a factor of 7.2 over the patented circuit.  We 
conclude that the approach described in this paper 
provides an effective way to generate high-accuracy 
computational circuits. 
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