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Abstract 

 
 

This paper describes the use of a multi-objective 
evolutionary algorithm to solve an engineering 
design problem - determining the geometry and 
operating settings for a crusher in a 
comminution circuit for ore processing. The 
outcome is a tool for consulting engineers that 
can be used to create and explore candidate 
designs for various scenarios. The tool has 
proved capable of deriving designs that are 
clearly superior to existing designs, promising 
significant financial benefits. The approach is 
flexible enough to be applied to a variety of 
similar problems. 

1 INTRODUCTION 
Evolutionary algorithms are increasingly finding 
applications in engineering design tasks. In this paper we 
describe a study, supported by Rio Tinto Ltd, which uses 
evolutionary algorithms to optimise the performance of a 
comminution circuit for iron ore processing. In work 
reported earlier, (Hingston, 2002), a simple evolution 
strategy algorithm was used to solve this problem. We 
have restated the details of the problem description here 
for completeness. In the present study, we report on a 
further development  - a multi-objective algorithm - and 
compare the two approaches. 
The performance of a processing plant has a large impact 
on the profitability of a mining operation, and yet plant 
design decisions are often guided more by engineering 
intuition and previous experience than by analysis. This is 
because plants are extremely complex to model, so 
engineers often must rely on simulation tools to evaluate 
and compare alternative hand-crafted designs. This is a 
time-consuming process and the lack of an analytical 
model means that there is little theoretical guidance to 
narrow the search for better solutions. Evolutionary 
algorithms can be of great benefit here, providing a 
means to search large design spaces and present the 

engineer with superior designs optimised for different 
operating scenarios. 
In order to test the applicability of evolutionary 
algorithms in this setting, a representative problem was 
chosen by Rio Tinto. The task was to find combinations 
of design variables (including geometric shapes and 
machine settings) to maximise the capacity of a simple 
comminution circuit, whilst also minimising the size of 
the product. Earlier work in (Hingston, 2002) showed the 
effectiveness of a single-objective evolution strategy 
algorithm for this task.  However, the multi-objective 
approach described in this paper offers clear advantages 
over the single-objective algorithm. 
We begin the paper with a description of the problem, 
including a brief background on crushers and 
comminution circuits. Section 3 describes our mapping of 
the problem to an evolutionary algorithm, including the 
genetic representation, genetic operators and selection 
methods. Section 4 presents some illustrative results. 
Finally, we discuss future enhancements to the system 
and plans to extend the work to include greater 
complexity in the simulation model, including circuits. 

2 BACKGROUND 
Crushing and grinding of rocks and other particles has 
many important applications, including coarse crushing 
mined ore and quarry rock, fine grinding of coal for 
power station boilers, and for production of paint, 
ceramics, cement and other materials. It has been 
estimated that several billion tons of material is crushed 
and ground annually (Hiorns, 1971). Thus optimisation of 
crushing operations offers large potential economic 
benefits. For example, in the area of energy savings, 
Napier-Munn et al ((Napier-Munn, 1996), p1) quote a 
report of the U.S. National Materials Advisory Board in 
1981, which estimated that realistic improvements in 
crushing-related activities could result in energy savings 
of more than 20 billion kWh per annum. Other benefits of 
optimisation of crushing and grinding in mineral 
processing operations include reduced operating costs, 
increased throughput and thus value production, and 
improved downstream performance. 
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Figure 1 - The simple circuit used in this study 

 

2.1 CRUSHERS AND CIRCUITS 
In this section, we provide a brief background on crushers 
and how they are used in comminution circuits. The 
interested reader could consult, for example, (Napier-
Munn, 1996) for more detailed information. 
“Comminution” refers to the collection of physical 
processes that can be applied to a stream of ore to change 
the size of the particles in the stream. Examples include 
crushing and grinding (which break ore particles into 
smaller particles), and screening (which separates ore into 
several streams of different particle sizes). The purpose of 
comminution is to transform raw ore into a more usable 
or more saleable product or to prepare it for further 
processing. A “comminution circuit” consists of a 
collection of processing units (crushers, screens etc) 
connected together (by conveyor belts, for example), 
possibly containing loops (hence the use of the word 
“circuit”). One or more streams of ore (the “feed”) enter 
the circuit and one or more streams of transformed 
material (the “product”) exit the circuit. 
Figure 1 shows the simple circuit that was used in this 
study. The feed comes in on a conveyor from the top left 
and enters the crusher. The crushed ore is then passed 
through a screen that allows particles less than 32 mm to 
pass through and report to product. Particles larger than 
this (the “oversize”) are recycled back to the crusher. 
Thus the input to the crusher is a combination of feed and 
recirculating oversize. 
The type of crusher used here is a “cone” crusher. Figure 
2 is a schematic diagram of a typical cone crusher. 
Material is introduced into the crusher from above, and is 
crushed as it flows downwards through the machine. The 
inner crushing surface, or “mantle”, is mounted on the 

conical crushing head and is driven in an eccentric 
motion swivelling around the axis of the machine. The 
outer crushing surface, or “bowl”, is held stationary. 
Material flows into the crushing chamber from above, 
and is crushed between the two surfaces by compressive 
forces due to the eccentric motion. After compression, the 
chamber widens and allows material to flow to lower 
parts of the crushing chamber, and eventually to fall 
through and exit the machine. 
The gap between the bowl and the crushing head at the 
closest point in the cycle is called the “closed-side 
setting”. This can be reduced to obtain a narrower 
chamber and finer crushing. The two crushing surfaces 
are covered by replaceable steel liners (shaded in Figure 
2), which can be manufactured with different cross-
sectional shapes. The eccentric angle and speed of 
revolution of the head can also be adjusted. These 
variables contribute to the performance characteristics of 
the crusher. 

2.2 SIMULATING CRUSHERS 
Fitness is evaluated using a simulation of a single cone 
crusher. The inputs to the simulation are the: 
• Physical properties of the feed (composition, 

hardness etc); 
• Size distribution of the feed (the proportion of 

particles in different size fractions); 
• Geometry of the mantle and bowl liners; 
• Closed-side setting; 
• Rotational speed of the head; and 
• Eccentric angle of the head. 
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Figure 2 - Schematic diagram of a cone crusher (after (Napier-Munn, 1996) Figure 6.3) 

 
The final four of these were selected as the design 
variables for the chosen problem. The outputs of the 
simulation are the: 
• Size distribution of the product; 
• Power needed to crush the feed; and 
• Maximum amount of material that can flow through 

the crusher without overloading the crusher (its 
“capacity”). 

From these outputs it is possible to calculate the steady-
state size distribution of the product and capacity of a 
circuit that includes the crusher. These data are used to 
evaluate the fitness of proposed designs. Each evaluation 
takes approx 300 ms on a 700MHz Pentium III. 

3 ALGORITHM 
The problem described above is well suited to an 
evolutionary algorithm approach. The problem cannot 
easily be described analytically, but a simulation is 
available that can be used to evaluate candidate solutions. 
The search space is large - too large for an exhaustive 
search - and there is little to guide an engineer in 
determining good designs for a given scenario. We chose 
an evolution strategy (ES) approach to tackle this 
problem, as it has similarities with other problems that 
have previously been successfully handled by ES. In 
particular, candidate designs can be described using a 
vector of real values, and the problem involves 
determining geometric shapes. Previously reported 
successful applications of this type include the design of a 
jet nozzle (Klockgether, 1970) and a flywheel (Eby, 
1999). 
The basic evolution strategy algorithm has the following 
steps: 
1. Create an initial population of designs. 
2. Evaluate the fitness of these designs. 
3. Create a population of children by mutating the 

members of the current population. 
4. Evaluate the fitness of these children. 

5. Select the fittest designs from the parents and 
children together. 

6. Repeat steps 3 to 5 until done.  
To implement a specific instantiation of the algorithm, we 
must specify the representation scheme to be used, the 
method of fitness evaluation, the nature of the mutation 
operators, the selection mechanism, and the termination 
condition. It may be possible for infeasible designs to be 
generated by mutation, in which case we must also 
specify how to deal with these infeasible designs. 
These specifications are detailed in the remainder of this 
section. 

3.1 FITNESS 
The principal objective that we are trying to maximise is 
the capacity of a circuit containing a given crusher. The 
placement of the crusher in a circuit is important because 
a crusher that itself has a high capacity may not be 
suitable if it generates a lot of oversize material: the 
presence of this recirculating material reduces the rate at 
which feed can be introduced into the circuit. We define 
“capacity ratio” to be the ratio of the amount of material 
entering the crusher to the amount of feed entering the 
circuit (at steady-state operation). A higher capacity ratio 
corresponds to more recirculating material. 
The capacity of a circuit may be limited by one of three 
factors. 
1. The capacity of the crusher. If a crusher has capacity 

CAP tons/hour and capacity ratio CR, the capacity of 
the circuit will be limited by 

  CAP / CR 
2. The power requirements of the crusher. A high 

rotational speed in particular delivers a lot of 
crushing but requires a lot of power. If a crusher with 
maximum power output MP kWh requires P kWh to 
process a circuit feed of F tons/hour, the capacity of 
the circuit will be limited by  

  F × (MP / P) 
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3. The capacity of the recirculation conveyor in the 
circuit. If a crusher has capacity ratio CR and the 
conveyor has a capacity of MR tons/hour, the 
capacity of the circuit will be limited by 

  MR / (CR – 1) 
Each of these factors potentially limits the capacity of the 
circuit, therefore the actual capacity will be the minimum 
of these values. 
Notice the potential trade-offs for the various design 
variables. For example, a large closed-side setting will 
increase the capacity of the crusher, but will also increase 
the amount of recirculating material, raising the capacity 
ratio. Similarly, a high rotational speed will lead to more 
crushing in each pass through the chamber, but will also 
increase the power requirements of the crusher, possibly 
reducing the overall capacity. 
Alongside maximising the capacity of the circuit, we also 
want to minimise the size of the product. Specifically, we 
define P80 to be a measure of the size of the 80th 
percentile in the product (i.e. the size k mm such that 80% 
of the product is smaller than k mm). For technical 
reasons, a higher value of P80 corresponds to a smaller 
product, so we want to maximise P80.  
For the purpose of the experiments reported in this paper, 
we normalise both capacity and size figures by dividing 
by the figures for a standard design and settings. 
In an earlier study, (Hingston, 2002), we combined the 
two objectives by defining the fitness of a design as a 
linear combination of them. The fitness function used in 
the earlier study was: 

0.05 × CAP  +  0.95 × P80 
where CAP is the circuit capacity, P80 is the size 
measure, and the constants are chosen to equalise the 
variability of the two components. Thus the fitness of the 
standard design is 1.0, and higher fitness is better. 
In the present study, we use both objectives to define the 
Pareto ranking of a design relative to a set of potential 
designs. We use the ranking scheme proposed by Fonseca 
and Fleming (Fonseca, 1998), as described in 
(Veldhuizen, 2000). We define Pareto dominance for 
designs as follows: 

A design u is said to dominate a design v iff 
CAP(u) > CAP(v) and P80(u) > P80(v) 
A design x is Pareto optimal with respect to a set 
of designs Ω  iff there is no design in Ω  that 
dominates x. Thus a design that is Pareto optimal 
cannot be improved in any objective without 
degrading other objectives. 
Finally, the Pareto rank of a design x, with 
respect to a set of designs , is the number of 
designs in  which dominate x. 

Ω
Ω

Thus x is Pareto optimal iff x has a Pareto rank of 0. In 
this multi-objective approach, Pareto rank, rather than a 
combined fitness value, is used as the basis for selection. 

3.2 INITIALISATION 
The population is initialised with copies of the existing 
standard design and settings. These copies are quickly 
eliminated in the first few generations of a typical 
execution. 

3.3 REPRESENTATION 
The representation of the machine settings  - closed-side 
setting, eccentric angle and rotational speed - is 
straightforward, these being real values within given 
ranges. The best way to represent the geometric shapes of 
the two liners is less clear. The shape of each liner is 
defined by its vertical cross-section. The shape of the 
machine structure dictates the shape of the “back” of each 
liner, so it is only the “front” of each liner (the actual 
crushing surface) that is represented. 
We chose to describe each shape as a series of line 
segments, using a variable-length list of points, each 
represented by a pair of coordinates. The first coordinate 
pair for the first segment and the last coordinate pair for 
the last segment are fixed, but each other coordinate is 
another real-valued object variable. Thus, if there are  
line segments on the mantle and  line segments on the 
bowl liner, then the genotype consists of a vector of 

n
m

( ) ( 12123 −+ )−+ mn  
real-valued object variables. 
Figure 3 shows a series of liner pairs evolved during a 
typical run.  

3.4 MUTATION 
When a parent is mutated to produce a child, each object 
variable is mutated independently using self-adaptive 
mutation rates as described in (Back, 1997). Specifically, 
each object variable is mutated using the formula 

)1,0(''
iiii NXX ⋅+= σ  

where ( )1,0iN

i

 is a normally distributed random value 
with mean 0 and standard deviation 1, and each strategy 
parameter σ is mutated using the formula 

' ( ))1,0()1,0(exp '
iii NN ⋅+⋅⋅= ττσσ  

'τwhere τ  and are constants set to 0.25 and 0.1 
respectively, and ( )1,0N  is sampled once for each 
individual. 
In addition, we provided mutation operators to increase or 
reduce the number of segments in a liner. Whether to 
apply these operators is determined randomly with a fixed 
probability. The mutation to reduce the number of 
segments randomly selects two adjacent segments to 
merge and discards the common end point. The operator 
to increase the number of segments randomly selects a 
segment to split into two, using the segment midpoint as 
the common end point. This was done to allow the 
algorithm to generate more complex or simpler liner 
shapes as required. 
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Figure 3 - A sample of evolved liner pairs

3.5 CONSTRAINTS 
There are a variety of feasibility constraints upon 
potential designs. These can be categorised as follows: 
Physical constraints  The sequences of coordinate pairs 
must describe shapes that make sense operationally. In 
particular, the liners must have at least a certain thickness 
to be practical. We found that this constraint was violated 
so rarely that it is not worth the computational expense to 
do the checking. If the final solution returned violates this 
constraint, the algorithm can simply be re-run. 

Setting constraints  Each machine setting must be 
confined to a given range. This is done by repair — any 
value that is too low is set to the minimum value for that 
setting, and any that is too high is set to the maximum 
value. 
Modeling constraints  The crusher simulation is very 
complex and assumes (sometimes implicitly) that liners 
have “sensible” shapes. To keep our designs in the 
“sensible” region, we imposed a heuristic constraint that 
the sequence of x-coordinates and the sequence of y-
coordinates for each liner always change monotonically.  
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Figure 4 - Final Pareto fronts from five runs of the system 

This constraint is enforced by repairing any coordinate 
that violates the constraint, at the time of creation. Even 
so, the simulation occasionally fails. In these cases, the 
design is assumed to be nonsensical and both capacity 
and P80 are assigned an abysmal value of 0. 

3.6 SELECTION 
Selection is done using the standard (λ + µ)-selection 
mechanism of evolution strategies, with λ = µ = 1. Each 
member of the current generation becomes the parent of 
one child, and those with lowest rank are selected from 
the parents and children combined become the next 
generation. That is, each member of the current 
generation becomes the parent of one child, and the best 
individuals selected from the combined parents and 
children become the next generation. 

4 RESULTS AND DISCUSSION  
In this section, we describe an example set of runs of the 
system that is indicative of the performance on test 
problems. We ran the system five times with a population 
size of 50 for 200 generations on each run. 
Figure 4 shows the final Pareto fronts for the sample runs. 
In all cases a good range of designs is found, showing 
different tradeoffs of the two objectives.  
Figure 5 shows the movement of the Pareto front during 
Run 5 from Figure 4. Note that while the fronts for 
Generations 100 and 200 appear to cross, no design in 
Generation 200 is actually dominated by one in 

Generation 100. Some designs in Generation 100 are still 
present in Generation 200 (indeed one design in 
Generation 20 is still present), and the use of lines to 
interpolate between the population members creates the 
illusion of a cross-over. The situation is exacerbated by 
the difficulty in improving P80 values beyond a certain 
level: this has been confirmed by experiments where 
maximising P80 was the sole objective. 
Figure 3 shows a sample of evolved liner pairs and 
settings from another run. The first row shows liners from 
Generation 0, a selection of random mutations on the 
standard design. The middle rows show liners from part 
way through the run, and the final row shows liners from 
the final Pareto front. The first column shows the design 
with the best P80, while the last column shows the design 
with the best capacity. The second column shows the 
design with the highest fitness according to the composite 
measure used in (Hingston, 2002). 
Figure 6 shows the user interface during the execution of 
a typical run. The top right corner shows a scatter plot of 
the current generation in objective-space. The user can 
select a particular design in the plot to view its details 
elsewhere on the screen. The top left corner depicts the 
selected crusher in a circuit: it shows the liner shape and 
the material flows through each part of the circuit. The 
user can click on one of these flows to view a graph of 
the size distribution of the corresponding ore stream. The 
bottom left corner shows the settings and fitness for the 
selected design. The bottom right corner has various 
controls for the parameters of the system. 
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Figure 5 - Progressive Pareto fronts from Run 5 in Figure 4 

The true multi-objective approach used in this study 
offers clear benefits in this application over the simpler 
approach of using a combined fitness function as in 
(Hingston, 2002). It removes the need for arbitrary 
weightings, which engineers have trouble specifying in 
advance. There is no need to separately apply capacity 
constraints, as non-dominated solutions inevitably satisfy 
the constraints anyway. The user interface provides an 
intuitive visualisation for engineers, enabling them to see 
the effects of trading off the different objectives on the 
evolved designs.  

5 FUTURE WORK 
The work reported here is still in the early stages of its 
development. While the results obtained so far are 
excellent, many enhancements and extensions are 
envisaged.  
Planned enhancements to the crusher simulation are 
likely to make it run an order of magnitude slower. We 
may then need to develop special strategies to speed up 
the evolutionary algorithm. One possibility is to use 
faster, more approximate models early in the search, 
using a scheme similar to the injection island genetic 
algorithm described in (Eby, 1999). 
Another aim is to include, as part of the task, the design 
of the circuit itself - that is, to co-evolve crushers, screens 
and other processing units and their settings, as well as 
the pattern of conveyors connecting them together. This 

brings in elements of network design, another application 
area in which evolutionary algorithms have been 
successful (see e.g. (Gross, 1996)). The concurrent design 
of this network and the machines within it will be 
challenging, but the potential rewards are huge. 

6 CONCLUSIONS 
In this paper we have described a study in the application 
of multi-objective evolutionary algorithms to a difficult 
practical engineering design problem.  Our system 
determines the liner profiles and operating settings for a 
crusher in a comminution circuit.  Initial results promise 
significant financial benefits. 
In many ways, this problem is an ideal application for 
evolutionary algorithms - the pay-off is high; the problem 
is too complex to solve analytically; the search space is 
too large to explore unaided; we have a well defined 
evaluation function and a straightforward representation 
scheme, suitable for manipulation by genetic operators. 
Many challenges remain in incorporating more realism in 
the problem definition (for example, including variety in 
feed properties, interactions with other plant etc) and 
validating the predicted performance with field trials.  
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Figure 6 - The user interface of the system 
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Abstract 
 
 
In this paper, we learn to discover composite 
operators and features that are evolved from 
combinations of primitive image processing 
operations to extract regions-of-interest (ROIs) in 
images. Our approach is based on genetic 
programming (GP). The motivation for using GP 
is that there are a great many ways of combining 
these primitive operations and the human expert, 
limited by experience, knowledge and time, can 
only try a very small number of conventional 
ways of combination. Genetic programming, on 
the other hand, attempts many unconventional 
ways of combination that may never be imagined 
by human experts. In some cases, these 
unconventional combinations yield exceptionally 
good results. Our experimental results show that 
GP can find good composite operators, that 
consist of primitive operators designed in this 
paper, to effectively extract the regions of 
interest in images and the learned composite 
operators can be applied to extract ROIs in other 
similar images. 

1 INTRODUCTION 
    Object detection is an important intermediate step to 
object recognition. The task of object detection is to 
locate and extract regions from an image that may contain 
potential objects. These regions are called regions of 
interest (ROIs) or object chips. The quality of object 
detection is dependent on the kind and quality of features 
extracted from an image. There are many kinds of 
features that can be extracted. The question is what are 
the appropriate features or how to synthesize features, 
particularly useful for detection, from the primitive 
features extracted from an image. The answer to these 
questions is largely dependent on the intuitive instinct, 
knowledge, previous experience and even the bias of 
human image experts. 
    In this paper, we use genetic programming (GP) to syn-
thesize composite features, which are the output of com-

posite operators, to perform object detection. A composite 
operator consists of primitive operators and it can be 
viewed as a combination of primitive operations on im-
ages. The basic approach is to apply a composite operator 
on the original image or primitive feature images gener-
ated from the original one, then the output image of the 
composite operator (called composite feature) is seg-
mented to obtain a binary image or mask to extract the re-
gion containing the object from the original image. The 
individuals in our GP based learning are composite opera-
tors represented by binary trees whose internal nodes 
represent the pre-specified primitive operators and the 
leaf nodes represent the original image or the primitive 
feature images. The primitive feature images are pre-
determined, and they are not the output of the pre-
specified primitive operators. 

2 MOTIVATION AND RELATED 
RESEARCH 

2.1 MOTIVATION 
    In most imaging applications, an expert designs an ap-
proach to extract ROIs from images. The approach can of-
ten be dissected into some primitive operations on the 
original image or a set of related feature images obtained 
from the original one. It is the expert who, relying on 
his/her rich experience, figures out a smart way to com-
bine these primitive operations to achieve good results. 
The task of finding a good approach is equivalent to find-
ing a good point in the search space of composite opera-
tors formed by the combination of primitive operators. 

   The number of ways of combining primitive operators 
is almost infinite. The human expert can only try a very 
limited number of combinations and typically only the 
conventional ways of combination are tried. However, a 
GP may try many unconventional ways of combining 
primitive operations that may never be imagined by hu-
man experts. In some cases, it is the unconventional ways 
of combination that yield exceptionally good results. The 
inherent parallelism of GP and the speed of computers al-
low the portion of the search space explored by GP to be 
much larger than that by human experts. Although only a 
very small portion of the space is tried by GP, the search 
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performed by GP is not a random search. It is guided by 
the goodness of composite operators in the population.  
As the search goes on, GP will gradually shift the popula-
tion to the portion of the space containing good operators. 

2.2 RELATED RESEARCH AND OUR 
CONTRIBUTION 

    Genetic programming, an extension of genetic 
algorithm, was first proposed by Koza in [1]. In GP, the 
individuals can be binary trees, graphs or some other 
complicated structures of dynamically varying size. Poli 
[2] used GP to develop effective image filters to enhance 
and detect features of interest or to build pixel-
classification-based segmentation algorithms. Stanhope 
and Daida [3] used GP paradigms for the generation of 
rules for target/clutter classification and rules for the 
identification of objects. To perform these tasks, 
previously defined feature sets are generated on various 
images and GP is used to select relevant features and 
methods for analyzing these features. Howard et al. [4] 
applied GP to automatic detection of ships in low-
resolution SAR imagery using an approach that evolves 
detectors. Roberts and Howard [5] used GP to develop 
automatic object detectors in infrared images.  

Unlike the work of Stanhope and Daida [3], Howard et 
al. [4] and Roberts and Howard [5], the input and output 
of each node of the tree in our system are images, not real 
numbers. Also, the primitive features defined in this paper 
are more general and easier to compute than those used in 
[5]. In summary, the primitive operators and primitive 
features designed by us are very basic and domain-
independent, not specific to a kind of imagery. Thus, our 
system can be applied to a wide variety of images. 

3 TECHNICAL APPROACH  
    In our GP based approach, individuals are composite 
operators, which are represented by binary trees. The 
search space of GP is the space of all possible composite 
operators. The space is very large. In order to illustrate 
this, consider only a special kind of binary tree, where 
each tree has exactly 30 internal nodes and one leaf node 
and each internal node has only one child. For 17 primi-
tive operators and only one primitive feature image, the 
total number of such trees is 1730. It is extremely difficult 
to find good operators from this vast space unless one has 
a smart search strategy. 

3.1 DESIGN CONSIDERATIONS 
   There are five major design considerations, which 
involve determining the set of terminals, the set of 
primitive operators, the fitness measure, the parameters 
for controlling the run, and the criterion for terminating a 
run. 
 

�� The Set of Terminals:  The set of terminals used in 
this paper are seven primitive feature images generated 

from the original image: the first one is the original 
image; the others are mean and standard deviation images 
obtained by applying templates of sizes 3�3, 5�5 and 7�7. 
These images are the input to the composite operators. GP 
determines which operations are applied on them and how 
to combine the results. To get the mean image, we 
translate the template across the original image and use 
the average pixel value of the pixels covered by the 
template to replace the pixel value of the pixel covered by 
the central cell of the template. To get the standard 
deviation image, we just compute the square root of the 
pixel value difference between the pixel in the original 
image and its corresponding pixel in the mean image.  

�� The Set of Primitive Operators: A primitive 
operator takes one or two input images, performs a 
primitive operation on them and stores the result in a 
resultant image. Currently, 17 primitive operators are 
used by GP to compose composite operators. 

     In the following, A and B are images of the same size 
and c is a constant. For operators such as ADD_OP, 
SUB_OP, MUL_OP, etc that take two images as input, 
the operations are performed on the pixel-by-pixel basis.  

1. ADD_OP: A + B.  Add two images pixel by pixel. 
2. SUB_OP:  A – B.  Subtract image B from image A. 
3. MUL_OP: A * B.   Multiply images A and B. 
4. DIV_OP: A / B.   Divide image A by image B (If the 

pixel in B has value 0, the corresponding pixel in the 
resultant image takes the maximum pixel value in A). 

5. MAX2_OP: A max B. The pixel in the resultant 
image takes the larger pixel value of images A and B.                       

6. MIN2_OP: A min B. The pixel in the resultant image 
takes the smaller value of pixels in images A and B. 

7. ADD_CONST_OP:  A + c. Increase pixel value by c.    
8.    SUB_CONST_OP:  A - c. Decrease pixel value  by c. 
9.    MUL_CONST_OP:  A * c. Multiply pixel value by c. 
10.  DIV_CONST_OP: A / c. Divide pixel value by c. 
11.  SQRT_OP: sqrt(A). For each pixel p with value v, if 

v � 0, change its value to v . Otherwise, to 
v�� .  

12.  LOG_OP: log(A). For each pixel p with value v, if v 
� 0, change its value to log(v). Otherwise, to –log(-v). 

13. MAX_OP: max(A). Replace the pixel value by the 
maximum pixel value in a 3�3, 5�5 or 7�7 neighbor-
hood. 

14. MIN_OP: min(A). Replace the pixel value by the 
minimum pixel value in a 3�3, 5�5 or 7�7 neighbor-
hood. 

15. MED_OP: med(A). Replace the pixel value by the 
median pixel value in a 3�3, 5�5 or 7�7 neighbor-
hood. 

16. REVERSE_OP: rev(A).  Reverse the pixel value. 
Suppose the maximum and minimum pixel values of 
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image A are Vmax and Vmin respectively. If a pixel 
has value v, change its value to Vmax – v + Vmin. 

17.  STDV_OP: stdv(A). Obtain standard deviation image 
of image A by applying a template of size 3�3, 5�5 
or 7�7. 

�� The Fitness Measure: The fitness value of a 
composite operator is computed in the following way. 
Suppose G and G’ are foregrounds in the ground truth 
image and the resultant image of the composite operator 
respectively. Let n(X) denote the number of pixels within 
region X, then Fitness = n(G�G’) / n(G � G’). The 
fitness value is between 0 and 1. If G and G’ are 
completely separated, the value is 0; if G and G’ are 
completely overlapped, the value is 1. 

�� Parameters and Termination:  The key parameters 
are the population size M, the number of generations N, 
the crossover rate and the mutation rate.  
    The GP stops whenever it finishes the pre-specified 
number of generations or whenever the best operator in 
the population has fitness value greater than the fitness 
threshold. 

3.2 REPRODUCTION, CROSSOVER AND 
MUTATION 

    The GP searches through the space of composite opera-
tors to generate new operators, which may be better than 
the previous ones. By searching through the composite 
operator space, GP gradually adapts the population of 
composite operators from generation to generation and 
improves the overall fitness of the whole population. 
More importantly, GP may find an exceptionally good 
operator during the search. The search is done by per-
forming reproduction, crossover and mutation operations. 
The initial population is randomly generated and the fit-
ness of each individual is evaluated. 

    The reproduction operation involves selecting a com-
posite operator from the current population. In this re-
search, we use tournament selection, where a number of 
individuals are randomly selected from the current popu-
lation and the one with the highest fitness value is copied 
into the new population.  

    To perform crossover, two composite operators are se-
lected on the basis of their fitness values. These two com-
posite operators are called parents. One internal node in 
each of these two parents is randomly selected, and the 
two subtrees with these two nodes as root are exchanged 
between the parents. In this way, two new composite op-
erators, called offspring, are created.  

    In order to avoid premature convergence, mutation is 
introduced to randomly change the structure of some of 
the individuals to help maintain the diversity of the popu-
lation. Once a composite operator is selected to perform 
mutation operation; an internal node of the binary tree 

representing this operator is randomly selected, then the 
subtree rooted at this node is deleted, including the node 
selected. Another binary tree is randomly generated and 
this tree replaces the previously deleted subtree. The re-
sulting new binary tree represents a new composite opera-
tor. This new composite operator replaces the old one in 
the population. 

3.3 STEADY_STATE AND GENERATIONAL 
GENETIC PROGRAMMING 

In steady-state GP, two parental composite operators are 
selected on the basis of their fitness for crossover. The 
children of this crossover, perhaps mutated, replace a pair 
of composite operators with the smallest fitness values. 
The two children are executed immediately and their fit-
ness values are recorded. Then another two parental com-
posite operators are selected for crossover. This process is 
repeated until crossover rate is satisfied. In generational 
GP, two composite operators are selected on the basis of 
their fitness values for crossover. Then, two composite 
operators with the smallest fitness values, among those 
that have not been selected for replacement, are selected. 
They will be replaced by the children of the crossover. At 
this time, the replacement has not occurred. The above 
process is repeated until crossover rate is satisfied. A 
composite operator may be repeatedly selected for cross-
over, but it cannot be repeatedly selected for replacement. 
After crossover operations are finished, all the children 
resulted from the crossover operations replace all the 
composite operators selected for replacement at once. In 
addition, we adopt an elitism replacement method that 
copies the best composite operator from generation to 
generation.  The steady state and generational genetic 
programming algorithms are given in the following. 
 
�� Steady-state Genetic Programming: 

0.   randomly generate population P and evaluate each 
        composite operator in P. 
1. for gen = 1 to generation_num do 
2.         keep the best composite operator in P. 
3.     perform reproduction to generate population P’  
            from P.  
4.    number_of_crossover = population_size * cross 
           over_rate / 2. 
5.        for i = 1 to number_of_crossover do 
6.        select 2 composite operators from P’ based on  
               their fitness values for crossover. 
7.     select 2 composite operators with the lowest 
               fitness values in P’ for replacement. 
8.    perform crossover operation and let the 2 
              offspring composite operators replace the 2 
              composite operators selected for replacement. 
9.    if  mutation is performed on the composite 
                     operators from the crossover  then 
10.    perform mutation on the 2 offspring 
                     operators with probability mutation_rate. 
              end. 
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11.       execute the 2 offspring composite operators and 
              evaluate their fitness values. 
          end // loop 5 
12.     if  mutation is performed on the composite 

         operators from the whole population P’  
then 

13.           perform mutation on each composite operator 
         with probability mutation_rate. 

14.          execute and evaluate mutated composite 
         operators. 
    end 

15.     let the best composite operator from population P 
    replace the worst composite operator in P’. 

16.     let P = P’ 
17.     if  the fitness value of the best composite operator 

        in P is above fitness threshold value then 
18.         stop. 
          end 
      end  // loop 1 

 
�� Generational Genetic Programming: 
 0.   randomly generate population P and evaluate each 
         composite operator in P. 
1. for gen = 1 to generation_num do 
2.     keep the best composite operator in P. 
3.     perform reproduction to generate population P’  

    from P.  (crossover and mutation are performed on 
    population P’)   

4.     number_of_crossover = population_size *  
    crossover_rate / 2. 

5.    perform crossover number_of_crossover times and 
   record 2 * number_of_crossover composite 
   operators to be replaced. 

6.    perform mutation on the composite operators 
   generated from crossover or on the composite 
   operators from the whole population. If a 
   composite operator is mutated, recorded it for later 
   execution. 

7.    execute offspring composite operators from cross-
over and the mutated composite operators and 
evaluate their fitness values. 

8.    put offspring composite operators from crossover 
in P’ and remove the composite operators selected 
for replacement from P’. 

9        let the best composite operator from population  
          replace the worst composite operator in P’. 
10.     let P = P’ 
11.    if  the fitness value of the best composite operator  

   in P is above fitness threshold value then 
12.        stop. 
          end 

end  // loop 1 
 

4 EXPERIMENTS 
    Various experiments were performed to test the effi-
cacy of genetic programming in extracting regions of in-

terest from real SAR (synthetic aperture radar) images 
and color images.  In this paper, we show some selected 
examples. It is to be noted that the training and testing 
images are different and the ground truth is used only dur-
ing training. In all the experiments, the maximum size of 
composite operator is 30 and the threshold value used in 
segmentation is 0. 

4.1 REAL SAR IMAGES 
    In the four experiments with real SAR images, the 
population size is 100, the number of generations is 100, 
the crossover rate is 0.6, the mutation rate is 0.1 and the 
selection type is tournament selection. In each experi-
ment, GP is invoked ten times with the same parameters 
and the experimental results from one run and the average 
performance of ten runs are reported in Table 1. We select 
the run in which GP finds the best composite operator 
among the composite operators found in all ten runs to re-
port. The first two rows show the fitness value of the best 
composite operator and population fitness value (average 
fitness value of all composite operators in the population) 
in the initial and final generations in the selected run. The 
numbers in the parenthesis in the “Best fitness” columns 
are the fitness values of the best composite operators on 
the testing SAR images. The last two rows show the aver-
age values of the above fitness values over all ten runs. 
The regions extracted during the training and testing by 
the best composite operator from the selected run are 
shown in the following examples. 

�� Example 1.  Road Extraction:  Three images con-
tain road. The first one contains horizontal paved road and 
field; the second one contains vertical paved road and 
grass; the third one contains unpaved road and field. 
Training is done using the image shown in Figure 1(a) 
and testing is performed on images shown in Figure 3(a) 
and 3(c). Figure 1(b) show the ground truth provided by 
the user, and the white region corresponds to the road. 

    The generational GP was used to generate a composite 
operator to extract the road. The fitness threshold value is 
0.90. Figure 1(c) shows the output image (corresponding 
to training image 1(a)) of the best composite operator in 
the initial population, and Figure 1(d) shows the binary 
image after segmentation. The output image has both 
positive pixels in lighter shade and negative pixels in 
darker shade. Positive pixels belong to the region to be 
extracted. The fitness value of the best composite operator 
in the initial population is 0.47 and the population fitness 
value is 0.19. Figure 1(e) shows the output image of the 
best composite operator after 100 generations and Figure 
1(f) shows the binary image after segmentation. The fit-
ness value of the best composite operator in the final 
population is 0.92 and the population fitness value is 0.89. 
The best composite operator has 30 internal nodes and its 
depth is 21. It has eight leaf nodes, two contains the origi-
nal image and the other six contain 5�5 mean images,  
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Initial 
fitness 

.42 0.43 0.21 0.62 0.44 

Final 
fitness (0

.92 0.74        
( 0.84 ) 

0.68 0.87        
( 0.68 ) 

0.86 

Ave. Inital 
fitness  

.39 0.37 0.11 0.65 0.41 

Ave. Final 
fitness 

.87 0.68 0.58 0.84 0.77 

 

which are very useful in the noise reduction. It is shown 
in Figure 2, where PM_IM0 is original image and 
PF_IM3 is 5�5 mean image. It is possible to have a more 
compact tree representation of this composite operator. 
    We applied the composite operator obtained in the 
above training to the other two real SAR images shown in 
Figure 3(a) and 3(c). Figure 3(b) shows the region ex-
tracted by the composite operator from Figure 3(a) and 
the fitness value of the region, which is 0.92. Figure 3(d) 
shows the region extracted by the composite operator 
from Figure 3(c) and the fitness value of the region, 
which is 0.89. 

(a) paved ro

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
�� Example 2. Lake Extraction: Two SAR images 
contain lake. The first one contains a lake and field, and 
the second one contains a lake and grass. Figure 4(a) 
shows the original image containing lake and field. Figure 
4(b) shows the ground truth provided by the user, and the 

Figure 1.  Tr

(c) best ini

(e) best fin

(a) paved road vs. 
grass 

(b) road detection 
(fitness 0.92)

(LOG_OP (MIN
(MAX_OP 
(DIV_CONST_
(DIV_CONST_
(MUL_CONST
(ADD_OP (S
PF_IM3)) (LO
PF_IM0))))))))
(SUB_CONST
(LOG_OP 
PF_IM0))))))) 

(c) unpaved road vs. 
field 

(d) road detection 
(fitness 0.89)

Figure 3. Testing real SAR images and corresponding 
road detection results. 

Figure 2.
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white region corresponds to the lake to be extracted. Fig-
ure 5(a) shows the image containing lake and grass.  Learned composite operator tree in 

LISP notation. 



    We used the SAR image containing the lake and field 
as the training image and applied the composite operator 
generated by GP to the SAR image containing the lake 
and grass. The steady-state GP was used to generate the 
composite operator and the fitness threshold value is 0.95. 
Figure 4(c) shows the region extracted by the best com-
posite operator in the initial population after segmenta-
tion. The fitness value of the best composite operator in 
the initial population is 0.65 and the population fitness 
value is 0.42. Figure 4(d) shows the region extracted by 
the best composite operator in the final population (it is 
found after 65 generations) after segmentation. The fit-
ness value of the best composite operator in the final 
population is 0.93 and the population fitness value is 0.92.  

   We then applied the composite operator to the image 
containing a lake and grass. Figure 5(b) shows region ex-
tracted and its fitness value 0.92. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�� Example 3.  River Extraction: We have two SAR 
images containing river and field. Figure 6(a) and 7(a) 
show the original images and Figure 6(b) and 7(b) show 
the ground truth provided by the user. The white region in 
Figure 6(b) and 7(b) corresponds to the river to be ex-
tracted. The SAR image shown in Figure 6(a) was used as 
the training image by GP. GP generated a composite op-
erator to extract the river in the image. Then the compos-

ite operator was applied to the SAR image shown in Fig-
ure 7(a) to test its efficacy in extracting the river. 
 
 
 
 
 
 
 
 (b) ground truth(a) river vs. field 
 
 
 
 
 
 
 (d) best final 

segmentation 
(c) best initial 
segmentation  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    The steady-state GP was used to generate the compos-
ite operator and the fitness threshold value is 0.85. Figure 
6(c) shows the region extracted by the best composite op-
erator in the initial population after segmentation. The fit-
ness value of the best composite operator in the initial 
population is 0.43 and the population fitness value is 0.21. 
Figure 6(d) shows the region extracted by the best com-
posite operator in the final population (it was found after 
40 generations) after segmentation. The fitness value of 
the best composite operator in the final population is 0.74 
and the population fitness value is 0.68. The fitness value 
of the best composite operator in the final population is 
not very good. Two reasons account for this. First, the 
river in Figure 6(a) accounts for only a small percentage 
of the total area in the image. Second, there are some is-
lands in the river. These islands are similar to the field, 

(a) lake vs. field (b) ground truth 

Figure 6.  Training real SAR images containing 
river. 

(b) ground truth(a) river vs. field

(d) final segmented
image 

(c) initial segmented 
image 

Figure 4.  Real SAR image containing lake and field. 

(c) composite 
operator output 

(d) segmented image 
(fitnesss 0.84) 

Figure 7. Testing real SAR images containing river. 

(a) lake vs. grass (b) segmented image 
(fitness 0.92)

Figure 5. Testing Real SAR image containing lake and 
grass. 
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i.e., pixels belong to the islands have similar pixel values 
to those belong to the field, but they are not excluded 
from the ground truth. 

   We applied the composite operator to the image shown 
in Figure 7(a). Figure 7(c) shows the output image of  the 
composite operator. Figure 7(d) shows the region ex-
tracted after segmentation and its fitness value 0.84. This 
number is larger than the fitness value in the training. The 
main reason is that the river in Figure 7(a) accounts for a 
much larger percentage of the total area of the image than 
that in Figure 6(a). 
 
�� Example 4.  Field Extraction: Two SAR images 
contain field and grass. Figure 8(a) and 9(a) show the 
original images and Figure 8(b) and 9(b) show the ground 
truth. The white region in Figure 8(b) and 9(b) corre-
sponds to the field to be extracted. We consider extracting 
field from a SAR image containing field and grass as the 
most difficult task among the four experiments with the 
SAR images, since the grass and field are similar to each 
other. We used the SAR image in Figure 8(a) as the train-
ing image and applied the composite operator generated 
by GP to the SAR image in Figure 9(a).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    The generational genetic programming was used to 
generate the composite operator and the fitness threshold 
value is 0.85. Figure 8(c) shows the output image of the 
best composite operator in the initial population. The fit-

ness value of the best composite operator in the initial 
population is 0.62 and the population fitness value is 0.44. 
Figure 8(d) shows the region extracted after segmentation. 
Figure 8(e) shows the output image of the best composite 
operator in the final population and Figure 8(f) shows the 
region extracted after segmentation. The fitness value of 
the best composite operator in the final population is 0.87 
and the population fitness value is 0.86. Figure 8(c) is 
very dark. One may not see anything meaningful in this 
image. The reason is that almost all the pixels in this im-
age have very low pixel values. Some pixels have positive 
pixel values, but the pixel values are close to 0. 

    We applied the composite operator to the image in Fig-
ure 9(a). Figure 9(c) shows the output image of the com-
posite operator. Figure 9(d) shows the region extracted af-
ter segmentation and its fitness value 0.68. 
 
 
 
 
 
 
 
 (a) field vs. grass (b) ground truth
 
 
 
 
 
 
 

(a) field vs. grass (b) ground truth  
 
 
 
 
 
4.2 COLOR IMAGES 
    In this subsection, we attempt to generate a composite 
operator to extract the shadow of a person from an RGB 
color image. The generated composite operator was then 
tested on two other similar images. 

     Figure 10 shows the image used for training and the 
ground truth provided by the user. We don’t show a color 
image, rather the RED, GREEN and BLUE planes of the 
color image in Figure 10(a), 10(b), 10(c) respectively. 
The RED, GREEN and BLUE planes of the color image 
are gray scale intensity images and they are used as primi-
tive feature images in this experiment.  

    The generational genetic programming was used to 
generate the composite operator. The population size is 
200, the number of generation is 200, the fitness threshold 
value is 0.80, the crossover rate is 0.1 and the mutation 
rate is 0.05.  

     Figure 10(e) shows the region extracted by the best  

Figure 9. Testing real SAR image containing field and 
grass. 

(c) composite operator 
output 

(d) final segmentation 
(fitness 0.68) 

(c) composite operator 
output (initial) 

(d) best initial 
segmentation 

(e) composite operator 
output (final) 

(f) best final 
segmentation

Figure 8.  Training real SAR image containing field 
and grass. 
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composite operator in the initial population after segmen-
tation. The fitness value of the best composite operator in 
the initial population is 0.28 and the population fitness 
value is 0.16. Figure 10(f) shows the region extracted by 

the best composite operator in the final population after 
segmentation. The fitness value of the best composite op-
erator in the final population is 0.80 and the population 
fitness value is 0.76. GP found a good composite operator 
to extract the shadow. 
    The composite operator generated by GP was then ap-
plied to another two similar color images to test its effi-
cacy in extracting the shadow. The GREEN planes of 
these two color images are shown in Figures 11(a) and 
11(b). When the composite operator is applied to extract 
shadow regions in these two color images, the RED, 
GREEN and BLUE planes of the color images are the 
primitive feature images used by the composite operator. 
The testing results are shown in Figure 11(c) and Figure 
11(d). The fitness values for these two results were 0.76 
and 0.54 respectively. It can be seen from these images 
that the composite operator generated by GP is capable of 
extracting shadows in the color images similar to the 
color image used in training. 

(a) RED plane (b) GREEN plane

(c) BLUE plane (d) ground truth  

5     CONCLUSIONS 

    Our experimental results show that the primitive opera-
tors selected by us are effective. GP can find good com-
posite operators to extract the regions of interest in an im-
age and the composite operators can be applied to extract 
ROIs in other similar images. In our experiments, we did 
not find any significant difference between the steady-
state and generational genetic programming algorithms. 
In the future, we plan to extend this work by designing 
smart crossover and mutation operators and discovering 
new features within the regions of interest for automated 
object recognition. 

(e) initial segmentation (f) final segmentation
Figure 10. RED, GREEN and BLUE planes of RGB 

color image used in training. 
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Abstract

This study examines the potential of Grammatical
Evolution to uncover a series of useful rules which
can assist in predicting corporate failure using in-
formation drawn from financial statements. A sam-
ple of 178 publically quoted, failed and non-failed
US firms, drawn from the period 1991 to 2000 are
used to train and test the model. The preliminary
findings indicate that the methodology has much
potential.

1 Introduction

The objective of this study is to determine whether an evolu-
tionary automatic programming methodology, Grammatical
Evolution, is capable of uncovering useful structure in finan-
cial ratio information which can be used to predict corporate
failure.

Corporate failure is an essential component of an efficient
market economy, allowing the recycling of financial, human
and physical resources into more productive organisations
[10] [32]. However, many parties including shareholders,
providers of debt finance, employees, suppliers, customers,
managers and auditors have an interest in the financial health
of organisations as corporate failure can impose significant
private costs on all these groups. Even where total failure can
be averted by firm reorganization, the costs of major restruc-
turing can be as high as 12% to 19% of firm value [41]. If a
trajectory leading to corporate failure can be identified suffi-
ciently early to allow successful intervention, these costs can
be reduced. [14] suggest that indicators of corporate failure
can be present up to ten years prior to final failure, provid-
ing an opportunity for construction of models which predict
corporate failure.

Corporate failure can arise for many reasons. It may occur
due to a single catastrophic event or it may be the end result
of a lengthy process of decline. Under the second perspective,
corporate failure is a process which starts with management

defects, leading to poor decisions, leading to financial dete-
rioration and finally resulting in corporate collapse [3] [20].
Most attempts to predict corporate failure implicitly assume
that management decisions critically impact on firm perfor-
mance [5] [20]. The premise of this paper is that a series of
poor decisions lead to a deterioration in the financial health of
the firm and finally to its demise. Although the decisions are
not directly observable, their consequent affect on the finan-
cial health of the firm can be observed.

Previous studies have utilised a wide variety of explanatory
variables in the construction of corporate distress models 1,
including variables drawn from the financial statements of
firms, from financial markets, general macro-economic vari-
ables [29], and non-financial, firm-specific information, in-
cluding director turnover [27]. In this study, we limit our at-
tention to information drawn from the financial statements of
firms.

1.1 Potential for application of evolutionary automatic
programming

There are a number of reasons to suppose that the use of an
evolutionary automatic programming (EAP) approach such as
Genetic Programming (GP) or GE can prove fruitful in the
prediction of corporate failure. The problem domain is char-
acterised by a lack of a strong theoretical framework, with
many plausible, competing explanatory variables. The selec-
tion of quality explanatory variables and model form repre-
sents a high-dimensional combinatorial problem, giving rise
to potential for an EAP methodology. Use of EAP also facil-
itates the development of complex fitness functions including
discontinuous, non-differentiable functions. This is of partic-
ular importance in a prediction domain as fitness criteria may
be complex. Generally, the cost of misclassifications of fail-
ing / non-failing firms will be asymmetric. Another useful
feature of an EAP approach is that it can produce human-
readable rules that have the potential to enhance understand-
ing of the problem domain.

1[3] and [22] provide good reviews of the development of empir-
ical research in bankruptcy prediction.
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1.2 Motivation for study

This study was motivated by a number of factors. Although a
substantial volume of research utilising traditional statistical
modelling techniques has been undertaken in the corporate
failure domain, to date only a limited number of studies have
applied GA / GP methodologies [39] [19] [6]. This study
builds on these initial studies and adopts a novel evolutionary
automatic programming approach.

1.3 Structure of paper

This contribution is organised as follows. Section 2 provides a
short discussion of prior literature in the corporate failure do-
main and outlines the definition of corporate failure employed
in this study. Section 3 provides an introduction to Grammat-
ical Evolution. Section 4 describes both the data utilised, and
the model development process adopted in this paper. Section
5 provides the results of the constructed model. Finally, con-
clusions and a discussion of the limitations of the contribution
are provided in Section 6.

2 Background

Formal research into the prediction of corporate failure has
a long history [12] [35] [16]. Early statistical studies such
as [7], adopted a univariate methodology, identifying which
accounting ratios had greatest classification accuracy when
identifying failing and non-failing firms. Although this ap-
proach did demonstrate classification power, it suffers from
the shortcoming that a single weak financial ratio may be off-
set (or exacerbated) by the strength (or weakness) of other
financial ratios. [1] addressed this issue by employing a lin-
ear discriminant analysis (LDA) model, which utilised both
financial and market data concerning a firm, and this was
found to improve the classification accuracy of the developed
models. The discriminant function which produced the best
classification performance in Altman’s 1968 study was:

Z = :012X1 + :014X2 + :033X3 + :006X4 + :999X5

where:
X1 = working capital to total assets

X2 = retained earnings to total assets

X3 = earnings before interest and taxes to total assets

X4 = market value of equity to book value of total debt

X5 = sales to total assets

LDA assumes both multi-variate normality and the equality
of the covariance matrices of each classification group. Gen-
erally, these assumptions do not hold for financial ratio data.
Other statistical methodologies which have been applied in-
clude logit and probit regression models [13] [42] [24]. In
recent times, methodologies applied to this problem domain

have included neural networks [34] [33] [40], genetic algo-
rithms [39] [19] and hybrid neural network / genetic algorithm
models [6].

2.1 Definition of Corporate Failure

No unique definition of corporate failure exists [3]. Possi-
ble definitions range from failure to earn an economic rate of
return on invested capital given the risk of the business, to
legal bankruptcy followed by liquidation of the firm’s assets.
Any attempt to uniquely define corporate failure is likely to
prove problematic. While few publicly quoted companies fail
in any given year2, poorer performers are liable to acquisition
by more successful firms. Thus, two firms may show a sim-
ilar financial trajectory towards failure, but one firm may be
acquired and ‘turned-around’ whilst the other may fail.

The definition of corporate failure adopted in this study is
the entry of a firm into Chapter 7 or Chapter 11 of the US
Bankruptcy code. The selection of this definition provides
an objective benchmark as the occurrence, and date of oc-
currence, of either of these events can be determined through
examination of regulatory filings. Chapter 7 covers corpo-
rate liquidations and Chapter 11 covers corporate reorgani-
zations, which usually follow a period of financial distress.
Under Chapter 11, management is required to file a reorgan-
isation plan in bankruptcy court and seek approval for this
plan. When the court grants approval for the plan the firm is
released from Chapter 11 bankruptcy and continues to trade.
In most cases, Chapter 11 reorganisations involve significant
financial losses for both shareholders [30] and creditors [11]
of the distressed firm. [23], in a study of the outcomes of
Chapter 11 filings, found that ‘there were few sucessful re-
organisations’ (p. 125), despite a perception that some man-
agement teams were using Chapter 11 filings as a deliberate
strategy for dealing with certain firm specific events such as
onerous labor contracts or produce liability claims 3.

2.2 Explanatory variables utilised in prior literature

Five groupings of explanatory variables, drawn from financial
statements, are given prominence in prior literature [4]:

i. Liquidity

ii. Debt

iii. Profitability

iv. Activity / Efficiency

v. Size
2[42] reports that this rate is less than 0.75% in the US and [22]

suggests that the rate is below 2% in the UK.
3[23] report that out of a sample of 73 firms entering Chapter 11

between 1980 and 1986, only 44 were sucessfully reorganized with
only 15 of these firms emerging from Chapter 11 with more than
50% of their prebankruptcy assets.
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Liquidity refers to the availability of cash resources to meet
short-term cash requirements. Debt measures focus on the
relative mix of funding provided by shareholders and lenders.
Profitability considers the rate of return generated by a firm, in
relation to its size, as measured by sales revenue and/or asset
base. Activity measures consider the operational efficiency of
the firm in collecting cash, managing stocks and controlling
its production or service process. Firm size provides infor-
mation on both the sales revenue and asset scale of the firm
and also provides a proxy metric on firm history. The group-
ings of potential explanatory variables can be represented by
a wide range of individual financial ratios, each with slightly
differing information content. The groupings themselves are
interconnected, as weak (or strong) financial performance in
one area will impact on another. For example, a firm with a
high level of debt, may have lower profitability due to high in-
terest costs. Whatever modelling methodology is applied, the
initial problem is to select a quality set of model inputs from
a wide array of possible financial ratios, and then to combine
these ratios using suitable weightings in order to construct a
high quality classifier. Given the large search space, an evo-
lutionary automatic programming methodology has promise.

2.3 Results of Prior Literature

Earlier studies [1] [2] [3] [4] [9] [6] have suggested that the
classification accuracy of failure models increases rapidly as
the date of final failure approaches. Generally, results indi-
cate that the most significant deterioration in financial ratios
occurs in the third year prior to eventual failure. Although
sample sizes, dates and methodologies differ between studies,
these findings have been replicated in a broad series of stud-
ies. In Altman’s 1968 study [1], the developed LDA model
correctly identified (in-sample) 95% of failing firms one year
prior to failure. The classification accuracy fell to 72% and
48% in the second and third year prior to failure. [2] demon-
strated a classification accuracy (in-sample) of approximately
93% in the year prior to failure declining to 68% four years
prior to failure. [40] report in-sample classifications of 98.7%
for a neural network model, one-year prior to failure, and 95%
for a logit model on the same data. [39] reports in-sample
classification accuracy for a GA based model of approxi-
mately 97%, one year prior to failure. In-sample classification
accuracies provide a limited assessment of model generalis-
ability. Enhanced in-sample classification accuracies could
result from data-mining. Hence, in this study, developed mod-
els are solely assessed based on classification performance on
out-of-sample data.

A description of the evolutionary automatic programming
system used to evolve rules for prediction of corporate fail-
ure is provided in the next section.

3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm
that can evolve computer programs in any language. Rather
than representing the programs as syntax trees, as in tradi-
tional GP [18], a linear genome representation is adopted. A
genotype-phenotype mapping process is used to generate the
output program for each individual in the population. Each in-
dividual, a variable length binary string, contains in its codons
(groups of n-bits, where n equals 8 here) the information to se-
lect production rules from a Backus Naur Form (BNF) gram-
mar. The BNF is a plug-in component to the mapping process,
that represents the output language in the form of production
rules. It is comprised of a set of non-terminals that can be
mapped to elements of the set of terminals, according to the
production rules.

An example excerpt from a BNF grammar is given below.
These productions state that S can be replaced with either one
of the non-terminals expr, if-stmt, or loop.

S ::= expr (0)
| if-stmt (1)
| loop (2)

The grammar is used in a generative process to construct
a program by applying production rules, selected by the
genome, beginning from the start symbol of the grammar.

In order to select a rule in GE, the next codon value on the
genome is read and placed in the following formula:

Rule = Codon V alue MOD #Rules

If the next codon integer value was 4, given that we have
3 rules to select from as in the above example, we get
4 MOD 3 = 1. S will therefore be replaced with the
non-terminal if-stmt.

Beginning from the left hand side of the genome codon in-
teger values are generated and used to select rules from the
BNF grammar, until one of the following situations arise:

i. A complete program is generated. This occurs when all
the non-terminals in the expression being mapped, are
transformed into elements from the terminal set of the
BNF grammar.

ii. The end of the genome is reached, in which case the
wrapping operator is invoked. This results in the re-
turn of the genome reading frame to the left hand side
of the genome once again. The reading of codons will
then continue unless an upper threshold representing the
maximum number of wrapping events has occurred dur-
ing this individual’s mapping process. This threshold is
currently set to ten events.

iii. In the event that a threshold on the number of wrap-
ping events is exceeded and the individual is still incom-

REAL WORLD APPLICATIONS 1013



pletely mapped, the mapping process is halted, and the
individual assigned the lowest possible fitness value.

GE uses a steady state replacement mechanism, such that,
two parents produce two children the best child replacing the
worst individual in the current population if the child has a
greater fitness. In the case where both children have the same
fitness and are better than the current population worst, a child
is chosen at random. The standard genetic operators of point
mutation, and crossover (one point) are adopted. It also em-
ploys a duplication operator that duplicates a random number
of codons and inserts these into the penultimate codon posi-
tion on the genome. A full description of GE can be found in
[26] [25] [31].

4 Problem Domain & Experimental Approach

This section describes both the data utilised by, and the model
development process adopted in, this study.

4.1 Sample Definition and Model Data

A total of 178 firms were selected judgementally (89 failed,
89 non-failed), from the Compustat Database [8] 4. The crite-
ria for selection of the failed firms were:

i. Inclusion in the Compustat database in the period 1991-
2000

ii. Existence of required data for a period of three years
prior to entry into Chapter 7 or Chapter 11

iii. Sales revenues must exceed $1M

The first criterion limits the study to publicly quoted, US cor-
porations. The second criterion injects an element of bias into
the sample in that companies without a three year financial
history prior to entering Chapter 7 or Chapter 11 are omitted.
Twenty-two potential explanatory variables, are collected for
each firm for the three years prior to entry into Chapter 7 or
Chapter 115. For every failing firm, a matched non-failing
firm is selected. They are matched both by industry sector
and size (sales revenue three years prior to failure)6. The set
of 178 matched firms are randomly divided into model build-
ing (128 firms) and out-of-sample (50 firms) datasets. The
dependant variable is binary (0,1), representing either a non-
failed or a failed firm.

4Firms from the financial sector were excluded on grounds of
lack of comparability of their financial ratios with other firms in the
sample.

5The date of entry into Chapter 7 or Chapter 11 was determined
by examining regulatory filings for each firm.

6It is recognised that the use of an equalised, matched sample
entails sampling bias and eliminates firm size and industry nature as
potential explanatory variables (see [22] for a detailed discussion of
these points). It is noted that utilising an unmatched sample imposes
its own bias.

The choice of explanatory variables is hindered by the lack of
a clear theoretical framework which explains corporate fail-
ure [5] [38] [40]. Most empirical work on corporate failure
adopts an ad-hoc approach to variable selection. Prior to the
selection of the potential explanatory variables for inclusion
in this study, a total of ten previous studies were examined
[7] [1] [2] [9] [24] [33] [17] [6] [37] [21]. These studies em-
ployed a total of 58 distinct ratios divided amongst the five
classifications noted by [4]. A subset of 22 of the most com-
monly used financial ratios was selected for this study. The
selected ratios were:

i. EBIT / Sales

ii. EBITDA / Sales

iii. EBIT / Total Assets

iv. Gross Profit / Sales

v. Net Income / Total Assets

vi. Net Income / Sales

vii. Return on Assets

viii. Return on Equity

ix. Return on Investment

x. Cash / Sales

xi. Sales / Total Assets

xii. Inventory / Cost of Goods Sold

xiii. Inventory / Working Capital

xiv. Fixed Assets / Total Assets

xv. Retained Earnings / Total Assets

xvi. Cash from Operators / Sales

xvii. Cash from Operations / Total Liabilities

xviii. Working Capital / Total Assets

xix. Quick Assets / Total Assets

xx. Total Liabilities / Total Assets

xxi. Leverage

xxii. EBIT / Interest

5 Results

Accuracy of the developed models is assessed based on the
overall classification accuracy arising in both the model-
building and out-of-sample datasets. For simplicity, the cost
of each type of classification error is assumed to be symmet-
ric in this study. The fitness function could be easily altered
to bias the model development process to minimise a specific
type of classification error if required, and later studies will
address this issue.

The classification problem which plays an important role in
decision-making, consists of assigning observations to dis-
joint groups [28]. The decision scenario faced in this study
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comprises a binary classification. In general, the construc-
tion of classifier systems such as linear discriminant analysis,
logit or ANN models consists of two components, the deter-
mination of a valuation rule which is applied to each observa-
tion, and the determination of a ‘cut-off’ value. The grammar
adopted in this study is given below and its output is inter-
preted using a fixed 0.5 cut-off value to produce a classifica-
tion.

lc : output = expr ;
expr : ( expr ) + ( expr )

| coeff * var
var : var1[index] | var2[index] | var3[index]

| var4[index] | var5[index] | var6[index]
| var7[index] | var8[index] | var9[index]
| var10[index] | var11[index] | var12[index]
| var13[index] | var14[index] | var15[index]
| var16[index] | var17[index] | var18[index]
| var19[index] | var20[index] | var21[index]
| var22[index]

coeff : ( coeff ) op ( coeff )
| float

op : + | - | *
float : 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4

| 3 | -3 | 2 | -2 | 1 | -1 | .1 | -.1

The above grammar generates classifiers of the form:

output = (< some expression > �varX) + ::

+ (< some expression > �varY )

Any combination of the twenty two explanatory variables can
be exploited by an evolved classifier, including zero or more
occurrences of any one variable. This is in contrast to an LDA
approach where classifiers would generally utilise all the ex-
planatory variables within the expression. In the LDA case,
of course some of those variables could be switched off by
multiplying their value by zero.

Three series of models were constructed using explanatory
variables drawn from one, two and three years (T1, T2 and
T3) prior to failure. For each set of models, 30 runs were
conducted using population sizes of 500, running for 100 gen-
erations, adopting one-point crossover at a probability of 0.9,
and bit mutation at 0.01, along with a steady state replacement
strategy.

A plot of the mean average and mean best fitness values over
the 30 runs for each time period can be seen in Figure 1.

Years Prior to Failure In Sample Out Of Sample
1 85.9% 80%
2 82.8% 80%
3 75.8% 70%

Table 1: The best classification accuracies reported for each
of the three years prior to failure.

The best individuals evolved for each period are reported in
Table71. In-sample it can be seen that the performance of the

7Calculation of Press’s Q statistic [15] for each of these mod-

models generated falls off gracefully as we move out each
year. It is interesting to note that out-of-sample there is no
performance difference between the evolved models in peri-
ods T1 and T2, both giving 80% correct classifications.

The best classifiers evolved for each period are given in Table
2.

5.1 Discussion

The classification results of the evolved models show
promise. Despite drawing a sample from a wide variety of
industrial sectors, the models demonstrate a high classifica-
tion accuracy in and out-of-sample, which degrades grace-
fully rather than suddenly in the third year prior to failure.
Although the evolved models were free to select from twenty-
two potential explanatory variables, it is notable that each
model only employed a small subset of these. This lends sup-
port to the proposition that many financial ratios have similar
information content and that classification accuracy is not en-
hanced through the construction of models with a large num-
ber of these ratios. It is also notable that each model has (ap-
proximately) included one variable drawn from the four main
categories of explanatory variables suggested in the corpo-
rate failure literature (Liquidity, Debt, Profitability, and Ac-
tivity/Efficiency), lending empirical support to earlier work 8.

The risk factors suggested by each model differ somewhat and
contain some less-intuitive but nonetheless plausible findings.

Examining the best classifer evolved for T1 suggests that risk
factors include low return on assets, low retained earnings
and a high ratio of total liabilities to total assets, which con-
cords with financial intuition. Less obviously, a high ratio
of inventory to net liquid assets (inventory+receivables+cash-
payables) is also a risk factor, possibly resulting from deple-
tion of cash or build-up of inventories as failure approaches.

Risk factors for firms at T2 include low return on assets and
a low ratio of earnings to interest costs. Less intuitive risk
factors indicated are a low ratio of fixed assets to total assets
and a high ratio of sales to total assets. The former could in-
dicate firms with a lower safety cushion of saleable resources
which could be sold to stave-off collapse, the latter could be
serving as a proxy variable for firms with rapid sales growth.
Over-rapid sales growth can be a danger signal, indicating that
management resources are being spread too-thinly.

Finally, risk factors indicated for firms at T3 include low re-
turn on assets, a low ratio of profit to interest charge, a low
level of cash generated from operations and as for T2, a high
ratio of sales to total assets.

Although each model is evolved seperately, the general form
of each model appears consistent with the hypothesis that

els rejects a null hypothesis, at the 5% level, that the out-of-sample
classification accuracies are not significantly better than chance.

8Size, the fifth category, is not considered in this study due to the
matching process utilized.
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Figure 1: A comparison of the mean best fitness between T1, T2, and T3 (left), and of the mean average fitness values (right)
for the same time periods.

Years Prior to Failure Best Classifier
1 output = -3*var7-5*var8+3*var17-20*var19+4*var24
2 output = -2*var8+10*var15-10*var18-2*var25
3 output = -4*var8+20*var15-72.9*var20-10*var25

Table 2: The best classifiers evolved for each of the years analysed.

there is a financial trajectory towards failure. Low profits
and high interest payments as a percentage of profits in pe-
riods T3 and T2 indicate a firm in financial difficulties, with
an erosion of the safety cushion provided by high levels of
(saleable) fixed assets indicated in the risk factors at T2. The
final year prior to failure sees additional risk factors indicated
by high levels of debt and reducing cash balances / inventory
build-up.

6 Conclusions & Future Work

GE was shown to successfully evolve useful rules for pre-
diction of corporate failure with a performance equivalent to
that reported in prior studies. In assessing the performance of
the developed models, a number of caveats must be borne in
mind. The premise underlying this paper (and all empirical
work on corporate failure prediction) is that corporate failure
is a process, commencing with poor management decisions,
and that the trajectory of this process can be tracked using ac-
counting ratios. This approach does have inherent limitations.
It will not forecast corporate failure which results from a sud-
den environmental event. It is also likely that the explanatory
variables utilised contain noise. Commentators [5] [36] have
noted that managers may attempt to utilise creative account-
ing practices to manage earnings and / or disguise signs of
distress. Additionally, financial data is produced on a time-
lagged basis. Although not undertaken in this preliminary
study, the incorporation of non-financial qualitative explana-
tory variables or variables related to the firm’s share price per-

formance could further improve classification accuracy. An-
other limitation of all models of corporate distress is that the
underlying relationships may not be stationary [4] [17]. Ac-
counting standards and economic environment faced by firms
will vary over time. Finally, the firms sampled in this study
are relatively large and are publically quoted. Thus, the find-
ings of this study may not extend to small businesses.

Despite these limitations, the high economic and social costs
of corporate failure imply that models which can indicate de-
clining financial health will have utility. Given the lack of a
clear theory underlying corporate failure, empirical modelling
usually adopts a combinatorial approach, a task for which GE
is well suited. The results of this preliminary study indicate
that GE has useful potential for the construction of corporate
failure models.
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Abstract

The FIRST survey (Faint Images of the Ra-
dio Sky at Twenty-cm) is scheduled to cover
10,000 square degrees of the northern and
southern galactic caps. Until recently, as-
tronomers classified radio-emitting galaxies
through a visual inspection of FIRST im-
ages. Besides being subjective, prone to er-
ror and tedious, this manual approach is be-
coming infeasible: upon completion, FIRST
will include almost a million galaxies. This
paper describes the application of six meth-
ods of evolving neural networks (NNs) with
genetic algorithms (GAs) to identify bent-
double galaxies. The objective is to demon-
strate that GAs can successfully address
some common problems in the application of
NNs to classification problems, such as train-
ing the networks, choosing appropriate net-
work topologies, and selecting relevant fea-
tures. The results indicate that most of the
methods we tried performed equally well on
our data, but using a GA to select features
produced the best results.

1 INTRODUCTION

The Faint Images of the Radio Sky at Twenty-cm
(FIRST) survey (Becker et al., 1995) started in 1993
with the goal of producing the radio equivalent of the
Palomar Observatory Sky Survey. Using the Very
Large Array at the National Radio Astronomy Ob-
servatory, FIRST is scheduled to cover more than
10,000 square degrees of the northern and southern
galactic caps. At present, FIRST has covered about
8,000 square degrees, producing more than 32,000 two-
million pixel images. At a threshold of 1 mJy, there

are approximately 90 radio-emitting galaxies, or radio
sources, in a typical square degree.

Radio sources exhibit a wide range of morphological
types that provide clues to the source’s class, emis-
sion mechanism, and properties of the surrounding
medium. Sources with a bent-double morphology are
of particular interest as they indicate the presence of
clusters of galaxies, a key project within the FIRST
survey. FIRST scientists currently identify the bent-
double galaxies by visual inspection, which—besides
being subjective, prone to error and tedious—is be-
coming increasingly infeasible as the survey grows.

Our goal is to bring automation to the classification
of galaxies using techniques from data mining, such as
neural networks. Neural networks (NNs) have been
used successfully to classify objects in many astro-
nomical applications (Odewahn et al., 1992; Storrie-
Lombardi et al., 1992; Adams & Woolley, 1994). How-
ever, the success of NNs largely depends on their ar-
chitecture, their training algorithm, and the choice of
features used in training. Unfortunately, determining
the architecture of a neural network is a trial-and-
error process; the learning algorithms must be care-
fully tuned to the data; and the relevance of features
to the classification problem may not be known a pri-
ori. Our objective is to demonstrate that genetic al-
gorithms (GAs) can successfully address the topology
selection, training, and feature selection problems, re-
sulting in accurate networks with good generalization
abilities. This paper describes the application of six
combinations of genetic algorithms and neural net-
works to the identification of bent-double galaxies.

This study is one of a handful that compares different
methods to evolve neural nets on the same domain
(Roberts & Turenga, 1995; Siddiqi & Lucas, 1998;
Grönross, 1998). In contrast with other studies that
limit their scope to two or three methods, we com-
pare six combinations of GAs and NNs against hand-

REAL WORLD APPLICATIONS 1019



designed networks. Most of the methods we tried per-
formed equally well on our data, but using a GA to se-
lect features yielded the best results. The experiments
also show that most of the GA and NN combinations
produced significantly more accurate classifiers than
we could obtain by designing the networks by hand.

The next section outlines the problem of detecting
bent-double galaxies in the FIRST data. Section 3 de-
scribes several existing combinations of GAs and NNs.
Section 4 presents our experiments and reports the re-
sults. The paper concludes with our observations and
plans for future work.

2 FIRST SURVEY DATA

Figure 1 has several examples of radio sources from
the FIRST survey. While some bent-double galaxies
are relatively simple in shape (examples (a) and (b)),
others, such as the ones in examples (e) and (f), can
be rather complex. Note the similarity between the
bent-double in example (a) and the non-bent-double
in example (c).

Data from FIRST are available on the FIRST web site
(sundog.stsci.edu). There are two forms of data avail-
able: image maps and a catalog. The images in figure 1
are close-ups of galaxies. The catalog (White et al.,
1997) is obtained by fitting two-dimensional Gaussians
to each radio source on an image map. Each entry in
the catalog corresponds to a single Gaussian.

We decided that, initially, we would identify the radio
sources and extract the features using only the cata-
log. The astronomers expected that the catalog was
a good approximation to all but the most complex of
radio sources, and several of the features they thought
were important in identifying bent-doubles were easily
calculated from the catalog.

We identified the features for the bent-double prob-
lem through extensive conversations with FIRST as-
tronomers. When they justified their decisions of iden-
tifying a radio source as a bent-double, they placed
great importance on spatial features such as distances
and angles. Frequently, the astronomers would char-
acterize a bent-double as a radio-emitting “core” with
one or more additional components at various angles.

In the past, we have concentrated our work on in-
stances described by three catalog entries, because we
have more labeled examples of this type. Our previous
experience with this data suggested that the best ac-
curacies are usually achieved using features extracted
considering triplets of catalog entries (as opposed to
pairs or single entries). Therefore, in the remainder

of this paper we focus on the 20 triplet features that
we extracted. A full list of features is described else-
where (Fodor et al., 2000).

Unfortunately, our training set is relatively small,
containing 195 examples for the three-catalog entry
sources. Since the bent- and non-bent-doubles must
be manually labeled by FIRST scientists, putting to-
gether an adequate training set is non-trivial. More-
over, scientists are usually subjective in their labeling
of galaxies, and the astronomers often disagree in the
hard-to-classify cases. There is also no ground truth
we can use to verify our results. These issues imply
that the training set itself is not very accurate, and
there is a limit to the accuracy we can obtain.

Among the 195 labeled examples of 3-entry sources, 28
are non-bent and 167 are bent-double galaxies. This
unbalanced distribution in the training set presents
problems in estimating the accuracy of the NNs, which
are discussed in section 4.

3 GENETIC NEURAL NETWORKS

Genetic algorithms and neural networks have been
used together in several ways, and this section presents
a brief review of previous work. In particular, GAs
have been used to search for the weights of the network
and to select the most relevant features of the training
data. GAs have also been used to design the structure
of the network. It is well known that to solve non-
linearly separable problems, the network must have
at least one hidden layer between the inputs and out-
puts; but determining the number and the size of the
hidden layers is mostly a matter of trial and error.
GAs have been used to search for these parameters,
as well as for the pattern of connections and for de-
velopmental instructions to generate a network. The
interested reader may consult the reviews by Branke
(1995), Schaffer (1994) and Yao (1999).

3.1 TRAINING NETWORKS WITH GAs

Training a NN is an optimization task with the goal of
finding a set of weights that minimizes an error mea-
sure. The search space is high dimensional and, de-
pending on the error measure, it may contain numer-
ous local optima. Some network training algorithms,
such as backpropagation (BP), use some form of gra-
dient search, and may get trapped in local optima.

A straightforward combination of genetic algorithms
and neural networks is to use the GA to search for
weights that make the network perform as desired.
The architecture of the network is fixed by the user
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Figure 1: Example radio sources: (a)-(b) Bent-doubles, (c)-(d) Non-bent doubles, (e)-(f) Complex Sources

prior to the experiment. In this method, each individ-
ual in the GA represents a vector with all the weights
of the network. There are two popular variations:

• Use the weights found by the GA without any fur-
ther refinement (Caudell & Dolan, 1989; Montana
& Davis, 1988; Whitley & Hanson, 1989).

• Use the GA to find a promising set of weights from
which a gradient-based method can quickly reach
an optimum (Skinner & Broughton, 1995). The
motivation is that GAs quickly identify promising
regions of the search space, but they may not fine-
tune parameters very fast.

These approaches are straightforward and numerous
studies report good results. However, since adjacent
layers in a network are usually fully connected, the to-
tal number of weights is O(n2), where n is the number
of units. Longer individuals usually require larger pop-
ulations, which in turn result in higher computational
costs. Therefore, the GA may be efficient for small net-
works, but this method may not scale up well. Another
drawback is the so-called permutations problem (Rad-
cliffe, 1990). The problem is that by permuting the
hidden nodes of a network, the representation of the
weights in the chromosome would change, but the net-
work is functionally the same. Some permutations may
not be suitable for GAs because crossover might easily
disrupt favorable combinations of weights. To amelio-
rate this problem, Thierens et al. (1991) suggested to

place incoming and outgoing weights of a hidden node
next to each other, which was the encoding we used.

3.2 FEATURE SELECTION

Besides searching for weights, GAs may be used to
select the features that are input to the NNs. The
training examples may contain irrelevant or redundant
features, but it is generally unknown a priori which
features are relevant. Avoiding irrelevant or redundant
features is desirable not only because they increase the
size of the network and the training time, but also
because they may reduce the accuracy of the network.

Applying GAs to select features is straightforward
using what is referred to as the wrapper approach:
the chromosome of the individuals contains one bit
for each feature, and the value of the bit deter-
mines whether the feature will be used in the clas-
sification (Brill, Brown, & Martin, 1990; Brotherton
& Simpson, 1995). The individuals are evaluated
by training the networks (that have a predetermined
structure) with the subset of features indicated by the
chromosome. The resulting accuracy estimate is used
to calculate the fitness.

3.3 DESIGNING NETWORKS WITH GAs

As mentioned before, the topology of a network is cru-
cial to its performance. If a network has too few nodes
and connections, it may not be able to learn the re-
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quired concept. On the other hand, if a network has
too many nodes and connections, it may overfit the
training data and have poor generalization. GAs have
been used successfully to design the topology of NNs.
There are two basic approaches for applying GAs to
the design of NNs: use a direct encoding to specify
every connection of the network or evolve an indirect
specification of the connectivity.

The key idea behind direct encodings is that a neu-
ral network can be regarded as a directed graph where
each node represents a neuron and each edge is a con-
nection. A common method of representing directed
graphs is with a binary connectivity matrix: the i, j-
th element of the matrix is one if there is an edge
between nodes i and j, and zero otherwise. The con-
nectivity matrix can be represented in a GA simply
by concatenating its rows or columns (Miller et al.,
1989; Belew et al., 1990). Using this method, Whitley
et al. (1990) showed that the GA can find topologies
that learn faster than the typical fully-connected feed-
forward network. The GA can be explicitly biased to
favor smaller networks, which can be trained faster.

A simple method to avoid specifying all the connec-
tions is to commit to a particular topology and learn-
ing algorithm, and then use the GA to find the parame-
ter values that complete the network specification. For
example, with a fully-connected feedforward topology,
the GA may search for the number of layers and the
number of neurons per layer. Another example would
be to code the parameters of a particular learning al-
gorithm, such as the momentum and the learning rate
of BP (Belew et al., 1990; Marshall & Harrison, 1991).
Of course, this method is constrained by the initial
choice of topology and learning algorithm.

Another approach is to use a grammar to encode
rules that govern the development of a network. Ki-
tano (1990) introduced the earliest grammar-based ap-
proach. He used a connectivity matrix to represent the
network, but instead of encoding the matrix directly in
the chromosome, the matrix is generated by a graph-
rewriting grammar. The chromosomes contain rules
that rewrite scalar elements into 2× 2 matrices.

In this grammar, there are 16 terminal symbols that
are 2 × 2 binary matrices. There are 16 non-terminal
symbols, and the rules have the form n → m, where
n is one of the scalar non-terminals, and m is a 2× 2
matrix of non-terminals. There is an arbitrarily desig-
nated start symbol, and the number of rewriting steps
is fixed by the user.

To evaluate the fitness, the rules are decoded and the
connectivity matrix is developed by applying all the

rules that match non-terminal symbols. Then, the
connectivity matrix is interpreted and the network is
constructed and trained with BP.

Other examples of grammar-based developmental sys-
tems are the work of Boers and Kuiper (1992) with
Lindenmayer systems, Gruau’s “cellular encoding”
method (Gruau, 1992), and the system of Nolfi, El-
man, and Parisi (1994) that simulates cell growth, mi-
gration, and differentiation.

4 EXPERIMENTS

This section details the experimental methods and the
results that we obtained with six combinations of neu-
ral networks and genetic algorithms.

The programs were written in C++ and compiled with
g++ version 2.96. The experiments were executed on
a single processor of a Linux (Red Hat 7.1) workstation
with dual 1.5 GHz Intel Xeon processors and 512 Mb
of memory. The programs used a Mersenne Twister
random number generator.

All the GAs used a population of 50 individuals. We
used a simple GA with binary encoding, pairwise
tournament selection, and multi-point crossover. The
number of crossover points was varied in each exper-
iment according to the length of the chromosomes, l.
In all cases, the probability of crossover was 1, and
the probability of mutation was set to 1/l. The initial
population was initialized uniformly at random.

The experiments used feedforward networks with one
hidden layer. All neurons are connected to a “bias”
unit with constant output of 1.0. Unless specified oth-
erwise, the output units are connected to all the hidden
units, which in turn are connected to all the inputs. In
feedforward operation, the units compute their net ac-
tivation as

net =
d

∑

i=1

xiwi + w0,

where d is the number of inputs to the neuron, xi

is an input and wi is the corresponding weight, w0

is the weight corresponding to the “bias” unit. Each
unit emits an output according to f(net) = tanh(β ∗
net), where β is a user-specified coefficient. Simple
backpropagation was used in some of the experiments.
The weights from the hidden to the output layer were
updated using ∆wkj = ηδkyj = η(tk − zk)f

′(netk)yj ,
where η denotes the learning rate, k indexes the output
units, tk the desired output, zk the actual output, f ′

is the derivative of f , and yj is the output of the j-th
hidden unit. The weights from the i-th input to the

REAL WORLD APPLICATIONS1022



hidden layer were updated using

∆wji = η

[

c
∑

k=1

wkjδk

]

f ′(netj)xi.

In all experiments, each feature in the data was lin-
early normalized to the interval [−1, 1]. The type of
galaxy was encoded in one output value (-1 for bent
and 1 for non-bent). When backpropagation was used,
the examples were presented in random order for 20
epochs. All the results reported are averages over 10
runs of the algorithms. Comparisons were made using
standard t-tests with 95% confidence.

4.1 FITNESS CALCULATION

One of the crucial design decisions for the application
of GAs is the calculation of fitness values for each mem-
ber of the population. Since we are interested in net-
works that predict accurately the type of galaxies not
used in training, the fitness calculation must include an
estimate of the generalization ability of the networks.

There are multiple ways to estimate generalization.
Since we do not have much training data, hold-out
methods (dividing the data into training and testing
sets and perhaps an additional validation set) are not
practical. To calculate the fitness, we used the ac-
curacy estimate of five-fold crossvalidation trials. In
this method, the data D is divided into five non-
overlapping sets, D1, ..., D5. At each iteration i (from
1 to 5), the network is trained with D\Di and tested
on Di. The average of the five tests was used as the fit-
ness. A better estimate of accuracy would be to use an
average of multiple crossvalidation experiments, but
we found the cost excessive.

To correct for the unbalanced distribution of bent and
non-bent examples in our training data, we calculate
the accuracy as the geometric mean of the accuracies
of each class of galaxy (bent and non-bent) (Kubat &
Matwin, 1997). Using the geometric mean gives equal
weight to the accuracies on both types of galaxies in
the overall performance.

4.2 TRAINING NETWORKS WITH GAs

We implemented the first of the methods described in
section 3.1: the GA was used to find the network’s
weights. The network had 20 inputs that correspond
to each of the features in the data, 25 hidden nodes,
and one output. Each weight was represented with 10
bits, and the range of possible weights was [−10, 10].

For this experiment, the GA used a population of 50
individuals, each with a length of l = 5510 bits (there

are 551 total weights). The number of crossover points
was set at 25, and the mutation rate was 0.00018
(≈ 1/l). As in all experiments, pairwise tournament
selection without replacement was used.

The second training method described in section 3.1 is
to run BP using the weights represented by the indi-
viduals in the GA to initialize the network. We imple-
mented this method and used the same network archi-
tecture and GA parameters as in the first experiment.
Each network was trained using 20 epochs of BP with
a learning rate η of 0.1 and β of 0.4.

The entries Weights and Weights+BP in table 1
present the average accuracy of the best networks
found in each run of the GA for these two sets of exper-
iments. The results highlighted in bold in the table are
the best results and those not significantly worse than
the best (according to the t-test, which may detect
more differences than there actually exist). The addi-
tion of BP produces a significant improvement in the
bent-double accuracy rate, which is of primary impor-
tance to the astronomers. However, the improvement
in the overall accuracy is not significant.

4.3 FEATURE SELECTION

The next combination of GAs and NNs is to use the
GA to select the features that will be used to train the
networks, as described in section 3.2. As in the pre-
vious experiment, we set the number of hidden units
to 25, the learning rate η to 0.1 and β to 0.4. The
networks were trained with 20 epochs of BP.

Our data has 20 features, and therefore the chromo-
somes in the GA are 20 bits long. The GA used one-
point crossover and the same parameters as in previous
experiments. The accuracy results are labeled Fea-

ture Sel and are significantly better than the other
results in table 1.

The GAs consistently selected about half of the fea-
tures, and frequently selected features that appear to
be relevant to the identification of bent-double galax-
ies, such as symmetry measures and angles.

4.4 DESIGNING NETWORKS WITH GAs

For our first application of GAs to network design, the
GA was used to find the number of hidden units, the
parameters for BP, and the range of initial weights as
described in section 3.3. The learning rate was en-
coded with four bits and the range of possible values
was [0, 1]. The coefficient β for the activation function
was also encoded with four bits and its range was [0, 1].
The upper and lower ranges for the initial weights were
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encoded with five bits each and were allowed to vary in
[−10, 0] and [0, 10], respectively. Finally, the number
of hidden units was represented with seven bits and
could take values in [0, 127].

After extracting the parameters from a chromosome, a
network was built and initialized according to the pa-
rameters and trained with 20 epochs of BP. There is no
explicit bias to prefer smaller networks, but there is an
implicit bias toward networks that can learn quickly,
since we are using only 20 epochs of BP. It is probable
that small networks learn faster than larger ones, and
so it is likely that the GA favors small networks.

The GA used two-point crossover and the same param-
eters as in previous experiments. The accuracy results
are labeled Parameters in table 1. On average, the
best learning rate found by the GA was 0.82 (with
0.06 std. error), which is higher than the usual rec-
ommendation of 0.1–0.2 (Duda, Hart, & Stork, 2001).
Perhaps the learning rate is high because of the im-
plicit bias for learning quickly. This bias may also
explain the average number of hidden units being rel-
atively small at 15.6 (std. error 2.8). The average β
was 0.16 (0.01), and the range of initial weights was
[−3.51, 3.45] (both with std. errors of 0.4).

The next experiment used the GA to search for a con-
nectivity matrix as described in section 3.3. We fixed
the number of hidden units to 25, the learning rate to
0.1 and β to 0.4. The neurons are numbered consecu-
tively starting with the inputs and followed by the hid-
den units and outputs. The connectivity matrix is en-
coded by concatenating its rows. Since we allow direct
connections between the inputs and the outputs, the
string length is (hidden+ outputs) ∗ inputs+hidden ∗
outputs = (26∗20)+(25∗1) = 545 bits. For this longer
string, we use 10 crossover points, and the same GA
parameters as before. The results corresponding to
this method are labeled Matrix in table 1.

We also implemented Kitano’s graph rewriting gram-
mar method. We limited the number of rewriting steps
to 6, resulting in networks with at most 64 units. Since
the chromosomes encode four 2×2 binary matrices for
each of the 16 rules, the string length is 256 bits. The
GAs used five crossover points. The results obtained
with this method are labeled Grammar in table 1.

4.5 COMPARISON AND DISCUSSION

Table 1 summarizes the results obtained with each
method. The results show few differences among the
various methods in the accuracy rate for bent-doubles.
While the direct encoding of connections (Matrix)
has the best accuracy, four other methods do not ap-

pear to be significantly less accurate. In terms of the
accuracy on the non-bents and the overall accuracy, it
is clear that the feature selection method obtained the
best results.

We also performed numerous experiments with net-
works designed by hand. The best parameters that
we could find for 20 epochs of backpropagation were
those used in the experiments with the GAs: β = 0.1,
the learning rate was 0.4, and the number of hidden
was 25. The average of ten 10-fold crossvalidation ex-
periments resulted in an accuracy on the non-bents of
only 16.4% (with std. error of 1.7) and on the bents
of 99.69% (0.16). The overall accuracy estimated with
the geometric mean is a disappointing 23.41% (2.02).

Increasing the number of training epochs to 100 raised
the standard the geometric mean accuracy to 72.69%
(0.32). The accuracy on the non-bents also improved
to 56.7%, while the accuracy on the bents decreased
slightly to 94.38%.

5 CONCLUSIONS

This paper presented a comparison of six combinations
of GAs and NNs for the identification of bent-double
galaxies in the FIRST survey. Our experiments sug-
gest that, for this application, some combinations of
GAs and NNs can produce accurate classifiers that are
competitive with networks designed by hand. For our
application, we found few differences among the GA
and NN combinations that we tried. The only consis-
tently best method was to use the GA to select the fea-
tures used to train the networks, which suggests that
some of the features in the training set are irrelevant
or redundant.

There are several avenues to extend this work. The
highly unbalanced training set presents some difficul-
ties that could be avoided or ameliorated by including
more examples of the minority class. However, extend-
ing the training set is non-trivial, because the labeling
is subjective and disagreements among the experts are
common.

Other optimization techniques, evolutionary and tra-
ditional, can be used to train NNs. In this paper we
used a simple genetic algorithm with a binary encod-
ing, but other evolutionary algorithms operate on vec-
tors of real numbers that can be directly mapped to
the network’s weights or the BP parameters (but not
to a connectivity matrix, a grammar, or a feature se-
lection application). There are other combinations of
GAs and NNs that we did not include in this study,
but appear promising. For instance, since evolution-
ary algorithms use a population of networks, a natural
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Method Bent-Doubles Non-Bent Overall
Weights 86.34 (2.83) 78.01 (4.13) 80.98 (2.41)

Weights+BP 91.89 (0.67) 75.23 (0.87) 81.68 (0.53)
Feature Sel 92.99 (0.55) 83.65 (1.41) 87.51 (0.77)
Parameters 92.35 (0.89) 69.13 (1.56) 78.76 (0.57)

Matrix 93.58 (0.46) 70.77 (1.34) 80.22 (0.69)
Grammar 92.84 (0.69) 73.73 (1.40) 81.78 (0.72)

Table 1: Mean accuracies on the bent and non-bent doubles and overall accuracy for different combinations of
GAs and NNs using the geometric mean of class-wise accuracies as fitness. The numbers in parenthesis are the
standard errors, and the results in bold are the best and those not significantly worse than the best.

extension of this work would be to use evolutionary
algorithms to create ensembles that combine several
NNs to improve the accuracy of classifications.

A disadvantage of using genetic algorithms in combi-
nation with neural networks is the long computation
time required. This can be an obstacle to applying
these techniques to larger data sets, but there are nu-
merous alternatives to improve the performance of ge-
netic algorithms. For instance, we could approximate
the fitness evaluation using sampling or we can exploit
the inherently parallel nature of GAs using multiple
processors.
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Abstract

CATEGORY: Real-World Applications

Structural comparison of proteins is a core
problem in modern biomedical research.
Identifying structural similarities is essential
for the assessment of the relationship between
structure and function in proteins, and struc-
tural comparison techniques play a key role
in applications like rational drug design. In
this paper we consider a technique for protein
structure comparison known as the maximum
contact map overlap problem. In this prob-
lem, the similarity between two protein struc-
tures is computed by aligning the proteins to
maximize the number of shared contacts in
their corresponding contact maps.

We present a new approach to this problem
that uses a Multimeme evolutionary algo-
rithm. The best solution found by our algo-
rithm provides a lower bound on the value of

the optimal structural alignment between the
proteins. We have evaluated the Multimeme
algorithm on a range of benchmark problems
and compared with previous heuristics. We
apply a linear programming method, which
provides an upper bound, to assess the accu-
racy of our solutions. Our experiments show
that the Multimeme evolutionary algorithm
represents a signi�cant improvement on the
current state of the art in metaheuristics for
this problem.

�frdcarr,wehartg@sandia.gov
y fnatalio.krasnogor,jhirstg@nottingham.ac.uk ,
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1 Introduction

Structural comparison of proteins is a central task in
biomedical research. Identifying structural similari-
ties can provide signi�cant insights into the relation
between structure and function in proteins. Reliable
and eÆcient structural matching plays a key role in
rational drug design and in assessing the quality of
structure prediction methods. A variety of structure
comparison methods have been developed, such as
SCOP [14], DALI [6], and LGA [17, 18]. However, no
one technique has proven robust across a wide range
of applications.

One of the emerging approaches for solving this prob-
lem is to evaluate the alignment (or overlap) of contact

maps between proteins [6, 8, 11]. In its simplest form,
a contact map is a matrix of all pairwise distances
within a protein's components [12, 7]; these compo-
nents can be atoms, residues, etc, depending on the
resolution of the model employed. The distances in
a contact map typically are computed by considering
either the distance between the C� atoms in a pair
of residues, or the minimum distance between any two
atoms belonging to those residues. Thus a contact map
provides a simple representation of a protein's native
three dimensional structure.1

In this paper we reconsider the use of metaheuris-
tics for the Contact Map Overlap (Max CMO) prob-
lem [11]. For this problem, the distances in the con-
tact map are discretized to zero or one, depending
on whether the pairwise distances between residues
are within a speci�ed threshold. Although this dis-
cretization would seem to be easier than aligning ma-
trices with real values, the problem is in fact NP-
complete [4, 5, 9]. We have previously proposed a

1
A protein's native state is associated with its minimal

free energy con�guration. The biological function of a pro-

tein is achieved in this state.
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rigorous approach to Max CMO [11]. This approach
employs an integer programming (IP) formulation for
Max CMO, which is solved using a branch-and-cut al-
gorithm. The branch-and-cut algorithm uses a Linear
Programming (LP) relaxation of the IP to produce the
upper bounds, and a Genetic Algorithm (GA) is used
to provide lower bounds at the branch nodes.

The aim of the present research is to investigate the use
of more sophisticated evolutionary algorithms: Multi-
meme memetic evolutionary algorithms [9], which in-
tegrate multiple local search strategies with a standard
evolutionary search. We employ the LP relaxation of
the Max CMO IP to provide upper bounds on the
quality of the alignment of two proteins' structures,
and thus we can empirically evaluate the quality of the
solutions that we generate. Further, we compare the
results of the Multimeme algorithm with a standard
GA as well as the LGA protein structure comparison
algorithm.

2 The Maximum Contact Map

Overlap Problem

2.1 0-1 Contact Maps

Although contact maps are generally represented as
distance matrices, one way of simplifying this repre-
sentation of a protein's structure is to de�ne a contact
as a pair of residues that are closer than a given thresh-
old, �. Typically, � ranges between 2 and 9 Angstroms.
This gives a 0-1 contact map, where the matrix has the
form

Si;j =

�
1 if residue i and j are within distance �
0 otherwise

:

The advantage of this representation is that structural
properties of proteins can be more easily visualized
and compared [16, 15]. Figure 1 is the graphic rep-
resentation of the 0-1 contact map for protein 1C7W

shown in Figure 2(a).2 In this �gure, the �-helices are
represented by wide bands along the main diagonal,
while �-sheets manifest themselves as bands parallel
or perpendicular to the diagonal.3

A 0-1 contact map can also be represented as an undi-
rected graph. In this graph, each residue is a node and
there exists an edge between nodes i and j if these
residues are in contact (i.e. if Si;j = 1). Figure 2

2
The proteins used in this paper are taken from the

Protein Data Bank [1], and the labels we use are the labels

provided by the PDB.
3
��helices and ��sheets are elements of a protein's

secondary structure. See [2] for a description of protein

secondary structure.

Figure 1: A 0-1 contact map comparing protein 1C7W
with itself.

shows the native structures of two proteins, and Fig-
ure 3 shows the graphs corresponding to their contact
maps. Note the long range interactions of residues that

are far away in the sequence but close in the three di-
mensional structure adopted by the native state.

2.2 Problem Formulation

The alignment between two contact maps is an assign-
ment of residues in the �rst contact map to residues
on the second contact map. Residues that are thus
aligned are considered equivalent. Further, consider
a pair of contacts, one from each protein. We say
that such a pair of contacts is equivalent if the pairs
of residues that de�ne the end-points of these contacts
are equivalent. In theMax CMO problem, the value of
an alignment between a pair of proteins is the number
of equivalent contacts between these proteins. This
number is called the overlap of the contact maps and
the goal is to maximize this value. The Max CMO

problem was �rst discussed by Godzik et al. [3], and it
has been proven NP-complete [5, 9].

Lancia et al. [11] describe an IP approach for the MAX
CMO problem, which builds upon a polynomial reduc-
tion from Max CMO to Maximum Independent Set
(MIS). The size of the converted instances is the prod-
uct of the number of contacts of the two maps (around
10000 nodes for a pair of proteins of 100 residues each).
To solve MIS instances of this size, the authors exploit
speci�c characteristics of the MIS instances.

Let G1 = (E1; V1) and G2(E2; V2) be the two graphs
that correspond to two 0-1 contact maps, where Ei are
the edges in these graphs and Vi the vertices. The IP
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(a)

(b)

Figure 2: Ribbon representation of structures for
proteins (a) 1C7W and (b) 1NMG. Arrow shows
��strand and spiral depicts helix.

formulation proposed by Lancia et al. is:

max
X

e2E1;f2E2

ye;f

subject to the constraints

xi;u + xj;v � 1 8(i; u); (j; v) crossedP
i<j

y(i;j)(u;v) � xi;u 8i 2 V1; (u; v) 2 E2P
i>j

y(j;i)(u;v) � xi;v 8i 2 V1; (u; v) 2 E2P
u<v

y(i;j)(u;v) � xi;u 8u 2 V2; (i; j) 2 E1P
u>v

y(i;j)(v;u) � xj;u 8u 2 V2; (i; j) 2 E1

x; y 2 f0; 1g

The binary variable xi;u for i 2 V1 and u 2 V2 has
a value of 1 if i is aligned with u and 0 otherwise.
The binary variable ye;f has a value of 1 if the edges
e; f are shared in a feasible solution and 0 otherwise.

(a)

(b)

Figure 3: Graphical representation of the contact maps
of proteins (a) 1C7W and (b) 1NMG.

Hence the �rst equation is the statement of the goal
of maximizing the shared edges (contacts). We say
that (i; u) and (j; v) are crossed if both of these as-
signments are not feasible within a single alignment;
these form crossed assignment lines in the alignment
graphs below.

Lancia et al. [11] discuss the solution of this IP with

a branch-and-cut algorithm. Note that if the last con-
straint in the IP is removed then this problem is an LP,
so it can be solved in polynomial time. Further, the
solution to this relaxation of the IP provides an upper
bound on the globally optimal solution of the IP. These
LP solutions are a critical element of the branch-and-
cut algorithm described by Lancia et al. Further, they
can be used to benchmark heuristic solvers like the EA
we describe in the next section.

3 Multimeme Algorithms

Memetic algorithms [13] are evolutionary algorithms
that include, as part of the \standard" evolutionary
cycle of crossover-mutation-selection, a local search
stage. They have been extensively used and studied
on a wide range of problems. Multimeme evolutionary
algorithms are introduced in Krasnogor et al. [10, 9].
The distinction between memetic and Multimeme al-
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gorithms is the use of a family of local searchers.
A memetic algorithm employs a single local search
heuristic, while a Multimeme algorithm relies on a set
of simple local searchers. Multimeme algorithms self-
adaptively select which heuristic to use for di�erent
instances, stages of the search or individuals in the
population.

In a Multimeme algorithm an individual is composed
of its genetic material (that represents the solution to
the problem being solved) and its memetic material
(that de�nes the kind of local searcher to use). The
mechanisms of genetic exchange and variation are the
usual crossover and mutation operators but tailored
for the speci�c problem one wants to solve. Memetic
transmission is done during crossover as follows. If the
two parents use the same local searcher then the o�-
spring will inherit that local searcher. However, if the
local searchers are di�erent then the o�spring inherits
the one associated with the �ttest parent. Otherwise
(the heuristics used by both parents are di�erent but

the �tnesses are the same) a random choice between
both local searchers is made.

The rational behind this criterion is to propagate local
searchers that are associated with �t individuals (as it
is hoped that those individuals were improved by their
respective local searchers). Also, during mutation, the
meme of an individual can be overridden and a local
searcher assigned at random (uniformly from the set
of all available local searchers) with the probability
speci�ed by the innovation rate parameter.

4 A Multimeme Algorithm for Max

CMO

We extend here the work on the Max CMO initiated
by Lancia et.al. [11], who employed a standard GA
with specially tailored genetic operators. We briey
describe those operators and explain how we enlarged
that set for use in our Multimeme approach.

In a GA for Max CMO a chromosome is represented
by a vector c of dimension n, for which each position
can take values in the [�1; : : : ;m � 1] domain. Here,

m is the length of the longer protein and n the length
of the shorter. A position j in c, c[j], speci�es that
the jth residue in the longer protein is aligned to the
c[j]th residue in the shorter. A value of -1 in that posi-
tion will signify that residue j is not aligned to any of
the residues in the other protein. Unfeasible con�gura-
tions are not allowed, that is, if i < j and v[i] > v[j] or
i > j and v[i] < v[j] ( e.g. a crossing alignment) then
the chromosome is discarded. That is, our algorithms
work only with feasible solutions. It is simple to de�ne

genetic operators that preserve feasibilities based on
this representation. Two-point crossover with bound-
ary checks was used to mate individuals and create
one o�spring. Although both parents are feasible valid
alignments, the newly created o�spring can result in
invalid (crossed) alignments. After constructing the
o�spring, feasibility is restored by deleting any align-
ment that crosses other alignments. Figure 4 shows
a two point crossing over with an unfeasible interme-
diate o�spring. At the later stage it is repaired and
completed, i.e. all unassigned vertices are randomly
assign to a vertex on the other protein if no new vio-
lations are produced (not shown in the picture).

The mutation move employed in the experiments is
called a sliding mutation. It selects a consecutive re-
gion of the chromosome vector and adds, slides right,
or subtracts, slides left, a small number. The pheno-
typic e�ect produced is the tilting of the alignments.
In Figure 5 an example is shown. Again, alignments
that violate the feasibility of the solution are dis-

carded. Lancia et al. [11] describes a few variations
on the sliding mutation.

P2

+2

P2

Figure 5: Sliding mutation under the vector represen-

tation for Max CMO. In this example a window size of

9 residues was chosen together with a right sliding by 2

residues.

In this paper we employ a Multimeme algorithm that,
besides using the same mutation and crossover as the
mentioned GA, has a set of 6 local search operators.
Four of the local searchers implemented are parameter-
ized variations of the sliding operator. The direction
of movement, left or right sliding, and the tilting fac-
tor, i.e. the number added or subtracted, were chosen
at random in each local search stage. The size of the
window was taken from the set f2; 4; 8; 16g. Two new
operators were also de�ned: a \wiper" move and a
\split" move. The wiper move is depicted in Figure 6.
At every iteration of the operator two alignments, rep-
resented by x and y in the lower protein of the picture,
are chosen. The feasible regions of alignment for x

and y are determined (marked with dotted line rect-
angles R1 and R2 in the graph). Subsequently all the
residues within those regions are tested as candidate
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P1 P2

Intermediate offspring

Final offspring

Figure 4: Two-point crossover with boundary checks for a vector representation of Max CMO.

alignments for x and y. The best alignment is chosen.
In the graph this is represented by the vertices that
are end points of the upper contact edge.

P1

R1 R2

A1 A2
x y

Figure 6: Wiper move under the vector representation

for Max CMO. Two alignments of the lower protein are

selected and tested exhaustively against all the possible

feasible and compatible con�gurations around them.

During our investigations, it became evident that some
sort of redistribution of consecutive alignments might
be bene�cial. We implemented a split operator to ac-
complish this. The split move, depicted in Figure 7,
tries to rearrange regions of consecutive alignments. In
the example, the �rst section of six consecutive align-
ments is broken into two regions of three alignments
each. Note that the end points of the alignments are
not changed in contrast with the sliding and wiper

moves.

5 Experiments and Results

In order to evaluate our Multimeme algorithm we �rst
implemented a GA, following as closely as possible the
GA described by Lancia et al. [11].4 We were able
to reproduce Lancia et al.'s results and, although we
found a small improvement of the �nal-values in our
implementation, they were minor and we consider both
GA's implementations to be very similar.

4
Some extra experimental details were kindly given to

us in private communications with the authors.

P1

P1

Figure 7: Split operator under the vector representation

for Max CMO. This operator splits regions of consecutive

alignments.

The GA used a population of size 300. The mutation
rate was 0.15 per individual and crossover probabil-
ity was set to 0.75. Fitness proportional selection was
used to select the mating pool. An elitist (elite set
size of 1) (300; 300) selection strategy was employed.
These parameters were selected after an initial assess-
ment of parameter values with a few pairs of proteins.
The Multimeme algorithm used the same basic GA
setting and parameters, but also employed as memes
the four variations of the sliding move, a split move
and a wiper move as described in the previous section.
The probability of local search was set to one, i.e., local
search was applied to every individual in every gener-
ation. Each meme was iterated two times (short local
searches). The values of mutation and crossover prob-
abilities were not optimized for the Multimeme code
but as mentioned before, taken from the GA setting.
The innovation rate for the Multimeme algorithm was
1.0 and 0.15 (see below).

We performed two experiments on a set of 18 pairs
of protein structures from the Protein Data Bank [1].
For these 18 pairs we had the upper bound values ob-
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Instance GA Multimeme IR=1.0 LP

1a8o-1f22 25 23 28

1avy-1bct 19 22 25

1b6w-1bw5 23 23 24

1bct-1bw5 20 17 20

1bct-1f22 20 18 22

1bct-1ilp 18 18 23

1c7v-1c7w 62 62 62

1c9o-1kdf 29 29 40

1df5-1f22 21 22 27

1hlh-1hrf 19 21 24

1hlh-1nmf 22 22 27

1kst-2new 20 22 26

1nmf-2new 23 23 27

1nmg-1wdc 18 19 23

1pfn-1svf 16 16 16

1utr-1wdc 16 24 28

1vnb-1bhb 17 21 27

2new-3mef 21 19 26

Table 1: Maximum Contact Map Overlap values for sev-

eral protein pairs. A GA, a Multimeme algorithm with

innovation rate 1.0 are compared. The value of the LP

results are also displayed to the right.

tained by the LP formulation described earlier. It is
important to remark that, the LP gives estimations
(i.e. upper bounds) on the possible maximum objec-
tive value for a particular instance of the problem. It
does not produce (explicit) solutions to the problem
instances.

The metric used in the experiments was the value of
best alignment obtained out of 5 runs for each pair of
proteins.

In the �rst experiment we assessed the performance of
a Multimeme algorithm with an innovation rate set to
1 in a relatively fast experiment. For both the Multi-
meme and the GA the maximum number of function
evaluations was 3 � 106. The results are presented in
Table 1.

From the table we can see that the two algorithms pro-
duce the same results in 7 cases, the GA outperforms
the Multimeme in four cases and the Multimeme out-
performs the GA in 7 cases. We can thus say that
the Multimeme algorithm with innovation rate of 1.0
generates similar or better results than the GA (both
algorithms using the same number of �tness evalua-
tions) in 14 out of 18 cases.

The second experiment was meant to test the behavior
of both the GA and the Multimeme algorithms in the
same set of 18 pairs of proteins but employing more

Instance GA Multimeme IR=0.15 LP

1a8o-1f22 25 25 28

1avy-1bct 22 22 25

1b6w-1bw5 23 24 24

1bct-1bw5 17 20 20

1bct-1f22 16 21 22

1bct-1ilp 18 19 23

1c7v-1c7w 62 62 62

1c9o-1kdf 31 34 40

1df5-1f22 24 24 27

1hlh-1hrf 20 22 24

1hlh-1nmf 22 23 27

1kst-2new 22 23 26

1nmf-2new 23 25 27

1nmg-1wdc 18 19 23

1pfn-1svf 16 16 16

1utr-1wdc 26 26 28

1vnb-1bhb 19 23 27

2new-3mef 23 22 26

Table 2: Maximum Contact Map Overlap values for sev-

eral protein pairs. A GA, a Multimeme algorithm with

innovation rate = 0.15 compared. The value of the LP

results are also displayed to the right.

�tness evaluations, 5 � 106 in this case. Also the inno-
vation rate was reduced to 0:15. The alignment values
obtained are presented in Table 2.

From inspection of the table, and comparing it with
the previous one, we can see that both algorithms
pro�t from longer runs. However, the di�erence be-
tween the two approaches is more noticeable in this
case. Out of 18 protein pairs the GA outperformed
the Multimeme in just one case, instance 2new-3mef,
as opposed to four in Table 1. The Multimeme pro-
duced better results in 11 cases while for the remaining
pairs, 6 instances, the values obtained with both algo-
rithms were equivalent.

The Multimeme algorithm was able to match 4 of the
optimum bounds produced by the LP. In the 4 in-
stances where the GA and the Multimeme achieve sim-
ilar results, i.e. pairs 1a8o-1f22, 1avy-1bct, 1df5-1f22
and 1utr-1wdc, the values obtained are below the LP
bounds. However, we speculate that actually those
alignments, i.e. the ones produced with the meta-
heuristics, are indeed optimal and that the LP pro-
gram is able to obtain higher values by using fractional
solutions that cannot possibly have physical meaning.
Also, it is important to note that the gap between the
Multimeme results and the LP bounds is in all cases
smaller than 4 except in the case of the pair 1c9o-1kdf
for which the gap is 6.
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Other experiments were performed with di�erent ge-
netic operators, like DPX crossover and di�erent mu-
tation moves, but the results were not particularly bet-
ter than the ones discussed here; hence they are omit-
ted.

6 Comparison with LGA

In the previous section we veri�ed that the Multi-
meme algorithm introduced in this paper produces op-
timal and almost optimal, i.e. with respect to the LP
bounds, results. In this section we assess whether the
alignments generated for CMO are qualitatively sim-
ilar to other well known methods of structural align-
ment. To accomplish this aim, we will compare our
alignments with those obtained with LGA [18, 17].
The later is a state of the art, publicly available pro-
gram for the comparative analysis of protein struc-
tures.

LGA can be run in two modes, protein sequence aware
mode and sequence independent mode. The former is
suitable when the two proteins to be compared have
the same number of residues and the later for the case
when the two proteins are not necessarily of the same
length. We use LGA in the sequence independent
mode as the illustrative comparison we run was made
with proteins of di�erent size. The parameters used to
run the LGA program were �4 � sia � o1 � d 6:5.
Please refer to Zemla [17] for details. The pair of pro-
teins studied was 1c9o and 1kdf (from the Protein Data
Bank). This pair is the one that produces the biggest
gap between the solutions returned by the Multimeme
algorithm and the LP upper bound5. Protein 1c9o is
a cold shock protein from the genome of Bacillus Cal-
dolyticus and 1kdf is an antifreeze protein fromMacro-

zoarses Americanus. Because the functions are similar,
it is expected that the structures of the two will have
some resemblance and that either algorithm (LGA or
the Multimeme) will be able to capture it.

Figure 8 plots the alignments obtained by our method
and the LGA program. Axis X and Y are indexed by
residues id, where X represents the residues of protein
1c9o and Y that of 1kdf. A mark, circle or square, in
coordinates (x; y) should be interpreted as the align-
ment of residue number x in 1c9o with residue y in
1kdf. The closer to the diagonal the full alignment is
the more similar are the structures. As it is possible
to see from the graph there is only one mismatched
region between the two alignments, the area between
residue 14 and 20. In that window the di�erence be-

5
It is a worst case comparison as it represents our poor-

est result.
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Figure 8: Comparison of the structural alignments ob-

tained by LGA and the Multimeme algorithm for proteins

1c9o and 1kdf

tween the two alignment is considerable. In the rest of
the protein the two algorithms produce strikingly sim-
ilar alignments where some perfect matching regions
are visible. The overall shape of both alignments is
also similar. To elucidate which of the two algorithms
calculates the best alignment in the region of discrep-
ancy (i.e better preserves secondary structure features
like beta sheets, alpha helices, etc ), we carried out a
secondary structure analysis in this region. The anal-
ysis performed allows us to conclude that both algo-
rithms produced results of similar quality as the pro-
teins di�er substantially on their secondary structure
contents for the region studied.

7 Conclusion and Future Work

In this paper we reproduced the results of Lancia et
al. for the Max CMO problem [11]. Their results pro-
vide the �rst application of a GA for this problem.
We used a Multimeme algorithm with an architecture
similar to that used in Krasnogor et al. [9, 10] to ob-
tain results that improve over those produced by the
standard GA. No exhaustive testing of parameters for
the Multimeme algorithm was carried out, but rather
the same setting as those produced for the GA were
employed. Furthermore, our method gives results that
are compatible with those obtained with a state of the
art structure comparison algorithm [17, 18]. One im-
mediate advantage of our method over, e.g., LGA is
that being a population based approach it can poten-
tially return not only one \best alignment" but a va-
riety of alternative alignments. Moreover, these set
of candidate alignments can be analyzed for biological
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relevance at a later stage by a human expert.

As an immediate follow up of this work a much larger
set of protein pairs is being analyzed and the biolog-
ical signi�cance of the alignments obtained with our
method will be assessed on those pairs. A Master-
Worker parallel version of the LP-Multimeme inte-
grated approach is under development. That platform
will enable one to perform genome scale structures
comparisons.
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Abstract

This work addresses the well-known
classification task of data mining. In this context,
small disjuncts are classification rules covering a
small number of examples. One approach for
coping with small disjuncts, proposed in our
previous work, consists of using a decision-
tree/genetic algorithm method. The basic idea is
that examples belonging to large disjuncts are
classified by rules produced by a decision-tree
algorithm (C4.5), while examples belonging to
small disjuncts are classified by a genetic
algorithm (GA) designed for discovering small-
disjunct rules. In this paper we follow this basic
idea, but we propose a new GA which consists of
several major modifications to the original GA
used for coping with small disjuncts. The
performance of the new GA is extensively
evaluated by comparing it with two versions of
C4.5, across several data sets, and with several
different sizes of small disjuncts.

1 INTRODUCTION
This paper addresses the well-known classification task of
data mining (Hand, 1997). In this task, the discovered
knowledge is often expressed as a set of rules of the form:
IF <conditions> THEN <prediction (class)>.
This knowledge representation has the advantage of being
intuitively comprehensible for the user, and it is the kind
of knowledge representation used in this paper.
From a logical viewpoint, typically the discovered rules
are in disjunctive normal form, where each rule represents

a disjunct and each rule condition represents a conjunct. A
small disjunct can be defined as a rule which covers a
small number of training examples (Holte et al., 1989).
In general rule induction algorithms have a bias that
favors the discovery of large disjuncts, rather than small
disjuncts. This preference is due to the belief that it is
better to capture generalizations rather than
specializations in the training set, since the latter are
unlikely to be valid in the test set (Danyluk & Provost,
1993).
Hence, at first glance, small disjuncts are not important,
since they tend to be error prone. However, small
disjuncts are actually quite important in data mining. The
main reason is that, even though each small disjunct
covers a small number of examples, the set of all small
disjuncts can cover a large number of examples. For
instance (Danyluk & Provost, 1993) report a real-world
application where small disjuncts cover roughly 50% of
the training examples. In such cases we need to discover
accurate small-disjunct rules in order to achieve a good
classification accuracy rate.
One approach for coping with small disjuncts, proposed
in our previou work (Carvalho & Freitas 2000a, 2000b),
consists of using a decision-tree/genetic algorithm
method. The basic idea is that examples belonging to
large disjuncts are classified by rules produced by a
decision-tree algorithm (C4.5), while examples belonging
to small disjuncts are classified by a genetic algorithm
(GA) designed for discovering small-disjunct rules.
In this paper we follow this basic idea, but we propose a
new GA which consists of several major modifications to
the original GA proposed for coping with small disjuncts.
The rest of this paper is organized as follows. Section 2
describes the hybrid decision tree/genetic algorithm
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method proposed in our previous work. This section
assumes that the reader is familiar with decision trees, a
well-known kind of data mining algorithm. Section 3
describes the new GA proposed in this paper for
discovering small-disjunct rules. In that section we
explain the motivation for the design of this new GA and
describe in detail the major modifications that it
introduces, by comparison with original GA used in our
hybrid method. Section 4 reports the results of extensive
experiments evaluating the performance of the proposed
method. Finally, section 5 concludes the paper.

2 THE BASIC HYBRID DECISION-
TREE / GENETIC-ALGORITHM
METHOD FOR RULE DISCOVERY

We have previously proposed a hybrid method for rule
discovery that combines decision trees and genetic
algorithms (GAs) (Carvalho & Freitas, 2000a; 2000b).
The basic idea is to use a decision-tree algorithm to
classify examples belonging to large disjuncts and use a
GA to discover rules classifying examples belonging to
small disjuncts. Decision-tree algorithms have a bias
towards generality that is well suited for large disjuncts,
but not for small disjuncts. On the other hand, GAs are
robust, flexible algorithms which tend to cope well with
attribute interactions (Dhar et al, 2000), (Freitas, 2001;
2002), and can be more easily tailored for coping with
small disjuncts.
The method discovers rules in two training phases. In the
first phase it runs C4.5, a well-known decision tree
induction algorithm (Quinlan, 1993). The induced, pruned
tree is transformed into a set of rules (or disjuncts). Each
of these rules is considered either as a small disjunct or as
a “large” (non-small) disjunct, depending on whether or
not its coverage (the number of examples covered by the
rule) is smaller than or equal to a given threshold.
The second phase consists of using a GA to discover rules
covering the examples belonging to small disjuncts. In the
previous version of our method, each run of the GA
discovers rules classifying examples belonging to a
separated small disjunct. In this paper we introduce a
major modification of this phase: all small disjuncts are
grouped together into a single training set and given to the
GA, so that a single run of the GA discovers rules
classifying examples belonging to the total set of small-
disjunct examples. This new approach (as well as the
motivation for it) will be described in the next section.
Before we move to the next section, however, we review
in the following the main characteristics of our previous
GA (Carvalho & Freitas 2000a), hereafter called GA-
Small (standing for GA with Small training set), in order
to make this paper self-contained. Hereafter the new GA
introduced in this paper will be called GA-Large-SN
(standing for GA with Large training set and with
Sequential Niching), since it not only uses a larger
training set but also uses a sequential niching method, as
will be described later.

In GA-Small each individual represents the antecedent (IF
part) of a small-disjunct rule. The consequent (THEN
part) of the rule, which specifies the predicted class, is not
represented in the genome. Rather, it is fixed for a given
GA-Small run, so that all individuals have the same rule
consequent during all that run.
Each run of GA-Small discovers a single rule (the best
individual of the last generation) predicting a given class
for examples belonging to a given small disjunct. Since it
is necessary to discover several rules to cover examples of
several classes in several different small disjuncts, GA-
Small is run several times for a given dataset. More
precisely, one needs to run GA-Small d * c times, where d
is the number of small disjuncts and c is the number of
classes to be predicted. For a given small disjunct, the k-th
run of GA-Small, k = 1,...,c, discovers a rule predicting
the k-th class.
The genome of an individual consists of a conjunction of
conditions composing a given rule antecedent. Each
condition is an attribute-value pair, as shown in Figure 1.
In this figure Ai denotes the i-th attribute and Opi denotes
a logical/relational operator comparing Ai with one or
more values Vij belonging to the domain of Ai, as follows.
If attribute Ai is categorical (nominal), the operator Opi is
“in”, which will produce rule conditions such as “Ai in
{Vi1,...,Vik}”, where {Vi1,...,Vik} is a subset of the values of
the domain of Ai. By contrast, if Ai is continuous (real-
valued), the operator Opi is either “≤“ or “>“, which will
produce rule conditions such as “Ai ≤ Vij”, where Vij is a
value belonging to the domain of Ai. Each condition in the
genome is associated with a flag, called the active bit Bi,
which takes on the value 1 or 0 to indicate whether or not,
respectively, the i-th condition is present in the rule
antecedent (phenotype). This allows GA-Small to use a
fixed-length genome (for the sake of simplicity) to
represent a variable-length rule antecedent (phenotype).

 A1 Op1{V1j..}   B1   . . . Ai Opi{Vij..}   Bi    . . .   An Opn{Vnj..}   Bn

Figure 1: Structure of the genome of an individual.
For a given GA-Small run, the genome of an individual
consists of n genes (conditions), where n = m - k, m is the
total number of predictor attributes in the dataset and k is
the number of ancestor nodes of the decision tree leaf
node identifying the small disjunct in question. Hence, the
genome of a GA-Small individual contains only the
attributes that were not used to label any ancestor of the
leaf node defining that small disjunct.
To evaluate the quality of an individual GA-Small uses
the fitness function:
Fitness = (TP / (TP + FN)) * (TN / (FP + TN))              (1)
where TP, FN, TN and FP – standing for the number of
true positives, false negatives, true negatives and false
positives – are well-known variables often used to
evaluate the performance of classification rules – see e.g.
(Hand, 1997). In formula (1) the term (TP / (TP + FN)) is
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usually called sensitivity (Se) or true positive rate,
whereas the term (TN / (FP + TN)) is usually called
specificity (Sp) or true negative rate. These two terms are
multiplied to foster the GA to discover rules having both
high Se and high Sp.
GA-Small uses tournament selection, with tournament
size of 2 (Michalewicz, 1996). It also uses standard one-
point crossover with crossover probability of 80%, and
mutation probability of 1%. Furthermore, it uses elitism
with an elitist factor of 1 – i.e., the best individual of each
generation is passed unaltered into the next generation.
GA-Small also includes an operator especially designed
for simplifying candidate rules. The basic idea of this
rule-pruning operator is to remove several conditions
from a rule to make it shorter. This operator is applied to
every individual of the population, right after the
individual is formed.
     Unlike the usually simple operators of GA, GA-
Small’s rule-pruning operator is an elaborate procedure
based on information theory (Cover & Thomas, 1992).
Hence, it can be regarded as a way of incorporating a
classification-related heuristic into a GA for rule
discovery. The heuristics in question is to favor the
removal of rule conditions with low information gain,
while keeping the rule conditions with high information
gain. In other words, the larger information gain of a rule
condition has the smaller probability of removing that
condition from the rule – see (Carvalho & Freitas, 2000a;
2000b) for details.
Once all the d * c runs of GA-Small are completed,
examples in the test set are classified. For each test
example, the system pushes the example down the
decision tree until it reaches a leaf node. If that node is a
large disjunct, the example is classified by the decision
tree algorithm. Otherwise the system tries to classify the
example by using one of the c rules discovered by the GA
for the corresponding small disjunct. If there is no small-
disjunct rule covering the test example it is classified by a
default rule, which predicts the majority class among the
examples belonging to the current small disjunct. If there
are two or more rules discovered by the GA covering the
test example, the conflict is solved ty using the rule with
the largest fitness (on the training set) to classify that
example.

3 THE EXTEND HYBRID DECISION-
TREE / GENETIC-ALGORITHM
METHOD FOR RULE DISCOVERY

In the previous section we have reviewed GA-Small, the
GA algorithm for discovering small disjunct rules
previously proposed as part of our hybrid decision-
tree/GA method. The two main limitations of that GA are:
(a) Each run of GA-Small has access to a very small
training set, consisting of just a few examples belonging
to a single leaf node of a decision tree. Intuitively, this

makes it difficult to induce reliable classification rules in
some cases.
(b) Although each run of the GA is relatively fast (since it
uses a small training set), the hybrid method as a whole
has to run the GA many times (since the number of GA-
Small runs is proportional to the number of small
disjuncts and the number of classes). Hence, the hybrid
C4.5/GA-Small method turns out to be considerably
slower than the use of C4.5 alone.
These two limitations were our motivation to develop a
new GA for discovering small disjunct rules. We stress
that in this paper we propose just a new GA, without
modifying the decision-tree algorithm of the above-
mentioned hybrid method.
By comparison with GA-Small, the new GA proposed in
this paper – denoted GA-Large-SN,  as mentioned above
– involves five major modifications. These modifications
are described in the detail in the next subsections.

3.1 INCREASING THE CARDINALITY OF THE
TRAINING SET

In our new GA-Large-SN, all the examples belonging to
all the leaf nodes considered small disjuncts are grouped
in a single training set, called the “second training set” (to
distinguish it from the original training set used by C4.5
to build the decision tree).  This second training set is
provided as input data for the GA. This is the most
important characteristic of GA-Large-SN, and it is the
basis for the other characteristics discussed below.

(a) GA-Small                           (b)GA-Large-SN
Figure 2: Differences in the training sets of the GAs

This characteristic of GA-Large-SN is illustrated in
Figure 2(b), where one can clearly see that all small
disjuncts are grouped into a single, relatively large
training set. This is in sharp contrast with the approach
used by GA-Small (described in section 2), illustrated in
Figure 2(a), where one can clearly see that each small
disjunct is used as a small training set.
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3.2 USING A NICHING METHOD TO FOSTER
THE DISCOVERY OF MULTIPLE RULES

As a result of the above-discussed increase in the
cardinality of the training set, one needs to discover
several rules to cover the examples of each class. (Recall
that this was not the case with the approach described in
section 2, since in that approach it was assumed that a
GA-Small run had to discover a single rule for each
class.) Therefore, in our new GA-Large-SN it is essential
to use some kind of niching method, in order to foster
population diversity and avoid its convergence to a single
rule. In this work we use a sequential niching method
(Beasley et al., 1993). We chose this kind of method for
two reasons. First, its simplicity. Second, and most
important, it does not require the specification of
additional parameters for its execution, unlike well-
known niching methods such as fitness sharing (Goldberg
& Richardson, 1987) and crowding (Mahfoud, 1995).
BEGIN
/* TrainingSet-2 contains all examples belonging to all small disjuncts */
  RuleSet = ∅;
  build TrainingSet-2;
  WHILE cardinality(TrainingSet-2) > 5
      run the GA;
      add the best rule found by the GA to RuleSet;
      remove from TrainingSet-2 the examples
          correctly covered by that best rule;
  END-WHILE
END-BEGIN

Figure 3: GA with sequential niching for discovering
small disjunct rules

The pseudo-code of our GA with sequential niching is
shown, at a high level of abstraction, in Figure 3. It starts
by initializing the set of discovered rules (denoted
RuleSet) with the empty set and building the second
training set (denoted TrainingSet-2), as explained above.
Then it iteratively performs the following loop. First, it
runs the GA, using TrainingSet-2 as the training data for
the GA. The best rule found by the GA (i.e., the best
individual of the last generation) is added to RuleSet.
Then the examples correctly covered by that rule are
removed from TrainingSet-2, so that in the next iteration
of the WHILE loop TrainingSet-2 will have a smaller
cardinality. An example is “correctly covered” by a rule if
the example’s attribute values satisfy all the conditions in
the rule antecedent and the example belongs to the same
class as predicted by the rule. This process is iteratively
performed while the number of examples in TrainingSet-2
is greater than 5. (It is assumed that when the cardinality
of TrainingSet-2 is smaller than 5 there are too few
examples to allow the discovery of a reliable
classification rule.)
It should be noted that the sequential niching method used
in this work is a variation of the one proposed by (Beasley
et al., 1993). The latter actually requires the specification
of a parameter, associated with a distance metric, for
modifying the fitness landscape according to the location
of solutions found in previous iteractions. In order to

implement this parameter, the author uses an Euclidian
distance.
By contrast, there is no need for this kind of parameter in
our version of sequential niching. In order to avoid that
the same search spaced be explored several times, the
examples that are correctly covered by the discovered
rules are removed from the training set. Hence, the nature
of the fitness landscape is automatically updated as rules
are discovered along different iterations of the sequential
niching method.

3.3 MODIFICATION OF THE METHOD USED
TO DETERMINE A RULE’S CONSEQUENT

Each run of GA-Large-SN still discovers a single rule,
and a rule’s consequent (the class predicted by the rule) is
not encoded into the genome, like in the GA-Small
described in section 2. However, unlike GA-Small, in
GA-Large-SN the consequent of each rule is not fixed
upfront for all rules (individuals) in the population.
Rather, the consequent of each rule is dynamically chosen
as a function of the rule’s antecedent. More precisely, a
rule’s consequent is chosen as the most frequent class in
the set of examples covered by that rule’s antecedent.

3.4 A NEW HEURISTICS FOR RULE PRUNING
The GA-Large-SN proposed in this paper uses a new
heuristic measure for rule pruning. This measure is based
on the idea of using the decision tree built by C4.5 to
compute a classification accuracy rate for each attribute,
according to how accurate were the classifications
performed by the decision tree paths in which that
attribute occurs. That is, the more accurate were the
classifications performed by the decision tree paths in
which a given attribute occurs, the higher the accuracy
rate associated with that attribute, and the smaller the
probability of removing that a condition with attr ibute
from a rule. The computation of an accuracy rate for each
attribute is performed by the procedure shown in Figure 4.
The computation of the accuracy rate associated with
each attribute is performed as follows. For each attribute
Ai, the algorithm checks each path of the decision tree
built by C4.5 in order to determine whether or not Ai
occurs in that path. (The term path is used here to refer to
each complete path from the root node to a leaf node of
the tree.) For each path p in which Ai occurs, the
algorithm computes two counts, namely the number of
examples classified by the rule associated with path p,
denoted #Classif(Ai,p), and the number of examples
correctly classified by the rule associated with path p,
denoted #CorrClassif(Ai,p).
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BEGIN
   Count_of_Unused_Attr = 0;
   FOR each attribute Ai, i=1,...,m
       IF attribute Ai occurs in at least one path in the tree
          THEN compute the accuracy rate of Ai, denoted Acc(Ai) (see text);
          ELSE increment Count_of_Unused_Attr by 1;
       END-IF
   END-FOR
   Min_Acc = the smallest accuracy rate among all attributes
                      that occur in at least one path in the tree;
   FOR each of the attributes Ai, i=1,...,m, such that Ai

            does not occur in any path in the tree
       Acc(Ai) = Min_Acc / Count_of_Unused_Attr;
   END-FOR
                        m
   Total_Acc = Σ Acc(Ai) ;
                        i=1

   FOR each attribute Ai, i=1,...,m
        Compute the normalized accuracy rate of Ai,
           denoted Norm_Acc(Ai), as:
           Norm_Acc(Ai) = Acc(Ai) / Total_Acc ;
   END-FOR
END-BEGIN

Figure 4: Computation of each attribute’s accuracy rate,
for rule pruning purposes

where Zi is the number of decision tree paths where
attribute Ai occurs. Note that formula (2) is used only for
attributes that occur in at least one path of the tree. All the
attributes that do not occur in any path of the tree are
assigned the same value of Acc(Ai), and this value is
determined by the formula:
Acc(Ai) = Min_Acc / Count_of_Unused_Attr ,               (3)
where Min_Acc and Count_of_Unused_Attr are
determined as shown in Figure 4.
Finally, the value of Acc(Ai) for every attribute Ai,
i=1,...,m, is normalized by dividing its current value by
Total_Acc, which is determined as shown in Figure 3.
Once the normalized value of accuracy rate for each
attribute Ai, denoted Norm_Acc(Ai), has been computed
by the procedure of Figure 4, it is directly used as a
heuristic measure for rule pruning. The basic idea here is
the same as the basic idea of the rule pruning procedure
mentioned in section 2. In that section, where the heuristic
measure was the information gain, it was mentioned that
the larger the information gain of a rule condition, the
smaller the probability of removing that condition from
the rule. In GA-Large-SN, we replace the information
gain of a rule condition with Norm_Acc(Ai), the
normalized value of the accuracy rate of the attribute
included in the rule condition. Hence, the larger the value
of Norm_Acc(Ai), the smaller the probability of removing
the i-th condition from the rule. The remainder of the rule
pruning procedure proposed in (Carvalho & Freitas
2000a) remains essentially unaltered.
Note that the accuracy rate-based heuristic measure for
rule pruning proposed here effectively exploits
information from the decision tree built by C4.5. Hence, it

can be considered as a kind of hypothesis-driven measure,
since it is based on a hypothesis (in our case, a decision
tree) previously constructed by a data mining algorithm.
By contrast, the previously-mentioned information gain-
based heuristic measure does not exploit such
information. Rather, it is a measure whose value is
computed directly from the training data, independent of
any data mining algorithm. Hence, it can be considered as
a kind of data-driven measure.

3.5 INCREASING THE GENOME LENGTH
Recall that in GA-Small (reviewed in section 2) the
genome contained only the attributes which were not used
to label any ancestor of the leaf node defining the small
disjunct being processed by the GA. That approach made
sense because GA-Small was using as the training set
only the examples belonging to a single leaf node.
Clearly, the attributes in the ancestor nodes of that leaf
node were not useful to distinguish between classes of
examples in the leaf node, since all those examples had
the same values for those attributes.
However, the situation is different in the case of the new
GA-Large-SN proposed in this paper. Now the training
set of the GA consists of all the examples belonging to all
the leaf nodes that are considered small disjuncts – i.e., all
those examples are effectively mixed into a single training
set. Hence, the above notion of “attributes in the ancestor
nodes of a single leaf node” is not meaningful any more.
Therefore, in GA-Large-SN the genome contains m
genes, where m is the number of attributes of the data
being mined. I.e., all attributes can occur in the rule
represented by an individual, so that in theory a rule can
contain at most m conditions in its antecedent. Of course,
in practice the number of conditions in a rule will be
much smaller than m, due to the use of the above-
discussed rule pruning operator.

4 COMPUTATIONAL RESULTS
We have evaluated the performance of GA-Large-SN
across eight public-domain data sets of the the well-
known data repository of the UCI (University of
California at Irvine), available at:
 http://www.ics.uci.edu/~mlearn/MLRepository.html.
The examples that had some missing value were removed from
these data sets. In the Adult data set we have used the
predefined division of the data set into a training and a
test set. In the Connect data set we have randomly
partitioned the data into a training and a test set with
47290 and 20267 examples, respectively. In the other
datasets we have run a well-known 10-fold cross-
validation procedure, which essentially works as follows.
The data set is randomly partitioned into 10 mutually-
exclusive and exhaustive partitions. Then the
classification algorithm is run 10 times. In the i-th run, i =
1,...,10, the i-th partition is used as the test set, and the
remaining nine partitions are grouped and used as the
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training set. After the 10 runs are over, the reported
accuracy rate is the average accuracy rate over all those
10 runs.
In our experiments we have used a commonplace
definition of small disjunct, based on a fixed threshold of
the number of examples covered by the disjunct. The
definition is: “A decision-tree leaf is considered a small
disjunct if and only if the number of examples belonging
to that leaf is smaller than or equal to a fixed size S.”
In order to better evaluate the performance of GA-Large-
SN, it is important to compare it against other
classification method(s). In particular, we wanted to
compare the hybrid system against another method that
induces rules or trees (which can be straightforwardly
converted to rules). In this case the kind of knowledge
representation used by the systems being compared is the
same, and the difference in the results will reflect mainly
differences in search strategies. Hence, we can compare
the evolutionary search strategy of GA-Large-SN against
the local, greedy search strategy of a rule induction or
decision tree algorithm.
Within this spirit we report the results of experiments
comparing our hybrid C4.5/GA-Large-SN system with
two other classification methods. The first is C4.5 alone,
which is used to classify all examples – i.e., both large-
disjunct examples and small-disjunct examples. The
second is a “double run” of C4.5, hereafter called “double
C4.5“ for short. The later is a new way of using C4.5 to
cope with small disjuncts, as follows.
The main idea of our “double C4.5” is to build a classifier
running twice the algorithm C4.5. The first run considers
all examples in the original training set, producing a first
decision-tree. Once all the examples belonging to small
disjuncts have been identified by this decision tree, the
system groups all those examples into a single example
subset, creating the “second training set”, as described
above for GA-Large-SN (see Figure 2(b)). Then C4.5 is
run again on this second, reduced training set, producing a
second decision tree. In other words, the second run of
C4.5 uses as training set exactly the same “second
training set” used by GA-Large-SN. This makes the
comparison between GA-Large-SN and “double C4.5”
very fair.
In order to classify a new example, the rules discovered
by both runs of C4.5 are used as follows. First, the system
checks whether the new example belongs to a large
disjunct of the first decision tree. If so, the class predicted
by the corresponding leaf node is assigned to the new
example. Otherwise (i.e., the example belongs to one of
the small disjuncts of the first decision tree), the new
examples are classified by the second decision tree.
The motivation for this more elaborated use of C4.5 was
an attempt to create a simple algorithm that was more
effective in coping with small disjuncts.
Recall that the hybrid C4.5/GA-Large-SN method has an
important parameter, namely the small-disjunct size
threshold (S). In order to evaluate how robust the method

is with respect to this parameter, we have done
experiments with four different values of S, namely 3, 5,
10 and 15. For each of these four S values, we have done
ten different experiments, varying the random seed used
to generate the initial population of individuals. The
results reported below, for each value of S, are an
arithmetic average of the results over these ten different
experiments. Therefore, the total number of experiments
is 40 (4 values of S * 10 different random seeds). In
addition, recall that each of these 40 experiments actually
consists of a 10-fold cross-validation run for most data
sets (with the exception of the Adult and Connect data
sets, where a single division of the data into training and
test sets was used).
Each run of GA-Large-SN is relatively fast, so that each
of these 40 experiments took a processing time on the
order of six minutes for the biggest data set, Connect, and
for the largest value of S (15), on a Pentium III with
192Mb of RAM.
We now report results comparing the classification
accuracy rate (on the test set) of the proposed hybrid
C4.5/GA-Large-SN with C4.5 alone (Quinlan, 1993) and
with the above-described “double C4.5“. We have used
C4.5’s default parameters. In each GA-Large-SN run the
population has 200 individuals, and the GA is run for 50
generations.

Table 1: Accuracy Rate (%) of  C4.5, “double C4.5”
(C4.5 (2)) and our hybrid C4.5/GA-Large-SN for S = 3

Data set C4.5 C4.5(2) C4.5/GA

Connect 72.60 (0.3) 78.06 (0.3) 77.86 (0.1) +  -

Adult 78.62 (0.3) 81.19 (0.3) 85.45 (0.1) + +

Crx 91.79 (2.1) 92.57 (1.2) 93.69 (1.2)

Hepatitis 80.78(13.3) 78.95 (6.9) 89.25 (9.5)

House-votes 93.62 (3.2) 97.32 (2.4) 97.18 (2.5)

Segmentation 96.86 (1.1) 76.62 (2.8) 81.46 (1.1) -  +

Wave 75.78 (1.9) 68.18 (3.7) 83.86 (2.0) + +

Splice 65.68 (1.3) 55.65 (6.0) 70.62 (8.6)    +

The results are shown in Tables 1, 2, 3 and 4 referring to
S values of 3, 5, 10 and 15, respectively. In these tables
the first column indicates the data sets. The second
column shows the accuracy rate on the test set achieved
by C4.5 alone, classifying both large-disjunct and small-
disjunct examples. The third column reports the accuracy
rate for C4.5(2). The fourth column reports the accuracy
rate achieved by our hybrid C4.5/GA-Large-SN system,
using C4.5 to classify large-disjunct examples and our
GA classify small-disjunct examples. The values between
brackets are standard deviations. For each data set, the
highest accuracy rate among the three classifiers is shown
in bold.

(
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In addition, in the fourth column we indicate, for each
data set, whether or not the accuracy rate of C4.5/GA-
Large-SN is significantly different from the accuracy
rates of the other two methods. More precisely, the cases
where the accuracy rate of C4.5/GA-Large-SN is
significantly better (worse) than the accuracy rate of each
of the other two methods is indicated by the “+” (“-“)
symbol. A difference between two methods is deemed
significant when the corresponding accuracy rate intervals
(taking into account the standard deviations) do not
overlap.
Let us now analyze the results of Tables 1, 2, 3 and 4
starting with Table 1 (where S = 3). In this table
C4.5/GA-Large-SN outperforms both C4.5 alone and
C4.5(2) in 5 of the 8 data sets. C4.5/GA-Large-SN is
significantly better than C4.5 alone in 3 data sets, and the
reverse is true in only 1 data set. In addition, C4.5/GA-
Large-SN is significantly better than C4.5(2) in 4 data
sets, and the reverse is true in only 1 data set.

Table 2: Accuracy Rate (%) of  C4.5, “double C4.5”
(C4.5 (2)) and our hybrid C4.5/GA-Large-SN for S = 5

Data set C4.5 C4.5(2) C4.5/GA

Connect 72.60 (0.3) 77.09 (0.3) 77.85 (0.2) + +

Adult 78.62 (0.3) 79.27 (0.3) 85.50 (0.2) + +

Crx 91.79 (2.1) 92.03 (1.0) 93.06 (1.6)

Hepatitis 80.78(13.3) 75.67 (17.1) 89.48 (9.7)

House-votes 93.62 (3.2) 93.54 (3.9) 97.44 (2.9)

Segmentation 96.86 (1.1) 74.49 (3.4) 80.41 (1.0) - +

Wave 75.78 (1.9) 65.59 (4.4) 85.31 (2.4) + +

Splice 65.68 (1.3) 57.45 (8.7) 70.44 (7.8)

In Table 2 (where S = 5) C4.5/GA-Large-SN outperforms
both C4.5 alone and C4.5(2) in 7 of the 8 data sets.
C4.5/GA-Large-SN is significantly better than C4.5 alone
in 3 data sets, and the reverse is true in only 1 data set.
C4.5/GA-Large-SN is significantly better than C4.5(2) in
4 data sets, and the reverse is not true in any data set.

Table 3: Accuracy Rate (%) of  C4.5, “double C4.5”
(C4.5 (2)) and our hybrid C4.5/GA-Large-SN for S = 10

Data set C4.5 C4.5(2) C4.5/GA

Connect 72.60 (0.3) 76.19 (0.3) 76.95 (0.1) + +

Adult 78.62 (0.3) 76.06 (0.3) 80.04 (0.1) + +

Crx 91.79 (2.1) 90.78 (1.2) 91.66 (1.8)

Hepatitis 80.78(13.3) 82.36 (18.7) 95.05 (7.2)

House-votes 93.62 (3.2) 89.16 (8.0) 97.65 (2.0)

Segmentation 96.86 (1.1) 72.93 (5.5) 78.68 (1.1) -

Wave 75.78 (1.9) 64.93 (3.9) 83.95 (3.0) + +

Splice 65.68 (1.3) 61.51 (6.6) 70.70 (6.3)

In Table 3 (where S = 10) C4.5/GA-Large-SN
outperforms both C4.5 alone and C4.5(2) in 6 of the 8
data sets. C4.5/GA-Large-SN is significantly better than
C4.5 alone in 3 data sets, and the reverse is true in only 1
data set. C4.5/GA-Large-SN is significantly better than
C4.5(2) in 3 data sets, and the reverse is not true in any
data set.
In Table 4 (where S = 15) C4.5/GA-Large-SN
outperforms both C4.5 alone and C4.5(2) in 6 of the 8
data sets. C4.5/GA-Large-SN is significantly better than
C4.5 alone in 3 data sets, and the reverse is true in only 1
data set. C4.5/GA-Large-SN is significantly better than
C4.5(2) in 3 data sets and the reverse is not true in any
data set.

Table 4: Accuracy Rate (%) of  C4.5, “double C4.5”
(C4.5 (2)) and our hybrid C4.5/GA-Large-SN for S = 15

Data set C4.5 C4.5(2) C4.5/GA

Connect 72.60 (0.3) 74.95 (0.3) 76.01 (0.3) + +

Adult 78.62 (0.3) 74.29 (0.3) 79.32 (0.2) + +

Crx 91.79 (2.1) 90.02 (0.8) 90.40 (2.4)

Hepatitis 80.78(13.3) 66.16 (19.1) 82.52 (7.0)

House-votes 93.62 (3.2) 88.53 (8.4) 95.91 (2.3)

Segmentation 96.86 (1.1) 73.82 (5.8) 77.11 (1.9) –

Wave 75.78 (1.9) 65.53 (4.0) 82.65 (3.7) + +

Splice 65.68 (1.3) 64.35 (4.7) 70.62 (5.5)

We can summarize the results of the above four tables as
follows.
• C4.5/GA-Large-SN outperformed C4.5 alone in

87.50% of the data sets for S = 3 and S =5, and in
75% for S  = 10 and S  = 15.

• C4.5/GA-Large-SN outperformed C4.5(2) in 75% of
the data sets for S = 3, and in 100% for S = 5, S = 10
and S = 15.

• Considering the results of the three methods for every
data set and every value of S, the best accuracy rate
was obtained by C4.5/GA in 78.2% of the cases, by
C4.5 alone in 15.6% of the cases, and by C4.5(2) in
only 6,2% of the cases.

Finally, a brief comment on computational time is
appropriate here. We have mentioned, at the beginning of
section 3, that one of our motivations for designing GA-
Large-SN was to reduce processing time, by comparison
with GA-Small. We have done an experiment comparing
the processing time of both GA-Large-SN and GA-Small,
on the same machine, in the same data set, namely the
Connect data set – which is the largest data used in the
above-reported experiments with GA-Large-SN. We
observed that GA-Large-SN takes about only 12% of the
processing time of GA-Small in the Connect data set.
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5 CONCLUSIONS AND FUTURE
RESEARCH

In this paper we have described a new hybrid decision-
tree/GA (C4.5/GA-Large-SN) method. The GA
component of this method, called GA-Large-SN, consists
of major modifications of the original GA (here called
GA-Small) proposed by (Carvalho & Freitas 2000a), as
discussed throughout section 3.
We have compared the new hybrid C4.5/GA-Large-SN
system with 2 algorithms based on the use of C4.5 alone,
namely: (a) the default version of C4.5; (b) a “double run
of C4.5”, which uses the same training set as GA-Large-
SN. This comparison was performed across four different
values for a parameter defining the size of a small
disjunct.

Overall, the hybrid C4.5/GA-Large-SN obtained
considerably better accuracy rates than both above-
mentioned versions of C4.5 alone, in all the four
definitions of small-disjunct size used in this paper.
In this paper we have focused on comparing the
performance of the hybrid C4.5/GA-Large-SN with the
performance of C4.5 alone, since C4.5 is a very well-
known algorithm that is often used in comparison with
other algorithms in the literature. In future research we
also intend to compare the predictive accuracy of the rules
discovered by C4.5/GA-Large-SN with the predictive
accuracy of the rules discovered by the GA alone.
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Abstract
The paper presents the potential of genetic
programming (GP)-generated symbolic regression
for linearizing the response in statistical design of
experiments when significant Lack of Fit is detected
and no additional experimental runs are
economically or technically feasible because of
extreme experimental conditions.  An application of
this approach is presented with a case study in an
industrial setting at The Dow Chemical Company.

1 INTRODUCTION
The complexity of some industrial chemical processes
requires that first-principle or mechanistic model be
considered in connection with empirical models.  At the
basis of empirical models is that underlying any system
there is a fundamental relationship between the inputs and
the outputs that can be locally approximated over a
limited range of experimental conditions by a polynomial
or a linear regression model.  
Suitable statistical techniques such as design of
experiments (DOE) are available to assist in this process
(Box et al, 1978).  The capability of the linear model to
represent the data can be assessed through a formal Lack
of Fit (LOF) test when experimental replicates are
available (Montgomery, 1999).  Significant LOF in the
model indicates a regression function that is not linear;
i.e. the polynomial initially considered is not appropriate.
A more adequate model may be found by fitting a
polynomial of higher order by augmenting the original
design with additional experimental runs.  Specialized
designs such as the Central Composite Design are
available for this purpose (Box et al., 1978).
However, there are many practical cases where runs are
very expensive or technically unfeasible because of
extreme experimental conditions, thus making the fit of a
higher order polynomial impractical.  This problem can
be handled if appropriate input transformations are used,
provided that the basic assumption of least-square
estimation regarding the probability distributions of errors
is not affected. These assumptions require that errors be

uncorrelated and normally distributed with mean zero and
constant variance.
Some useful transformations are discussed in Box and
Draper.(1987). Unfortunately, transformations that
linearize the response without affecting the error structure
are not always obvious and are often developed based on
experience or theoretical insight.  Genetic programming
(GP)- generated symbolic regression provides a unique
opportunity to rapidly develop and test these
transformations.  Symbolic regression includes the
finding of a functional mathematical expression that fits a
given set of data (Koza, 1992). 
GP-generated symbolic regression is an evolution-based
algorithm for automatically generating nonlinear input-
output models.  Several possible models of the response
as a function of the input variables are obtained by
combining basic functions, inputs, and numerical
constants.  This multiplicity of solutions offers a rich set
of possible transformations of the inputs.  At the same
time, the most significant challenge of GP-generated
transforms is that most models are not parsimonious and
include chunks of inactive code or terms that do not
contribute to the overall fitness (Banzhaf et al, 1998) and
that may prove inefficient in producing a linearizing
transformation.  This problem can be managed to some
degree at the expense of extra-computation time by
appropriate algorithms that quickly test the ability of
transforms to linearize the response without altering error
structure.
The application of GP in DOE and the potential of
combining them offer a unique set of opportunities that is
beginning to grab the attention of researchers and
industry.  Experimental design techniques have already
been used to evaluate the effects of GP parameters
(Spoonger, 2000).  An excellent discussion of algorithm-
driven regression based on genetic programming for
solving supersaturated designs is presented in Cela et.al
(2001).
In this paper, a novel approach of integrating GP
with DOE is presented.  This approach has the
potential to improve the effectiveness of empirical
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model building by saving time and resources in situations
where experimental runs are quite expensive or
technically unfeasible because of extreme experimental
conditions.  GP is applied to the development of variable
transforms that linearize the response in statistically
designed experiments for a chemical process in The Dow
Chemical Company.  

2 METHODOLOGY 
A series of experimental runs were performed in a lab
scale reactor in four variables.  The response variable was
the selectivity of one of the products.  These experiments
were statistically analyzed and the effect of the variables
as well as a prediction of the response within the area of
experimentation was well understood.  LOF was induced
by removing one experimental run to simulate a common
situation in which LOF is significant and additional
experimental runs are impractical due to the extreme cost
of experimentation or because it is technically unfeasible
due to extreme experimental conditions.  In this system
the potential of GP-generated transforms was studied
allowing the comparison of results with a well-known
system.
The appropriateness of GP-generated transforms to
linearize the response without affecting error structure
was assessed by performing the transformations presented
in the functional form of the GP model.  Then a linear
regression model was fit in the transformed inputs.  This
model, referred to as the transformed linear model, was
examined for Lack of Fit and appropriate error structure.
Both models, the transformed linear model and the GP
model, were tested considering 9 additional experiments
in the region of the design.  The validity of the results was
determined by comparing model predictions with the
previously analyzed experiments and with a fundamental
kinetic model (FKM) that was earlier developed.  The
results indicate that GP-generated transformations have
the potential of linearizing the response in those cases
where additional experimental runs are not possible.

3 THE EXPERIMENTAL DESIGN
The experiments conducted in lab-scale thermal
chlorination reactor system consisted of a complete 24

factorial design in the factors x1, x2, x3, x4, with three
center points.  A total of 19 experiments were performed.
The response variable, Sk, was the yield or selectivity of
one of the products.  The factors were coded to a value of
–1 at the low level, +1 at the high level, and 0 at the
center point.  The complete design in the coded variables
is shown in Table 1
To develop a base case and test for variable
transformations, LOF was induced by removing run
number 1 of the experimental design.  The response Sk,
was fit to the following first-order linear regression
equation

Table 1: 24 factorial design with three center points

RUNS x1 x2 x3 x4 Sk
1 1 -1 1 1 1.598
2 0 0 0 0 1.419
3 0 0 0 0 1.433
4 -1 1 1 1 1.281
5 -1 1 -1 1 1.147
6 1 1 -1 1 1.607
7 -1 1 1 -1 1.195
8 1 1 1 -1 2.027
9 -1 -1 -1 1 1.111
10 -1 1 -1 -1 1.159
11 -1 -1 -1 -1 1.186
12 1 -1 -1 1 1.453
13 1 1 -1 -1 1.772
14 -1 -1 1 -1 1.047
15 -1 -1 1 1 1.175
15 1 1 1 1 1.923
17 1 -1 -1 -1 1.595
18 1 -1 1 -1 1.811
19 0 0 0 0 1.412

considering only terms that are significant at the 95%
confidence level.
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Table 2 shows the corresponding Analysis of Variance
showing evidence of Lack of Fit (p = 0.0476).  Therefore,
the hypothesis that a first-order model can adequately
describe this system is rejected.

Table 2 - Analysis of variance for the linear model
Source DF Sum of Squares Mean Square F Ratio

Model 8 1.5091186 0.188640 107.6350

Error 9 0.0157733 0.001753 Prob > F

C. Total 17 1.5248919 <.0001

Lack Of Fit

Source DF Sum of Squares Mean Square F Ratio

Lack Of Fit 7 0.01555519 0.002222 20.3775

Pure Error 2 0.00021810 0.000109 Prob > F

Total Error 9 0.01577329 0.0476

Max RSq

0.99

The corresponding residual plot, presented in Figure 1,
suggested non-constant variance, which is one of the
necessary conditions of the error structure for least-square
estimation.
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Figure 1 - Residual plot for first-order linear model
suggesting non-constant variance 

Under these circumstances, a variance-stabilizing power
transformation of the response (y) was performed (Box
and Cox, 1964).  The response was transformed to yλ
where the parameter λ varies from –2 to 2 and the choice
of λ that results in the minimum residual sum of squares
of the transformed model is the maximum likelihood
estimation of λ and the best transformation of the
response.  In the present case, however, the power
transformation resulted in a λ value of 1 indicating that no
transformation of the response was helpful.  Cases like
this are quite common in industrial processes.  The next
alternative to be investigated is the transformation of the
input variables by means of GP-generated symbolic
regression.

3.1 THE GP-GENERATED
TRANSFORMATIONS

The GP approach will be used to search for potential
transforms of the input variables.  The GP algorithm was
applied to the original data set, considering the response
variable as the output and the four variables, x1, x2, x3, x4,
in uncoded form as inputs.  This resulted in a series of
non-linear equations that satisfied the data.  The
functional form of these equations produced a rich set of
possible transforms that were tested for the ability to
linearize the response without altering error structure.  An
advantage of this approach is that experience or physical
interpretation may be used to identify promising
transforms, which were previously unavailable to the
experimenter.  An additional advantage is that GP
generates a sensitivity analysis ranking all the input
variables in order of importance to the fitness of the
equations ( Kordon and Smits, 2001) allowing to verify
significant factors in the linearized models.
The GP algorithm is implemented as a toolbox in
MATLAB.  The initial functions for GP included:
addition, subtraction, multiplication, division, square,
change sign, square root, natural logarithm, exponential,

and power.  Function generation takes 20 runs with 500
population size, 100 number of generations, 4
reproductions per generation, 0.6 probability for function
as next node, 0.01 parsimony pressure, and correlation
coefficient as optimization criteria.  A snapshot of the
input/output sensitivity is shown in Figure 2, which shows
x1 as the most important input.

Figure 2 GP-based Input/output sensitivity of the four
input variables

The selection of the best candidates is based on a trade-off
between the fitness of the function and the ability to
linearize the response while producing an acceptable error
distribution.  From the set of potential non-linear
equations the best fit between model prediction and
empirical response was found for the following analytical
function:

Where x1, x2, x3, x4 are the input variables and Sk is the
output.
The correlation coefficient between the analytical
function and the empirical data was 0.95.  This nonlinear
equation indicates an exponential relationship with x1, a
logarithmic relationship with x3, a linear relationship with
x2, and an inverse relationship with x4, as shown in Table
3.  To test the capability of these transforms to linearize
the response, the following transformations were applied
to the input variables as supplied by the GP function (2).

Table 3 - Variable transformations suggested by GP
model

Original Variable Transformed Variable

x1 Z1 = ( )12exp x

x2 Z2 = x2

x3 Z3 = ln[(x3)2]

x4 Z4 = x4
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Then a first-order linear regression model (i.e., the
transformed linear model) was fit to the transformed
variables.  Table 4 shows the corresponding parameter
estimates.  The analysis of variance, presented in Table
5,shows no evidence of LOF indicating that the GP-
generated transformations were succesful in linearizing
the response. 

Table 4 - Parameter estimates for transformed linear
model

Table 5 - Analysis of variance for transformed linear
model

The transformed linear model itself is less parsimonious
than the nonlinear GP model including even third order
iterations.  However, the model is very significant.
The corresponding residual plot for the transformed linear
model is presented in Figure 3.  This plot indicates no
violation regarding basic assumptions for the probability
distribution of errors required by least squares, indicating
that the GP-generated transformations linearized the
response without altering the error structure of the model
produced.  One observation is that the residual of one
center point is larger than the residuals of the other two
center points.  However, in the original analysis, this data
point had also been excluded due to problems with
experimental conditions during the run. 

The transformed linear model and the nonlinear GP model
were used to predict the selectivity to the output at the
conditions of experiment 1 (the experiment removed from
the original data set in order to induce Lack of Fit).

Figure 3 - Residual plot for the transformed linear model

Figure 4 shows the plot of predicted versus actual values
for the two models.  

 
Figure 4 - Predicted versus actual values for the
transformed linear and the nonlinear GP model
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The point corresponding to experiment 1 is indicated in
the figure by an asterisk.  The performance of both
models was very good.  The correlation coefficient was
0.99 for the transformed linear model, and 0.978 for the
GP model.
The nonlinear GP model gives a more accurate prediction
for the value of the removed point.  But both models
predict an increase response by operating at conditions of
high x1, x2, x3, and low x4.  These results were consistent
with the results obtained previously by analyzing the full
design and by a fundamental kinetic model. 

3.2 THE TESTING DATA SET
The prediction capabilities of the transformed linear
model and the GP model were tested with nine additional
experimental points within the range of experimentation.
This is a relative small data set because of the cost and
difficulty of experimentation.  Plots of the predicted
response for the transformed linear and the GP model
versus the actual values, presented in Figure 5, indicate
good performance of both models indicating that the
models are comparable in terms of prediction with
additional data inside the region of the design.  The
correlation coefficient was 0.99 for the transformed linear
model, and 0.98 for the GP model.  The selection of one
of these models over the other would be driven by the
requirements of a particular application.  For example, in
the case of process control, the more parsimonious model
would generally be preferred.

4 CONCLUSIONS
In the course of conducting designed experiments, Lack
of Fit is often encountered, indicating that the proposed
linear regression model fails to adequately describe the
data.  One traditional approach to address this problem is
to introduce higher order terms to the linear model.  This
is accomplished by adding experiments to the original
design, which can be time-consuming, costly, or may be
technically unfeasible because of extreme experimental
conditions.
A second approach is to use transformations to avoid
additional experimentation.  One technique is
transformation of the responses, but this is not always
effective.  In those cases, transformation of the input
variables may be the only alternative to remove Lack of
Fit and provide an appropriate model.  Unfortunately
these transformations are not always obvious and are
often developed based on experience or theoretical
insight. GP provides a way to rapidly develop and test
these transformations so that those appropriate linear
models are developed.
The genetic programming (GP) algorithm was
successfully applied to the results of DOE in a chemical
process in Dow Chemical Company.  Experimentation in
this system is difficult and time-consuming due to the
severe conditions of the experiments.  Data for the
interested output were manipulated to induce Lack of Fit.

Genetic programming was used to generate a nonlinear
model for the output as a function of four experimental
variables.  The form of the nonlinear model was used to
suggest input variable transformations for a linear model.
The resulting transformed linear model showed no
evidence of Lack of Fit.  No additional experimental data
had to be used in the analysis to achieve this result.  The
success of this industrial application illustrates the great
potential of using GP to address Lack of Fit in linear
regression problems. This approach can improve the
effectiveness of empirical model building by saving time 

Figure 5 - Predicted versus actual values for additional
data
and resources when experiments are expensive or
difficult. However, more systematic research in the area
of defining a methodology for robust nonlinear response
surface generated by GP is recommended.. 
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Abstract

The Yard Allocation Problem (YAP) is a real-life
resource allocation problem faced by the Port of
Singapore Authority (PSA). We first show that
YAP is NP-Hard. As the problem is NP-Hard,
we propose a Genetic Algorithm approach. For
benchmarking purposes, Tabu Search and Sim-
ulated Annealing are applied to this problem as
well. Extensive experiments show very favorable
results for the Genetic Algorithm approach.

1 INTRODUCTION

Singapore has one of the world’s busiest ports in terms of
shipping tonnage with more than one hundred thousand
ship arrivals every year. One of the major logistical prob-
lems encountered is to use the minimum container yard
necessary to accommodate all different requests. Each re-
quest consists of a single time interval and a series of yard
space requirements during the interval. An interesting con-
straint applying to every request is that the length of the
required space can either increase or remain unchanged as
time progresses, and once yard space is allocated to a cer-
tain request, that portion of the yard space cannot be freed
until the completion of the request. The current allocation
is made manually, hence it requires a considerable amount
of manpower.

This paper is organized in the following way. Section 2
gives a formal problem definition. This geometrical prob-
lem is then transformed into a graph problem in Section 3.
For benchmarking purpose, we briefly discuss two heuris-
tics, namely Tabu Search and Simulated Annealing, applied
on YAP in Section 4 and 5 respectively. Section 6 illustrates
our application of Genetic Algorithms on YAP in details,
and various genetic operators are presented in this section.
Section 7 compares the different experimental results ob-
tained by those three heuristics. In Section 8, we present
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Figure 1: A valid request R3.

our conclusion.

2 PROBLEM DEFINITION

The main objective of the Yard Allocation Problem (YAP)
is to minimize the container yard used while satisfying
all the space requirements. The formal definition of the
problem can be described as follows:

Instance: A set R of n yard space requests and an
infinite container yard E. 8Ri 2 R;Ri has series
of (continuous) space requirements Yij with length
Lij ; j 2 [Tistart ; Tiend ].
Output: A mapping function F , such that F (Yij ) = ek,
where ek 2 E is some position on E.
Constraint: 8p; q 2 [Tistart ; Tiend ] such that p = q � 1,
F (Yip) � F (Yiq) and F (Yip) + Lip � F (Yiq) + Liq .
Objective: To minimize:

max
8Ri2R;8Yij2Ri

(F (Yij ) + Lij )

In other words, the objective is to accommodate all requests
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Figure 2: Five valid requests on yard
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Figure 3: Five invalid requests on yard

with the minimum amount of yard space used.

We use an example to illustrate the definition. Figure 1
shows a layout with only one valid requests R3. The yard
E is treated as an infinite straight line. Time T becomes
a discrete variable with a minimum unit of 1. R3 has
six space requirements within interval [6; 11] (T3start =
6; T3end = 11). The final position for Y38 and Y39 are
F (Y38) = 4 and F (Y39) = 3 respectively. The corre-
sponding output for R3 will then be (5; 5; 4; 3; 3; 3). Note
all our pre-defined constraints hold as F (Y38) � F (Y39)
and F (Y38)+L38

� F (Y39)+L39
. The max comes from

Y311 with the value of F (Y311) + L311
= 12.

We simply call each request a Stair Like Shapes (SLS)
throughout this paper. Figure 2 shows five valid requests
with the minimum yard required of 13. Though the pack-
ing in Figure 3 looks more compact, in fact, all allocations
are invalid as the containment constraint is violated.

Theorem 1 The Yard Allocation Problem (YAP) is NP-

R3
R4

R1

R2 R5

Figure 4: Graph Transformation of Figure 2

Hard.

The Ship Berthing Problem (SBP) was first introduced in
[Lim98]. The SBP has a similar configuration except all the
requests are of rectangular shape instead of SLS. [Lim99]
has provided an NP-Hard proof for SBP by reducing the
Set Partitioning Problem to SBP. As SBP is special case of
YAP and YAP is in the class NP, YAP is NP-Hard.

3 GRAPH TRANSFORMATION

Figure 2 illustrates the problem geometrically. However,
the direct model may not be efficiently manipulated. We
first transform the geometrical layout into a graph. Figure 4
is the corresponding graph transformation of the configura-
tion in Figure 2. Each request Ri is represented by a vertex
and there exists an edge Eij connecting Ri and Rj iff Ri

and Rj have an overlap at some time. The direction of the
edge determines the relative position of the two requests in
the physical yard. Take Figure 2 again as an example, both
R1 and R2 require some space at time 3,4,5 and 6, there-
fore in Figure 4 there is an edge between R1 and R2. Since
R1 is located above R2, the direction of edge is from R1

to R2. We name this edge E12. Clearly, the transformed
graph is a Direct Acyclic Graph (DAG). In a DAG, each
vertex Ri can be assigned an Acyclic Label (AL) Li and
the edge Eij implies AL(Ri) < AL(Rj). Note that each
AL(Ri)(1 � i � n) is unique.

Lemma 1 For each feasible layout of the yard, there exists
at least one corresponding AL assignment of the vertices in
the graph representation.

A simple constructive proof can be obtained by the well-
known Topological Sort algorithm. An AL assignment can
also be interpreted as a permutation of 1; 2; : : : ; n.

A “free” SLS is the one with no other SLS above it, i.e.
there is no obstacle blocking it from being popped out from
the top of the layout. Again, use Figure 2 as example. At
the first iteration of the loop, R3 and R4 are the only two
“free” SLSs. If we assign AL(R3) = 0, in the second
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iteration, R1 will become a new “free” SLS. The process
continues until no more SLS is left in L.

The AL assignment only has the partial order property.
Each physical layout may correspond to more than one
AL assignments due to the lack of total order property.
[R1 : 2; R2 : 3; R3 : 0; R4 : 1; R5 : 4] and [R1 : 2; R2 :
4; R3 : 1; R4 : 0; R5 : 3] are two possible AL assignments.

This one-to-many relationship between physical layout and
AL assignments in the graph representation will incur a
huge amount of confusion in heuristic searches, including
Genetic Algorithms, etc. Heuristic methods tend to iden-
tify certain good patterns which may potentially lead to a
better solution while exploring the search space. Two very
different looking solutions, which may actually correspond
to the same physical layout, will make it very difficult for
the heuristic to indentify the correct patterns.

We can avoid such confusion by normalizing the AL as-
signment. When there are more than one SLSs to be
popped out, we break the tie by selecting the SLS with
the smallest label. Each un-normalized AL assignment is
used to construct the corresponding DAG. Then a Topo-
logical Sort with above-mentioned tie-breaker will give the
unique AL assignment. From this point onwards, all our
solutions are represented by their normalized unique AL
assignments.

Each physical layout now has a unique AL assignment.
Naturally, the optimal layout has an optimal AL assign-
ment. Our goal is to find out such an optimal AL assign-
ment. One of the major operations, the evaluation of a
given AL assignment, turns out to be non-trivial. In SBP
[Lim98] [FL00], a longest path algorithm on a DAG was
used to find the minimum berth length needed. However,
YAP deals with SLS, whose relative position and distance
cannot be calculated in a straight-forward way, unlike rect-
angles. We have to use a recursive procedure to find the
minimum yard needed for a given AL assignment A.

Evaluate-Solution (A)
1 while exists unallocated SLS
2 pick SLS S with largest AL
3 Drop(S; Send; 0)
4 foreach time Ti
5 if Ti > L

6 L := Ti
7 return L

Drop (S; t; l)
1 L :=lowest position to drop all stairs (time t0)
2 if L < l

3 L = l

4 forall stair s after t0 � 1
5 drop s to position L
6 Drop(S; t0 � 1; L)
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Figure 5: Before dropping: Ri is ceiling aligned
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Figure 6: Each stair of Ri drop by 1. Stairs at time 10 and
11 are in their final positions. Those stairs which can drop
further are in dark color surrounded by a rectangle

The recursive function Drop uses a greedy approach to
drop a given SLS to a position as low as possible. We illus-
trate the details through Figures 5, 6 and 7: Ri has seven
space requirements starting from time 5 till 11. Ri is first
aligned to the ceiling before the process starts (Figure 5).
Then from time 5 to 11, we find the maximum distance that
each “stair” can drop, without exceeding a lower bound of
0. The minimum amongst all the maximum possible drop
is used. In this case, the minimum distance of 1 is given
at time 10 and hence every stair is shifted down by 1 (Fig-
ure 6). Because of the initial ceiling alignment, no further
shifting down is needed for all stairs at time 10 (inclusive)
onwards. Note that the surface was touched at time 10.

Stairs from time 5 to 9, which are surrounded by a rectan-
gle in Figure 6, can still be dropped further but this time
with a lower bound of 3, which is the height of the pre-
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Figure 7: Final layout

vious touching surface at time 10. The dropping process
completes after a few more recursions at time 8,7,6 and 5.
The final layout is shown by Figure 7. Note the worst case
time complexity for Drop is n� T , where n is the number
of requests and T is the average time span for all requests.

Lemma 2 For a given AL assignment, the greedy dropping
approach always returns the layout with minimum yard
used.

Proof. The proof of the correctness of a greedy algorithm
consists of two parts: First, the greedy choice always leads
to an optimal solution, or any optimal solution can be trans-
formed into a solution obtained by the greedy choice. Sec-
ond, the problem has an optimal sub-structure, i.e. the
global optimal implies local optimal. The optimal sub-
structure property is obvious for YAP. To show the greedy
choice property, we compare the solution G obtained by
greedy dropping approach with any arbitrary optimal solu-
tion O. Consider the following algorithm:

Compact (A;G;O)
1 let L := set of SLSs;
2 while L is not empty
3 pick SLS S with largest AL
4 for (i = Sbegin; i � Send; i++)
5 let Gsi := position of Si in G
6 let Osi := position of Si in O
7 if Osi > Gsi

8 Osi := Gsi

The algorithm Compact will transform any optimal solu-
tion into a corresponding solution that can be obtained by
the greedy approach without increase the amount of the
yard used. Note line 7 is based on the fact that no opti-
mal solution can allocate Si in a lower position than greedy
approach.

Up to now, we have built a one-to-one relationship between
physical layout and the AL assignment (0; 1; : : : ; n � 1).
The problem is to find the optimal AL assignment.

4 TABU SEARCH

Tabu Search [GL97] [Ham93] is a local search meta-
heuristic. According to the different usage of memory, con-
ventionally, Tabu Search has been classified into two cate-
gories: Tabu Search with Short Term Memory (TSSTM)
and Tabu Search with Long Term Memory (TSLTM)
[GL97] [SY99]. Tabu Search can also be hybridized
with other heuristics, like Squeaky Wheel Optimization
[CFL02].

4.1 TABU SEARCH WITH SHORT TERM
MEMORY

Our TSSTM implementation consists of two major compo-
nents: neighborhood search and the tabu list. The neighbor-
hood solution can be obtained by swapping any two ALs in
the AL assignment. For example:

(2 3 0 1 4)! (1 3 0 2 4)

by interchanging the positions of 1 and 2. However, certain
swaps, after normalization, may be identical to the origi-
nal AL assignment. Such solutions are excluded from the
neighborhood for efficiency.

Our solution is represented in an AL assignment, which is
just a series of numbers. Due to this simplicity, our Tabu
List is implemented to record the whole AL assignment for
a certain number of solutions recently visited. To be more
efficient, string matching algorithms are used to identify
the tabu active solutions.

4.2 TABU SEARCH WITH LONG TERM
MEMORY

We implemented TSLTM in two phases: Diversification
and Intensification. We used two kinds of diversification
techniques, one is a random re-start and the other is to ran-
domly pick a sub-sequence and insert it into a random po-
sition. For example:

(0 j 1 2 j 3 4)! (0 3 4 j 2 1 j)

if (j 1 2 j) is chosen as the sub-sequence and its inverse (or
original, if random) is inserted at the back. Intensification
is similar to TSSTM. TSLTM uses a frequency based mem-
ory by recording both residence frequency and transition
frequency of the visited solutions. In our implementation,
residence frequency is taken as the number of times that the
AL(Ri) < AL(Rj); 1 � i; j � n in the selected solution
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in each iteration. The transition frequency is taken as the
summation of the improvements when AL(Ri) is swapped
with AL(Rj). The sum can be either positive or negative.

Diversification and Intensification are interleaved and dur-
ing either phase, the residence frequency and transition fre-
quency are updated according to the current selected solu-
tion. The objective function has three contributors. Be-
sides the length of the yard space required, both residence
frequency and transition frequency are used to evaluate the
solution.

5 SIMULATED ANNEALING

Simulated annealing [Haj88], [KGV83], [OG89] is a very
general optimization method which stochastically simu-
lates the slow cooling of a physical system.

We used the following Simulated Annealing algorithm on
our problem:

Step 1. Choose some initial temperature T0 and a random ini-
tial starting configuration �0. Set T = T0. Define the
Objective function (Energy function) to be En() and
the cooling schedule �.

Step 2. Propose a new configuration, �0 of the parameter
space, within a neighborhood of the current state �,
by setting �0 = � + � for some random vector �.

Step 3. Let Æ = En(�0)�En(�). Accept the move to �0 with
probability

�(�; �0) =

�
1 if Æ < 0
exp(� Æ

T
) otherwise

Step 4. Repeat Step 2 and 3 for K of iterations, until it is
deemed to have reached the equilibrium.

Step 5. Lower the temperature by T = T �� and repeat Steps
2-4 until certain stopping criterion, for our case T < �,
is met.

Due to the logarithmic decrement of T , we set T0 = 1000.
The Energy function is simply defined as the length of the
yard required. The probability exp(� Æ

T
) is known as the

Boltzmann factor. The number of iterations K is propor-
tional to the input size n. The neighborhood is defined sim-
ilarly as the one in Tabu Search, which are swapping of any
two AL and re-positioning of a random AL subsequence.

6 GENETIC ALGORITHM

Genetic Algorithms [Hol75] are search procedures that use
the mechanics of natural selection and natural genetics.

It is clear that the classical binary representation is not
a suitable in YAP, in which a list of Acyclic Labels
(0; 1; : : : ; n�1) is used as the solution representation. The
solution space is a permutation of (0; 1; : : : ; n � 1). The
binary codes of these AL do not provide any advantage.
Sometimes the situation is even worse: the change of a
single bit may not result in a valid solution. We adopt a
vector representation, i.e. use the AL assignment directly
as the chromosome in the genetic process. We will illus-
trate the two major genetic operators used in our approach,
crossover and mutation.

6.1 CROSSOVER OPERATOR

Using AL assignment as chromosome, we have imple-
mented three crossover operators:

� Classical crossover with repair.

� Partially-mapped crossover.

� Cycle crossover.

All these operators are be tailored to suit our problem do-
main. A tiny change in the crossover operator may act in
totally different manners.

6.1.1 Classical Crossover with Repair

The Classical Crossover operator is the simplest among the
three methods mentioned above. It builds the offspring by
appending the head from one parent with the tail from the
other parent, where the head and tail come from random
cut of the parents’ chromosomes. A repair procedure may
be necessary after the crossover [Mic96]. For example, the
two parents (with random cut point marked by ‘j’):

p1 = (0 1 2 3 4 5 j 6 7 8 9) and

p2 = (3 1 2 5 7 4 j 0 9 6 8):

will produce the following two offsprings:

o1 = (0 1 2 3 4 5 j 0 9 6 8) and

o2 = (3 1 2 5 7 4 j 6 7 8 9):

However, the two offsprings are not valid AL assignments
after the crossover. A repair routine replaces the repeated
ALs with the missing ones randomly. The repaired off-
springs will be:

o1 = (7 1 2 3 4 5 j 0 9 6 8) and

o2 = (3 1 2 5 7 4 j 6 0 8 9):

The classical crossover operator tries to maintain the abso-
lute AL positions in the parents.
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6.1.2 Partially Mapped Crossover

Partially Mapped Crossover (PMX) was first used in
[GL85] to solve the Traveling Salesman Problem (TSP).
We have made several adjustments to accommodate our
chromosome (AL assignment) representation. The modi-
fied PMX builds an offspring by choosing a subsequence
of an AL assignment from one parent and preserving the
order and position of as many ALs as possible from the
other parent. The subsequence is determined by choosing
two random cut points. For example, the two parents:

p1 = (0 1 2 j 3 4 5 6 j 7 8 9) and

p2 = (3 1 2 j 5 7 4 0 j 9 6 8):

would produce offspring as follows. First, two segments
between cutting points are swapped (symbol ‘u’ represents
‘unknown’ for this moment):

o1 = (u u u j 5 7 4 0 j u u u) and

o2 = (u u u j 3 4 5 6 j u u u):

The swap defines a series of mappings implicitly at the
same time:

3$ 5; 4$ 7; 5$ 4 and 6$ 0:

The ‘unknown’s are then filled in with AL from original
parents, for which there is no conflict:

o1 = (u 1 2 j 5 7 4 0 j u 8 9) and

o2 = (u 1 2 j 3 4 5 6 j 9 u 8):

Finally, the first u in o1 (which should be 0, who will cause
a conflict) is replaced by 6 because of the mapping 0 $
6. Note such replacement is transitive, for example, the
second u in o1 should follow the mapping 7 $ 4; 4 $

5; 5 $ 3 and is hence replaced by 3. The final offspring
are:

o1 = (6 1 2 j 5 7 4 0 j 3 8 9) and

o2 = (7 1 2 j 3 4 5 6 j 9 0 8):

The PMX crossover exploits important similarities in the
value and ordering simultaneously when used with an ap-
propriate reproductive plan [GL85].

6.1.3 Cycle Crossover

Original Cycle Crossover (CX) was proposed in [OSH87],
again for the TSP problem. Our CX builds offspring in
such a way that each AL (and its position) comes from one
of the parents. We explain the mechanism of the CX with
following example. Two parents:

p1 = (0 1 2 3 4 5 6 7 8 9) and

p2 = (3 1 2 5 0 4 7 9 6 8):

will produce the first offspring by taking the first AL from
the first parent:

o1 = (0 u u u u u u u u u):

Since every AL in the offspring should come from one of
its parents (for the same position), the only choice we have
at this moment is to pick AL 3, as the AL from parent p2
just “below” the selected 0. In p1, it is in position 3, hence:

o1 = (0 u u 3 u u u u u u):

which, in turn, implies AL 5, as the AL from p2 “below”
the selected 3:

o1 = (0 u u 3 u 5 u u u u):

Following the rule, the next AL to be inserted is 4. How-
ever, selection of 4 requires the selection of 0, which is
already in the list. Hence the cycle is formed as expected.

o1 = (0 u u 3 4 5 u u u u):

The remaining ‘u’s are filled from p2:

o1 = (0 1 2 3 4 5 7 9 6 8):

Similarly,

o2 = (3 1 2 5 0 4 6 7 8 9):

The CX preserves the absolute position of the elements in
the parent sequence [Mic96].

Our experiments shows Classical crossover and CX have a
stable but slow improvement rate according to time while
PMX demonstrates an oscillating but fast convergence
trend. In our later experiments, majority of the crossover
is done by PMX. Classical crossover and CX are applied at
a much lower probabilities.

6.2 MUTATION OPERATOR

Mutation is another classical genetic operator, which al-
ters one or more genes (portion of the chromosome) with
a probability equal to the mutation rate. There are several
known mutation algorithms which work well on different
problems:

� Inversion: invert a subsequence.

� Insertion: select an AL and insert it back in a random
position.

� Displacement: select a subsequence and insert it back
in a random position.

� Reciprocal Exchange: swap two ALs.
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In fact the Inversion, Displacement and Reciprocal Ex-
change are quite similar to our neighborhood solution and
diversification techniques used in Tabu Search and Simu-
lated Annealing in previous sessions. We adopt a relatively
low mutation rate at 1%.

The population size P = 1000 is set for most cases. The
evolution process starts with a random population. The
population is sorted according to the objective function, the
best the quality, the higher the probability it will be selected
for reproduction. At each iteration, a new generation with
population size 2P is produced and the better half, which
is of size P , survive for the next iteration. The evolution
process continues until certain stop criterion are met.

7 EXPERIMENTAL RESULTS

Table 1: Experimental results (Entries in the table shows
the minimum length of the yard required. Name of Data Set
shows the number of SLSs in the file; LB:Lower Bound)

Data Set LB TSSTM TSLTM SA GA
R126 21 28 26 25 24
R117 34 39 37 34 34
R145 39 50 45 42 39
R178 50 69 69 66 55
R188 74 105 98 102 79
R173 77 98 91 98 79
R250 83 141 119 117 89
R236 97 139 130 114 101
R213 164 245 246 245 187

We conducted extensive experiments on randomly gener-
ated data1 The graph for each test case contains one con-
nected components, in other words, the test cases cannot
be partitioned into more than one independent sub-case.
Due to the difficulties of finding any optimal solution in
the experiments, a trivial lower bound is taken to be the
sum of the space requirements at each time slot and used
for benchmarking purpose.

Table 1 illustrates the results. It is not surprising to see
that GA outperforms all other heuristics in all test cases
by a considerable margin. TSSTM has the simplest imple-
mentation with the worst results. TSLTM has an obvious
improvement from TSSTM, though the improvement is not
very stable. We believe one of the major difficulties with
Long Term Memory is the assignment of relative weights to
yard length, residence frequency and transition frequency
in the objective function. SA is relatively easy to imple-
ment with comparable results to TSLTM. The most suc-
cessful approach, using Genetic Algorithm, gives the best

1All test data are available on the WWW with URL:
http://www.comp.nus.edu.sg/~fuzh/YAP.

Table 2: Experiment running time (seconds) for Table 1.

Data Set TSSTM TSLTM SA GA
R126 594 3423 2023 302
R117 753 2521 1873 442
R145 1215 3693 2233 784
R178 2568 5362 2576 1023
R188 2523 7822 3529 1321
R173 3432 6743 3431 1675
R250 4578 10239 5031 3632
R236 5027 11053 5892 2453
R213 4891 10476 6342 4322

Figure 8: Physical layout of 117 SLSs (requests). Data Set:
R117

results, which are within 8% of the trivial lower bound at
most of the time.

Table 2 shows the running time for each of the test per-
formed in Table 1 on a Dual-CPU (Pentium III 800MHz
each) Linux machine. It is clear that GA is also the most
cost-effective approach.

Another interesting discovery from the experiments is that
the normalization routine does not improve the results of
GA as much as our expectation. Besides the slowing down
factor, it sometimes even degenerates the results. We be-
lieve that normalization should make the search process
more stable and focus by removing the confusing fac-
tors. But its side effects, for example reducing the solution
space, sometimes overwhelm its merits.

Figure 8 and Figure 9 provide the graphic results obtained
by GA for input file R117 and R145. The heavily-shaded
SLSs contain the region that is the densest (lower bound)
in both figures. Due to the stair-like shapes, the packing
layout looks sub-optimal. A closer look reveals further im-
provements to be very unlikely.
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Figure 9: Physical layout of 145 SLSs (requests). Data Set:
R145

8 CONCLUSION

In this paper, we have shown the Yard Allocation Problem
(YAP) is NP-Hard by reducing the Ship Berthing Problem
(SBP) to it. The geometrical representation of YAP is then
transformed into a Direct Acyclic Graph (DAG) for effi-
cient manipulation. A normalization procedure is proposed
to guarantee a one-to-one relationship between geometric
layout and Acyclic Label Assignment of the DAG. Find-
ing the optimal layout is transformed to the search for the
optimal Acyclic Label Assignment. Two heuristic meth-
ods, Tabu Search and Simulated Annealing are first applied.
The results obtained are not very attractive.

A Genetic Algorithm approach is applied after TS and SA’s
failing to achieve good results against the lower bound.
Various genetic operators are proposed and applied. Exten-
sive experiments showed our GA approach, outperformed
both the original Tabu Search and Simulate Annealing by a
margin of more than 10%.
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Abstract

Gaphyl is an application of genetic al-

gorithms (GA's) to phylogenetics, an ap-
proach used by biologists to investigate the
evolutionary relationships among organisms.
Typical phylogenetic software packages use
heuristic search methods to navigate through
a space of possible trees in an attempt to
�nd the most plausible evolutionary hypothe-
ses, as exhaustive search is not practical in
this domain. Gaphyl substitutes an evolu-
tionary search mechanism, with the result
that on a complex problem from the litera-
ture (the major clades of the angiosperms),
Gaphyl is able to �nd a more complete so-
lution (more equally plausible hypotheses) in
less time than the standard approach. Con-
tributions of GA operators are investigated,
as are some possibilities for hybrid systems.

1 INTRODUCTION

The human genome project and similar projects in bi-
ology have led to a wealth of data and the rapid growth
of the emerging �eld of bioinformatics, a hybrid disci-
pline between biology and computer science that uses
the tools and techniques of computer science to help
manage, visualize, and �nd patterns in this data. The
work reported here is an application to biology, and
indicates gains from using genetic algorithms (GA's)
as the search mechanism for the task.

Phylogenetics [6] is a method widely used by biologists
to reconstruct hypothesized evolutionary pathways fol-
lowed by species currently or previously inhabiting the
Earth. Given a dataset that contains a number of dif-
ferent species, each with a number of attribute-values,
phylogenetics software constructs phylogenies, which

Data
species  features

A
B
C
D

0 0 0
0 0 1
1 0 1
1 1 1

Tree

A

B

C D

Network

A

B

C

D

Figure 1: A toy example data set, sample phylogeny, and
sample network. In this example, there are four species
and three features. The tree formed shows the hypothesis
that species B is related to species A, gaining the third
feature. Similarly, C and D are more closely related to B
than to A, also acquiring new features.

are representations of the possible evolutionary rela-
tionships among the given species. A typical phy-
logeny is a tree structure: The species nearest the
root of a tree can be viewed as the common ances-
tor, the leaves of a tree are the species, and subtrees
are subsets of species that share a common ancestor.
Each branching of a parent node into o�spring repre-
sents a divergence in one or more attribute-values of
the species within the two subtrees. In an alternate
approach, sometimes called \unrooted trees" or \net-
works", the root of the tree is not assumed to be an
ancestral species, although these hypotheses are often
drawn as trees as a convenience. Unrooted trees rep-
resent hypothetical relationships between species, but
do not attempt to model ancestral relationships.

An example phylogeny for a toy data set is shown in
Figure 1. In this example, species A is the common
ancestor in the tree, and B is the common ancestor
of the subtree below A (assuming the tree is rooted).
The relationships between species is also shown in the
network representation, to better understand the un-
rooted tree.

Phylogenies are evaluated using metrics such as par-
simony: A tree with fewer evolutionary changes is
considered better than one with more evolutionary
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changes. The work reported here used Wagner par-
simony. Wagner parsimony is straightforward to com-
pute (requiring only a single pass through the tree)
and incorporates few constraints on the evolutionary
changes that will be considered. For example, some
parsimony approaches require the assumption that
species will only grow more complex via evolution |
that features will be gained, but not lost in the process.

The typical phylogenetics approach uses a determinis-
tic hillclimbing methodology to �nd a phylogeny for a
given dataset, saving one or more \most parsimonious"
trees as the result of the process. The most parsi-
monious trees are the ones with a minimum number
of evolutionary changes connecting the species in the
tree. Multiple \bests" correspond to equally plausi-
ble evolutionary hypotheses, and �nding more of these
competing hypotheses is an important part of the task.
The tree-building approach adds each species into the
tree in sequence, searching for the best place to add
the new species. The search process is deterministic,
but multiple trees may be found in the process of the
search, and di�erent trees may be found by running
the algorithm with di�erent random \jumbles" of the
order of the species in the dataset.

This research is an investigation into the utility of us-
ing evolutionary algorithms on the problem of �nding
parsimonious phylogenies.

2 DESIGN DECISIONS

To hasten the development of our system, we used
parts of two existing software packages. Phylip [5]
is a phylogenetics system widely used by biologists.
In particular, this system contains code for evaluat-
ing the parsimony of the phylogenies (as well as some
helpful utilities for working with the trees). Using the
Phylip source code rather than writing our own tree-
evaluation modules also helps to ensure that our trees
are properly comparable to the Phylip trees. Genesis
[7] is a genetic algorithms (GA) package intended to
aid the development and experimentation with varia-
tions on the GA. In particular, the basic mechanisms
for managing populations of solutions and the modular
design of the code facilitate implementing a GA for a
speci�c problem. We named our new system Gaphyl, a
reection of the combination of GA and Phylip source
code.

The research described here was conducted using pub-
lished datasets available over the internet [4]. The
�rst dataset used is the families of the superorder of
Lamiiorae dataset [1], consisting of 23 species and
29 attributes. This dataset was chosen as being large
enough to be interesting, but small enough to be man-

ageable. A second dataset, the major clades of the
angiosperms [3], consisting of 49 species and 61 at-
tributes, was used for further experimentation. These
datasets were selected because the attributes are bi-
nary, which simpli�ed the development of the system.
As a preliminary step in evaluating the GA as a search
mechanism for phylogenetics, \unknown" values for
the attributes were replaced with 1's to make the data
fully binary. This minor alteration to the data does
impact the meaningfulness of the resulting phyloge-
nies as evolutionary hypotheses, but does not a�ect
the comparison of Gaphyl and Phylip as search mech-
anisms.

The typical GA approach to doing \crossover" with
two parent solutions with a tree representation is to
pick a subtree (an interior or root node) in both par-
ents at random and then swap the subtrees to form
the o�spring solution. The typical mutation operator
would select a point in the tree and mutate it to any
one of the possible legal values (here, any one of the
species). However, these approaches do not work with
the phylogenies because each species must be repre-
sented in the tree exactly once.

Operators designed speci�cally for this task are de-
scribed in the following sections and in more detail in
[2].

2.1 CROSSOVER OPERATOR

The needs for our crossover operator bear some simi-
larity to traveling salesperson problems (TSP's), where
each city is to be visited exactly once on a tour. There
are several approaches in the literature for working on
this type of problem with a GA, however, the TSP
naturally calls for a string representation, not a tree.
In designing our own operator, we studied TSP ap-
proaches for inspiration, but ultimately devised our
own. We wanted our operator to attempt to preserve
some of the species relationships from the parents. In
other words, a given tree contains species in a partic-
ular relationship to each other, and we would like to
retain a large degree of this structure via the crossover
process.

Our crossover operator proceeds as follows:

1. Choose a species at random from one of the par-
ent trees. Select a subtree at random that includes
this node, excluding the subtree that is only the
leaf node and the subtree that is the entire tree.
(The exclusions prevent crossovers where no in-
formation is gained from the operation.)

2. In the second parent tree, �nd the smallest sub-
tree containing all the species from the �rst par-
ent's subtree.
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Figure 2: Two example parent trees for a phylogenetics
problem with seven species. A subtree for crossover has
been identi�ed for each tree.

C D E

F G

A

BF
prune

after crossover

C D E G

A

BF

offspring1

Figure 3: At the left, the o�spring initially formed by
replacing the subtree from parent1 with the subtree from
parent2; on the right, the o�spring tree has been pruned
to remove the duplicate species F.

3. To form an o�spring tree, replace the subtree from
the �rst parent with the subtree from the sec-
ond parent. The o�spring must then be pruned
(from the \older" branches) to remove any dupli-
cate species.

4. Repeat the process using the other parent as the
starting point, so that this process results in two
o�spring trees from two parent trees.

This process results in o�spring trees that retain some
of the species relationships from the two parents, and
combine them in new ways.

An example crossover is illustrated in Figures 2 and
3. (Note that in the phylogenies, swapping the left
and right children does not a�ect the meaning of the
phylogeny.)

2.2 CANONICAL FORM

Trees are put into a canonical form when saving the
best trees found in each generation, to ensure that
no equivalent trees are saved among the best ones.
Canonical form is illustrated in Figure 4.

2.3 MUTATION OPERATORS

One of our mutation operators selects two leaf nodes
(species) at random, and swaps their positions in the
tree. This operator allows the GA to investigate slight
variations on a parent tree.

B A

C

B A

C

B

A

C

B

A

C

rotate

rearrange

alternate way to
view tree above
-- as a "network"

Figure 4: An illustration of putting a tree into canonical
form. The tree starts as in the top left; an alternate repre-
sentation of the tree as a \network" is shown at the bottom
left. First, the tree is rotated, so that the �rst species in
the dataset is an o�spring of the root. Second, subtrees
are rearranged so that smaller trees are on the left and
alphabetically lower species are on the left.

A second mutation operator picks a random subtree
and a random species within the subtree. The subtree
is rotated to have the species as the left child of the
root and reconnected to the parent. The idea behind
this operator is that within a subtree, the species might
be connected to each other in a promising manner, but
not well connected to the rest of the tree.

2.4 IMMIGRATION

The population is subdivided into a speci�ed number
of subpopulations which, in most generations, are dis-
tinct from each other (crossovers happen only within a
given subpopulation). After a number of generations
have passed, each population migrates a number of
its individuals into other populations; each emigrant
determines at random which population it will move
to and which tree within that population it will up-
root. The uprooted tree replaces the emigrant in the
emigrant's original population. The number of pop-
ulations, the number of generations to pass between
migrations, and the number of individuals from each
population to migrate at each migration event are de-
termined by parameters to the system. Immigration
was added due to problems with premature conver-
gence identi�ed in early stages of development.

3 EXPERIMENTAL RESULTS

Recall that both Gaphyl and Phylip have a stochastic
component, which means that evaluating each system
requires doing a number of runs. In Phylip, each dis-
tinct run �rst \jumbles" the species list into a di�erent
random order. In Gaphyl, there are many di�erent ef-
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fects of random number generation: the construction
of the initial population, parent selection, and the se-
lection of crossover and mutation points. For both
systems, a number of di�erent runs must be done to
evaluate the approach.

3.1 COMPARISON OF GAPHYL AND

PHYLIP

1. With the Lamiiorae data set, the performance of
Gaphyl and Phylip is comparable. Phylip is more
expedient in �nding a single tree with the best
parsimony (72), but both Gaphyl and Phylip �nd
45 most parsimonious phylogenies in about twenty
minutes of run time.

2. With the angiosperm dataset, a similar pattern
emerges: Phylip is able to �nd one tree with
the best �tness (279) quite quickly, while Gaphyl
needs more run time to �rst discover a tree of �t-
ness 279. However, in a comparable amount of
runtime, Gaphyl is able to �nd 250 di�erent most
parsimonious trees of length 279 (approximately
24 hours of runtime). Phylip runs for compara-
ble periods of time have not found more than 75
distinct trees with a parsimony of 279, and runs
of nearly 3 days have not turned up more than
95 distinct trees. Furthermore, the trees found by
Phylip are a proper subset of the trees found by
Gaphyl.

In other words, Gaphyl is more successful than Phylip
in �nding more trees (more equally plausible evolu-
tionary hypotheses) in the same time period. This
represents a more complete solution to the problem.

The Lamiiorae task is considerably easier to solve
than the angiosperm task. Example parameter set-
tings are a single population of 500, 500 generations,
50% elitism (the 250 best trees are preserved into the
next generation), 100% crossover, 10% �rst mutation,
and 100% second mutation. Empirically, it appears
that 72 is the best possible parsimony for this dataset,
and that there are not more than 45 di�erent trees of
length 72.

The angiosperm task seems to bene�t from immigra-
tion in order for Gaphyl to �nd the best known trees
(�tness 279). Successful parameter settings are 5 pop-
ulations, population size of 500 (in each subpopula-
tion), 2000 generations, immigration of 5% (25 trees)
after every 500 generations, 50% elitism (the 250 best
trees are preserved into the next generation), 100%
crossover, 10% �rst mutation, and 100% second mu-
tation. (Immigration does not happen following the
�nal generation.) We have not yet done enough runs
with either Phylip or Gaphyl to estimate the maximum

number of trees at this �tness, nor a more concise es-
timate of how long Phylip would have to run to �nd
250 distinct trees, nor whether 279 is even the best
possible parsimony for this dataset.

3.2 BIG PICTURE: THE ROLE OF THE

GA IN THIS TASK

In constructing Gaphyl, we used the code from
Phylip's evaluation metric, but the search mechanisms
are those of the GA described in this section. In other
words, we are investigating the use of the GA as an
alternate search method for this already established
task. There is an immediate gain to our approach: Our
search for trees increases in complexity with the num-
ber of species in the dataset. The number of attributes,
however, does not a�ect the search. Conversely, the
complexity of the search in Phylip increases relative
to the number of attributes as well as the number of
species in the dataset. Biologists frequently run phy-
logeny software for weeks at a time, so a savings in
speed has a measurable impact.

Both systems are far from optimized, so strong con-
clusions cannot be drawn from runtime alone. How-
ever, the pattern that is emerging is that as the prob-
lems get more complex, Gaphyl is able to �nd a more
complete set of trees with less work than what Phylip
is able to �nd. The work done to date illustrates

that Gaphyl is a promising approach for phylogenet-
ics work, as Gaphyl �nds a wider variety of trees on
this problem than Phylip does. This further suggests
that Gaphyl may be able to �nd solutions better than
those Phylip is able to �nd on datasets with a larger
number of species and attributes, because it appears
to be searching more successful regions of the search
space.

While it is true that one cannot compare software
on runtime alone, recall that Gaphyl was constructed
from existing systems, neither one of which was opti-
mized for speed. In particular, Genesis was designed to
simplify GA experimentation and modi�cations (much
like the project here). It is possible to make some com-
parisons of operations done by the two systems in their
search, but these are apples and oranges, since the
work done to get from one tree to the next varies be-
tween the systems. In Phylip, each jumble corresponds
to a hillclimbing search, which (with the Angiosperms
dataset) investigates on the order of 10,000 trees for
each random ordering of the species list, and 40,000
jumbles in the 24 hours, or on the order of 400 mil-
lion trees. In Gaphyl, 10 experiments (using di�erent
seeds to the random number generator) with 2500 to-
tal trees and 2000 generations investigates on the order
of 50 million trees in 24 hours, although the number
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should be halved due to the 50% elitism.

3.3 CONTRIBUTION OF OPERATORS

To evaluate the contributions of the GA operators
to the search, additional runs were done with the
�rst data set (and a single population). Empiri-
cally, crossover and the second mutation operator had
been found to be the largest contributors to successful
search, so attention was focused on the contributions
of these operators.

In the �rst set of experiments, the �rst mutation rate
was set to be 0%. First, the crossover rate was varied
from 0% to 100% at increments of 10% while the sec-
ond mutation rate was held constant at 100%. Second,
the second mutation rate was varied from 0% to 100%
at increments of 10% while the crossover rate was held
constant at 100%. 20 experiments were run at each
parameter setting; 500 generations were run.

Figure 5 illustrates the e�ects of varying the crossover
rate (solid line) and second mutation rate (dashed line)
on the average number of generations taken to �nd at
least one tree of the known best �tness (72). Exper-
iments that did not discover a tree of �tness 72 are
averaged in as taking 500 generations. For example,
0% crossover was unable to �nd any trees of the best
�tness in all 20 experiments, and so its average is 500
generations. This �rst experiment illustrates that in
general, higher crossover rates are better. There is
not a clear preference, however, for high rates of the
second form of mutation. To look at this operator
more closely, the �nal populations of the 20 experi-
ments were looked at to determine how many of the
best trees were found in each run.

Figure 6 illustrates the e�ects of varying the crossover
rate (solid line) and second mutation rate (dashed line)
on the average number of best trees found. Experi-
ments that did not discover a tree of �tness 72 are av-
eraged in as �nding 0 trees. For example, 0% crossover
was unable to �nd any trees of the best �tness in all 20
experiments, and so its average is 0 of the best trees.
As Figure 6 illustrates, runs with a higher second mu-
tation rate tend to �nd more of the best trees than
runs with a lower second mutation rate.

The impact of the �rst mutation operator had seemed
to be low based on empirical evidence. So another set
of experiments was done to assess the contribution of
this operator. In both, the crossover rate was set at
100%; in one, the second mutation rate was set at 0%

and in the other, the second mutation rate was set
at 100%. The results of this experiment clearly indi-
cate that higher rates of this form of mutation are not
bene�cial. Furthermore, this operator is not clearly
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Figure 5: The e�ect of varying crossover rate while hold-
ing second mutation constant and of varying the second
mutation rate while holding the crossover rate constant.
The average generation at which the best �tness (72) was
found is illustrated.
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Figure 6: The e�ects of varying crossover rate while hold-
ing second mutation constant and of varying the second
mutation rate while holding the crossover rate constant.
The average number of best trees (45 max) found by each
parameter setting is illustrated.

contributing to the search. The results are illustrated

in Figure 7.

In the �nal set of experiments, the �rst experiments of
varying crossover rate while holding second mutation
rate constant and vice versa were repeated, but this
time with a �rst mutation rate of 10%. The results
are illustrated in Figure 8.
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Figure 8: The e�ect of varying crossover rate while hold-
ing second mutation constant and of varying the second
mutation rate while holding the crossover rate constant,
this time with a �rst mutation rate of 10%. The average
generation at which the best �tness (72) was found is illus-
trated.

3.4 CONTRIBUTION OF OTHER

PARAMETERS

An additional set of experiments was designed to as-
sess tradeo�s in terms of putting a �xed number of
trees in one population or distributing them across a
number of populations and tradeo�s between having

Population sizes for each experiment
Gens Number of Populations

1 2 4 8 16

1600 1024 512 256 128 64

800 2048 1024 512 256 128

400 4096 2048 1024 512 256

Table 1: The population size for each experiment de-
scribed in Section 3.4. When there are multiple popula-
tions, the number shown refers to the number of trees in
each distinct population.

larger population sizes or doing more generations, for
a �xed number of evaluations in all cases. These ex-
periments were done using the angiosperms dataset.

The base case may be thought of as 1 population of
1024 individuals, and 1600 generations. Then, along
one dimension, the population is divided across 2,
4, 8, and 16 populations, a total of �ve variations.
Along the other dimension the number of generations
is halved as the population size is doubled, for a total
of three variations. This creates an array of 15 param-
eter settings, illustrated in Table 1. The horizontal
axis shows the number of populations, the vertical axis
shows the number of generations, and each interior cell
shows the population size.

Twenty experiments, with di�erent seeds to the ran-
dom number generator, were done for each setting.
When multiple populations are used, �ve percent of
the population immigrates after 25%, 50%, and 75%
of the generations have completed.

The results of these experiments, illustrated in Table 2,
show the best results with 2 populations of 1024 trees
run for 800 generations, with a total of 7 out of the
20 runs �nding trees of the best known �tness of 279.
In general, it appears that two populations are better
than one, but that there might not be great gains from
more than two populations. Further, it appears that
the system bene�ts from a balance between a large
population size and a large number of generations.

3.5 EXPLORATION OF HYBRID

POSSIBILITIES

We have noted that Phylip is relatively quick to �nd
at least one of the best solutions, but that over a span
of time, does not �nd as many of the best solutions
as Gaphyl does. Therefore, it seems that investigating
the possibility of a hybrid system would be bene�cial.
The hybrid variation explored here is to use Phylip
runs to seed the initial population of the GA run.

In these experiments, the point of comparison is the
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Number of runs that found a \best"
Gens Number of Populations

1 2 4 8 16 sum

1600 1 2 1 2 1 7

800 5 7 2 5 2 21

400 3 3 4 0 0 10

sum 9 12 7 7 3

Average �tness of �nal populations
Gens Number of Populations

1 2 4 8 16

1600 281.70 281.55 281.10 280.85 280.95

800 280.60 279.95 280.25 279.95 280.15

400 280.45 280.15 280.45 281.15 281.95

Table 2: The number of runs that found the best solution
and the average best solution found across 20 runs, varying
the number of populations and number of generations, with
a constant 1024 trees (split across the speci�ed number of
populations).

starting point for the system. Four variations were
explored, using the angiosperms dataset:

1. Starting with an entirely random initial popula-
tion.

2. Starting with an initial population comprised of
a random selection of trees found by running one
Phylip jumble.

3. Starting with an initial population comprised of
half Phylip trees from one jumble and half random
trees.

4. Starting with an initial population comprised of
20 Phylip trees, one of the best from each of 20 dif-
ferent jumbles, and the remainder random trees.

25 experiments were run for each variation. One pop-
ulation was used, so as not to confound the e�ects of
multiple populations. The population size was 2000
trees, run for 1000 generations. Other parameters are
as reported previously.

Of these runs, the 4th variation fared the best, �nding
at least one tree with the 279 �tness in 14 of the 25
runs. Secondly, the �rst variation found at least one
tree with 279 �tness in 5 of the 25 runs. The second

and third variations did not �nd any trees of 279 �tness
in the 25 runs. Trajectories of average �tnesses across
all runs are shown in Figure 9.

These experiments suggest that while seeding from
Phylip runs may help the progress of the GA, the ini-
tial seeds must be suÆciently diverse for this \jump
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Figure 9: Trajectories for the four experiments with seed-
ing the initial population. The second graph shows more
detail of the lower �tness values.

start" to be helpful. It appears that choosing the seed
trees from a single Phylip jumble is comparable to
starting the GA with a population that has already
converged. (Note: This experiment was repeated with
�ve distinct Phylip jumbles, always with similar re-
sults.)

4 CONCLUSIONS AND FUTURE

WORK

The GA search process as implemented in Gaphyl rep-
resents a gain for phylogenetics in its ability to �nd
more equally plausible trees than Phylip in the same
runtime. Furthermore, as the datasets get larger in
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the number of species and attributes, the e�ectiveness
of Gaphyl over Phylip appears to increase. One pos-
sible facet of this success is that the Gaphyl search
process is independent of the number of attributes
(and attribute-values); the complexity of the search
varies with the number of species (which determines
the number of leaf nodes in the tree). Phylip uses
attribute information in its search process.

The �rst mutation operator is perhaps the \obvious"
form of mutation to implement for this problem, and
yet, its use (at high levels) appears to detract from the
success of the search. While multiple populations ap-
pear to help the system avoid premature convergence,
too many populations are not helpful.

The creation of a hybrid system that uses Phylip's
relatively fast but limited search strategy to seed the
initial population is a promising approach, as long as
care is taken that the seeds are diverse.

There is obviously a wealth of possible extensions to
the work reported here. First, more extensive evalu-
ations of the capabilities of the two systems must be
done on the angiosperms data set, including an esti-
mate of the maximum number of trees of �tness 279
(and, indeed, whether 279 is the most parsimonious
tree possible). This would entail more extensive runs
with both approaches.

Second, more work must be done with a wider range
of datasets to evaluate whether Gaphyl is consistently
able to �nd a broader variety of trees than Phylip, and
perhaps able to �nd trees better than Phylip is able to
�nd.

Third, Gaphyl should be extended to work with non-
binary attributes. This is particularly important in
that phylogenetic trees are increasingly used by biolo-
gists primarily with the A, C, G, T markers of genetic
data.

Finally, we need to compare the work reported here to
other projects that use GA approaches with di�erent
forms of phylogenetics, including [8] and [9]. Both of
these projects use maximum likelihood for construct-
ing and evaluating the phylogenies. The maximum
likelihood approach (which is known as a \distance-
based method") is not directly comparable to the Wag-
ner parsimony approach (which is known as a \maxi-
mum parsimony" approach).
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ã"fz\Ígah�� b�|z\���]_kz`c]UgM�c\���gah £i�z¢s¢i§��U£a§����z§�� op�
� bc|z\��\��O^a�pk_^Ob�o�gMfÿgah�d1kz�Çb�oÇÆî^ayM\�f�bÐ�c�l�vb�\�d��È�opf
u$|zoÅn8|¾\ ��n4op\�f_n��Wgahen4gided1kzfzoÅn�^Ob�o�gMf-ÃU\4bvuw\�\�f
^iyi\�f�b8�"oÅ�ªgifz\egih�bc|z\�n�`co�bc\�`coÅ^zÏ1}��c\�`8�"d1k_��bÑ`�\4Æ
^i��o ��\½n�gif�bc`�gi�Jgah�d1kz�Çb�o�]_��\½n���op\�f�b���Ã��Í��kDn8|Í`�\4Æ
��bc`�opn4bc\�¿�n�gided�k_fzopn�^Ob�o�gMfRÏ

{J|z\��cgsn�n4\�`w�c\�`��i\�`w^i�p�cg1opf_n�gi`�]DgM`�^abc\��wn4gMde]z��\�ä�yM^id/\ª]_^aÆ
`8^ade\4b�\�`8�wËL��kDn8|/^M�C��b�^ideo�f_^ª^afD¿�opfz\�`cbcoÅ^MÌ4Èi^afD¿1^M¿z¿z�*fzgMop�c\
bcg�bc|z\ªdegO�i\�d/\�f�b�gahRgMÃ �v\�n4b��w^af_¿bcg~b�|z\ª]z�p^��M\�`8��	���\�f_�c\���Ï
Þ�ßMà8ßlá*â�×3b�gikz`�f_^ade\�fMb8��^i`c\~|_\��Å¿`c\�yikz�Å^a`����MÈD^i���pgOu$o�f_y`c\�Æ
�c\�^a`8n8|z\�`��Dbcg ¿z\�degif_��bc`8^Ob�\*bc|z\Q\4Â@\�nðb�o��M\�fz\��c�Rgah�bc|z\�o�`�b�\�n8|lÆ
fzoÅÊ�kz\��TÃs�~n4gide]U\4b�o�fzyª^ay�^aopf_�vbCgab�|z\�`Tbc\�^ad�Éopf1^"n4gMd/]_��\�ä@È
fzgMop�c�iÈl`�\�^i�ÇÆÜbcopde\ª\�fs��op`�gifzde\�f�b�Ï


��� ����������� IQ=$V�=�������³���I�� �³/P ��!

�W|zop��\òbc|z\ Þ�ßMà�ßzá*â�×�n�gide]D\�bco�bcopgif o�b��c\���hÓ]z`�\��c\�f�b��ô^
�O^a�pop¿ö^a]z]_��oÅn�^abcopgifÓhÄgM`de^Mn8|zopfz\��p\�^i`cf_o�fzyDÈ o�b��
n4gMde]z��\�äsÆ
o�bv�-d^ ó \��d^afs�-d^Mn8|zo�f_\Î��\�^a`�fzo�f_yÍ\�äl]D\�`copde\�f�b��
]_`cgiÆ
|zopÃzo�bcop�i\��p��b�o�de\�Æ¥n�gif_�ckzdeo�f_y#"zÃU\4bcbc\�` ��hZ^M�vb�\�` \�äl]D\�`copde\�f�b�^i�
`�\��ckz�Çb8�$n�^if3ÃU\�\4äl]U\�nðb�\�¿3hÄgi` �copd/]_��\�` ]z`�giÃz�p\�d��Ï
ã"fz\J��kDn8|1�ckzÃlÆ¥]z`cgMÃz�p\�dÿopfeÞ"ßià8ßlá*â�×~op�Tb�|z\JyM^ade\wgahRÕiÖ8Öî×%$
ØOÙQØaÚOÏ*ñîf ó \�\�]_^�uw^��MÈ�gMfz\wbc\�^adòËÄbc|z\"ÕMÖ8Ö¥×_Ö�&('Cgi`*)4ß+&ðÙQØ,&.-/'�Ì
��b�^a`cb�� u$oÇb�|
]Dg��c�c\�����opgif�gah*b�|z\~Ã_^i���ÜÈD^if_¿3bc|z\~gibc|z\�`$bc\�^ad
Ëtb�|z\�0¥Ø�ÕiÖ�&('Rgi`1-iÖ2)4Ö�34-iÖ�&('�ÌÉd1k_��bÉb�^ ó \Qbc|z\wÃ_^a�p�MhÄ`cgMdöb�|z\�dÏ
{J|z\
y�^ade\
\�f_¿_�u$|z\�fÓ^Ðb8^ ó \�`yi\�b��]UgM���c\�����opgifÍgahÑbc|_\
Ã_^i���ÜÈ$gi`�u$|_\�fGbc|_\½Ã_^a�p���p\�^��M\��/b�|z\Ô^a`�\�^õgih�]z�p^��MÏ¾{J|_\
ó \�\�]U\�`8��	@gMÃ �v\�n4bcop�i\eop�ªb�g
d^Oälo�deoÅ��\/b�|z\�¿lkz`8^Ob�o�gMfÔgahwbc|_\
yM^ide\iÈlu$|zop��\Ñb�|z\Ñb�^ ó \�`��5	sgiÃ �v\�nðbcop�i\ÑoÅ�wbc|z\�gM]z]UgM�coÇb�\iÏ
�Co�yMkz`�\/«��c|zgOu �$^ ó \�\�]_^�uJ^��eyM^ade\Ñopf3]z`�giyM`c\��c��Ï

Defenders

Forwards

Boundary

�Co�yMkz`�\«i¨��ô®�l��ÏD¯ �Ñ\�\�]D^�uw^��76Ñ^id/\�ñîf98�`�giyi`�\����ÑËZ["oÇÆ
^ayM`�^id �z`�gid msbcgif_\�\4b�^a�ÜÏRËL¯i�i�_«�Ì�Ì4Ï


��:
 ! =<; ��=�>�� P � =?� >�=�>A@B=�>
����� IQ=$V�=��

{J|sk_�ChZ^a`�ÈOb�|z\$ÃD\��vb�Þ"ßià8ßlá*â�×~b�\�^ad�*|_^��M\�ÃU\�\�fede^ifsk_^a�p���
]z`�giyM`�^id/de\�¿�^ayM\�f�b���Ë�C$\�op�^if_¿EDT^akRÈ�¯i�i�z«�"*msbcgif_\�^if_¿
¼½n�� �p��\��vb�\�`�Èi¯a�i�_«�Ì4ÏT{J|z\���\wbc\�^ad�*uw\�`�\wn�`c\�^Obc\�¿�ÃD^i�c\�¿~gMf
bc|_\~^i����kzde]lb�o�gMf�bc|_^ab ÃD\�n�^akD��\�Þ"ßià8ßlá*â�×ÒoÅ� ^��opd�k_�p^abcopgif
gahC`c\�^a���cgsn�n4\�`�È�o�de]z�p\�de\�fMb�o�f_ye��bc`8^Ob�\�yMo�\�� ó fzgOu$fÒbcgeuwgi` ó
opf�`�\�^i�R��gln�n4\�`Ju$op���É`c\���kz��b$o�f
^/yigsgl¿Þ�ßià8ßzáCâ�×�b�\�^id�Ï
F gOuw\��M\�`�ÈObc|_op�QhZ^aop�p�Qbcg1^in�n�gikzf�b�hÄgM`�b�|z\ hÄkzfD¿z^ade\�f�b8^a�@¿loÇhtÆ
hÄ\�`�\�fDn4\���ÃU\4bvuw\�\�f¾Þ�ßMà8ßlá*â�×W^if_¿Ó`�\�^i�ª�cgln�n�\�`�È"^afD¿Wbc|_\
|zopyi|lÆ¥�p\��i\��Ò¿lo�ÂU\�`c\�f_n4\��Îb�|_^Ob�b�|z\��c\-n�`c\�^Obc\MÏ(� �Å��gDÈ�bc|_\
Þ�ßMà8ßlá*â�×/`�kz�p\���^if_¿��gln�n4\�`��c\�`��i\�`�^a`�\ n4gMf_�vb8^af�bc�p�1n8|D^afzyiÆ
opfzy_È���g d^io�f�b�^io�f_o�fzy ^ de^ifsk_^a�p���r]z`�giyi`8^adede\�¿ôbc\�^ad
n�^if�ÃU\Ò¿lo���n4kz��b�Ï?F \�fDn4\ebc|_\op¿l\�^gahJ^a]z]z�p�so�f_y
de^Mn8|zopfz\
�p\�^a`�fzopfzyrbc\�n8|_fzopÊ�kz\��Íbcg Þ�ßMà8ßlá*â�× op�Gy�^aopfzo�f_yryM`cgMkzf_¿
ËÄ\MÏ yDÏRË�DÉk ó \�\�b�^a�ÜÏ�È�«��i�i¬#"l� f_¿l`�\�^af_¿{T\��p��\�`�È�«��i�M�MÌ�ÌHG�Ï
m�b�gifz\�\4b:^a�ÜÏ�ËÜ¯a�i�_«�Ì@kD��\�¿~`�\�opflhÄgi`8n4\�d/\�f�bÉ��\�^a`�fzopfzy$bcg"bc`8^aopf
ó \�\�]U\�`8�ChÄgi`�®Ñ�l��ÏM¯ ó \�\�]_^�uJ^���ËÄoÜÏ \MÏÉb�|z`c\�\ ó \�\�]U\�`8�*�s��ÏObvuwg
b�^ ó \�`��8ÌÑgif�^Ð¯a�idJIô¯i�ad ]z�p^��sopfzy
ï_\��p¿RÏ�{J|z\��ÐkD��\�¿Î^
�cgahtbvuJ^a`�\"n4g�^in8|Òbcg��\�bwk_]�y�^ade\���Ès\�flhÄgM`�n�\�b�|z\Ñ`ck_��\���Èsb�\�`cÆ
deo�fD^Obc\Qbc|z\wyM^ide\���È�^if_¿�]z`�gO�sop¿z\:hÄ\�\�¿lÃ_^in ó bcg�bc|z\w]z�Å^��i\�`���Ï
{J|z\��¿z\4ï_fz\�¿bc|_\�hÄgM���pgOu$o�f_y�|zopyi|lÆ¥��\��i\��ÉÃU\�|_^��sopgikz`�hÄkzf_nðÆ
bcopgifD�whÄgi` ó \�\�]U\�`8�wbcgk_�c\iÏ

� BUYZSC³1´_YZY.KHL/M C$\�d^aopf�vb8^ObcopgifD^a`��u$|zo��p\ ó \�\�]lÆ
opfzy]UgM����\��c�copgif�gah*bc|z\�Ã_^a�p�É^afD¿Òb�kz`�fzo�f_y�oÇb
�ck_n8|
b�|_^ObÑo�bªoÅ�Ñ^i��hZ^a`Ñ^�uw^��ÒhÄ`cgMd bc|z\/gi]lÆ
]Ugif_\�f�b�� ^M�J]Dg��c�copÃz��\MÏ

I"´ON5N�³/´zYZYHK�P/L/M �Ñopn ó bc|z\ ÃD^a�p�D¿lop`c\�nðb����1bcgÑb�\�^ad/Æ
d^abc\Q)8Ï

@ B � BU³/´zYZYHK.L/M ñîf�bc\�`�n�\�]lbr^ degO��opfzyXÃ_^i���Ígi`
degO�M\Ñ¿zo�`�\�n4bc�p�bcg^��b�^Ob�o�gMf_^a`��Ã_^i���ÜÏ

@ K�?/�<RQKs>SKHL/M ¼
gO�i\�bcge^�]UgM�co�bcopgif�b�|_^ObJoÅ�QhÄ`�\�\
hÄ`�gid gi]z]Ugifz\�f�b��G^af_¿ gi]U\�f hÄgM`G^%]_^M�c�
hÄ`�gid b�|z\õÃ_^a�p�T	 �n4k_`c`�\�f�b3]UgM�co�bcopgifrËZk_�co�fzy
mO8��UC ËWV:\���g���ge\4b�^i�LÏpÈ�«��M�i¬�Ì�ÌðÏ

{J|z\ ó \�\�]D\�`��5	Q¿l\�n4oÅ��opgifzÆÜd^ ó opfzyÎ]z`�gln4\�����uJ^i�3��opde]z�poÇï_\�¿
Ãs�ek_��opfzy�bc|z\ª]DgM��oÅn4��c]_^in�\"�c|zgOu$f�opf �Copyikz`�\"¯lÏ:{J|z\"b�^ ó Æ
\�`8�ª^a�puw^��l��n�^a�p��\�¿AX ��Yz�,Z_�l�s�\[�] ËZgi`_^ �l�i��Z_�l�s�`[5] o�hQb�|z\��
^a�p`�\�^i¿z�/|D^i¿Òbc|z\ÑÃ_^i���tÌðÏ�{J|zoÅ�Jde\�^ifMbJb�|_^Ob ¿l\�n4oÅ��opgif_�wuw\�`�\
`�\�Ê�kzop`c\�¿gifz�p��hÄgi`"bc|z\ ó \�\�]D\�`"opf½]UgM����\��c�copgif
gahQbc|z\1Ã_^a�p�LÈ
^afD¿�b�|_^Ob*b�|z\�¿l\�n4oÅ��opgif/uw^M�*^�n8|zgioÅn4\wgahUbc|z`�\�\$]UgM���co�Ãz�p\$^in4Æ
bcopgifD��¨a^ �l�M�bZ_�l�s�\[�] È,c �_£s£/Zz�l�s�\[/db] ^af_¿ec �_£s£fZ_�l�s�\[Hgh] Ï
m�b�gifz\½Ö�0"Ø+ikj�^a�Å��g3o�de]z�p\�de\�f�b�\�¿�bc|z`�\�\/ÃU\�f_n8|zd^i` ó ]Ugi�poÇÆ
n4op\���¨Ód^ ó opfzyG`�^if_¿lgMd ¿l\�n�op�copgif_�5"^a�puw^��l��|zgi�Å¿lopfzyGbc|_\
Ã_^i���T"�^af_¿½^�de^ifsk_^a�p����Æîn4gl¿l\�¿]DgM��oÅn4�3bc|_^ab"|zgM�p¿_� b�|z\�Ã_^i���
kzfz�p\�����^3b�^ ó \�`ÑoÅ�Ñu$oÇb�|zopfÍ«��ad Ø,3%-e^�c^ahÄ\e]_^i���ªop��^��O^aop��Æ
^aÃ_��\MÏr{J|z\�`c\�o�flhÄgM`�n�\�de\�f�bÒ�p\�^i`cf_o�fzyÁyi\�f_\�`8^Obc\�¿G]DgM��oÅn4op\��
lnmeoap�oHqsrHtvuxwyoaz{oHtvo}|5~{�����5�{���xu�r(���vux|f~�q�|��O���5r�z{ux~{o`�xo���tv~�u�~��

�v|_�/oHo(���(�a�(�+�
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{HoldBall(),PassBall(f)}
(f is 1 of 2 teammates)

Teammate with ball
or can get there
faster

notBall
GetOpen()

GoToBall()

Ball 
kickable

kickable

�Co�yMkz`�\X¯z¨ {J|z\ �Ñ\�\�]D\�`��5	 8*gi�popn��Ýms]_^Mn4\�ËZ["oÅ^ayi`8^ad
�z`�gid m�bcgMfz\�\4b�^i�LÏRËÜ¯a�i�_«�ÌcÌðÏ

bc|D^Ob�^in8|_o�\��i\�¿ÔyM^id/\e¿lkz`8^Ob�o�gMf_�ªgahª«�÷
��\�n4gMf_¿z��È�u$|z\�`�\�^M�
^a�p�Ugah�bc|_\�ÃU\�f_n8|zd^i` ó ]Ugi�popn�o�\���ËÄopf_n���k_¿zo�fzy1bc|_\�d^afsk_^i���p��Æ
n4gl¿l\�¿�gMfz\�Ìwn4gMkz�Å¿�d^af_^iyi\ª¿lkz`8^ObcopgifD��gihÉgif_���Òø1��\�n4gMf_¿z��Ï
6ªk_��b�^ahZ��gMf ËÜ¯a�M�z«�ÌÒk_�c\�¿¾yi\�fz\4b�opnõ]_`cgMyi`8^adedeo�fzy�Ë �Ñg ��^_È
«��M�M¯O"4DÉk ó \\�b�^a�ÜÏ�È:«��i�M¬MÌ�bcg
\��igi�p�i\ ó \�\�]U\�`8�ªhÄgi`~®�l��Ï:«
ó \�\�]_^�uJ^��iÈÀk_�co�fzy b�|z\��DÖ8Ø�����ß,0�' Ë��w\��pn8|DÌ��copd�kz�Å^Ob�gi`�Ï
6Ñ^ade\��Ñu�\�`c\egah$^�ïzäl\�¿õ¿lk_`�^abcopgifõ^af_¿�bc|_\ ó \�\�]D\�`��5	�giÃzÆ
�v\�n4bcop�i\�uJ^i��bcg½deopfzo�deoÅ��\Òbc|z\Òf�k_d�ÃU\�`�gihJbckz`�fzgO�i\�`��Ñ]U\�`
yM^ide\iÏ�F \�^a�Å��g
k_�c\�¿Á��gMd/\�u$|_^Ob�¿zoÇÂ@\�`�\�f�b1]_|��l�copn���¨1bc|_\
Ã_^i���wdegO�i\�¿Ðbvu$oÅn4\�^i�~hZ^i��b/^i�~bc|z\3b�^ ó \�`���ÈTu$|_opn8|�degO�M\�¿
bvu$oÅn4\�^i�whZ^M�vb�^M�wbc|z\ ó \�\�]U\�`8��Ï
}��copfzy½|zoÅ�~ÃU\���b1�Å^��i\�`c\�¿��p\�^i`cf_o�fzy
yM\�fz\�bcoÅn]z`�giyM`�^id/deopfzy
]_^i`�^id/\�bc\�`���È 6ªkD�vb8^OhZ�cgifô]_`cgl¿lk_n�\�¿r^-ïDf_^a�e]Ugi]zkz�Å^Ob�o�gMf
u$o�bc|3^1de\�^if�ïzb�fz\����wgah*°a��bck_`cfzgO�M\�`8��È�^af_¿3^�ÃU\���bwïzbcfz\��c�
gahw�bck_`cfzgO�M\�`8��Ïª{J|z\��c\�`�\��ckz��b��ª^a`�\�fzgib"\�^i�co��p�
n4gide]_^i`�^aÆ
Ãz�p\$bcg/m�bcgMfz\b	 ��ÃU\�n�^ak_�c\$bc|_\ ]z`�giÃz�p\�d ¿lgid^io�f^afD¿/ïzbcfz\��c�
\��O^i��k_^abcopgif^a`�\ªhÄkzf_¿z^id/\�f�b�^a�p�p�Ò¿lo�ÂU\�`c\�fMb�Ï


��
	 � �?� ����� I�=$V�=���� ��� �H��I

�zgM���pgOu$opfzy~m�bcgMfz\~Ö�0:Ø+ikjpÈ�uw\wyM\�fz\�`�^abc\�¿ ó \�\�]U\�`8�ChÄgi`�®ª�l��Ïi¯
ó \�\�]_^�uJ^��$gif~^ ¯i�ad I
¯i�adö]z�p^��sopfzyJï_\��p¿ÑopfÑbc|z\wÞ�ßià8ßzáCâ�×
�cgsn�n4\�`���\�`c�M\�`�ÏÉ�Ð\$`c\�n4gifzï_yikz`�\�¿~bc|z\"��gln�n�\�`��c\�`��i\�`Tb�g�k_�c\
øa�id�$n4�ln4�p\���ÈloLÏ \iÏ�bcge`ck_f^ab ¿lgikzÃ_��\~�c]D\�\�¿�È_u$oÇb�|zgiklb gibc|lÆ
\�`�u$oÅ��\�n8|D^afzyMo�fzy~bc|z\"d/\�n8|_^af_opn��Qgih�bc|z\"yM^ade\MÏT�Ð\"ÃD^i�c\�¿
bc|_\�b8^ ó \�`��Qgifb�|z\"hÄ`c\�\��p�MÆî^��O^aop�p^iÃz�p\á���\3�� 0îÖH-,$����eËLmsbcgif_\
\4bC^a�ÜÏ�È�¯i�i�M�MÌU��gMkz`8n4\:n4gl¿l\*b�|_^ObT^i��uJ^��l�@n�^a�p�p\�¿_X �bYz�bZ_�l���\[5]
ËÄgM`1^ �s�M��Z_�l���\[5] oÇh*oÇb�^i��`�\�^M¿l�|_^M¿�b�|z\�Ã_^a�p�tÌðÏ
�Ð\3¿l\��i\��pgi]U\�¿Î^Ô��gihtbvuw^i`c\�n�gM^in8|Ðb�g��c\4b�kz]ÁyM^ade\���ÈC\�flÆ
hÄgi`8n4\wb�|z\J`ckz�p\���ÈOb�\�`�d/opf_^abc\JyM^id/\���Èa^if_¿/]z`�gO��oÅ¿l\�hÄ\�\�¿lÃ_^in ó
bcgeb�|z\~]z�Å^��i\�`���Ï���yM^ide\�\�f_¿l\�¿�u$|z\�f�bc|_\~Ã_^a�p�Ruw\�f�b gikzb
gahTÃDgMkzf_¿z��Èlgi`Ju$|z\�fÒb�|z\"ÃD^a�p��|_^i¿ÒÃD\�\�f�u$oÇb�|zo�f3bc|_\ ó oÅn ó Æ
^aÃ_��\w^a`�\�^$gihD^ObC��\�^i��bCgMfz\�b8^ ó \�`RhÄgM`*ø�gi`Td/gM`c\wn4gMf_��\�n4klb�o��M\
�c\�`��i\�`�n4�ln4�p\���ÏT�Ð\�opf�bc`�gl¿lk_n4\�¿/bc|z\"^i¿z¿lo�bcopgifD^a�Dn�gif_��bc`8^aopf�b
bc|D^Ob�o�hT^�y�^ade\ �Å^i��bc\�¿ehÄgi`J�i�M����\�`c�M\�`Qn��sn���\��"ËZgifz\"deo�fsklb�\
gah�Þ�ßMà�ßzá*â�×�y�^ade\�bcopd/\�ÌðÈMoÇb:uwgikz�Å¿�^iklbcgMde^abcoÅn�^i���p��ÃD\wb�\�`cÆ
deo�fD^Obc\�¿�Ï�{J|zoÅ�Jn4gifD�vb�`�^io�f�b�uJ^i�w^i¿_¿l\�¿�bcg/o�de]UgM�c\Ñ^���opdeoÇb
gif¿l\�yi\�fz\�`8^Ob�\��pk_n ó opf/bc|z\$f_gioÅ���eÞ�ßià8ßzáCâ�×�\�fs��op`�gifzde\�f�b�Ï

� û��-ê 
�ìÓè�ælêÁç µ é�� µ 
 � êÎéGæ�è�ú � �

x��Mgi�pklbcopgifD^a`���n4gMd/]_klb�^abcopgif�oÅ�T^$Ã_`cg�^i¿"bc\�`cd¾bc|D^ObT\�f_n4gMd/Æ
]_^M�c�c\��w^a�p�Dde\�bc|zgl¿z�wgahRkD��opfzy1bc|z\ª]z`�o�f_n�o�]_��\��QgihÉÃzopgi�pgiyioÅn�^i�
\��Mgi�pklbcopgifÐËZ[ª^a`�u$o�fÉÈ�«�¬Møi�MÌ:bcg��gM���M\"]_`cgMÃz��\�d��gMf3^en4gMd/Æ
]zklb�\�`�Ï
�Ð\-n8|zgM�c\W^af%\��Mgi�pklbcopgif_^i`c�r^a�pyigi`�o�bc|zd ËLxQ�ªÌ�hÄgi`Îb�|zop�
��bck_¿l�õÃU\�n�^ak_�c\�b�|z\���^i`c\ ó fzgOu$fõb�gÔuwgi` ó uw\��p�wo�fÀfzgioÅ���
^afD¿kzf ó fzgOu$fÒ¿zgid^aopf_��ËL["^i`cuw\�fÉÈs¯i�i�i��ÌðÏTñîf3^af3xQ�~ÈMbc|_\
]Ugi]zkz�Å^Ob�o�gMf3oÅ�Jdegl¿l\��p��\�¿^i�$^e��\�b$gah��8Ø,3%-���-MØ+0îÖ�'ðÈU^af_¿3bc|_\
]_^i`�^id/\�bc\�`��*b�|_^Ob���^i`c�/ÃU\4bvuw\�\�fopf_¿lop�sop¿zk_^a�Å��^i`c\$\�f_n4gl¿l\�¿
opfMb�gÐbc|z\½n�^af_¿loÅ¿z^abc\��e^M�eyi\�f_\4bcoÅn^Obcbc`�o�Ãzkzbc\���ÏW{J|z\��c\
^ObcÆ
bc`�opÃzklbc\��ªde^��ÃU\1opfzo�bcoÅ^a�pop�c\�¿Ôu$oÇb�|Ô`8^af_¿zgid gi`"gabc|_\�`Ñ�O^a��Æ
kz\���ÏC{J|z\�\��Mgi�pklbcopgifD^a`�� ]z`�gsn�\�����oÅ��bc|_\�f��co�d1kz�Å^Obc\�¿ªbcg ]_`cgiÆ
¿lk_n�\�fz\�u¾n�^if_¿loÅ¿z^Ob�\��wbc|D^Ob `�\�]z`�\��c\�f�b$ÃD\�b�b�\�`��cgi�pklbcopgifD��Ï
{Tg�opf_�vb8^af�bcoÅ^Ob�\$bc|_op�Qbc\�n8|zfzoÅÊMk_\ hÄgi`w^~]_^i`�b�opn�kz�Å^a`Q]_`cgMÃz��\�dÈ
uw\/|D^��i\1bcg
��]U\�n�oÇhÄ�½bc|z\`�\�]z`�\��c\�f�b8^ObcopgifÔk_��\�¿½hÄgM`~n�^if_¿lo�Æ
¿z^abc\��5	 ó \�\�]D^�uw^��]Ugi�popn�o�\���ÈÉbc|z\eïzb�fz\����ÑhÄkzfDnðbcopgifõk_�c\�¿�b�g
\��O^i��k_^abc\½]Ugi�poÅn4op\���È ^af_¿Íb�|z\½gi]U\�`8^Ob�gi`8��^afD¿G]_^a`8^ade\4b�\�`8�
k_�c\�¿/hÄgM`�`c\�]z`�gs¿zk_nðb�o�gMfRÈid1klb�^abcopgif^af_¿�c\��p\�n4bcopgifRÏC�Ð\�¿l\4Æ
��n4`�o�ÃU\ªbc|z\���\~^M��]U\�n4b��JgahCbc|_\~��\�b�Æ¥kz]3opf½ms\�n4bcopgif_�$®_Ï�«��s®_Ï ®_Ï

	��� ��� �P � ��= � > =7������I � �3= � �<�e�

�Ð\"k_�c\�¿�^ÒË�«�© «�ÌQ\��igM��kzbcopgif_^i`c�e�vb�`�^abc\�yi�iÏCñîfÒ\�^in8|3yi\�fzÆ
\�`8^Ob�o�gMfRÈC\�^in8|�n�^af_¿zop¿z^abc\�]_`cgl¿lk_n�\���gifz\Òn8|_o��Å¿�ÈCbc|z\�fÎbc|_\
]Ugi]zkz�Å^Ob�o�gMf�de\�d�ÃU\�`8��hÄgM`Rb�|z\�fz\�ä�bCyi\�fz\�`8^Ob�o�gMfÑ^i`c\�n8|_gM�c\�f
hÄ`�gid b�|z\~n4gMd�Ãzopfz\�¿�]_^i`c\�f�b��J^af_¿n8|zop�Å¿l`c\�f3]Ugi]_kz�p^abcopgif_��Ï
C$\�]z`cgl¿lkDnðbcopgifõoÅ�~�co�d1kz�p^abc\�¿�Ãs�Ðn4`�\�^Ob�o�f_y½^
¿lkz]z�popn�^Ob�\gah
bc|_\~n�^afD¿lop¿_^Obc\�u$o�bc|d1klb�^abcopgifRÏ:�Ð\�o�de]z�p\�de\�fMb�\�¿d1klb�^aÆ
bcopgifÎkD��opfzy½^96Ñ^akD�c�cop^ifõ`�^if_¿lgid7¿lop��bc`�opÃzklbcopgifÎu$o�bc| ��\�`�g
de\�^if3¿lo�ÂU\�`c\�f_n4\MÏ:{J|z\ª��b�^if_¿z^i`�¿�¿z\��sop^abcopgif3gahRb�|z\�¿lop��bc`�o�Æ
Ãzklb�o�gMf/¿z\4bc\�`cdeopfz\��*|_gOuÀ^ayMyi`�\�����op�i\�����bc|z\ �c�l�vb�\�dÿb�`cop\��Tb�g
\��Mgi�p�i\MÏÉ�Ð\�k_�c\�¿�^~��^i��k_\ gahÉ�_Ï�«MÈi`�\��ckz�Çb�o�f_y~o�f3^aÃUgiklbª«�¬ �
gah:n8|zop�p¿z`c\�f��ckz`���op�so�f_y1opf�bcgebc|_\�fz\4äsb$yi\�fz\�`8^Ob�o�gMfRÏ
{J|z\��c\��p\�n4bcopgiföhÄkzf_nðb�o�gMfÿ¿l\4b�\�`�d/opfz\��
u$|zoÅn8|�n�^af_¿zop¿z^abc\��
u$op���:�ckz`c�sop�i\~opf�bcgÒbc|z\/fz\4äsbªyi\�f_\�`8^ObcopgifÎÈ�^if_¿½u$|zoÅn8|½u$op���
¿lop\iÏ:�Ð\Ñk_��\�¿3^e�co�de]z�p\��cn8|_\�de\Ñu$|z\�`�\�b�|z\"!�n�^af_¿zop¿z^abc\��
u$o�bc|bc|_\~|zopyi|z\��vb$ïzb�fz\����$`8^Ob�o�fzy��$��k_`c�sop�i\�¿õËÄhÄ`cgMd bc|_\1¯�!
]_^i`c\�fMb8�8©ªn8|_o��Å¿l`�\�f3^��O^io��Å^aÃz�p\�Ì4Ï

	��:
 I�� ��³1P ��! � � I�� � � ��>�� = ��= � >
�Ð\Ñ^i���pgOuw\�¿gMkz` ó \�\�]D\�`���bc|_\ª��^ade\ª|zo�yM|lÆ¥��\��i\���^MnðbcopgifD��^ab
\�^Mn8|�n��sn���\^M�Ñmsbcgif_\b	 �/ËL��\�\�ms\�n4bcopgifÎ¯lÏ ¯iÌðÏ F gOuw\��M\�`�ÈUÃU\4Æ
n�^ik_�c\�b�|z\��c\Ñ|zo�yM|lÆ¥��\��i\��U]z`�o�deo�bcop�i\��ªËL^af_¿Òbc|_\Ñn�gi`�`c\���]UgifD¿sÆ
opfzy3�pgOuJÆ¥��\��i\��*� ó op�p�p�8Ì uw\�`�\�opf_¿l\�]D\�f_¿l\�fMb����Ôo�de]z�p\�de\�f�b�\�¿�È
gik_` ó \�\�]U\�`8�~n4gMkz�p¿õÃU\Ò\�äl]D\�nðbc\�¿Ðbcg½]U\�`chÄgi`�d ¿loÇÂ@\�`�\�f�b����
^afD¿ªbcg��p\�^i`cf�¿lo�Â@\�`�\�f�bC��bc`8^Ob�\�yiop\���Ï �zk_`�b�|z\�`�degi`�\iÈ�u$|z\�`�\�^M�
m�b�gifz\ Ö�0ÔØ+ikj kD��\�¿rmy8���C�Ë�V:\��pgM�cg¾\�b�^a�ÜÏ�Èe«��M�i¬�Ì
hÄgM`
bc|_\�op`9X §M��#%$_§a� [5] hÄkzf_nðb�o�gMfRÈÑu�\õk_�c\�¿¾^G��k_]D\�`copgi`
^a�pyigiÆ
`�oÇb�|zdòyMo��M\�f�o�f
m�bcgMfz\~^afD¿�¼Ôn�� �p�p\���bc\�`~ËÜ¯a�M�z«�Ì4Ï
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under pressure

Opponent within
pressure distance

No opponent within
pressure distance

Decision not
under pressure

Decision

�Co�yMkz`�\ ®z¨ {J|z\7��yi\�fMb8��	Wã"�i\�`�^i���Ó["\�n�op�co�gMflÆî¼½^ ó opfzy
�z`8^ade\�u�gM` ó Ï

passBall(1)

teammate 1
seems safe

Opponent
within
desperation
distance

Passing to
teammate 0
seems safe

passBall(0)

passBall(1)holdBall()

Passing to

�Co�yMkz`�\�÷D¨Á{J|z\õ� yi\�f�b��5	J["\�n�op�copgiflÆî¼½^ ó opfzy �_`�^ide\�uwgi` ó
�W|z\�f}�f_¿l\�`U8�`�\�����k_`c\MÏ

ã"kz` ó \�\�]U\�`8��k_�c\�¿-bc|z\���^ade\õ]DgM��oÅn4�ö��]_^Mn4\Î^i�
m�b�gifz\�	 �
Ë �Copyikz`�\Ò¯iÌ4ÈÉb�|sk_��^
¿l\�n4oÅ��opgifõuJ^i��`�\�Ê�kzop`�\�¿�gifz�p�ÔhÄgM`�bc|_\
ó \�\�]U\�`/o�fÍ]UgM����\��c�co�gMfÎgah b�|z\�Ã_^a�p�LÏÎ�Ð\�hÄkz`cbc|z\�`e¿z\�n4gMd/Æ
]UgM�c\�¿�bc|zoÅ�~n�^i�c\1k_�copfzybc|z\�¿z\�n4oÅ�co�gMflÆÜd^ ó opfzy3hÄ`�^ide\�uwgi` ó
�c|zgOu$f�opf �Co�yMkz`�\���®_È*÷_È:ølÏÎ{J|zoÅ��oÅ�e^Ô�co�de]z�pop��bcoÅn3o�fzo�bcoÅ^a�
hÄ`8^ade\�uwgi` ó bc|D^Ob�oÅ�$�po ó \��p��bcgÒÃD\~\�äsbc\�fD¿l\�¿opfbc|z\~hÄklbckz`�\iÏ
� gibc\"bc|_^ab �l§s���s�@�i�z§�� oÅ�Qb�|z\"bc\�^idede^abc\ªfz\�^i`c\��vbwbcg1bc|_\
Ã_^i���R^if_¿ �l§s���s�@�i�z§ d oÅ�Jbc|_\�gabc|_\�`Jbc\�^aded^Ob�\iÏ
ñ¥hªbc|z\�`c\oÅ�^afÍgi]z]Ugifz\�f�beu$o�bc|_o�fÍbc|_\�×%&cÖ�'('8ây&�Ö9-��:'�0îØ+3 �8Ö
ËZ^ifÁ\��igi�p�i\�¿Î]_^i`�^id/\�bc\�`8Ì4È:bc|z\
^iyi\�f�be^inðb8����kzf_¿z\�`e]z`�\���Æ
�ckz`c\���Ë �Copyikz`�\Ò÷sÌ�"�gabc|_\�`�u$op�c\iÈ*o�be^Mnðb�����fzgib1kzfD¿l\�`/]z`�\���Æ
�ckz`c\��3Ë��Co�yMkz`c\�øMÌðÏ
�W|z\�f��ckzf_¿l\�`�]z`�\�����kz`�\	�_È�bc|_\�^ayi\�f�bªuJ^af�b��ªb�g
]_^i���ªbc|_\
Ã_^i���ÜÏ*ñ¥hÉ]_^i���co�fzy~bcg �l§s���s�@�i�z§�� ��\�\�d�
�c��^OhÄ\	�_ÈMo�bJu$o��p�U¿zg
�cg#"Ugabc|_\�`�u$op�c\iÈUoÇbªu$o��p�*n4gifD��oÅ¿l\�`"]_^i���co�fzyeb�g �z§s�����@�M�z§ d Ï
ñ¥h�fz\�oÇb�|z\�`"]_^i��� �c\�\�d���c��^OhÄ\	�_Èlbc|_\1^ayM\�f�b |zgM�p¿z� bc|z\�Ã_^a�p�LÈ
kzfz�p\����Cbc|_\�`�\$op�:^if1gM]z]DgMfz\�f�b�u$o�bc|zopf/bc|z\�-MÖ�'Ü×_Ö�&�Ø+0 �Zß+3�-��:'�$
0îØ+3 �8ÖÔËZ^af_gabc|_\�`�\��igi�p�i\�¿Í]_^a`8^ade\4b�\�`ðÌðÈJopfWu$|zopn8|Ón�^i�c\½o�b
n4�p\�^i`���b�|z\�Ã_^a�p�RÃs��]_^M�c�copfzy/bcg �z§����s�@�M�l§ d Ï
�W|z\�f��cfzgab�kzf_¿z\�`�]z`�\�����k_`c\��zÈUbc|z\^iyi\�f�bÑu$o��p�:]_^M�c�ªgif_���
o�h oÇb1n�^afÎopde]z`cgO�M\/bc|z\��vb�`�^abc\�yMopnekzbcop��o�bv��gihJbc|z\��vb8^Obc\Ãs�
n4\�f�bc`8^a�pop�co�f_y�bc|_\ÐÃD^a�p�LÏ ñ¥b
]_^M�c�c\��ÒbcgÀbc|z\õdegM��b
n4\�f�b�`�^i�
bc\�^aded^Ob�\"b�|_^Ob oÅ��c�i\�`�����^OhÄ\	��bcg]D^i���wbcg_Èlo�h:^afs�iÏ

�G]_^M�c�CoÅ��¿l\�\�de\�¿/�c^ahÄ\wgMfz�p�~oÇhUbc|_\JhÄgi�p��gOu$opfzy"bc|z`�\�\J�O^a�pkz\��
^a`�\�^a�p�����Å^a`�yi\ª\�fzgMkzyi|��z¨

� b�|z\~¿loÅ�vb8^af_n�\"b�gebc|z\�`�\�n�o�]_o�\�fMbf"

� b�|z\deo�fzopd�k_d ^ifzyi�p\/hÄgi`�d/\�¿ÔÃs�Ôbc|z\`�\�n�o�]zop\�f�b�ÈRbc|_\
Ã_^i���ÜÈ_^if_¿Ò\�^in8|�gi]z]Ugif_\�f�b5"z^if_¿

� b�|z\3¿loÅ��b�^afDn4\ÒÃU\4bvuw\�\�fÎbc|_\Ò`�\�n4op]zop\�f�b/^if_¿Î\�^in8|Îgi]zÆ
]Ugifz\�f�b�Ï

xQ^Mn8|õgahJbc|z\���\�¿loÅ�vb8^af_n�\��~^if_¿Î^afzyM��\��~oÅ��^ifÎ\��igM���M\�¿Ð]_^aÆ
`8^ade\4b�\�`�Ï�{J|sk_�Jb�|z\�¿l\�n4oÅ��opgiflÆ¥d^ ó opfzy/hÄ`�^id/\�u�gM` ó k_��\�¿^
bcgib�^i��gahCbvu�\����M\ª\��igM���M\�¿�]D^a`8^ade\4b�\�`8��¨

� b�|z\�]z`�\�����kz`�\Ñ¿lop��b�^if_n4\�"

� b�|z\~¿l\��c]U\�`8^Obcopgif¿loÅ�vb8^af_n�\b"

� ï_�M\ ]_^a`8^ade\�bc\�`8� hÄgi` ^M�c�c\����co�fzy ]_^M�c�c\�� b�g
�z§s�����@�M�z§�� ¨ bvu�g ¿zop��b�^if_n4\��Ó^af_¿ ^if�^afzyM��\�hÄgM`
^Mnðbcopfzy���kzfD¿l\�`�]z`�\�����kz`�\	�_È ]z�pk_��gifz\Ð¿loÅ�vb8^af_n�\Ð^if_¿
^if�^ifzyi�p\ªhÄgi` ^in4bcopfzy���fzgib$kzf_¿l\�` ]z`�\�����kz`�\	�#"l^af_¿

� b�|z\~�c^ide\"ïD�i\Ñ]_^a`8^ade\�bc\�`8��hÄgi` �z§s�����@�M�z§ d Ï

xQ^Mn8|Ñ]_^a`8^ade\4b�\�`Top�T^$`c\�^a�M��^i��k_\Qopf�bc|z\�`�^ifzyi\Q� ����«��¥È�`�\�]_`c\�Æ
�c\�f�bcopfzy^/]z`cgM]DgM`�b�o�gMf3gihÉb�|z\�`�^ifzyi\�^��O^aop�Å^aÃz�p\iÏ*[�oÅ��b�^afDn4\��
uw\�`�\���n�^i��\�¿�Ãs�õbc|z\d^Oälopd�kzd ¿zop^iyigifD^a�w��\�fzyab�|Àgih�bc|_\
ï_\��p¿�È�^if_¿Î^af_yi�p\��~uw\�`�\Ò��n�^i��\�¿õÃ��Í«�¬M���ÔËtbc|_\Òd^Oälopd�kzd
^aÃD��gM��klb�\�^afzyM��\3��o ��\�ÌðÏ
{J|z\�gMfz����\4äzn4\�]lbcopgifõb�g
bc|_op��uw^M�
bc|D^Ob�b�|z\e¿l\��c]D\�`�^abcopgif½¿loÅ��b�^afDn4\�uJ^i�"�cn�^a�p\�¿Ãs��bc|z\1]z`�\���Æ
�ckz`c\Ñ¿loÅ�vb8^af_n�\iÏ�{J|zoÅ�whÄgi`8n4\�¿b�|z\�¿l\��c]D\�`�^abcopgif¿loÅ�vb8^af_n�\�b�g
ÃU\��\��c�Ñb�|_^afÐb�|z\�]z`�\�����k_`c\e¿loÅ�vb8^af_n�\iÈ*��g�bc|D^Ob�bc|_\�`�\uw^M�
^a�puJ^��s�*�cgide\wb�^ ó \�`cÆ¥]z`cg�älopdeoÇbv��^Ob:u$|zoÅn8|/bc|z\ ^iyi\�fMb:uwgikz�Å¿
n4�p\�^i`Jbc|z\�ÃD^a�p�LÏ

	��
	 �1=���>�� �\� ��� =ÒP �3= ��= � >
{J|z\fzgMop�c�Ô\�fs��op`�gifzde\�f�b�gahwbc|_\3Þ�ßMà�ßzá*â�×Ð��gln�n4\�`~�c\�`��i\�`
opf_¿lk_n�\��"fzgioÅ����ïzb�fz\����"\��O^a�pk_^Ob�o�gMf_��Ï �w\��i\�`1ËÜ¯a�i�M�MÌ$��b�^abc\��
bc|D^Ob�n4gM]zopfzyeu$oÇb�|
fzgioÅ����ïzbcfz\��c� \��O^a�pk_^Ob�o�gMf_�Jopf^if�x���op�
��bcop���Co�fÔoÇb8��opflhZ^afDn4�iÏ�F \1¿z\���n4`�o�ÃU\�� bc|z`�\�\�bc\�n8|_fzopÊ�kz\���ÈDbc|_\
�co�de]z�p\���b/gih u$|zoÅn8|Á^a`�\Òopf_n4`�\�^M��opfzyb�|z\3]Ugi]_kz�p^abcopgifÁ�co ��\iÈ
^afD¿Ò`�\���^ade]z�po�f_ye^if_¿�^��i\�`8^ayMo�f_y~bc|_\Ñïzbcfz\��c��Ï
����b�|z\"]Ugi]_kz�p^abcopgifÒ�co ��\Ñ^af_¿eb�|z\ªf�k_d�ÃU\�`Jgah�ïzb�fz\����J�c^id/Æ
]z�p\�����\���^i��kD^Obcopgif
^i`c\�opf_n4`�\�^M��\�¿�È_yM\�fz\�`�^abcopgif_�wb8^ ó \���gMfzyi\�`
bcg¾��opd�k_�p^abc\iÏÝ{J|�kD�ÔgMfz\�d�kD�vbõn8|zgsgM�c\Á^WÃ_^i�p^if_n4\�ÃU\4Æ
bvuw\�\�f]Ugi]zk_�p^abcopgif��o ��\MÈzfskzd�ÃU\�` gih*��^ade]z�p\�����\��O^a�pk_^Ob�o�gMfRÈ
^afD¿3fskzd1ÃD\�`�gihCyM\�fz\�`�^abcopgif_�$�co�d1kz�Å^Obc\�¿�ÏJ["^i`cuw\�fõËL¯i�i�i��Ì
n4�Å^aopd�Cbc|_^ab*bcgÑgiÃlb8^aopf�b�|z\$ÃU\���b*`�\��ckz��b*hÄ`cgMdÿbc|z\$^��O^aop�Å^aÃz�p\
jS8Q}%b�o�de\MÈTgMfz\��|zgMkz�Å¿�kD��\�^���yM\�fz\�`cgMk_�c���
�Å^a`�yi\��Ò]Ugi]lÆ
kz�Å^Ob�o�gMfRÈÉ^afD¿½b�|_^Ob�b�|z\ef�k_d�ÃU\�`�gah�ïzbcf_\����~�c^ide]z��\��ªk_��\�¿
�c|zgikz�Å¿
ÃU\ �vkD�vbÑ\�fzgMkzyi|½�ck_n8|
b�|_^ObÑk_�co�f_yÒdegi`�\�¿lgs\��"fzgib
opd/]_`cgO�M\"�p\�^i`cfzopfzy
ËZn���\�^a`����eb�|zoÅ�$op� ]z`cgMÃz�p\�dò¿l\�]D\�f_¿l\�fMbðÌðÏ
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passBall(1)

is very safe
Only pass 1
is very safe

Teammate 1 is
more central

Teammate 0 is
more central I am most

central is most central
Teammate 0

is most central
Teammate 1

Both passes
are very safe

Neither pass
is very safe

holdBall()

passBall(0) passBall(1)holdBall() holdBall() holdBall() passBall(0)

Only pass 0

�Topyik_`c\~øl¨�{J|_\Ñ��yi\�fMb8��	D[�\�n4oÅ��opgiflÆî¼½^ ó opfzy �z`8^ade\�uwgi` ó �W|z\�f ��gab�} fD¿l\�`U8Q`c\��c�ckz`�\iÏ

{J|z\�fzgioÅ���Íïzb�fz\����3\��O^a�pk_^Ob�o�gMf_�3gah ó \�\�]_^�uJ^��ÎhÄgM`�n�\�¿Wk_�
bcgõ`�\�\���^i��kD^Obc\^a�p�$n�^if_¿loÅ¿z^Ob�\��/o�fG\�^in8|ÁyM\�fz\�`�^abcopgifRÈ:gibc|lÆ
\�`�u$oÅ��\
^õde\�¿lopgln4`�\½n�^if_¿loÅ¿z^Ob�\�deopyi|�b�ÃzoÅ^i�eb�|z\½]Ugi]zk_�p^aÆ
bcopgifÃs�/`c\�n4\�o��sopfzy~^ÑhÄgi`cbck_oÇb�gik_�c���/yigsgl¿1ïzbcf_\�����ÏaF gOuw\��M\�`�È
bc|_op�Ñ`�\�\���^i��kD^Obcopgif�op�Ñ�M\�`��
\4äl]U\�f_�co��M\iÏ/ñ¥hwuw\ek_�c\ !Í�c^id/Æ
]z�p\�����\���^i��kD^Obcopgif�o�fÎ^�]Ugi]zkz�Å^Ob�o�gMfõgahw�co ��\ � ÈT^af_¿Ðo�hw\�^in8|
n�^if_¿loÅ¿z^Ob�\:op�Én4gide]z�p\4b�\��p�"`�\�\��O^a�pk_^Ob�\�¿"o�f�\�^in8|ªyi\�f_\�`8^ObcopgifÉÈ
bc|_op�$`�\�Ê�kzop`�\��J^1bcgab8^a�Rgih*¯%! � ��^ade]z�p\�����yM\�fz\�`�^abcopgifRÏ
�Ð\�k_�c\�¿^�¿lo�Â@\�`�\�f�bw^i]z]z`�gM^in8|/Ã_^M��\�¿egif ó \�\�]zopfzy~^ �ß��f$
� 3��ÔØ��OÖ�&cØ��MÖ�gah�b�|z\n�^afD¿lop¿_^Obc\���	���^ade]z�p\���Ï��W|z\�fõ^�n�^afzÆ
¿loÅ¿z^Ob�\"oÅ�Qï_`���b�yM\�fz\�`�^abc\�¿
ËZ^i�w^�n8|_o��Å¿_ÌðÈlo�b��Qïzb�fz\����wop�w�c^id/Æ
]z�p\�¿�!½b�o�de\���È_^if_¿�o�b���� 023@Ö�'('�Ø+&�&cØaÚ"oÅ�Jo�f_oÇb�op^i��oÅ��\�¿Òu$o�bc| !
n4gM]zop\��$gihTb�|z\�^��i\�`�^iyi\"gahCbc|z\���\~��^ade]z�p\���ÏQñîf\�^Mn8|
��kzÃD��\�Æ
Ê�kz\�f�b�yM\�fz\�`�^abcopgifRÈ�b�|z\$ïzb�fz\����:oÅ���c^ide]z��\�¿�gMf_n4\$gMfz�p�iÈi^if_¿
bc|_op��fz\�u��c^ide]z��\�`�\�]_�p^Mn4\��wb�|z\~gM�p¿l\��vb���^ade]z�p\�`�\�d^aopfzopfzy
opf~oÇb8�Rï_bcfz\��c�C^a`�`�^��MÏR{J|z\�ï_bcfz\��c�T\���bcopd^Obc\QhÄgi`C^ n�^if_¿loÅ¿z^Ob�\
opfÔ^yiop�i\�f
yi\�fz\�`8^Ob�o�gMf�oÅ��bc|z\/^��i\�`8^ayM\"gih:bc|z\/�c^ide]z��\�� opf
o�b��Jïzb�fz\����$^a`�`8^���^ObJbc|_^ab$bcopde\iÈzopyifzgM`copfzy/giklb���op\�`8��Ï
{J|zoÅ� bc\�n8|_fzopÊ�kz\ `�\�¿lk_n�\�� bc|z\ fskzd�ÃU\�` gih �c^id/Æ
]z�p\�����yM\�fz\�`�^abcopgif hÄ`�gid ¯%! � b�g Ë�!ò©<«�Ì � È ^a�p��gOu$opfzy
k_�Jb�ge`ckzffz\�^a`�����bvu$opn�\Ñ^M�Jd^afs�ÒyM\�fz\�`�^abcopgif_�wopf^/yMo��M\�f
`�kzflÆÜbcopd/\MÏ � gibc\1bc|_^ab"b�|zop�"b�\�n8|zfzoÅÊ�kz\/op�Ñ^a]_]z��oÅn�^iÃz�p\�gif_���
u$|z\�`c\�n�^if_¿loÅ¿z^Ob�\��$n�^af�]D\�`��cop��b opfÒb�|z\�]DgM]zkz�Å^Ob�o�gMfRÏ
ñîf�^M¿z¿lo�bcopgif
b�g�b�|z\1f_gioÅ���\�fs�sop`cgMfzde\�f�b�gahQbc|z\eÞ�ßià8ßzáCâ�×
�cgsn�n4\�`���\�`c�M\�`�È�ïzb�fz\����\��O^i��k_^abcopgif_�^i`c\½^aÂU\�nðb�\�¿ÍÃs��bc|_\
n8|zgMopn�\ gah�b�\�^ad de\�d1ÃD\�`���Ï �To�bcf_\�������^ade]z�p\���^a`�\�^i����opyif_\�¿
\�Ê�k_^i���p�1bcg�^i���D]z�p^��M\�`8�:gif�^�bc\�^idÏ*�-yigsgl¿e]z�Å^��i\�`*b�|_^Obwop�
bc\�^ade\�¿Òu$oÇb�|Òbvuwg�opflhÄ\�`copgi`w]z�Å^��i\�`8��op�wkzfz�po ó \��p�/bcge^in8|zop\��M\
^�yMg�gl¿ey�^ade\�¿lkz`8^Ob�o�gMf�"sn4gifs�M\�`8��\����MÈi^�Ã_^M¿e]z�p^��M\�`:b�|_^Obwop�
bc\�^ade\�¿õu$o�bc|õbvuwg
��k_]D\�`copgi`~]_�p^��M\�`8�"oÅ�~�po ó \��p�½b�g½^in8|zop\��M\
^1yigsgl¿�yM^ide\ª¿lk_`�^abcopgifRÏ:{Tg1deopfzo�deoÅ��\ªb�|zop�J\�ÂU\�nðb�ÈlÃD\�hÄgi`�\
\�^Mn8|Á`�gikzfD¿�gah"`c\�\��O^a�pk_^Ob�o�gMf�uw\3`8^af_¿zgideop�c\�¿�bc|z\�gi`8¿l\�`
opfu$|zopn8|/b�|z\�n�^if_¿loÅ¿z^Ob�\��:uw\�`�\ ��n8|z\�¿lk_��\�¿/hÄgi`�\���^i��kD^ObcopgifÉÏ
{J|sk_�*o�hU^"]z�p^��M\�`f	 �Éïzb�fz\����*uw^M�*�c^id/]_��\�¿�!�b�o�de\��*o�fe^ªyi\�fzÆ
\�`8^Ob�o�gMfRÈlo�b u�gMkz�p¿3]z�Å^���opf !�`�^if_¿lgMd/�p�Ò�c\��p\�n4bc\�¿Òbc\�^ad��Ï

xQ^Mn8| ó \�\�]_^�uJ^��Ôy�^ade\�vb8^a`cb��1u$oÇb�|ÀgMfz\ ó \�\�]U\�`eopfÁ\�^in8|
gah�bc|z`�\�\en4gM`cf_\�`8��Ï �wgibc|�b�^ ó \�`8�"^i`c\/]z�Å^in�\�¿½opf�bc|z\gibc|z\�`
n4gM`cf_\�`�ÈM^afD¿ebc|z\"Ã_^a�p�Uop��¿l`cgM]z]U\�¿opfÒ^~`8^afD¿lgide�p�MÆî�c\��p\�nðb�\�¿
n4gM`cf_\�`�gln�n4kz]zop\�¿ÔÃs�^ ó \�\�]U\�`�Ïª{J|zoÅ�"d/\�^af_��bc|D^ObÑgifz\1gah
bc|_\ ó \�\�]U\�`8�"u$o��p�:^a�puw^��l����b�^i`�bªÃD\�bvu�\�\�fÔbvu�gb�\�^id/d^abc\��
^afD¿3gM]z]UgM�coÇb�\"b�|z\�b8^ ó \�`���Ï:{J|zoÅ� n4`�\�^abc\��wb�|z\�]Ugabc\�f�bcoÅ^a��b�g
\��Mgi�p�i\/��]U\�n�op^i��oÅ��\�¿½`�gi�p\��Ñ¿l\�]D\�f_¿lopfzygifÔ]_�p^��M\�`ª]Dg���o�bcopgifRÏ
{TgÁ\4äl]z�pgio�b�bc|zoÅ��]Dgibc\�f�b�op^i�"hÄgM`��c]U\�n4oÅ^a�poÅ�c^abcopgifRÈ"u�\�k_��\�¿
^Î¿lo�ÂU\�`c\�f�b�]DgM]zkz�Å^ObcopgifÀhÄgi`Ò\�^in8|Ígahªbc|_\bc|z`�\�\ ó \�\�]U\�`8��Ï
{J|zoÅ�/d/\�^af�bek_��opfzyÔbc|z`�\�\��d^i���J]Ugi]zkz�Å^Ob�o�gMf_�1o�f_��bc\�^i¿Ágah
gif_\ª�Å^a`�yi\ª]Ugi]zkz�Å^Ob�o�gMfRÏ

	 éÍû �$ì�
�è � µ çöë í�ê ��
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[ª^a`�u�\�fGËÜ¯a�M�i�MÌÑ�ckzyMyi\���b��ªb�|_^Ob�bvu�g
opde]DgM`�b8^af�b�]_^i`�^id/\�Æ
bc\�`��bc|_^ab3\4Â@\�n4b3xQ��]D\�`�hÄgM`cd^afDn4\
opfÓ^õfzgioÅ���Í\�fs�sop`cgMflÆ
de\�f�b�^a`�\e]DgM]zkz�Å^Ob�o�gMfõ�co ��\�^afD¿Ôfskzd1ÃD\�`~gahwïzbcf_\����~�c^id/Æ
]z�p\�����\���^i��kD^ObcopgifÉÏ ã"kz`3ï_`8�vb�`cgMkzf_¿Wgih~\4äl]D\�`copde\�f�b��ÒhÄgaÆ
n4kD��\�¿ÁgMfÀ�O^a`��so�f_y½bc|_\��c\�]D^a`8^ade\4b�\�`8��b�gÎ¿l\4b�\�`�d/opfz\�bc|_\
`8^afzyM\3gih"]_^i`�^id/\�bc\�`��/u$|zoÅn8|ÀÃU\�|D^��i\�¿Ábc|_\��cÃD\��vb �zÏG�Ð\
\4äl]U\�`�o�de\�fMb�\�¿3u$oÇb�|
]DgM]zkz�Å^Ob�o�gMf��co���\��J`8^afzyMo�f_y�hÄ`�gidò®1b�g
¯a�M�zÈzu$o�bc|½bc|z\~fskzd1ÃD\�`�gihCï_bcfz\��c�"�c^id/]_��\�� `8^afzyMo�fzy/hÄ`�gid
«~b�g�¯i�i�zÏ"��\�hÄgikzfD¿
bc|D^Ob���d^a�p�p\�`�]Ugi]_kz�p^abcopgifÔ�co ��\��ª¿loÅ¿
fzgib"d^aopf�b�^aopf
\�f_gikzyM|Ô¿lop�i\�`8�coÇbv�Òbcg3n�gi]U\�u$o�bc|
b�|z\/fzgioÅ���
ïzb�fz\����:\��O^i��k_^abcopgif_��ÈOu$|zop��\$�Å^a`�yi\�`*]DgM]zkz�Å^Obcopgife�co���\��*�p\�^a`�f�b
degi`�\ ���pgOu$�p�~u$oÇb�|fzg~^a]_]_^a`�\�f�b:ÃD\�fz\4ï_b�ÏQmsopdeo��Å^a`����MÈak_�co�f_y
bcgsg�hÄ\�uÎïzb�fz\����*�c^ide]z��\��É`�\��ckz��bc\�¿�o�f/^ ï_bcfz\��c�C^a]z]_`cg�älopde^aÆ
bcopgif�bc|D^Ob�uw^M�"bcgsg3f_gioÅ���½^if_¿Ô]_`cgl¿lk_n�\�¿Ô\�`�`�^abcoÅn�`�\��ckz��b���È
u$|zop��\wk_�co�f_y�b�g�g"d^afs�Ñïzbcf_\����C��^ade]z�p\��T`�\��ckz�Çb�\�¿�o�f/���pgOu�\�`
�p\�^a`�fzopfzyÒu$o�bc|Ðfzg
^a]_]_^a`�\�f�b"ÃU\�f_\4ïzb�Ï/{J|zoÅ�ª`cgMkzf_¿Ôgah�\�äsÆ
]U\�`�o�de\�f�b8����\�^i¿Ðk_�~bcg½n4gMf_n4�pk_¿l\eb�|_^Ob�^]Ugi]_kz�p^abcopgifÎ�co���\
gah~«��bcgÔ÷M�½�c|zgik_�p¿ÎÃU\ÒkD��\�¿�È:u$oÇb�|Á��^ade]z�p\�����\��O^i��k_^abcopgif
ÃU\4bvuw\�\�f½ø/^afD¿Ô«��zÏ
ã"kz`�c\�n4gMf_¿�`�gik_f_¿Îgahª\4äl]U\�`�o�de\�f�b8��b�\���bc\�¿Á\�^in8|�gih�bc|_\
]Ugi]zkz�Å^Ob�o�gMfÓ��o ��\��Ô«��zÈ ¯a�_È ®i�_È ^af_¿W÷��zÈJu$o�bc|¾øzÈ"°sÈ ^if_¿
�Ðïzb�fz\����Ò��^ade]z�p\���Ïö�Ð\
hÄgMkzf_¿Íbc|D^Ob3^Î]Ugi]_kz�p^abcopgifW�co���\
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gahJ¯a��u$o�bc|Î°eï_bcfz\��c�Ñ��^ade]z�p\��"��\�^a`�fz\�¿hZ^M�vb�\���b�È�Ãzkzbªuw\�`�\
n4gMf_n4\�`cf_\�¿
b�|_^Ob�b�|z\e]DgM]zkz�Å^Ob�o�gMfÐ�co���\ede^��ÔÃD\eb�g�g�cde^i���
bcged^aopf�b�^io�f�¿lo��M\�`8��o�bv�½ËÄ|_\�f_n�\ª�popd/o�bcopfzy/hÄkz`cbc|z\�`$o�de]z`�gO�i\�Æ
de\�f�b8Ì4ÈÉ^afD¿½b�g3`�\4b8^aopfÔu$|_^abÑ|D^i¿½ÃU\�\�f��p\�^i`cf�bËÄ\�äs]UgM�copfzy
bc|_\1]Ugi]zk_�p^abcopgif
b�g�bc|_\1¿z^ifzyi\�`�gahw^�]Ug�gM`"n�^af_¿loÅ¿z^abc\�ÃU\4Æ
opfzyÁ^�uJ^a`8¿l\�¿G^afWgO�M\�`cÆÜyM\�fz\�`cgMk_��ïzbcfz\��c��¿lkz\½bcg��po�deo�bc\�¿
��^ade]z�po�fzysÌðÏ��Ð\�giÃD��\�`c�M\�¿Òbc|_^ab o�f�bc|_\~\4äl]U\�`�o�de\�f�b8�$u$oÇb�|
^Í]DgM]zkz�Å^Ob�o�gMf��co ��\õgah«��_È�b�|z\Î]DgM]zkz�Å^Ob�o�gMf_�½^a�pdegM��b½^a��Æ
uJ^��s����g��vbQ¿lop�i\�`��co�bv�1^Ohtb�\�`Qbc|z\�o�`�]D\�`�hÄgM`cd^afDn4\$�p\��i\����p\�¿egiÂCÈ
�cgide\4b�o�de\��ª`�\��ckz��bcopfzy3opfõ^�¿z\�yi`8^i¿_^ObcopgifÔo�f�ïzbcf_\�����¿lkz\e^
���pk_n ó � �În�^if_¿loÅ¿z^Ob�\Ô¿lgideopf_^Ob�o�f_yÎbc|z\���d^a�p��]Ugi]_kz�p^abcopgifRÏ
8*gi]_kz�p^abcopgif_�ªgihw�co���\¯i�Ògln�n�^i�copgif_^i���p�
\4äl|zopÃzo�bc\�¿Ôbc|_op��ÃU\4Æ
|_^��sopgikz`�ÈaÃzklbQbcg�^Ñ�p\�����\�`�\4äsb�\�f�b�Ès^af_¿/u$o�bc|��cu$oÇhtb�\�`�`c\�n4gO��Æ
\�`��iÏ 8*gi]zkz�Å^Ob�o�gMf_�wgah:��o ��\~®M�/fz\��M\�` \�äs|_o�Ãzo�bc\�¿^afs�Ò�co�yMfzoÇhtÆ
oÅn�^af�b�]z`�giÃz�p\�d�ªu$o�bc|Ðïzbcf_\����Ñ`c\�bc\�f�b�o�gMfRÏ<8*gi]zkz�Å^Ob�o�gMf_�"gah
�co���\ª÷��/��\�^a`�fMb$degi`�\����pgOu$�p�u$oÇb�|�f_ge^i]z]_^i`c\�fMb$ÃU\�fz\�ïzb�Ï
�J^i�c\�¿GgMfGbc|z\���\½\�äl]D\�`copde\�f�b���È$u�\Ðn4gMf_n4�pk_¿l\�¿Íbc|_^abÒbc|_\
hZ^i��bc\��vb:�p\�^i`cfzopfzy��c]D\�\�¿1uw^M�*giÃlb8^aopfz\�¿1k_�co�fzy�^ª]Ugi]zkz�Å^Ob�o�gMf
�co���\$gahR¯a�ªu$oÇb�|Ò°�ïzbcfz\��c�Q�c^id/]_��\���ÈaÃ_klb�bc|D^Ob:hÄgi`�^Ñ`�\��poÅ^aÃz�p\
Ã_^i�p^if_n4\1ÃD\�bvu�\�\�f½�p\�^i`cfzopfzy���]U\�\�¿Ô^afD¿ïzbcf_\����"`�\4b�\�f�bcopgifÉÈ
^ ]Ugi]_kz�p^abcopgif��co ��\wgah_®i��u$oÇb�|1� ïzbcfz\��c�C��^ade]z�p\��C��|zgMkz�Å¿~ÃU\
k_�c\�¿�Ï*�Ð\�b�|z\�f3`�^ifÒ^�b�|zop`�¿Ò`cgMkzf_¿gihR\4äl]D\�`copde\�f�b���k_�co�f_y
]Ugi]zkz�Å^Ob�o�gMf-�co���\���gih1¯a��^if_¿Ó®M�zÈ$u$o�bc|¾°�^af_¿Ó�Îïzbcfz\��c�
��^ade]z�p\���ÈzgO�i\�` ^e�p^i`cyM\ªfskzd1ÃD\�` gah*`�kzf_��Èzbcg�n�giflïD`cdòbc|_^ab
gik_`$`c\���kz��b��$n�gikz�Å¿3ÃD\�`�\��pop^iÃz�p��`c\�]z`�gs¿zk_n4\�¿�Ï
�Co�fD^a�p���MÈTopfÎgikz`ÑhÄgMkz`cbc|Î`�gikzf_¿Ðgihw\�äs]U\�`�opd/\�f�b���ÈTuw\ebcgsg ó
^
bv�s]zoÅn�^i�Q`�kzf�u$o�bc|Á^Ô]DgM]zkz�Å^Ob�o�gMfÁ��o ��\Ògah�®i��^af_¿Î�½ïzb�Æ
fz\��c�~��^ade]z�p\���ÈT^if_¿Ð`c\�bc`�gM^Mnðbcop�i\����
\��O^a�pk_^Ob�\�¿õ\�^Mn8|�de\�d1Æ
ÃU\�`JgahRb�|z\Ño�f_oÇb�op^i�@^if_¿ïDf_^a�@]Ugi]zkz�Å^Ob�o�gMf_��gO�i\�`�bc|_gik_��^af_¿_�
gah*yM^ide\��Jb�g�^in�n�kz`8^Obc\����Ò\���bcopde^abc\Ñb�|z\�op`"^MnðbckD^a�@ïzb�fz\�����\���Ï
¼
\�^afsu$|zop��\MÈ_uw\~`�^if\4äl]D\�`copde\�f�b�� u$oÇb�|½]DgM]zkz�Å^Ob�o�gMf½��o ��\��
gah�÷M�u$o�bc|õ�ïzb�fz\����ª�c^id/]_��\�� hÄgM`Ñ^Ò��gMfzyi\�` b�o�de\1bcgn4gifzÆ
ï_`�d bc|D^Ob$bc|_\�`ckzfD�Ju$oÇb�|^/]Ugi]zk_�p^abcopgif��o ��\Ñgah*®i�/u$o�bc|�
ïzb�fz\���� ��^ade]z�p\��Juw\�`�\�ï_fD¿lo�f_yyigsgl¿3�cgi�pklbcopgifD��Ï
�Co�yMkz`�\"���c|zgOu ��^1��n�^ab�bc\�`�Æ¥yi`8^a]_|/gih�bc|z\Ñ�ckz`c�sop�so�fzy/n�^if_¿lo�Æ
¿z^abc\��~hÄ`cgMd7\�^in8|õyi\�fz\�`8^Ob�o�gMfõgah$gifz\ ó \�\�]D\�`~]Ugi]zkz�Å^Ob�o�gMf
hÄgi`/^
`�kzf�k_�co�f_yÔ^
]Ugi]zkz�Å^Ob�o�gMfÁ�co���\�gah�®M�
^af_¿��
ïzbcfz\��c�
��^ade]z�p\���Ï���\gMÃ_��\�`c�M\�¿��copd/op�Å^a`/bc`�\�f_¿_�eo�fÀbc|z\]Ugi]zk_�p^aÆ
bcopgifD��gihRbc|_\ªgibc|z\�`wbvu�g1]z�p^��M\�`8��Ï*{J|z\ª��opfz\��J`c\�]z`c\���\�f�bQbc|_\
ÃU\���b�ËÄd^aäsopd�k_dÌ4ÈQ^��i\�`�^iyi\MÈT^afD¿Îu�gM`���b3ËZd/opfzopd�kzd�Ì~ïzb�Æ
fz\��c�c\���gah*bc|z\/��k_`c�sop��opfzy�n�^af_¿loÅ¿z^abc\���gah:\�^Mn8|yi\�f_\�`8^ObcopgifÉÏ
{J|z\Ñb�o�de\ÑhÄgi`Jb�|z\�`�kzf3uJ^i� øi®/|zgikz`8��È@ËL��°�yi\�fz\�`8^Ob�o�gMf_�8ÌðÏ
{J|z\ |_o�yM|z\���b�^��i\�`�^iyi\�ïzbcf_\����:uw^M��^a]_]z`cg�älopd^Obc\����1®i�i��n���Æ
n4�p\���ËZ®M�Î��\�n4gifD¿z�gah�Þ"ßià8ßlá*â�×Ày�^ade\
bcopde\�Ì4Ï�{J|_op�Òuw^M�
^Obcb�^io�fz\�¿Wu$o�bc|zopf¾¯MøÎyi\�fz\�`8^Ob�o�gMf_��È$gi`�¯i��|zgMkz`8��gah1`ckzfzÆ
fzopfzyõbcopde\iÈ ^ahtbc\�`Òu$|zopn8|Íb�|z\Ô^��i\�`�^iyi\3ïzbcf_\������\��i\��p�giÂCÏ
{J|z\�¿l\�yi`8^i¿z^abcopgif�o�fÐïzb�fz\����ªhÄ`cgMd yM\�fz\�`�^abcopgif_�Ñ®i�ÒbcgÔøMø
oÅ�w^/`�\��ckz��bwgihTfzgMop�c\"opf�b�|z\ªïzbcf_\����J\��O^a�pk_^Ob�o�gMf_��Ï*{J|_\�ï_`8��b
yi\�fz\�`8^Ob�o�gMf
o�fÐu$|zoÅn8|
bc|_\/ÃU\���bªïzbcfz\��c�ªuJ^i�"yi`�\�^abc\�`�bc|_^if
®i�M�1n��ln4�p\��JuJ^i�Jyi\�fz\�`8^Ob�o�gMf3¬_Èzu$|zoÅn8|�n�gi`�`c\���]Ugif_¿_�Qb�g��zÏ ÷
|zgMkz`���gah�`ck_fzfzopfzyÎbcopde\b"ª|zgOuw\��i\�`�ÈwÃU\�n�^ik_�c\
bc|z\½ïzbcfz\��c�
\��O^i��k_^abcopgifeoÅ��fzgMop�c�iÈMoÇbQoÅ�:�po ó \��p��b�|_^ObQbc|z\ �c`c\�^a� � ï_bcfz\��c�Qgah
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� 8*gi]zkzÆ
�Å^Obcopgif
mso ��\1ã�h:®i�1�WoÇb�|½� �To�bcf_\�����ml^ade]z�p\���Ï

bc|_op� n�^af_¿zop¿z^abc\ÑuJ^i�J�pgOu�\�`�Ï
{J|z\���n�^ab�b�\�`cÆÜyM`�^i]z|1`�\��M\�^i�p�Cb�|_^ObQf_g�n�^if_¿loÅ¿z^Ob�\��:gMÃlb�^io�fz\�¿
^af/\���bcopd^Ob�\�¿�ïzbcfz\��c��yi`�\�^Ob�\�`Tbc|_^if®Møa�"n4�ln4�p\��*opf/bc|z\wï_`8��b
«�ø/yM\�fz\�`�^abcopgif_��ÏJ{J|zop��op�"��opyif_oÇïDn�^af�b ÃU\�n�^ik_�c\~oÇbª��kzyMyi\��vb8�
bc|D^Ob$��gMd/\ª�p\�^a`�fzopfzy~oÅ�w`c\�ÊMk_o�`�\�¿ÃU\4hÄgM`c\Ñ�ck_n8|�|zopyi|Òïzbcfz\��c�
\���bcopd^Ob�\���n�^af
ÃU\1^ab�b�^io�f_\�¿�Ï�{J|sk_�ª^a��bc|_gikzyM|3b�|z\�`�\�oÅ��^if
\��p\�de\�fMb:gihD�pk_n ó o�f/]z�Å^��so�fzy ó \�\�]_^�uJ^��iÈO� ó o��p�sop�:^if�gO�i\�`c`�oÅ¿sÆ
opfzyªhZ^inðb�gi`*opf/¿l\�bc\�`cdeopfzo�f_y"b�|z\JyM^id/\J¿lkz`8^Ob�o�gMf1^if_¿�|_\�f_n�\
^en�^if_¿loÅ¿z^Ob�\b	 �$n8|_^af_n�\Ñgah:��kz`��so��O^i�*ËL^Ob �p\�^M�vb$opfzoÇb�op^i���p�zÌðÏ
�Co�yMkz`�\~°1]_��gib��Jb�|z\~¿loÅ�vb�`copÃzklb�o�gMf�gihTb�|z\ �c^Mn�n�kz`�^abc\���� �1\���Æ
bcopd^Ob�\�¿Ðïzb�fz\�����\��ªhÄgi`�b�|z\opfzoÇb�op^i��^if_¿�ï_f_^a�Q]DgM]zkz�Å^ObcopgifD�
hÄ`�gid �Co�yMkz`�\3�zÏ ��gab�\Òb�|_^Ob/bc|z\]z�pgabcbc\�¿Á^in�n4kz`8^Ob�\��p�õ\���Æ
bcopd^Ob�\�¿Gïzb�fz\�����¿loÇÂ@\�`8�hÄ`�gid b�|z\�x���	 �Òn4g�^a`8��\
\��vb�o�d^aÆ
bcopgif
ËL�Ñïzbcf_\������c^ide]z��\���Ì�"M^ife^Mn�n�kz`�^abc\Jïzb�fz\����:\��vb�o�d^Ob�\$op�
¿l\�bc\�`�deo�f_\�¿�`c\�bc`�gM^in4bcop�i\����Ãs�bc\��vb�o�fzy�b�|z\n�^afD¿lop¿_^Obc\/hÄgM`
bc|_gik_��^af_¿_�JgahCïzbcfz\��c�$��^ade]z�p\���ËÄbcgu$o�bc|zopf�� «~�c\�n�gif_¿_Ì4Ï
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C$\�bc`�gM^in4bcop�i\Qbc\���bcopfzyªgahzb�|z\wï_f_^i��]Ugi]_kz�p^abcopgif/��|zgOuw\�¿�bc|_^ab
^a��bc|_gikzyM|ebc|z\Ñ^in�n4kz`8^Ob�\��p�1\��vb�o�d^Ob�\�¿eï_bcfz\��c�c\��Qgah�bc|_\ª�ckz`cÆ
�so��sopfzy~n�^if_¿loÅ¿z^Ob�\��:uw\�`�\Jk_�ck_^a�p���/�pgOu�\�`Tb�|_^afeb�|z\�n�gM^a`8�c\��p�
\���bcopd^Ob�\�¿1ïzbcf_\�����\���Èibc|z\�`c\$uw\�`�\$��\��i\�`8^a�zn�^af_¿zop¿z^abc\��:u$oÇb�|
|zopyi|�^in�n�kz`8^Obc\����\��vb�o�d^abc\�¿�ïzbcf_\�����\���Èz^if_¿�opf��cgide\Ñn�^M��\��
bc|_\3^in�n4kz`8^Ob�\��p��\��vb�o�d^abc\�¿Îïzbcfz\��c�1uJ^i�~|_o�yM|z\�`1bc|_^ifÎbc|_\
n4g�^a`8��\����G\��vb�o�d^Ob�\�¿-ïzbcf_\�����Ï {J|z\În�^if_¿loÅ¿z^Ob�\�u$o�bc|¾bc|_\
ÃU\���bC^in�n4kz`8^Ob�\��p� \���bcopd^Ob�\�¿Ñïzb�fz\����RuJ^i�R`�^abc\�¿"b�|z\������$ÃU\���b
de\�d1ÃD\�`Copf1bc|z\w]DgM]zkz�Å^Ob�o�gMf1Ãs�Ñbc|_\wx��~ÏO�Ð\wn�^a�p�Mb�|zoÅ�:n�^afzÆ
¿loÅ¿z^Ob�\��h0Üâ_Ø+&�0ÜÏÉ�Ð\ n4gide]zkzbc\�¿1b�|z\$�Mø �ÿn4gifzïD¿l\�fDn4\Jo�f�b�\�`cÆ
�O^a�UhÄgi`wb�|z\Ñd/\�^af3ïzbcf_\�����gihÉb�|zop�$n�^af_¿zop¿z^abc\Ñ^i�_� ®z«��_È�®M®i�,�
n4�ln���\���Ï�Ð\�n�^i���:b�|z\��c\�n4gMf_¿�ÃD\��vb�n�^af_¿loÅ¿z^abc\½ËÄkD��opfzybc|_\
^in�n4kz`8^Ob�\��p�Á\��vb�o�d^Ob�\�¿Gï_bcfz\��c�8ÌeopfWbc|z\Ôï_f_^i��]Ugi]zkz�Å^Ob�o�gMf
�"ßOÙ}'�Ö�&ðÈU^af_¿Òbc|_\Ñbc|zop`�¿�ÃU\���b�n�^if_¿loÅ¿z^Ob�\���� 3 �8Ö�Ï
�Ð\�^a�Å��g�`�\4b�`cg�^in4bcop�i\��p��b�\���bc\�¿/b�|z\ opfzo�bcoÅ^a�*ËÄ`8^af_¿lgMde���1yi\�fzÆ
\�`8^Ob�\�¿_Ì�]Ugi]zk_�p^abcopgif�bcg^in�n4kz`8^Ob�\��p�\���bcopd^Obc\Ñb�|z\~^��i\�`�^iyi\
ïzb�fz\���� ÃU\4hÄgM`c\~�p\�^i`cf_o�fzyDÏw{J|_\�^��i\�`�^iyi\"ïzbcfz\��c�"gah*b�|z\~opfzoÇÆ
bcoÅ^a�É]DgM]zkz�Å^Obcopgif�uJ^i�Ñ«�¯i¬1n��ln4�p\���Ï
�Ð\�uw\�`�\ n4gifDn4\�`�fz\�¿/^iÃDgMklb�b�|z\�|zopyi|eï_bcfz\��c�c\��:gihÉ��gMde\$gah
bc|_\"de\�d1ÃD\�`���gah�b�|z\ªo�fzo�bcoÅ^a�@]Ugi]zk_�p^abcopgifRÈl�cg�uw\�`8^afÒ^M¿z¿lo�Æ
bcopgifD^a�U\4äl]D\�`copde\�f�b��"ËÄu$o�bc|�^~]Ugi]zkz�Å^Ob�o�gMfÒ�co���\ gahÉ®M��^afD¿�
ïzb�fz\�������^ade]z�p\��8ÌTbc|_^ab�ÃD\�yM^afeu$o�bc|�^Ñ]Ugsgi`:opfzoÇb�op^i�_]Ugi]zk_�p^aÆ
bcopgifÉÏ��Ð\/n�giflï_`�de\�¿�b�|_^Ob"bc|z\e�c^ide\�ïzbcf_\������O^a�pkz\���uw\�`�\
�p\�^a`�f�bRhÄ`�gidöbc|z\�]Ugsgi`To�fzo�bcoÅ^a��]Ugi]zkz�Å^Ob�o�gMfRÈO��k_yiyi\��vb�o�f_yJbc|_^ab
gik_`$`c\���kz��b��$^i`c\ªopf_¿l\�]U\�fD¿l\�f�b�gihÉbc|_\�o�fzo�bcoÅ^a�É]DgM]zkz�Å^ObcopgifÉÏ
{C^aÃz�p\�«n4gMde]_^a`�\���bc|z\`�\��ckz��b��/gah b�|zoÅ�eu�gM` ó u$o�bc|Àbc|_^ab
gahÉbc|z\Ñ`�\�opflhÄgi`8n4\�d/\�f�bw�p\�^i`cfzopfzy/^a]z]z`�gM^Mn8|�kzf_¿z\�`cb�^ ó \�f�Ãs�
m�b�gifz\3\4b^a�ÜÏ��Ð\ÒgMÃ_��\�`c�M\bc|D^Obemsbcgif_\3uJ^i�1^aÃz�p\�b�gÔopd1Æ
]z`�gO�i\1yM^ade\/¿lkz`8^ObcopgifÔhÄ`cgMd�^a]z]_`cg�älopde^abc\����
ølÏ øÒ�c\�n�gif_¿_�
bcg
«�÷_Ï ø/��\�n4gifD¿z��ËZ^if�opde]z`�gO�i\�de\�fMb$gih*�_Ï �e�c\�n4gMf_¿z�8Ìwu$oÇb�|
^a]_]z`cg�älopd^Obc\�����¯a�/|zgik_`��$gihC�p\�^i`cf_o�fzyDÏwã"kz` `�\��ckz��b�� �c|zgOu
opd/]_`cgO�M\�de\�f�b�opf
bc|_\1^��i\�`�^iyi\ÑyM^ide\1¿lkz`8^Ob�o�gMfhÄ`cgMd7«�¯lÏ ¬
�c\�n4gMf_¿z� bcg
¯O÷_Ï ¬��c\�n�gif_¿z�1ËZ^if½o�de]z`�gO�i\�de\�f�b"gih «�¯lÏ ���c\�n4Æ
gifD¿z��Ì4Ï� gab�\/bc|zoÅ���O^a�pkz\eop���cgide\�u$|_^Ob~�cde^i���p\�`ªb�|_^afÐbc|_\
\���bcopd^Ob�\�¿Áïzbcfz\��c�Ò¿l\4b�\�`�d/opfz\�¿ÁÃs�Îb�|z\
xQ� �Îbc|z\½^Mn�n4kzÆ
`8^Obc\½ïzbcfz\��c�3\���bcopd^Ob�\½k_�c\��3de^ifs�Àdegi`�\½��^ade]z�p\���È u$oÇb�|
bc|_\�x�� opf_n4�pk_¿lopfzyÔgMfz�p��b�|zgM�c\3n�^af_¿zop¿z^abc\��~b�|_^Obe��kz`��so��M\
opfMb�g�bc|z\efz\�ä�b~yM\�fz\�`�^abcopgifÁËZo�f�b�kzoÇb�o�gMfÎ��kzyMyi\��vb8��b�|_^Ob~�ckz`cÆ
�so��sopfzyn�^if_¿loÅ¿z^Ob�\��Ju$op���R|D^��i\ªÃD\�\�f
�pk_n ó o�\�`�b�|_^af`�\ �v\�nðbc\�¿
n�^if_¿loÅ¿z^Ob�\��8ÌðÏ:{J|z\ÑÃU\���bJde\�d�ÃU\�`Jo�f3bc|_\"ïDf_^a�@]Ugi]zkz�Å^Ob�o�gMf
gah*b�|z\1x��ÿuw^M�JhÄgik_f_¿bcgÒ|_^��i\~^if½^in�n�kz`8^Obc\����3\���bcopd^Obc\�¿
yM^ide\�¿lkz`8^Ob�o�gMf~gahU®M¯lÏ � �c\�n�gif_¿z��ÏÉ�Ð\w\4äl]D\�nðbCbc|_^abTb�|z\J¿loÇhtÆ
hÄ\�`�\�fDn4\��ÑopfÐbc|z\���b�^abcoÅn/ïzäl\�¿Ð�vb�`�^abc\�yiop\��eËZ^i��uJ^��l�"|_gi�Å¿lo�f_y
bc|_\1Ã_^i���*^afD¿
`�^if_¿lgMdÌ$ÃD\�bvu�\�\�f
b�|z\�bvuwg�uwgi` ó ��^a`�\�¿lk_\
bcgª¿lo�ÂU\�`c\�f_n4\��TÃU\4bvuw\�\�f�bc|_\�kzfD¿l\�`����sopfzy�ÃD^i�copn�� ó op���Å�Égihzbc|_\
^ayM\�f�b��ÑË�^ �l�M��Z_�s�s�\[5] È�X ��Yl�bZ_�l�s�`[5] ÈM^if_¿eX §M��#%$_§a� [5] ÌðÏ
�Co�yMkz`�\Q¬ n4gMde]_^a`�\��@b�|z\���bc`8^Ob�\�yMo�\���\��Mgi�p�i\�¿ªÃs�"bc|z\�]z�p^��M\�`8�
�h0Üâ_Ø+&�0ÜÈ �"ßOÙ}'�Ö�&ðÈ�^af_¿���� 3 �8Ö4Ï�ñ¥bª�c|zgOu �Jbc|_\~hÄ`�\�Ê�kz\�fDn4��gah
|zgM�p¿Ð¿lkz`8^Ob�o�gMf_�ªÃD\�bvu�\�\�fÐ]_^i����\��ªgi`Ñbck_`cfzgO�M\�`8� �½�c|zgi`cbc\�`
|zgM�p¿Î¿lk_`�^abcopgif_��de\�^afõbc|D^Ob~b�|z\Ò]z�Å^��i\�`�]_^i���c\���degi`�\gahtÆ
bc\�fRÏ:�Ð\ªgMÃ_�c\�`��i\$b�|_^Ob��"ßOÙ}'�Ö�&w^af_¿	� � 3 �8Ö�^i`c\ª��opdeo��Å^a`Jopf
bc|D^Ob*bc|z\��~ÃUgabc|e]_^M�c�CopflhÄ`�\�Ê�kz\�f�b����ÒËL^a]z]_`cg�älopde^abc\����Ñ÷ ��gah

{C^aÃ_��\e«i¨Qj�gMd/]D^a`�op�cgif
ã�h�ã"kz`QC \��ckz�Çb8�${ÉgÒmsbcgif_\b	 ��Ï
m�bc`8^Ob�\�yi� m�b�gifz\Ñ\4b�^i�LÏ {J|zoÅ�$u�gM` ó
� �puw^��l� F gM�p¿ ÷_Ï ° °sÏ ¯
C ^af_¿zgid ÷_Ï � «�®zÏ ø
DR\�^i`cf_o�fzy~ËZñîfzo�bcoÅ^a�
� �i\�`�^iyi\�Ì

ølÏ ø «�¯lÏ ¬

DR\�^i`cf_o�fzy Ë �Co�fD^a�
� �i\�`�^iyi\�Ì

«�÷_Ï ø ¯O÷_Ï ¬

bc|_\~bcopde\�Ì4Ï�F gOuw\��M\�`�È_opfs�i\���bcopyM^abcopgifgah:b�|z\��c\1n�^af_¿zop¿z^abc\��
�c|zgOu � b�|_^Obªbc|_\/x��ô|_^M��\��igM���M\�¿
^���opdeo��Å^a`Ñ�vb�`�^abc\�yi��k_�vÆ
opfzyª¿zoÇÂ@\�`�\�f�bT`�\�]_`c\���\�fMb8^Ob�o�gMf_��Ï ��ßaÙ}'4Ö�&ÉgMfz�p�ª]D^i����\��Éu$|z\�f
¿l\���]U\�`8^Ob�\b"an4gMf_�c\�Ê�kz\�f�b����MÈ�^i���M|zop�É]_^i���c\��R^i`c\Qn���\�^a`8^af_n�\��Ub�g
|zoÅ�"hZ^a`cbc|z\�`�b�\�^aded^Ob�\iÏ
� � 3 �8Ö |zgOuw\��M\�`�ÈUn�^af½]D^i����u$|z\�f
fzgib$¿z\��c]D\�`�^abc\iÈl¿loÅ��bc`�o�Ãzkzbcopfzye|zop�J]D^i����\���\�Ê�k_^a�p���ÃU\4bvuw\�\�f
|zoÅ��bvu�g�bc\�^idede^abc\���Ï��h0Üâ_Ø+&�0U|zgOuw\��M\�`�]_^M�c�c\���d�kDn8|Òdegi`�\
gahtb�\�fRÈi]_^i����opfzy�bcg�ÃUgab�|1]_�p^��M\�`8��Ï�F�\�kD��\��T��bc`8^Ob�\�yioÅn�]D^i����\��
bcgn�\�f�bc`8^a�pop�c\ªbc|z\�ÃD^a�p��u$|z\�ffzgib kzf_¿l\�`$]z`c\��c�ckz`�\iÏ
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�"ßOÙ}'�Ö�&ðÈU^af_¿	� � 3 �8Ö4Ï
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�Ð\Ín�gif_��bc`�k_nðb�\�¿ÿ^if \��Mgi�pklbcopgif_^i`c��^a�pyigM`co�bc|_d b�g-�p\�^a`�f
]Ugi�popn�o�\���hÄgM`e]z�p^��sopfzy�bc|z\yM^ide\3gih"®Ð�s��Ï�¯ ó \�\�]_^�uw^��MÈ:^
�ckzÃlÆ¥]z`cgMÃz�p\�d gah�b�|z\ÑÞ"ßià8ßlá*â�×���gln�n4\�`w��opd�k_�p^abcopgif��p\�^iyikz\MÏ
�Ð\
o�fs�i\��vb�o�y�^Ob�\�¿Îb�|z\\4Â@\�n4b��gih�bc|_\
fzgioÅ���õï_bcfz\��c�\��O^a��Æ
k_^abcopgifÍgif�b�|z\
`�\��ckz�Çb8�1hÄ`cgMd bc|z\½�c�l�vb�\�dÈ�^if_¿Áuw\�k_��\�¿
�c\��i\�`�^i�Éb�\�n8|zf_opÊ�kz\���b�g
^a�p��\���oÅ^Ob�\�b�|zoÅ�Ñ\4Â@\�nðb�Ï�ñîfÐ]_^a`cbcoÅn4kzÆ
�Å^a`�ÈCuw\�opde]z��\�de\�f�bc\�¿�^
b�\�n8|zfzoÅÊ�kz\�Ã_^M��\�¿õgif�d^io�f�b�^io�fzÆ
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Abstract 

To realize design automation of dynamic 
systems, there are two major issues to be dealt 
with: open-topology generation of dynamic 
systems and simulation or analysis of those 
models. For the first issue, we exploit the strong 
topology exploration capability of genetic 
programming to create and evolve structures 
representing dynamic systems.  With the help of 
ERCs (ephemeral random constants) in genetic 
programming, we can also evolve the sizing of 
dynamic system components along with the 
structures.  The second issue, simulation and 
analysis of those system models, is made more 
complex when they represent mixed-energy-
domain systems. We take advantage of bond 
graphs as a tool for multi- or mixed-domain 
modeling and simulation of dynamic systems. 
Because there are many considerations in 
dynamic system design that are not completely 
captured by a bond graph, we would like to 
generate multiple solutions, allowing the 
designer more latitude in choosing a model to 
implement. The approach in this paper is capable 
of providing a variety of design choices to the 
designer for further analysis, comparison and 
trade-off. The approach is shown to be efficient 
and effective in an example of open-ended real-
world dynamic system design application, a 
printer re-design problem.  

1 INTRODUCTION 
In general, design of dynamic systems includes two steps: 
conceptual design and detailed design. In the conceptual 
design phase, the following questions should be answered 
(Tay et al. 1998): 1) What is the exact design problem to 
be solved? (This requires a complete and consistent listing 

of the requirements), and 2) what are the key problem 
areas in the solution? (This requires the identification of 
critical parts of the solution that will determine the 
performance). Then the process of detailed design can be 
undertaken, identifying those candidate solutions that 
meet the requirements and provide the level of 
performance needed. The research in this paper focuses 
on the detailed design of dynamic systems. The strategy is 
to develop an automated procedure capable of exploring 
the search space of candidate dynamical systems and 
providing design variants that meet desired design 
specifications or dynamical characteristics. The method 
must be able to explore the design space in a topologically 
open-ended manner, yet still find appropriate 
configurations efficiently enough to be useful.    

Much research has been done on design automation of 
single domain systems using an evolutionary computation 
approach. For example, automated design of analog 
circuits has attracted much attention in recent years 
(Grimbleby, 1995) (Lohn, 1999) (Koza, 1999) (Zhun, 
2000). It could be classified into two categories: GA-
based and GP-based. Most GA-based approaches realize 
topology optimization via a GA and parameter 
optimization with numerical optimization methods 
(Grimbleby, 1995).  Some GA approaches also evolve 
both topology and component parameters; however, they 
typically allow only a limited number of components to 
be evolved (Lohn, 1999). Although their work basically 
achieves good results in analog circuit design, it is not 
easily extendable to interdisciplinary systems like 
mechatronic systems.   

Design of interdisciplinary (multi-domain) dynamic 
engineering systems, such as mechatronic systems, differs 
from design of single-domain systems, such as electronic 
circuits, mechanisms, and fluid power systems, in part 
because of the need to integrate the several distinct 
domain characteristics in predicting system behavior  
(Coelingh et al.). However, most current modeling and 
simulation tools that provide for representation at a 
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schematic, or topological, level have been optimized for a 
single domain. The bond graph provides a unified model 
representation across inter-disciplinary system domains. 
Tay uses bond graphs and GA to generate and analyze 
dynamic system designs automatically (Tay et al. 1998). 
He uses nested GA to evolve both topology and 
parameters for dynamic systems. However, the efficiency 
of his approach is hampered by the weak ability of GA to 
search in both topology and parameter spaces 
simultaneously.   

Genetic programming is an effective way to generate 
design candidates in an open-ended, but statistically 
structured, manner. There have been a number of research 
efforts aimed at exploring the combination of genetic 
programming with physical modeling to find good 
engineering designs. Perhaps most notable is the work of 
Koza et al.. He presents a single uniform approach using 
genetic programming for the automatic synthesis of both 
the topology and sizing of a suite of various prototypical 
analog circuits, including low-pass filters, operational 
amplifiers, and controllers. This approach appears to be 
very promising, having produced a number of patentable 
designs for useful artifacts. It is closely related to our 
approach, except that it searches in a single energy 
domain.  

We investigate an approach combining genetic 
programming and bond graphs to automate the process of 
design of dynamic systems to a significant degree. To 
improve the topology search capability of GP and enable 
it to provide a diversity of choices to the designer, a 
special form of parallel GP, the Hierarchical Fair 
Competition GP (HFC-GP), is used in this paper (Hu, et 
al., 2002). The efficiency and effectiveness of the 
approach are illustrated in an interesting redesign example 
involving the drive mechanism for an electric printer.  
Several design alternatives for the printer drive are 
derived through exploring open-topologies in bond graph 
space. It turns out that some of them are obviously 
physically realizable and others are not. 

2 DESIGN DOMAIN AND 
METHODOLOGY   

2.1 MULTI-DOMAIN DYNAMIC SYSTEMS 
Multi-domain system design differs from conventional 
design of electronic circuits, mechanical systems, and 
fluid power systems in part because of the need to 
integrate several types of energy behavior as part of the 
basic design. For example, in addition to appropriate 
“drivers” (sources), lumped-parameter dynamical 
mechanical systems models typically include at least 
masses, springs and dampers (Figure 1 a)) while “RLC” 
electric circuits include resistors, inductors and capacitors 
(Figure 1 b)). However, they could both be expressed in 
the same bond graph (Figure 1 c)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 BOND GRAPHS 

The bond graph is a modeling tool that provides a unified 
approach to the modeling and analysis of dynamic 
systems, especially hybrid multi-domain systems 
including mechanical, electrical, pneumatic, hydraulic, 
etc. (Karnopp et al. 2000). It is the explicit representation 
of model topology that makes the bond graph a good 
candidate for use in open-ended design searching. For 
notation details and methods of system analysis related to 
the bond graph representation see Karnopp et al. and 
Rosenberg (Rosenberg et al, 1992).  Much recent research 
has explored the bond graph as a tool for design (Sharpe 
and Bracewell 1995, Tay et al. 1998, Youcef-Toumi 
1999, Redfield 1999). 

In our research, the bond graph has additional desirable 
characteristics for selection as the tool for system 
representation and simulation. The evaluation efficiency 
of the bond graph model can be improved because 
analysis of causal relationships and power flow between 
elements and subsystems can be done quickly and easily, 
and reveals certain important system properties and 
inherent characteristics.  This makes it possible to discard 
infeasible design candidates even before numerically 
evaluating them, thus reducing time of evaluation to a 
large degree.  Because virtually all of the circuit 
topologies passing causal analysis can be simulated, our 
system does not need to check validity conditions of 
individual circuits to avoid singular situations that could 
interrupt the running of a program evaluating them. 

Another characteristic of bond graphs is their ease of 
mapping to the engineering design process (Xia, et al. 
1991). Because each component of the system can be 
represented correspondingly in a bond graph, junctions 
and elements can be added to or deleted from a model 
without causing dramatic changes. This emulates the 

Figure 1.  Dynamic systems and bond graph representation :  a) 
mechanical, b) electrical , and c) bond graph that represents both 
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Table 1 Function and terminal set for bond graph evolution 

engineering process of modifying systems, refining 
simple designs discovered initially, adding size and 
complexity as needed to meet more complicated design 
demands step by step. As genetic programming usually 
shows a weak causality of structure evolution (Rosca, 
1995), this potential strong causality of the bond graph 
modification process also makes bond graph 
representation an attractive technique to use in genetic 
programming to explore the open-ended dynamic system 
design space in an evolutionary process.  

2.2 GENETIC PROGRAMMING AND BOND 
GRAPHS 

The tree representation on GP chromosomes, as compared 
with the string representation typically used in GA, gives 
GP more flexibility to encode solution representations for 
many real-world design applications. The bond graph, 
which can contain cycles, is not represented directly on 
the GP tree—instead, the function set (nodes of the tree) 
encode a constructor for a bond graph.  

We define the GP functions and terminals for bond graph 
construction as follows.  There are four types of functions:  
first, add functions that can be applied only to a junction 
and which add a C, I, or R element;  second, insert 
functions that can be applied to a bond and which insert a 
0-junction or 1-junction into the bond; third, replace 
functions that can be applied to a node and which can 
change the type of element and corresponding parameter 
values for C, I, or R elements; and fourth, arithmetic 
functions that perform arithmetic operations and can be 
used to determine the numerical values associated with 
components (Table 1). Details of function definitions are 
illustrated in Seo et al. (2001). 

 

  

2.3 DESIGN PROCEDURE 
The flow of the entire algorithm is shown in Figure 2. The 
user specifies the embryonic physical model for the target 
system (i.e., its interface to the external world, in terms of 
which the desired performance is specified) After that, an 
initial population of GP trees is randomly generated. Each 
GP tree maps to a bond graph tree.  Analysis is then 
performed on each bond graph tree. This analysis consists 
of two steps – causal analysis and state equation analysis.  
After the (vector) state equation is obtained, the important 
dynamic characteristics of the system are sent to the 
fitness evaluation module and the fitness of the tree is 
evaluated.  For each evaluated and sorted population, 
genetic operations – selection, crossover, mutation and 
reproduction – are carried out to seek design candidates 
with improved quality. The loop of bond graph analysis 
and GP operation is iterated until a termination condition 
is satisfied or a specified number of iterations performed.  
The final step is to instantiate a physical design, replacing 
the bond graph with the physical components represented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 CASE STUDY 

3.1 PROBLEM FORMULATION 
The original problem was presented by C. Denny and W. 
Oates of IBM, Lexington, KY, in 1972.  Figure 3 shows a 
closed-loop control system to position a rotational load 

Name Description 

  add_C 

  add_I 

  add_R 

  insert_J0 

  insert_J1 

  replace_C 

  replace_ I 

  replace_ R 

  + 

  - 

  endn 

  endb 

  endr 

  erc 

   Add a C element to junctions 

    Add an I element to junctions 

    Add an R element to junctions 

     Insert a 0-junction in bond 

     Insert a 1-junction in bond 

     Replace current element with C element  

     Replace current element with I element  

     Replace current element with R element  

     Add two ERCs 

     Subtract two ERCs  

     End terminal for add element operation 

     End terminal for insert junction operation 

     End terminal for replace element  operation 

     Ephemeral random constant (ERC) 

Specify physical schematic embryo 

Specify embryo bond graph 

Create initial population of GP tree 

Fitness evaluation for each individual 

Selection for each population 

Reproduction, crossover, mutation 

Physical realization 

Termination 
criteria? 

YES 

NO 

Figure 2. Flow chart of the design procedure 
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(inertia) denoted as JL.  The problem with the design is 
that the position output of the load JL has intense 
vibrations (see Figure 4).  The design specification is to 
reduce the vibration of the load to an acceptable level, 
given certain command conditions for rotational position.  

We want the settling time to be less than 70ms when the 
input voltage is stepped from zero to one. Note that the 
settling time of the original system is about 2000ms. The 
time scale in Figure 4 is 4000 ms. 

 

 

 

 

 

 

 

 

 

 

 

The system includes electric voltage source, motor and 
mechanical parts. As it is a multi-domain system, a bond 
graph is convenient to use for modeling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By analyzing the model, we conclude that the critical part 
for the design is a subsystem that involves the drive shaft 
and the load (Figure 5). The input is the driving torque, 
Td, generated through the belt coupling back to the motor 
(not shown). 

This subsystem was deemed a logical place to begin the 
design problem. The questions left to the designer now 
are: 1) at which exact spots of the subsystem new 
components should be inserted, 2) which types of 
components and how many of them should be inserted, in 
which manner, and 3) what should be the values of the 
parameters for the components to be added?  The 
approach reported in this paper is able to answer these 
three questions in one stroke in an automated manner, 
once the embryo system has been defined. 

3.2 AN EMBRYO FOR EVOLUTION 
To search for a new design using the BG/GP design tool, 
an embryo model is required.  The embryo model is the 
fixed part of the system and the starting point for GP to 
generate candidates of system designs by adding new 
components in a developmental manner. The embryo used 
for this example, expressed in bond graph language, is 
shown in Figure 6, with the modifiable sites highlighted. 
The modifiable sites are places that new components can 
be added. The choice of modifiable sites is typically easy 
for the designer to decide. However, modifiable sites are 
only possible spots for insertion of new components – 
they are not necessarily inserted to any particular one of 
them. In this particular example, designers need have no 
idea whether assemblies of new components will be 
inserted at modifiable site (1), or at modifiable site (2) , at 
site(3), or at any combinations of them. Instead, the 
algorithm will answer these questions in an automatic 
way, without intervention by the human designer. 

 

 

 

 

 

 

 

 

 

 

 

The parameters for the embryo model are: 

sI : 26107.6 mkg ⋅× −   

sR : radmN sec10013.0 3 ⋅⋅× −   

1sC : radmN ⋅⋅208.0   

2sC : radmN ⋅⋅208.0  
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Figure 4.  a) Bond graph model b) Positional vibration of the load 

          Figure 5. The embryo subsystem 

Figure 3. Schematic of the printer drive system 
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Figure 6. Bond graph model for the embryo system 
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LR : radmN sec1058.0 3 ⋅⋅× −  

LI : 26103.84 mkg ⋅× −  

3.3 THE HFC MODEL OF PARALLEL 
GENETIC PROGRAMMING 

A special form of parallel GP, HFC-GP is applied in this 
research. In the HFC (Hierarchical Fair Competing) 
model (Fig 7), multiple subpopulations are organized in a 
hierarchy, in which each subpopulation can only 
accommodate individuals within a specified range of 
fitnesses (Hu et al, 2002). New individuals are created 
continuously in the bottom layer. Use of the HFC model 
balances exploration and exploitation of GP effectively. 
Our experience shows that using the HFC model can also 
substantially increase the topological diversity of the 
whole population and help to provide the designer a 
diverse set of competing design candidates for further 
trade-offs. 

 

3.4 DEFINITION OF FITNESS FUNCTION 
The fitness function of individual design is defined  

 

 

according to the position output response of the load JL as 
follows. 

Within the time range of interest (0~500ms in this 
example), uniformly sample 1000 points of the output 
response (yielding a time interval between two adjacent 
sampling points of 0.5ms).  Compare the magnitudes of 
the position output of the load JL at the sample points with 
target magnitudes (unity in this example), compute their 
difference and get a squared sum of differences as raw 
fitness, defined as rawFitness .  Then calculate 
normalized fitness according to: 

 

( )rawnorm FitnessFitness ++= 200010005.0
 

It can be assumed approximately that the higher the 
normalized fitness, the better the design.  Two reasons 
make the fitness definition an approximate one:  1) it does 
not reflect directly the strict definition of settling time, 
and 2) it does not include other considerations in design 
of the system except output response. A modified fitness 
function could be defined later if required. However, in 
this research, the definition is enough to manifest the 
feasibility and efficiency of the approach reported. The 
design results achieved (Figures 9-16) show performances 
satisfying the design specification presented in this 
research. 

3.5 EXPERIMENTAL SETUP 
We used a strongly-typed version [Luke, 1997] of lilgp 
[Zongker and Punch, 1996] to generate bond graph 
models.  The major GP parameters were as shown below: 

Number of generations:  500 
Population size:  500 
Initial population:  half_and_half 
Initial depth:  4-6     
Max depth:  16 
Max nodes: 1000 
Selection:  tournament (size=7) 
Crossover:  0.8    
Mutation:  0.2      
 
Three major code modules were created in our work. The 
algorithm kernel of HFC-GP was a modified version of an 
open software package developed in our research group -- 
lilgp. A bond graph class was implemented in C++. The 
fitness evaluation package is C++ code converted from 
Matlab code, with hand-coded functions used to interface 
with the other modules of the project. The commercial 
bond graph software package 20Sim was used to verify 
the dynamic characteristics of the evolved design. 

The GP program obtains satisfactory results on a 
Pentium-IV 1GHz in 5~15 minutes, which shows the 
efficiency of our approach in finding good design 
candidates. 
 

3.6 EXPERIMENTAL OBSERVATIONS 
The fitness improvement curve of GP algorithm is plotted 
versus generation number in Figure 8.  

Three competing design candidates with different 
topologies, as well as their performances and possible 
physical realizations, are provided in Figures 9-16. We 
can see from the output rotational position responses that 
they all satisfy the design specification of settling time 
less than 70ms. Note that the time scale of the plots is 100 
ms.  

 

In HFC model, subpopulations are organized in a hierarchy with
ascending fitness level. Each subpopulation accomodates
individuals within a certaiin fitness range determined by the
admission thresholds

fitness

fmin

fmax
subpop5

subpop4

subpop3

subpop2

subpop1

subpop0

Admission
threshold 1

Admission
threshold 2

Admission
threshold 3

Admission
lthreshold 4

Admission
threshold 5

Admission
Buffers

   Figure 7. Hierarchical Fair Competition Model in GP 
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Design variant 1 is represented in Figure 9.  Two new 
components (R, C) are added with a 0-junction at 
modifiable site (1). The parameters of the components 
added are also given. Dashed circles highlight the newly 
evolved components in the bond graph figures. Figure 10 
displays rotational position output for variant 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 gives one possible physical realization of 
design variant 1.  One damper and one spring are 
connected to the embryo model. 

 

 

Variant 2 adds new components to modifiable site (2) and 
modifiable site (3) as shown in Figure 12. Figure 13 
displays rotational position output for variant 2. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 gives one possible physical realization of 
design variant 2.  
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Figure 10.  Position output of design variant 1  

Title

0 20 40 60 80 100
time(ms)

ou
tp

ut

0

0.5

1

1.5

Figure 12.  Bond graph model of design variant 2  

R20: 75.101E-03 N m sec / rad    

R15: 0.142E-03 N m sec / rad    C17: 10.000 N m / rad 

1

WS

0 1

WL

I
IS

R
RS

C
CS1

I
IL

R
RL

C
CS2

MSe
MSe1Constant1

K

Gain1

TF
TF1

TF
TF2

lim
�

Integral

10

R

R15

C

C17

0

R
R20

Figure 13.  Position output of design variant 2 

Figure 11.  Physical realization of design variant 1  
Figure 8. Fitness Improvement Curve 
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Design variant 3 is represented in Figure 15.  Variant 3 
adds new components to modifiable site (1) and 
modifiable site (2). Figure 16 displays rotational position 
output for variant 3.  The bond graph model of variant 3 is 
not obviously physically realizable, because component I 
is attached to a 0-junction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear that the approach reported in this research is 
both efficient and effective, capable of providing 
designers with a variety of design alternatives. This gives 
designers considerable flexibility to generate and to 
compare a large variety of design schemes. 

4 CONCLUSIONS 
This research has explored a new automated approach for 
synthesizing designs for dynamic systems. By taking 
advantage of genetic programming as a search method for 
competent designs and the bond graph as a representation 
for dynamic systems, we have created a design 
environment in which open-ended topological search can 
be accomplished in an automated and efficient manner 
and the design process thereby facilitated.  

The paper illustrates the process of using this approach in 
detail through a printer redesign problem. Bond graphs 
have proven to be an effective tool for both modeling and 
design in this problem. A special form of parallel GP, the 
Hierarchical Fair Competition-GP, has been shown to be 
capable of providing a diversity of competing designs 
with great efficiency. 

We plan to continue our research by identifying improved 
methods for minimizing the occurrence of unrealizable 
bond graph designs. One such approach is to use multi-
objective evolutionary computation to shape the results. A 
second approach is to use a set of revised GP operators to 
build bond graphs that avoid unrealizable models. 
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n{yzt�c�boc�n�c�ÅOl�c�cZ�Is�bd|Og�swn{yz`IiGcG�Igpbwg�skl��G`Isdgh�Oc�nocZ�
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��|Oc�bocZl{|O`Og�¶NmOc�g�s¯gf`.sx�OghnocZ��~Lq�yzndbdgfÔ.l�ghyGe:gft�t$mI`OcksdqLsxbdcZtus
g��:cZy�s��"yG`I�¿gfb�yzbxboc�t��:bos�bo�°c�ÅNboc�`I�ÈåO��ndnocZsxbZè s�¹>sxcZep�ÝÃ¤`O�G`O²
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Abstract 
 

 

Design optimization of a class of plane trusses 
called the N-Shaped Truss (NST) is addressed. 
The parametric model of NST presented is 
intended for real-world application, avoiding 
simplifications of  the design details that 
compromise the applicability. The model, which 
includes twenty-seven discrete variables 
concerning topology, configuration and sizing of 
the truss, presents a challenging optimization 
problem. Aspects of such challenge include large 
search space dimensionality, absence of a closed-
form objective function and constraints, multi-
modal objective function and costly CPU time 
per objective function evaluation. Three 
implementations of general-purpose genetic 
algorithms (GA) are tested for this problem, 
along with a version of taboo search called 
reactive taboo search (RTS). The RTS exhibited 
better performance than the tested versions of 
GA. Performance study of the algorithms 
provides some good insight to some weaknesses 
in GA and RTS as well as future prospective 
combination of them to gain better performance. 

 

1 INTRODUCTION 

Truss structure optimization is a problem that is attractive 
due to its direct applicability in design of structures. 
Optimization of trusses can be classified into three main 
categories i) sizing, ii) configuration and iii) topology. 
This classification is slightly different from that of 
continuum structures, given in (Chapman et. al., 1993) In 
the sizing optimization, cross-sectional areas of members 
in the truss are design variables and the coordinates of the 
nodes and connectivity are held constant (Goldberg 
1986). The sizing problem is made even more interesting 
and practical through restricting the choice of truss 
members to a discrete set of available standard cross-
sections (Rajeev and Krishnamoorthy, 1992). In 

configuration optimization, the member cross-sections 
and connectivity (i.e. topology) remain constant, but the 
nodal position locations are the design variables. In 
topology optimization, the connectivity is the objective of 
the optimization (Bendose and Kikuchi 1988) and (Jakiela 
et. al., 2000). Combining the categories has also been 
performed. Gil and Andreu (2001) combined the 
configuration and sizing problems. Deb and Gulati (2001) 
combined topology and sizing through real coded genetic 
algorithms. A fully connected ground structure is taken as 
a start, then during optimization, members having close to 
zero cross-sectional areas are then deleted. 

Optimization methods applied included gradient-based 
methods such as the work of (Taylor and Rossow 1976) 
and (Kirsch 1979), simulated annealing (Moh and Chiang 
2000) and genetic algorithms. Analytical methods have 
generally been limited by approximations due to the 
complexity of the real-world problem, which is nonlinear 
and often has no closed form objective function and 
constrains.  

To the best of the authors’ knowledge, most previous 
work was directed to developing optimization models for 
general trusses rather on a “high-level,” without going 
deep into the design details of the truss. In this paper, a 
particular class of plane trusses (N-Shaped) is considered. 
While restricted to that class of trusses, the parametric 
model formulated goes deep into the design details and 
combines all truss optimization categories of sizing, 
configuration and topology. The optimization problem 
has a large search space which makes direct exhaustive 
search methods totally impractical. In addition, structural 
optimization problems are known to have many local 
optima, which encourages the use of heuristic global 
optimizers. Three implementations of genetic algorithms 
(GA) are tested as well as reactive taboo search (RTS) 
which also seems to be an attractive global optimizer 
(Battiti and Tecchiolli 1994). 

The paper starts with a review of truss optimization then 
proceeds to describe the parametric model of the N-
shaped truss. Following the description of the parametric 
model, the implemented GA and RTS are presented, then 
an actual real-life truss is used as a bench-mark problem 
to compare the performance of the optimizers. Results 
and discussion are then presented. 
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2 PARAMETRIC MODEL OF NST 

2.1 TERMINOLOGY 

Some of the terminology used in practice for the design of 
trusses is to be used in this paper. The following is a 
quick summery of such terminology: 

•  An N-Shaped Truss (NST): is a plane truss (Fig.1) that 
has a certain general shape resembling the letter “N.” 

•  Upper Chord: are all the inclined members on the top 
part of the truss (Fig. 2). All upper chord members of 
an N- Shaped Truss form one straight line. 

•  Lower Chord: are all the horizontal members on the 
lower part of the truss (Fig. 2). All lower chord 
members of an N- Shaped Truss form one horizontal 
straight line. 

•  Vertical Members: are (as the name suggests), the 
vertical members in the truss (Fig. 2). 

•  Diagonal Members: are those internal inclined members 
(Fig. 2). 

•  Truss Projection: is the distance the truss protrudes after 
the centerline of the carrying column (Fig. 2). 

•  Bays: Are the spans between the trusses in the top view 
(Fig. 2). 

•  End Bay: is a last bay in a building. 

•  Purlins: are light members positioned across the bays 
and are carried on top of the upper chord (Figs. 2-3). 
Purlins, in turn carry the roof cladding. 

•  Roof braces: are X-shaped sets of members (Fig. 2) that 
are present in some bays in order to increase the overall 
structure stiffness. 

•  Longitudinal Braces: are sets of members across the 
bays that are included to increase the overall rigidity of 
the structure (Figs. 2-3). 

 

 

 

 

 

 

 

Figure 1: Photo of Actual N-Shaped Truss 

2.2 DESIGN VARIABLES 

Twenty seven variables that a designer can modify are 
used as design variables in this parametric model. The 
design variables are categorized into i) variables 
concerned with topology and configuration and ii) 
variables concerned with sizing of the truss members. The 
design variables are given as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Typical N-Shaped Truss 

 

 

 

 

 

 

Figure 3: Longitudinal Braces 

 

Topology and Configuration Variables: 

X1: is an integer number that defines the selected roof 
layout plan (from up to 5 user-defined choices), this 
variable subsequently sets the number of main bays, bays’ 
lengths and end-bays’ lengths. 

X2: is the length of the vertical member directly on top of 
the support. Normally, this variable is continuous, but it is 
discretized in this model to avoid the necessity of using 
mixed integer/continuous optimizers. However, 
discretization doesn’t impose much deviation from 
practicality, since the fabrication often favors “rounded-
off” and similar dimensions. 

X3: is the number of purlins on top of the truss. This 
normally dictates the general truss topology, since every 
purlin must have a vertical member in the truss 
underneath it. The space between two purlins (or their two 
verticals) will be referred to as a truss “cell”. 

X4: is the number of sub-divided truss cells near the 
support. Subdividing the cells near the support (the 
portion which has low truss depth as opposed to the 
middle part of the truss), generally improves the angle of 
the diagonal members which in turns gives better 
distribution of the axial forces in the members. 
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X5: is the number of truss cells which have reinforced 
diagonal members. Normally, the diagonals closer to the 
support are subjected to higher axial loads, therefore it is 
often efficient to choose a different cross section for the 
first one or few diagonal members. 

X6: is the number of merged cells near the middle of the 
truss. The purpose of merging cells at the portion of 
bigger truss depth is also to improve the angle of the 
diagonals to give better stress distribution. 

X7: is the number of verticals that are nearer to the 
column and are taking a different cross-section than the 
rest of the verticals. 

The model also allows for two different configurations of 
longitudinal braces to be used, thus the longitudinal 
braces passing near the mid-span (with higher depth) may 
be different from those passing above the support. 

X8: is the total number of longitudinal braces lines across 
the roof. 

X9: is half the number of longitudinal braces lines close 
to the support (Type-1). 

X10: is the number of nodes (equal to number of cells 
minus one) on Type-1 Longitudinal Braces. 

X11: is the number of nodes on Type-2 Longitudinal 
Braces. 

Member Sizing Variables: 

X12 to X27 are integer variables defining the selected 
standard cross-section from the available database for 16 
groups of truss members. The truss member groups are: 
purlins, main truss upper chord, lower chord, 3 groups of 
verticals, 4 groups of diagonals, longitudinal braces 2 
groups of chords, 2 groups of verticals and 2 groups of 
diagonals. 

It should be noted that the truss members grouping 
employed in this parametric model keeps the number of 
design variables fixed, but the number of truss members is 
variable. Also, all variables being integer allows for pure-
integer GA and RTS to be used in optimization, without 
the loss of practicality of the model. 

2.3 CONSTRAINTS 

Constraint evaluation is the main costly event in terms of 
CPU time. It involves generating a finite element (FE) 
mesh of the truss, solving the FE model for different load 
cases then performing safety check on truss members. 
The safety constraints involve: 

•  Load Cases include Dead load, Live Load and Wind 
Load. Load Case Combinations are Dead Load + Live 
Load (DL), Dead Load + Wind Load (DW) and Dead 
Load + Live Load + Wind Load (DLW) 

•  Mild steel members subjected to tension must not 
exceed allowed under any of the load case 
combinations. 

•  Members subjected to compression must not exceed 
allowed compressive stress under any of the load case 
combinations. Allowed compressive stress depends on 
member slenderness. 

•  Bending stresses in Purlins must be safe under all load 
cases and also capable of carrying a specified 
concentrated load in its mid-span. 

•  Depth of the beam cross-section chosen for Purlins 
should not be less than a certain portion of its length. 

•  Deflection under live load is not to exceed a certain 
amount. 

•  Slenderness of all members subjected to compression is 
not to exceed a certain value. 

•  Slenderness of any member is not to exceed a certain 
value. 

•  Purlin spacing should be within a certain range. 

•  Diagonal members angle from horizontal should be 
within a certain range. 

Constraints are enforced through adaptive penalty (Chen 
2001). To ensure that the search converges to a feasible 
design, additional cost is added to the objective function 
to make the cost of any infeasible design more than that 
of the current best feasible design. The penalty cost also 
depends upon the amount of violation. Typically, the 
penalty cost is high at the beginning of the search and is 
then gradually lowered as better feasible designs are 
found. A crucial matter for efficient employment of 
adaptive penalty is to have a feasible initial design. 

2.4 OBJECTIVE FUNCTION 

In many applied cases, truss optimization is a multi-
objective process regarding issues such as weight, cost, 
stiffness and natural frequencies. However, the particular 
class of trusses considered finds its main domain of 
application in industrial and commercial clear-span 
buildings. For such applications, there is usually the 
single objective of minimizing the overall cost. In many 
practical cases, the overall cost is directly associated with 
the total steel weight. Thus for the current study, the 
objective is to minimize the overall weight. Such weight 
includes the main truss members, longitudinal bracing 
members, purlins and estimates of all connection plates 
(by empirical formulas in terms of other truss 
parameters). 

The objective function (OF) combines the truss total 
weight plus a penalty term to prevent constraints 
violation. There are two cases for the objective function: 

•  No constraints are violated 

In this case: t  OF W=  

•  One or some of the constraints are violated 

In this case: PenPenbt ),max(  OF ICWW ××=  
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Where: 

tW  : is the total weight of the considered structure 

: is the total weight of the best feasible structure 
encountered so far during the optimization 

PenC : is a penalty constant 

: is the number of truss members that violate the 
safety constraints 

A key implemented feature is the adaptive penalty which 
aims at preventing “over-penalizing” the infeasible 
designs while making sure that no infeasible design has a 
better OF value than the best feasible encountered design. 

3 GENETIC ALGORITHM 

3.1 GENERAL PURPOSE GA 

The general purpose genetic algorithm (GA1) tested in 
this paper implements variable storage as integer 
variables, 4 crossover operators, 12 mutation operators, 
fitness scaling, population distribution, roulette wheel 
selection along with elitist selection. 

Integer Storage: For efficiency of storage, variables are 
stored directly as integers rather than binary strings 
(Goldberg 1989) and are translated to their equivalent 
binary strings when need during crossover and mutation. 

Crossover Operators: 

•  Binary string crossover. 

•  Inner Crossover (adopted from real coded GA). The 
new variable values are computed as: 

 

 

 

•  Outer Crossover (adopted from real coded GA). The 
new variable value is computed as: 

 

 

•  Uniform crossover (Liang-Jie et al., 1995). In which the 
variables are unchanged, but exchanged between the 
parents with a 50% probability of exchange. 

Mutation Operators: 

•  Binary bit flipping. 

•  Binary bit shift left. 

•  Binary bit shift right. 

•  Binary bit inversion. 

•  Shifting value to nearest boundary. 

•  New random number generation. 

Another similar set of mutation operators is also used that 
only act if the member fitness is below average. 

An overall probability for crossover and mutation is 
specified for a search. For each mutation or crossover 
operation of mating members, selection of which operator 
to use is performed randomly according to an assigned 
probability of use for each operator. 

Fitness Scaling: linear fitness scaling is implemented to 
give a fair survival chance for strong population 
members. 

Speciation: members further away from population 
average get a fitness bonus to encourage diversification. 

Roulette Wheel Selection: is used for selecting members 
of old population for mating and producing new members 
of next population. 

Elitist Selection: one copy of best member in a 
population passes unchanged to the next population to 
ensure that any optimized value is no worse than the best 
previously attained. And the rest of the new population is 
filled by the traditional selection, crossover and mutation. 

Seeding: one feasible point is included in the initial 
population and rest of the population is chosen randomly. 
Due to the nature of the problem, a purely random initial 
population may end up with a population of all-infeasible 
designs. Such an initial population will cause failure of 
the adaptive penalty strategy, as it requires knowing the 
OF value of some feasible design. 

3.2 GA WITH CACHING 

The second implementation of GA tested in this paper 
(GA2) is the same as GA1, but all evaluations of objective 
function are stored. Thus, when performing population 
members OF evaluation, only un-explored regions of the 
search space will require the FE solution of the truss. 

By nature, OF caching is inherent in RTS and is one of 
the strong points in favor of it. Therefore history storage 
is implemented into GA in order to even up the advantage 
RTS has and allow for a better comparison. 

3.3 GA WITH NORMALLY DISTRIBUTED 
INITIAL POPULATION 

RTS benefits from a good starting point, so an interesting 
study would be to have a biased initial population. Thus, 
the third implementation of GA (GA3) is the same as GA2, 
but has its all members of the initial population normally 
distributed about the initial feasible design. 

4 REACTIVE TABOO SEARCH 

4.1 GENERAL SCHEME 

Reactive taboo search is a heuristic global optimization 
technique that has less stochastic content than genetic 
algorithm. In fact, save for a small portion of the 
algorithm, it is almost completely deterministic. The basic 
idea in taboo search (Glover 1986, 1989, 1990) is to make 
use of previously evaluated points within the search space 

ChildVal1 = Round (α ParentVal1 + (1 – α) ParentVal2) 

ChildVal2 = Round ( (1 – α) ParentVal1 + α ParentVal2) 

Where α is a randomly generated number between 0 and 1 

ChildVal = Round (StrongerParentVal  

+ α (StrongerParentVal - Weaker ParentVal) ) 

bW  

PenI  
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to direct the future sampling and prevent entrapment at a 
local minimum by applying taboo conditions. Reactive 
taboo search (Battiti and Tecchiolli 1994) proposes a 
scheme for adaptively varying the way the taboo 
conditions are applied based on the objective function 
history, thus the search “reacts” to the objective function 
behavior. Pseudo-code of RTS is given as: 

1 Begin at a starting point 

2 Examine Non-Tabooed Neighboring Points 
and move to the best of them 

3 If new point has been not been visited before 

4  Goto 2 

5 Else If cycling is not “excessive” 

6  Put a taboo condition upon point 

7  Goto 2 

8 Else perform “quick escape” and Goto 2 

 

The single starting point in the search space is set as the 
“current point”. RTS then evaluates the entire 
neighborhood of the current point and moves to the best 
point in it which then becomes the new current point. An 
important feature in RTS, is that all the previously 
evaluated points are stored in the memory, this leads to 
lots of savings in computational time when evaluating the 
neighborhood of the new point. Memorizing all evaluated 
points is costly in terms of required storage resources 
since the total memory required for the algorithm grows 
linearly as more points are being evaluated, however, 
such memorizing saves a lot of computational time if the 
OF is costly in terms of CPU evaluation time. 

At the start of the search RTS, simply behaves like a 
steepest descent search until it hits a local minimum. 
Whereas steepest descent stops upon reaching a local 
minimum, RTS continues to search the neighborhood of 
the current point and move to best point within it even if it 
is worse than the current point. To prevent infinite cycling 
back and forth around a local minimum, TS imposes a 
taboo condition upon the last visited point, that is, “a 
previously visited point cannot be visited again until a 
certain number of iterations is completed”, and such 
number of iterations is typically referred to as the “taboo 
list length”. 

In RTS, the taboo list length is adaptively changed 
according to the search behavior within a minimum and a 
maximum value. If the search still gets stuck in a large 
basin of attraction of the objective function, which the 
maximum taboo list length is not enough to overcome, a 
“quick escape” is performed. 

The search is typically stopped after performing a 
specified number of moves or objective function 
evaluations. The best point encountered is returned. 

4.2 NEIGHBORHOOD EVALUATION 

RTS performs a complete neighborhood evaluation. 
Unlike the version of RTS proposed by Battiti and 
Tecchiolli (1994) where all variables were either zero or 
one, the implemented version in this paper uses integer 
values for the variables. The neighborhood is defined as 
the set of points that have all their variables equal to those 
of the current point except for one variable, which is 
different by a value of ±1. Thus, the number of points in 
the neighborhood is twice the number of variables (or less 
for points touching the upper and lower limits of the 
variable ranges). 

4.3 RTS REACTION TO SEARCH BEHAVIOR 

At each move (iteration), RTS places a taboo condition on 
the previous point, the taboo condition lasts a number of 
iterations equal to the current taboo list length. RTS also 
keeps track of when was each point visited, and the 
number of visits. If a point is visited twice, the taboo list 
length is increased. Thus, near a local minimum, the taboo 
list length keeps increasing until it is enough to explore 
regions further away. If a number of iterations pass 
without any cycles occurring (visiting the same point 
several times), the taboo list length is decreased. 

Typically, a maximum taboo list length is specified. It is 
generally not beneficial to have the maximum taboo list 
length greater than the number of points in the 
neighborhood, because it can lead to a situation when all 
the points in the neighborhood are tabooed. When such a 
situation arises, the taboo conditions are relaxed, and the 
new current point is chosen as the last visited point in the 
neighborhood. 

Sometimes if a large basin of attraction exists in the 
objective function, there could be a situation when taboo 
conditions are not enough to overcome the domain of the 
local minimum and that is when the “quick escape” is 
performed. 

4.4 QUICK ESCAPE MECHANISM 

RTS keeps a record of the average cycle length. When it 
approaches the maximum taboo list length, this indicates 
that tabooing is not enough to overcome the current basin 
of attraction, and quick escape is necessary. Quick escape 
is performed by randomly changing the values of some of 
the variables of the current point. It is simply just like re-
starting the search at new starting point that is not entirely 
random. 

5 APPLICATION 

5.1 TRUSS DATA 

Data of a real N-shaped truss is used as a starting point for 
the optimization algorithms. The truss data is given in 
Table 1. 
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A photo of the actual truss during erection procedure is 
given in Fig. 1. This design (topology, configuration and 
sizing) is used as the starting point for optimization. 
Topology and configuration are shown in Fig. 4. Truss 
member cross-sections are given in Table 2. 

5.2 GA PARAMETERS 

Among the several available tuning options for the 
implemented GA, the following settings are chosen: 

•  Population Size: 100, 150, 200 and 250 

•  Number of Generations: (Unlimited), search stops when 
maximum number of objective function evaluations is 
reached. 

•  Max. number of OF evaluations: (Tested Several) 

•  Overall crossover probability: 0.9 

•  Equal probability for different crossover operators 

•  Overall mutation probability: 0.25 

•  Equal probability for different operators 

•  Fitness scaling constant: 1.6 

Choice of the search parameters was based on practical 
published values and the available computational 
resources. Further tuning is possible. 

5.3 RTS PARAMETERS 

RTS has less tuning parameters than GA. The following 
settings are chosen: 

•  Number of moves: (Unlimited), search stops when 
maximum number of objective function evaluations is 
reached. 

•  Max. number of OF evaluations: (Tested Several) 

5.4 RESULTS 

Each of the design variables concerned with truss member 
sizing has 48 possible choice options, variables 
concerning configuration and topology range between 3 
to 20 options. The total search space (all possible 
combinations of variables) is 1.58814×1037. Practicality 
limits for reasonable CPU time made it preferable to limit 
the comparison of optimization algorithms to 10,000 OF 
evaluations. Some reasonably good results are obtained 
even though 10,000 OF evaluations comprise only 
6.3×10-34 of the total search space. 

Topology and configuration of the initial design, an 
intermediate design during optimization and final best 
obtained design are shown in Fig. 4. A listing of the 
chosen cross-sections for truss member groups and 
overall design weight is given in Table 2. The 
intermediate design is shown as a demonstration of 
topology change as well as sizing. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Truss Topology and Configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Initial Design, Weight = 9903.2 kg 

b) Intermediate Design, Weight = 6328.8 kg 

c) Best Obtained Design, Weight = 5655.3 kg 

Table 2 Chosen Truss Member Groups Cross-sections 

Designs 
Variable 

Initial Intermediate Final Best 

X12 C.F. C140x4 C.F. C140x3 C.F. C140x3 
X13 2xLPN 70x7 2xLPN 70x7 2xUPN 65 
X14 2xLPN 70x7 2xLPN 70x7 2xIPN 80 
X15 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X16 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X17 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X18 2xLPN 50x5 2xLPN 50x5 2xIPN 80 
X19 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4 
X20 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4 
X21 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4 
X22 2xLPN 70x7 2xLPN 70x7 2xLPN 50x5 
X23 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X24 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3 
X25 2xLPN 60x6 2xLPN 60x6 2xLPN 50x5 
X26 2xLPN 50x5 2xLPN 50x5 2xLPN 30x3 
X27 2xLPN 50x5 2xLPN 50x5 2xLPN 30x3 

Truss 
Weight 9903.2 kg 6328.8 kg 5655.3 kg 

 

Table 1 Truss Data 

Number of Main Bays 2 

Building Clear Span 21.0 m 

Material Young’s Modulus 207 GPa 

Allowed Stress 140 MPa 

Max. Slenderness (Compression 
Members) 

180 

Max. Slenderness (All Members) 300 

Max. Deflection under live load 1/300 of Span 

Live Load 50 kg/m2 

Wind Pressure 50 kg/m2 

Dead Load Weight + 

20 kg/m2 

Available Database Contains L-sections (LPN), C-
sections (UPN & C.F.) and I-sections (IPN & IPE) 
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Since RTS has very little stochastic content compared 
with GA, only one optimization run is used as a 
representative of RTS. Twenty runs are performed for 
each of GA1, GA2 and GA3 using four different 
population sizes (five runs for each population size). The 
results of optimization performance are summarized in 
Table 3 and plotted in Figures 5 – 6. 

The results in Table 2 and Fig. 5 are for the number of 
new objective function evaluations, thus caching in GA2 
and GA3 resulted in improvement of the performance over 
the traditional GA1. Furthermore having the initial 
population normally distributed about the starting point in 
GA3 improves the consistency of the search (as seen in 
the standard deviation of the 20 runs) and results in a 
quicker descent of the objective function at the start of 
search. GA3 however has little or no advantage over GA2 
towards the end of the search. 

Further examination of Figs 5 – 6 and Table 2 shows an 
appreciably better performance of RTS over GA. To 
analyze possible reasons for RTS being better suited for 
the examined optimization problem than the implemented 
forms of GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 DISCUSSION 

GA relies on having several points that are distributed 
over the search space (population) to achieve 
diversification. According to the schemata theory 
(Goldberg 1989), selection along with crossover provides 
intensification by attracting the population points to zones 
of higher fitness. Eventually the whole population gets 
attracted to the global optimum. In general, the 
intensification properties of GA are not as good as those 
of local optimizers (Erbatur and Hasancebi 2001). 
Mutation is generally used to increase diversification, 
especially when the whole population gets too closely 
attracted to a certain region. 

The main weakness GA suffers when the problem has 
large dimensionality is that a moderate population size 
(100 to 200 members) becomes insufficient to achieve 
enough diversification over the search space and 
insufficient schemata pool, which also confounds the 
intensification. Increasing the population size beyond 
certain limits is on the other hand very costly in terms of 
the number of objective function evaluations. 

Figure 6: Optimization Progress – Best of GA Runs 

Figure 5 Optimization Progress – Average of GA Runs 

Table 3 Optimization Results 

Objective Function Value 
Avg. of 20 Runs Best of 20 Runs 

Standard 
Deviation 

# of 
OF 

Eval. RTS 
GA1 GA2 GA3 GA1 GA2 GA3 GA1 GA2 GA3 

500 7781 9518 9487 9034 8197 7703 7534 587 574 474 
1000 6687 9346 9209 8825 7599 7656 7534 666 725 443 
1500 6491 9216 8973 8775 7599 7656 7534 673 687 432 
2000 6430 9088 8929 8759 7599 7656 7534 697 691 432 
2500 6430 8987 8929 8706 7599 7656 7534 690 691 452 
3000 6430 8866 8840 8658 7599 7656 7259 619 673 545 
4000 6430 8754 8616 8538 7270 7236 7259 665 734 555 
5000 6430 8664 8591 8463 7270 7236 7259 594 731 569 
6000 6430 8513 8293 8427 7270 7236 7259 604 640 602 
7000 6430 8436 8226 8358 7270 7194 7259 571 633 594 
8000 5704 8396 8115 8255 7174 7034 7259 581 639 554 
9000 5655 8263 7998 8150 7174 7034 7259 496 534 523 
10000 5655 8213 7935 7969 7174 7034 7259 479 547 479 
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Another problem that GA encounters is due to the 
complexity of the constraints which makes GA unable to 
converge without seeding with an initial feasible point. 
Seeding itself decreases the GA efficiency. 

RTS has separate mechanisms for intensification and 
diversification. For intensification, RTS relies on a local 
optimizer that nails down the local optimum. Thus, 
finding the local optimum is fast, efficient and has less 
sensitivity to large dimensionality than GA. This accounts 
for the fast descent of the OF value encountered at the 
beginning of the RTS search in Figs. 5 – 6. Upon reaching 
a local optimum, RTS switches to diversification by 
imposing taboo conditions to prevent moving to already 
explored points. If the taboo conditions are not enough to 
escape a large basin of attraction, RTS performs its quick 
escape move and “hopes” it will be enough to escape the 
current basin of attraction. It can be seen in Figs. 5 – 6 as 
well as Table 3 that after the good start, RST remained 
incapable of finding any better designs for a long period. 

Given N number of objective function evaluations, the 
memory requirement is constant for the traditional GA 
(GA1), but of order N for RTS, GA2 and GA3 because of 
caching. Caching also incurrs additional computational 
effort of order less than N2 but such computational effort 
has little overall effect when the OF is costly to evaluate. 

It is seen in this study that RTS has better capabilities for 
intensification as well as exploiting a good starting point 
while GA has better diversification. Future research 
aspects may include combining both to get even better. 
One such possibility would be to use RTS, but perform 
large OF attraction basin detection, once the quick escape 
mechanism becomes inefficient, the search may be 
switched to a population-based search until a new basin of 
attraction is found, then switch back to RTS. 

7 CONCLUSIONS 

Design optimization of a real-world class of plane trusses 
is considered. A parametric model of the truss is 
developed, which takes into account most of the practical 
aspects for design applicability. Optimization of the 
model is pretty challenging since it involves sizing, 
configuration and topology, large dimensionality and 
costly objective function. Three implementations of 
general purpose GA as well as RTS are tested to see if 
they can come up with better designs than an actual 
erected design. Through a number of objective function 
evaluations that is only a very small fraction of the total 
search space, both GA and RTS succeeded in coming up 
with better designs. Although RTS performed better, 
observation reveals that RTS has better intensification, 
while GA has better diversification. This motivates future 
work for combining aspects of GA and RTS. 
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Â
[zQRWLZ\PL^\W¡}zQ·}]c·gL}zÌhV�PL[zQ·QRZ�nLSRZ¦�H}zgLT=T�©�n6[]}zV�}ÃQ·SRPL[]T�c·Z\Y
uhZ�gLT�[hcdT�[]T�V�QR}zZ\Yo��cdZ:uhT ^\T�YLT�SXe:["SRT�u�eISd¶Hc±V�e:Ylc²QR}][][�voT
u�e:gLT�Z\Y gL}z�KT�SRT�Y�Q%exn6nLSRZ¦©�}]u�eIQR}zZ\Y�uhZ�g6T�[]c���O,}zSRc²QR[Ã_��§}zQ
}]c�SRT�V�Z\uhuhT�YLg6T�g·QRZ�}]u"n6[]T�uhT�Y�Q4ª6SRc²QFeacd}zu"n6[]TqeInLnLSRZ¦©H}Ãy
u�eIQRT4u"Z�gLT�[8«³ZIS�eh^\}Ã��T�Y�nLSRZ:v6[]T�u��N«¬Z:SbT�©Le:u"n6[]T:�Neh[zZ¦¥§T�S
Z:SRgLT�S�nKZ\[z_�Y6Z:uh}e:[�uhZ�gLT�[
QRZ´cdT�T·}z«4QRW6T·^:}z��T�Y!cRe:u"n6[zT�c
V�e:Y¨vKT%ªLQ�SRT¦e:cdZ:YNexvN[Ã_��±®¯«�e+cd}]u"n6[zT�uhZ�gLT�[§}]c"«¬Z\PLYLg¨QRZ
PLYLg6T�SdªLQ�QRWLT4cRe:u"n6[]T�c��oehu"Z�gLT�[8¥b}ÃQRW�WL}]^\WLT�S
V�Z\u"n6[zT�©H}ÃQ¯_
cdWLZ\PL[]g+vKT�V�Z\YLcd}]gLT�SRT�go�ocdP6VXW·e:c�WL}]^:W6T�S�ZISRg6T�S�nKZ\[Ã_HYLZ\uh}Ãy
e:[zc�Z:S"YLT�PHSXe:[§YLT�Q¯¥§Z:Sd¶ÁuhZ�gLT�[zc���f
Z¦¥§T��\T�S���}]«tQRWLT%}zYLn6PHQ
c²nNe:V�T�pAgLT�cd}]^\Yhc²nNe:V�TIr(}]cmW6}z^\WHy|gL}]uhT�YLcd}]Z\Y6e:[Be:YLghQRW6T1Y�PLu"y
vKT�S"Z:«�cReIu"n6[]T�ch}zc"[z}]uh}ÃQRT�go�µe�Y6T�PHSXe:[§YLT�Q¯¥§Z:Sd¶¤uhZ�gLT�[§}zc
nLSRT�«¬T�SdSRT�go��®êQb}zc1SRT�V¦e:[z[]T�g�QRW6eIQ1QRZhT�c²QR}]u�exQRT�QRW6T�PLYH¶HYLZ¦¥bY
nNeISXe:uhT�QRT�SRc�Z:«�e�cdT�V�Z\YLgHy|Z:SRgLT�S+noZ:[z_HYLZ\uh}]e:[FuhZ�g6T�[��FeIQ
[]T�e:c²Q�p 3�� Ôxr«t�p 3�� Í\r"7:Í+g6eIQXe+cRe:u"n6[zT�cheISRT%SRT�¹�PL}zSRT�go�
�bQRW6T�Sd¥b}]cdT:�LQRWLT4uhZ�g6T�[o¥b}z[][ovKT4PLYLgLT�QRT�SRuh}zY6T�go�
~�T�V�Z\YLgL[z_\�§}]«�e·YLT�PHSXe:[1YLT�Q¯¥§Z:Sd¶´uhZ�gLT�[��§}]Y´nNeISdQR}]V�PL[eISqe
uFPL[zQR}z[e�_\T�StnKT�SRV�T�nLQdSRZ\YLc§Y6T�Q¯¥§Z:Sd¶q}zctPLcdT�go�L}zQt}zctYLT�V�T�cdcReISd_
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QRZ�V�Z\YLcd}]gLT�S4SRT�^\PL[exQR}]YL^aQRW6T"uhZ�g6T�[,V�Z\u�nN[zT�©�}zQ¯_+QRZ�e���Z\}zg
Z¦��T�SdªLQdQR}]YL^L�,®êQ�u�e�_he:[]cdZ�voT1YLT�V�T�cdcRexSd_�QRZ�QdSd_"Z:QRWLT�S�uhZ:SRT
T�Ì�V�}zT�Y�Q�QdSXeI}]YL}]YL^�uhT�QRW6Z�g6cqÇ È:È:Ém}z«�QRWLT"^:SXe:gL}zT�Y�Q4g6T�cdV�T�Y�Q
vNe:cdT�g�u"T�QRWLZ�ga}zc1«³Z\PLYLgaQRZ�vKT�Z\«�cd[]Z¦¥°V�Z\Y���T�SR^\T�Y6V�T:�mÊtT�y
cd}]gLT�c��:`bÊtOaYLT�Q¯¥§Z:Sd¶�c�W6e���Tm«³Z\PLYLg�QRZ1vKTmZ\«�^\Z�Z�g&e:V�V�PLSXeIV�_
e:ct¥§T�[z[�eIc1Z\«(«Ae:c²Q1QdSXe:}zYL}]YL^h}]Y�cdZ\uhT4c²QRPLgL}]T�c"Ç È�Ý��NÍ\�xÉ|�

¬  �(���¯®t��å/ã�ç²À ¼ è±°"æ?�³² ¼ À�´t¿�æ?�
®¯«oe:Y%eInLnLSRZ¦©H}zu�eIQRTbuhZ�gLT�[N}]c�PLcdT�g�«³Z:SµT���Z\[zPHQR}]Z\Y6eISd_"V�Z\u�y
n6PHQXeIQR}]Z\Yo�6vKZ:QRW�Z:�By|[]}zYLTFe:YLg�Z\YHy|[]}]YLT4QdSXe:}zY6}zYL^h¥b}][][ovoT4}zYHy
��Z\[Ã��T�g�}]«,QRW6TFT���Z\[]PHQR}zZ\Y�}]c
V�Z:Y�QdSRZ:[][]T�go�F�b�By|[]}]YLT�[zT¦eISRYL}zY6^
gLT�YLZ:QRT�c8QRWLT�QdSXe:}]YL}zY6^tnLSRZ�V�T�cdc8voT�«³ZISRT�QRWLTmuhZ�gLT�[\}]c?PLcdT�g4}]Y
T���Z\[]PHQR}zZ\Y6eISd_+V�Z:u"n6PLQXexQR}]Z\Yo�4®¯Y·V�Z\Y�QdSXe:V�Q��oZ\YHy|[]}]YLT�[]T�eISRYHy
}]YL^hgLT�YLZ:QRT�c1QRWLT�PLnKg6eIQRT�Z\«�QRWLT�uhZ�gLT�[?gLPHSR}]YL^hZ:nLQR}]uh}zÄ¦exy
QR}]Z:Y8��ß
cdP6e:[z[z_\�BQRWLTFcRe:u"n6[zT�c
«³Z:S
Z:�By|[]}zY6TF[]T�eISRYL}]YL^%V�e:Y�voT
^\T�YLT�SXeIQRT�g�PLcd}]YL^��+Z\Y�QRT�y w eISR[]ZhuhT�QRWLZ�go�6WLZ¦¥§T���T�S��6}ÃQbWNeIc
vKT�T�Y�cdW6Z�¥bY·}]Y�g6}Ã�KT�SRT�Y�Q�SRT�cdT�eISRV�W±exSRT¦e:c
QRW6eIQ�e:V�QR}Ã��T�cdT�y
[]T�V�QR}]Z\Y+Z\«�QRWLT�cReIu"n6[]T�c�¥b}z[][(}]u�n6SRZ���TFQRWLT�uhZ�gLT�[(¹�P6e:[]}ÃQ¯_
cd}]^:Y6}Ãª6V¦e:Y�QR[Ã_���j�PLSR}zYL^�Z\YHy|[z}]YLT
[]T�eISRYL}]YL^L�Hg6eIQXe4cdT�[zT�V�QR}]Z\Yq}zc
c²QdSRZ\YL^\[Ã_aSRT�[eIQRT�gaQRZ�QRW6T�cdT�eISRV�Wan6SRZ�V�T�cdc��

µKíAî ¶ M5¢�òA>�@8E�·a3Ló�3´Jo3$�Z�,òA>A@-g
~�T��\T�SXe:[�g6eIQXe
cReIu"n6[]}]YL^�u"T�QRWLZ�gLc,WNe���T§vKT�T�Y�cdPL^\^\T�c²QRT�g�}]Y
QRWLT�ªNT�[]gLcFZ\«tg6T�cd}]^:Y´Z:«1T�©�nKT�SR}zuhT�Y�QRcaÇ �\����ÍI�IÉ|��c²QXexQR}]c²QR}]V�c
e:YLg�u�eIV�WL}]YLT4[zT¦eISRYL}zY6^H�t~�Z\uhT�nKZ:n6PL[eISbu"T�QRWLZ�gLc�exSRT\�

Û ·aE,�¦>�gK@·5$¸,E�ø{��EHGI>��±EL@Nó���¹/· ¶ ð_º �bSdQRW6Z:^\Z\Y6e:[6eISdy
SXe�_Hc�pê�1Â4rX��V�T�Y�QdSXe:[NV�Z:u"nKZ\cd}zQRT�gLT�cd}z^\YLc4p w1w j&rX��e:YLg
j
y|Z:nLQR}]u�e:[z}zQ¯_FeISRTµuhZ\c²Q(¥b}]gLT�[z_&PLcdT�g�}zY�gLT�cd}]^\Y�Z\«LT�©�y
nKT�SR}zuhT�Y�QRc��bÂÕªLSRc²Qdy|Z:SRgLT�S�ZISdQRW6Z:^\Z\Y6e:[�gLT�cd}z^\Y+}zc
Z:Y6T
«³Z:Sµ¥bWL}]VXW F E F }]cte&gL}e:^\Z:YNeI[ou�exQdSR}z©K��¥bWLT�SRT F }zc
QRWLT�T�©�QRT�YLg6T�ghcRe:u"n6[]T
exSdSXe�_�e:c�gLT�ª6YLT�gq}]Y�k�¹�Yo�bp|��rX�
®¯Y=ZIQRW6T�S"¥§ZISRg6c��mQRW6TaV�Z\[zP6u"Y6c"Z\« F exSRTauFPHQRPNeI[][z_
Z:SdQRWLZ\^\Z\Y6e:[A�
w T�Y�QdSXe:[+V�Z\u�noZ:cd}zQRTÕgLT�cd}]^\YàT�Y6eIv6[]T�c�QRW6T¡T�ÌhV�}zT�Y�Q
V�Z:Y6c²QdSRPLV�QR}]Z\Y¤Z:«tcdT�V�Z\YLgHy|Z:SRgLT�SFnKZ\[z_�Y6Z:uh}e:[�uhZ�gLT�[]c��
w1w j�c�eISRTavNe:cd}zV¦eI[][z_¤ªLSRc²Qdy|Z:SRgLT�S+p|Í & rFgLT�cd}]^\YLc�eIP6^Iy
uhT�Y�QRT�gqv�_aÍ 3 e:gLgL}zQR}zZ\Y6e:[KV�T�Y�QRT�S1e:YLg9h²c²QXeIS»jFnKZ\}zY�QRc
QRZFe:[z[]Z¦¥�T�c²QR}]u�eIQR}zZ\YqZ:«KQRWLTbV�Z�T�Ì�V�}]T�Y�QRc�Z\«8e�cdT�V�Z\YLgHy
Z:SRgLT�Smu"Z�gLT�[A��Â
Y�T�©He:u"n6[]TtZ\« w1w j�gLT�cd}z^\YLcm}]c�^\}z�\T�Y
}]Y�O(}]^L�µÐ�«³Z:S�eFQ¯¥§Z:y|gL}]uhT�YLcd}]Z\Y6e:[8nLSRZ:v6[]T�u��
j
y|Z:nLQR}]u�e:[z}zQ¯_�QXeI¶�T�c1e:gH�\eIY�QXeI^\T�Z\«oQRW6T
nLSRZ:nKT�SdQR}]T�ctZ:«
nKZ\[z_HYLZ\u"}e:[�uhZ�gLT�[]c&}]Y¤g6eIQXe�cRe:u"n6[]}zYL^L��UtW6Tqe:V�V�PHy
SXe:V�_¤Z\«1QRWLT%[]T�e:c²QhcR¹�PNexSRTaT�c²QR}zu�eIQRT%}]Y´kµ¹�Y8��p|Ð\r4}zc
gLT�ª6YLT�g�e:c��

õµexSxp �¼ r � p F E F r +- p{A 1 p|Í:��r
¥bWLT�SRT p A }]c�QRWLT��:eISR}eIY6V�T±Z:«&QRWLT±T�c²QR}]u�eIQRT·T�SdSRZIS��
O6SRZ:uÏk�¹�Yo�tp|Í:��rX�x}zQ?V¦e:Y�vKT�cdT�T�Y�QRW6eIQ8QRZb}]u�n6SRZ���T�QRW6T
¹�P6e:[]}ÃQ¯_ÁZ\«§ªLQ��,Z\YLT%cdWLZ\PL[]g¨uheI©H}]u"}]Ä�TqQRWLT%gLT�QRT�SRu"}zy
Y6e:Y�Q�Z\« F E F ��UtW6T�SRT�«³Z:SRT:�KQRWLT�j
y|Z:nLQR}zu�e:[]}ÃQ¯_�}]c�QRZ

( 2 , 0 )

( 1, -1 )

( 1, 1 )( -1, 1 )

( -1, -1 )

(0,     2    )

 ( 0, -     2  )

( -    2 , 0 )

O,}z^\PHSRT�Ð�� w T�Y�QdSXe:[�V�Z\u"nKZ\cd}zQRTqgLT�cd}]^\YLcF«¬Z:S 3½� Í���UtW6T
gLZ:QRctSRT�n6SRT�cdT�Y�Q1QRWLT�cRe:u"n6[]T�nKZ\}zY�QRc���UtW6T�cRe:u"n6[zT�c1Z\YaQRW6T
cdZ\[z}]g±[z}]YLT�c4eISRT�QRWLT�ªLSRc²Qdy|Z:SRgLT�S�g6T�cd}]^:YÁe:YLg�QRWLZ\cdT"Z\Y+QRW6T
g6e:cdWLT�g�[]}]YLT�c�eISRT4V�T�Y�QdSXeI[?e:YLg�c²QXeIS1nKZ\}zY�QRcFp@¾ 3 rX�

cdT�[zT�V�Q�QRWLT1cReIu"n6[]T�c�}zYhcdPLV�W�e
¥te�_FQRW6eIQ�QRWLT1gLT�QRT�SRu"}zy
Y6e:Y�Q1Z:« F E F }]c§u�eI©H}zuh}]Ä�T�g8��Â
[zQRWLZ\PL^\W%gLT��\T�[zZ:nKT�g
«¬SRZ\u°QRWLT�nKZ\[Ã_HYLZ\uh}]e:[�uhZ�gLT�[zc��:QRWLT�j�y|ZIn6QR}zu�e:[z}zQ¯_4WNeIc
e:[]cdZ·cdWLZ¦¥bY¨QRZ+vKT%vKT�YLT�ª6V�}]e:[§}]Y´g6eIQXe+cdT�[]T�V�QR}]Z\Y´«¬Z:S
V�Z:Y6c²QdSRPLV�QR}]YL^hY6T�PHSXe:[8YLT�Q¯¥§Z:Sd¶HcFÇÃÔ¦�xÉ��

Û ÿ 7:óx>¬ñBE 8 E�3NGI@(>A@-g Â
V�QR}z�\TÏ[]T�eISRYL}]YL^*WNeIc�¥b}]gLT�[Ã_
vKT�T�Y�c²QRPLgL}]T�g�}]Y�QRWLT4ª6T�[]g�Z\«(YLT�PHSXe:[?YLT�Q¯¥§Z:Sd¶a[]T�eISRYHy
}]YL^�Ç �\Í��µÐHÔ:��Í\ÝxÉ|� UtWLT�vNe:cd}]V�}]gLT¦e�}]c"QRZ±cdT�[]T�V�Q"QRW6T
[]Z�V�eIQR}zZ\Y�Z:«(QRWLT&YLT�©�Q
cReIu"n6[]}]YL^qg6eIQXe�}zY�cdPLVXW�e"¥te�_
QRW6eIQ4e:Y+Z:vL��T�V�QR}z��T�«¬PLY6V�QR}]Z:Y�}]c�Z:nLQR}]u"}]Ä�T�go�4UtWLT�Z:vLy
�²T�V�QR}Ã��T4«³PLYLV�QR}]Z\Y�V¦eIY�vKT&}zYL«³Z:SRu�exQR}]Z\Y�^�eI}]Yo�BT�Y�QdSRZ:n�_
SRT�gLPLV�QR}]Z\Yo��Z:S�^\T�YLT�SXe:[]}zÄ¦exQR}]Z\Y¢T�SdSRZ:S��®êQ�WNeIc�vKT�T�Y
cdWLZ¦¥bY�QRW6eIQ�e:V�QR}z��T�g6eIQXehcdT�[]T�V�QR}]Z\Y�V�e:Y�}zu"nLSRZ¦��T�QRW6T
^\T�Y6T�SXe:[z}]Ä�eIQR}]Z\Y·eIv6}][z}zQ¯_+Z\«mY6T�PHSXe:[,YLT�Q¯¥§Z:Sd¶Hc
¥b}zQRWLZ\PHQ
}]YLV�SRT¦e:cd}zYL^hQRWLT�Y�PLu&vKT�S�Z\«�QdSXe:}zYL}]YL^�cReIu"n6[]T�c��

µKí¬ö ¶ @�¢�òA>�@8E�·%3Ló�3=JK3$�Z�,òA>�@{g
Â
V�QR}z��Ttg6eIQXe
cdT�[zT�V�QR}]Z\Y�}]cme:[]cdZ�}]u"nKZ:SdQXeIY�Qm}zY�QRW6TtV�e:cdTtQRW6eIQ
QRWLT1QdSXe:}zYL}]YL^&g6eIQXe�WNeIcmvKT�T�Y�V�Z:[][]T�V�QRT�g�e:YLghQRWLT�SRT�«³Z:SRT:�\QRW6T
QXeISR^\T�Qµ}zcµWLZ¦¥�QRZ4cdT�[zT�V�Qte4cdPHv6cdT�QµZ\«KQRWLT�g6eIQXe�«³Z:SµT�ÌhV�}zT�Y�Q
QdSXe:}zY6}zYL^L�

Û D�3³g�gK>A@-g 3B@?CÀ¿�5o5$��óx>A@-g Ê1e:^\^\}zYL^ÁÇ �¦Éme:YLg�vKZ�Z\c²Qdy
}]YL^·ÇÞÔx�¦É(eISRT4Q¯¥§Zqc²QXeIQR}zc²QR}]V�e:[?[]T�eISRYL}]YL^quhT�QRWLZ�gLc�QRW6eIQ
W6e���TtvKT�T�YhgLT���T�[zZ:nKT�g�QRZ�}]u"nLSRZ¦�\T1QRWLTb¹�PNeI[]}zQ¯_�Z\«BeInLy
nLSRZ¦©H}]uheIQRT�uhZ�g6T�[BPLcd}]YL^�vKZ�Z:QRc²QdSXexn%QRT�VXWLYL}¹�PLT�c&ÇÞÔ¦ÐxÉ��
®¯Y�vNe:^:^\}]YL^±p³vKZ�Z:QRc²QdSXeIn·e:^:^:SRT�^\eIQR}]YL^�rX�8e%Y�PLu&vKT�S4Z:«
vKZ�Z:QRc²QdSXeIn±uhZ�gLT�[zc&exSRThV�Z:Y6c²QdSRPLV�QRT�g·PLcd}]YL^�gL}z�KT�SRT�Y�Q
vKZ�Z:QRc²QdSXeIn�cRe:u"n6[]T�c�e:YLgaQRWLT�ª6Y6e:[oZ\PHQdnNPHQ1}]ctQRWLT4e���y
T�SXeI^\T·Z\«&QRWLT·uhZ�gLT�[]c���®êQ�}zc�cdWLZ¦¥bY!QRW6eIQavNe:^\^\}zY6^
}]caexvN[zT�QRZÁSRT�gLPLV�T�QRWLT��:eISR}]e:YLV�T�Z\«4T�c²QR}]uheIQRT+T�SdSRZ:S
T�ÌhV�}zT�Y�QR[z_\��Â
Y�e:g6eInLQR}z��T1vNe:^\^:}]YL^4QRT�VXWLY6}]¹�PLTbV¦e:YhSRT�y
gLP6V�T�vKZ:QRWa�\exSR}e:YLV�T4e:YLg�v6}e:cFÇ ÝxÉ|�
ÊtZ�Z\c²QR}zYL^¡eI[]^\Z:SR}ÃQRWLuhc¨exSRT�eIv6[]T QRZ!vKZ�Z\c²Q¨e!¥§T�eI¶
[]T�eISRYL}]YL^�e:[]^:Z:SR}zQRWLu°}]Y�QRZ�e1c²QdSRZ\YL^bZ\YLT:�(Â¨¥§T�eI¶�e:[]^\ZIy
SR}zQRWLuëV¦e:Y·vKTh}]Y6e:V�V�PHSXeIQRT"SRPL[zT�c4Z\«µQRW�PLu&vÁQRWNexQFeISRT
cd[]}z^\W�QR[z_¨vKT�QdQRT�S"QRW6e:Y=e�SXe:YLgLZ\u ^\PLT�cdc�� UtWLT�u�e:}zY
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gL}z�KT�SRT�YLV�T%vKT�Q¯¥§T�T�Y¨voZ�Z\c²QR}]YL^·e:YLg´vNe:^\^:}]YL^·}]c"QRW6eIQ
}]Y¸vKZ�Z:c²QR}]YL^L�bQRWLT�vKZ�Z:QRc²QdSXexn!cRe:u"n6[zT�c�eISRT·eI�KT�V�QRT�g
v�_�QRWLT&noT�SR«³ZISRu�e:YLV�TFZ\«,QRW6T�V�PHSdSRT�Y�Q�uhZ�g6T�[���®¯Y�e:gHy
gL}zQR}]Z:Y8��QRWLTqª6Y6e:[µZ\PHQdnNPHQ�}]c"e�¥§T�}]^:W�QRT�g´e���T�SXe:^\T%Z:«
QRWLT4gL}z�KT�SRT�Y�QbuhZ�g6T�[]c��

Û ÿ 7:óx>¬ñBEÏC?3Ló�3Á��ELò¬EH7:óI>¬5K@ ~�Z\uhT+Z\«�QRW6T�c²QXeIQR}]c²QR}zV¦eI[
e:V�QR}z��T·[]T�eISRYL}]YL^ uhT�QRWLZ�gLc�V�e:Y°eI[]cdZ=vKT±eInLnN[z}]T�g!QRZ
QRWL}]cqQ¯_�nKT�Z:«4gNexQXe¤cdT�[]T�V�QR}zZ\YÎÇ �\ÜxÉ|�ÕÂëc²nKT�V�}eI[
V¦e:cdT
Z\«o}]Y�QRT�^:SXeIQRT�gquhT¦eIY%cR¹�PNexSRT
T�SdSRZ:S���V�e:[z[]T�g%}zY�QRT�^:SXexQRT�g
cR¹�P6eISRT�g v6}]e:c�}]c�PLcdT�g�eIchQRW6T�V�SR}ÃQRT�SR}zZ\Y=QRZ±cdT�[]T�V�Qqe
cdPHvNcdT�Q·«SRZ\u e��:e:}][]eIv6[]T¨g6eIQXe=QRZ�}]u�n6SRZ���T¨[zT¦eISRYL}zY6^
nKT�SR«¬Z:SRu�e:YLV�T\��f
Z¦¥§T���T�S��&}ÃQ+}]c+e:cdcdPLuhT�g°QRW6eIQ�QRW6T
g6eIQXe"}]c1YLZ\}]cdT�[]T�cdc��

Û ·a3Ló�3Â�FEL>�gK9Bóx>A@-g9gK;�>AC?EHC½¿� E�ñN5Kò�;oóI>¬5K@ ®¯Y=Ç Í\ÐxÉ��
e�u"T�QRWLZ�g±QRZa¥§T�}z^\W�QFQRWLT�e��:e:}][]eIv6[]Tqg6eIQXeaP6cd}zYL^�QRW6T
}]YL«³ZISRu�eIQR}]Z:Y·«¬SRZ\uûQRW6T�T��\Z\[]PHQR}]Z:YNexSd_·e:[z^\Z:SR}zQRWLuàWNeIc
vKT�T�Y=cdPL^\^\T�c²QRT�go��UtWLT�vNe:cd}zV�}]gLT�e·}]c"QRWNexQ�}]«�}]YL«³ZISdy
u�eIQR}zZ\Y%Z\YqcdT�eISRV�Wqg6}ÃSRT�V�QR}]Z:Y%Z:«oQRWLT
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Abstract 
 
 
The discovery of evolutionary laws of financial 
market is always built on the basis of financial 
data. Any financial market must be controlled by 
some basic laws, including macroscopic level, 
submicroscopic level and microscopic level laws. 
How to discover its necessity-laws from financial 
data is the most important task of financial 
market analysis and prediction. Based on the 
evolutionary computation, this paper proposes a 
multi-level and multi-scale evolutionary 
modeling system which models the 
macro-behavior of the stock market by ordinary 
differential equations while models  the micro- 
behavior of the stock market by natural fractals. 
This system can be used to model and predict the 
financial data(some time series), such as the 
stock market data of Dow-Jones index  and 
IBM stock price, and always get good results.   

1   INTRODUCTION 

The financial data or data get from some real-world 
systems such as stock market usually are very complex, 
but any complex system is bound to be controlled by 
some basic laws, including macroscopic level laws, 
submicroscopic level laws and microscopic level laws.  
Consider the following financial data as the time 
series:  

 )1(        )(,),(),( 10 mtxtxtx L   

where ti= t0 + i? t, ? t is the time stepsize. As for the 
time series, besides the traditional method of time series 
analysis [1], evolutionary algorithm is usually used to 
cope with these data[2][3][4]. 

Suppose that the financial data are controlled by 
macroscopic, sub-macroscopic and microscopic rules. 
We take the multi-level, multi-scale models for 
analyzing and predicting the financial data. In this paper,  
we use the ordinary differential equation (ODE) model 

to describe the macroscopic behavior of the stock 
market, while we use the natural fractal models (a kind 
of natural discrete wavelets) to describe its microscopic 
behavior. In this way, we build a mu lti-level and 
multi-scale evolutionary modeling system for financial 
data. This system provides a strong tool for the analysis 
and prediction of complex time series. The observed 
data of the Dow-Jones index and IBM stock price are 
used as the test data for this system.  

The rest of the paper is arranged as follows: in section 2, 
we introduce the macroscopic ODE model; in section 3, 
we introduce the microscopic natural fractal model; 
numerical experiments are given in section 4; and in the 
end, section 5 is some conclusions. 

2   MACROSCOPIC ODE MODEL 

The complex time series are usually characteristics of 
multi-level and multi-scale. Assume that it has two 
levels: macro and micro. In order to describe it in 
macroscopic level, the researchers take many kinds of 
methods to pre-handle the time series.  

2.1   DECOMPOSITION OF ORIGINAL DATA 

In order to find out macroscopic laws from complex 
data, the first step is to decompose the original data x(ti), 
i=0,1,2,...,m as in (1) into two parts: the smooth part 
and the coarse part (non-smooth part). We assume that 
the evolutionary process of the smooth part is controlled 
by macroscopic factors, and the evolutionary process of 
the coarse part is controlled by microscopic factors. The 
smooth part will be modeled by ordinary differential 
equations (ODE), while the coarse part be modeled by 
natural fractals (a kind of multi-scale discrete wavelets). 

For the time series (1), we decompose it into two parts:  

   ,,1,0)(~)()( mitxtxtx iii L=+=      (2) 

where the smooth part )( itx  is defined as: 
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and the coarse part: 

 ,,1,0),()()(~ mitxtxtx iii L=−=  (4) 

Notice: (3) and (4) is related to the value of the smooth 
parameter l which is often proportional to m, when 
l is bigger, the time series )}({ itx is more smooth. 

2.2 MACROSCOPIC HIGHER-ORDER ODE 

MODEL   

In this subsection, we will mainly introduce how to 
model and predict the smooth data { }m

iitx
0

)( = . Since 
the smooth data describe the macro behavior of 
dynamic system and determine the macroscopic 
tendency of the system, it is the essential part of 
observed data. Because it is the smooth part of observed 
data, we assume that )(tx  is sufficiently smooth, that 
is, assume that ∈)(tx Cn[t0,T],  1=n=4. 

The modeling problem of the dynamic system )(tx  is 
to find an initial value problem of the nth–order 
ordinary differential equation: 

  
1,,1,0,)(

))(,),(),(),(,()(

)()(

)1()(

0





−==

′′′=

=

−

nixtx

txtxtxtxtftx

i
tt

i

nn

L

L

 (5) 

such that the mean square error between the values of 
its solution x*(t) at ti, i = 0,1,...,m and the series 

)}({ itx  as small as possible.  

Denote 

(6)     ))()(*(
1

1*

0

2∑ −
+

≡−
=

m

i
itxitx

m
xx  

That is to say, to find f in function space F, such that 

          . min
* xx

Ff
−

∈
              (7) 

This problem is solved by evolutionary modeling 
algorithm described in [7]. The main idea of the 
algorithm is to embed a genetic algorithm in genetic 
programming used to discover and optimize the 
structure of a model, while GA is used to optimize its 
parameters. 

The evolutionary modeling algorithm for higher-order 
ordinary differential equation can be simply described 
as follows: 

PROCEDURE 1 

begin 

  Initialize population P(0) = {p1(0), p2(0),…, pN(0)}; 
(produce N parse trees randomly ) 

  t : = 0; 

  Evaluate the fitness of pi(t ), i = 1, 2, …, N;  

  while not terminate do 

  begin 

Pc(t ) := crossover {P(t )}; 

Pm(t ) := mutation {Pc(t )}; 

Evaluate Pm(t ); 

P(t + 1) := selection {Pm(t ), P(t )}; 

t : = t + 1; 

Output solution of qmitxp ibest += ,,1,0 ),(: *
L ; 

end 

For the details of the process of modeling, please refer 
to [7]. 

3  MICROSCOPIC FRACTAL MODEL  

For the coarse part m
iitx 0)}(~{ = of the time series (1): 

mitxtxtx iii ,,1,0   ),()()(~ L=−= ,  

we are going to build a multi-scale micro natural fractal 
model. 

3.1 CONSTRUCTION OF NATURAL WAVELETS   

Denote      )1(
)(~

0
∑

=
+=

m

i

i
m

txx              (8) 

In order to search an l–scale basic natural wavelet of 
series (4), we divide the series m

itx 0)}(~{  into l groups 
(from row to column to form the following matrix (see 
Table 1), each column as a group, including l groups), 
where xi denotes )(~

itx . 
 

Table 1 
 
             1        2   ...   S+1  ...   l   

        1     x0       x1   ...   xS    ...  xl-1 

        2     xl       xl+1  ...   xl+S   ...  x2l-1 

        M                       

        k     x(k-1) l     x(k-1) l+1 ...   x(k-1)l+S    

                                               

average   
lx1      

lx2    ...  
l
Sx 1+  ... 

l
lx      

  

    *

1
1)1(

*

i

k

j
ilj

l
i kxx

i











= ∑

=
−+−        (9) 

where  
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When S = l -1 , *
ik = k, then  (m+1)/  l = k . 

Through the points lixt l
ii  , ,2,1 ), ,( 1 L=−  in the x

－t plane, we can get a polygonal line as follows: 
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Evidently, the function x 
l
 (t ) has a local compact 

support [t0, tl-1], we call it l–scale basic natural 
wavelet. 

In order to test whether x 
l
 (t ) is a basic natural wavelet 

of time series (4), we introduce the variance ratio: 

     

)1()(

)1()(

1 1
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ii
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    (12) 

Assume that El has an F-distribution with (l-1, m-l+1) 
degrees of freedom. For different confidence level a  
and (l-1, m-l+1) degrees of freedom, we can get Fa(l-1, 
m-l+1) from a F-distribution table. 

If El=Fa(l-1, m-l+1), then the time series (4) exists 
l–scale basic natural wavelet )(tx l in confidence level a .  
If El < Fa (l-1, m-l+1), then the series (4) does not exist 
l–scale basic natural wavelet in confidence level a . 

3.2 MICROSCOPIC NATURAL FRACTAL 

MODEL 

In order to build the mathematical model for the coarse 
part )(~ tx of the time series (4), we construct a 
multi-scale natural fractal model with scale l=2, 3, ..., L. 
The process can be described as follows: 

PROCEDURE 2 

begin 

   initialize xx ~:= ; where  m
iitxx 0)}(~{~
==  

   0:* =x ; where qm
iitxx +
== 0

** )}({  

   for  l =2, L,  do 

using { }m

iitx 0)( =  calculate { }l
l

lll xxxx  , , , 21 L= ; 

    if  El =Fa(l-1, m-l+1)  then 

        
) (mod  ,)(   ;*:* 1 lijxixwherexxx l

j
ll ≡=+= +  

end for 

    ∑
= +

−=
m

oi m
ixix

1
)(*)(~

: ε
; 

    for  i = 0, m + q   do 

 ;)(*:)(* ε+= ixix   

end for 

end 

Remark 1: The output { }m
iitx 0)(*~
=  is the fitting part 

of { }m

iitx 0)(~
=  and { }q

miitx
1

)(*~
+=  is the prediction 

part of )(~ tx . ε is the average fitting error, and it has 
been eliminated as the correction (random error). 

Remark 2: The first part of the procedure is to test 
successively whether the time series exists basic 
natural wavelet with scale l which is less than L, 
usually L=(m+1)/3, for some special problems, where 
m is relatively small, L can be magnified to L=(m+1)/2. 
if it exists, then prolong it periodically to whole 
interval [t0, tm+q] and add to the time series   

qmix +
0)}(*{ .  

Remark 3: The second part of the procedure is to 
evaluate the random error of )}(~{ itx , and then correct 
it when fitting and prediction. 

3.3 THE MULTI-LEVEL AND MULTI-SCALE 

EVOLUTIONARY MODELING S YSTEM 

Using the macroscopic modeling PROCEDURE 1 of 
nth-order ordinary differential equation (5), and the 
microscopic modeling PROCEDURE 2 of natural 
fractal, we can build a multi-level and multi-scale 
evolutionary modeling  system for fitting and 
prediction of complicated time series. Firstly, call 
PROCEDURE 1 to build the ODE (5), and use 
Runge-Kutta method to solve it to get the fitting and 
prediction values of the smooth part 

qmitx i += ,,1,0 ),(*
L , then call PROCEDURE 2 

to get the fitting and prediction values of the coarse part: 
qmitx += ,,1,0),(~ *

L . Adding up these data, we 
can get the needed fitting and prediction values:  

qmitxtxtx iii +==+ ,,1,0 ),()(~)( ***
L  

This procedure can be described as follows: 

PROCEDURE 3 

begin 

Decompose data x [0, m] into ],0[ mx  and ],0[~ mx ; 

Call PROCEDURE 1 to get ],0[* qmx + ; 

Call PROCEDURE 2 to get ],0[~* qmx + ; 

for  i =0, m  do 

   );(~)( :)( *** ixixtx i +=  

   e(i ) : = x(i ) -x*(ti ); 

endfor 

for  i = m+1, m+q  do 

   );(~)( :)( *** ixixtx i +=  

endfor 

output  x*(ti), i  = 0,1,..., m+q; 
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output  e(i), i = 0,1,..., m; 

end 

Remark 1: The first step of the procedure is to 
decompose the original time series into two parts: the 
smooth part and the coarse(non-smooth) part. 

Remark 2: The second step of the procedure is to call 
PROCEDURE 1 to deal with the smooth data )}({ tx  
and get an ODE model of and the values of its solution: 

)(,),(),( *
1

*
0

*
qmtxtxtx +L , where the first m+1 

values are the fitting values of )(tx , and the later q 
values are the prediction values of )(tx . 

Remark 3: The third step of the procedure is to call 
PROCEDURE 2 to deal with the coarse data )(~ tx  
and get a multi-scale natural fractal model and its 
solution: )(~,),(~),(~ *

1
*

0
*

qmtxtxtx +L , where the 
first m+1 values are the fitting values of )(~ tx , and 
the later q values are the prediction values of )(~ tx  at 
tm+1 , tm+2 ,..., tm+q . 

Remark 4: The fourth step of the procedure is to 
combine the fitting values of the smooth part with 
those of the coarse part of x(t) to get the time series 
{ }m

itx
0

)(* and the fitting error { }mie 0)( . The fifth 
step of the procedure is to combine the prediction 
values of the smooth part with those of the coarse part 
of x(t) to get the prediction values of x(t) at the time 
tm+1 , tm+2 , ..., tm+q , where the prediction length q can be 
decided by the users. 

4  NUMERICAL EXPERIMENTS 

In this section, we mainly study the applications of 
multi-level and multi-scale evolutionary modeling 
system to the financial data.  

Firstly we use the smooth data of BUMP problem as the 
test data of the smooth model.  

4.1   MODELING OF S MOOTH SCIENTIFIC 

DATA 

In 1994, Keane [8] proposed the BUMP problem in  
optimum structural design as follows: 

The solutions of the BUMP problem are  unknown. 
According to this problem, Liu proposed a challenge 
problem in his doctoral dissertation [9] as follows: 

)( lim XfMax n
n ∞→

   s.t.  0 ≤ xi≤ 10, 1 ≤ i≤ n,   

   where 75.0
1

>=∏
=

n

i
ix   and   nx

n

i
i 5.7

1

<=∑
=

  

 
Table2. Solution table of BUMP problem 

 

n nf  n nf  n nf  

1  18 0.79717388 35 0.82743885

2 0.36497975 19 0.79800887 36 0.82783593

3 0.51578550 20 0.80361910 37 0.82915387

4 0.62228103 21 0.80464587 38 0.82896840

5 0.63444869 22 0.80833226 39 0.83047389

6 0.69386488 23 0.81003656 40 0.82983459

7 0.70495107 24 0.81182640 41 0.83148885

8 0.72762616 25 0.81399253 42 0.83226201

9 0.74126604 26 0.81446495 43 0.83226624

10 0.7473103 27 0.81694692 44 0.83323002

11 0.76105561 28 0.81648731 45 0.83285734

12 0.76256413 29 0.81918437 46 0.83397823

13 0.77333853 30 0.82188436 47 0.83443462

14 0.77726156 31 0.82210164 48 0.83455114

15 0.78244496 32 0.82442369 49 0.8318462

16 0.78787044 33 0.82390233 50 0.83526201

17 0.79150564 34 0.82635733   

 

Liu got  the  best  solutions of  the  BUMP 

problem for n = 2,3,...,50 as showed in Table 2, where fn 

= Max fn (x  ). The best solutions are depicted in Fig. 1. 

We want to discover higher-order ODEs to model the 

time  series  f2, f3  , f4  ,..., f50.  Denote  f i= f (ti), 

where ti = t0 + i? t , t0 =2, and ? t = 0.01. 
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Fig. 1: Best results of f2 to f50 

Using the method described in section 2, we discoverd 
the following model by computer automatically: 

15.08058 2t   

0.36497978 (2)   
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Where the modeling error is 0.00095677, this means 
the model fits the solutions of BUMP problems  very 
well. We use it to predict the solution of the challenge 
problem by using Runge-Kutta method with ? t =0.01 
in 1000000 steps, the results f(100), f(200),..., f(1000 
000) are shown in Table 3. The results of f100, 
f200, ..., f1000000 of the BUMP problem[9] got by 
Liu on a massively parallel computer are compared in 
Table 3. 

 

Table 3: the Comparison of fn and f(n) 

 

n fn f(n) 

100 

200 

300 

400 

500 

0.8448539

0.8468442

0.8486441

0.8511074

0.8504975

0.8445141 

0.84503153 

0.84503450 

0.84503451 

0.84503451 

1500 

10000 

20000 

100000 

1000000 

0.8449622

0.8456407

0.8455883

0.8448940

0.8445861 

0.84503451 

0.84503451 

0.84503451 

0.84503451 

0.84503451 
 

These results show that the smooth model got by the 
new modeling system gives a good long-range 
prediction. 

4.2 MODELING OF THE DATA OF DOW-JONES  

INDEX 

The observed data shown in Fig.2 are taken from [10] 
giving the daily Dow-Jones index over 132 days in 
2000. We take the observed data of the first 126 days as 
historical data (training data) to build models which are 
used to predict the Dow-Jones index of the last 6 days. 

Parameter settings of the modeling experiments are 
m=126, l=4 for smoothing, m=126, q=6, t0=0,? t = 0.01 
(one day), N=100, n=2 (the second-order ODE) for 
macroscopic ODE model, and m=126, q=6, L=53,a = 
0.1 for microscopic natural fractal model. We get a 
second-order ODE model as follows: 

)356812.1115*sin(cos

)sin(/875732.3672
009766.17228

2

2

t
dt

dx

dt

xd +−=

 

The results are shown in Fig.2. 

 

Fig. 2: the fitting and prediction curves for Dow-Jones 

index 

4. 3   MODELING OF IBM S TOCK PRICE 

DATA 

The observed data shown in Fig.3 are taken from [10] 
giving the daily stock price of IBM Company from May 
17,1961 to November 2,1962. We take the observed 
data of the first 359 days as the training data to build 
models which are used to predict the stock price of the 
last 10 days.  

Parameter settings of the modeling experiments are 
m=54, l=10 for smoothing, m=359, q=10, t0=0, 
? t=0.01(one day), N=100, n=2 (the second-order ODE) 
for macroscopic ODE model, and m=359, q=10, 
L=120,a =0.1 for microscopic natural fractal model. We 
get a second-order ODE model as follows:  

x
xdt

xd 2
2

2

cos
cos

537.55.1507 −−=  

The results are shown in Fig.3. 
 

 
 

Fig.3: the fitting and prediction curves for IBM stock 

price 

5  CONCLUSION 

Compared with most available modeling methods, the 
multi-level and multi-scale evolutionary modeling 
system has the following advantages:  

Firstly, the entire process is automatic and requires little 
information in the way of the real-world system or 
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expertise. 

Secondly, it allows one to model the macro-behavior of 
the system by ordinary differential equations and to 
model the micro-behavior of the system by multi-scale 
natural fractals simultaneously. 

Finally, the models discovered by computers from 
the complicated financial data can fit the original 
data quite well, and the structures of the ODE models 
are unimaginably to humans. 
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Abstract

Function approximation is the problem of
�nding a function that best explains the
relationship between independent variables
and a dependent variable. We propose a
genetic hybrid for the critical heat ux func-
tion approximation which critically a�ects
the performance of nuclear plants. The
problem is represented for genetic algorithm
in a way that exploits the relationships be-
tween parameters. The experimental result
signi�cantly improved the existing function
at KAERI (Korea Atomic Energy Research
Institute). The framework is not just for the
tested problem; it is believed to be applicable
to other function approximation problems.

1 Introduction

GivenN data pairs fXi; yig; i = 1; 2; :::; N , where each

Xi is an n-dimensional vector of independent variables
(Xi =< xi1 ; xi2 ; : : : ; xin >) and yi is a dependent vari-
able, the function approximation problem (FAP) is
�nding a function that best explains the N pairs of
Xi and yi. Assume that the samples are derived from
an underlying system of the following form:

yi = f(Xi) +4i = f(xi1 ; xi2 ; : : : ; xin) +4i:

A popular measure for the error with respect to a can-
didate function f̂ is the LSE (Least Squares Error)
which is de�ned as follows:

LSE(f̂) =
1

N

NX

i=1

(yi � f̂(Xi))
2:

In a linear parametric model, we can �nd an optimal
function by traditional regression analysis. When it

is nonlinear, we cannot guarantee to �nd an optimal
function in most cases. There have been a number of
attempts to do function approximation with trainable
dynamic systems using neural nets and fuzzy systems
[8][30].

Derivative-based algorithm is a popular approach in
a parametric model. However, every derivative-based
algorithm converges to the nearest local minimum as-
sociated with the initial solution. Thus selecting a
good starting point is critical for a derivative-based
algorithm. A naive solution for this problem is the
multi-start approach which applies a local optimiza-
tion algorithm, such as a derivative-based algorithm,
on a number of random starting points and returns the
best result out of them. Another way is the Large-Step
Markov Chain (LSMC) method which repeats a chain
of \perturbation + local optimization" starting at an
initial point. LSMC was popular in the 1990's, par-
ticularly for the traveling salesman problem [13][20].
Another is the hybrid genetic algorithmswhich showed
notable successes on combinatorial optimization prob-
lems [5][6][21][23]. They generate diverse initial solu-
tions by genetic operators and provide them as inputs
for local optimization algorithms.

A hybrid of an adaptive regression splines algorithm
and a genetic algorithm was used to solve some FAPs
[25][26]. In the regression splines algorithm, the terms
in a regression equation take the form of splines of the
descriptors. If the numbers of descriptors and func-
tional forms are small, the space of possible �tting
equations can be explored exhaustively. However, if
the numbers are large, this is not possible. In the hy-
brid, the search for function models was replaced by
a genetic search. It showed better performance with
shorter computation times. Another GA approach
for designing a universal function approximator with
a combination of trigonometric and polynomial basis
functions was also proposed [1]. The result was re-
ported to be better than that of a statistical regression
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based on polynomials, trigonometrics or cubic splines.
It also outperformed a neural-network-based solution.

In this paper, we present a hybrid genetic algorithm for
the critical-heat-ux (CHF) function approximation.
It is a problem that critically a�ects the performance
of nuclear plants. We use the nonlinear Levenberg-
Marquardt algorithm for local optimization and com-
bine it with a genetic search. In a genetic algorithm,
it is known that the encoding of solutions signi�cantly
a�ects the performance [5]. We devise a parameter-
reordering algorithm for genetic encoding to exploit
the geographical relationships of parameters in the ge-
netic search process.

This paper is organized as follows. In section 2, we
explain the basics of Levenberg-Marquardt algorithm
and critical heat ux, and present the objective. In
section 3, we describe our approach for the critical-
heat-ux function approximation. In section 4, we
provide our experimental results and compare them
against existing ones. Finally, conclusions are given in
section 5.

2 Preliminaries

2.1 Levenberg-Marquardt algorithm

In linear systems, the steepest-descent algorithm,
which moves in the steepest downhill direction deter-
mined by the gradient, is the basis for most derivative-
based algorithms. Newton's method improves the
steepest-descent algorithm by more e�ciently deter-
mining the movement direction using a Hessian ma-
trix, a matrix of the second partial derivatives. A ma-
jor disadvantage of Newton's method is that calculat-
ing the inverse of the Hessian matrix is computation-
ally expensive and may introduce numerical problems
due to round-o� errors. If the Hessian matrix is not
positive de�nite, Newton's method may also move to a
local maximum (saddle point) instead of a local mini-
mum. Levenberg [18] and Marquardt [19] added a pos-
itive de�nite matrix to the Hessian matrix to make the
Hessian positive de�nite. In this way, one can avoid
being directed to a saddle point. This approach is
generally called the Levenberg-Marquardt algorithm.
For nonlinear systems, the starting point is the Gauss-
Newton method which uses a Taylor series expansion
to obtain a linear model that approximates the orig-
inal nonlinear model. Then the least-square methods
can be applied. Of course, the Levenberg-Marquardt
algorithm can also be applied to this model; it is called

the nonlinear Levenberg-Marquardt algorithm.

2.2 Critical Heat Flux

When a heated surface is wet with cooling liquid and
most of the heat transferred is absorbed by the la-
tent heat of vaporization, a large heat transfer can be
achieved with a small temperature di�erence between
the surface and liquid. However, the region of highly
e�ective boiling heat transfer has a limiting boundary,
and the limiting condition is called the critical heat

ux condition.

The CHF condition is characterized by a sharp reduc-
tion of the local heat transfer coe�cient which results
from the replacement of liquid by vapor adjacent to
the heat transfer surface. An occurrence of CHF is
accompanied by an inordinate increase in the surface
temperature for a surface-heat-ux-controlled system,
and an inordinate decrease in the heat transfer rate for
a surface-temperature-controlled system [27].

This can be explained with Newton's law of cooling as
follows:

q = h(Tw � Tf )

where q, h, Tw, and Tf represent the heat ux, heat
transfer coe�cient, wall temperature, and uid tem-
perature, respectively. If h decreases signi�cantly due
to the occurrence of the CHF condition, Tw will in-
crease for �xed q and Tf while q will decrease for �xed
Tw and Tf .

The understanding of CHF phenomenon and accurate
prediction of the CHF condition are important for safe
and economic design of many heat transfer units in-
cluding nuclear reactors, fossil-fuel boilers, fusion reac-
tors, electronic chips, etc. Therefore, the phenomenon
has been investigated extensively over the world since
Nukiyama [24] �rst characterized it.

If CHF occurs in an atomic reactor, it lowers the ther-
mal e�ciency and hence causes a serious loss, which
endangers the safety. Therefore, it is an important
task to predict the occurrence of CHF under a cer-
tain condition. To �nd the CHF function, statistical
techniques have been widely studied [2][10]; neural net-
works [22][31] and genetic programming [17] have also
been tried.

2.3 The Objective

There can be a number of measures to evaluate the
performance of an approximate function: the sum of
the squared errors, the sum of the absolute errors, the
maximum overshoot, etc. In our problem, we use LRE

(Least Ratio Error) following the convention of the
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B

A Select a function model

Tune the parameter values

Sample Data Final function

Figure 1: The process of function approximation

CHF studies [7][28]:

LRE(f̂) =
�( y

f̂(X)
)

E( y

f̂(X)
)
:

To clarify the meaning of the measure, we rewrite it
as follows:

LRE(f̂) = �(
y

E( y

f̂(X)
)� f̂(X)

):

The �nal function that we evaluate is E( y

f̂(X)
)� f̂(X)

since the new function has the following useful prop-
erty:

E(
y

E( y

f̂(X)
)� f̂(X)

) = 1:

2.4 The Dataset

Each data set consists of eight independent variables
x1; : : : ; x8 and one dependent variable CHF. We were
given 1607 sets of observed data from KAERI. The
best known function with respect to LRE that KAERI
has from years of tuning is as follows [14][15]:

CHF = �0:019278x1� 0:17253
x2

1000
� 0:1396tanh(0:05461(x3 + x4)� 1:97)

� 0:38082x5 � 0:054003x6

� f
1:8987x2

1000
+

0:047388x1x2

1000
� 0:10821x1

� 0:67613(
x2

1000
)2gx7x8

+ 0:134698x7 + 1:25103: (1)

Since the actual meaning of the variables are beyond
the focus of a methodological study, we renamed the
original variables x1; : : : ; x8.

3 The Suggested GA

3.1 Our Approach

An ideal structure for an FAP is given in Figure 1.
Given a sample data set, it repeats the process \i)
select a function model, ii) tune the parameter values."

solution
Final Stopping 

Condition

population
Prepare initial

reordering
Encoding by

Local optimization

Selection

Crossover

Mutation

Local optimization

Replacement
Yes

Given a model

No

Figure 2: The structure of the RHGA

We may use a two-level genetic algorithm that �nds
both the function model and the coe�cients by two
genetic algorithms. In the scheme, the upper level GA
provides function models and the other GA tunes the
coe�cients of each function model. This is an example
of non-parametric optimization. The search space may
be much wider than the GA can e�ectively solve in a
practical time budget since both the function models
and the sets of coe�cients have unlimited numbers of
eligible candidates. To cut the search space, we start
with the best function model at KAERI mentioned in
Section 2.4, and attempt to modify it by an analytical
method. That is, the GA in this paper is used just for
tuning the coe�cients. We name this GA a Reordered
Hybrid GA (RHGA).

The RHGA was applied to �nd coe�cients in part B
of Figure 1. Part A is tuned by an analytical method.
The structure of the RHGA is shown in Figure 2.
Given the function model (1) of Section 2.4, the co-
e�cient distribution for training is as follows:

CHF = a1x1 + a2
x2

1000
+ a3tanh(a4(x3 + x4) + a5)

+ a6x5 + a7x6

� f
a8x2

1000
+
a9x1x2

1000
+ a10x1

+ a11(
x2

1000
)2gx7x8

+ a12x7 + a13: (2)

The problem is to �nd the best set of coe�cients a1
through a13 with respect to the objective LRE in Sec-
tion 2.3. In the following subsections, we describe each
part of the RHGA in detail.

3.1.1 Problem Representation by Reordering

In the problem, the coe�cients are all real numbers.
Each solution is a set of 13 coe�cient values. In a
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GA, a solution is represented by a chromosome; here,
a chromosome is a real array of 13 elements. Al-
though binary representation has been popular in the
GA community, real representation also has a long his-
tory dating back to the early 1960's [3][29]. Each ele-
ment of the array is called a gene and we restrict the
range of each gene to [-50, 50].

3.1.2 Operations: Selection, Crossover,

Mutation

Two parent chromosomes are selected with probabili-
ties that are proportional to their �tness values. The
�tness values are normalized in such a way that the
best chromosome is chosen with a probability four
times higher than that of the worst chromosome. This
is a general practice in the GA community [11]. The
normalized �tness value of a chromosome in the pop-
ulation is computed as follows:

Fk = Qw �Qk + (Qw �Qb)=3,
Qk = �( y

f̂k(X)
)=E( y

f̂k(X)
)

where
Fk : �tness of chromosome k
f̂k : the function corresponding to chromosome k
b; w : the indices of the best and the worst

chromosomes in the population

A crossover operator creates a new o�spring chromo-
some by combining parts of the two parent chromo-
somes. RHGA uses 3-point crossover that works as
follows. It randomly selects three cut points in the
same positions on both parent chromosomes. The cut
points divide each chromosome into four disjoint parts.
It makes an o�spring by alternately copying the parts
from the two parents. RHGA then perturbs the solu-
tion with the followingmutation operator. It generates
a random number for each gene of the o�spring. If the
random number for the gene is smaller than a preset
probability P1, it is replaced with an arbitrary number
in the range [-50,50].

3.1.3 Local Optimization

Local optimization is performed on each o�spring af-
ter crossover and mutation. Generally a GA is in-
e�cient in �ne-tuning around local optima. A lo-
cal optimization algorithm helps a GA �ne-tune and
improves its convergence. RHGA uses the nonlinear
Levenberg-Marquardt algorithm for local optimiza-
tion. The Levenberg-Marquardt algorithm takes a set
of initial coe�cients as input, and outputs a locally
optimized set of coe�cients. The GA provides di-
verse initial solutions by crossover and mutation for
the Levenberg-Marquardt algorithm.

3.1.4 Replacement Operation and Stopping

Criterion

RHGA uses the replacement operator used in [5]. The
o�spring �rst attempts to replace the parent more sim-
ilar to itself, measured by the sum of the distances
between all coe�cient pairs. If it fails, it attempts
to replace the other parent (replacement is done only
when the o�spring is better than one of the parents).
If the o�spring is worse than both parents, it replaces
the most inferior member of the population. It stops
after a given number of generations.

3.2 Reordering and the Modi�cation of

Function Models

3.2.1 Coe�cient Reordering

A schema is a pattern inside chromosomes. Given a
set of alphabets S, a schema is de�ned to be an n-tuple
s1s2 : : : sn where si 2 S [ f�g. In a schema, the sym-
bol \�" speci�es the don't-care positions and the other
symbols are speci�c symbols which specify the pattern.
The de�ning length of a schema is de�ned to be the
length from the leftmost speci�c symbol to the right-
most speci�c symbol. We call a schema with k speci�c

symbols a kth-order schema. Some schemas survive
and some do not by a crossover operator. The sur-
vival of high-quality schemas is important since GAs
can be explained as a growing process from low-order
schemata to high-order schemata [12]. In a single-
point crossover, schemas with short de�ning lengths
have higher probabilities to survive over generations.
If we use multipoint crossovers, a schema is not dis-
rupted when an even number of crossover points fall
between the two speci�c symbols of every pair of ad-
jacent speci�c symbols. The survival probability of a
schema is not only a�ected by its de�ning length and
we have to consider the distribution of speci�c sym-
bols [6]. For example, consider two 6-order schemas
H1 and H2 with the same de�ning length of 20. Spe-
ci�c symbols are evenly distributed in H1 but they are
highly clustered in H2. When two-point crossover is
used, the survival probability ofH1 is 45/325, and that
of H2 is 120/325. H2 has a much higher probability of
survival.

H1 : ***#***#***#***#***#***#***
H2 : ***###***************###***

This example shows the importance of genes' geo-
graphical distribution in the chromosomal representa-
tion of a GA. If two genes have a strong relationship,
it is advantageous to locate them closely [4][5]; in this
problem, we suggest a reordering algorithm that uses
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Calculate Corr(ci; cj)(i; j = 1; 2; : : : ; L);
Find the pair (cm; cn)(m 6= n) having the highest

correlation;
S = cmcn;
U = fc1; c2; : : : ; cLg � fcm; cng;
while ( U 6= ; )
f

Find cl having the highest value Fl(cl; S);
Find cr having the highest value Fr(S; cr);
if ( Fl(cl; S) > Fr(S; cr) ) f

S = cl � S; //concatenation
U = U � fclg;

g else f
S = S � cr; //concatenation
U = U � fcrg;

g
g

Figure 3: Reordering algorithm

the correlations between all the pairs of coe�cients.
Figure 3 shows the coe�cient-reordering algorithm.
In the algorithm, functions Fl and Fr compute the
correlation between a coe�cient c and a string, S, of
coe�cients as follows:

Fl(c; S) = �� Corr(c; c1) + (1� �)� Corr(c; c2)
Fr(S; c) = ��Corr(ck ; c)+(1��)�Corr(ck�1 ; c);

where
S = c1c2 : : : ck

Corr(a; b) =
E[(a��a)(b��b)]

�a�b
� : a weight.

In computing the correlation between a coe�cient and
a string S, it only considers the two leftmost or right-
most coe�cients in the string S. The reasonable range
for � is [0.5, 1]. If �=1, only the leftmost or rightmost
coe�cient is considered. The main purpose of the re-
ordering is to reduce the probability that a crossover
operator separates coe�cients with high correlations.
The reordering helps the pairs of coe�cients having
high correlations to stay close in chromosomes.

3.2.2 Modi�cation of Function Models

Although we do not intend non-parametric optimiza-
tion, we attempt to modify the function model (2) of
page 3. We examine whether each term of the function
properly explains the data with the solution obtained
by RHGA. We modify the function model according to
that examination. Formally, we transform the function
with respect to a coe�cient xk as follows:

The function model KAERI RHGA

E(y=f̂(X)) 1.0026714 0.9982438

�(y=f̂(X)) 0.1072649 0.0996506

LRE 0.1069791 0.0998259

Table 1: Quality of KAERI and RHGA model

y = G(x1; x2; : : : ; xn)
() G1(xk) = G2(y; x1; : : : ; xk�1; xk+1; : : : ; xn):

We plot the relationship between G2(y, x1, : : :, xk�1,
xk+1, : : :, xn ) and xk, and also plot another relation-
ship between G1(xk) and xk . If those two relationships
are visibly di�erent from each other, it is considered
a signal to modify the function model with respect to
the variable xk . Not all variables are capable of being
examined in this way; the variables x3; x4; x5; x6 and
x8 are those so capable.

We attempted to modify the function model in this
way and by adding some linear terms. We have ob-
served that G1 and G2 are inconsistent with respect
to x4, x5, and x6. We modi�ed the terms relevant to
them as follows:

CHF = a1x1 + a2
x2

1000
+ a3tanh(a4x3 + a5log(x4) + a6)

+ a7x5 + a8x
a9
5 + a10x6 + a11x

a12
6

� f
a13x2

1000
+
a14x1x2

1000
+ a15x1 +

+ a16(
x2

1000
)2gx7x8

+ a17x7 + a18 + a19
x8

100
: (3)

4 Experimental Results

For robust comparison between the KAERI model and
the RHGA model we follow the 10-fold cross-validation
approach [9][16]. We randomly split the entire dataset
D into 10 mutually exclusive subsets D1; D2; : : : ; D10

of approximately equal size. The RHGA is trained and
tested 10 times; the kth experiment was trained with
D nDk and tested with Dk.

The cross-validation estimate of the average and the
standard deviations of the observed CHF value over
the predicted value are shown in Table 1. In the table,
LRE, described in section 2.3, is the most popular
measure for errors in the CHF approximation in the
nuclear engineering community. The RHGA approach
outperformed the KAERI function by about 7%.
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# of Generations LRE std-dev trials

RHGA without reordering 7980.20 0.1006804 0.0005521 50

RHGA with reordering 5105.69 0.1001852 0.0002063 50

Table 2: The E�ect of Reordering

Table 2 shows the e�ect of reordering. In the table, \#
of Generations" represents the average generation in
which the best solution has appeared. The reordering
improved the solution quality in visibly less time.

5 Conclusions

In this paper, we proposed a genetic algorithm for
the CHF function approximation problem that com-
bines the genetic search with a nonlinear Levenberg-
Marquardt algorithm. The Levenberg-Marquardt al-
gorithm helps the GA to �ne-tune, and the GA
helps the Levenberg-Marquardt algorithm to overcome
its narrow scope. We also proposed a coe�cient-
reordering algorithm to exploit the geographical rela-
tionships of genes in the genetic encoding, which also
turned out to contribute to the performance improve-
ment. We should note that the function models were
not decided by a search method (e.g., a genetic algo-
rithm) but by analytic modi�cation. It may be worth
giving more freedom to the forms of function mod-
els under a fully non-parametric optimization model.
There is a trade-o�. We are sure that giving full free-
dom is not the right approach unless the computing
power is strengthened by exponential orders of mag-
nitude. Our current result is 7% better than the best
known solution.
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Abstract

The explosive expansion of the World Wide
Web makes the search problems more chal-
lengeable. In this paper we present a search
improvement method based on a semiotic
connection network and a genetic algorithm.
The semiotic connection network expands
given keywords to an extended set of key-
words. The genetic algorithm tunes up the
parameters for search. The experimental re-
sults showed 6% improvement over Google's
search results. The proposed method was in-
corporated into a commercial product.

1 Introduction

The quantity of available information in the World
Wide Web (WWW) is explosively growing. E�ective
search became crucial due to the huge volume of infor-
mation. To date, diverse search methods and exploring
agents have been presented.

Since 1994 [12][13][18], lots of Internet search engines
have been developed; some of them have been commer-
cially utilized. Early Internet search methods were to
�nd the documents containing requested word strings
in a bunch of documents collected from the WWW by
crawlers.

However, simple Internet search methods like word-
string matching turned out to have problems. With
the sharp increase of Web pages, they tended to show
a considerable number of useless URLs (Uniform Re-
source Locators) rather than the Web pages that users
want.

A notable approach is to evaluate Web pages from the
view point of text documents. There were studies that
represent each document as a vector of words included

in the document and evaluate documents with the sim-
ilarities between the vectors [8]. Another notable ap-
proach is extended-word method; when a user provides
a query, it extends the query by generating additional
words [5].

A new approach exploits the fact that Web pages are
hypertext documents containing tags such as links and
anchors. It evaluates the importance of each Web page
with the number of backward links. The Web pages
having more incoming links are thought to be more im-
portant pages [17]. This approach produced a famous
search engine Google [4]. This method includes count-
ing the incoming and outgoing links of a Web page; it
led to the study that models the entire WWW struc-
ture as a graph, by conceptualizing URLs and links as
nodes and edges, respectively [11].

There were studies with stochastic optimization meth-
ods for Internet search engines. In [21], genetic algo-
rithm (GA) was used for tuning up parameters of a
Web agent for information retrieval. In [22], simulated
annealing was used for an Internet search engine.

The link-based analysis exploits the fact that the im-
portance of a Web page depends on the number of

incoming links from other Web pages. This method
puts emphasis upon the connections of Web pages. It
is e�cient for �nding popular Web sites. However, if
a user wants to �nd a speci�c content directly, a Web
page with only a lot of backward links would not be
satisfactory. Besides, it is sometimes not easy to eval-
uate the relative importance of the documents with
few incoming links.

On the other hand, although the content-based analy-
sis exploited various analytic methods, the vagueness
of evaluating the importance of documents makes the
evaluation di�cult. Among many elements present in
a document, it is not easy to clarify which elements are
important and close to the themes that a user wants
to �nd.
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In this paper, we suggest a number of elements for doc-
ument evaluation and optimize them using a genetic
algorithm. Our primary purpose is to improve users'
satisfaction with search engines.

Semiotics is a general theory of signs and symbols in-
cluding the analysis of the nature and relationship of
signs. The document analysis based on semiotics uti-
lizes the relationship of words appearing in documents.
Rather than thinking of each word independently, it
takes a relational viewpoint [7]. We reect the semi-
otic relationship of words into a connection network
and use it for genetic evaluation of documents. The
system uses GA as a method of evolutionary optimiza-
tion to tune up the ranking factors deciding the rela-
tive importance of Web pages

The rest of this paper is organized as follows. In sec-
tion 2 the architecture of the system and the data for
experiments are presented. Section 3 deals with the
methodology on how to use the connection network to
expand keywords and how to use TF-IDF (Term Fre-
quency, Inverse Document Frequency) for document
evaluation. In section 4, we describe the parameter
tuning by genetic algorithms. In section 5, we give
our experimental results and compare our results with
those of Google. Finally, the conclusion is given in
section 6.

2 System Architecture

The purpose of this study is to �nd a method to im-
prove the results of search engines. We designed the
system to begin with the results of existing search en-
gines. For experiments, the system was designed as a
type of a meta-search engine, and we utilized Google
search engine (www.google.com). We chose Google

since it is one of the best Internet search engines.

The system begins with a considerable number of re-
sults from a search engine. In this experiment, we used
the 100 top-ranked pages. In some cases, the search
engine provides less than 100 results. We also excluded
broken Web pages.

The system gets an expanded word list associated with
the query. The expansion is performed by the connec-
tion network (CN). The Web pages are evaluated using
the expanded vocabulary. Each page is transformed to
a vector with TF-IDF method [20] [8] before the evalu-
ation. Finally, Web pages are ranked by the document
evaluator which was tuned by GA.

3 Methodology

3.1 Connection Network

To date, a number of techniques were suggested for
representing the relationship between words as a net-
work. They were used for various �elds such as natu-
ral language processing, Web search, etc. [15] [5] [7].
These techniques represent the conceptual relationship
between words [15], connect the related words [5], or
classify words under the categories [7]. However, these
techniques considered only the existence of relation-
ship and did not quantify the degree of relationship
between words.

The problem of quantifying the relationship between
words can be considered as a special case of the
\market-basket" problem. The \market-basket" prob-
lem is a general problem to quantify the degree of re-
lationship between items in a market. Various metrics
have been introduced to quantify the relationship be-
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tween items [2] [1] [3] [9] [6]. We design a new metric
to quantify the relationship between words and con-
struct a connection network to represent the relation-
ship based on the metric.

3.1.1 Metric for the degree of relationship

Let D be the whole document set and W be the whole
word set. For two words x, y 2 W , we de�ne n(x), n(y)
to be the number of documents in which the words x
and y occur, respectively, and de�ne n(x; y) to be the
number of documents in which both x and y occur.
We de�ne the function f :W �W 7�! R to represent
the degree of relationship between x and y as follows

(R : the set of real numbers) :

f(x; y) =

8><
>:

log(n(x; y)) + C

n(x) + n(y)
; if n(x; y) 6= 0

0 ; if n(x; y) = 0

, where C is a constant.

The function f has a similar shape to interest [3] or
similarity [6] in data mining area.1

3.1.2 Keyword Expansion Based on

Connection Network

We represent each word as a vertex. For each pair of
words x and y such that n(x; y) 6= 0, we connect two
vertices x and y with an edge and assign f(x; y) as
the weight of the edge. Then, we have the connection-

1interest(x; y) = jDj�n(x;y)
n(x)�n(y)

and similarity(x; y) =
n(x;y)

n(x)+n(y)�n(x;y)
.

network graph G = (V;E) where V is the set of ver-
tices and E is the set of edges.

Using the connection network, we process the ex-
pansion of keywords as follows. We assume that a
user asked a query which consists of x1, x2, : : : , xk
(xi 2 W; 1 � i � k) . Let N(xi) be a neighbor set of
xi (1 � i � k) on the connection network. We de�ne
the keyword expansion score function s : W 7�! R as
follows:

s(y) =

8><
>:
X

1�i�k

f(xi; y) ; if y 2
[
i

N(xi)

0 ; otherwise :

We choose a set of words with large enough expansion
scores.

3.2 TF-IDF (Term Frequency, Inverse

Document Frequency)

TF-IDF is a method to represent a document in a vec-
tor space [20] [8]. Each word in the document is as-
signed a scalar value. The scalar value reects the
relative importance of the word in the document and
in the whole document set.

For a word w and a document d containing the word,
TF(w; d) means the frequency that the word w occurs
in the document d. DF(w) means the number of doc-
uments in which the word w occurs. IDF is de�ned
as

IDF (w) = log
jDj

DF (w)

where D is the set of all documents and jDj is the
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number of all the documents.

A vector element d(i) associated with a word wi is
represented by the product of TF and IDF.

d(i) = TF (wi; d)� IDF (wi)

Then, the document d can be represented by a vector

~d = (d(1); d(2); :::; d(n)).

From these scalar vectors we can compare the simi-
larities of documents and evaluate a document. The
similarity of two documents, Vj and Vk, is de�ned as

Sim(Vj ; Vk) =
Vj �Vk

jVj j�jVkj
j; k 2 f1; 2; :::; ng

where Vj � Vk means the inner product of Vj and Vk,
and jVj j and jVkj mean the norms of Vj and Vk, re-
spectively.

3.3 Document Evaluation

To �nd a document which a user wants the most, we

should extract information as much as possible from
queries, expanded-words obtained from the connection
network, and other elements. Because the elements
have di�erent roles and relative importance, we need a
process to optimize their roles. To optimize document
evaluation, we should choose the documents that users
have intended to �nd.

Let U be a set of words and t be a document. We
de�ne the TF-IDF vector related to U and t, VU;t, as

�!
V U;t = (v1; v2; :::; vjUj)

where vi = TF (wi; t)� IDF (wi) and wi 2 U .

In Section 3.1.2, we showed that the connection net-

work not only gives expanded words, but also gives
the real values that represent the strengths between
queries and the words. We denote by SU;t the score
vector related to a word set U and a document t.

We de�ne the vector SU;t as

�!
S U;t = (s1; s2; :::; sjUj)

where

si =

(
s(wi) ; if wi occurs in t for wi 2 U

0 ; otherwise :

, and s(wi) is the keyword expansion score value of wi
in Section 3.1.2

We denote byW (q) andW (CN), the sets of the words
in the user query q and the expanded-words by the

connection network, respectively. Let the document
length of d be l(d).

The attractiveness e(d) of a document d is de�ned as

e(d) =
a1jVW (q);dj

x1 + a2jVW (CN);dj
x2 + a3jSW (CN);dj

x3

a4 � l(d)x4

(1)

.

In the above formula (1), a long document length is a
disadvantage.

3.4 The Evaluation of Evaluation Methods

A set of parameters in the formula (1) corresponds to
an evaluationmethod of documents. The GA attempts
to �nd an optimal evaluation method, i.e. an optimal
set of parameters. When a parameter set is generated
in GA, its �tness has to be evaluated. This is the
\evaluation of evaluation methods."

Among the several methods, recall-precision (RP) is
usually used as an information retrieval standard for
various studies [19][10]. Recall means the returned ra-
tio among all the appropriate documents. Precision
means the returned ratio of appropriate documents
among all the appropriate documents [10].

Here, we suggest two metrics to evaluate evaluation
methods. Internet search engines usually provide a lot
of documents in response to a user query. However,
the most important would be those in the �rst page.
The �rst page usually shows around 10 URL-links. We
focus on the 10 top-ranked URLs in the training. This
is a concept altered from the RP method. Summing
up the points of 10 top-ranked links is available if each
document was rated previously.

We assume a document set has a ranking order by

the points of formula (1) for each query. Let i be the
ranking number of a document and pq;i be the rating

of i-th ranked documents for a query q 2 Q (Q : all
the query set).

The �rst measure for the attractiveness of evaluation
methods is as follows :

fitness1 =
X
q2Q

10X
i=1

pq;i (2)

Our second measure gives a weight to each of the 10-
ranked. From the tenth to the �rst, we assign 1.1 to
2.0 as the weights.

When i means the rank of a document and pq;i is the
rating for the document and a query q 2 Q, the second
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steady-state GA

create initial population P ;
repeat f

Choose two chromosomes p1; p2;
o�spring = crossover(p1; p2)
o�spring = mutation(o�spring)
replace (o�spring, P );

g until (stopping condition)
return the best solution;

Figure 3: Steady-State GA Framework

a1 a2 a3 a4 x1 x2 x3 x4
1.02 2.13 1.03 3.03 2.11 0.54 2.33 0.22

Figure 4: Problem encoding example

measure is de�ned as

fitness2 =
X
q2Q

10X
i=1

(21� i)pq;i

10
(3)

We apply the above two expressions (2) and (3) to
maximize each of the total amounts.

4 Parameter Tuning by Genetic

Algorithm

We use a steady-state GA. The template is given in
Figure 3. Based on the formula (1) of Section 3.3, we
use the GA to search for an attractive parameter set
S = fa1; a2; a3; a4; x1; x2; x3; x4g. The problem is to
�nd the best set S maximizing the �tnesses of formulas

(2) or (3).

� Problem Encoding and Crossover

In the problem, the parameters are all real num-
bers. Each solution is a set of 8 parameter values.
In our GA, a chromosome is represented by an ar-
ray with real numbers. Each element of the array
is called a gene and we restrict the range of each
gene to [0.01,4].

In a variable set S = fa1; a2; a3; a4; x1; x2; x3; x4g,
four parameters a1; a2; a3, and a4 are coe�cients.
We assumed that the ratio among them would
not be over 1:400. Because x1; x2; x3; x4 are expo-
nents, we limit them real numbers in [0,4]. Figure
4 shows an example chromosome.

We use the arithmetic crossover operator [14,
pp.104-5]. It creates a new o�spring by assign-
ing the average of the corresponding gene values
in the parents for each gene. Figure 5 shows an

Parent1
a1 a2 a3 a4 x1 x2 x3 x4
1.20 2.30 1.03 2.00 2.00 0.50 2.33 0.22

Parent2
a1 a2 a3 a4 x1 x2 x3 x4
4.80 4.30 1.01 4.00 2.20 0.70 2.67 0.44

o�spring

a1 a2 a3 a4 x1 x2 x3 x4
3.00 3.30 1.02 3.00 2.10 0.60 2.50 0.33

Figure 5: Arithmetic crossover example

example crossover operator. We should note that
a GA with the arithmetic crossover is prone to
premature converge. The diversity of solutions
needs to be carefully controlled by mutation.

� Selection, Mutation and Replacement

We use the tournament selection to choose par-
ents. A parent chromosome is selected as a result
of competition among a member of randomly cho-
sen individuals.

The GA then perturbs the o�spring by mutation
operator. It replaces each gene with a random
number in the proper range with the probability
1/32.

We replace a chromosome having the worst �tness
in the population with the o�spring.

5 Experimental Results

5.1 Experimental plan

The experiment begins with results from a search
engine. When we �nished the preparation with 33
queries, we had on average 85 Web pages for each
query. Table 1 shows the statistics.

The eventual performance of the system relies on the
users' satisfaction. The prepared Web pages (2812 in

total) were rated from 1 to 5 by 11 people. To avoid
any prejudice, we shu�ed the pages for the evaluators
not to know about the rankings produced by the search
engine. The most satisfactory Web pages earned 5,
and the least satisfactory pages earned 1. Table 2
shows the distribution of the evaluated results. The
average rate of the pages returned by Google was 2.48.

We divide the data set into three disjoint sets. We

perform three symmetric experiments on the sets. In
each experiment, we choose one of them in turn as the
test set and perform training with the other two sets.
This is a type of experimental design called k-fold cross
validation [16].
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Table 1: Statistic of Collected Data

Number of queries 33

Number of web pages 2812

Average number of web pages per query 85

Average rating 2.48

Table 2: Distribution of Ratings

Point Number of Web-pages

1 1020

2 571

3 486

4 330

5 405

Total 2812

We used a steady-state GA with population size 50.
If the same chromosomes are generated for �ve con-
secutive iterations, we assume the population has con-
verged and stop the GA.

The training set is again divided into real-training
set and validation set. The validation set is not di-
rectly used for parameter tuning but used for moni-
toring over-�tting. The performance on the training
set usually shows a monotonic increase; on the other
hand, that on the validation set usually shows a bitonic
curve. We take the solution that corresponds to the
peak of the bitonic curve. Finally, we test with the
remaining test set and compare the result with the
Google's search result.

5.2 Results

We set k = 3 for k-fold cross validation. Both of the
two formulas of Section 3.4 were used for evaluation.

The Table 3 and Table 4 show the experimental results.
Overall, the suggested system showed 6% improvement
of satisfaction against Google's search results.

6 Conclusions and Future Work

In this paper we introduced a search ranking method
that uses a semiotic connection network to retrieve
contextual words.

From the experimental results, we can conclude that
i) the connection network helps a search engine better
satisfy the intentions of users, and ii) the GA tunes
up parametric factors needed for document evaluation,
and helps better ranking.

Table 3: 3-Fold Cross Validation with Formula 2

Test Set 1 2 3 Sum

Google 324 268 315 907

Our System 329 302 326 957

Performance 1.02 1.13 1.03 1.06(Avg)

Table 4: 3-Fold Cross Validation with Formula 3

Test Set 1 2 3 Sum

Google 508.4 411.4 493.7 1413.5

Our System 527.5 467.4 508.4 1503.3

Performance 1.04 1.14 1.03 1.06(Avg)

We should also note that the suggested method is not
for a full search engine such as Google, Yahoo, etc; it
can be used as an engine inside a full search engine or
as a postprocessor for re-ranking the results. Currently
it is incorporated into a commercial product.

The connection network is under reinforcement pro-
cess with more document data. We expect the quality
of ranking to be improved with a stronger connection
network.
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Abstract 
 

 

Antennas are an important component in any 
wireless system, as they transform a signal that 
flows through wires into a signal that propagates 
through space and back again. How well it does 
this job is a determining factor in how well a 
wireless system will operate. Two real-world 
problems are described in this paper that are 
solved by antennas optimized by genetic 
algorithm. The antennas show the ability of the 
genetic algorithm to allow the designer to 
optimize an antenna for several different criteria 
at once, and to create new antennas with very 
little information from the designer other than 
general constraints and the desired performance 
characteristics.  

1 INTRODUCTION 

Communication, radar and remote sensing systems 
employ thousands of different types of antennas, and 
there is an increasing need for them to be high-
performance and customized. Traditional methods of 
designing and optimizing antennas by hand using 
simulation or analysis are time- and labor-intensive, and 
limit complexity. Local search techniques are helpful, but 
because the search spaces of even simple antennas are 
highly multimodal, the initial guess must be close to the 
final design, and therefore these methods have limited 
usefulness. 

Evolutionary computation methods like the genetic 
algorithm (GA) are able not only to optimize performance 
of existing antenna designs, but also to create new kinds 
of antennas with highly counterintuitive designs. Using a 
GA, it is possible to prescribe the desired performance of 
an antenna and allow the computer to find the parameters 
for the design.  

GAs are being applied to many different antenna designs 
by many different researchers [1]. GAs and other 
evolutionary computation techniques are very useful in 
this field for several reasons, including:  

• Antenna principles, which are a subset of 
electromagnetics and founded on Maxwell’s 
equations, are extremely difficult to understand and 
grasp intuitively. 

• There are many fast antenna simulators, requiring 
only seconds to produce accurate results. 

• Search spaces are highly multimodal and resistant to 
other forms of numerical and hands-on optimization, 
yet finding good designs is important to industry. 

• Since the GA is naturally robust to local optima, and 
does not even require an initial guess, the amount of 
design information the engineer must supply to get a 
good result is minimal. 

The GA has the ability to find new solutions when no 
known conventional antenna designed with conventional 
techniques is able to approach the requirements of a 
particular problem, or when such an antenna is expensive 
and/or difficult to manufacture.  

Most antenna optimizations begin with a conventional 
design and the GA finds the optimal parameters based on 
desired conventional characteristics. For instance, an 
inherently high-directivity design like the Yagi-Uda 
antenna may be optimized for maximum gain (these terms 
are defined in the next section). This approach is certainly 
useful, since even conventional problems are difficult to 
optimize with most other methods, and the resulting 
optimized designs will often be better than any found 
previously.  

However, of greater interest is to apply conventional 
designs to unconventional applications, where the GA has 
enough degrees of freedom to significantly change the 
mode of operation of the antenna to suit the new 
application, and to create new antennas when the amount 
of engineering constraint is minimal.  
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As the world goes increasingly wireless, there is a 
growing number of antenna problems without good 
solutions. The tracking of hospital patients, biomedical 
research, wideband data communications, remote sensing, 
integration of antennas within electronic devices, and 
many others, are all demanding antennas that meet their 
needs. Meeting them rapidly and effectively will require 
new approaches to antenna design, because the traditional 
method is too limited to keep pace with the rising 
demand. What the GA provides is a means to explore 
areas of antenna design previously unsearchable and solve 
antenna design problems unhindered by the limits of 
human intuition and experience.  

2 ANTENNA BASICS 
This section provides a brief tutorial on antenna design 
concepts that will help the reader to understand the 
designs described in later sections.  

There are many antenna classes, such as reflector 
antennas (e.g., dish antennas), phased array antennas 
(consisting of multiple regularly spaced elements), wire 
antennas, horn antennas, and microstrip and patch 
antennas. Each of these classes use different structures 
and exploit different properties of electromagnetic waves.  
Wire antennas will be the focus of this paper. An antenna 
is a wire antenna if it is constructed from conductors that 
are much longer than their width.  

A ground plane—at its simplest a large, flat piece of 
metal underneath the antenna—is often used in 
conjunction with a wire antenna. It acts as a mirror for the 
antenna above it, and therefore changes the antenna gain 
pattern. A ground plane can decrease the required height 
and/or simplify the construction of the wire antenna. The 
hood or roof of a car acts as a ground plane, and antennas 
that will be affixed to such places need to be designed for 
use with one.  

Directivity and gain are two related qualities in antenna 
design. Directivity is the ratio of power density being 
transmitted by an antenna in a particular direction to the 
average power density being transmitted in all directions. 
The gain is the directivity multiplied by the ratio of power 
radiated to power input. Gain takes into account all losses 
such as loss due to resistance in the antenna, which 
converts some of the input power into heat, and loss due 
to mismatch between the transmitter/receiver and the 
antenna. When the losses are considered to be zero, as in 
this chapter, the directivity and gain are equal. 

Gain is usually expressed in decibels (dB), which relates 
to a ratio of power or power densities by the following 
expression: dB = 10log10(P1/P2). In the case of gain, P2 is 
the power density of an isotropic radiator that transmits 
power equally in all directions. The abbreviation dBi 
refers to gain compared with an isotropic radiator. 
However, the “i” is sometimes left off, and is understood 
from context.  

A gain pattern or antenna pattern plots gain magnitude 
versus angle, showing the proportion of power an antenna 
transmits in a particular direction. For 2-D antennas, or 
antennas symmetric in the third dimension, this angle is 
simply the elevation angle θ. In 3-D, there are two angles 
that specify a direction: θ and the azimuth φ. Figure 1 
shows these angles on a set of axes. An antenna is 
considered to be directive if its gain pattern is heavily 
weighted in one direction. The greater the desired 
directivity, the larger the antenna must be relative to a 
wavelength, which is commonly labeled λ. The 
wavelength is the speed of light divided by the frequency, 
so a 300 MHz signal has a wavelength of about 1 m. 
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Figure 1: θ and φ on a 3-D Axis System 
 

An antenna’s beamwidth refers to the useful angle span of 
the so-called main lobe or beam. This lobe usually has the 
highest gain in the pattern, and is what is of interest to 
optimize. In a uniform gain pattern, there is only one lobe, 
but in a directive pattern where the beamwidth is desired 
to cover only a certain angle span, there can exist other 
lobes. These other lobes are called sidelobes, and usually 
the designer seeks to minimize them.  

Voltage Standing Wave Ratio, or VSWR, is a way to 
quantify the match between an antenna and a device 
connected to it. A standing wave is created when there is 
a mismatch in this connection, which prevents power 
from flowing to and from the antenna. If the standing 
wave is large, implying a high VSWR, there is a 
significant mismatch. If it is low, the match is good. A 
VSWR of 3.0 or less is considered adequate for many 
low-power applications, while a VSWR less than 1.5 or 
2.0 is desired if power considerations are important. A 
VSWR of 1.0 is a perfect match, and it can never be less 
than 1. VSWR is easy to measure, and since it is a 
common parameter specified by antenna designers, it is 
often an important quantity to optimize.  

Bandwidth is the useful range of frequencies for an 
antenna, and is usually desired to be as large as possible. 
It is given in percent, which is the ratio of the useful 
frequency span over the nominal operating frequency. For 
an antenna operating at 2GHz, a bandwidth of 3% would 
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mean it would operate over a 60MHz range, from 
1.97GHz to 2.03GHz.  

Polarization refers to the orientation of electromagnetic 
waves. Electromagnetic waves are composed of two 
components: an E-field (electric field) component, which 
is a sinusoidal wave that exists in one plane, and an H-
field (magnetic field) component that exists at right-
angles to the E-field. Thus, the wave is asymmetric, and 
has a definite orientation. Since the H field is constrained 
by the E-field in a propagating wave, we will discuss just 
the E-field. In a wave of constant overall magnitude, the 
E-field magnitude can actually be a time-varying quantity. 
If one looks at a wave propagating past a fixed point in 
space, the E-field can oscillate back and forth in a single 
orientation, giving linear polarization, or it can actually 
be rotating in a circle as its x and y components oscillate 
back and forth out of phase, giving circular polarization. 
It can also take an orientation in between, giving elliptical 
polarization. Antennas are polarization-sensitive: an 
antenna that is optimal for picking up linear polarized 
signals will miss half of the energy of a wave that is 
circularly polarized and all of a wave that is cross-
polarized (linearly polarized at a right angle to the 
antenna). An antenna that is left-hand circularly polarized 
(the E-field moves in a circle to the left) will miss a right-
hand circularly polarized wave completely. In addition, 
for ground-to-satellite communications, circular 
polarization is very helpful because it minimizes the 
effect of polarization distortion that occurs as a signal 
travels through the ionosphere.  

The next section discusses a conventional design 
optimized for an unconventional application.  

3 A CONVENTIONAL DESIGN AND AN 
UNCONVENTIONAL APPLICATION: 
THE YAGI-UDA ANTENNA 

As shown in the figure below, the Yagi-Uda antenna is a 
series of parallel wires, first proposed by Prof. Yagi and 
his student S. Uda in the late 1920s. One element is 
driven, one element is behind the driven element and is 
called the reflector, and all other elements are called 
directors. The highest gain can be achieved along the axis 
and on the side with the directors. The reflector acts like a 
small ground plane, allowing power that would otherwise 
be sent backward to be reflected forward.  
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Figure 2: The Yagi-Uda Antenna 
 

The conventional Yagi design includes geometry 
variables of length for each element, spacing between 
elements, and the diameter of the wire. Thus, with N 
elements, there are N length variables, N-1 spacing 
variables, and one wire diameter variable, giving 2N 
variables total. The center of the driven element is where 
the feed is connected.  

An unconventional application of this antenna is 
described in [3], and involves designing a special antenna 
for the Arecibo 305-meter spherical reflector in Puerto 
Rico [4]. The antenna was to be used to search for 
primeval hydrogen having a redshift of approximately 5. 
Neutral hydrogen line emission is at a frequency of 1420 
MHz; thus the frequency region of interest was about 235 
MHz. Preliminary studies indicated that the band from 
219 to 251 MHz was of the greatest interest, particularly 
from 223 to 243 MHz. The most important design goal 
was for the feed to have sidelobes at least 25 dB down 
from the main beam gain in the region from 70° < φ < 
290°, due to the interference which came from 
surrounding radio and TV towers. Of lesser importance 
was that the E-plane (the plane parallel to the plane of the 
antenna) and H-plane  (perpendicular to the E-plane) 
beamwidths be about 50°. The VSWR was desired to be 
under 3.0 and the gain was to be as high as possible, 
limited by the wide beamwidth. The feed would be 
mounted over a 1.17 meter square ground plane—that is, 
a ground plane only 0.92λ in size. The antenna also 
needed to have a single polarization so that two of them 
operated at cross-polarity (i.e., each would have a 
polarization exactly opposite the other), and thus could be 
used to discriminate between the randomly polarized 
hydrogen signal and the deliberately polarized signals 
from the surrounding radio and TV towers. This 
arrangement would work best if the antennas were 2-
dimensional, so that they could be collocated at the same 
position at right angles.  

Since there did not seem to be any conventional antenna 
that would meet the above specifications, it was decided 
to use a GA to optimize a Yagi type structure for this 
unconventional application. Yagi antennas are usually 
used for high-gain, narrowband applications. The desired 
bandwidth and beamwidth were very large for this kind of 
antenna, and the sidelobe requirements were very difficult 
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to meet.  However, a standard Yagi antenna is 2-
dimensional and therefore able to meet the polarization 
and collocation requirements. 

The number of wires was specified to be 14. The 
variables were: the length of each element (14 were 
required), each constrained to be symmetric and between 
0 and 1.5λ, the spacing between each set of two elements 
(13 were required), constrained to be between 0.05λ and 
0.75λ (the total boomlength was allowed to vary), and the 
diameter of the wire, constrained to be 2, 3, 4, 5 or 6 mm. 
This wide latitude in parameters allowed the GA to 
explore very unconventional areas of the Yagi search 
space.  

Note that of the total 28 variables, 27 of them were 
continuous, real-numbered parameters, making this a 
natural problem for a real-valued chromosome. The 
discrete variable—wire diameter—used a real-valued 
gene, but it was discretized so the GA would only use one 
of the allowed values. Doing so is usually not 
recommended for the type of crossover techniques used, 
but the problem was insensitive to this parameter and it 
did not affect results adversely.  

As expected, the GA produced an antenna that 
approached the above requirements, though its 
configuration was quite unconventional for a Yagi 
antenna.  It differed from a conventional Yagi in that the 
director elements were very closely spaced, its overall 
length was much less than a typical Yagi with the same 
number of elements, and its wire lengths varied 
haphazardly. The genetic Yagi had 13 elements (plus the 
ground plane) with a boom length of only 1.11λ. The 
directors varied in length in a seemingly random fashion 
from about 0.25λ to 0.4λ with an average spacing of less 
than 0.1λ, as shown in Figure 4. A conventional 14 
element Yagi has a boom length about 3 times as long, 
with directors that are about 0.4λ in length and 0.35λ in 
spacing, and the lengths become slightly shorter and the 
spacings slightly larger the greater the distance from the 
driven element.   

Ground 
Plane 

 
 
 

Figure 3: Genetic Yagi Feed for the Arecibo Radio 
Telescope. From [3]. 

 

The performance of this Yagi was computed at 2 MHz 
increments over the band from 219 to 251 MHz, a 
bandwidth of 13.6%. The figure below shows the E-plane 
patterns and H-plane patterns for the genetic Yagi over a 
finite ground plane at the same frequencies. It is seen that 
the sidelobe levels for both planes are more than 25 dB 
lower than the gain at 0° from 223 to 243 MHz, the most 
important part of the band, and are more than 20 dB lower 
over the rest of the frequency band. The E- and H-plane 
half-power beamwidths range from 51 to 55° and 64 to 
69° respectively, slightly larger than desired but certainly 
acceptable. The VSWRs are less than 3.0 from 227 to 245 
MHz, though they are higher at the ends of the frequency 
band. The antenna gain ranged from 10.4 to 11.0 dB over 
the frequency band. This gain is approximately 1 dB 
lower than that for a Yagi that is optimized for maximum 
gain. 
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Figure 4: Computed Gain Patterns of Yagi Over a Ground 
Plane at 219, 235 and 251 MHz. From [3]. 
 

The antenna was fabricated to a 1/6th scale and the E-
plane patterns and VSWR were measured. The computed 
and measured patterns had reasonable agreement. The 
measured VSWRs were less than 3.0 over most of the 
band and had a maximum value of 3.7 near the ends. The 
measured gains were slightly less than 10 dB; however, if 
the reflection losses are taken into account, the corrected 
values for a matched antenna approach the computed 
gains. For more information about this antenna, see [3] 
and [8].  

This antenna shows the power of the GA to mold 
conventional designs into new form to solve difficult 
problems. Naturally, it is important to allow the GA 
sufficient latitude in the design parameters to change the 
design from its traditional form to something new.   

However, it is not always necessary to specify a design at 
all, in which case the GA is truly the inventor of an 
antenna, as the next section will show.  

4 UNCONVENTIONAL DESIGN: THE 
CROOKED-WIRE GENETIC 
ANTENNA 

The application of interest in this section is fairly 
conventional: ground-to-satellite communications using 

omnidirectional antennas. Antennas for this application, 
intended for use on cars or handsets, must be cheap, 
robust, and have as uniform a gain pattern across the 
hemisphere as possible for a right-hand circularly-
polarized signal, excluding low elevations less than 10° 
above the horizon, where multipath problems will arise. 
(Multipath refers to the reception of a signal from more 
than one path, such as receiving a signal from direct line-
of-sight and from a reflection off the ground. When the 
multipath signals do not arrive in phase and at the same 
time, as generally happens, problems arise such as the 
ghosting seen on televisions.) This antenna is not trivial to 
design, and several conventional designs, such as the 
quadrafilar helix, have emerged to solve this problem to 
varying degrees. These antennas tend to be expensive and 
narrowband, and they often require a signal to be fed to 
the antenna in two places with a precise difference in 
phase to set up the circular wave. There is thus 
considerable room for improvement in the state of the art.  

There are several qualities that one might desire such an 
antenna to have, which can be turned into general 
constraints on the design. For instance, one might desire a 
single feed point at the base of the antenna for simplicity 
and low-cost. In addition, it is helpful to have such an 
antenna over a ground plane. The antenna is expected to 
be relatively small because near-hemispherical coverage 
is desired, so it would make sense to constrain the search 
space to a fairly small volume, for instance, a cube half a 
wavelength on a side, with the antenna’s base located in 
the center of the bottom face. Doing so will increase the 
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average speed of simulation while having little impact on 
results.   

It would also be convenient if the antenna were a 
connected series of straight wires so that there are no 
precision bends, floating parasitics, or branch points 
required, for ease in fabrication. 5, 6, 7 and 8 straight wire 
segments connected in series were thus chosen for 
investigation. (Preliminary results showed the 7-wire 
antenna performed slightly better than the others, so 7 
wires will be used from here on.) A depiction of the 
search space that incorporates these constraints is shown 
in the figure below.  

 
  

0.5λ 

0.5λ 

0.5λ 
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Figure 5: Crooked-Wire Genetic Antenna Search Space for 7 
Wires 

 

The GA has performed well up to this point, but it has 
always had a pre-existing design to use as a template for 
its work. Can a GA really produce a good antenna with its 
only engineering knowledge coming from constraints 
based on convenience?  

To begin encoding this problem for a GA, the location of 
the nodes defining the start and endpoints of the wire 
segments were mapped into a chromosome. Since each 
node requires three coordinates, the 21 parameters were 
placed into a chromosome, i.e., Point1-X, Point1-Y, 
Point1-Z, Point2-X…, each value encoded into 5 binary 
bits. 5 bits, corresponding to 32 levels, was chosen 
because the accuracy of fabrication was not expected to 
be better than this resolution (3mm at 1600 MHz). Thus, 
the whole chromosome required 105 bits. 

The cost function was then determined for this antenna. 
The goal was to obtain right hand circular polarization 
10° above the horizon at a frequency of 1600 MHz. A 
good measure of that desired performance can be found in 
the sum of the squares of the deviation of all calculated 
gains from the mean. In equation form:  

 

Fitness = Σover all θ,φ(Gain(θ,φ) - Avg. Gain)2 .  
 

The GA's goal was to minimize this fitness. For its first 
attempt at finding a 7-wire antenna, the steady-state GA 
had a population of 500 chromosomes, 50% overlap from 
generation to generation, and a 1% mutation rate. It also 
used one-point crossover, which was allowed to occur 
between any two bits in the chromosome with equal 
probability.   

After several hours, the GA converged on a 7-wire 
configuration with a highly unusual shape, as shown in 
the inset and the photograph in the figures below.  This 
shape was so unusual and its simulated performance so 
good that great care was taken to ensure its validity, 
including building and testing it [9]. 

The computed radiation patterns of the antenna over an 
infinite ground plane are shown below for azimuth angles 
of 0º, 45º, 90º and 135º at a frequency of 1600 MHz. This 
pattern varies by less than 4 dB for angles over 10° above 
the horizon—excellent performance, especially since the 
antenna is so inexpensive and simple to build. (Simple is 
a relative term, of course, for it does not look all that 
simple in the figure. However, it was possible to fabricate 
this antenna by hand using very simple tools, while a 
conventional design would be tremendously difficult to 
manufacture by hand.) 
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Figure 6: Crooked-Wire Genetic Antenna Radiation 
Pattern and Diagram. From [6]. 
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Figure 7: Photograph of the Actual Crooked-Wire Genetic 
Antenna. From [6]. 

 

Although this antenna was only designed to operate at a 
single frequency, its performance was also investigated 
for the range of 1300 to 1900 MHz, and it was found to 
have bandwidth of over 30%, which is excellent for a 
circularly polarized antenna having near hemispherical 
coverage.   

The antenna was built and measured for its radiation 
properties. There was about a 6 dB variation in the field 
above an elevation angle of 10º as compared to the 
computed variation of about 4 dB. This small discrepancy 
exists because the measurements were made over a 1.2 m 
x 1.2 m ground plane, while the computations were 
performed for an infinite ground plane. Patterns measured 
over the frequency range from 1300 to 1900 MHz also 
compared well with the computed patterns.   

After this spectacular result, many other GAs, both binary 
and real-valued, were run for these requirements, and the 
results were never the same [6]. Two more antennas 
optimized with the same constraints, chromosome and 
fitness function are shown below. Though they have 
nearly the same performance, they are quite dissimilar in 
shape from each other and from the antenna above. From 
these and other runs it is apparent that this search space is 
highly multi-modal, with many minima that give similar 
performance [6].  

 

 

Antenna 3 Antenna 2  
 
 

Figure 8: Two More Crooked-Wire Antennas with Nearly 
Identical Performance 

 

Because of the revolutionary nature of this antenna design 
process, a patent has been awarded [14]. This patent, 
which appears to be the first of its kind [15], covers the 
process of creating a new antenna using no previously 
known underlying theory of operation and the antennas 
created by this process. 

Though patented by people, the antennas are the 
innovation of the GA, for it does not have much useful 
configuration input from the designer, and any constraints 
which it does have are made for convenience rather than 
for antenna design soundness.  

The design in Figure 7 was the first genetic antenna, and 
though it has been in existence since 1995, it is an 
excellent demonstration of the power of the GA. Ongoing 
research has greatly advanced the state of the art of the 
genetic antenna, however. It has been applied with great 
success to several other problems, to include very small 
antennas [10], uniform gain for low elevation angles over 
a lossy ground [11], and adaptation of an antenna to its 
environment for omnidirectional and high-gain 
applications [12]. For more information about this 
antenna and other antennas optimized by GA, see also [1, 
3, 8, 9,13].  

5 CONCLUSION 
Each of the antennas described above demonstrated a 
different quality of GAs as applied to wire antenna 
design. The Yagi antenna optimized for the Arecibo Feed 
problem shows how the GA can change conventional 
designs, using them with unusual parameters, to solve 
unconventional problems. The crooked-wire genetic 
antenna shows the raw power of the GA to find not just an 
optimized design for an application, but to create a new 
design with minimal help from the engineer.  

It may seem extremely surprising that a GA can 
autonomously find such amazing antennas. However, 
consider that many people have optimized antennas 
without any knowledge of electromagnetic theory through 
the adjustment of their TV’s “rabbit ears” antenna. What 
is used is a rather stochastic local-search technique, based 
on feedback from the quality of reception, sometimes 
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even involving haphazard pieces of aluminum foil, to find 
the best reception. It is usually unknown if the television 
viewer has found the best possible reception, but the 
process is stopped once reception has been found that is 
“good enough” or appears unlikely to improve. The 
antenna configuration and characteristics are usually quite 
different from the original V-shaped design, but it works, 
at least while the surrounding conditions remain constant. 
In addition, many different configurations will often give 
the same performance. 

Similarly, the GA uses feedback from the antenna 
simulator to search, somewhat more effectively, the large 
search space of antenna configurations to find one that is 
acceptable. As with most complex engineering problems, 
it is very difficult to tell if the GA has found the best 
antenna, but often that is not as important as having an 
acceptable solution. And as in the case of the television 
antenna, many different antenna configurations may give 
similar performance, depending on the problem. So while 
the results shown in this chapter are indeed remarkable, 
they are not unreasonable, given the nature of antenna 
design. 

In summary, then, GAs are able to optimize wire antennas 
for diverse and difficult applications. The inherent power 
of the GA to not only optimize conventional designs, but 
to create them virtually on its own, makes it an ideal 
method of automated design for antennas.  
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Abstract

Genetic algorithms are applied to an impor-

tant, but little-investigated, network design

problem, that of recon�guring the topology

and link capacities of an operational network

to adapt to changes in its operating condi-

tions. These conditions include: which nodes

and links are unavailable; the tra�c patterns;

and the quality of service (QoS) requirements

and priorities of di�erent users and applica-

tions. Dynamic recon�guration is possible in

networks that contain links whose endpoints

can be easily changed, such as satellite chan-

nels or terrestrial wireless connections. We

report results that demonstrate the feasibility

of performing genetic search quickly enough

for online adaptation.

1 INTRODUCTION

There is a growing need for networks to adapt to their

operating conditions in order to maintain acceptable

levels of performance. Networks must increasingly be

able to continue to function e�ectively despite obsta-

cles such as the disabling of portions of the network

by cyberattacks or large uctuations in the tra�c pat-

terns and service requirements. Network adaptation

potentially enables not just �ne-tuning in response to

normal variations but also survivability of the network

and its critical applications in the face of catastrophic

failures and large-scale shifts in operating conditions.

Although dynamic routing solutions (e.g., [2]) to some

of these problems exist, routing has natural limita-

tions. For example, a routing algorithm cannot trans-

mit data between nodes for which cyberattacks have

disabled all connecting paths, nor can it transmit a

high bandwidth of data between nodes which have only

a low-bandwidth path between them. Robust network

adaptation requires changes to the underlying network

infrastructure (i.e. topology and link capacities) in re-

sponse to changes in operating conditions.

Despite this need, the problem of automatic, dynamic

redesign of functioning networks has received little at-

tention. One reason for this is that network links were

traditionally cables and hence not dynamically recon-

�gurable like satellite or wireless links. Second, the op-

timization algorithms and computers of the past were

not capable of �nding a new network con�guration fast

enough to support adaptive recon�guration.

In this paper, we investigate the use of a genetic algo-

rithm to dynamically redesign a network with recon-

�gurable links. Before discussing our work, we provide

a brief review of some of the previous work on the use

of genetic algorithms for (static) network design.

1.1 PREVIOUS WORK

There is not just one problem in network design but

rather a whole family. There are three di�erent compo-

nents of a network architecture: the topology, the link

capacities, and the routing policies. Di�erent prob-

lems work with di�erent subsets of these components.

There are also three di�erent basic criteria on which

to judge a network: cost, reliability, and quality of ser-

vice (QoS). Di�erent problems use di�erent subsets of

these criteria, di�erent measures of these criteria, and

combine the criteria they do use in di�erent ways.

A major focus has been minimal spanning tree prob-

lems (e.g., [16, 1, 4]). The only network component

considered is the topology, and the topology is always

a tree. There have been some novel chromosome rep-

resentations used for these problems, including Pr�ufer

encoding [16, 1] and Hu�man trees [8].

When considering factors other than cost, the best

topology is generally a graph rather than a tree. Dif-
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ferent problems in optimizing non-tree topologies arise

from di�erent de�nitions of the evaluation criteria. For

example, [13] and [7] use a probabilistic measure of re-

liability, while [9] and [17] use a measure of reliability

based on redundancy. Given a numbering of all possi-

ble links between all pairs of nodes, graph topologies

have been genetically represented as �xed length bi-

nary strings [13, 17] and as variable-length strings of

unique integers [7].

With knowledge of the network tra�c patterns, it is

also possible to optimize the link capacities and rout-

ing policies. In early work, [5] used genetic algorithms

to select a set of link capacities given a �xed topol-

ogy. More recently, with the bene�t of greater com-

putational power, researchers have investigated using

genetic algorithms to simultaneously optimize topol-

ogy and link capacities [18, 9] or all three components

of the network (topology, link capacity, and routing

policies) [12, 11]. It is possible to use a single chro-

mosome that represents all the required information

about a network (e.g., [12]) or to use separate repre-

sentations and solve for the di�erent components in

separate (nested) optimizations [11].

2 ADAPTIVE REDESIGN

2.1 PROBLEM STATEMENT

The adaptive network redesign problem is inherently

a dynamic problem, since network tra�c patterns, re-

quirements and priorities, and available resources (pri-

marily links and nodes) all change with time. In our

current work, we consider a snapshot of the problem at

a particular time, performing the adaptation by solv-

ing for each snapshot independently.

Let us consider a network that contains both �xed

(wired) links and recon�gurable links. We use a model

for the recon�gurable links that is based upon satel-

lites using a frequency-division multiplexing allocation

scheme. There is a �xed amount of total recon�g-

urable bandwidth available. This bandwidth is unidi-

rectional and is divided into identically sized chunks

called channels. Recon�gurable links consist of one or

more channels con�gured to have the same source node

and destination node. The bandwidth of the channels

of a recon�gurable link add, but the bandwidths of a

recon�gurable link and a �xed link do not add. In-

stead, the link with the higher bandwidth is used and

the other ignored. Each node has a limit on the num-

ber of channels it can send and receive, which is a type

of node-degree constraint [4].

The givens of the problem include:

� available nodes - This is the set of all nodes not

currently disabled by an attack or failure.

� available �xed links - This is the set of all �xed

links not currently disabled by an attack or failure.

Associated with each �xed link is a source node,

destination node, capacity, and inherent transmis-

sion delay (which is the delay associated with the

medium and does not include the delays due to

queueing). Note that, for the purposes of our model,

all �xed links are unidirectional; bidirectional links

are decomposed into two unidirectional ones.

� available channels - For a given problem, the total

number of channels, bandwidth per channel, and

inherent channel transmission delay are �xed.

� data ows - Each data ow has associated with it

the following information: source node, destination

node, priority rating (a positive integer with smaller

meaning higher priority), protocol (TCP or UDP),

required transmission delay, required dropped pack-

ets, and the statistics of the generated tra�c. We

model the tra�c as bursts of data of random num-

ber of bytes at random intervals, with Gaussian dis-

tributions for the number of bytes and the size of

the interval. The mean and standard deviation are

the required parameters for each of these distribu-

tions. Note that the quality of service (QoS) met-

rics (i.e., dropped packets and transmission delay)

refer to the service as perceived by the application,

not the network. In particular, a packet that is ini-

tially dropped but successfully retransmitted does

not count as dropped but does register a long trans-

mission delay. Hence, the dropped packets metric

only applies to UDP ows, since TCP resends all

dropped packets.

The variables over which to optimize are:

� con�guration of each channel - Zero to all avail-

able channels may be added to the network topol-

ogy. The source and destination nodes of each added

channel must be speci�ed.

The constraints to obey are:

� send and receive limits - The number of channels

with a particular node as its source (destination)

cannot exceed the send (receive) limit for that node.

The optimization criteria are:

1. connectivity - The measure of the degree to which

ows are totally disabled due to lack of connectivity

is the sum over all disconnected ows of 1

�i
, where

�i is the priority rating of the ow (recalling that a

lower �i means a higher priority). Note that TCP

ows will be disabled if there does not exist a path in

both directions between the source and destination

(to allow acknowledgements), while UDP ows only
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require a path in the forward direction.

2. meeting transmission delay requirements -

The measure of the degree to which the network

does not meet the transmission delay requirements

is the sum over all connected ows for which the

requirement is not met of 1

�i
(Di � di), where Di is

the average measured delay (in seconds), di is the

required delay (in seconds), and �i is the priority

rating of the ow.

3. meeting dropped packets requirements - The

measure for the dropped packets requirements is the

sum over all connected ows for which the require-

ment is not met of 1

�i
(Pi�pi), where Pi is the aver-

age measured percent of packets dropped, pi is the

required percent of packets dropped, and �i is the

priority rating of the ow.

The three optimization criteria are combined into a

single score using a weighted sum, w1S1+w2S2+w3S3,

where Si is the score for the i
th criterion. The goal is

to minimize this combined score. For our experiments,

we used w1 = 100, w2 = 1, and w3 = 1.

2.2 GENETIC ALGORITHM

Representation - Each chromosome is a variable-

length list of recon�gurable link allocations, where

each allocation is a 3-tuple (S;D;C) containing the

source node (S), destination node (D), and the num-

ber of channels (C) connecting the source to the des-

tination. Only allocations with a non-zero number

of channels are included in the list. For example,

the chromosome [(6 3 1) (12 2 2)] indicates a recon-

�gurable link with 1 channel from node 6 to node 3,

and a recon�gurable link with 2 channels from node

12 to node 2.

Genetic Operators - We use three operators:

� Crossover - Combine all the allocations from both

parents into a single randomly sorted list. Proceed

through this list including each allocation in the

child chromosome if adding it does not violate any

constraints and if no allocation with the same source

and destination nodes has already been added.

� Local Mutation - Randomly select one allocation in

the parent and randomly choose to either increase

the number of channels by one or decrease it by

one. If the choice was an increase and if this vio-

lates constraints, then attempt to assign the entire

recon�gurable link allocation to a di�erent source

node or destination node; if none of these produces

a legal chromosome, then discard the child.

� Global Mutation - Randomly select a number be-

tween half and all-but-one of the allocations in the

parent. Randomly select this number of allocations

from the parent and add them to the new child.

Complete the child by randomly specifying the re-

maining available channels using the same algorithm

as the initialization procedure, described below.

Initialization - The initialization procedure �lls the

initial population with randomly generated chromo-

somes. To generate a random chromosome, it speci�es

one channel at a time until some resource (total chan-

nels, node send limits, or node receive limits) has been

fully exhausted. For each new channel, it randomly

selects source and destination nodes that have not yet

exhausted their send and receive limits, respectively.

If there is an existing recon�gurable link allocation be-

tween the pair of nodes, it adds an additional channel

to that allocation; otherwise, it creates a new alloca-

tion between the nodes containing one channel.

Evaluation Function - We have modi�ed NS, ver-

sion 2 [15], a packet-level network simulator, to com-

pute the percentage of dropped packets and the aver-

age transmission delay exhibitted, on a per-ow basis,

by a network during simulation. The evaluation func-

tion �rst converts the chromosome into a description

of the represented network in the format expected by

NS. It then starts the modi�ed NS and sends NS the

network data. NS performs the simulation and re-

turns the QoS statistics. Finally, the evaluation func-

tion uses these statistics to compute the score given in

Section 2.1. We use a packet-level network simulator

rather than a computationally less expensive approach

in order to compute network statistics with greater re-

alism. However, as we discuss below, it is ine�cient

to restart NS from scratch for every evaluation (par-

ticularly because this means restarting its TCL inter-

preter), and this is something we need to change.

Population Management - The genetic algorithm

uses steady-state, worst-one-out replacement. The

population allows no duplicate members. Parents are

selected probabilistically using roulette-wheel selection.

Probabilities are distributed exponentially based upon

rank. The search terminates when the number of eval-

uations reached a threshold.

3 EXPERIMENTAL RESULTS

We had two goals for our experiments and two corre-

sponding sets of experiments. The �rst was to provide

concrete examples of the types of problems that adap-

tive network recon�guration can solve. The second

goal was to investigate the performance of the genetic

algorithm, particularly concentrating on scaling with

problem size and the tradeo� between the execution

time and the quality of the solution found.

REAL WORLD APPLICATIONS 1143



Figure 1: The �rst network in the sequence. Note that

the dotted lines in the topology are the recon�gurable

links and the solid lines are the �xed links.

We approximate the search space size as

(M(M � 1))N=N ! (1)

where M is the number of nodes and N is the maxi-

mum number of channels. (There are M(M � 1) pos-

sible ways to assign a source and destination node to

each channel, and hence (M(M � 1))N ways to as-

sign sources and destinations to each of N channels.

However, the networks formed are not unique. For

any network with no two channels sharing the same

source and destination, there are N ! di�erent ways to

form this network; for other networks, there are less.

Hence, Equation 1 is an underestimate but is a good

approximation when N �M=2.)

All of our timing results were performed on a single

850-MHz Pentium. All times are divided into two com-

ponents: the number of total evaluations, which mea-

sures the e�ectiveness of the genetic algorithm search,

and the average time per evaluation, which measures

the e�ciency of the evaluation function.

In our experiments, all �xed links have a capacity of

1000 kbits/sec (except in the random network exper-

iment) and transmission delay of 10 msecs. Likewise,

all channels have a capacity of 1000 kbits/sec and

transmission delay of 10 msecs.

3.1 ILLUSTRATIVE EXAMPLES

A Sample Adaptation Sequence - We start by

examining a sequence of networks that could be snap-

shots of a single network as its operating conditions

change with time. They illustrate, in a simple-to-

understand scenario, the power of adaptive network

recon�guration.

There are three networks in the sequence, each with a

maximum total of four channels. The �rst network in

the sequence has �ve nodes. The tra�c ows, pictured

in Figure 1a, are typical of a server (node 1) with mul-

tiple clients (nodes 2-5). The clients communicate only

with the server and not with each other. The server

sends 400 kbits/sec to each client, while each client

Figure 2: The second network in the sequence. Note

that the heavier lines in the ows indicate higher pri-

ority tra�c.

Figure 3: The third network in the sequence.

sends 40 kbits/sec to the server, all using the TCP

protocol. The priorities are all 5, and the required

latency is 10 msecs (since it is using TCP, dropped

packets are not a criterion). There exist bidirectional

�xed links between nodes 1 and 4 and between nodes

1 and 5. Each node has a limit of 3 send channels and

3 receive channels.

Clearly, the best solution is the one shown in Figure 1b,

with four recon�gurable links, each containing 1 chan-

nel, that e�ectively form bidirectional links between

nodes 1 and 4 and between nodes 1 and 5. The solu-

tion thus provides a single-hop path for all ows.

The second network in the sequence is the same as

the �rst except for the addition of two high-priority

(priority 1) ows, one from node 2 to node 3 and the

other from node 3 to node 2 (e.g., a teleconference be-

tween two CEOs, or communication between two units

in battle). The ows are shown in Figure 2a. The new

optimal con�guration is that shown in Figure 2b, since

it provides full connectivity, a one-hop connection for

all high priority ows, and a maximum delay of two

hops for the lower priority ows.

The third network in the sequence is shown in Fig-

ure 3a and is the same as the second except that all

the �xed links have been disabled (e.g., due to a co-

ordinated cyberattack). It is now impossible to fully

connect all the nodes (4 unidirectional links can con-

nect at most 4 nodes), so there is a choice about which

node to leave out of the network. The best con�gu-

ration is to use the channels to form a ring network

between the four of the nodes, three of which must be
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Figure 4: The �rst bottleneck network.

nodes 1, 2 and 3. An example of such a network is

shown in Figure 3b.

The genetic algorithm �nds all solutions always in well

under 500 evaluations. To perform 500 evaluations

requires 4 minutes, or 0.48 secs per evaluation. Almost

all of this time (between 0.4 and 0.45 seconds) is spent

restarting NS; by eliminating this restart, we could get

the runtime down to under 30 seconds.

Bottleneck Networks -We consider two more exam-

ple networks, larger than the previous ones. Both have

paths of �xed links with su�cient capacity to handle

the tra�c for any individual ow, but there exists a

bandwidth bottleneck when considering the ows in

aggregate. Recon�gurable links are used to relieve the

bottleneck.

The �rst \bottleneck" network is shown in Figure 4.

Each of nodes 1-5 sends data to each of nodes 6-10.

All 25 ows are identical: transmitting an average of

200 kbits/sec, using the UDP protocol, having prior-

ity 2, and requiring 0% dropped packets (with no re-

quirement on latency). There are four available chan-

nels. Without the bene�t of the recon�gurable links,

all 5000 kbits/sec of the aggregate tra�c would travel

across the central link between nodes 11 and 12 (which

has capacity of only 1000 kbits/sec). An optimal solu-

tion is shown in Figure 4, using the recon�gurable links

(dotted lines) to relieve this bottleneck by bypassing

the central link. (There are �ve equivalent solutions.)

The second bottleneck network is shown in Figure 5.

Each of nodes 1-10 sends data to each of nodes 11-

20. All but one of the 100 ows are identical: sending

an average of 50 kbits/sec, using the UDP protocol,

having priority 100 and required dropped packets 0%

(with no requirement on latency). The ow between

nodes 1 and 11 di�ers from the other ows in that

it has priority 1, which is much higher than the oth-

ers, and that it has a required latency of 10 msecs.

There are six available channels. As with the �rst

bottleneck network, without recon�gurable links, all

5000 kbits/sec of tra�c would travel across the cen-

Figure 5: The second bottleneck network. Note that

�ve channels form a single high-capacity link between

nodes 21 and 22, replacing the original lower-capacity

�xed link.

tral link between nodes 21 and 22 (which has capacity

of only 1000 kbits/sec). The solution is pictured in

Figure-5b: use �ve channels to relieve the bottleneck

by replacing the central link with a higher-capacity re-

con�gurable link, and use the sixth channel to directly

connect nodes 1 and 11 and thereby provide the re-

quired latency. Note that in going from the �rst to

the second network the optimal strategy changes from

bypassing the central link to building up the central

link.

The genetic algorithm consistently �nds an optimal

solution to the �rst bottleneck problem in under 1000

evaluations. These 1000 evaluations required 20.5 min-

utes, an average of 1.23 seconds per evaluation. Ac-

cording to Equation 1, the search space size is 1.3x107.

The genetic algorithm consistently �nds the solution

to the second problem in under 10,000 evaluations,

requiring 394 minutes (2.36 seconds per evaluation).

The search space size is 1.4x1013.

3.2 PERFORMANCE INVESTIGATIONS

We investigate the performance of the genetic algo-

rithm on families of networks, where all the networks

in a family have the same basic statistical properties

but di�erent sizes. This permits us to investigate the

scaling properties of the genetic algorithm as a func-

tion of the size of the network. We used �ve di�erent

families, one family of \ring" networks plus four fam-

ilies of random networks.

For each network used to explore performance, we per-

formed the same set of experiments, running the ge-

netic algorithm ten times with each of the following

sets of parameters:

� popsize = 20, probdecay = 0.7, maxevals = 100

� popsize = 40, probdecay = 0.8, maxevals = 300

� popsize = 100, probdecay = 0.9, maxevals = 1000

� popsize = 300, probdecay = 0.967, maxevals = 3000
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Figure 6: The 8-node, 4-channel ring network.

� popsize = 1000, probdecay = 0.99, maxevals = 10000

Here, popsize is the population size, probdecay is the

parameter that determines the exponential distribu-

tion of parent selection probabilities, and maxevals is

the number of evaluations before terminating the run.

A small population size and high selection pressure

(small probdecay) mean that the genetic algorithm will

converge (through loss of diversity) quickly, and are

hence appropriate for a short run.

Ring Networks - We start by examining perfor-

mance on a family of highly contrived networks, which

we call \ring" networks. This family of networks has

three important properties. First, it contains networks

with arbitrarily large and small numbers of nodes and

available channels, hence allowing an investigation of

how the algorithm scales with network size. Second,

each network has a known best solution and hence al-

lows comparison with this known optimum. Third,

the optimization problems are especially di�cult for

a genetic algorithm and hence provide worst-case sce-

narios.

A member of this family has N channels and a net-

work with M = kN nodes, where k and N are pos-

itive integers. There are M identical ows, with one

ow from node i to node (i � 1) for each i = 2; :::;M

and one ow from node 1 to node M . Each ow uses

the TCP protocol, has a required latency of 10 msecs,

and transmits 800

k
kbits/sec. There are M �xed links,

one from node (i � 1) to node i for each i = 2; :::;M

and one from node M to node 1. The �xed topology

requires packets to travel (M � 1) hops. An optimal

placement of recon�gurable links connects every k
th

node in reverse order from the �xed links and reduces

the number of hops to k. Figure 6 shows this net-

work when M = 8 and N = 4, along with an optimal

solution. (The other optimal solution is obtained by

rotating each recon�gurable link one node clockwise.)

This problem is very di�cult for a genetic algorithm

because of the existence of multiple completely dis-

tinct solutions (i.e. solutions that have no recon�g-

urable link in common). The genetic algorithm has
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trouble keeping the building blocks from these di�er-

ent solutions separate. This is generally not a problem

in less contrived networks.

We ran experiments on ring networks with six di�erent

node/channel (i.e., M/N) con�gurations: 8/4, 12/6,

16/8, 20/5, 20/10, and 40/10.

For the 16/8 network and for each of the genetic al-

gorithm parameter sets, Figure 7 shows the progress

of a run (averaged over ten independent runs) plotted

as the value of the best individual versus the number

of evaluations (i.e., the number of con�gurations tried

so far). Note how the smaller population with greater

selection pressure starts out better but quickly stops

making progress due to convergence. A larger popula-

tion and smaller selection pressure requires longer to

converge but eventually does better by exploring more

of the space.
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Net- Search 100 300 1000 3000 10000 A B C E95 E99 Secs/

work Space Evals Evals Evals Evals Evals Eval

8/4 4.1E5 .75 .27 .20 .18 .18 .18 1100 1.65 6 16 0.69

12/6 7.3E9 1.90 1.14 .80 .48 .31 .27 22 .559 210 3800 0.93

20/5 6.6E10 5.01 3.30 1.97 1.48 1.27 .97 57 .572 190 3100 1.28

16/8 2.7E14 2.8 2.2 1.70 1.12 .69 .36 12 .337 7300 8.6E5 1.24

20/10 1.7E19 4.5 3.3 2.6 1.88 1.15 .44 17 .315 1.3E4 2.2E6 1.55

40/10 2.4E25 13.2 11.0 7.5 5.6 3.8 1.9 54 .332 8300 1.1E6 3.20

Table 1: Results for the ring networks

Table 1 provides a summary of the results for the dif-

ferent ring networks. Each row contains the results

from one network. Column 1 contains the network

name, and column 2 has the search space size as given

by Equation 1. Columns 3-7 contain for each of the

�ve parameter sets the value of the best individual at

the end of a run averaged over the ten runs. The val-

ues in columns 3-7 provide �ve data points for the map

between the number of evaluations performed and the

quality of the solution.

As more evaluations are performed, the expected value

of the best solution asymptotically approaches the op-

timal value. This leads us to a model for this relation-

ship of the form

V = A+BE
�C (2)

where V is the expected value of the best individual,

E is the number of evaluations, and A, B and C are

constants determined by the data. The constant A is

the value of the best possible solution, which is known

for the ring networks. We use the �ve data points to

do a least-squares regression analysis to �nd B and C.

We report A, B and C for each network in columns

8-10 of Table 1. Figure 8 shows an example graph of

this curve for the 16/8 ring network.

The constant C measures on average how quickly the

search approaches the optimal solution. After E eval-

uations, the search has roughly proceeded 1�E
�C of

the way from a random solution to the best solution.

To �nd a solution that is a fraction f of the way to the

optimal solution therefore requires roughly (1� f)
�1

C

evaluations. In columns 11 and 12 of Table 1, we re-

port the number of evaluations required to achieve 95%

and 99% of the optimal solution, given by

E95 = 20
1

C ; E99 = 100
1

C (3)

Figure 8 shows these values for the 16/8 ring network.

Random Networks -We next examine optimization

performance on a set of randomly generated networks.

While ring networks provide a worst-case optimization

Net A B C E95 E99 S/E

8/4 .064 .91 .697 74 740 0.69

12/6 .038 150 1.63 6 17 0.90

20/5 .201 2.8 .599 150 2200 1.43

16/8 .078 5.7 .821 38 270 1.10

20/10 .092 2.5 .523 300 6700 1.49

40/10 .30 11 .512 350 8100 3.50

Table 2: Results for sparse/light random networks

Net A B C E95 E99 S/E

8/4 .102 13 1.10 15 66 1.49

12/6 1.53 11 .381 2600 1.8E5 1.86

20/5 2.74 7.5 .364 3800 3.1E5 3.25

16/8 .99 8.6 .434 990 4.1E4 2.70

20/10 2.07 12 .440 910 3.5E4 3.34

40/10 6.35 21 .330 8800 1.1E6 7.04

Table 3: Results for sparse/heavy random networks

problem, we also would like results for more typical

networks. While we do not know the best solution

for these networks a priori, we can still use a regres-

sion analysis similar to (although less accurate than)

that used for the ring networks to estimate how per-

formance varies with the number of evaluations.

Given a speci�ed number of (i) nodes, (ii) available

channels, (iii) bidirectional �xed links, and (iv) traf-

�c ows, our software randomly generates a network

with these dimensions. The random components in-

clude: (i) the �xed topology, (ii) the �xed link capaci-

ties (1000, 2000 or 3000 kbits/sec), and (iii) the source,

destination, priority (1, 10 or 100), protocol (UDP or

TCP), and bandwidth (100, 400 or 1000 kbits/sec) of

each ow. Required latency and dropped packets were

always 0.

For the experiments, we have used families of six net-

works. For each family, the number of nodes (M) and

satellite channels (N) are the same six pairs of values

as for the ring networks, hence permitting comparisons
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Net A B C E95 E99 S/E

8/4 .045 1.2 .520 320 7000 0.75

12/6 .024 .65 .760 52 430 1.02

20/5 .089 1.2 .640 110 1300 1.76

16/8 .049 1.6 .773 48 390 1.35

20/10 .066 1.0 .540 260 5100 1.77

40/10 .159 1.9 .382 2500 1.7E5 4.82

Table 4: Results for dense/light random networks

Net A B C E95 E99 S/E

8/4 .103 150 1.48 8 22 1.62

12/6 .55 120 1.16 13 53 2.19

20/5 1.04 23.6 .823 38 270 4.16

16/8 .33 4.1 .576 180 3000 3.14

20/10 0.67 3.7 .368 3400 2.7E5 4.04

40/10 1.67 42.3 .696 74 750 9.59

Table 5: Results for dense/heavy random networks

of optimization performance between networks with

the same search space size. The number of �xed links

is pM and number of ows is qM , where q and p are

constant for a family. We have used q = 1 and q = 2,

referred to as \sparse" and \dense" respectively, and

p = 1 and p = 4, referred to as \light" and \heavy"

respectively, leading to four families of random net-

works: sparse/light, sparse/heavy, dense/light, and

dense/heavy. For each of these families of random net-

works, we have done the same experiments and anal-

ysis as for the ring networks, except that we do not

know apriori the optimal solution and hence the value

to use for the A term. We instead estimate the opti-

mal solution as the best solution found in any of the

ten runs for any of the genetic algorithm parameters.

The results are shown in Tables 2-5.

Analysis of Results - The central question is

whether the optimization algorithm will support on-

line adaptation by producing good enough con�gura-

tions fast enough. While there is no clear threshold

de�ning good enough or fast enough, we take 95% of

the optimal solution in ten minutes to be our standard.

For small networks (� 20 nodes and � 5 channels), the

optimization algorithm will support online adaptation.

It will consistently �nd the 95% solution in under 10

minutes. Once we �x the NS restart problem with the

evaluations, it will do even better, potentially reaching

the 98% or 99% solution in the given time.

For mid-sized networks (� 40 nodes and � 10 chan-

nels), the optimization algorithm will be su�cient for

online adaptation only with the help of additional

hardware to speed the optimization. Genetic algo-

rithms are inherently parallelizable, with a near linear

speedup as a function of the number of processors up

to a large number of processors [3]. Assuming a 100-

processor cluster providing a factor of 100 speedup, all

of the reported networks would reach their 95% solu-

tion within ten minutes.

For larger networks, the highly superlinear (potentially

exponential) scaling of the algorithm means that more

hardware will not address the scaling problem. In-

stead, fundamental improvements to the algorithm are

required.

One potential source of improvements to the genetic

algorithm is to use the fact that network adaptation is

a continuous process. A solution that was good a few

minutes earlier is still most likely a good solution. Par-

ticularly for big networks, the current optimal con�gu-

ration is likely only at most a small perturbation from

the previously optimal con�guration. By including the

previous best con�guration in the initial population of

the genetic algorithm to determine the current con�g-

uration, the algorithm gets a big head start and can

�nd a good solution in far less time [14].

Another approach to improving the genetic algorithm

is to incorporate heuristics, such as some of those in

[10] into the algorithm. These heuristics can be used

both when generating the initial population and as

part of the genetic operators, and will often improve

the search by a large amount [6].

A second question is how search time varies with the

network. The size of the search space is the single

biggest factor inuencing search di�culty. It grows

very quickly with the number of nodes and channels,

resulting in a rapid growth in the number of evalua-

tions required to �nd a good solution. (This growth is

shown in Tables 1-5 as a general increase in E95 and

E99 with search space size.) However, when we exam-

ine the random networks, we see that there are some

networks with large search spaces that are much eas-

ier to solve than others with smaller seach spaces (e.g.,

see Table 4). Also, the random networks with heavy

tra�c tend to be more di�cult to solve than networks

with the same size search space but with light tra�c.

This is likely because more ows mean more tradeo�s

and hence more di�cult decisions. However, as both

the ring and random networks show, even networks

with light tra�c can present di�culties.

4 CONCLUSION

We have introduced an important, little-investigated

problem, that of determining at any given time the op-
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timal con�guration of a recon�gurable data network.

Finding a good con�guration is a critical part of the

process of adaptively recon�guring a network online.

Adaptive network recon�guration o�ers the bene�ts of

survivability in the face of major changes in network

operating conditions and performance �ne-tuning in

response to minor changes in operating conditions.

We have developed an algorithm for solving the prob-

lem using a genetic algorithm. In its current form, it

is too slow for online adaptation. However, the sim-

ple step of distributing the evaluations of the genetic

algorithm across many machines would make it fast

enough for small and mid-sized networks. Improve-

ments to the core algorithms of the genetic algorithm

could potentially make it fast enough for networks with

large numbers of nodes and recon�gurable links.

Future work should focus on making adaptive network

recon�guration a reality rather than just a possibility

through (i) speeding the optimization by tuning the

algorithm and (ii) integration with actual networks.
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Abstract 
Simulation studies are useful in various 
disciplines for a number of reasons including the 
development and evaluation of new 
computational and statistical methods.  This is 
particularly true in human genetics and genetic 
epidemiology where new analytical methods are 
needed for the detection and characterization of 
disease susceptibility genes whose effects are 
complex, nonlinear, and partially or solely 
dependent on the effects of other genes.  Despite 
this need, the development of complex genetic 
models that can be used to simulate data is not 
always intuitive.  In fact, only a few such models 
have been published.  In this paper, we present a 
strategy for identifying complex genetic models 
for simulation studies that utilizes genetic 
algorithms. The genetic models used in this 
study are penetrance functions that define the 
probability of disease given a specific DNA 
sequence variation has been inherited.  We 
demonstrate that the genetic algorithm approach 
routinely identifies interesting and useful 
penetrance functions in a human-competitve 
manner. 

1 INTRODUCTION 
One goal of human genetics is to identify genes that 
confer an increased risk of disease in certain individuals.  
The identification of disease susceptibility genes has the 
potential to improve human health through the 
development of new prevention, diagnosis, and treatment 
strategies.  Although achieving this goal is an important 
public health endeavor, it is not easily accomplished for 
common diseases, such as essential hypertension, due to 
the complex multifactorial nature of the disease (Kardia, 
2000; Moore and Williams, 2002).  That is, in such cases, 
risk of disease is due to a complex interplay between 
multiple genes and multiple environmental factors.  The 
identification of genes that influence risk of disease only 
through complex interactions with other genes (i.e. gene-

gene interactions) and/or environmental factors (i.e. gene-
environment interactions) remains a statistical and 
computational challenge (Templeton, 2000; Moore and 
Williams, 2002).  The statistical challenge is to consider 
high-dimensional interactions without loss of degrees of 
freedom while the computational challenge lies in the size 
and complexity of the search space.  Gene-gene 
interactions are examples of attribute interactions, a major 
challenge for data mining (Freitas, 2001). 

Several new methods have been developed in an attempt 
to address the statistical and computational challenges of 
detecting and characterizing complex disease 
susceptibility genes.  These methods can be classified as 
either data reduction approaches or pattern recognition 
approaches.  Data reduction methods such as the 
multifactor dimensionality reduction or MDR approach 
(Ritchie et al., 2001) seek to reduce the dimensionality of 
the problem in order to facilitate exploratory data analysis 
and hypothesis testing.  MDR reduces multiple predictor 
variables to a single variable, thereby reducing the 
dimensionality of the problem.  In contrast, pattern 
recognition and machine learning strategies such as neural 
networks (Lucek et al., 1998; Saccone et al., 1999) and 
cellular automata (Moore and Hahn, 2002) consider the 
full dimensionality of the data by considering patterns of 
DNA sequence variations.  Although these methods are 
promising, the power of these approaches for identifying 
gene-gene and gene-environment interactions has not 
been fully evaluated.  The evaluation of power is best 
accomplished using simulated data. 

The goal of this study was to develop a genetic algorithm 
(GA) strategy for discovering complex genetic models in 
the form of penetrance functions that can be used to 
simulate data for the evaluation of new statistical and 
computational methods.  Penetrance functions define the 
probability of disease given a particular combination of 
DNA sequence variations has been inherited.  Penetrance 
functions of interest in this study exhibit gene-gene or 
attribute interactions in the absence of independent main 
effects.  We begin in Section 2 with an overview of 
genetic models in terms of penetrance functions.  In 
Section 3, we describe our GA approach to discovering 
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complex genetic models.  A summary and discussion of 
the results are presented in Sections 4 and 5 respectively.  
The conclusions are presented in Section 6.  The results 
presented in this paper demonstrate a GA strategy is 
capable of routinely identifying interesting and useful 
genetic models in a human-competitve manner. 

2 PENETRANCE FUNCTIONS AS 
GENETIC MODELS  

Penetrance functions represent one approach to modeling 
the relationship between genetic variations (i.e. variation 
in the DNA sequence of a gene) and risk of disease.  
Penetrance is simply the probability of disease given a 
particular combination of genotypes.  A single genotype 
is determined by one allele (i.e. a specific DNA sequence 
state) inherited from the mother and one allele inherited 
from the father.  For most genetic variations, only two 
alleles (A or a) exist in the biological population.  
Therefore, because the order of the alleles is unimportant, 
a genotype can have one of three values:  AA, Aa or aa.   
Penetrance functions define the probability of disease for 
all genotypes for one or more genetic variations.  Once 
the penetrance functions are specified, genetic data can 
easily be simulated for people with the disease and for 
people without the disease.  For example, the penetrance 
function for an autosomal recessive disease (i.e. a disease 
that requires two copies of the same allele) such as cystic 
fibrosis in which only one of the three genotypes leads to 
disease might look like Table 1.  Here, individuals who 
inherit the AA or Aa genotypes have zero probability of 
disease while individuals who inherit the aa genotype are 
certain to have the disease.  From this simple recessive 
Mendelian model, data can simply be simulated by giving 
affected individuals aa genotypes and unaffected 
individuals AA or Aa genotypes, in proportion to their 
defined population frequencies. 

 

Table 1.  Penetrance values for three genotypes from a 
gene acting under an autosomal recessive disease model. 

AA Aa aa 

0 0 1 

 

More complex genetic models can be developed by 
assigning disease risk to more than one genotype from 
one or more genetic variations.  Table 2 illustrates a 
penetrance function that relates two genetic variations, 
each with two alleles and three genotypes, to risk of 
disease.  In this example, the alleles each have a 
biological population frequency of p = q = 0.5 with 
genotype frequencies of p2 for AA and BB, 2pq for Aa and 
Bb, and q2 for aa and bb, consistent with Hardy-Weinberg 
equilibrium (Hartl and Clark 1997).  Thus, assuming the 
frequency of the AA genotype is 0.25, the frequency of Aa 
is 0.5, and the frequency of aa is 0.25, then the marginal 
penetrance of BB (i.e. the effect of just the BB genotype 
on disease risk) can be calculated as (0.25 * 0) + (0.5 * 0) 

+ (0.25 * 1) = 0.25.  This means that the probability of 
disease given the BB genotype is 0.25, regardless of the 
genotype at the other genetic variation.  Similarly, the 
marginal penetrance of Bb can be calculated as (0.25 * 0) 
+ (0.5 * 0.5) + (0.25 * 0) = 0.25.  Note that for this model, 
all of the marginal penetrance values (i.e. the probability 
of disease given a single genotype, independent of the 
others) are equal, which indicates the absence of main 
effects (i.e. the genetic variations do not independently 
affect disease risk).  This is true despite the table 
penetrance values not being equal.  Here, risk of disease is 
greatly increased by inheriting exactly two high-risk 
alleles (e.g. a and b are defined as high risk).  Thus, 
aa/BB, Aa/Bb, and AA/bb are the high-risk genotype 
combinations.  This model was first described by Frankel 
and Schork (1996).  What makes this model complex is 
the absence of a main effect for either of the genetic 
variations.  Thus, each genetic variation only has an effect 
on disease risk in the context of the other genetic 
variation.  Such gene-gene interactions are believed to 
play an important role in determining an individual’s risk 
for developing common diseases (Moore and Williams, 
2002; Templeton, 2000). 

 

Table 2.  Penetrance values for combinations of 
genotypes from two genes exhibiting interactions but not 

main effects. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) 0 0 1 .25 

Bb (.50) 0 .50 0 .25 

bb (.25) 1 0 0 .25 

Margin 
penetrance 

values 
.25 .25 .25  

 

Table 3.  Penetrance values for combinations of 
genotypes from two genes exhibiting interactions but not 

main effects. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) 0 1 0 .50 

Bb (.50) 1 0 1 .50 

bb (.25) 0 1 0 .50 

Margin 
penetrance 

values 
.50 .50 .50  

The gene-gene interaction model described in Table 2 was 
developed by trial and error.  That is, a human derived 
this model by substituting various allele frequencies and 
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penetrance functions until a model was found that had 
attribute or gene-gene interaction effects without 
independent main effects.  This is one of only a few 
complex genetic models that have been described in the 
literature. The scarcity of complex genetic models in the 
literature is primarily due to the extraordinary 
combinatorial complexity of the problem, as has been 
discussed by Culverhouse et al. (2002).  Effectively, there 
are an infinite number of possible penetrance functions 
that could be developed for just two genetic variations.  
Only some of these models would exhibit a complex 
relationship with disease risk.  The size of the search 
space precludes the human-based trial and error approach 
as well as exhaustive computational searches without 
specific restrictions and assumptions about the allele 
frequency and penetrance function values.  For example, 
Li and Reich (2000) enumerated every possible 
penetrance function using probability values restricted to 
zero and one.  This yielded a manageable 29 total models.  
Only one of these models exhibits interaction effects in 
the absence of main effects (see Table 3).  Culverhouse et 
al. (2002) have also enumerated a restricted set of models.  
The goal of the present study was to develop a machine 
intelligence approach to discovering complex genetic 
models in the form of penetrance functions.  The next 
section describes the GA approach we used. 

3 THE GENETIC ALGORITHM 

3.1 OVERVIEW OF GENETIC ALGORITHMS 

Genetic algorithms have been shown to be a very 
effective strategy for implementing beam searches of 
rugged fitness landscapes (Goldberg, 1989).  Briefly, this 
is accomplished by generating a random population of 
models or solutions, evaluating their ability to solve a 
particular  problem, selecting the best models or solutions, 
and generating variability in these models by exchanging 
model components among different models.  The process 
of selecting models and introducing variability is iterated 
until an optimal model is identified or some termination 
criteria are satisfied.  This general procedure was inspired 
by the problem solving abilities of evolution by natural 
selection in biological populations.  Using similar 
language, GAs operate using populations of chromosomes 
(models) that undergo selection according to fitness, 
reproduction, recombination, and mutation. 

3.2 DESCRIPTION OF OUR GENETIC 
ALGORITHM 

3.2.1 SOLUTION REPRESENTATION 

A solution or model consists of a set of nine penetrance 
values or probabilities on the interval from zero to one in 
increments of 0.001.  Thus, the entire search space 
consisted of 1027 possible models.  Each penetrance value 
represents the probability of disease given a particular 
combination of two genotypes.  Each of the nine real-

valued probabilities was encoded as 32 bits for a total GA 
chromosome length of 288 bits. 

3.2.2 FITNESS FUNCTION 

Fitness was determined by maximizing the variance of the 
table penetrance values (Vt) and minimizing the variance 
of the marginal penetrance values (Vm).  Maximizing Vt 
ensures that we identify interesting patterns of genotypes 
while minimizing Vm ensures the size of the main effect 
of each genotype is small.  We stopped the GA when a 
model satisfied both Vt ≥ 0.1 and Vm ≤ 0.0001.  These 
values were selected to ensure interaction effects without 
main effects of each genetic variation. 

3.2.3 GA PARAMETERS 

Table 4 summarizes the GA parameters used in this study.  
We ran the GA a total of 100,000 times with each run 
consisting of a maximum of 10,000 generations.  

 

Table 4.  GA parameters. 

Objective Discover complex models  

Fitness function Vt - Vm 

Number of runs 100,000 

Stopping criteria Vt ≥ 0.1 and Vm ≤ 0.0001 

Population size 200 

Generations 10,000 

Selection Stochastic uniform sampling 

Crossover Uniform, by variable 

Crossover probability 0.60 

Mutation Gaussian 

Mutation probability 0.01 

 

3.2.4 SOFTWARE AND HARDWARE 

Our GA implementation used GAlib, a C++ class library 
for UNIX, Windows and Mac operating systems 
(http://lancet.mit.edu/ga/). Coarse-grained parallelism, 
utilizing 10 processors to perform 10 sets of 10,000 runs, 
for a total of 100,000 runs, used the MPICH parallel 
programming library on a 110-node Beowulf-style 
parallel computing cluster running Linux. 

4 RESULTS 
The GA was run for a total of 100,000 times, and the best 
model was saved from each.  Of the 100,000 best models 
discovered by the GA, there were no duplicates.  Thus, 
each model was unique.  We first wanted to know 
whether penetrance function models that have been 
previously described in the literature were discovered by 
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the GA.  The GA -generated model illustrated in Table 5 
(Vt = .154764 and Vm = .000044) is very similar to the 
model shown in Table 2 while the model illustrated in 
Table 6 (Vt = .21157 and Vm = .000082) is very similar to 
the model shown in Table 3.  Subtle variations of the 
models shown in Tables 2 and 5 were discovered in 13 
out of the 100,000 GA runs.  Similarly, subtle variations 
of the models shown in Tables 3 and 6 were discovered in 
three out of the 100,000 GA runs.  Thus, the GA routinely 
discovered models that have been described previously. 

 

Table 5.  GA -generated model similar to the previously 
described model in Table 2. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .083 .076 .964 .29 

Bb (.50) .056 .508 .085 .30 

bb (.25) .977 .098 .062 .30 

Margin 
penetrance 

values 
.30 .29 .31  

 

 

Table 6.  GA -generated model similar to the previously 
described model in Table 3. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .094 .905 .097 .51 

Bb (.50) .967 .097 .937 .52 

bb (.25) .027 .990 .080 .51 

Margin 
penetrance 

values 
.50 .52 .52  

 

 

Table 7.  A GA -generated model. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .967 .314 .137 .43 

Bb (.50) .313 .312 .742 .43 

bb (.25) .129 .779 .075 .42 

Margin 
penetrance 

values 
.43 .42 .44  

Our second question was whether the GA routinely 
generated new and interesting models.  All of the models 
identified by the GA exhibited gene-gene interactions 
with minimal or no main effects.  In fact, other than the 
class of models illustrated in Tables 5 and 6, none have 
been described previously in the literature.  Thus, 
approximately 99,987 mo dels are unique.  Tables 7-10 
illustrate four of the new models discovered by the GA. 

 

Table 8.  A GA -generated model. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .967 .139 .799 .51 

Bb (.50) .057 .655 .627 .50 

bb (.25) .974 .544 .019 .52 

Margin 
penetrance 

values 
.51 .50 .52  

 

 

Table 9.  A GA -generated model. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .017 .451 .711 .42 

Bb (.50) .520 .571 .039 .41 

bb (.25) .640 .053 .949 .43 

Margin 
penetrance 

values 
.41 .43 .42  

 

 

Table 10.  A GA -generated model. 

Table penetrance values 
 AA 

(.25) 
Aa 

(.50) 
aa 

(.25) 

Margin 
penetrance 

values 

BB (.25) .954 .256 .360 .44 

Bb (.50) .010 .731 .300 .45 

bb (.25) .801 .093 .808 .44 

Margin 
penetrance 

values 
.46 .44 .45  

 

The model summarized in Table 7 (Vt = .106238 and Vm 
= .000052) indicates that individuals with genotype 
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combinations of AA/BB, Aa/bb, and aa/Bb are at highest 
risk of disease while those with AA/Bb, Aa/BB, and Aa/Bb 
are at intermediate risk.  The remaining individuals are at 
relatively low risk.  This nonlinear pattern of high-risk 
and low-risk genotype combinations is indicative of gene-
gene interactions.  Risk of disease is not significantly 
different between single genotypes (represented by 
margin penetrance values), confirming an absence of 
main effects. 

The models summarized in Table 8 (Vt = .140427 and Vm 
= .000091), Table 9 (Vt = .110712 and Vm = .000098), 
and Table 10 (Vt = .120743 and Vm = .000035) have 
different nonlinear combinations of genotypes associated 
with varying risk of disease.  Again, none of the 
genotypes in these models is associated with disease risk 
independent of the other genotypes.  This indicates gene-
gene or attribute interaction in the absence of main 
effects. 

5 DISCUSSION 
In the present work, we focused on genetic models with 
just two genetic variations.  However, we anticipate that 
genetic models incorporating more than just two genetic 
variations will be useful in simulation studies since most 
common diseases are likely to be influenced by many 
genes.  This is evident in the study by Ritchie et al. (2001) 
that identified a combination of four genetic variations 
that is associated with risk of sporadic breast cancer in a 
complex nonlinear manner.  Our future studies will focus 
on expanding the GA to search for combinations of three 
or more genetic variations that exhibit attribute interaction 
in the absence of main effects.  Further, it will be 
important to explore a range of allele frequencies as well 
as methods for categorizing models into similar classes. 

Human genetics is undergoing an information explosion 
and a comprehension implosion.  In fact, our ability to 
measure genetic information, and biological information 
in general, is far outpacing our ability to interpret it.  As 
demonstrated in this study, machine intelligence strategies 
such as GAs hold promise for dealing with genetic data 
that is high-dimensional and complex.  However, the 
present study is not the first to apply evolutionary 
algorithms to a genetics problem.  In fact, evolutonary 
algorithms have been used to optimize data analysis 
approaches in genetic epidemiology studies (Congdon et 
al., 1993; Carlborg et al., 2000; Tapadar et al., 2000; 
Moore and Hahn, 2002), gene expression studies (Moore 
and Parker, 2001; Moore et al., 2001; Parker and Moore, 
2001), and studies of gene networks (Koza et al., 2001).  
We anticipate an increase in applications of GAs in the 
field of human genetics as more investigations begin to 
focus on the challenge of simulating and analyzing 
complex, high-dimensional genetic data. 

6 CONCLUSIONS 
The results of this study document the utility of GAs for 
the discovery of complex genetic models that can be used 
for simulation studies in human genetics.  In fact, our GA 
discovered approximately 99,987 models that have not 
been previously described in the literature.  Thus, the 
results are human-competitive and routine.  To our 
knowledge, this is the first application of a machine 
intelligence approach to the discovery of complex genetic 
models such as penetrance functions. 
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âiPQ[<X%RkY�KN[-°�Y±RU� î �NVkT�RkK2KNOQRkY�M'Y�²���RkY�KN[§RkT�X��<[QY�ÂEPQTFf�_#bÞ[~X%KN[Qn
RkV��NfgR|RkK)VUT�fkPQ�±R�f2����VkTF�NmSh�O<VkTFfgT�[eRUT�mÃKN[ÃRk�QTX�PQVUVkT�[eR|RUT�fgR
X��efgT¦à �Q½Lo>áp½¶Rk�QTÃO<��V���M4T%RUT�VUYZ²F�>RUYZKe[¹KNj8RU�QT¼�NYZVkj�KNY���P<fkYZ[<¢
��T�²�YZT�V�OHKeYZ[ERUf�j�KeV�mST%RUT�VUM4YZ[QY�[Q¢'Rk�<T]mST�fkYZ¢e[§�<�ef¶�HT�T�[)Y�M�n
OQVUK>dNTFm�_x�3T�VUTN½NfkKNM4T¶ïrnpX�KNM4O�KN[QT�[eR�f#K�jHRk�QTFfgT�O�KNY�[ERUf��<��deT
��T�T�[ÃYZ[rdeKN��dNT�m)Y�[�RU�QT�KeOSRkY�M4YZ²F�>RUYZKe[�OQVUKrX�T�fUf�Y�[¼�Nm<mSY±RUYZKe[
RkK'RU�QT2hEnpX�KNM4OHKe[QT�[ER�f¶K�j�������OHKeYZ[ERUf�_
�¶�QT�fkK�j�Ri°¶��VUT���[<m8RUT�X��Q[<Y�X����NfkPQOQO�KNVkRIj�KNVIRk�QT�Ð<Rk[QTFfkfIj�PQ[<X�n
RkY�KN[¡X��N��X�PQ����RkY�KN[�°¶�Nf3OQVUK>dEY�mSTFm��rh)Rk�QT z PQVUKNO�T��N[ { T�VkKNn
[<�NPSRkY�Xa\^T%j�T�[HX%T��N[<m2WrO<�NX�T�JLKNM4O<�N[rh¶ñ^}�Y��ZYZRU�NVkh { Y�VUX�VU��j�R
Ù zL{ \|WEnÞ}¼Ü�½¿KN[<TlK�j�RU�QT'O<��VkRk[QT�VUf3YZ[¼Rk�QT {3zLí Ô|WQ� {3îLz
OQVUK�âiTFX�R�_��¶�<T2Ri°LKÓ<K>°6X�KN[<mQY±RUYZKe[<f3�NVkTlX�����X%PQ���>RUT�m~P<fkYZ[<¢
mSYZ¾�T�VkT�[ER^M4KSmST���f�½¿[<�NM4T���h§RU�QT'òeKN�<[<fgKe[SnÞó|YZ[Q¢4M4KSmST��*j�KeV
Rk�<T¶fkPQ�<fkKN[<Y�X�Ó<K>°1ÙÁ�QY�¢N�Snp�ZYZj�R#RkTFfiRaX��efgT�Ü*��[<m]Rk�QT�òeKN�Q[HfgKe[Sn
JLKe�N¸r�ZT�h¦M4KrmQT���j�KeV�Rk�<T)RkV���[<fkKN[QY�X~Ó<K>°!Ù���K>°¶npmSV���¢¡RUT�fgR
X��efgT�Ü�_
�¶�QT|O<�NVU�NM'T�RkT�V¶fkT%RkRkY�[Q¢ef�mQT�fUX%VUYZ�QY�[Q¢'Rk�<T|Ó<K>°1X�KN[<mSYZRkY�KN[Hf
Y�[~PHfgT2��VUT|¢NY�dNT�[-Y�[~RU���<�ZT4sN_

ô BQ?Fu �x=@�H�	õÁ=@öÚ� õÁ:r÷ëøx;>BQ�
ù|;>:Hú�uE;F��û
ü¦ý à±þ¶á �Q_ÿq�� �Q_ �N������ à±þ¶á £��es��	� s��	
��������������������
ÙÁPQOQO�T�V��l��K>°LT�V�Ü à X%á ��� �l�!� ���"�l�!�
# à $�á s��<_ � se_ �

�*���Q��T·s�%�WrPQM4M���VUYZ²�T�mµmSTFfgY�¢N[ëX�KN[<mQY±RUYZKe[<f×ÙÁX'&8X��QKNV�m
��T�[Q¢NRk�HÜ

ÛQKeV]RU�QT�ÐQRU[QT�fUf]j�P<[<X�RUYZKe[ X��N��X�PQ����RkY�KN[¡Ri°�K�RU�NVk¢eT%Rl��Y�Vkj�KNY��
mSTFfgY�¢N[<f��NVkT)¢eYZdeT�[I½�KN[QT~j�KeVT��eX�� Ó<K>°�X%Ke[<mSYZRkY�KN[I_Å�¶�<T
ÐQRU[QT�fUf¶j�PQ[<X%RkY�KN[)VUT��Nm<f��ef�j�KN���ZK>°�f(%) Ù #+*',-#/.	,10 Ù32�Ü ,�4 Ù52�ÜgÜ6&.7�98 * :<; ��= *$ Ù3>@?<Ù32�Ü#þA> �?�B �C���1DFEG� Ù52�ÜgÜ .IH 2FJ
°�YZRk�K2��HT�YZ[Q¢3Rk�QTL��Y�Vgj�KeYZ�N�NVUX%nÚ��T�[<¢�Rk�|M4T��efgP<VkTFm8�NVkKePQ[<m^Rk�<T
��Y�Vkj�KNY��L��[Hm ; � °LT�YZ¢e�eRUYZ[<¢�jÁ�NX%RkKNV�f�_L>@?�Y�flRk�QT-OQVkTFfkfkPQVUT
X%KrT�Ý�X�YZT�[ERLmSY�fiRUVkY��QPSRUYZKe[K�j¿Rk�<T^X%P<VkVUT�[ER���[HmM> �?�B �C����DFEG� Rk�<T
OQVUT�fUfgP<VkT�X%KrT�Ý�X�YZT�[ER�mSY�fiRUVkY��QPSRUYZKe[ÕK�j¶Rk�QTRU��VU¢NT�Rl��Y�Vgj�KeYZ��f�½
VUT�fkOHTFX�RkY�dNT��Zhe_
\^PQTºRkK1Rk�QT	����VU¢NT¹X�����X%PQ���>RUYZKe[×RUYZM4T�f¡j�KeV¡Rk�QT»�3��drY�T�Vkn
WERUKN¸NTFfafkYZM�PQ����RkY�KN[<f�½NKe[Q��h]Rk�<T�VkTFfiRUVkY�X�RUT�m'[rPQMl��T�V�K�j�s��e�N�
ÐQRU[QT�fUf¶j�PQ[<X%RkY�KN[�T�d��N�ZPH�>RkY�KN[Hf�½Q��T�Y�[Q¢�N�ZVUT��emSh§�4��K�R�½HY�f3���Zn
��K>°LTFm�_
ÛQKeV§ÐHVUfgR-Y�[rdNT�fgRkY�¢e��RkY�KN[<f�½�Ke[Q�Zh	Ke[QT�Ó<K>°ëX�KN[<mQY±RUYZKe[Å�<�ef

��T�T�[	fgRkP<mSY�T�mI_¹�¶�QY�f4�ZTF�NmQf�RUK´�ONQP9R�ST9U^fkYZ[<¢N��T~mSY�M4T�[Sn
fkYZKe[<���>RUT�fgR*X��NfkTa��[<m2�¶VUT�mSPHX%T�m2X�����X%PQ���>RUYZKe[8RkY�M'TLK�jQ����KNPQR
�<�N�±j#K�jxRk�QT]X�����X%PQ���>RUYZKe[§RUYZM4T|j�KNV���K�RU�~Ó<K>°1X�KN[<mSYZRkY�KN[Hf�_

V æXWÅË ålÍ³ÉÃÇSË È © ÊZY © å4è6ËÕÊ	ÇEÉL[]\Òç
z deKN��PSRkY�KN[H��VUh { ��¢NKNVUYZRk�QM�f��NVkTÀ[QK>°¶�Nm<��hrfµ��°�Y�mST��Zh
fkOQVkTF�Nm6fiRUKSX��<�NfgRkY�X¡KNOSRUYZM4Y�²��>RUYZKe[1M4T�Rk�QKSm�_��¶�<T�h³�<��deT
OQVUK>dNT�[-RU�QT�Y�V8OQVU�eX�RUY�X����QY��ZYZRih)��[<m�T�ÝX%Y�T�[<X�h~Y�[�M���[rh)KNOQn
RkY�M4YZ²F�>RUYZKe[�RU�efg¸Sf�_¶Û<PQVkRk�QT�VkM4KNVUTN½ z�{ f3��VUT]�QP<YZ��m�KN[)RU�QT%n
KNVUT%RUY�X�����j�PQ[<mQ�NM'T�[ERU����flRkKSmQ��hN½#VUT�T�M'O<�<�NfkYZ²�YZ[<¢�Rk�QT�YZV4��OQn
OQVUKNOQVUY��>RkT�[QT�fUf�_���T�dNT�VkRk�<T���T�fUf�mST%R���Y��ZTFm)¸E[<K>°��ZTFmS¢NT2����KNPQR
O<�NVU�NM'T�RkT�VkY�²�Y�[Q¢|Rk�<T�fkT�M4T%Rk�<Krm<fL�eX�X%KeVUmQYZ[Q¢e�Zh�Y�f�T�fUfgT�[ERkY����Ú_
�¶�QY�f-X����efkf§K�jl�N�Z¢eKNVUY±RU�QM�fY�f-fkPQ�¿mSYZdrY�mST�mÅYZ[ERUK¹mSYZ¾�T�VkT�[ER
M4T%RU�QKSmQf]�NX�X%KeVUmSY�[Q¢~RkK)RU�QT�VUT�OQVUT�fkT�[ERU��RkY�KN[I½�¢NT�[<T%RkY�X4KNOQn
T�V��>RUKNV�f#��[<m4fkT���T�X�RUYZKe[�M4T�Rk�QKSmQf�P<fgTFm�_*bÞ[�RU�QT�OQVUT�fkT�[ER���OQn
OQ��Y�X��>RUYZKe[�¢NT�[<T%RkY�X��N�Z¢eKNVUY±RU�QM�f�Ù@� { Ü�à £�áH�H��dNT���T�T�[RkT�fgRkTFm
[QT�ïER-RkK¦T�dNKe�ZPSRUYZKe[³fiRUVU��RkT�¢NY�T�f�_×�¶�QT¼¢eT�[QT�RkY�X�����¢NKeVkYZRk�QM
fgRkT�M�fÃj�VUKNM,�ÅX�KNM4M4T�V�X%Y�����mQT�fkYZ¢e[×KNOSRUYZM4Y�²���RkY�KN[×RUKrKN�Zn
��K�ï¡X��N�Z��T�mÕÛ í Ô8�3�¶b zLí * _*�¶�QT§����¢NKeVkYZRk�<M4f]YZ[<X��ZPHmST�m´Y�[
Û í Ô8�3�¶b z�í �NVkT§O<��V���M4T%RUT�VUYZ²�T�mÃRkK¡fgKe�ZdeT§mSTFfgY�¢N[ÕOQVUKN�Qn
��T�M�f�Y�['¢eT�[QT�VU�N�@_*�¶�QT�P<fkT�V�Y�fa���<�ZT¶RUK]X��<��[Q¢eT¶�<�NfkY�X¶fgRkV��>Rkn
T�¢eh¼O<�NVU�NM4T%RkT�VUf|Y�[¡Rk�QT§¢NV���OQ�QY�X��N��P<fkT�V]Y�[ERkT�VkjÁ�NX�T�K�j¶Rk�<T
Û í Ô8�3�¶b z�í RUKEKe�@½NRkK2VUT�X�T�Y�dNT¶mSY±¾¿T�VUT�[ER�O�T�Vkj�KNVUM���[<X�T�f*j�KeV
Rk�<T§OQVUKN�Q��T�M!PQ[<mQT�V'YZ[rdNTFfiRUYZ¢E�>RUYZKe[I_�ÛQKeV'� { flRk�<T�fkT§O<��n
V���M4T%RUT�V�f��NVkT

^ O�KNOQP<����RkY�KN[)fgY�²�Te½^ M�PSRU��RkY�KN[)OQVUKN�<�N�QYZ��YZRihN½S��[<m^ VUT�X�KNMl�<YZ[<��RkY�KN[§RihEO�T
��M4Ke[Q¢4K�Rk�<T�V�f�½r°��QY�X�����VUT^[QKNR�Rk�<��R�YZ[QÓ<PQT�[ERUY��N�@_
�¶�QT��T�fgRlVUT�fkPQ�ZR2j�KNV2RU�QT§fkYZ[Q¢e�ZT�nÚKe�SâiT�X%RkY�dNT4��K>°¶npmSV���¢~RUT�fgR
X��efgT4�<�ef8�HT�T�[Õ�~d��N�ZP<T�K�j^s	_ oeoK�SsF�a`Qb�_�¶�QY�f|VUT�fkPQ�ZR2°��ef
X%KeM4OQPSRkTFm4P<fkYZ[Q¢|RU�QT3[<T�°	��Y�Vgj�KeYZ�QOH��V���M4T%RUT�VUYZ²F�>RkY�KN['M4T�[Sn
RkY�KN[<T�m¼�N�HK>deT-Ù@X%KNM4O<�NVkT�qNÜ^��[Hm¼X%KePQ��m¼��T�Y�M4OQVUK>dNT�m�P<fin
Y�[Q¢³T�deKN��PSRkY�KN[ðfgRkV��>RUT�¢NY�T�f�_ ��TFfiR¼VUT�fkPQ�ZRUfÃX%KNP<��m6��T KN�Qn
RU�NYZ[<T�m~°�Y±RU� z W§P<fgY�[Q¢4RU�QT]mST�V���[HmSKNM4Y�²�T�m~fgRkT�O)fkYZ²�T]X%KN[Qn
RkVUKN��M4TFX��<��[QY�fkMßj�VkKeM�Ô8fgRkT�VUM4T�Y�T�V�T�R3���Ú_¶à �>áp_

cedCf gih�jlk A gnmporq � h�gts ¤ h ù suq � h
ô m A ¤ jMmpv

�¶�QTM4TFX��<��[QY�fkM KNj�mQT�V���[<mSKeM4YZ²�T�m´fiRUT�O¦fkYZ²�T§X%Ke[ERkVUKN�aY�[
T�deKN��PSRkY�KN[fgRkV��>RUT�¢eYZTFf3ÙÁ\ z W<Ü��<�efa��T�T�[-OQVUK>dNT�['RUKl��T3dNT�Vkh
fkP<X�X�T�fUfij�PQ�Ú½<OH��VkRkY�X%PQ����VU�Zh§YZ[�Y�[<mSP<fgRkVUY������NOQOQ��Y�X��>RkY�KN[Hf�°�Y±RU�wyx{z6|~}~���G�uz����y�	�K|~�a�����9���G�y�������(�����I�����(�a���1���y���'��� �-¡����¢I�]|~�	�y���£��¤����y���(�¦¥�������¢O§¨���y�-�y�Ox	�y�(�9�y���-�y�������i�A�	�y�9©	¥	ª-��(�Z���a« �+���¬« |���®���1�(�	ª��¯�(�Z�e} °~�5}±��| x¨�~�K�²��ª����(���I¢I����a�-�~��³ |¬���y���£��¤�¤���¤����I���(�Q´6z~�e´®��ª������	ª��§¨���yµa�¶§¨�I©9�y��ª-�������¸·I·��¹(ºI»�¼�½ �¶�y���-�G�y�I���C�1�(�¾�X¿�À+À+ÀÁ« �-��¢I���	���(����« �¾��ÂF���y�I���y���-��Ã�«
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KN[<�Zh³�¹VkTFfiRUVkY�X�RUT�m»[rPQM��HT�V�K�j]Ð<Rk[QTFfkf-j�PQ[<X%RkY�KN[6T�d>����P<��n
RkY�KN[Hf�_
bÞ[�X%Ke[eRUVU�efiR¶RUK4Rk�QT]fgRU�N[<mQ��V�m~fiRUT�O�fkYZ²�T|�emQ��OQRU�>RUYZKe[§RUT�X��Sn
[QY�ÂEPQT�j�VUKNM z W¿½NRk�QT3mQT�V���[<mSKeM4YZ²�T�m4MlPQRU�>RUYZKe[<���HfiRUT�OfkYZ²�T
X%Ke[ERkVUKN�r�NX�X�PQMlP<����RkT�f*Y�[Sj�KNVUM��>RUYZKe[�����KNPQR*RU�QT�fgT��ZTFX�RUT�m�YZ[Sn
mSY�drY�mSPH���5Ä f3MlPSR��>RkY�KN[)deT�X�RUKNVXÅÆ K>dNT�V¶RU�QT�X�KNPQV�fkT8KNj�T�dNKe�ZPQnRkY�KN[¡�rh¼�Nm<mSYZ[<¢-PQOÃRk�<TfgP<X�X%TFfkfgj�PQ�#MlPSR��>RUYZKe[<f�_4�¶�QT���PQn
Rk�<KNV�f�X%����Y�M×Rk�H�>R�Rk�<T�M4T%Rk�<Krm'T�[<���Q��T�f��^VUT���Y����Q��T��NmQ�NOSRU��n
RkY�KN[¼K�j�YZ[HmSYZdrY�mSP<�N�*fgRkT�O�fgY�²�TFflÙ�YÚ_ TN_�½QÇÕmSYZ¾¿T�VUT�[ER8fgRU�N[<mQ��V�m
mST�dEY��>RUYZKe[<fÈ � Ü'T�deT�[ Y�[	fgM�������O�KNOQPQ���>RUYZKe[<f�½�[<�NM'T��Zhe½�Y�[
Ùise½ É�ÜpnÞfgRkV��>RkT�¢NY�T�f§°�Y±RU�ÊÉ�& s��ÕY�[»RU�QT¼T�ïrO�T�VUY�M'T�[ERUf-VkT�n
O�KNVkRkT�mI_l�¶�QT4OQVUKNO�KefkT�m�M4T%RU�QKSm¼PQRkY��ZY�²�TFf2�§deT�X�RUKNVnÅÆ D K�j�NX�X%PQM�PQ���>RkTFm4MlPSR��>RUYZKe[<f��efa°�T����H�Nf�YZ[HmSYZdrY�mSP<�N�HfgRkT�O-fgY�²�TFfÈ � ��[<m~�'¢N��KN�<�N�IfiRUT�O�fgY�²�T£È¡�NX�X%KNV�mSY�[Q¢�RkK�à ��á5%
ÅÆ D & Ùis�þÌË�Ü�ÅÆ D ` *@Í Ë¶ÅÆ+Î�, ÅÆ $ & Å� Ùis�Ü

È¨ÏÐ& Èi�~ÑÒIT%ïSOÓÑÒ Ô ÅÆ D ÔÕ Ç+Ö �. ` � þ	s Í
s
£9ÇÁ×Øl×ØXÙ Ù@qeÜ

È¨Ï� & È � � ÑÒÚÔ Æ D� ÔÖ �. ` � Í �¶_ �E£ ×Ø Ù�Û ÙÁ�EÜ

0 Ï� & 0 Î� Í È Ï �(È Ï� �(Ü � ÙÁ� , s�Ü Ù�orÜ

z fUfkT�[ERkY������Zhe½xTFÂEP<�>RUYZKe[³ÙisFÜlX��NOSRkPQVUT�f2Rk�QT-�QY�fgRkKeVkh¡K�j3fkP<X%n
X%TFfkfgj�PQ��M�PSRU��RkY�KN[<f��rh�l°�T�Y�¢N�ERUT�m§fkPQM·KNjIRk�<T8M�PSRU��RkY�KN[<f
fkT���T�X�RUT�m¼YZ[¡OQVUT�X%TFmSY�[Q¢-¢eT�[QT�VU��RkY�KN[<f�Ù�YÚ_ Te_Z½ÅÆ D ` * Ü^��[<m¼Rk�<TMlPQRU�>RUYZKe[¦dNTFX�RUKNVÝÅÆ Î K�j�RU�QT-fkT���T�X%RkTFmÕO<��VUT�[ER'YZ[<mQYZdrY�mSP<���Ù�[<K�RkY�X%TaRk�<��R�Rk�<TaM4T%Rk�<Krml��OQOQ��Y�T�f¿RUKlÙise½ É�ÜpnÞfiRUVU��RkT�¢NY�T�f�½�YÚ_ Te_Z½ÅÆ Î Y�f8RU�QT4MlPSR��>RUYZKe[ÃdeT�X�RUKNV8K�jLRk�QT�fkYZ[Q¢e�ZT4��T�fgR2K�¾�fgOQVUY�[Q¢Y�[<mSY�dEY�mSP<�N�xO<VkKSmSP<X�T�m�Y�[¼¢eT�[QT�VU��RkY�KN[ZÞ'þ»sFÜ�_|�¶�QT�dNT�X%RkKeVÅÆ D Y�f*RU�QT�[4P<fkT�mlRkK|PQO¿mQ��RkT¶�HKNRk�4�8¢N��KN�<�N�rfgRkT�O'fkY�²�TÁÈ§�N[<mY�[<mSY�dEY�mSP<�N��fgRkT�O§fkYZ²�T�f6È � �eX�X�KNV�mSYZ[<¢|RkK]TFÂePH�>RkY�KN[Hf3Ù@qeÜa�N[<m
ÙÁ�EÜ�_
z ÂEP<��RkY�KN[ÕÙ�orÜ¶RU�QT�[¼mQT�[QKNRkT�f�Rk�QT�¢NT�[QT�V��>RUYZKe[~KNj�K�¾�fgOQVUY�[Q¢
Y�[<mSY�dEY�mSP<�N��flj�VUKNM!Rk�QT)fkYZ[Q¢e�ZT§O<��VUT�[ER~ÙÁ°�Y±RU�¹X�KNM4OHKe[QT�[ER�f0 Î� Ü)Y�[×�	°¶��h1fkYZM4Y����NV�RkK»RU�QT fgRU�N[<mQ��V�m z W1MlPQRU�>RUYZKe[M4T�X��<�N[QY�fgMÒP<fkYZ[Q¢OÈ Ï �N[<m¦È Ï� _ìJLKe[<X%T�Vk[QY�[Q¢´RU�QTÃX��QKeY�X�T
K�j�Rk�<T[QT�°ì��T���VU[QY�[Q¢�V��>RkTFf£Ë>½�ßa½*�N[<mÝß Ï ½x��K�RU�´Rk�QT�KNVUT%Rkn
Y�X�������[<m´T�M4OQYZVUY�X�������VU¢NPQM4T�[eR�fl�NVkT�¢eYZdeT�[ÕY�[³à ��áLj�KeV]Rk�<T
fkT%RgRUYZ[<¢efÁËà&ðs�� Õ Ç�½�ßá&ðs�� Õ Ç�½�ß Ï &×s'��Ç�_
Û*YZ¢ePQVUT2s3fg�<K>°�f�o]VUPQ[<f�KNj�Ùgs Í s��eÜÞn z W�P<fgY�[Q¢2RU�QY�fa¸rYZ[Hm4K�j
fgRkT�O)fkYZ²�T8X�KN[ERkVUKN�¿�>j�RUT�V�Rk�QT2X��<�N[Q¢NT^K�jxRk�QT2��Y�Vkj�KNY��HO<�NVU�NM'n
T%RUT�VUYZ²F�>RUYZKe[º�N�ZVUT��emSh¦M4T�[ERkY�KN[<T�mºYZ[»fkT�X%RkY�KN[»q	ÙÁX%KeM4O<��VUT
à �Q½<oNá�Ü%_��¶�QT]��T�fgR8fkKN��PSRkY�KN[�fkK4jÁ��V8X%KePQ��m)��TlY�M4OQVUK>dNT�m~Y�[
�����Eo�VkP<[<f�_*�¶�QY�fxfk�QK>°�f�½�RU�<�>RxRk�QT�mST�V���[HmSKNM4Y�²�T�m2fgRkT�OlfkYZ²�T
X%Ke[ERkVUKN��M'TFX��<��[<Y�fkMÄY�f¶�]deT�VUh�fgP<X�X%TFfkfgj�PQ�¿M4T%Rk�<Krmj�KNV�Rk�<T
¢NY�dNT�['�NOQOQ��Y�X��>RUYZKe[I_*�¶�<T�VUT%j�KNVUTN½�Rk�QT�P<fU��¢eT¶K�j�Rk�QY�faM4T%RU�QKSm
fk�QKNPQ��m§�N��fkKl��T|X%KN[ERUYZ[rPQTFm�KNV¶�>R¶�ZTF�NfgRLRUVkY�T�m§KN[�RU�QT|MlPQ�ZRkY
KN�QâiT�X�RUYZdeT8RkT�fgR3X��efgTe_

0.0001

0.001

0.01

0.1

0 20 40 60 80 100

F
itn

es
s

Generations

(1+10)-DES for Airfoil Optimization
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��T�fgR�VkTFfgPQ�ZR�fgK'jÁ�NV]Ù��QKeVkY�²�Ke[eR�������YZ[<TFÜ
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\^PQT�RkK]Rk�QT�YZVLOHKeOQPQ���>RkY�KN[QnÚ�<�efgTFm��NOQOQVUKe�eX��I½ z�{ fa��VUT�dNT�Vkh
OQVUKNM4Y�fgY�[Q¢'M'T�Rk�QKSmQf�YZj*M4KeVkT3Rk�<�N[-Ke[QT^d>�N�ZPQT8RUK'mSTFfkX�VkY���T
Rk�<T¹ÂEP<����YZRih6KNj��[×Y�[<mSY�drY�mSPH���'Y�fÃVkTFÂEPQYZVUT�mI_ �¶�QT¦Ð<V�fgR
K>dNT�VkdrY�T�°1KN[�MlP<�±RUY*X�VkYZRkT�VkY���mST�X�Y�fkY�KN[�M���¸rY�[Q¢P<fkYZ[<¢ z�{ f
°¶�Nf-¢NY�dNT�[1�rh³ÛQKN[HfgTFX�� �N[<mÅÛ*��T�M4Y�[Q¢¹Y�[ìs(å�åE£»àÿ�Fáp_·bÞ[
Rk�<T�j�KN���ZK>°�Y�[Q¢~RkT�ïrR�½*Rk�QT�YZV�mST%Ð<[<Y±RUYZKe[<flX�KN[<X�T�VU[QYZ[<¢)mQKNM4Y±n
[<�N[<X%Te½ î ��VUT%RkKNnÚKeOSRkY�M�����Y±Rihe½ î �NVkT�RkK�nÞfkT%RUf�½H�N[<m�nÚj�VUKN[ERUf8��VUT
P<fkT�m�_��¶�QT�RkT�VUM"æÁT�R-çFè�P�é�ê�R�P9N¶èaY�f��emQmSYZRkY�KN[<�N�Z��h4mST%Ð<[<T�m�ef
Rk�<T]fgT�R�K�jx[<KN[SnÞmSKNM4Y�[<�>RUT�m-YZ[HmSYZdrY�mSP<�N��f�_
��T�ïrR�RkK»RU�QT mST�Ð<[QYZRkY�KN[ðKNj î �NVkT�RkKNnpmSKeM4YZ[<�N[<X%TÃT%R�X�_^�N[
��V�X��QY�dNT�RUK¡fgRkKeVkTRk�QT~YZ[HmSYZdrY�mSP<�N��f�½aTN_ ¢<_´[QKe[SnÞmSKNM4Y�[<�>RUT�m
KN[<T�f�½HK>deT�V^�§[rPQMl��T�V8K�ja¢eT�[QT�VU��RkY�KN[<f�O<����hSf8��[QKNRk�QT�V3Y�M�n
O�KNVkRU��[ER�VUKN��T´YZ[×}�P<�±RUY4Ô^�SâiTFX�RkY�dNT z dNKN��PSRUYZKe[<��VUh { ��¢NKNn
VUY±RU�QM�fÃÙ@}ÃÔ z�{ fUÜ%_ �¶�QY�f-�NVUX��<YZdeT�¢NY�dNT�fRk�QT¡����¢NKeVkYZRk�QM
Rk�<T]X��<��[<X�T3RUK�X%KNM4O<�NVkT|X%P<VkVUT�[ER�fgKe�ZPQRkY�KN[<fLRkK4Ke��mST�V�[QKN[Qn
mSKeM'Y�[<��RkT�m¦KN[QTFfl��[Hm¦fgT��ZTFX�R]RU�QT�fkT§Ke��mQT�VlY�[<mSY�drY�mQP<����f�½�YZj
Rk�<T8X��QKEfgT�[-fkT���T�X%RkY�KN[M4T�X��H��[QY�fgM·mQKETFf�[<K�R¶Ð<[<m-�l��T%RkRkT�V
KN[<T�YZ[´RU�QT§X%P<VkVUT�[ER2OHKeOQPQ���>RUYZKe[I_ í KNPQ¢e�Q�Zhe½IRU�QY�f���V�X��QY�dNT
Y�M'O<�ZT�M'T�[ERUfÕ�1¸EY�[<m K�j~OQ�ZPHf¡fgRkV��>RUT�¢ehÏj�VkKeM,T�dNKe�ZPQRkY�KN[
fgRkV��>RkT�¢NY�T�fl[QKNM4T�[HX%���>RkP<VkTe½#RU��¸rY�[Q¢¼[<K�R4KN[Q��h¡Rk�QT)X%PQVUVUT�[ER
K�¾�fkOQVkY�[Q¢�O�KNOQP<����RkY�KN[2Y�[eRUK3�NX�X%KePQ[ER�j�KNV�RU�QT�fkT���T�X�RUYZKe[]fiRUT�OI½
�QPSR#����fgK�Y�[<mSY�drY�mQP<����fIj�VUKNM6OQVUT�X�T�mSY�[Q¢�¢eT�[QT�VU��RkY�KN[<f�_�bÞ[2Rk�<T
X��efgT8K�j*P<fkYZ[Q¢��NVUX��QY�dNTFf�½E[QKNR¶Ke[Q��h�O<��VUT�[ERUf¶�NVkT^RU�N¸NT�[-YZ[ERUK
�NX�X%KePQ[ER�½Q�QPQR^������Y�[<mSY�drY�mSPH����f¶j�VkKeMÑRU�QT]°��QKe�ZT2�<Y�fgRkKeVkh-K�j
Rk�<T�X%PQVUVkT�[ER#T�dNKe�ZPSRUYZKe[�O<VkKSX%TFfkf�ÂEP<�N�ZYZÐ<TFmlj�KeV#Rk�QT�Y�[<X�KNVUOHKNn
V��>RkY�KN[~Y�[-RU�QT]��V�X��QY�dNTe½eTe_ ¢H_��Eh§�HT�YZ[Q¢�[<KN[SnÞmSKNM4Y�[<�>RUT�m�_
î VUKN�<�ZT�M4f�Rk�<��R^��VUY�fkT|j�VUKNMÑPHfgY�[Q¢§�NVUX��QY�dNTFf���VUT|Rk�QTl[EP<M�n
��T�V�K�j|Y�[<mSY�dEY�mSP<�N��f�fgRkKeVkTFm Y�[¹Rk�QY�f��V�X��QY�dNTe_¹��T�VkTe½L[<T�°
M4T%RU�QKSmQf#j�KNVLfgT��ZTFX�RkY�[Q¢2Y�[<mSY�drY�mSPH����f#RkK2��T�fiRUKNVUT�m'��[<m4�N��fkK
RkKÕ��T�mST��ZT�RkT�m¹j�VUKNM RU�QT���V�X��QY�dNT���VUT~YZ[»mSY�fkX�P<fUfgY�KN[Ïà ��áÚ_
{ [<K�Rk�<T�V2OQVUKN�Q��T�Më�NVkY�fkT�f8°��QT�[¡P<fkYZ[<¢)fgRkT�O¡fkY�²�T4�NmQ�NOSRU��n
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RkY�KN[�_*ÛH�����ZY�[Q¢8�<�NX�¸8RkK8KN��mST�VxY�[<mSY�drY�mSPH����f�j�VUKNMÏRU�QT���V�X��QY�dNT
X%KePQ��m��ZTF�Nm�RkK§VUT�O<���eX%Y�[Q¢¢NKrKSm�fgRkT�OÃfkYZ²�T�f^YZ[¼Rk�QT4X%PQVUVUT�[ER
Y�[<mSY�dEY�mSP<�N��f^��[<m)M4KeVkT�K>dNT�V�RUK�j�KNVU¢NT�R�P<fgT�j�PQ�*YZ[Sj�KeVkM���RkY�KN[
¢e�NYZ[<T�m¡j�VUKNM Rk�QT-T�dNKe�ZPQRkY�KN[ÕOQVUKSX%T�fUf�_��¶�QY�f�Y�f2Rk�<T§M���Y�[
VUT��NfkKN[�½S°��Eh§Rk�QT�VkTl[QKNVUM������ZhY�f�[<KfiRUT�O�fkYZ²�T]�NmQ�NOSRU��RkY�KN[
Y�[)}¡Ô z�{ f�_
Ô^PQV¡��OQOQVUKe�eX��ÅRUK1mSTF����°�Y±RU�ðRk�QTº��Y�Vgj�KeYZ�lKNOSRUYZM4Y�²��>RUYZKe[
OQVUKN�Q��T�M5RU�QT�VUT%j�KeVkT4mSKrT�f8[QKNR2P<fgT4��[´��V�X��QY�dNTe_]��K)YZ[Qj�KNVkn
M��>RUYZKe[I½HT�ïQX%T�OQR�j�KNV3Rk�QT�O<��VUT�[ER3Y�[<mSY�drY�mSPH���*Y�f^X���VUVUYZTFm-Ke[
Y�[eRUK'Rk�QT2[QT�ïrR�¢NT�[<T�V��>RkY�KN[�_

ë/dCf seq Aáì v¬h ù kljXh A ¤ o¯íiv ¤ qpm 9]� h ô ¤ q�îXhgih£s
WrY�[<X%T¶RU�QT3fkYZ[<¢N��T�Ke�SâiT�X%RkY�dNT¶dNT�VUfkY�KN['K�j�Rk�QT�\ z W'��O<OQVkKE�NX��
�<�ef]��T�T�[¹fgP<X�X%TFfkfgj�PQ���Zh´��OQO<�ZY�T�m¡RUK�Rk�QT~fgY�[Q¢e�ZTO�KNY�[ER���Y�Vkn
j�KNY��^mQT�fkYZ¢e[ºO<VkKe�Q�ZT�M)½¶�¡RUVU�N[<fgj�KNVUM4��RkY�KN[ºP<fkYZ[Q¢´RU�QY�f§��OQn
OQVUKe�eX��¼j�KeV]MlPQ�ZRkYZnpKN�SâiTFX�RkY�dNTmQT�fkYZ¢e[¦fgT�T�M4T�m´ÂEPQYZRkT[<��RkPSn
V����Ú_*�¶�QT�VkT�j�KNVUTN½E�2�ZKNRLKNj�mSY±¾¿T�VUT�[ER¶fgPQ�QâiT�X�RUYZdeT�f��<��dNT¶RUKl��T
RU�N¸NT�[-Y�[ERkK��NX�X%KNP<[eRF½ST�fkOHTFX%Y������Zh{%
^ Ô^[QT�fgY�[Q¢N��T2O<�NVkT�[eR^�<�Nf¶RUK��T�X��QKEfgT�[-j�VUKNM���O�KNOQPSn���>RUYZKe[§VUT�fkOHTFX�RkY�[Q¢�������mSYZ¾�T�VkT�[eR��N[<m§fkKNM4T%RUYZM4TFf�X%KN[Qn
Ó<Y�X�RUYZ[<¢4ÐQRk[QTFfkf�j�P<[<X�RUYZKe[�d��N�ZP<T�f�_

^ �¶�QTfgRkV��>RUT�¢eh�MlP<fgR][QK�R2j�KSX�P<f2Y�[´�NOQOQVUKe�eX��QYZ[<¢§KN[<TfkYZ[<¢N��T�¢N��KN�<�N�<KeOSRkY�MlPQMÄ�QPQR�Rk�<T^°��QKe�ZT î ��VUT%RkKNn@j�VUKN[ER
KNj*[QKe[SnÞmSKNM4Y�[<�>RUT�m-YZ[<mQYZdrY�mSP<����f�_

WrT��ZTFX�RkY�[Q¢'KN[QT^YZ[HmSYZdrY�mSP<�N�Hj�VUKNM·��fgT�R�KNj�Y�[<mSY�dEY�mSP<�N��f�TF�NX��
�<��drY�[Q¢-M4KeVkT�Rk�<�N[ÃKe[QT'ÐQRk[<T�fUf3j�P<[<X�RUYZKe[¡d>�N�ZPQT4Y�f|YZ[ÃRk�<T
T�[Hm¼Ke[Q�Zh��~fkOHTFX%Y�����X��efgT�K�j�fkT���T�X%RkY�[Q¢)�§[QT�°×O�KNOQPQ���>RUYZKe[
Y�[¦}ÃÔ z�{ f�_~�¶�QT�Ð<V�fiRlfgRkT�OÕYZ[´RU�QT§fkT���T�X%RkY�KN[ÕfkX��<T�M4T�Y�f
����M4KefgR-X%��T��NV�½¶YZj2Rk�QT î ��VUT%RUK´X�KN[<X�T�OSR�f§�NVkT��NOQOQ��YZTFm�_×bpj
Rk�<T�VUTY�f�KN[<T§��[<m¦KN[Q��hÃKe[QT[QKe[SnÞmSKNM4Y�[<�>RUT�m´Y�[<mSY�dEY�mSP<�N�@½
fkT���T�X�R-Rk�QY�f-KN[QT�j�KeV-��T�X�KNM4Y�[Q¢ÕRk�<TÃO<�NVkT�[ER§K�j2RU�QT¼[QT�ïrR
¢NT�[QT�V��>RUYZKe[I_
bpj�Rk�<T�VUT§Y�fl[QKNR�Ke[Q�Zh¡KN[<T§[QKe[SnpmQKNM4YZ[H�>RkTFm´YZ[HmSYZdrY�mSP<�N�LY�[
Rk�<TÕOHKeOQPQ���>RkY�KN[�½3RU�QT�VUT´MlP<fgR��HT´M4KNVUTÃRk�<�N[6Ke[QT´[QKN[Qn
mSKeM'Y�[<��RkT�m	Y�[<mSY�drY�mQP<����f�_Ï\^PQT�RkK¦fkKNM4T���KN¢eY�X����3X�KN[<fkY�mSn
T�V��>RUYZKe[<f�Rk�QT|X��efgT^Rk�<��RLRU�QT�VUT8Y�f�[QK'[QKN[QnpmSKeM4YZ[<��RkTFm�YZ[HmSY±n
drY�mQP<����Y�f�[QKNR¶O�KefUfkYZ�Q��TN_
ÛQKeV'Rk�QT�X��efgT-°�Y±RU�¹M4KeVkT-Rk�<�N[ Ke[QT-[<KN[SnÞmSKNM4Y�[<�>RUT�m YZ[Sn
mSY�drY�mSPH����f�½*j�PQVkRk�QT�V'�NOQOQVUKe�eX��QT�f2�NVkTO�KefUfkYZ�Q��TN_ÃÔ^[<T§O�Kefgn
fkYZ�QY���Y±Rihe½�°��<Y�X��Ã°��ef�RUVkY�T�m�Y�[�RU�QT4X%PQVUVkT�[ER^Y�[EdeT�fgRkY�¢e��RkY�KN[<f�½
Y�f8RkK�X��QKrKefkT�Rk�QT�Y�[<mSY�drY�mSPH���Ú½�°��QY�X��ÕmSKNM4Y�[<�>RUT�f|M4KefgR2K�j
Rk�<T2K�Rk�<T�V¶KN[QTFf�_ { [QK�RU�QT�V�fkT���T�X%RkY�KN[)fkX��QT�M4T8°�KNP<��m-�HT8RUK
fkT���T�X�RlRk�QT-YZ[<mQYZdrY�mSP<���L[QT%ïrR]RUK�RU�QTKNVUY�¢NY�[¡KNj¶Rk�QT§ÐQRk[QTFfkf
j�PQ[<X%RkY�KN[6fgO<�eX%Te½¶Rk�QTÃ¢N��KN�<�N�3KNOQRkY�MlPQMÒj�KNV~��K�Rk�³ÐQRk[QTFfkf
j�PQ[<X%RkY�KN[¹d��N�ZP<T�f�YZ[ Rk�QY�f4fgO�T�X�Y��N�LVUT�mSTFfgY�¢N[´RUT�fgR4X��NfkTN_¡bÞ[
jÁ�NX%R�RU�QY�f4¢N��KN�<�N�LKeOSRkY�MlPQM VUT�M��NYZ[<f�PQ[QVUT��eX��<���<�ZT-Y±j|mSY±j�n
j�T�VUT�[ER|RU�NVk¢eT%R]��Y�Vkj�KNY���f2�NVkT4X%Ke[<fgY�mST�VkTFm�_ { [QKNRk�QT�VlfkX��<T�M4T

RkTFfiRUT�m�Y�f�RU�QT3fkT���T�X%RkY�KN[�K�j¿RU�QT3Y�[<mSY�drY�mSPH���<°�YZRk�Rk�QT^¢NVUT��>Rkn
T�fgR�mSY�fgRU�N[<X%T�RkK3Rk�QT�K�RU�QT�V*YZ[HmSYZdrY�mSP<�N��f*Y�[2Rk�QTLÐQRU[QT�fUfxj�PQ[<X�n
RkY�KN[¡fgOH�NX%Te_ { ¢E��Y�[I½�mSYZ¾�T�VkT�[eR]fgRkV��>RUT�¢NY�T�f8X��N[���T4�NOQOQ��YZTFm
�QT�VkT	% X%KeM'OH��VUYZ[Q¢¦Rk�QTÃÐQRk[<T�fUf§RUKº�N�Z�8K�RU�QT�V~Y�[<mSY�dEY�mSP<�N��f
KNV|RUK)Rk�QT�Y�[<mSY�drY�mQP<����f2KN[ÃRk�<T§fk�NM4T'��T�deT��Ú½�Te_ ¢H_�����a[QKN[Qn
mSKeM'Y�[<��RkT�m~Y�[<mSY�drY�mSPH����f�½<�N�Z��YZ[<mQYZdrY�mSP<����f�mSKeM4YZ[<��RkY�[Q¢4Rk�<T
fU��M4T|[EP<Ml��T�V�K�j#K�RU�QT�V�Y�[<mSY�drY�mQP<����f���[<m)fkK4KN[I_
c OÃRkK)[QK>° �����#Rk�QT'j�KNVUMlP<����RkY�KN[<f|��[Hm¼fkOHTFX%YZÐHX���RkY�KN[<f8j�KeV
Rk�<T'[<T�°×M4T%RU�QKSm¼KNj�MlP<�±RUY�KN�SâiTFX�RkY�dNT'\ z W��<KN��m�j�KNV8Ri°�K
X��efgTFf�% { X�KNM4M��¦fiRUVU��RkT�¢Nh¹�ef�°�T����8�ef4Rk�QTÃT���Y±RUY�fgR-O<�ZP<f
fgRkV��>RkT�¢Nhe_§\3P<T�RkK��H��V�m¼VUT�fgRkVUY�X%RkY�KN[<flX%KN[HX%T�VU[QY�[Q¢~Rk�QT-���Zn
��K>°LTFm^[rPQM��HT�V�KNjEÐ<Rk[QTFfkfIj�PQ[<X�RUYZKe[2T�d>����P<��RkY�KN[<f�½�RU�QT�T��ZYZRkY�fgR
Ùis Í s��EÜpnÞ\ z W]Y�f�P<fkT�m�_aJLKNM��QY�[QT�m'°�YZRk�4Rk�<T�X��QKNY�X%T�KNjHRU�QY�f
fkT���T�X�RUYZKe[ÕfkX��QT�M4T�Y�f]Rk�QT�<KNO�TN½xRk�<��RlY±R�OHT�Vgj�KeVkM�f2��T%RkRkT�V
Rk�H��[-Rk�QT]X�KNM4M���fgRkV��>RUT�¢Nhe½r�HTFX���PHfgT|KN[<�ZhY�M4OQVUK>dNT�M4T�[eR�f
°�YZRk�lVUT�fkO�T�X�R*RkK3Rk�QT�fkT���T�X%RkY�KN[]M4T�X��H��[QY�fgMÏY�[lP<fkT¶��VUT�O�Kefgn
fkYZ�Q��TN_
Ô^[QT¼mQVU��°��<�eX�¸ÕK�j|Rk�<T¼��OQO<�ZY�T�mºRUT�X��Q[QY�ÂEPQT�f§Y�fRk�<��RRk�<T
fkPQM K�j�mSYZ¾�T�VkT�[ER~Ð<Rk[QTFfkf~j�PQ[HX�RkY�KN[Ïd>����PQTFf�X���[6��T�X%KeM4T
°�KNV�fgT|Y�[)j�KN���ZK>°�Y�[Q¢�¢NT�[QT�V��>RUYZKe[<f�_L�¶�QY�f�M4YZ¢e�ER3�<��O<OHT�[I½HYZj
KN[<T8[<KN[SnÞmSKNM4Y�[<�>RUT�m§YZ[<mQYZdrY�mSP<����Y�f�fkT���T�X�RUT�m~mSPQT8RkK4KNRk�QT�V
fkT���T�X�RUYZKe[�fkX��<T�M4T�f�½HTe_ ¢H_�Rk�<T�mSY�fiR���[<X�T]RUK�Rk�QT�K�RU�QT�V8[QKN[Qn
mSKeM'Y�[<��RkT�m~Y�[<mSY�drY�mSPH����f�_
bÞ[ÏRk�<T X%PQVUVUT�[ER�YZ[rdeT�fgRkY�¢e�>RUYZKe[I½|Rk�<TÕj�KN���ZK>°�Y�[Q¢³fkT���T�X%RkY�KN[
fUX��QT�M4T�f¶�H��dNT8�HT�T�[�X%KeM'OH��VUT�m¨%
s ¨F�*ur¥¦u fQï bpj#M4KNVUT^RU�<��[)Ke[QT2[QKN[QnpmSKeM4YZ[<��RkTFm§Y�[<mSY�drY�mrn

P<�N�rY�fxYZ[lRk�QT¶O�KNOQP<����RkY�KN[I½�RU�QTL[rPQM��HT�VxKNj<Y�[<mSY�dEY�mSP<�N��f
mSKeM4YZ[<��RkTFmÃY�f|R���¸NT�[ÃY�[ERkK��eX�X%KePQ[ER�_�bpj�Rk�QT�VkT�Y�f|KN[<T
Y�[<mSY�drY�mSPH���Q°�YZRk�4�8M4��ïSYZM�PQMv[rPQM��HT�V�K�j�mQKNM4YZ[H�>RkTFm
Y�[<mSY�drY�mSPH����f�½ERk�<Y�f�KN[<T3Y�f�X��<KefkT�[�RUKl��T�X%KeM4T3RU�QT^OH��Vkn
T�[eRLK�j�Rk�<T�[QT%ïrR�¢NT�[<T�V��>RkY�KN[�_�bpj�Rk�<T�VUT3��VUT�M4KNVUT�Rk�<�N[
Ke[QT3°�YZRk��RU�QT|fk�NM'T3M4��ïSYZM�PQMÄ[EP<Ml��T�V�K�jIY�[<mSY�dEY�mSPSn
�N��f*mSKNM4Y�[<�>RUT�m�½FRU�QT�mQY�fgRU�N[<X%T�RkK�RU�QT�KNVUYZ¢eYZ[2KNjSRk�QTLÐQRgn
[QTFfkf�j�PQ[<X�RUYZKe[�fgOH�NX%T|Y�f¶RU�N¸NT�[~Y�[ERkK�eX�X%KePQ[ER�_�bÞ[)RU�QY�f
fkOHTFX%Y�����X��NfkTN½rRU�QT2YZ[HmSYZdrY�mSP<�N�I°�Y±RU�~Rk�QT]fkM������ZTFfiR�mSY�fin
R���[<X�TlRUKRk�<T�KeVkY�¢NY�[I½¿°��QY�X���Y�f^RU�QT�¢e�ZKe�<���*KNOQRkY�MlPQM
mSP<T2RkK�Ð<Rk[QTFfkf¶j�P<[<X�RUYZKe[�j�KNVUMlPQ���>RUYZKe[I½QY�f3fkT���T�X%RkT�m-RUK
��T�X�KNM4T|Rk�QT2OH��VUT�[ER�KNjxRU�QT2[QT�ïER�¢eT�[QT�VU��RkY�KN[I_

s ¨F�*ur¥¦uáð ï �¶�QY�f�fkT���T�X%RkY�KN[]fUX��QT�M4TaY�f�fkY�M'Y�����VIRUK^WSX��QT�M4T
s]O<VkTFfgT�[eRUT�m)����K>dNTe½Q�QPSR^YZ[<fgRkTF�Nm)KNj*RU�QT�mQY�fgRU�N[<X%T|RUK
RU�QT]KNVUY�¢NY�[I½SRk�<T]mSY�fgRU�N[<X%T]RkK�K�RU�QT�V3YZ[<mQYZdrY�mSP<����f¶j�VUKNM
RU�QT¶OHKeOQPQ���>RkY�KN[��<�Nfx��T�T�[�RU�N¸NT�[]YZ[ERUK8�eX�X%KePQ[ER�_*}�KNVUT
OQVUT�X�Y�fkT���hN½*RU�QT-Y�[<mSY�drY�mQP<����fl°�YZRk� Rk�QT)fU��M4T[rPQMl��T�V
KNj�mSKNM4Y�[<�>RUT�m»Y�[<mSY�drY�mQP<����f)��VUTÃX%KeM4O<��VUT�mºRUK¹TF�NX��
KNRk�QT�V�_Å�¶�<T�VUT%j�KNVUT-Rk�QT¼mQY�fgRU�N[<X%T)K�j|KN[<T�YZ[<mQYZdrY�mSP<���
RUK¼RU�QT-KNRk�QT�V�Ke[QT�f�Y�f�X�����X%PQ���>RUT�m �N[<m¦�emQmST�mI_´�¶�<T
Ke[QT2°�Y±RU�~Rk�QT]¢eVkTF�>RUT�fgR�fkPQM)½SRU�EPHf¶Rk�QT2Ke[QT2°�YZRk�)Rk�<T
¢eVkTF�>RkTFfiR�fkPQMvKNj�mSY�fiR���[<X�T�f*RUK^RU�QT�K�RU�QT�V�Y�[<mSY�drY�mQP<����f�½
Y�f-fkT���T�X%RkTFm³��[<m³�HTFX%KNM4TFf�Rk�<T¼O<�NVkT�[eR~K�j2RU�QT¼[QT�ïrR
¢eT�[QT�VU��RkY�KN[I_
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s ¨F�*ur¥¦u ceï bÞ[4RU�QT�Rk�<YZV�m�fgT��ZTFX�RUYZKe[fkX��QT�M4T�YZ[rdNTFfiRUYZ¢E�>RUT�m
�QT�VkTe½NRU�QT|fgTFX%KN[Hm�X%VUY±RUT�VUY��|j�VUKNMßfUX��QT�M4T^qQ½ERk�QT^[EP<M�n
��T�V�KNjxY�[<mSY�drY�mSPH����f�mSKNM4Y�[<�>RUT�m�½SY�f�KeM'YZRgRUT�m�_�bpj#M4KNVUT
RU�<��[-KN[QT8[QKN[QnpmSKeM4YZ[<��RkTFm�YZ[HmSYZdrY�mSP<�N��Y�fLYZ[-Rk�<T^O�KNOSn
PQ���>RUYZKe[I½�RU�QT3Ke[QT�°�YZRk��RU�QT�¢NVUT���RkTFfiR�mSY�fgRU��[HX%T���M4Ke[Q¢
�N�Z��[QKN[QnpmSKeM4YZ[<��RkTFm�fgKe�ZPSRUYZKe[<fLY�f�fgT��ZTFX�RUT�m4RUKl��T�X%KeM4T
RU�QT2O<��VUT�[ER�K�j*Rk�<T][QT%ïrR�¢eT�[QT�VU��RkY�KN[I_��¶�QT�VkT�j�KNVUTN½rRk�<T
mSY�fgRU��[HX%T2K�j*T��eX��-[QKe[SnÞmSKNM4Y�[<�>RUT�m-YZ[<mQYZdrY�mSP<���IRkK4Rk�<T
KNRk�QT�V�Ke[QT�fLY�f�X�����X%P<����RkT�m§��[<m~�NmQmQT�m§fkY�M'Y�����VU�Zh��Nf�Y�[
fkT���T�X%RkY�KN[)fkX��QT�M4T2qQ_

ñ ÊºæÃç�Í³åLÉ¦ç

ÛQKeV|T��NX��¼K�j�RU�QT4OQVUT�fkT�[ERkTFm�fgT��ZTFX�RUYZKe[ÃfUX��QT�M4T�f�½ImSYZ¾�T�VkT�[ER
KNOQRkY�M'Y�²���RkY�KN[�VUPQ[<f��H��dNT���T�T�[§OHT�Vgj�KeVkM4T�mI_ z �NX��4K�j¿Rk�<T�fkT
VUPQ[<f'X���[ �HT~X%KNM4O<�NVkTFm¡RkKÃKN[QT~��[QKNRk�QT�Vl�rh¡Rk�QT~VkTFfgP<�±R�f
�NX��<YZT�dNT�mI_¦}�KefgR�YZM4O�KNVkRU��[ER'j�KNV'Rk�<T)X�KNM4O<�NVkY�fgKe[ÕK�j8VkT�n
fkPQ�±R�f�Y�f�Rk�QT2Ke�SRU�NYZ[QTFm î �NVkT�RkKNn@j�VUKN[ER�_
î VUY�KNV-RkKºRk�QTFfgT z W³VUT�fkPQ�ZRUf�½3Ð<¢ePQVUTÕq OQVUT�fkT�[ERUf-RU�QTÕ¢NT�n
KNM4T�RkVUhÃKe�SRU�NYZ[QTFm´°�Y±RU�´Rk�QT-MlPQ�ZRkY�KN�QâiT�X�RUYZdeT§� { Y�[ÕRk�<T
Û í Ô8�3�¶b z�í RkKrKN�Ú_5�¶�QT¡Rk�QY�X�¸ÅfkKN��Y�m1�ZY�[QTÕmST�[QK�RUT�f~Rk�<T
��T�fgR�T�[<¢NY�[QT�T�VkY�[Q¢�¢NT�KNM4T%RUVkhe_��¶�QT§fkhEM��HKe��flOQVUT�fkT�[ER]Rk�<T
��T�²�YZT�V¶X�KN[ERkVUKN�¿O�KNY�[ERUf��rh°��QY�X��-Rk�QY�f���Y�Vkj�KNY���¢eT�KeM'T�RkVUh�Y�f
�NX��<YZT�dNT�mI_xbpR�X��N[-��T|°LT��Z�¿VUT�X�KN¢N[<YZ²�T�m�½ERk�H�>R¶Rk�QT|VUT�fkPQ�ZRkY�[Q¢
¢NT�KNM4T%RUVkh3Y�fx��X%KNM4OQVUKNM4Y�fgT#��T%Ri°�T�T�[|Rk�QT�Ri°�K�RU�NVk¢eT%R�ÙÁfkPQ�Sn
fkKN[QY�X��N[<m2RUVU�N[<fgKe[QY�X�Ü�¢NT�KeM4T%RkVUY�T�f�ÙÁ[<��VUVUK>°¡��Y�[QT�f�fk�QK>°�[]Y�[
Ð<¢ePQVkT]qeÜ�_

Û*YZ¢ePQVUTlqa% { Y�Vkj�KNY���¢NT�KNM4T%RUVkhÃÙ�Rk�<Y�X�¸QÜ¶��[Hm§Ri°�K4RU�NVk¢eT%R���Y�Vkn
j�KNY���f2Ù�Rk�<YZ[HÜ

{ m<mSY±RUYZKe[<������hN½�Ð<¢NP<VkT��´T%ïS�QY��QYZRUf4RU�QT�OQVUT�fUfkPQVkT)mSY�fiRUVkY��QPSn
RkY�KN[-KN�SR���Y�[QT�m�j�KNVLRk�QT^�HTFfiR���Y�Vgj�KeYZ��Y�[-fkPQ�<fkKN[QY�X3�N[<m4RkV���[Qn

fkKN[QY�X'Ó<K>°2_ { ¢e��Y�[I½�Rk�QTVUT�fkPQ�ZRUf|Y�[<mSY�X���RkT§�)X%KeM4OQVkKeM4Y�fkT
��T%Ri°�T�T�[~��K�Rk�-RU�NVk¢eT%R�f��N[<m�½rj�PQVkRk�<T�VUM'KeVkTe½ERk�<��R�RU�QT|KNOSRUY±n
M4YZ²�T�m]fk�<�NOHT�RUT�[<m<fIRUK3X%KeM'TLX%��KefkT�V�RUK�Rk�<T�fgP<�<fgKe[QY�Xafg�H��O�T
Y�[ÃRU�QT�j�VUKN[ER]O<�NVgR2K�j�Rk�<T§��Y�Vgj�KeYZ�a�N[<mÃj�KN���ZK>°�f|��T%RkRkT�V]Rk�<T
RkV���[HfgKe[QY�X8fk�<��O�T2YZ[~RU�QT2VkTF��V¶O<�NVgRF_

Û*YZ¢ePQVUT¡�¶% î VUT�fUfgP<VkT¼mQY�fgRkVUYZ�<PSRkY�KN[<f~Ke[ÅPQOQO�T�V��N[Å��K>°LT�V
fkPQVgjÁ�eX%T4j�VUKNM�Rk�QT§�NYZVkj�KNY���mSTFfgY�¢N[´Y�[´Ð<¢NP<VkT§q´ÙÁ�ZY�[QT�f�Ü2�N[<m
Ri°�K�R���VU¢NT�R��NYZVkj�KNY���f8Ù@mSK�R�fUÜ

bÞ[ð�NmQmQY±RUYZKe[ÅRUK	Rk�QT î �NVkT�RkK�nÚj�VUKN[ER�½8X%KN[HX%��P<fgY�KN[Hf~X���[Ï��T
mSV���°�[)j�VkKeM�Rk�QTlRihEO<Y�X����xÐQRk[QTFfkf^K>dNT�V�¢NT�[QT�V��>RUYZKe[<f�OQ��K�R�f�_
\^Y±¾¿T�VUT�[ER^X�PQVkdeT�f�X���[)��T]YZ[rdeT�fgRkY�¢e�>RUT�m~��YZ¸eT|Rk�QT2Ð<Rk[QTFfkf3K�j
T��eX��¦KN�QâiT�X�RUYZdeT§��¢E��Y�[<fgRlRk�<T-¢eT�[QT�VU��RkY�KN[Õ[rPQMl��T�V'KNV�Rk�<T
fkPQM/KNj8��K�RU�»KN�SâiTFX�RUYZdeT�f���¢E��Y�[<fgR'RU�QT�¢eT�[QT�VU��RkY�KN[º[EP<M�n
��T�VF_#��PSR¶RU�QY�f¶°�Y�����[QK�R���T|mQKN[QT8�QT�VUTN_#bÞ[<fgRkTF�Nm�½rRU�QT|O<�>RU�
K�j¿RU�QT�O<�NVkT�[eRaY�[<mSY�drY�mQP<���QY�[4Rk�<T�ÐQRk[<T�fUf�j�PQ[<X%RkY�KN[fkO<�NX�T�Y�f
KN�HfgT�VkdeT�m§�ef���[QKNRk�QT�V�M4T%Rk�<Krm-j�KeV�X%KNM4O<�NVkY�fkKN[I_

òudCf giqFóÁóÁh�jlh A ¤ seh�v6h ô ¤ q(m A s ô y h�o¯h�s
JLKNM4O<�NVkY�[Q¢¡Rk�<T�mSY±¾¿T�VUT�[ER§fkT���T�X%RkY�KN[	fkX��QT�M4T�f�OQVUT�fkT�[ERUT�m
Y�[ÕRk�QY�f�O<��O�T�VF½*Rk�QT î ��VUT%RkKNn@j�VUKN[ER�f8fk�QK>°ìRk�<T§M4KefgRlKN�rdrYZn
KNPHf~�N[<m1VkT�M4�NVk¸>�N�Q�ZTÃVkTFfgP<�±R�f�_ { RihrOQY�X��N� î ��VUT%RkKNn@j�VUKN[ER
KN�QRU��Y�[QTFmÃ�rh¡fgT��ZTFX�RkY�KN[¦fUX��QT�M'T�s�Y�f2OQVUT�fkT�[ERUT�m¡YZ[´ÐH¢NPQVUT
o<_��3T�VUTN½S�Nf�°�T������efLY�[RU�QT8j�KN���ZK>°�Y�[Q¢lÐ<¢NPQVUT�fLK�j�Rk�QT2fU��M4T
RihrOHT��N�Z��sF�N�N�-Y�[<mSY�dEY�mSP<�N��f|KNjLKe[QT4KNOSRUYZM4Y�²��>RUYZKe[ÃVUPQ[´��VUT
OQVUT�fkT�[ERkTFm¦��[Hm´Rk�QT î ��VUT%RUK�nÚj�VkKe[ER|M4T�Ml��T�V�f��NVkTM��NVk¸eT�m
M4KNVUT8m<��VU¸�_��¶�QT|fkT���V�X��j�KSX�P<fgTFf�KN[RU�QT2O<��Rk�RUK'Rk�QT|KNVUYZn
¢NY�[ KNj�Rk�<T-Ð<Rk[QTFfkf�j�PQ[<X%RkY�KN[	fgOH�NX%Te_¦�¶�QY�f4�HT��<��drYZKeV�X��N[
����fkK��HT-KN�<fkT�VUdNTFm¼Y�[ÕRk�<T§°¶��h¼K�j¶RU�QTO<�NVkT�[eR�YZ[<mQYZdrY�mSP<���
Y�[ÕRk�QT§ÐQRk[<T�fUf2j�PQ[<X%RkY�KN[ fkO<�eX%T§mSV���°�[´YZ[¦Ð<¢NPQVUT§£S_�bpR'Y�f
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T%ïSO�T�X%RkT�m�Rk�<��R|Rk�QY�f8�HT��<��drYZKeV^KeVkY�¢NY�[<�>RUT�f3j�VkKeM�Rk�QT'Rk�<YZV�m
fkT���T�X�RUYZKe[§fgRkT�O�½eR���¸rY�[Q¢lRU�QY�f�mQY�fgRU�N[<X%T3RkK]RU�QT|KNVUYZ¢eYZ[�KNjIRk�<T
ÐQRU[QT�fUf¶j�PQ[<X%RkY�KN[�fkO<�NX�T8Y�[ERkK�X%Ke[<fkY�mST�VU��RkY�KN[I_
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(1+10)-MCDES for Airfoil Optimization

all-best-eads

Û*YZ¢ePQVUT'£a% î ��Rk��KNj�O<��VUT�[ER3Y�[<mSY�drY�mQP<���Ú½IfgT��ZTFX�RUYZKe[¼fkX��<T�M4T
s
WrPQVUOQVUY�fkY�[Q¢N��hN½§Rk�QT1�HT��<��drYZKeV mSKrT�f¹[QK�RºX��<��[Q¢eTÅfkYZ¢e[QY±Ð<n
X��N[ERk��hN½�YZj�Rk�QT-Rk�<YZV�m fkT���T�X%RkY�KN[ fgRkT�O Y�f�X��<�N[Q¢NTFm�_¡bÞ[¦Ð<¢Nn
PQVUT8�]Rk�QT î ��VUT%RUK�nÚj�VkKe[ERaKN�SR���Y�[QT�m§�Eh�]RihrOQY�X����¿VUPQ[P<fkYZ[<¢
fkT���T�X�RUYZKe[¡fUX��QT�M'Tq-Y�f]fg�<K>°�[I_��¶�QT�fk�NM'T4��T��<��drY�KNV|��YZ¸eT
��T%j�KNVUTN½�RU�QTLj�KrX�P<f*K�jQRU�QT¶fgTF��V�X��2RkK>°¶��V�mQf�RU�QT�KNVUYZ¢eYZ[]KNjQRk�<T
ÐQRU[QT�fUf|j�PQ[<X%RkY�KN[¦fkO<�NX�TN½#X��N[¡��TKe�<fgT�VkdeT�m�_�¶�<Y�fl�HT��<��dEn
Y�KNV2X��<��[<¢NT�f^[QKNR|P<[eRUYZ�#RU�QT�fgTFX%Ke[<m¼fkT���T�X%RkY�KN[ÃfgRkT�OI½�fkT���T�X%n
RkY�KN[�X�KN[<fkY�mQT�VUYZ[Q¢8RU�QT�[rPQMl��T�VaKNj¿mQKNM4YZ[H�>RkTFm4fgKe�ZPSRUYZKe[<f�½�Y�f
KNM4YZRgRUT�m-j�VkKeMßRk�<T]fgT��ZTFX�RkY�KN[~OQVUKSX%T�mQPQVkTe_

òud ð seh�v6h ô ¤ q(m A s ô y h�o¯h c
Û*YZ¢ePQVUT¡�¡OQVUT�fkT�[ERUf-�´RihrOQY�X���� î ��VUT%RUK�nÚj�VkKe[eR4j�VUKNM��ÕVUPQ[
P<fkYZ[<¢§fgT��ZTFX�RUYZKe[�fkX��QT�M4Tl�Q_��¶�QT î ��VUT%RkKNn@j�VUKN[ER�Y�f3X%K>deT�VUT�m
fU�>RkY�fgjÁ�NX�RUKNVUYZ��hN½¿fk�QK>°�YZ[<¢§�§°�Y�mST�VU�N[Q¢NT�K�j�mSYZ¾�T�VkT�[ER|�N�±RUT�Vkn
[<��RkY�dNT2fgKe�ZPQRkY�KN[<f�_��¶�QY�f¶¢eYZdeT�fLRk�<T2P<fgT�V¶Rk�QT|O�KefUfgY��QY��ZYZRih�RUK
X%KeM4O<��VUT¶M4�N[rhl���ZRkT�Vk[<��RkY�dNT¶fgKe�ZPQRkY�KN[<f#j�TF�>RUPQVkY�[Q¢2mSYZ¾�T�VkT�[ER
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X��N[)�HT2Ke�<fgT�VkdeT�m-[QT%ïrR�RUK�hEY�T���mSY�[Q¢�4fgY�M4YZ����V^mSY�fgRkVUY��QPSRkTFm
î ��VUT%RUK�nÚj�VkKe[ER�_�bÞ[~X%Ke[eRUVU�efiR�RkK�Rk�QY�f¶VkP<[�j�KSX%P<fkYZ[<¢�M4KNVUT3Ke[
Rk�<T-��K>°¶npmQVU�N¢���VUT��Q½a�N[¦T�M4OQ�H�NfkY�f�KN[ Rk�QT~�QY�¢N�Snp�ZYZj�R���VUT��
X��N[-��T]mST�RkT�X%RkTFm-Y�[~Ð<¢NP<VkTl�r_

0

0,04

0,08

0,12

0,16

0 0,04 0,08 0,12 0,16

Low Drag

H
ig

h 
Li

ft

ô�õ�ö	÷�ø-ù;f�û�ü+ý9ø-ùFþ�ÿ��c��ø-ÿ���þ��/��ù�
�ù�Fþ�õ�ÿ��P�!����ù��ù<�*����÷�ø�þ���ù(ø@ø-÷>�
ô�ÿ	øe��÷�ø�þ��¶ù�ø~õ4�-"�ù��yþ-õ�ö�ý�þ-õ�ÿ��*���9þ���ùE�¶ý�þ!�Mÿ��¨þ!��ù<�¶ý�ø�ù��þ6õ4� � õ(�
"!õ � ÷¶ý�
{õ7�lþ!��ùL'�þ���ù����i��÷>�)��þ�õ�ÿ������¶ý���ùõ:�0�Fÿ��*�1õ � ù(ø�ù � �j89�¶ù
�¶ý9þ��Kÿ��aþ���ù1�¶ý�ø�ù�	þ/õ4� � õ4"!õ � ÷¶ý�
	��ø-ÿ��]þ��¶ù¬ø-÷>����ø-ù��ù���þ-ù � õ7�
'¶ö	÷�ø�ù �£÷)�1õ7��ö��1ù
�ù���þ�õ�ÿ��k�����¶ù��ùE��õ7�1��ø-ù��ù���þ-ù � õ7�O'²ö�÷�ø-ù
U>�l@Gþ;��ý��O5Qù � õ�ø-ù�Fþ�
73A�Fÿ��C�²ý9ø-ù � þ-ÿKþ!��ù��¶ý�þ!�Xÿ��uþ��¶ùL�²ý9ø��ù���þàõ7� � õ7"!õ � ÷²ý�
uÿ�5aþ-ý�õ4��ù � ÷*�1õ7��öP��ù�
�ù��þ-õ�ÿ��m������ù�ùC�L��ø-ÿ��
'¶ö	÷�ø�ù n2�o@Gþ;�(ý��k5²ù£ÿ�5*�1ù(ø�"	ù � �	þ��²ý�þÁþ��¶ùL�²ý�þ��Zÿ��eþ��¶ùL�²ý9ø��ù���þ�õ7� � õ7"!õ � ÷¶ý�
�õ4�`'¶ö�÷�ø-ù�Upõ:�;��÷*���m�ÿ�ø-ù � õ:�yþ-ø�õ75�÷aþ-ù � õ7�þ��¶ùE'¶þ���ù����i��÷>�*�Fþ�õ�ÿ����&�²ý��Fù��T@b���Fÿ��X6y÷>�*�Fþ�õ�ÿ��=.Áõ�þ!�lþ!��ù �1ù��

�ù��þ-õ�ÿ��P��ø-ù�!�1÷�ø-ù~þ���õ:� � õ7�1þ�ø-õ75�÷aþ�õ�ÿ��põ:�e�ÿX"	ù � þ�ÿX. ý9ø � ��þ��¶ùü+ý9ø-ùFþ-ÿ�����ø�ÿ���þ�]89��ù�ø-ù��÷>
�þ õ:����þ��²ý�þÁý?��÷*���O
�ý9ø-ö�ù(øN�¶ý�ø1þ~ÿ��þ��¶ù ü+ý9ø-ùFþ�ÿ��c��ø-ÿ���þ~õ7�0��ÿX"�ù�ø-ù � ��ù�ø-ù��

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

hi
gh

 li
ft�

low drag

(1+10)-MCDES for Airfoil Optimization

all-best-eads

Û*YZ¢ePQVUT�å�% î ��Rk��KNj�O<��VUT�[ER3Y�[<mSY�drY�mQP<���Ú½IfgT��ZTFX�RUYZKe[¼fkX��<T�M4T
�

bÞ[�Ð<¢ePQVUT2s��|RU�QT3O<��Rk��KNj�Rk�QT�OH��VUT�[ER�Y�[<mSY�dEY�mSP<�N�<j�VUKNM Rk�<T
VUPQ[ÕOQVUT�fkT�[ERkTFm´YZ[´Ð<¢ePQVUT��Y�f�fg�<K>°�[I_��¶�QT§mSY�fiRUVkY��QPSRUYZKe[
K�j8Rk�<T î ��VUT%RkKNn@j�VUKN[ER'Y�f��ef4°�Y�mST��ef4YZ[ºÐ<¢ePQVUTZå´fk�<��VUY�[Q¢

Rk�<T¼fk�NM4T�fgT��ZTFX�RkY�KN[»fUX��QT�M4Te_1�¶�QY�ffk�QK>°�f'Rk�QT¼VkT��ZY����QY��Zn
YZRihÃKNj�Rk�QT-M'T�Rk�QKSmÕPHfgTFm�_ÃÔ3Rk�QT�Vk°�Y�fkTN½�fgKeM4TmSY±¾¿T�VUT�[HX%T�f
��T%Ri°�T�T�[-Rk�<T2VkPQ[Hf�X���[~��T8Ke�<fkT�VUdNT�m-��¢E��Y�[I_*�¶�<Y�f�¸rY�[<m-K�j
OQ��K�R�f�T�M4OQ�<�efgY�²�TFf*Rk�QT�O<VkT�j�T�VUVkTFm�fkT��NVUX��4mSY�VkTFX�RkY�KN[�_x »�QY���T
Ð<¢ePQVkT�å4j�KSX%P<fkT�f3MlP<X���M4KeVkT]Ke[)Rk�QT��QY�¢N�Snp�ZYZj�R8ÂEP<�N�ZYZRih~K�j
Rk�<Tl��Y�Vgj�KeYZ�Ú½QÐH¢NPQVUT�s��4M4KNVUT|RkT�[<mQf�RkK>°¶��V�mQf�Rk�QTl�ZK>°¶nÞmSV���¢
O<�NVgRF_¹bpRX��N[¹��T�KN�HfgT�VkdeT�m�½�RU�<�>R4RU�QY�fOQVkT�j�T�VUVkTFm fkT��NVUX��
mSY�VkTFX�RUYZKe[<f���VUT|M'KeVkT2mSVUY�dNT�[-RkK>°¶��V�mQfLRk�<T]���<fkKN��PSRkT|M4Y�[QY±n
MlP<M~½�RU�QT]R���VU¢NT%R3�NYZVkj�KNY���VUT�fkO�T�X�RUYZdeT���hN_3�¶�<Y�f3VkTFfgPQ�ZRUf^Y�[��
fk�QKNVkRkT�V3mSY�fiR���[<X�T]RkK§Rk�QT'X%KeVkVUT�fkOHKe[<mSY�[Q¢�>ïSTFf�_��¶�NfkT�m)Ke[
Rk�<Y�fLVkTFfgP<�±R�f�½eY±R¶X���[���T^�efkfkPQM4T�mI½�Rk�H�>RLM4KeVkT¶ÐQRU[QT�fUf�j�PQ[<X�n
RkY�KN[´T�d��N�ZPH�>RkY�KN[Hf|°LKePQ��mÃ��T��NmÃRUK��HT�RgRkT�V]VUT�fkPQ�±R�f�½*mSVUYZdrY�[Q¢
��K�Rk��ÂEP<�N�ZYZRkY�T�f¶KNjxRU�QT]��Y�Vgj�KeYZ�¿RUK4MlP<X��~�HT�RgRUT�V3fkKN��PSRkY�KN[Hf�_
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low drag

(1+10)-MCDES for Airfoil Optimization

all-best-eads

Û*YZ¢ePQVUT]s��¶% î ��Rk�4K�jIO<�NVkT�[ER�YZ[HmSYZdrY�mSP<�N�@½rfgT��ZTFX�RUYZKe[§fkX��<T�M4T
�Q½rj�P<VgRU�QT�V�VUPQ[

q Î¦Ë ÈðÎ¡å�Í6ç�ÇQË Èðç

�¶�QVUT�TìmSY±¾¿T�VUT�[ERÏfgT��ZTFX�RkY�KN[HfÅfUX��QT�M4T�fÅ�<��dNTv�HT�T�[�O<VkT�n
fkT�[ERkTFm�½rT��NX��-���Q��T�RUK�fkT���T�X�R¶T%ïQ�eX�Rk��h4KN[QT^YZ[HmSYZdrY�mSP<�N�<j�VUKNM
�|fgT�R�K�j�X���[<mQY�mQ��RkTFfxPHfgY�[Q¢2�8MlPQ�ZRkYSKe�SâiT�X%RkY�dNT�ÐQRk[<T�fUf*j�PQ[<X�n
RkY�KN[�_§�¶�QY�f|°��ef|[QT�X�T�fUfk�NVkh)j�KeV]X���VUVUhEY�[Q¢-Rk�QTmQT�V���[<mSKeM'n
Y�²�T�m�fgRkT�OfgY�²�T^X%KN[ERUVkKe�SM'TFX��<��[<Y�fkMvj�VUKNMÄfkYZ[Q¢e�ZT�O�KNY�[ERL��Y�Vkn
j�KNY���mSTFfgY�¢N[�½I°��QT�VUT4Y±R]°¶�Nf2�NOQOQ��YZTFm¼deT�VUh¼fkP<X�X�T�fUfij�PQ����hN½�RUK
MlP<�±RUYIOHKeYZ[ER�RU�QT]mST�fkY�¢N[)X��NfkTN_
�¶°�K»K�j'Rk�QT¦O<VkTFfgT�[eRUT�m6fgT��ZTFX�RUYZKe[ÏfUX��QT�M'TFf���T��Nm1RUK»YZ[Sn
fkPSÝX%Y�T�[ER2VkTFfgPQ�ZRUf�½�[<K�R2hrYZT���mSY�[Q¢ î ��VUT%RUK�nÚj�VkKe[ERUf�KNj¶�N[ÃT�ïrn
O�T�X�RUT�m�ÂEP<�N�ZYZRihN½�TN_ ¢<_�mQY�fgRkVUYZ�<PSRkY�KN[�K>deT�V¶RU�QT]ÐQRU[QT�fUf3j�PQ[<X�n
RkY�KN[¦fkO<�eX%TN_��¶�QY�f]°¶�NflmSPQTRUK¼X%Ke[<fkY�mST�VkY�[Q¢)RU�QT[rPQMl��T�V
K�j*YZ[HmSYZdrY�mSP<�N��f�mSKeM4YZ[<��RkTFmj�KeV¶Rk�QT]fkT���T�X%RkY�KN[-fUX��QT�M'T2�N[<m
Rk�<T�VUT%j�KNVUT]j�KSX�P<fgY�[Q¢~RkKrK~MlP<X��ÃKN[ î ��VUT%RkKRkT�X��<[QY�ÂEPQTFf8YZ[Sn
fgRkT��em§KNjxRU�QT]mSY�dNT�VUfkY±Rih�KNj*Y�[<mSY�drY�mQP<����f�_
}�P<X��v�HT�RgRkT�VÃVUT�fkPQ�ZRUf¡X%KePQ��m×�HT¹KN�SR���Y�[QT�mð�rh1j�KSX%P<fkYZ[<¢
M4KNVUT¶KN['Rk�QT^mSY�fgRkVUY��QPSRkY�KN[4KNj�Y�[<mSY�drY�mSPH����f�YZ[4RU�QT3fkT���T�X%RkY�KN[
fUX��QT�M4TN½*KNM4YZRgRUYZ[Q¢¼Rk�QT§O<��VkR�X%Ke[<fkY�mST�VkY�[Q¢�mSKeM4YZ[<��RkTFm´YZ[Sn
mSY�drY�mSPH����f�YZ[���T%Ri°�T�T�[I_ c fgY�[Q¢4RU�QT2[QT�°ðfkT���T�X%RkY�KN[�fkX��<T�M4T
�)mSYZ¾�T�VkT�[eR]VUT�fkPQ�ZRUf|KNj¶X�KNM4O<��V����<�ZT4ÂEP<����Y±RUYZTFf2X��N[¡��T�KN�Qn
RU�NYZ[<T�m'j�KSX%P<fkY�[Q¢]KN[mQY±¾¿T�VUT�[ERLVUT�¢eYZKe[<f�KNj�RU�QT�Ð<Rk[QTFfkfaj�PQ[<X�n
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RkY�KN[¡fgOH�NX%Te_2�¶�QTl�QY�¢N�¡ÂEP<����Y±Rih î �NVkT�RkK�nÚj�VUKN[ERUf��H��dNTl��T�T�[
X%KeM4OQPSRkTFm]°�YZRk�QY�[�Rk�QT¶dNT�Vkh2fkM������E[rPQM��HT�V#K�j�sF�N�N��ÐQRk[QTFfkf
j�PQ[<X%RkY�KN[T�d>����P<�>RUYZKe[<fa��[Hm4MlP<X�����T%RkRkT�V¶fkKN��PSRkY�KN[<f�½�j�KSX�P<fin
Y�[Q¢)KN[¡M'KeVkT4VUT�¢eYZKe[<f8K�j�RU�QT4ÐQRU[QT�fUf8j�PQ[<X%RkY�KN[ÕfgOH�NX%T4X��N[
��T]�NfUfgPQM4TFmj�VUKNM·M4KeVkT8ÐQRU[QT�fUf¶j�PQ[<X%RkY�KN[)T�d>�N�ZP<��RkY�KN[<f�_

©»¯>r0s<t]uwv&x]y;zi{|xTs�¬Q«

�¶�QY�f VUT�fkT���V�X�� °¶�Nf�fkPQOQO�KNVkRkTFm �rh Rk�QT \^T�PSR�fkX��<T
ÛQKeVUfUX��rPQ[Q¢Efg¢eT�M4T�Y�[<fUX��<�>j�R��Nf�O<��VkRIK�jSRU�QT�X%Ke�Z������KNV��>RUYZdeT#VkT�n
fkT���V�X��-X�T�[ERkT�VP}�JLKeM'O<PSRU��RkY�KN[<�N��bÞ[ERUT����ZY�¢NT�[<X%T�~~ÙÚ£��<sFÜ�_
�¶�QT {^z�í Ô|WS� {3î�z O<VkKNâiT�X�R Ù@}�PQ�ZRkYZn î KeYZ[ER { T�VUKSmShEn
[<�NM'Y�XvWr�H��O�TìÔ^OSRkY�M4Y�fU�>RUYZKe[HÜºY�fÅ�ßX%Ke�Z������KNV��>RUYZKe[ ��T%n
Ri°�T�T�[ { T�VkKEfgO<��RkY�����T }���RkV�� { Y�VU�QP<f�½ { �ZT�[QY�� { T�VkKe[<��PQn
RkY�X��ÕÙpJLKrKNV�mSYZ[H�>RkKeV�Ü%½�\8��Y�M'��T�V4JL�QVkhSfk�ZT�V { Y�Vk�<P<f�½ z�{ \8WEn
}Õ½�\8�NfUfk�NPQ�±R { drY���RkY�KN[I½ W {3{ �8½�W z � z�í ½)W	�|� {^î W¿½
JLb í�{ ½Q\ zLí�{ ½Q\L� í ½HÛ*Û { ½Sbi� í b { ½<�8J¶W { ½Q�<� í ½HÔ8��n
z�í3{ ½���[<m ��P<�xT�X��	WrKN��PSRkY�KN[Hf�_¦�¶�QT-OQVUK�âiT�X%R'Y�flj�PQ[<mSTFm
�rh	Rk�QT z P<VkKeOHTF��[6JLKeM'M4Y�fkfkY�KN[I½8\8� í T�fkT���V�X��I½�P<[<mST�V
Rk�<T¡� í Ô� ³����YZ[<Y±RUY���RkY�dNT Ù î VUK�âiT�X%R í T�jy%Õ� í \ls�nUsIå�å�å�n
s��r��£eqNÜ�_

Ê x+��xI>x]s^¯�x�«
àZs%á]�¶�QKeM��Nf ����eX�¸�½)\8��dEY�m·�8_�ÛQKe¢NT��Ú½)��[<m����QY�¢N[QY�T�°
}�Y�X��<�N�ZT�°�Y�X�²N½~T�mSYZRkKeVUf�_��KT9N����-PIP� P1êw�1��P�U��aè��CP�N²éT9R\�D�@P�S<���aè�T�è��CP�NH_lÔ3ïEj�KeVUm c [QY�dNT�VUfkY±Rih î VUT�fUf�½��3T�°
�aKeVk¸¿½>��[<m]bÞ[<fiRUY±RUPSRkT¶KNj î �rhSfgY�X�f î PQ�Q��Y�fg�QY�[Q¢H½��LVUY�fiRUKN�Ú½
sIå�åE�S_

à q�á]�^��[<fgn î �NPQ�~WQX��E°�T%j�T��@_ �1��P�U(�aèc�CP9N T�N����T�Qè��<SC�aS
�¨ç-ç����<N	�N_�WrYZïrRk�Sni�8T�[QT�VU��RkY�KN[�JLKNM4OQPSRUT�V3�xT�X��<[QKN��KN¢eh
WrT�VkY�T�f�_S »Y��ZT�hN½<�3T�°��aKeVk¸¿½�sIå�åe£Q_

à �>á]��KNVUY�f1�^��P>âiKe¸rf�½��x��V�f1 »Y����ZM4T�f�½  ¡T�VU[QT�VÏ�^�N�efgTe½
�¶�QKeM��Nfß����NX�¸¿½×��[HmÒ}¼��VkRkY�[ WQX��j�PSRk²e_ }�PQ�±RUY±n
O�KNY�[ERl��Y�Vgj�KeYZ��KeOSRkY�M4YZ²F�>RkY�KN[´P<fkY�[Q¢�T�deKN��PSRkY�KN[´fiRUVU��RkT�n
¢eYZTFf�_¦bÞ[ æ~R�P����1�1�aR-P!�¶ç-T9N��@P�N-�9R�ç$���ZP9N��@P�S<���aè�T�éè��CP�N{T�U>�áç�èZ�¶P�X�;�<NP 1���{U��Cç�� �¡�$�Cç�N���ç$�T�N����~N-���<N{ç-ç�R�é
�<N-�G¢R�L�9�9�1�O ��1£ ¤�¤�¥w¢��+¦KéR§�P�S T�N��=¨P(P��ÌPyê� ��Fé
��è5R�T���èR�a¥>½�O<��¢eT6å�oE�2ÙÁ��KrKN¸|K�j { �<fgRkV��NX�R�fUÜ%½>���NVUX�T���KN[<�<½
WrOH��[QY�T�[I½QWrT�OSRkT�Ml��T�V2ses�ñ�s�o<½rq��N�e��qN�N�N�<_SJLT�[ERkT�V�j�KeV
�3PQM4T�VUY�X����I}�T�Rk�QKSmQf�Y�[ z [Q¢eYZ[QT�T�VUYZ[<¢~ÙpJLbi}�� z Ü�_

à o�á]�¶�QKeM��Nf»����NX�¸¿½¼ ¡T�VU[QT�VÅ�3�e�NfkTN½Ã��KeVkY�f»�3�NP>âiKN¸Sf�½
��P<X��1Ô^[<T�fgRkYÚ½'�N[<m { ��T�fUfkYZKÅ�xPQV�X��QT%RF_ z dNKN��PSRUYZKe[Sn
�NVkh³�N�Z¢eKNVUY±RU�QM�f~�NOQOQ��YZTFm³RUK»�NX��emST�M4Y�XÃ�N[<m1YZ[<mQP<fin
RUVkY����xRkTFfiR]X��efgTFf�_|bÞ[´ó4_�}�YZT�RgRkY�[QT�[I½�}Õ_I}Õ_�}G��N¸NT�����<½
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Abstract 
 
 

Traditional solution methods such as search and 
sort for optimising complex real life engineering 
problems can be very expensive in terms of 
computational time. The considerable execution 
time tends to inhibit elaborate exploration of the 
design space and often results to sub-optimal 
solutions. This paper reports on an engineering 
optimisation approach designed to bridge the gap 
between traditional solution methods in the 
industry and state-of-the-art techniques from the 
research community. A modelling and 
optimisation technique has been developed using 
Design of Experiment (DoE) and meta-
modelling approach to approximate expensive 
finite element (FE) runs. An evolutionary 
computational technique (NSGAII) is used for 
solving the optimisation problem. This solution 
technique was applied for multi-objective 
optimisation of a rod rolling design problem. The 
results showed NSGAII converge to the Pareto 
optimal front. The multiple optimal solutions 
help the designer in delivering a variety of 
optimal designs.  

1 INTRODUCTION 
Finite element analysis (FEA) and genetic algorithm (GA) 
often used as an integrated optimisation process paradigm 
is an increasingly important component of engineering 
research and product development.  Finite element solver 
is used as the fitness function within GA in order to 
exploit GA’s global searching capability and the 
modelling strength of the FE solvers. Since GA requires a 
large number of function evaluations, it follows that large 
number FE runs are also required. This can be 
computationally expensive for solving complex 
engineering problems.  
In rod rolling design optimisation problems, conventional 
methods such as search and sort are often used to solve 
complex optimisation problems. This approach relies on 
the use of the analyst’s qualitative knowledge to explore 

the design space (Roy, 1997; Oduguwa and Roy, 2001). 
Expensive FE analyses are often invoked repeatedly 
during the process making multi-objective optimisation 
and concept exploration time consuming. This search 
method can inhibit elaborate exploration of the design 
space and often results to sub-optimal solutions. The use 
of evolutionary multi-objective optimisation techniques 
for improving the search for this class of real life 
engineering problems is proposed in this paper. Even 
though this approach can be an improvement from the 
conventional method, literature reveals that integrating FE 
and GA incurs quite an expensive computational cost.  
Cerrolaza and Annicchiarico, (1999) solved a bi-
dimensional shape optimisation problem using GA and 
FEA as the fitness function. In the test results presented in 
their paper, the optimisation process stopped after 5000 
FE evaluations and took about 150 minutes. If the same 
number of evaluations were used in rod rolling 
optimisation problem (such as the case presented in this 
paper, where one FE run last about 17 minutes) the 
process would be completed after 52 days. Clearly this 
time scale is not acceptable for engineering applications. 
Statistical meta-modelling approach is proposed to 
address expensive FE runs in the context of multi-
objective optimisation for rod rolling problems. Statistical 
techniques are becoming widely used in engineering 
design to construct approximations of meta-models- ‘a 
model of a model’ of these analysis codes; these serve as 
surrogate models of the analysis codes (Myers and 
Montgomery, 1995; Kleijnen and Sargent, 2000). An 
evolutionary multi-objective optimisation technique is 
also proposed as above, for improving the search for this 
class of real life engineering problem.  
This paper reports on the application of design of 
experiment (DoE) to create meta-models for FE models 
and evolutionary computational techniques (NSGAII) for 
the multi-objective optimisation of a rod rolling design 
problem. 
The remainder of the paper is organised as follows. 
Section 2 states the formal definition on multi-objective 
optimisation. Section 3 reviews the literature on 
approaches to address the computational cost of FE runs 
and also the recent multi-objective techniques. Section 4 

REAL WORLD APPLICATIONS1164



presents the rod rolling design problem. Section 5 covers 
the meta-modelling approach consisting of 6 main steps. 
Section 6 and 7 presents the application of the meta-
modelling approach to the rod rolling design problem.  
Section 8 contains future research activities and finally, 
section 9 concludes. 

2 MULTI-OBJECTIVE OPTIMISATION 
Most real world problems are characterised by several 
non-commensurable, conflicting objectives. Multi-
objective optimisation seeks to minimise the n 
components f(x) = (f1(x),…, fn(x)), of a possibly non-linear 
vector function f of a decision variable x in the search 
space. Each of these objectives has a different optimal 
solution. There is no unique, (Utopian) solution to a 
multi-objective problem but a set of non-dominated 
solutions referred to as Pareto-optimal set. A solution to 
this class of problem is Pareto-optimal if from a point in 
the design space, the value of any other solution cannot be 
improved without deteriorating at least one of the others. 
The objective for a complex multi-objective optimisation 
problem is to find different solutions close and well 
distributed on the true Pareto-optimal front. The 
conditions for a solution to become dominated with 
respect to another solution are described as follows.   
For a problem having more than one objective function 
(say, fj, where j = 1,…., M and M > 1), A solution x(1) is 
said to dominate solution x(2) if the following conditions 
are satisfied: 
a) The solution fj(x(1)) is no worse than fj(x(2))  for all j = 

1, 2,…., M objectives.  
b) The solution x(1) is strictly better than x(2) in at least 

one objective. 

3 LITERATURE REVIEW 
In this section, related research in optimisation for solving 
real life problems is reviewed, with focus on the solution 
approaches to address the expensive computational cost 
of large FE runs. Recent solution techniques on multi-
objective optimisation are also reviewed. 

3.1 FEA AND GA COMPUTATIONAL COST 
There are several approaches proposed to address 
computational cost of large FE runs. Deb and Gulati, 
(2001) in their work on design of truss-structures, 
introduced the concept of basic and non-basic node to 
emphasise creation of user-satisfactory trusses and reduce 
computational time by avoiding expensive FEA for 
unsatisfactory trusses. Quagliarella and Vicini, (2001) 
proposed a hierarchical approach for the fitness 
evaluation. This involves using several solvers with 
different levels accuracy, in order to use the more 
computationally expensive models only when needed. 
These approaches can be regarded as “good house 
keeping measures” that improves on the computational 

expense of large FE runs, however they fall short of 
alleviating the problem in the context that makes them 
applicable to complex real life problems. A second 
classification is the solution approximation approach. 
This occurs when numerical solution of the FE solver is 
approximated, using different techniques. Chen and Lin 
(2000) in optimisation of design space topology used 
artificial neural network as an approximation to replace 
the structural analyses of the FE. Although this gives 
quick results, the approach still requires substantial data 
to train and validate the neural network Chen, (2001) 
applied design of experiment to approximate FE analysis 
and created a response surface for single objective 
optimisation of impact structure and crashworthiness 
problem. The author used classical full factorial 
experimental designs. This is considered expensive. Sacks 
et al, (1989) argued that since deterministic computer 
experiment lacks random error, classical experimental 
designs are not suitable for sampling them. This implies 
that computer experiments can be run with less sample 
points. Greiner et. al. (2001) also reported, using least 
square approximation for FE runs in optimising frame 
structures. Approximate models even though are not as 
accuracy as the actual numerical solutions, can give a 
reasonable representation of the design landscape, and 
speed up the search procedure. They can achieve 
significant savings in computational cost and can be used 
for solving complex real-life optimisation problems.            

3.2 MULTI-OBJECTIVE METHODS 
The challenge facing most solution methods is to ensure 
convergence of well-dispersed solutions close to the true 
optimal front. Some of the most recent evolutionary 
search algorithms for multi-objective optimisations are 
reviewed as follows.       

3.2.1 Strength Pareto Evolutionary Algorithm 
(SPEA) 

SPEA is an elitist evolutionary algorithm (Zitzler and 
Thiele, 1998). The algorithm maintains an external 
population for storing elite solutions from beginning of 
the initial population. At each generation, the external and 
current population is combined and fitness assigned. All 
non-dominated solutions are assigned fitness equal to the 
number of solutions they dominate and dominated 
solutions are assigned fitness worse than the worst 
solution of any non-dominated solution. Clustering 
technique is used to maintain diversity.  

3.2.2 Pareto-Archived Evolutionary Strategy 
(PAES) 

PAES is a multi-objective evolutionary algorithm 
(Knowles, Watson, et al., 2000) based on evolutionary 
strategy. Deb et al (2000) described PAES with one 
parent and one child. Both are compared, and if the child 
dominates the parent, it becomes the new parent and the 
iteration continues.  If the parent dominates the child, the 
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child is discarded and a new child created by mutation. 
However if either of them dominates each other the 
choice is made by comparing them with the archived best 
solutions found so far. If the child dominates any member 
of the archive, it becomes the new parent and the 
dominated solution eliminated from the archive. If the 
child does not dominate any member of the archive, both 
parent and child are compared for their proximity, with 
archive solutions. If the child resides in the least crowded 
region in the parameter space among the archived 
member it becomes the parent and a copy added to the 
archive. 

3.2.3 Elitist Non-Dominated Sorting Genetic 
Algorithm (NSGAII)   

NSGAII(Deb, Agrawal et al., 2000) is a fast elitist 
solution algorithm that uses explicit–preservation strategy 
to maintain diversity among solutions in the non-
dominated front. In the elitist strategy, the population is 
sorted into different non-domination levels and each 
solution assigned a fitness equal to its non-domination 
level (where 1 is the best level). Binary tournament 
selection, crossover and mutation operators are used to 
create offspring population. Other features of the 
algorithm include crowding distance assignment 
procedure (for estimating the distance between two points 
in the solution space) and the crowded tournament 
selection operator (guides the selection process towards a 
uniformly dispersed Pareto-optimal front). The algorithm 
has been shown to demonstrate better performance than 
most of other contemporary algorithms (Deb, Agrawal et 
al., 2000). NSGAII can generate some non-Pareto-optimal 
solutions if the first non-dominated set is larger than the 
population (Deb, 2001). This problem was experienced in 
the current study. It is referred to as “generational elitist 
problem”.            

3.2.4 Generalised Regression GA (GRGA) 
GRGA is one of the most recent multi-objective GA 
developed by Tiwari et. al (2001) to handle complex 
multi-objective optimisation problems having high 
degrees of inseparable function interaction. An interaction 
occurs when the effect a variable has on the objective 
function depends on the values of other variables in the 
function. The author suggests in his paper that 
“inseparable function interaction in objective functions 
may augment one or more of the following features that 
obstruct convergence to the true (or global) Pareto-
optimal front”, multi-modality, deception, collateral noise 
and isolated optimum. GRGA works by attaching a non-
linear multi-variable regression analysis module to other 
optimisation algorithm. The author used NSGAII in their 
paper, but other optimisation algorithm can be used. The 
algorithm use regression coefficient to guide the search 
towards the Pareto front and determine termination 
conditions for the algorithm. One of the main advantages 
of this algorithm is that it can be used with different 
multi-objective solution algorithm. GRGA demonstrates 

better performance than NSGAII in solving the 
inseparable function interaction problem present in most 
complex multi-objective optimisation problems.  See 
(Tiwari, Roy et al., 2001) for more details.   

4 ROD ROLLING DESIGN PROBLEM 
The Rod rolling process considered is a continuous 
manufacturing process whereby a square billet (dimension 
ranging from 100mm to 150mm) referred to as the stock 
is deformed into a rod size ranging between 5mm to 
12mm. The rolling operation is a high speed, high 
production process in which a pair of rolls rotates at the 
same peripheral speed in opposite directions. The stock is 
continuously deformed by passing it through a series of 
high rolling mill stands.  During the rolling process, the 
stock undergoes changes in the mechanical and thermal 
characteristics and after final cooling the metallurgical 
properties. Design of the rolling system involves 
consideration of the mechanical, thermal and thermo-
mechanical behaviour of the process (Sun, Yun , et al., 
1998), and the optimisation of roll pass design (Farrugia, 
2000). Modelling of the rolling process is used to predict 
mill parameters (roll separating force, torque) and 
deformation characteristics such as the lateral spread and 
the evolution of metallurgical properties. These 
predictions were obtained using design variables related 
to the rolls and stock such as geometrical and material 
characteristics: temperature, friction etc.  
Ovality in rod rolling is a geometrical property defined as 
the percentage difference between the stock height and 
the width. Ovality is considered important because it 
helps in forming the rod during rolling process, however 
it is not desirable in the end product.  In this study a 
different definition of ovality is adopted. Ovality is 
defined as the difference between the maximum and 
minimum radial distance of the rod profile. This 
definition is chosen to mimic its application in the plant. 
In this work, ovality and the load required for rod 
deformation is modelled using a meta-modelling 
technique, and the minimisation of both responses is 
treated as a multi-objective problem.  The problem is 
considered multi-objective in nature because ovality tends 
to vary inversely with load. In practice a minimum rod 
ovality condition requires high contact of the stock with 
the roll, which results in high loads.   

5 META-MODELLING 
A meta-model is defined as a model of an underlying 
simulation model (Kleijnen, 1975; Friedman, 1996). It is 
an approximation of the simulation program’s 
input/output transformation referred to as a response 
surface. A typical meta-model approach is the design of 
experiment (DoE) using regression analysis, also known 
as analysis of variance (ANOVA). DoE involves making 
several designs at once and investigating the joint effects 
of these changes on a response variable. Meta-models 
offer the following benefits: (1) Insight into the 
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relationship between output responses y, and the input 
design variables, x. (2) Fast analysis tools for optimisation 
and design space exploration since the surrogate models 
are used in lieu of the expensive computer, and (3) the 
integration of discipline dependent analysis codes.  
The basic meta-model framework adopted in this research 
is shown in figure 1. A brief discussion of some of the 
main steps is given below.  
 

 
 

Figure 1: Meta-model approach 
 

Step 1: Problem formulation 
This is the first stage of the simulation effort where the 
problem is defined. The aim at this stage is to understand 
the nature of the problem, and to define the experimental 
region (Zeigler, 1976). This is achieved by identifying the 

candidate parameters and the boundaries that characterise 
the design space. Existing knowledge is required to 
identify all the possible parameters involved in the 
problem space. The output of this stage is a list of inputs 
and responses with their respective range. 

Step 2: Definition of Objective 
Defining the objective indicates the question to be 
answered by the simulation study. The options available 
in this methodology are screening and optimisation. 
Screening is based on the ‘principle of parsimony’ or 
Occam’s razor(Banks, 1998). The aim is to derive a short 
list of the most important factors from a large number of 
potentially important factors. In optimisation, the meta-
model can be used to determine the set of problem entity 
input values that optimises a specific objective function.   

Step 3: Specification of model matrix 
Model matrix implies the type of DoE design (for 
example 2k-p). The choice of design type is dependent on 
the objective and the number of factors. This decision is 
simplified by using existing designs.  

Step 4: Fitting meta-model 
The simulation run (is define as a single path with fixed 
values for all its inputs and parameters) is performed to 
obtain the input and output. This data set is used to 
estimate the parameter values of the meta-model using 
least squares. Typically a regression meta-model belongs 
to one of the following three classes:  
Main effects model: (a first-order polynomial): 
Y = β0 + β1x1 + β2x2 +….+ βkxk 
Main effects + interaction effects (a first-order 
polynomial augmented with two factor interactions) 
Y = β0 + β1x1 + β2x2 +…. βkxk + β12x1 x2+ …. + 
      βk-1,kxk-1 xk 
Quadratic model with quantitative factors (a   second-
order polynomial, which includes purely quadratic 
effects) 
Y = β0 + β1x1 + β2x2 + ….+ βkxk + β12x1 x2+ ….+  
      βk-1,kxk-1 xk + β11x1

2 + β22x2
2 + ….+  βkkxk

2 

Step 5: Validation 
The data set is validated by carrying out the statistical 
tests using the Analysis of Variance (ANOVA) table. This 
tests the hypothesis that each parameter significantly 
influences the response.  

Step 6: Post-processing 
Post-processing implies the interpretation and display of 
the results. The following are options available for 
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displaying the results: Main effect plot, interaction plot, 
and half normal probability plot (Daniel plot). 

6 APPLICATION OF META-
MODELLING APPROACH FOR THE 
ROD ROLLING DESIGN PROBLEM 

6.1 EXPERIMENTAL METHOD 

The example described in this paper deals with the multi-
objective optimisation (load and load) of oval to round 
pass. The factors affecting ovality in the rod rolling 
process can be categorised as; (a) geometrical parameters 
such as height, width, roll gap, roll radius. (b) Related 
metallurgical parameters such as strain values, stress 
components and bulk temperature, (c) process parameters 
such as friction, roll speed etc. The independent variables 
especially relevant to the present ovality simulation are 
height (he), width (w), roll gap (rg), arc radius, roll radius, 
rolling speed and the bulk temperature. It is important to 
understand the overall effects and interactions of these 
parameters on ovality. Roll designers can use this 
knowledge to design the optimum required ovality that 
satisfies the conflicting objectives of the process plant 
(e.g. minimum load) and the product specification (e.g. 
minimum ovality).   
Existing knowledge was used to define region of interest, 
5 variables were identified and their operating range 
specified. A two level fractional factorial DoE augmented 
with centre points (to test for curvature) was applied to 
the design problem. The meta-modelling approach was 
applied as described below: 
 

Table 1:Factors and factor levels used in simulations 

Factors 

Level Width 
(W) 

Roll 
Gap 
(Rg) 

Arc 
Radius 
(Ar) 

Pass 
Depth 
(Pd) 

Angle 
(Ar) 

1 18 4 66 20 30 
-1 16 2 64 18 28.5 

 

Step 1: Fractional factorial (DoE) design  
A low cost resolution V design for a two-level 5 factor, 
fractional factorial design is shown in Table 2. This was 
augmented with one centre point to test for curvature. 
Each factor was run at two levels. Resolution V designs 
are types of designs where no main effect or two-factor 
interaction is aliased with any other main effect or two 
factor-interactions (Montgomery, 1997).  
FEA simulations were performed using the set-up in 
Table 2 and the settings in Table 3 as the input value for 
the FE runs. For each run, values of the measured ovality 
(Ov) and load (L) were recorded as shown in Table 3. 

Table 2:A 25-1 Design 
Run A B C D E 

1 -1 -1 -1 -1 1 
2 1 -1 -1 -1 -1 
3 -1 1 -1 -1 -1 
4 1 1 -1 -1 1 
5 -1 -1 1 -1 -1 
6 1 -1 1 -1 1 
7 -1 1 1 -1 1 
8 1 1 1 -1 -1 
9 -1 -1 -1 1 -1 
10 1 -1 -1 1 1 
11 -1 1 -1 1 1 
12 1 1 -1 1 -1 
13 -1 -1 1 1 1 
14 1 -1 1 1 -1 
15 -1 1 1 1 -1 
16 1 1 1 1 1 
17 0 0 0 0 0 

 

Table 3:Input settings and response values from 
simulation study 

Run W 
(A) 

Rg 
(B) 

Ar 
(C) 

Pd 
(D) 

An 
(E) Ov L 

1 16 2 64 18 30 1.17 238.5 
2 18 2 64 18 28.5 4.69 299.5 
3 16 4 64 18 28.5 3.17 178.0 
4 18 4 64 18 30 1.15 232.0 
5 16 2 66 18 28.5 1.28 241.0 
6 18 2 66 18 30 4.6 293.0 
7 16 4 66 18 30 3.2 167.0 
8 18 4 66 18 28.5 1.24 226.3 
9 16 2 64 20 28.5 3.17 169.3 
10 18 2 64 20 30 1.15 222.8 
11 16 4 64 20 30 6.55 129.7 
12 18 4 64 20 28.5 3.93 159.1 
13 16 2 66 20 30 3.22 171.4 
14 18 2 66 20 28.5 1.25 233.5 
15 16 4 66 20 28.5 6.52 122.2 
16 18 4 66 20 30 3.99 154.4 
17 17 3 65 19 29.2 1.74 217.3 

 

Step 2: Model Fitting 
Regression models of both responses are generated by 
fitting the model types shown in section 5 step 4 (main 
effects and interaction effects). The fit with the lowest 
sum of squares error (highest R2) was selected, this 
resulted in the following experimental model as predicted 
using ANOVA for ovality (Ov) and load (L) as functions 
of the inputs,  
f(xOv) = 3.06 – 0.3925x1 + 0.5762x2 + 0.02x3  + 0.58x4 – 
0.0138x5  –  0.75x1x2  –  0.75x1x4 + 0.95x2x4 + 0.0175x2x5 + 
0.604 x3x5 + 0.019x4x5       (1) 
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f(xL) = 203.28 + 25.21x1 – 31.29x2  – 1.25x3  – 32.05x4   –
1.25x5 – 3.35x1x2 – 3.07x1x4 – 0.77x1x5 – 2.36x2x3 + 
2.32x2x4   + 0.95x2x5  + 1.33x3x4    – 3.4x3x5     (2) 
With the inputs expressed in coded [-1,1] units (useful for 
comparing experimental models). The input was also 
expressed in engineering units as shown in equation 3 and 
4. This can be useful for engineering decision making. 
Ov = 1314.263 + 16.1W – 4.7Rg – 23.53Ar + 9.75Pd – 
52.82An  – 0.75WRg – 0.75WPd  + 0.95RgPd + 0.805ArAn  + 
0.025PdAn        (3)  
L = – 8246.94 + 123.7W + 97.74Rg  + 113Ar – 73Pd + 
306.1An – 3.35WRg – 3.1WPd  – 1.03WAn  – 2.36Rg Ar  + 
2.32RgPd  + 1.27RgAn + 1.33 Ar Pd  – 4.52ArAn   (4)  
This model was used to perform the multi-objective 
optimisation problem. 
 

  
(a)               (b)  

Figure 2: Finite Element contour plots of rod profile 
(a) Transverse section (b) Full view showing SS zone 

 
Table 4: Parameters used in simulation study 

Geometrical parameters  Material specification 
Height 30.6 mm 
Roll Radius 250 mm 
Pass Radius 20 mm 
Width (W) Factor 
Roll Gap (Rg) Factor 
Arc Radius (Ar) Factor 

0.08% Carbon steel 
C 0.087, Si 0.003, Mn 
0.34, P 0.025 S 0.02.  
Hot rolled and annealed 
Suzuki (4.22) 

Pass Depth (Pd) Factor 
Arc Angle (An) Factor Process Parameters 

Ovality (Ov) Response Temperature: 1000 º C 
Load (L) Response Roll Speed: 1000 m/s 

 

6.2 Process conditions used in experiment 
The choice of geometrical parameters and material 
properties is discussed in this section. The choice of 
parameters was driven by the need to mimic the real 
design problem experienced on the plant in the study.   
The results obtained can then be validated using existing 
domain knowledge. 

Geometrical parameters: 
Expert domain knowledge was used to select the 
geometrical parameters and the region of interest defined 
according to the ranges shown in Table 1. These five 
factors are varied in the simulation runs. Other parameters 

such as height roll radius and pass radius are kept constant 
to make the simulations comparable. A summary of these 
geometrical parameters is shown in Table 4.  

Material specification 
The material specification used in the study is shown in 
Table 4. The specification was identical for all runs.   

Process parameters 
The same loading conditions were applied in all the 
simulations so that the response could be obtained under 
similar conditions.  

Finite Element Analysis and Data Extraction 
The finite element runs were performed using Abaqus 
version 6.2.2. The mesh was generated using Patran 
software. A contour plot of PEEQ (equivalent plastic 
strain) for a typical run is shown in figure 2a. Results 
showing the deformation characteristics are taken in the 
steady state (SS) zone of the rod. The SS is defined as the 
region where the deformation characteristics is assumed 
to be uniform. This zone is identified by using a 
qualitative judgement to identify region along the rod 
(figure 2b) where the contour profiles are parallel.  
 

Figure 3: Interaction effects on Ovality Response 

 

6.3 MULTI-OBJECTIVE OPTIMISATION OF 
ROD DESIGN PROBLEM USING NSGAII 

 NSGAII (Deb, Agrawal, et al., 2000) was considered 
suitable for optimising the response function described in 
section 6.1. (Equations 3 and 4). This is because NSGAII 
has been shown to perform well on equations with low-
level inseparable function interaction (Deb, 2001). If the 
model were developed with higher order interaction 
terms, then GRGA would have being used. The models 
shown in section 6.1 (equations 3 and 4) were used as the 
fitness function in NSGAII. The parameters were 
represented using binary coding. The crowded tournament 
selector operator was used to select new offsprings. The 
experiment was run with a population of size 100 for 
1000 generation with a crossover probability of 0.8 and a 
mutation probability of 0.05.  

Steady 
state zone 
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7 DISCUSSION AND RESULTS 

7.1 METAMODELS 
The response ovality and load from the simulation results 
were recorded as shown in Table 3 and the data used to 
perform the ANOVA shown in Table 5. The result 
suggests that for the ovality response, the most significant 
terms are A (W), B (Rg), D (Pd), AB, AD, BD and CE. 
The sum of square of these terms accounts for over 96% 
of the total variability in the response. Figure 3 shows 
interaction effect plots of pass depth and roll gap. These 
response surface have been generated whilst the third 
variable has been held constant. This plot indicates that 
pass depth has a much stronger effect on ovality when the 
roll gap is at high level. For minimum ovality, the roll gap 
should be at the low level and pass depth at high level. 
For the load response, factors A, B and D show the most 
significant effect on the load response. These three factors 
explain 98% of the variation in the load. Interaction effect 
of pass depth and width is plotted in figure 4. Again the 
plot indicates that pass depth has a much stronger effect 
on ovality where minimum ovality occurs at high pass 
depth level and low width level.   
 
Table 5: Analysis of Variance (ANOVA) associated with 

regression model in equations 3 and 4 
  Ovality Load 
Term DoF SSq Term DoF SSq 
A (W) 1 2.465 A (W) 1 10175.9 
B (Rg) 1 5.313 B (Rg) 1 15664.4 
C (Ar) 1 0.0064 C (Ar) 1 25.0 
D (Pd) 1 5.382 D (Pd) 1 16432.0 
E (An) 1 0.003 E (An) 1 24.9 
AB 1 8.97 AB 1 179.1 
AD 1 9.0 AD 1 151.2 
BD 1 14.4 AE 1 9.5 
AE 1 0.005 BC 1 89.0 
CE 1 5.832 BD 1 86.4 
DE 1 0.006 BE 1 14.4 
Model 11 51.38 CD 1 28.2 
Error 5 1.85 CE 1 184.3 
Total 16 53.23 Model 13 43064.3 

Error 3 220 SSq: Sum of Squares  
DoF: Degree of Freedom Total 16 43284.3 

 

7.2 MULTI-OBJECTIVE OPTIMISATION 
(NSGAII)  

The result in figure 5 shows the plots of solution results 
obtained by running the NSGAII algorithm. NSGAII was 
used to minimise both load and ovality using the GA 
parameters described in section 6.3 and equation 3 and 4 
as the objective function. NSGAII was run ten times with 
different random number seeds. The best convergence is 
presented in figure 5. Seven out of ten runs obtained 
similar results. Therefore it is likely that NSGAII has 
converged to the global Pareto front. It can also be seen 

from figure 5 that NSGAII converges to the Pareto 
optimal front with a good spread of multiple optimal 
solutions. Table 6 shows decision variable values at two 
optimal solution points picked at one and two in figure 5, 
the extreme ends of the Pareto front. This demonstrates 
how multiple optimal solution can help produce a variety 
of optimal solutions. 

Figure 4: Interaction effects on Load Response 
 

Table 6:Variable values for optimal solutions 
Point W Rg Ar Pd An Ov Load 
1 16 2.4 64.7 18.7 30 2.2 216.9 
2 16 4 66 20 30 7.7 130.5 

 

Figure 5: Multi-Objective Optimisation Solution Plot 

8 FUTURE RESEARCH ACTIVITIES 
The limitations in the current modelling and optimisation 
approach and the corresponding research activities are 
listed below. 

• Qualitative (QL) knowledge cannot be used within the 
optimisation phase of the current methodology. It will 
be very useful to develop a framework explore the 
effect of QL variables on quantitative variables. This 
information can be used to guide the search in the 
optimisation process.  

• The GA runs differ in results when different parameter 
settings and scaling for the decision variable space are 
used. The choice of the best parameter settings is 
difficult as it depends on the nature of the problem. 
Developing parameter-less GA's provides a 
challenging research area. 

 Multi-Objective Optimisation Results
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9 CONCLUSION 
Traditional solution methods for optimising complex real 
life engineering problems can be very expensive and often 
results in sub-optimal solutions. A multi-objective 
optimisation approach is presented to address expensive 
computational cost of large FE runs using meta-models. 
This technique is effective in approximating FE runs and 
exploring complex search spaces for achieving multiple 
global optimal solutions. NSGAII was applied to a rod-
rolling problem. NSGAII converged to the Pareto optimal 
front showing good results. Multiple optimal solutions 
give the opportunities to deliver variety of optimal 
designs in the presence of existing qualitative knowledge.   
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Abstract

We propose a hybrid genetic algorithm for

the �xed channel assignment problem with

limited bandwidth. A local optimization al-

gorithm was devised to enhance the genetic

algorithm's �ne-tunning. In a matrix rep-

resentation, the local optimization algorithm

improves on a chromosome by horizontal and

vertical moves of channels. The crossover is

directly performed on two-dimensional ma-

trices. Experimental results showed dramatic

improvement against previous works.

1 Introduction

As the demand of mobile telecommunication sharply

grows, the e�ective use of limited resources becomes

more important. In a mobile system, the channel as-

signment problem is to assign channels optimally for

the requests of cells. In this paper, a channel corre-

sponds to a frequency band.

When we assign the channels to the cells, EMC

(Electro-Magnetic Compatibility) constraints [14]

must be satis�ed. There are three types of con-

straints, namely, i) the cochannel constraint (CCC):

the same channel cannot be assigned to certain pairs

of radio cells simultaneously, ii) the adjacent channel

constraint (ACC): channels adjacent in the frequency

spectrum cannot be assigned to adjacent radio cells si-

multaneously, and iii) the cosite constraint (CSC): the

channels assigned to the same radio cell need minimal

frequency separation between cells. If these EMC con-

straints are not satis�ed, interference occurs. Under

these constraints, we can de�ne the channel assign-

ment problem as follows [4]:

Minimize Z

subject to

ZX
p=1

fip = di for 1 � i � N;

jp� qj � Cij
for 1 � p; q � Z and 1 � i; j � N

such that fip = fjq = 1; and

fip =

�
0

1
if channel p is

�
not assigned

assigned

�
to cell i

where

Z: the number of available channels,

N : the number of cells,

D: demand vector D = (d1; d2; :::; dN ), where di is the

demand of channels for cell i, and

C: compatibility matrix CN�N , where each element

Cij represents the required minimum distance of sep-

arations between two the channels assigned to cell i

and cell j.

The status of channels allocated to each cell can be

represented with an N � Z binary matrix F (see Fig-

ure 4). Each element of F has value 0 or 1; if the

jth channel is assigned to the ith cell, fij has value 1,

otherwise fij has value 0.

Consider a simple channel assignment problem pro-

posed in [14]; there are 4 cells, and the compatibility

matrix and the demand vector are given as

C =

0
BB@

5 4 0 0

4 5 0 1

0 0 5 2

0 1 2 5

1
CCA

and D = (1; 1; 1; 3). The diagonal elements Cii =

5 mean that if any two channels are assigned to the

same cell, interference occurs unless the frequencies

are apart by at least 5. With the above compatibility

matrix and the demand vector, an optimal assignment

is shown in Figure 1.
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Figure 1: An interference-free assignment for the net-

work with 4-cell and 11-channel.

  1     2     3    4     5     6     7    8     9    10

Z

   
   
N

weak interference

Figure 2: A weak-interference assignment for the net-

work with 4-cell and 10-channel.

However, if there are only ten channels available, all

the demands cannot be satis�ed; we need to minimize

the severity of interference. Figure 2 shows a solution

with relatively weak cosite interference in cell 4 [2].

Generally, the �xed channel assignment problem

(FCAP) is equivalent to the generalized graph-coloring

problem [13][14][15]. We can obtain a graph with ver-

tices and edges, where each vertex corresponds to a

request of cells and the weight of the edge between

two vertices is the required minimum separation for as-

signing two cells [15]. If all Cij 's are 0 or 1, then there

exists only the cochannel constraint and the FCAP

reduces to the classical graph-coloring problem. Since

the graph-coloring problem (either classical or gener-

alized) is NP-complete [8], so is FCAP [14]. Hitherto

a number of approximation algorithms have been pro-

posed for FCAP. These include graph theoretic order-

ing approaches [14], neural network [6][15], simulated

annealing [5], and genetic algorithms (GAs) [4][13].

The studies of FCAP can be classi�ed into two ap-

proaches. One focuses on minimizing the total num-

ber of channels assigned to the cells with all constraints

satis�ed [14][16]. The other proposes appropriate cost

functions and attempts to minimize the costs [4][13][6].

The cost should be zero when an assignment is conict-

free.

There have been a number of studies for FCAP using

GAs. Ngo and Li [13] determined the number of avail-

able channels as lower bound using a graph theoretic

method, and considered the interference cost as the

�tness value. As Ngo and Li [13] suggested, Dirk and

Ulrich [4] assumed the total number of available chan-

nels as lower bound according to the lower-bound rule

of Gamst [7], used the blocking rate as the evaluation

cost, and searched for the assignments with cost value

zero. They searched for the conict-free assignments

with minimum channel span.

However, in practice, the available channels are lim-

ited, and the requests for channels often overow be-

yond the capacity. In this situation, minimizing the

total channel span is meaningless [9] and it is more

useful to attempt to obtain the best assignments pos-

sible, given the number of channels [15]. Jin et al.

[10] suggested a new formulation for a limited chan-

nel bandwidth below the lower bound. With the lim-

ited channel environment, all constraints cannot al-

ways be satis�ed and we should allow blocked calls

and/or the interference [10][9][15]. They consider the

non-assigned requests and the violation of EMC con-

straints as blocking rate and interference cost, respec-

tively. An optimal assignment maximally satis�es the

demands of cells and minimizes the interference be-

tween cells. We use this model in this study.

There are two types of channel assignment problems:

the �xed channel assignment and the dynamic chan-

nel assignment. In �xed channel assignment (FCA),

one-time assignment is performed; in dynamic chan-

nel assignment (DCA), assignments are repeated with

changing requests. FCA is more important in situation

with heavy traÆc loads [13]. Even in the situation in

which DCA is used, the initial solution is usually pro-

vided by FCA, and DCA keeps modifying on it [15].

The running time is thus not very critical in FCA.

In this paper, we propose a hybrid genetic algorithm

for FCA with limited channel bandwidth. Basically,

we follow the formulation proposed in [10]. We de-

signed a GA with two-dimensional chromosomes and

an e�ective local optimization heuristic with horizon-

tal/vertical searches.

The rest of the paper is organized as follows. In Sec-

tion 2, we describe the formulation used in this paper.

The proposed hybrid GA and local optimization algo-

rithm are presented in Section 3. The experimental

results are provided in Section 4. Finally, Section 5

summarizes the study.
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2 Fixed Channel Assignment Problem

If a call cannot be assigned a channel, we say it is

blocked. The blocking rate (the damage cost by blocked

calls) is de�ned as,

NX
i=1

niX
j=DFi+1

P (Xi = j)(j �DFi)

where

Fi: the amount of channels assigned to cell i,

Xi: a random variable of required channels in cell i,

ni: the expected number of requests in cell i, and

D: the number of channels provided by each frequency.

In assignments with the �xed channel condition, EMC

constraints may be violated and the violation brings

interference. EMC constraints are provided by the

compatibility matrix C. In the matrix, each diagonal

element Cii represents the cosite constraint, and each

non-diagonal element Cij represents the minimum sep-

aration distance between any two frequencies assigned

to cells i and j [13]. If Cij = 1, it represents the

cochannel constraint, and if Cij = 2, it represents the

adjacent channel constraint. Interference cost is de-

�ned as follows:

NX
i=1

NX
j=1

ZX
p=1

ZX
q=1

f(i; j; p; q)

where

N : the number of cells,
Z: the number of available frequencies,

f(i; j; p; q) =

�
0; if jp� qj � Cij
fipfjq C(Cij � jp� qj); if jp� qj < Cij and i = j

fipfjq A(Cij � jp� qj); otherwise.

 C and  A are some strictly increasing functions.

Since the number of available channels is limited, it
is hard to satisfy both of the constraints. The total
damage due to an assignment is formulated as

NX
i=1

NX
j=1

ZX
p=1

ZX
q=1

f(i; j; p; q)+�

NX
i=1

niX
j=DFi+1

P (Xi = j)(j�DFi)

where � is a weighting factor. In the formula, the �rst

term represents the interference cost and the second

term represents the blocking cost.

3 A Hybrid GA for the FCAP

In this section, we describe the proposed GA for

FCAP. Figure 3 shows the template of a hybrid steady-

state GA.

create initial population of a �xed size;
do f

choose parent1 and parent2 from population;
o�spring  crossover(parent1, parent2);
mutation(o�spring);
local-optimization(o�spring);
replace(population, o�spring);

g until (stopping condition);
return the best individual;

Figure 3: A typical hybrid steady-state GA
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Figure 4: Two-dimensional chromosome for a solution

3.1 2D Representation

We represent a solution by a binary N �Z matrix. N

is the number of cells and Z is the number of channels.

If a gene fip = 1, then the pth channel is assigned to

the ith cell (e.g., see Figure 4).

3.2 2D Crossover

A two-dimensional encoding/crossover pair can re-

ect more geographical linkages of genes than one-

dimensional encoding/crossover pairs [12]. Cohoon

and Paris [3] proposed a two-dimensional crossover

which chooses a small rectangle from one parent and

copies the genes in the rectangle into the o�spring,

with the rest of the genes copied from the other par-

ent. Anderson et al. [1] suggested the block-uniform

crossover on n� n grid. It divides the grid into i � j

blocks at random; each block of one parent is inter-

changed randomly with the corresponding block of the

other parent based on a pre-assigned percentage.

Although two-dimensional encoding can preserve more

geographical relationships among the genes, when tra-

ditional straight-line-based cutting strategies are used,

the power of new-schema creation is far below that of

the crossovers on linear encodings [11].

Geographic crossover was suggested to resolve this

problem [11] [12]. In the case of a two-dimensional

encoding, it chooses a number of monotonic lines,
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Figure 5: An example of geographic crossover

divides the chromosomal domain into two equiva-

lence classes, and alternately copies the genes from

the two parent chromosomes. We used geographic

crossover in this work. Figure 5 shows an example ge-

ographic crossover operator for this problem. By com-

bining two-dimensional representation and geographic

crossover, we are pursuing both reduced information

loss in the stage of encoding and the power of new-

schema creation.

3.3 Mutation

On each cell i, we generate two random numbers. One

is to get a channel number p and the other is a binary

random number. We assign 0 or 1 to fip depending on

the number. We control the total number of 1's in row

i not to exceed di of the demand vector in any case.

3.4 HV-Move: the Local Optimization

We devised a local search heuristic to �ne-tune around

local optima. First, we �x the blocking rate and reduce

the interference cost by a row-based search. Next, we

reduce the interference and blocking cost simultane-

ously by a column-based search. The process of local

search is performed by moving 1's to more attractive

chromosomal positions.

Horizontal Search (Row-Based Search)

In the horizontal search, we redistribute the gene value

1's in each row so that the interference cost in the cor-

responding cell is minimized. In this search, the num-

ber of assigned channels in each cell does not change.

Vertical Search (Column-Based Search)

The vertical search is performed after the horizontal

search and reduces the blocking rate and interference

1            2            3             4           5

19           20          21

13           14          15          16          17         18

6            7             8            9           10          11         12

Figure 7: The 21-cell system

cost simultaneously. We redistribute the gene value 1's

in each column so that the sum of blocking rate and

interference cost is minimized. This search changes

the number of channels in the cells.

Figure 6 shows the outline of the local optimization

algorithm. For each gene with value 1, we tries to move

1 to another position in the same row. If the move

gives some gain, the value 1 moves. Then we move

the value 1 to another position in the same column if

the move gives some gain. Mark the position to which

the value 1 �nally moved. After performing the above

process for all genes with value 1, we repeat the above

process as far as there is at least one marked position.

4 Experimental Results

4.1 Benchmark Problems

The 21-cell system is a useful benchmark for the chan-

nel assignment problem (see Figure 7). The compati-

bility matrix C3; C4; C5; and the demand vector D of

each cell are based on [10], [9], and [6]. Figure 9 shows

the compatibility matrices and Figure 10 represents

the demand vectors. The benchmark set is composed

of 8 problems, originated from [10] and [9]. Table 1

shows the speci�cation of the problems. In our ex-

periments, we used the function  C(X) = 5x�1 and

 A(X) = 52x�1 to evaluate chromosomes and set the

weight of blocking cost � = 10001, as in [10] and [9].

4.2 Experimental Parameters

In our experiments, the population size was set to 50.

In selection, the probability to select the best chro-

mosome was given four times higher than the worst.

Mutation rate was 0.01%. Our GA is a steady-state

GA; each generation produces one o�spring and re-

1The weight of blocking cost was mistakenly written as
10,000 in [10] and [9]. We corrected it to 1,000 by personal
communication with them.
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HV{Move
f

count  0;
mark 1 on all the positions of value 1;
repeat
f

count  count + 1;
for each row

for each gene with mark count in the row
f

if there exists gain by moving the value 1 to another position in the same row
then move the value 1;

if there exists gain by moving the value 1 to another position in the same column
then move the value 1;

if there was any move in the above two trials
then mark the �nally moved position with count;

g
g until (there is nothing marked with count);

g

Figure 6: The outline of the local optimization algorithm

places with it one of the chromosomes in the popu-

lation. The stopping condition is a �xed number of

generations (we set the number to be 10,000). We

performed the experiments on Pentium III 750 MHz.

4.3 Results

The experimental results are summarized in Table 2.

The costs were dramatically reduced compared with

[10] and [9]. In an extreme case (Problem 1), we found

a solution of cost 0.385 while Horng et al. [9] reported

203.266 as the best solution cost.

Figure 8 shows the numbers of horizontal moves and

vertical moves over the generations. The numbers were

summed up every 200 generations. In the �gure, one

can observe that the horizontal moves occur more often

than the vertical moves. Although not very often, the

vertical moves steadily occurred over the generations.

5 Conclusions

A hybrid GA was proposed to solve the �xed chan-

nel assignment problem that assign limited channels

to the requests of cells. Solutions were represented

by two-dimensional chromosomes and the geographic

crossover was applied. To help the GA's �ne-tunning,

we devised a local optimization heuristic that performs

row-based search and column-based search.

We may consider the parallelization of our method.

Although the suggested GA showed dramatic improve-

ment over the previous studies, we believe that there

still remains room for further improvement, particu-

0
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15000

20000

25000

0 2000 4000 6000 8000 10000

Swapping Count

vertical
horizontal

Generations

Figure 8: The swapping count in the local optimization

larly in the local optimization part. We plan to apply

our algorithm to other benchmark problems [15] and

larger scale problems.
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Table 1: The Speci�cation of the Problems

No. of No. of available Compatibility Communication
Problem cells(N) channels(Z) matrix(C) load table(�; Æ)

1 21 60 C3 D
y
1

2 21 60 C4 D1

3 21 60 C5 D1

4 21 60 C4 D2

5 21 60 C5 D2

6 21 40 C5 D1

7 21 40 C5 D2

8 21 64 C5 D3

y The demand vector was mistakenly written as D3 in [10] and [9].

We corrected it to D1 by personal communication with them.

Table 2: Experimental Results

Previous works Our GA results
Problem Best [10] CPU1[10] Best [9] Best(Average3) CPU2

1 217.947 34976 203.266 0.385(0.510) 65504
2 276.623 42807 271.366 27.945(30.881) 88692
3 2013.751 39226 1957.366 63.089(79.346) 89918
4 950.995 31465 906.299 675.849(684.134) 95585
5 4495.609 45712 4302.298 1064.090(1092.484) 87905
6 4857.711 27412 4835.366 1149.755(1227.302) 35790
7 21700.624 54426 20854.300 5636.684(5831.756) 37323
8 58089.148 42248 53151.570 41883.012(41967.549) 135224

1. CPU seconds on Pentium II 400 MHz.

2. CPU seconds on Pentium III 750 MHz.

3. Average over 30 runs.
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Figure 9: The compatibility matrices

cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
� 5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 20 20 25
� 1.2 1.1 1.15 1.6 2.24 5.0 5.72 5.0 6.1 8.1 8.02 9.11 4.07 5.99 5.61 3.14 3.07 5.86 4.12 3.98 5.18

D1

cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
� 8 25 8 8 8 15 18 52 77 28 13 15 31 15 36 57 28 8 10 13 8
� 1.61 4.88 1.52 1.49 1.61 3.11 3.52 9.73 11.62 5.1 2.15 2.66 4.72 2.77 4.93 8.64 3.92 1.25 1.72 2.14 1.27

D2

cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
� 59.38 105.56 95.79 92.83 61.35 191.81 39.53 62.84 42.58 34.73 36.02 41.59 80.7 35.67 61.91 42.22 65.61 52.45 85.78 33.9 80.62
� 6.23 8.98 14.07 11.08 5.61 21.62 6.78 8.72 10.3 6.63 7.92 6.29 11.34 6.02 5.61 5.96 7.39 5.86 9.92 3.52 6.18

D3

Figure 10: Communication load tables
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Abstract

In this paper we compare two methods for
forming reduced models to speed up genetic-
algorithm-based optimization. The methods
work by forming functional approximations
of the �tness function which are used to speed
up the GA optimization. One method speeds
up the optimization by making the genetic
operators more informed. The other method
speeds up the optimization by genetically en-
gineering some individuals instead of using
the regular Darwinian evolution approach.
Empirical results in several engineering de-
sign domains are presented.

1 Introduction

This paper concerns the application of Genetic Algo-
rithms (GAs) in realistic engineering design domains.
In such domains a design is represented by a number
of continuous design parameters, so that potential so-
lutions are vectors (points) in a multidimensional vec-
tor space. Determining the quality (\�tness") of each
point usually involves the use of a simulator or some
analysis code that computes relevant physical proper-
ties of the artifact represented by the vector, and sum-
marizes them into a single measure of merit and, often,
information about the status of constraints. For ex-
ample, the problem may be to design a supersonic air-
craft capable of carrying 70 passengers from Chicago
to Paris in 3 hours. The goal may be to minimize the
takeo� mass of the aircraft. The constraints may in-
clude something like \the wings must be strong enough
to hold the plane in all expected ight conditions".

Some of the problems faced in the application of GAs
(or any optimization technique for that matter) to such
problems are:

� Not all points in the space are legitimate designs
| some points in the search space (\unevaluable
points") cause the simulator to crash, and others
(\infeasible points"), although evaluable by the
simulator, do not correspond to physically realiz-
able designs.

� The simulator will often take a non-negligible
amount of time to evaluate a point. The simu-
lation time ranges from a fraction of a second to,
in some cases, many days.

� The �tness function may be highly non-linear. It
may also have all sorts of numerical pathologies
such as discontinuities in function and derivatives,
multiple local optima, ..etc.

Fortunately, in many of these domains so-called "re-
duced models", which provide less-accurate but more
e�cient estimates of the merit of an artifact, are either
readily available or can be learned online (i.e. in the
course of the optimization) or o�-line (i.e. by sampling
and building a response surface before optimization).
This paper compares methods for the modi�cation of
GAs speci�cally intended to improve performance in
realistic engineering design domains in which no re-
duced models are available a priori. These methods
form approximations of the �tnesses of the points en-
countered during the course of the GA optimization.
The approximations are then used to speed up the GA.
We compare two methods for improving the GA's per-
formance. One is the idea of informed operators (IO)
presented in [7] which uses the approximations to make
the GA operators such as crossover and mutationmore
e�ective. The other is a variation of the genetic engi-
neering (GE) idea presented in [8] which improves the
e�ciency of the GA optimization by replacing some of
the regular Darwinian iterations, which generate new
individuals using crossover and/or mutation, with it-
eration in which individuals are generated by running
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a mini-optimization using the approximations and re-
turning the best point found therein.

The use of reduced models to save time in evolution-
ary optimization dates all the way back to the six-
ties. Dunham et al. [4] worked with a two level
problem in which they used an approximate model
most of the time and only used the accurate/expensive
model in the �nal stages of re�nement. Numerous re-
search e�orts compute a response surface approxima-
tion and use it instead of the very expensive evalu-
ation function with no looking back [9]. Other ap-
proaches rely on special relations between the approx-
imate and accurate model to develop interesting multi-
level search strategies. A notable class of such meth-
ods [10] focus on building variants of injection island
genetic algorithms (iiGAs) for problems involving �-
nite element analysis models. The approach was to
have many islands using low accuracy/cheap evalua-
tion models with small numbers of �nite elements that
progressively propagate individuals to fewer islands us-
ing more accurate/expensive evaluations. A recent ap-
proach [11] uses a functional approximationmethod to
form reduced models. To the best of our knowledge,
none of these approaches addressed the problem of un-
evaluable points.

We conducted our investigations in the context of
GADO [3, 12], a GA that was designed with the goal
of being suitable for use in engineering design. It uses
new operators and search control strategies suitable for
the domains that typically arise in such applications.
GADO has been applied in a variety of optimization
tasks that span many �elds. It demonstrated a great
deal of robustness and e�ciency relative to competing
methods.

In GADO, each individual in the GA population rep-
resents a parametric description of an artifact, such as

an aircraft or a missile. All parameters take on val-
ues in known continuous ranges. The �tness of each
individual is based on the sum of a proper measure of
merit computed by a simulator or some analysis code
(such as the takeo� mass of an aircraft), and a penalty
function if relevant (such as to impose limits on the
permissible size of an aircraft). The penalty function

consists of an adaptive penalty coe�cient multiplied
by the sum of all constraint violations if any. A steady
state GA model is used, in which operators are ap-
plied to two parents selected from the elements of the
population via a rank based selection scheme, one o�-
spring point is produced, then an existing point in the
population is replaced by the newly generated point
via a crowding replacement strategy. Floating point
representation is used. Several crossover and muta-

tion operators are used, most of which were designed
speci�cally for the target domain type. GADO also
uses a search-control method [12] that saves time by
avoiding the evaluation of points that are unlikely to
correspond to good designs.

The remainder of this paper �rst presents brief de-
scriptions of the compared methods for reduced model
use for speedup. The paper then presents brief de-
scriptions of the approximation methods used to form
the reduced models. We then present a number of ex-
periments concerning the use of these approximation
methods on one realistic engineering design task and
several engineering design benchmarks. We conclude
the paper with a discussion of the results and future
work.

2 Reduced-model-based speedup

methods

We compare two methods for improving the GA's per-
formance. One is the idea of informed operators pre-
sented in [7] and the other is a variation of the genetic
engineering idea presented in [8]. The remainder of
this section describes these two approaches in more
detail.

2.1 Informed operators

The main idea of InformedOperators (IO) is to replace
pure randomness with decisions that are guided by the
reduced model. We replace the conventional GA op-
erators such as initialization, mutation and crossover
with four types of informed operators:

� Informed initialization: For generating an in-
dividual in the initial population we generate a
number of uniformly random individuals in the
design space and take the best according to the
reduced model. The number of random individ-
uals is a parameter of the method with a default
value of 20.

� Informed mutation: To do mutation several
randommutations are generated of the base point.
Each random mutation is generated according to
the regular method used in GADO [3] by ran-
domly choosing from among several di�erent mu-
tation operators and then randomly selecting the
proper parameters for the mutation method. The
mutation that appears best according to the re-
duced model is returned as the result of the mu-
tation. The number of random mutations is a
parameter of the method with a default value of
�ve.
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� Informed crossover: To do crossover two par-
ents are selected at random according to the usual
selection strategy in GADO. These two parents
will not change in the course of the informed
crossover operation. Several crossovers are con-
ducted by randomly selecting a crossover method,
randomly selecting its internal parameters and ap-
plying it to the two parents to generate a po-
tential child. The internal parameters depend on
the crossover method selected. For example to do
point crossover the cut-and-paste point has to be
selected. Informed mutation is applied to every
potential child, and the best among the best mu-
tations is the outcome of the informed crossover.
The number of random crossovers is a parameter
of the method with a default value of four. Thus
each crossover-mutation combination uses 20 re-
duced model evaluations.

� Informed guided crossover: Guided crossover
[6] is a novel operator used in GADO to replace
some of the regular crossover-mutation operations
to improve convergence towards the end of the
optimization. Guided crossover does not involve
mutation so we treat it di�erently. The way in-
formed guided crossover works is a follows:

{ Several candidates are selected at random us-
ing the usual selection strategy of GADO to
be the �rst parent for guided crossover. The
number of such candidates is a parameter of
the method with a default value of four.

{ For each potential �rst parent the second par-
ent is selected in a fashion documented else-
where [6]. Then several random points are
generated from the guided crossover of the
two parents and ranked using the reduced
model. The number of such random points

is a parameter of the method with a default
value of �ve.

{ The best of the best of the random points
generated is taken to be the result of the
guided crossover.

Thus the default total number of reduced model
calls per informed guided crossover is 20.

2.2 Genetic Engineering

Our approach to Genetic Engineering (GE) attempts
to improve the e�ciency of the GA optimization
by replacing some of the regular Darwinian itera-
tions, which generate new individuals using crossover
and/or mutation, with iteration in which individuals
are generated by running a mini-optimization using

the approximations and returning the best point found
therein.

In our implementation of the GE approach, the non-
gradient based Downhill-Simplex method is used - on
a periodic basis - to generate new individuals instead
of the traditional genetic operators. The Downhill-
Simplex technique [13], is used because of its lesser
commitment to the accuracy of the approximation
function in comparison to the various gradient-based
techniques. This method requires only function eval-
uations, not derivatives. Once in every four GA itera-
tions we use the Genetic Engineering approach to cre-
ate a new individual instead of the Darwinian genetic
operators. Speci�cally, assuming the dimension of the
parameter space is ndim, we select ndim+1 individuals
from the current population using the regular selec-
tion strategy of GADO. We then use the cheap �tness
function to get the approximate �tness values of these
ndim+1 individuals. These ndim+1 individuals and
their �tnesses serve as input to the Downhill-Simplex
function. Based on the approximated �tnesses, new
hypothesized minimum can be found by calling the
Downhill-Simplex function. This minimum serves as
the new born individual. Therefore, new individuals
are created and evaluated by the true �tness function,
so that the overall GA search proceeds.

It was hard to set the number of calls to the cheap �t-
ness function with the GE as each mini-optimization
could take a di�erent number of iterations. We
set the maximum number of calls during each mini-
optimization to 500. However, we found that the GE
approach ended up calling the cheap �tness function
more than an order of magnitude more times than the
IO approach. We did not repeat the experiments be-
cause the �nal conclusion was in favour the IO ap-
proach anyway.

3 Reduced model formation methods

In this section we briey describe the methods used
to create the approximate models which the speedup
methods use. More detailed descriptions of these
methods can be found in [14, 15].

3.1 General framework

We conducted our investigation in the context of the
framework described in detail in [14]. We provide only
a brief description here. The method is based on main-
taining a large sample of the points encountered in the
course of the optimization. Ideally, the sample should
include all the points but a smaller sample may be
used to keep the overhead reasonable.
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Incremental approximate clustering We keep
the sample divided into clusters. Starting with one
cluster, we introduce one more cluster every speci�c
number of iterations. The reason we introduce the
clusters incrementally rather than from the beginning
is that this way results in more uniform sized clusters.
Every new point entering the sample, either becomes a
new cluster (if it is time to introduce a cluster) or joins
one of the existing clusters. A point belongs to the
cluster whose center is closest in Euclidean distance
to the point at the time in which the point joined the
sample. We use clustering because it makes it possi-
ble to �t discontinuous and complicated surfaces with
simpler surfaces such as quadratic approximations.

Approximate evaluation of new points The �rst
step in evaluating the approximate �tness of a new
point is to �nd to which cluster it belongs. If the

point belongs to a cluster with cluster approximation
functions, these are to be used, otherwise the global
approximation functions are to be used. The evalua-
tion method depends on the stage of the optimization.
In the �rst half of the optimization the �tness is formed
by using the approximatemeasure of merit and the ap-
proximate sum of constraints (which is forced to zero
if negative). No attempt is made to guess at whether
the point will be feasible, infeasible or unevaluable. In
the second half of the optimization we use a two phase
approach. First we use the nearest neighbors of the
new point to guess whether the point is likely to be
feasible, infeasible-evaluable or unevaluable. Based on
this guess, and the point's cluster, we then use the
proper approximation functions (for example, no ap-
proximation functions are used if the point is guessed
to be unevaluable).

3.2 Quadratic Least Squares approximations

The �rst approach we used for forming the approxi-
mations was Quadratic Least Squares (LS). We dis-
tinguish between the approximation functions for the
measure of merit and those for the sum of constraints.1

The reason is that the constraints are only de�ned for
infeasible designs. For feasible designs we have to put
all the constraints at zero level as the simulators only
return that they are satis�ed. We form two types of
approximations for measure of merit and for the sum
of constraint violations:

� Global approximation functions

1Since GADO only deals with the sum of all con-
straint violations rather than the individual constraints,

we only form approximations for the sum of all constraint
violations.

We maintain two global approximation functions
which are based on all the evaluable points in
the sample.

We use quadratic approximation functions of the
form:

F̂ ( �X) = a0 +

nX

i=1

aixi +

n;nX

i=1;j=i

aijxixj

where n is the dimension of the search space and
xi is design variable number i. We use a least
square �tting routine from [13] which works by
using the normal equations method to �t the ai
values.

� Cluster approximation functions

We use the same techniques for forming clus-
ter approximation functions, except that we only
form them for clusters which have a su�cient
number of evaluable points.

3.3 Quickprop Neural Networks

Quickprop is a modi�cation of the back-propagation
learning algorithm (Backprop) that uses a second-
order weight-update function, based on measurement
of the error gradient at two successive points, to accel-
erate the convergence over simple �rst-order gradient
descent [5]. Quickprop learns much faster than the
standard back-propagation but also has more parame-
ters that have to be �ne-tuned. In this work, we used
the C version [2] of Quickprop, translated by Terry
Regier from Fahlman's original Lisp version.

There are two measures to be approximated, the
measure of merit and the constraint violations, and
therefore, the network structure could be either one-
network-two-output, or two-network-one-output. Af-
ter examining the two approaches, we have found that

the two-network-one-output approach is better. We
also introduced a mechanism for avoiding over-training
in this network.

The Quickprop algorithm was implemented and inte-
grated into GADO so as to generate both the global
and the cluster approximation models. We form two
types of approximations for measure of merit and con-
straint violations by maintaining both a global ANN
and an ANN for each big enough cluster (i.e., clus-
ter with a su�cient number of evaluable points) in a
manner similar to that used for LS approximation.

4 Experimental results

To compare the performance of the di�erent speedup
methods we compared GADO with reduced-model-
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Figure 1: Supersonic transport aircraft designed by
our system (dimensions in feet)

based informed operators to GADO with genetic en-
gineering. We did the comparisons in the context of
LS as well as QP based approximation methods. We
also compare all of these to GADO without speedup
altogether. We compared the �ve systems in several
domains: one domain from real tasks in aerodynamic
design, plus seven others from an existing set of engi-
neering design benchmarks [1].

4.1 Application domain 1: Supersonic

transport aircraft design domain

4.1.1 Domain description

Our �rst domain concerns the conceptual design of
supersonic transport aircraft. We summarize it briey
here; it is described in more detail in [16]. Figure 1
shows a diagram of a typical airplane automatically
designed by our software system. The GA attempts
to �nd a good design for a particular mission by vary-
ing twelve of the aircraft conceptual design parameters
over a continuous range of values. An optimizer evalu-
ates candidate designs using a multidisciplinary simu-
lator. In our current implementation, the optimizer's
goal is to minimize the takeo� mass of the aircraft, a
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Figure 2: Comparison of average performance in ap-
plication domain 1 (aircraft design)

measure of merit commonly used in the aircraft indus-
try at the conceptual design stage. Takeo� mass is the
sum of fuel mass, which provides a rough approxima-
tion of the operating cost of the aircraft, and \dry"
mass, which provides a rough approximation of the
cost of building the aircraft. In summary, the problem
has 12 parameters and 37 inequality constraints. 0.6%
of the search space is evaluable. No statistics exist re-
garding the fraction of the search space that is feasible
because it is extremely small.

4.1.2 Experiments and results

Figure 2 shows the performance comparison in domain
1 (aircraft design). Each curve in the �gure shows the
average of 15 runs of GADO starting from random ini-
tial populations. The experiments were done once for
each speedup method-approximation method combi-
nation (i.e. IO with LS,GE with LS, IO with QP and
GE with QP) in addition to once without any speedup
or approximation methods, with all other parameters
kept the same. Figure 2 demonstrates the performance
with each of the four combinations as well as the per-
formance with no approximation or speedup at all (the
solid line) in domain 1 . The �gure plots the average
(over the 15 runs) of the best measure of merit found
so far in the optimization as a function of the number
of iterations. (From now on we use the term \itera-
tion" to denote an actual evaluation of the objective
function, which is usually a call to a simulator or an
analysis code. This is consistent with our goal of un-
derstanding how the speedup methods a�ect the num-
ber of calls to the objective function in problems where
the informed operators or genetic engineering overhead
is minuscule compared to the runtime of each objec-
tive function evaluation, as was the case here. This
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Figure 3: Comparison of average performance in
benchmark domain 1

also helps us avoid the pitfalls of basing evaluations
on run times, which can vary widely | for example
across platforms and even across runs due to varia-
tions in memory available and hence caching e�ects.).
The �gure shows that the informed operators method
improved the performance more than the genetic engi-
neering method in most stages of the search regardless
of which approximation method was used for forming
the reduced models.

4.2 Benchmark engineering design domains

In order to further compare the two speedup methods,
we compared their performance in several benchmark
engineering design domains. These domains were in-
troduced by Eric Sandgren in his Ph.D. thesis [1] in
which he applied 35 nonlinear optimization algorithms
to 30 engineering design optimization problems and
compared their performance. Those problems have be-
come used in engineering design optimization domains
as benchmarks [17]. A detailed description of these
domains is given in [1].

For each problem GADO was run 15 times using dif-
ferent random starting populations. As with the air-
craft domain, the experiments were done once for each
speedup method and approximation method combina-
tion, in addition to once without any speedup, with
all other parameters kept the same. Figure 3 through
Figure 9 show the performance with each of the four
combinations as well as performance with no approxi-
mation or speedup at all (the solid lines) in the bench-
mark domains. Each curve in each �gure shows the
average of 15 runs of GADO with di�erent random
seeds. We found that in the �rst four benchmarks,
which represent relatively easy optimization tasks, the
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performance di�erences were small. The �gures show
that the IO based approach did better than the GE
approach using the same approximation technique (LS
or QP) in most stages of most domains. The �gures
also show that the IO method gave the best �nal per-
formance in all domains. In fact, the results with the
GE approach in benchmark 6 were worse than with no
speedup at all. In benchmark 3 IO with QP was the
winner while in all other benchmarks the IO with LS
was the winner suggesting that LS was better than QP
as an approximationmethod. We should also point out
that in benchmark 7, in which GE appears to be doing
better than IO for a segment of the optimization, we
found that one of the runs did not �nd any feasible
points but was slightly infeasible till the end. Thus,
the GE performance in this domain is worse than the
curve suggests.

5 Final Remarks

This paper has presented a comparison between two
methods for using reduced models to speed up the
search in GA-based engineering design optimization.
Experiments were conducted in the domain of aircraft
design optimization as well as several benchmark en-
gineering design domains. The experiments show that
the informed operators approach did consistently well
and was better than the genetic engineering approach
in all domains. Moreover, the genetic engineering ap-
proach called the approximate �tness function an or-
der of magnitude more times than the informed op-
erators approach. We believe that the reason for this
result is that the reduced models used were not ac-
curate enough for the genetic engineering approach
to yield good results. The informed operators ap-
proach on the other hand makes a much weaker as-
sumption about the accuracy of the reduced model
(all it needs to speed up the optimization is that the
reduced model be a better than random predictor of
the actual model). The experiments also showed that
using least squares approximations with any speedup
approach usually yields better results than using the
neural network approximations.

In the future, we intend to repeat the comparison
of speedup approaches under di�erent neural net-
work models for approximation, such as radial-bases-
function neural networks and multi-layer perceptrons.
We also intend to explore ways of combining the
informed-operator approach and the genetic engineer-
ing approach to achieve better performance than us-
ing any single approach. We also hope to be able to
repeat the comparison in situations in which the re-
duced models are physical, pre-existent or somehow
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more accurate but unfortunately we do not have ac-
cess to such domains at this time. Finally we intend
to explore other speedup approaches such as methods
based on the formation and instantiation of statistical
models.
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Abstract 

Data mining consists of extracting knowledge 
from data. This paper addresses the discovery of 
knowledge in the form of prediction IF-THEN 
rules, which are a popular form of knowledge 
representation in data mining. In this context, we 
propose a new Genetic Algorithm (GA) designed 
specifically for discovering interesting fuzzy 
prediction rules. The GA searches for prediction 
rules that are interesting in the sense of being 
surprising for the user. More precisely, a 
prediction rule is considered interesting (or 
surprising) to the extent that it represents 
knowledge that not only was previously 
unknown by the user but also contradicts the 
original believes of the user. In addition, the use 
of fuzzy logic helps to improve the 
comprehensibility of the rules discovered by the 
GA, due to the use of linguistic terms that are 
natural for the user. The proposed GA is applied 
to a real-world science & technology data set, 
containing data about the scientific production of 
researchers. Experiments were performed to 
evaluate both the predictive accuracy and the 
degree of interestingness (or surprisingness) of 
the rules discovered by the GA, and the results 
were found to be satisfactory. 

1 INTRODUCTION 

The basic idea of data mining consists of extracting 
knowledge from data (Fayyad, 1996), (Han & Kamber, 
2000). In this paper we address one general kind of data 
mining task, which we will refer to as the discovery of 
prediction rules. By prediction rule we mean an IF-THEN 
rule of the form: 

IF <some_conditions_are_satisfied> 
  THEN <predict_the_value_of_some_goal_attribute> . 

Hence, we aim at discovering rules whose consequent 
(THEN part) predict the value of some goal attribute for 
an example (a record of a data set) that satisfies all the 
conditions in the antecedent (IF part) of the rule. We 
assume there is a small set of goal attributes whose value 
is to be predicted. The goal attributes are chosen by the 
user, according to his/her interest and need. 

It should be noted that this task can be regarded as a 
generalization of the well-known classification task of 
data mining. In classification there is a single goal 
attribute to be predicted, whereas we allow more than one 
goal attribute to be defined by the user.  

Note that, although there are several goal attributes to be 
predicted, each rule predicts the value of a single goal 
attribute in its consequent. However, different rules can 
predict different values of different goal attributes. 

In this paper we propose a new Genetic Algorithm (GA) 
designed specifically for discovering interesting fuzzy 
prediction rules. The main motivation for using a GA in 
prediction-rule discovery is that GAs, due to their ability 
to perform a global search, tend to cope better with 
attribute interaction than most greedy rule induction 
algorithms that are traditionally used in prediction-rule 
discovery (Dhar et al., 2000), (Freitas, 2001). 

The justification for the “interesting” and “fuzzy” 
characteristics of the rules is as follows. In general, fuzzy 
logic is a flexible way of coping with uncertainties 
typically found in real-world applications. In particular, in 
the context of data mining, fuzzy logic seems a natural 
way of coping with continuous (real-valued) attributes. 
Using fuzzy linguistic terms, such as low or high, one can 
more naturally represent rule conditions involving 
continuous attributes, by comparison with crisp 
discretization of those attributes. For instance, the fuzzy 
condition “Salary = low” seems more natural for a user 
than the crisp condition “Salary < $14,328.53”. 

Although we do use fuzzy logic to improve the 
comprehensibility of the rules discovered by the GA, the 
focus of this paper is not on the use of fuzzy logic, but 
rather on the discovery of “interesting” rules. We 
emphasize that this is a difficult problem, relatively little 
explored in the literature. Most algorithms for discovering 
prediction rules focus on evaluating the predictive 
accuracy of the discovered rules (Hand, 1997), without 
trying to discover rules that are truly interesting for the 
user. 

It should be noted that a rule can have a high predictive 
accuracy but be uninteresting for the user, because it 
represents some obvious or previously-known piece of 
knowledge. A classic example is the rule: 

IF <patient is pregnant> THEN <patient is female>.  
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Hence, a major contribution of this paper is to propose a 
GA that searches for rules that not only have a high 
predictive accuracy but also are interesting, in the sense of 
being surprising (representing novel knowledge) for the 
user. As will be seen later, the core of the GA consists of 
an elaborate fitness function which takes both these 
aspects of rule quality into account. 

Another contribution of this paper is that we apply the 
proposed GA to the mining of a real-world science & 
technology data set, containing data about the scientific 
production of researchers (cientometric data). 

The remainder of this paper is organized as follows. 
Section 2 reviews relevant related work. Section 3 
describes in detail the proposed GA for discovering 
interesting (surprising) fuzzy prediction rules. Section 4 
reports the results of computational experiments. Finally, 
section 5 concludes the paper. 

2 RELATED WORK 

2.1 EAs FOR DISCOVERING FUZZY 

PREDICTION RULES 

There has been very extensive research on evolutionary 
algorithms (EAs) for discovering fuzzy prediction rules. 
Roughly speaking, the algorithms can be divided into two 
broad groups:  

(a) EAs evolving one or more aspects of membership 
functions, such as the number of membership functions 
(linguistic terms) for each attribute, the shape of the 
membership functions, etc. (Xiong & Litz, 1999), (Mota 
et al. 1999), (Mendes et al., 2001); 

(b) EAs using user-defined membership functions, and 
evolving only the combinations of attribute values 
considered relevant for predicting a goal attribute 
(Ishibuchi & Nakashima, 1999), (Walter & Mohan, 2000). 

We follow the later approach, due to two mains reasons. 
First, it allows us to incorporate the domain knowledge of 
the user into the specification of the membership 
functions, leading to membership functions which are 
more comprehensible for the user. This is important in our 
data mining application, where the discovered prediction 
rules are directly interpreted by a human decision maker. 
Second, it considerably reduces the search space, since the 
GA has to search only for combinations of attribute values 
to be included in the rules. 

It should be noted the above-mentioned projects focus on 
the discovery of fuzzy rules with high predictive accuracy, 
without trying to discover surprising rules. Our work 
differs from these projects in that the proposed GA 
searches for fuzzy prediction rules that are not only 
accurate but also surprising for the user, representing 
knowledge that was previously unknown by the user, as 
will be seen later.  

2.2 DISCOVERING INTERESTING 

PREDICTION RULES 

There are two broad approaches for discovering 
interesting rules in data mining, namely the objective 
approach and the subjective approach. In general, the 

objective approach uses a rule-discovery method and a 
rule-quality measure that are independent of the user and 
the application domain (Major & Mangano, 1993), (Noda 
et. al, 1999).  

By contrast, the subjective approach uses a rule-discovery 
method and/or a rule-quality measure that take into 
account the background knowledge of the user about the 
application domain (Silberchatz & Tuzhilin, 1996), (Liu 
& Hsu, 1996), (Liu et al., 1997). 

Hence, in general the objective approach has more 
generality and autonomy than the subjective approach, 
whereas the subjective approach has the important 
advantage of using the user’s background knowledge to 
guide the search for rules. Therefore, if the application 
domain is well-defined and a user who is an expert in the 
application domain is available, it makes sense to use the 
subjective approach. This is the case of the project 
reported in this paper. The proposed GA was developed 
with the primary goal of mining science & technology 
data, a well-defined application domain, and a user expert 
in this application domain was available. Therefore, in 
this paper we follow the subjective approach. 

Out of the above-mentioned projects, there are two that 
are more related to our research. The first one is the work 
of (Liu & Hsu, 1996), (Liu et al., 1997). This work 
follows the subjective approach. It proposes the use of 
general impressions to guide the search for interesting 
rules. General impressions can be thought of as “rules” 
specified by the user, representing the background 
knowledge and believes of the user about the application 
domain. (General impressions will be discussed in more 
detail later.) Liu and his colleagues propose the use of 
general impressions as the basis for a post-processing 
method to select the most interesting rules, among all 
discovered rules. That is, first a data mining algorithm is 
run, discovering a potentially large number of rules. Then 
the discovered rules are matched against the user-
specified general impressions, in order to select the most 
interesting rules. 

Our work also uses the idea of user-specified general 
impressions to discover interesting rules. However, it 
differs from the above work in that we use general 
impressions directly in the search for rules, rather than as 
a post-processing method. In other words, instead of first 
generating a large number of rules and then selecting the 
most interesting ones, the set of general impressions is 
directly used by the data mining algorithm to generate 
only interesting rules, avoiding the unnecessary 
generation of many rules that will be later discarded due 
to their lack of interestingness for the user. In addition, we 
propose a GA for discovering interesting rules, whereas 
the work of Liu and his colleagues does not use any 
evolutionary algorithm. 

The second work related to our research is the GA for 
discovering interesting rules proposed by (Noda et al., 
1999). This GA also searches for rules that are both 
accurate and interesting, according to a certain rule-
interestingness measure. However, our work differs from 
Noda et al.’s work in two major points. First, unlike their 
GA, our GA discovers fuzzy rules. Second, Noda et al. 
follow an objective approach for the discovery of 
interesting rules, whereas our GA follows a subjective 
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approach based on user-specified general impressions, as 
mentioned above.  

3 A NEW GA FOR DISCOVERING 

INTERESTING (SURPRISING) 

FUZZY PREDICTION RULES 

In this section we propose a new GA for discovering 
interesting (surprising) fuzzy rules. Hence, each 
individual represents a prediction rule. More precisely, 
each individual represents the antecedent (IF part) of a 
prediction rule. The consequent (THEN part) of the rule is 
not encoded in the genome. Rather, it is fixed for a given 
GA run, so that in each run all the individuals represent 
rules with the same consequent (value predicted for a goal 
attribute). Therefore, in order to discover rules predicting 
different goal attribute values, we need to run the GA 
several times, once for each value of each goal attribute.  

Furthermore, the prediction rules represented by the 
individuals are fuzzy rules. We stress that only the rule 
antecedents are fuzzified. Rule consequents are always 
crisp. Concerning the rule antecedent, of course only 
conditions involving continuous (real-valued) attributes 
are fuzzified. Categorical (nominal) attributes are 
inherently crisp. For instance, there is no need to fuzzify a 
rule condition such as “Sex = female”.  

3.1 INDIVIDUAL REPRESENTATION 

The genome of an individual represents a conjunction of 
conditions specifying a rule antecedent. Each condition is 
represented by a gene, and it consists of an attribute-value 
pair of the form Ai = Vij, where Ai is the i-th attribute and 
Vij is the j-th value belonging to the domain of Ai. In order 
to simplify the encoding of conditions in the genome, we 
use a positional encoding, where the i-th condition is 
encoded in the i-th gene. Therefore, we need to represent 
only the value Vij of the i-th condition in the genome, 
since the attribute of the i-th condition is implicitly 
determined by the position of the gene. In addition, each 
gene also contains a boolean flag (Bi) that indicates 
whether or not the i-th condition is present in the rule 
antecedent. Hence, although all individuals have the same 
genome length, different individuals represent rules of 
different lengths (which is, of course, desirable in 
prediction rules, since one does not know a priori how 
many conditions will be necessary to create a good 
prediction rule). The structure of the genome of an 
individual is illustrated in Figure 1, where m is the 
number of attributes of the data being mined. 
 

Figure 1: Genome of an individual representing a rule 
antecedent 

We emphasize that the operator “=“ is used for both fuzzy 
conditions and crisp conditions, as follows. As usual in 
the data mining and machine learning literature, our GA 
can cope with two kinds of attributes: continuous (real-
valued) attributes and categorical (nominal) ones. 
Categorical attributes are inherently crisp, so that they are 
associated with crisp conditions such as “Sex = female”. 

Continuous attributes are fuzzified, so that they are 
associated with fuzzy conditions such as “Age = low”, 
where low is a fuzzy linguistic term.  

3.2 FUZZIFYING CONTINUOUS ATTRIBUTES  

Recall that, as discussed in section 2, in this work the GA 
uses user-defined membership functions. Hence, it 
evolves the combinations of attribute values considered 
relevant for predicting a goal attribute, but there is no 
need to evolve the membership functions. 

In our GA the fuzzification of continuous attributes is 
performed as follows. Each continuous attribute is 
associated with either two or three linguistic terms 
(corresponding to the “values” of the fuzzified attribute), 
namely either {low, high} or {low, medium, high}. Each 
of these linguistic terms is defined by a user-specified 
membership function. These functions have a trapezoidal 
format, where there are three (or two) linguistic terms.  

3.3 FITNESS FUNCTION 

Recall that each individual is associated with a fuzzy 
prediction rule. In the vast majority of the literature, the 
main criterion used to evaluate the quality of a fuzzy 
prediction rule is predictive accuracy. This criterion is 
also important in our application, but it is not the only 
one. As discussed in the Introduction, a prediction rule 
can be accurate but not interesting for the user. This will 
be the case when the rule represents some relationship in 
the data that was already known by the user. To avoid 
this, our fitness function takes into account two criteria: 

(a) The predictive accuracy of the rule; 

(b) A measure of the degree of interestingness (or 
surprisingness) of the rule. 

With respect to the latter criterion, our GA favors the 
discovery of rules that are explicitly surprising for the 
user, as will be seen later. 

These two criteria are combined into a weighted formula 
as follows: 

                         Fitness(i)  =  Acc(i) * Surp(i) 

The measures of Acc(i) and Surp(i) are described in the 
next two subsections, respectively, since they are 
computed by separated elaborate procedures. 

3.3.1 Measuring the Predictive Accuracy of a Fuzzy 

Rule 

The first step to measure the predictive accuracy of a 
fuzzy rule is to compute the degree to which an example 
belongs to a rule antecedent. Recall that the rule 
antecedent consists of a conjunction of conditions. We use 
the standard fuzzy AND operator, where the degree of 
membership of an example to a rule antecedent is given 
by:  

( )i

z

i
µ

1
min

=
 

where µi denotes the degree to which the example belongs 
to the i-th condition of the rule antecedent, z is the number 
of conditions in the rule antecedent, and min is the 
minimum operator. The degree to which the example 
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belongs to the i-th condition is directly determined by the 
value of the corresponding membership function for the 
example’s attribute value associated with that condition. 
Of course, crisp conditions can have only either 0 or 1 
membership degrees.  

For instance, consider a rule antecedent with the following 
two rule conditions: (Age = low) AND (Sex = female), 
where the first condition is fuzzy and the second one is 
crisp. Suppose that a given example has the values 23 and 
female for the attributes Age and Sex, respectively. 
Suppose also that the membership function for the low 
linguistic term of Age returns the value 0.8 for the value 
23. Then the degree to which this example belongs to this 
rule antecedent is min(0.8,1.0) = 0.8. 

Let A be the antecedent of a given rule. Once the degree 
to which each example belongs to A has been computed, 
the predictive accuracy of the i-th individual (fuzzy rule), 
denoted Acc(i), is computed by the formula: 

Acc(i) = (CorrPred - 1/2) / (TotPred) 

where  CorrPred (number of correct predictions) is the 
summation of the degrees of membership in A for all 
examples that have the value Vij predicted by the rule and 
TotPred (total number of predictions) is the summation of 
the degrees of membership in A for all examples. This 
formula is essentially a fuzzy version of a crisp measure 
of predictive accuracy used by some data mining 
algorithms (Quinlan, 1987), (Noda et al., 1999). The 
rationale for subtracting 1/2 from CorrPred in the 
numerator is to penalize rules that are too specific, which 
are probably overfitted to the data. For instance, suppose 
CorrPred = 1 and TotPred = 1. Without subtracting 1/2 
from CorrPred the modified formula would return a 
predictive accuracy of 100% for the rule, which intuitively 
is an over-optimistic estimate of predictive accuracy in 
this case. However, subtracting 1/2 from CorrPred the 
above formula returns 50%, which seems a more plausible 
estimate of predictive accuracy, given that the rule is too 
specific. Clearly, for large values of CorrPred and TotPred 
the subtraction of 1/2 will not have a significant influence 
in the value returned by the formula, so that this 
subtraction penalizes only rules which are very specific, 
covering just a few examples. 

3.3.2 Measuring the Degree of Surprisingness of a 

Prediction Rule 

We consider a prediction rule interesting to the extent that 
it is surprising for the user, in the sense of representing 
knowledge that not only was previously unknown but also 
contradicts the original believes of the user. Clearly, the 
problem of discovering surprising rules is a very difficult 
one, which has been relatively little investigated in the 
data mining literature. (As mentioned above, the vast 
majority of the literature focus on the discovery of rules 
with a high predictive accuracy, without trying to measure 
how novel or surprising the rule is for the user.) 

In order to tackle this problem we follow a subjective 
approach for discovering surprising rules, based on the 
use of user-specified general impressions (Liu & Hsu, 
1996), (Liu et al., 1997). In essence, a general impression 
specifies some relationship that the user believes to be 
true in the data being mined. General impressions, like 
prediction rules, are expressed in the form IF 

<conditions> THEN <predicted value>. The main 
difference is that general impressions are manually 
specified and represent believes of the user about 
relationships in the data, whereas prediction rules are 
automatically discovered and represent relationships that 
seem to hold in the data, according to the criteria used by 
the data mining algorithm. Therefore, the specification of 
general impressions assume that the user already has some 
previous knowledge or hypotheses about relationships that 
hold in the application domain - in our case, science and 
technology data. 

Let  {R1,...,Ri,...R|R|} be the set of rules in the current 
population of the GA, where |R| denotes the number of 
rules (individuals); and let {GI1,...,GIj,...GI|GI|} be the set 
of general impressions representing the previous 
knowledge and believes of the user, where |GI| denotes 
the number of general impressions. Note that the set 
{GI1,...,GIj,...GI|GI|} is specified by the user before the GA 
starts to run, and it is kept fixed throughout the GA run. In 
order to compute the degrees of surprisingness of the rules 
in the current population, each rule is matched against 
every GI, as shown in Figure 2.  

 

 

 

 

 

 

Figure 2: Matching between each rule and every general 
impression 

A rule Ri is considered surprising, in the sense of 
contradicting a general impression GIj of the user, to the 
extent that Ri and GIj have similar antecedents and 
contradictory consequents. In other words, the larger the 
similarity of the antecedents of Ri and GIj and the larger 
the degree of contradiction of the consequents of Ri and 
GIj, the larger the degree of surprisingness of rule Ri with 
respect to general impression GIj. 

For each pair of rule Ri and GIj - where i varies in the 
range 1,...,|R| and j varies in the range 1,...,|GI| - the GA 
computes the degree of surprisingness of Ri with respect 
to GIj in three steps, as follows. 

First step: finding the general impressions whose 
consequents are contradicted by the consequent of Ri. We 
say that the consequent of Ri contradicts the consequent of 
a general impression GIj if and only if Ri and GIj have the 
same goal attribute but a different goal attribute value in 
their consequent. For instance, this would be the case if Ri 
predicts “production = low” and GIj predicts “production 
= high”. Note that if Ri and GIi predict different goal 
attributes, or if they predict the same value for the same 
goal attribute, there is no contradiction between them, and 
so the degree of surprisingness of Ri with respect to GIi is 
considered zero, and in this case the second and third 
steps, described below, are ignored.  

Second step: computing the similarity between the 
antecedents of Ri and GIj. For each general impression GIj 

R1

Ri

R|R|

GI1 

GIj 

GI|GI|
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found in the previous step (i.e, each general impression 
GIj contradicted by Ri), the system computes the similarity 
between the antecedents of Ri and GIj. This similarity, 
denoted AS(i,j), is computed by the formula: 

AS(i,j) = |A(i,j)| / max(|Ri|,|GIj|) , 

where |Ri| is the number of conditions (attribute-value 
pairs) in rule Ri, |GIj| is the number of conditions in 
general impression GIj, max is the maximum operator, 
and |A(i,j)| is the number of conditions that are exactly the 
same (i.e., have the same attribute and the same attribute 
value) in both Ri and GIj. This formula is a somewhat 
simplified version of the formulas proposed by (Liu & 
Hsu, 1996) to measure the similarity between the 
antecedents of Ri and GIj. Those authors proposed 
separate formulas to measure the similarity with respect to 
attributes and with respect to attribute values, whereas we 
have chosen to incorporate both aspects of antecedent 
similarity into a single formula, for the sake of simplicity. 

Third step: computing the degree of surprisingness of Ri 
with respect to GIj. Let Surp(i,j) denote the degree of 
surprisingness of Ri with respect to GIj. Surp(i,j) depends 
on both AS(i,j), computed in the second step, and on the 
difference between the rule consequents of Ri and GIj, 
computed in the first step, as follows. The goal attribute 
values in the consequents of Ri and GIj can be either a 
value in the set {low, high} or a value {low, medium, 
high}, depending on the goal attribute. (The choice 
between these two attribute domains is made by the user 
for each goal attribute, as will be seen later.) If the 
difference between the consequents of Ri and GIj is that 
one of them is low and the other one is high, 
characterizing the greatest possible difference between 
those consequents, then Surp(i,j) is assigned the value of 
AS(i,j), without any modification. If the difference between 
the consequents of Ri and GIj is that one of them is 
medium and the other one is either low or high, 
characterizing a smaller difference between those 
consequents, then Surp(i,j) is assigned half the value of 
AS(i,j), i.e. Surp(i,j) = 0.5 x AS(i,j). In the latter case 
Surp(i,j) is assigned a smaller value than in the former 
case to reflect the fact that the degree of contradiction is 
correspondingly smaller.  

Finally, once the above three steps have been completed 
for all general impressions, with respect to a given rule Ri, 
the system has computed all the degrees of surprisingness 
of Ri with respect to every general impression GIj, i.e. all 
Surp(i,j), j=1,...,|GI|, where |GI| is the number of general 
impressions. At this point the degree of surprisingness of 
rule Ri, denoted Surp(i), is simply computed by the 
formula: 

( ) ( )[ ]ji

GI

j
ASiSurp ,

1
max

=
=  

where max returns the maximum value among its 
arguments.   

3.4 SELECTION AND GENETIC OPERATORS 

The GA uses tournament selection (Blickle, 2000), which 
essentially works as follows. First, k individuals are 
randomly picked (k = 2), with replacement, from the 
population. Then the individual with the best fitness 

value, out of the k individuals, is selected as the winner of 
the tournament. This process is repeated P times, where P 
is the population size. Next the P selected individuals 
undergo genetic operators, as follows. 

The GA uses relatively simple crossover and mutation 
operators. It uses uniform crossover (Goldberg, 1989). 
There is a probability for applying crossover to a pair of 
individuals and another probability for swapping each 
corresponding pair of gene (attribute)’s value in the 
genome of two individuals. The crossover probabilities 
used were 0.85 for the crossover operator and 0.5 for 
attribute value swapping. Our choice of uniform crossover 
was motivated by the fact that this operator has no 
positional bias, i.e., the probability of swapping each pair 
of attribute values is independent of the position of that 
attribute value in the genome. This is desirable in our data 
mining application, where the rule antecedent represented 
by the genome consists of an unordered set of conditions. 

The mutation operator randomly transforms the value of 
an attribute into another (different) value belonging to the 
domain of that attribute. The mutation probability used 
was 0.02. 

In addition to crossover and mutation operators, the GA 
also uses operators that insert/remove conditions to/from a 
rule. In essence, the condition-insertion operator switches 
on the flag of some condition in the genome, rendering it 
present in the decoded rule antecedent. Conversely, the 
condition-removal operator switches off the flag of some 
condition in the genome, which effectively removes that 
condition from the decoded rule antecedent. The 
condition-insertion and condition-removal operators 
perform specialization and generalization operations in 
the rule, respectively. Hence, they contribute for a broader 
exploration of the search space, facilitating the 
exploration of some regions of the search space that might 
not be so easily accessible to crossover and mutation 
operators.  

4 COMPUTATIONAL RESULTS 

We now report the results of computational experiments 
performed with the GA proposed in the previous section. 
In these experiments the set of general impressions was 
specified by the Head of Research of the State University 
of Maringá (Brazil). The same user also evaluated the 
interestingness of the rules discovered by the GA, as will 
be seen later. The data set used in our experiments is 
described in section 4.1. 

The rules discovered by the GA were evaluated with 
respect to two criteria, namely: 

(a) Predictive accuracy. As usual in the literature, 
predictive accuracy was measured in an objective way, by 
computing the prediction accuracy rate on a test set 
separate from the training set. The results with respect to 
predictive accuracy are reported in section 4.2. 

(b) Degree of interestingness (surprisingness). This is a 
measure of how surprising, novel the rule is for the user, 
as explained in the previous section. This was measured in 
a subjective way, by showing the discovered rules to the 
user and ask him to assess them according to how 
interesting they were. The results with respect to 
interestingness are reported in section 4.3. 
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4.1 THE DATA SET  

The application domain addressed in this paper involves a 
science and technology database obtained from CNPq (the 
Brazilian government’s National Council of Scientific and 
Technological Development). More precisely, we have 
mined a subset of the database containing data about the 
scientific production of researchers of the south region of 
Brazil. However, it should be noted that the design of the 
GA is generic enough to allow its use in virtually any 
other application domain, as long as proper general 
impressions and membership functions are specified by 
the user. 

The experiments reported in this paper have been 
performed with 24 attributes. The selection and 
preparation of these attributes for data mining purposes 
was a time-consuming process, taking several months, 
since the original data set was not collected for data 
mining purposes. 

The data set contained 5,690 records (examples), and each 
record had attributes describing a given researcher and his 
scientific production in the period from 1997 to 1999. 
Records that had any attribute with missing value were 
removed. Out of the 24 attributes, 6 were used as goal 
attributes to be predicted, and the other 18 attributes were 
used as predictor attributes. Out of the 18 predictor 
attributes, 8 were categorical (nationality, continent of 
origin, sex, state, city, skill in writing English, whether or 
not she/he was the head of a research group, main 
research area) and 10 were continuous (educational level, 
No. of years since last graduation, age, No. of completed 
technical projects, No. of delivered courses, No. of 
supervised Ph.D. thesis, No. of supervised M.Sc. 
dissertations, No. of supervised research essays (at the 
diploma level), No. of supervised final-year 
undergraduate projects, No. of supervised undergraduate 
students with a research scholarship). The 10 continuous 
attributes were fuzzified for rule-discovery purposes, as 
previously explained. 

For prediction purposes, each goal attribute was 
discretized into either two values (referring to a low or 
high scientific production) or three values (referring to a 
low, medium or high scientific production), as determined 
by the user. 

The 6 goal attributes, denoted G1,...,G6, have the 
following meaning and values to be predicted: 

G1 = No. of papers published in national journals - 
values: low, medium, high; 
G2 = No. of papers published in internat. journals - 
values: low, medium, high; 
G3 = No. of chapters published in national books - values: 
low, medium, high; 
G4 = No. of chapters published in international books - 
values: low, high; 
G5 = No. of national edited/published books - values: low, 
high; 
G6 = No. of internat. edited/published books - values: low, 
high. 

Therefore, in total there are 15 goal attribute values to be 
predicted.  

4.2 EVALUATING THE PREDICTIVE 

ACCURACY OF DISCOVERED RULES 

In order to measure the predictive accuracy of discovered 
rules, we have performed a well-known 10-fold cross-
validation procedure (Hand, 1997). In essence, this 
procedure works as follows. First, the data set is divided 
into 10 mutually exclusive and exhaustive partitions. Then 
the data mining algorithm is run 10 times. In the i-th run, 
i=1,...,10, the i-th partition is used as the test set, and the 
remaining 9 partitions are temporarily grouped and used 
as the training set. In each run the system computes the 
prediction accuracy rate on the test set, which is the ratio 
of the number of correct predictions over the total number 
of predictions. The reported result is the average 
prediction accuracy rate over the 10 runs. 

We have compared the predictive accuracy of the rules 
discovered by our GA with the predictive accuracy of the 
rules discovered by J4.8 (Witten, 2000). The latter is a 
decision-tree-building algorithm which is included in a 
public-domain data mining tool available at: 
www.cs.waikato.ac.nz/ml/weka/index.html. J4.8 is a 
modified version of the very well-known decision-tree-
building algorithm C4.5 (Quinlan, 1993).  

Note that J4.8 (as well as C4.5) is an algorithm designed 
for the classification task of data mining, where there is a 
single goal attribute to be predicted. Similarly, each run of 
our GA discovers a rule predicting a different goal 
attribute value. Hence, both J4.8 and our GA have to be 
run several times in our application, since we are 
interested in discovering rules predicting several goal 
attributes. More precisely, J4.8 was “run” 6 times (each 
“run” actually consists of the 10 runs of a 10-fold cross-
validation procedure), whereas our GA was “run” 15 
times (again, each “run” was a 10-fold cross-validation 
procedure), corresponding to the 15 different goal 
attribute values for all the 6 goal attributes.  

Note also that J4.8 and our GA were designed for 
discovering different kinds of prediction rules. The two 
main differences are as follows. First, J4.8 just tries to 
discover accurate rules. It does not try to discover 
interesting, surprising rules. By contrast, our GA tries to 
discover rules that are both accurate and surprising for the 
user. Second, J4.8 was designed for discovering 
classification rules covering all examples. That is, given 
any test example, J4.8 must have discovered a rule that 
can be used to predict its class. By contrast, our GA does 
not try to discover rules covering all examples. It tries to 
discover only a small set of interesting, surprising rules, 
the knowledge “nuggets”. The discovered rules can 
collectively cover only a relatively small subset of 
examples, and yet be considered surprising, high-quality 
rules. These two differences make it difficult to compare 
the two algorithms in a fair way. 

In order to make this comparison more fair, we have 
eliminated the above first difference. This was achieved 
by modifying the fitness function of the GA (only in the 
experiments reported in this section) so that the fitness of 
an individual (rule) is measured only by its predictive 
accuracy, ignoring its degree of surprisingness, i.e.: 

Fitness(i) = Acc(i) = (CorrPred - 1/2) / (TotPred)  

Now both J4.8 and the GA search only for accurate rules.  
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The above second difference between the two algorithms 
is more difficult to eliminate, and it still remains a 
difference in our experiments. This problem will be the 
subject of future research. 

The predictive accuracy obtained by J4.8 and our GA is 
reported in Table 1. The first column of this table 
identifies the goal attribute predicted by the rule (see the 
meaning of G1...G6 in the previous section), whereas the 
second column identifies the value predicted for that goal 
attribute. The third column identifies the relative 
frequency (in %) of the corresponding goal attribute value 
in the training set. The fourth and fifth columns report the 
prediction accuracy rate (in %) in the test set (10-fold 
cross-validation) of J4.8 and the GA, respectively. In each 
row, we show in bold the larger predictive accuracy rate, 
out of the rates obtained by the two algorithms.  
 

Table 1: Prediction Accuracy Rate (%) of J4.8 and GA 

Goal 

attrib. 

Predicted 

value 

Freq. 

(%) 

J4.8 

 

GA 

 

low 46.9 64.9 58.8  

medium 50.6 63.9 60.4  

G1 

high 2.5 9.1 0.0  

low 64.2 76.6 90.7  

medium 29.7 45.3 40.0  

G2 

high 6.1 32.2 25.0  

low 76.9 82.2 95.2  

medium 21.2 45.3 56.7  

G3 

high 1.9 27.4 25.0  

low  93.2 93.4 98.4  G4 

high 6.8 51.7 14.3  

low  83.5 86.0 89.5  G5 

high 16.5 54.7 56.9  

low  97.9 97.9 98.9  G6 

high 2.1 0.0 0.0  

As can be seen in the table, the prediction accuracy rate of 
the GA is larger than the one of J4.8 in seven rows (i.e., 
seven goal attribute values), whereas the converse is true 
in other seven rows. With the exception of the goal 
attribute G1, in general the GA outperformed J4.8 in the 
prediction of goal attribute values with a larger frequency 
in the training set, whereas J4.8 outperformed the GA in 
values with a smaller frequency in the training set.  

In any case, the focus of our experiments is the evaluation 
of the degree of interestingness of the rules discovered by 
the GA, reported in the next section.   

4.3 EVALUATING THE INTERESTINGNESS OF 

THE RULES DISCOVERED BY THE GA  

The rules discovered by the GA were also evaluated with 
respect to their degree of interestingness (surprisingness) 
for the user. In this experiment it was not possible to 
compare the GA with J4.8, since J4.8 was not designed to 
discover interesting rules. Actually, for the majority of the 
6 goal attributes, J4.8 produced a very large decision tree, 
with literally hundreds of nodes. Therefore, it was not 
even feasible to show all rules discovered by J4.8 to the 
user, anyway. 

By contrast, the GA was explicitly designed to discover a 
small set of interesting rules (one rule per goal attribute 
value to be predicted), so that it was very feasible to show 
all rules discovered by the GA to the user, for his 
subjective evaluation.   

We emphasize that the user who evaluated the 
interestingness of the discovered rules was the same user 
who specified the general impressions, as mentioned 
above. Actually, when the user was shown a discovered 
rule, he was also shown his own general impression 
contradicted by that rule. 

The user was asked to assign to each rule discovered by 
the GA one of the following three degrees of 
interestingness (surprisingness): low interestingness, 
medium interestingness or high interestingness. The 
results of the evaluation performed by the user is reported 
in Table 2. The rule consequent in the first column 
consists of an attribute-value pair “Gi= val” identifying 
the goal attribute value predicted by the rule, where Gi 
denotes the i-th attribute, i=1,...,6 (see section 4.1 for the 
meaning of these goal attributes) and val denotes the value 
predicted for the corresponding goal attribute. The second 
column of this table shows the degree of interestingness 
assigned to the rule by the user.  

 
Table 2: Interestingness of rules discovered by the GA  

Rule consequent interestingness  

for the user 

G1 = low high 

G1 = medium medium 

G1 = high medium 

G2 = low  high 

G2 = medium medium 

G2 = high low 

G3 = low high 

G3 = medium low 

G3 = high low 

G4 = low medium 

G4 = high medium 

G5 = low high 

G5 = high low 

G6 = low high 

G6 = high low 

 
The experiment reported in this section, involving 15 runs 
of the GA (one for each goal attribute value being 
predicted) took about 6 minutes. Each run of the GA had a 
population size of 100 individuals, which evolved during 
60 generations. 

The results reported in Table 2 were obtained by using the 
entire data set (i.e., all the 5,690 examples) as input data 
for the GA. This procedure is justified because when 
measuring the degree of interestingness of discovered 
rules there is no need for dividing the data into training 
and test sets, since there is no need for measuring 
predictive accuracy in the test set (which was already 
measured in the experiments reported in the previous 
section). 
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Out of the 15 rules discovered by the GA, 5 were assigned 
a high degree of interestingness by the user, 5 were 
assigned a medium degree of interestingness, and the 
remaining 5 were assigned a low degree of 
interestingness. Overall, this seems to be a relatively good 
result, considering how difficult it is to discover very 
interesting, surprising rules.  

We have observed that there is a relationship between a 
rule’s simplicity (in the sense of having a small number of 
conditions) and its degree of interestingness for the user. 
This relationship is due to an interaction between the 
measure of rule surprisingness used in this work and the 
kind of general impressions specified by the user, as 
follows. In our experiments, the user specified mainly 
short general impressions, having a small number of 
conditions. As a result, the measure of rule surprisingness 
favors the discovery of short rules too, since these rules 
can have a larger degree of similarity between the rule 
antecedent and the general impression antecedent.  

5 CONCLUSIONS AND FUTURE WORK  

We have proposed a GA for discovering interesting fuzzy 
prediction rules. The proposed GA was evaluated with 
respect to both the predictive accuracy and the 
interestingness of the discovered rules. With respect to the 
former criterion, the performance of the GA was 
compared with J4.8, a well-known decision-tree-building 
algorithm. Overall, the GA was found to be competitive 
with J4.8 with respect to this criterion.  

In any case, the main focus of our experiments was on the 
discovery of rules that are interesting, in the sense of 
representing surprising, previously-unknown knowledge 
for the user. In our experiments the application domain 
was science & technology data, and the user was an expert 
in this domain. Overall, the GA was able to found several 
rules that were considered very interesting by the user. 
For instance, one of the general impressions specified by 
the user represented his previous knowledge (or belief) 
that biology researchers of a given region had a high 
number of international edited/published books. However, 
the GA was able to found an accurate rule contradicting 
this general impression. The rule had the same antecedent 
as the general impression but made the opposite 
prediction, i.e. it predicted that the researchers in question 
had a low number of international edited/published books. 
This rule was considered very interesting by the user. 

The main direction for future research will be to compare 
the degree of interestingness of the rules discovered by 
our GA with the degree of interestingness of the rules 
discovered by another data mining algorithm that was 
specifically designed for the discovery of interesting rules.  
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Abstract

Genetic programming is used to evolve min-
eral identification functions for hyperspec-
tral images. The input image set comprises
168 images from different wavelengths rang-
ing from 428 nm (visible blue) to 2507 nm
(invisible shortwave in the infrared), taken
over Cuprite, Nevada, with the AVIRIS hy-
perspectral sensor. A composite mineral im-
age indicating the overall reflectance percent-
age of three minerals (alunite, kaolnite, bud-
dingtonite) is used as a reference or “solu-
tion” image. The training set is manually se-
lected from this composite image. The task of
the GP system is to evolve mineral identifiers,
where each identifier is trained to identify one
of the three mineral specimens. A number
of different GP experiments were undertaken,
which parameterized features such as thresh-
olded mineral reflectance intensity and target
GP language. The results are promising, es-
pecially for minerals with higher reflectance
thresholds (more intense concentrations).

1 INTRODUCTION

Remote sensing using aircraft and satellite photogra-
phy is well-established technology. The use of hyper-
spectral imagery, however, is relatively new. Hyper-
spectral images are capable of precisely capturing nar-
row bands of spectra through a wide range of wave-
lengths. Since many organic and inorganic materials
exhibit unique absorption and reflection characteris-
tics at particular bandwidths, these spectra are use-
ful for remotely identifying various materials and phe-
nomena of interest. This is an important area of work,
since hyperspectral data permits the discovery of valu-
able natural resources in areas largely inaccessible by

foot. Literally any area of the Earth can be mapped by
hyperspectral imagery, be it with aircraft or satellites.

One complication in using this technology is the time
and expertise required to interpret the data. Hy-
perspectral imaging systems such as the NASA/JPL
AVIRIS1 sensor can capture over 200 bandwidths for
a single geographic location (Green et al. 1998). This
is denoted by a hyperspectral cube, which takes the
form of many hundreds of mega-bytes of information.
Interpreting this massive amount of data is difficult,
especially considering that the spectra obtained repre-
sent mixed spectral signatures of a variety of materi-
als. Moreover, noise and other unwanted effects must
be considered. Deciphering this enormous volume of
cryptic data is therefore next to impossible for humans
to do manually.

This paper uses genetic programming (GP) to evolve
mineral classifiers for use on hyperspectral images.
Separate mineral classifiers are evolved for three spe-
cific minerals – buddingtonite, alunite, and kaolinite.
The classifiers take the form of programs which, when
given a vector data from a particular pixel location on
a hyperspectral cube, determine whether the mineral
of interest resides there or not. Evolution proceeds by
evaluating the performance of classifiers on positive
and negative training sets. In addition, given the ef-
fects of noise at low reflectance levels, separate thresh-
old stages are examined. This is done in the hopes
that more accurate classification arises at higher re-
flectance levels, where there are more intense mineral
concentrations.

Section 2 reviews concepts in hyperspectral imaging.
The experimental design is outlined in Section 3. Sec-
tion 4 presents the results of the experiments. A dis-
cussion and comparison to related work concludes the
paper in Section 5.

1Airborne Visible/Infrared Imaging Spectrometer.
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2 BACKGROUND

Figure 1: Cuprite, Nevada.

Figure 2: AVIRIS image, 2229nm.

The AVIRIS data used in this study was taken over
Cuprite, Nevada on June 12, 1996 (19:31UT). The sen-
sor acquires data in the wavelength region from 0.38
to 2.50 microns, with a ground sampling interval of
16.2m across track (horizontal) and 18.1m along track
(vertical). At-sensor radiance data were converted to
surface reflectance via an atmospheric correction using
the MODTRAN3 radiative transfer (RT) code, as im-
plemented in the imaging spectrometer data analysis
system (ISDAS) (Staenz and Williams 1997). This re-
moves spectral artifacts from solar flux and the earth’s
absorption bands (for example, water). This leaves
surface reflectance, which is the data of interest, as
it contains the spectral information pertinent to the
identification and mapping of specific minerals and
vegetation.

Figure 1 shows the Cuprite, Nevada, region studied

Figure 3: Spectra for alunite (AL), kaolinite (KA), and
buddingtonite (BU)

in this paper2. Cuprite is a well-studied test area for
remote sensing (Resmini et al. 1997). Figure 2 shows
an AVIRIS hyperspectral reflectance image of the same
area at the 2229nm bandwidth.

There is much ongoing research regarding the interpre-
tation of hyperspectral reflectance imagery, and a sur-
vey is beyond the scope of this paper. A representative
approach to the interpretation of reflectance data is
the Tetracorder system(Clark and Swayze 1995). Iden-
tification is performed by the application of a least-
squares fitting procedure to the total set of spectral
data and reference spectra. Features in the absorption
patterns of materials are enhanced during this fitting
process, in order to promote effective identification.
Multiple materials can be fitted simultaneously using
this technique. Artificial neural networks are also com-
monly applied to the automatic analysis and classifi-
cation of remote sensing data, including AVIRIS data
(Ridd et al. 1992, Civco 1993, Dreyer 1993, Merenyi
et al. 1993, Foody and Arora 1997, Yang et al. 1999,
Aguilar et al. 2000).

Evolutionary computation has been applied to multi-
spectral image analysis and remote sensing. (Larch
1994) uses genetic algorithms to evolve categoriza-
tion production rules for Landsat images. (Daida et
al. 1996) evolve genetic programs that identify ice-flow
ridges from ERS SAR images. Images from aircraft
are analyzed using GP in (Howard and Roberts 1999).
(Rauss et al. 2000) evolve genetic programs for cate-
gorizing hyperspectral imagery. The GENIE system
is used for hyperspectral image classification, which

2North is downwards in this and all the maps in this
paper.
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uses a hybrid combination of linear genetic program-
ming with conventional classifier algorithms (Harvey
et al. 2000, Perkins et al. 2000, Brumby et al. 2001).
Among other things, GENIE has been used to classify
features such as forest fires and golf courses.

Figure 3 shows the signature spectra for the minerals
studied in this paper. Such spectra are measured in
the laboratory, and represent reflectance signatures for
various organic and inorganic materials. When miner-
als like these are resident in the environment, hyper-
spectral imaging will capture similar spectra. Tetra-
corder uses these lab spectra as guides for identifying
minerals in hyperspectral data.

3 EXPERIMENT DESIGN

3.1 Hyperspectral data preparation

The reflectance data from Cuprite derived from the
AVIRIS hyperspectral data set was analysed by
(Neville et al. 1998). The mineral fraction maps which
resulted from their work are used as the training so-
lution for this study. From the full AVIRIS bandset
available, we started with data at 0.428 microns and
eliminated bands near 1.4 and 1.9, where strong ab-
sorption in the atmosphere occurs due to water vapour.
This left 168 bands of data as input for our GP exper-
iment.

3.2 Training set sampling

The general goal is to evolve a separate identifier for
each of the three minerals being studied. The train-
ing scheme requires positive examples (pixels where
the target mineral is resident) and negative examples
(pixels where the mineral is absent). The solution data
is given in a mineral distribution map. This is an RGB
bitmap of the Cuprite area whose red, green, and blue
channels denote the relative reflectance intensity for
AL, KA, and BU respectively. Since these minerals
are often mixed throughout the Cuprite site, the RGB
channels represent mixed intensities of the minerals.

The majority of the Cuprite area is covered by weak
mixtures of the minerals. For example, KA and BU ex-
hibit weak distributions over most of the map. These
weak areas will negatively influence evolved results,
given both the low intensity of resident spectra and
existence of spectra from other incident minerals not
being studied. Our hypothesis is that better quality
results will be obtained for areas with more intense
reflectance values for the minerals of interest. Hence
mineral identifiers will be evolved for different thresh-
olds of reflectance intensity. Thresholds are used to

Table 1: Training Set Sizes

Threshold
0.0 0.05 0.15 0.25 0.35 0.50

AL pos: 40 40 31 26 20 11
neg: 80 80 89 94 100 109

KA pos: 75 72 57 46 38 23
neg: 80 83 98 109 117 132

BU pos: 77 73 30 19 12 10
neg: 90 94 137 148 155 157

determine the level of reflectance constituting a pos-
itive example. A threshold of 25% means that the
reflectance value is considered positive if it has an in-
tensity of at least 25% relative to the maximum re-
flectance observable (100%). Otherwise, it is treated
as a negative instance.

The sizes of the training sets for different thresholds
are given in Table 1. Initially, positive and negative
example sets were obtained manually, by sampling a
diverse selection of pixels throughout the entire map
area. The sizes of these sets are listed in the 0% thresh-
old column. The thresholded example sets are refined
from these initial sets, by moving positive examples
that do not meet the threshold requirements into the
negative set. Hence, the positive set sizes decrease as
the thresholds are raised.

3.3 GP experiment preparation

Table 2: GP Parameters

Parameter Value
Population size 1000
Max. generations 100
Max. runs 10
Prob. crossover 0.90
Prob. mutation 0.10
Prob. leaf mutation 0.90
Max. initial depth 2 to 6
Max. depth 17
Tournament size, crossover 4
Tournament size, mutation 7

The GP system used is the typed lilGP 1.1 system
(Zongker and Punch 1995). LilGP is a C-based sys-
tem that implements basic tree-oriented GP. Typing
is useful since both integer and floating point values
are used in evolved programs (Montana 1995). Some
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self-explanatory GP parameters are given in Table 2.
Our use of GP is straight-forward: each program in the
population is evaluated on the training examples, and
its performance in correctly classifying the examples is
measured.

Three target languages are used (Table 3). The lan-
guages test spectral properties at single pixel loca-
tions of the hyperspectral data. Spatial operators are
not used. The spectral operators extract hyperspec-
tral data at a pixel coordinate which is globally set
for the current program execution. Language L1 de-
notes a boolean decision tree, in which a true result
means that the target mineral resides at the pixel in
question. L1’s relational operators test floating point
expressions on hyperspectral image parameters p[I],
where I is an index (modulo 168) to the hyperspec-
tral image cube. The floating point function set F
is self-explanatory. The inc operator increments its
integer argument. Ephemeral numbers are randomly
generated constants.

L2 and L3 are floating point languages, in which eval-
uated values greater than zero are interpreted as pos-
itive identification of the mineral. The L2 language is
the subset of L1 without boolean expressions. The L3

language is L2 supplemented with floating point op-
erators that compute over vectors (contiguous ranges
of hyperspectral data). These 2-argument functions
compute the minimum, maximum, average, and stan-
dard deviation over data vectors. The first argument
denotes a starting level in the hyperspectral data. The
second argument is evaluated modulo 3, and denotes
the depth of the vector: 3, 7, or 11 levels. For exam-
ple, vavg(35, 2) computes the average at the current
pixel location for layers 35 through 45 inclusive.

The fitness value for a program is computed as:

Fitness = 1−
(ce
te
∗ cn
tn

)
where ce is the number of correctly identified positive

Table 3: Target Languages

Boolean language L1:
B ::= (if F<F then B else B) | F<F | true | false
F ::= p[I] | F+F | F-F | F*F | F/F |

min(F,F) | max(F,F) | ephem flt
I ::= inc(I) | ephem int

Float language L2: F, I from L1

Float language L3:
L2∪ vmin(F,F) | vmax(F,F) | vavg(F,F) | vsdev(F,F)

examples, te is the total number of positive examples,
cn is the number of correctly identified negative ex-
amples, and tn is the total number of negative exam-
ples. Since the negative training set dwarfs the positive
set at higher thresholds, this formula balances positive
and negative classification performance with respect to
one another.

4 RESULTS

Table 4: Testing and Training Results: % correctly
classified pixels

threshold
AL 0.05 0.15 0.25 0.35 0.5
testing:
avg overall 0.825 0.933 0.957 0.966 0.985

best soln 0.875 0.970 0.991 0.995 0.998
TP 0.420 0.587 0.593 0.722 0.644
TN 0.955 0.984 0.997 0.997 0.999

training:
avg overall 0.87 0.946 0.953 0.961 0.973

threshold
KA 0.05 0.15 0.25 0.35 0.5
testing:
avg overall 0.876 0.952 0.972 0.986 0.987

best soln 0.903 0.964 0.984 0.991 0.994
TP 0.731 0.838 0.869 0.906 0.830
TN 0.963 0.980 0.992 0.997 0.996

training:
avg overall 0.908 0.963 0.986 0.990 0.966

threshold
BU 0.05 0.15 0.25 0.35 0.5
testing:
avg overall 0.608 0.811 0.972 0.989 0.994

best soln 0.653 0.888 0.993 0.999 0.999
TP 0.797 0.314 0.366 0.592 0.768
TN 0.381 0.945 0.995 1.000 1.000

training:
avg overall 0.834 0.919 0.986 0.990 0.990

Table 4 shows the training and testing performances
for the GP runs. Every mineral and threshold exper-
iment combines the results for 30 runs (3 target lan-
guages, 10 runs per language). The testing set is re-
mainder of the input data excluding the training pix-
els. Testing “avg overall” denotes the percentage of
correctly classified pixels averaged for all the solutions
from the 30 runs. The performance of the single best
solution obtained during the 30 runs is given in the
“best soln”, TP (true positive), and TN (true nega-
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tive) entries. These values respectively report the per-
centages of correct pixel classifications for the entire
testing image, the positive pixels, and negative pixels.
The training “avg overall” is the percentage of positive
and negative training examples correctly classified, av-
eraged for all 30 solutions.

The training performance is fairly good amongst all
the solutions in the runs, and it improves at higher
thresholds. The solution (“best soln”) programs ob-
tained higher training performances than the averages
reported in the table; in higher threshold cases, the
best programs often had 100% training scores.

The testing performance of low-threshold results (es-
pecially at 0.05) is marginal. This is due to the noisy
reflectance values at that low threshold. The over-
all testing performance improves at higher thresholds.
For the best solutions, TN scores tend to be superior to
TP scores, which boosts the overall classification score.
The relative abundance of negative training examples
compared to positive examples at higher thresholds
may explain this.

With AL and KA, the best solutions’ TP performance
usually improves, while the best TN scores always im-
prove. However, the best TP scores decrease when go-
ing to the 0.5 threshold with these minerals, and this
was seen with other solutions obtained for these runs.
Again, the low number of positive training instances of
those minerals at this threshold may explain this (see
Figure 1).

For BU, raising the threshold from 0.05 to 0.15, the
TP fell from 79.7% to 31.4%. This was seen in most
other BU runs as well. The distribution of positive
examples of BU decreased dramatically from 73 to 30
examples when moving to the 0.15 threshold, and may
not adequately characterize the mineral at this thresh-
old.

Best solutions were distributed fairly evenly amongst
the three target languages. L3 solutions were generally
the smallest in terms of tree size, followed by L1 pro-
grams and L2 programs. L1 programs were the fastest
in wall clock time. L3 and L2 solutions were respec-
tively an average of 1.6 and 2.3 times slower than L1

programs. Overall, runs took between 1 to 20 min-
utes to complete, with a typical run taking about 6
minutes.

Figure 4 shows classification plots for the best solu-
tions listed in Table 4. In images (a) through (i), grey
(TN) and white (TP) are correct classifications, while
black denotes erroneous classifications. The classifiers
clearly have the most difficulty with the lowest thresh-
old value of 5%. For example, the BU example in

(g) only classifies 65.3% of the image correctly. Low-
threshold classifiers also varied widely in terms of out-
put characteristics. The classifiers do better at the
higher thresholds.

Image (j) deconstructs the classification errors in im-
age (g), by rendering false positives with black, false
negatives with white. and the remaining correctly clas-
sified pixels as grey. This particular classifier was eager
to classify mineral instances, hence its relatively high
TP score. Clearly, there is a distribution of BU at 5%
and higher throughout a large portion of the map area.

The evolved solution program (in l-expression form)
for images (g) and (j) is the following:

(- (p (inc 29199))
(p (inc (inc (inc 23424)))))

This simplifies to the expression “p[136] - p[75]”. This
is using the simple classification rule p2129 > p1155,
where p2129 is the pixel reflectance at the 2129nm
bandwidth. Upon first inspection, this rule does not
intuitively correspond to the BU spectra graph in Fig-
ure 3, where the BU reflectance at 2129nm is lower
than at 1155nm. However, the reflectance chart (k)
in Figure 4 shows that this simple relation correctly
characterizes BU at this low threshold. The chart was
created by finding the average intensity of pixels over
the range of spectra used in the testing set, for a con-
strained area that contained a high density of BU at
the 5% threshold. From this graph, it is clear that the
relation does in fact accurately classify weak densities
of BU. It must be realized, however, that the hyper-
spectral data at low 5% thresholds are likely poor indi-
cators for any of the minerals studied, given the noise
resident at that threshold. In addition, the 1155nm po-
sition is near a water vapour absorption feature, and
selection of this band by the GP solution may be an
artifact of the atmospheric correction procedure. This
will be investigated further.

Figure 5 shows the classification expression (simplified
from the L1 source program) for the the best solution
for BU at the 50% threshold. The expression uses 12
different frequencies over the entire span of hyperspec-
tral data used.

5 CONCLUSION

The hyperspectral mineral identifiers evolved by GP
work quite differently from conventional approaches.
With least-squares spectra fitting, signature spectra
for materials of interest are fitted to the hyperspec-
tral values at each pixel on the map. Identification
entails exaggerating the signature differences between
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(a) AL, t = 0.05 (b) AL, t = 0.25 (c) AL, t = 0.50

(d) KA, t = 0.05 (e) KA, t = 0.25 (f) KA, t = 0.50

(g) BU, t = 0.05 (h) BU, t = 0.25 (i) BU, t = 0.50

(j) BU, t = 0.05, fp blk, fn wht (k) BU area reflectance, t = 0.05

Figure 4: Classification results for map area: alunite (a-c), kaolinite (d-f), and buddingtonite (g-j). In images
(a) through (i), grey is true negative, white is true positive, and black is false negative and false positive. In
image (j), grey is both true positive and true negative, black is false positive, and white is false negative.
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if (max(2.1725 + ((min((p[136] - 1.16407), 0.538215) * 0.19977)), p[88])
/ ((p[30] * 0.19731 / p[163]) + 0.88465))

< (max(0.76650, p[14]) / min((0.18294 / p[11]), (0.00323 + max(-0.10691, p[74]))))
then ((-1.1482 / min((p[2] - 0.48504), min(0.70156, p[71]))) < p[31])
else (p[134] < p[151])

Figure 5: Evolved L1 classifier for BU, 50% threshold

materials, and looking for such fluctuations in the hy-
perspectral data. GP evolves classifiers that find some
spectral feature that correctly identifies the existence
or absence of a particular mineral. These classifiers
do not reference signature spectra, but rather, use the
mixed reflectance values as resident in the data set.
The success of the classifier depends upon its train-
ing performance in differentiating positive and nega-
tive examples for the mineral. As a result, material
mixtures are automatically accounted for. For exam-
ple, AL and KA are mixed in a large portion of the
Cuprite data set, and the positive training sets for
these minerals share many training points.

This implies that the effectiveness of the evolved classi-
fiers implicitly depends upon the context of other ma-
terials resident in the geographic area analyzed. The
classification logic evolved by GP is best characterized
as a function which identifies a mineral in the context
of the other minerals resident in the training set. We
have not yet tested our mineral identifiers on hyper-
spectral images from other locations to see how robust
these identifiers would be in the presence of materials
unseen in the training set. Future work needs to ex-
plore the generality of evolved classifiers, in order to
see whether a classifier is useful for other geographic
locations.

Training set quality is important in our experiments.
Our training sets were created by manually selecting
positive and negative training points spanning the map
area. Although manual sampling is fast and conve-
nient, future work needs to address training sample
quality more rigorously. A range of combinations of
minerals at various thresholds should be sampled for
the positive and negative training sets. This is prob-
ably best done via statistical sampling. Such training
sets would better represent the varieties of combina-
tions of mineral spectra resident in the images.

Although the fitness formula tries to balance the per-
formance of positive and negative example scoring,
many runs produce programs that tend towards be-
ing either liberal (eager to identify positive instances)
or conservative (eager to report non-instances). Some
solutions with very similar fitness scores often have
dramatically different classification behaviours, usu-

ally falling somewhere on this liberal or conservative
dichotomy. These results can mean that the training
sets are too small, and evolution is converging prema-
turely to inadequate solutions.

This work is closest in spirit to that in (Rauss et
al. 2000). Our L2 language is similar to theirs, and we
also use manually-selected training sets, albeit larger
in size than theirs. Their work classified grass from
non-grass in hyperspectral images, whereas we classify
one of three minerals in each classifier. Our approach
can also be compared to the GENIE system (Perkins
et al. 2000). The GENIE system’s application of GP
is a bit unusual, as it uses 6 “scratch images”, and
a fixed-length linear program that may or may not
reference these images. Hence the GENIE solution is
not as robust a program as a general l-expression pro-
gram. GENIE also uses conventional classifiers to help
analyze and post-process the results from the evolved
image analyzer. GENIE uses a large library of spectral
and spatial primitive operators, where we use a fairly
small set of exclusively spectral operators. When this
technology has matured in the future, more careful
comparisons between it and other paradigms needs to
be undertaken.
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Abstract

This paper proposes the application of
evolutionary computation, a stochastic search
technique that parallels the evolution of living
organisms, to parameter adjustment for voice
conversion, and reports on several experimental
results applicable to the fitting of prosodic
coefficients. Here, because of the difficulty
involved in providing a clear fitness function for
evaluating evolutionary computation, we adopt a
system of interactive evolution in which genetic
manipulation is repeated while evaluation is
performed subjectively based on human feelings.
It was found that the use of evolutionary
computation achieves voice conversion closer to
the target in question than parameter adjustment
based on designer experience or trial and error,
and that degradation in sound quality is relatively
small giving no impression of a processed voice.

1 INTRODUCTION

With the coming of the multimedia era, the market for
multimedia information devices centered about personal
computers is experiencing rapid growth. Likewise, the
market for multimedia application software is taking off
giving rise to an environment in which users can
manipulate images and sound with ease. In particular,
speech synthesis technology is expected to generate a
large market for a wide rage of applications from the
reading of E-mail and text data on the World Wide Web
to the speaking of road traffic reports provided by
navigation devices. Nevertheless, mechanically
synthesized speech by a rule-based speech synthesis
system or similar suffers from a variety of problems.
These include an impression of discontinuity between
phoneme fragments, degraded sound quality due to
repeated signal processing, and limitations in sound-
source/articulation segregation models. In other words,
the synthesis of natural speech is extremely difficult.

Current technology tends to produce mechanical or
unintelligible speech, and problems such as these are
simply delaying the spread of speech synthesis products.

Research has also begun on the application of voice
processing to narration when editing multimedia content
as in a spoken presentation. The need for voice
conversion (processing) arises from the fact that most
people have difficulty speaking with an expressive and
clear voice. However, only qualitative know-how has so
far been obtained in the development of voice-processing
technology for converting original speech to clear
narration. Parameter setting is currently performed on a
trial and error basis making adjustments difficult.

Against the above background, this research aims to
establish technology for converting original human
speech or speech mechanically synthesized from text to
clear speech rich in prosodic stress. As the first step to
this end, we have proposed the application of
evolutionary computation to parameter adjustment for the
sake of voice conversion using original speech recorded
by a microphone as input data, and have reported on
several experimental results applicable to the fitting of
prosodic coefficients [Sato 1997]. In this paper, we show
that parameter adjustment using evolutionary
computation can be effective not only for voice
conversion using original speech as input but also for
improving the clarity of speech mechanically synthesized
from text. We also investigate why parameter adjustment
using evolutionary computation is more effective than
that based on trial and error by an experienced designer.

2 VOICE ELEMENTS AND VOICE
CONVERSION

This section summarizes the feature quantities needed for
voice conversion and describes voice conversion by
prosodic control.

2.1 VOICE ELEMENTS

In human speech production, the vocal cords serve as the
sound generator. The vocal cords, which are a highly
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flexible type of muscle located deep in the throat, are
made to vibrate by breath expelled from the lungs,
thereby causing acoustic vibrations in the air (sound
waves). The waveform of this acoustic signal is
approximately triangular or saw-tooth in form and
consists of harmonic components that are integer
multiples of the fundamental frequency of the sound
wave. This acoustic signal that has a broad range of
harmonic components of a constant interval propagates
through the vocal tract from the vocal cords to the lips
and acquires resonances that depend on the shape of the
vocal tract. This transformations results in the production
of phonemes such as /a/ or /i/, which are finally emitted
from the lips as speech. That is to say, the human voice
characteristics are determined by three factors: sound
generation, propagation in the vocal tract, and emission.
The vocal cords control the pitch of the voice and the
shape of the vocal tract controls prosody. If we define
voice quality in terms of properties such as timbre, we
can consider voice quality to be determined by both the
state of the vocal cords and the state of the vocal tract
[Klatt 1990]. That is to say, we can consider pitch
structure, amplitude structure, temporal structure and
spectral structure as the feature quantities for the control
of voice quality.

2.2 MODIFICATION OF VOICE QUALITY
THROUGH PROSODIC ADJUSTMENT

Research on the features of the voices of professional
announcers has clarified to some extent the qualitative
tendencies that are related to highly-intelligible speech. It
is known, for example, that raising the overall pitch
slightly and increasing the acoustic power of consonants
slightly increases intelligibility [Kitahara 1992]. It
remains unclear, however, to what specific values those
parameters should be set. Moreover, it is generally
difficult to control dynamic spectral characteristics in real
time. In other words, it is difficult to even consider
adjusting all of the control parameters to begin with.
Therefore, sought to achieve voice conversion by limiting
the data to be controlled to pitch data, amplitude data, and
temporal structure prosodic data.
The pitch conversion method is shown in Fig. 1. Pitch is
raised by cutting out a part of the waveform within one
pitch unit. Pitch is lowered by inserting silence into a
pitch unit. Modification of the temporal structure is
accomplished as illustrated in Fig. 2. The continuation
length is accomplished by using the TDHS [Malah 1979]
enhancement method to extend or contract the sound
length without changing the pitch. Amplitude is modified
on a logarithmic power scale according to the formula

Where Wi is the current value and β is the modification
coefficient.

log log ( )10 1
2

10
2 1W Wi i+ = + β

Figure 1: Extension and curtailment of pitch period. 
Pitch is raised by cutting out a part of the waveform 
within one pitch unit. Pitch is lowered by inserting 
silence into a pitch unit..
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cutting

(b) Curtailment 

1 pitch
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Figure 2: Extension and curtailment of temporal 
structure.  The continuation length is accomplished by 
using the TDHS enhancement method to extend or 
contract the sound length without changing the pitch.
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3  PROSODIC COEFFICIENT FITTING
BY EVOLUTIONARY COMPUTATION

3.1 CONFIGURATION OF THE VOICE
MODIFICATION SYSTEM

The configuration of the voice modification system is
illustrated in Fig. 3. The system comprises a voice
processing part and prosody control coefficient learning
part. The voice modification unit changes voice quality,
targeting terms that express emotional feelings, such as
“clear,” and “cute.” The modification of prosodic
information is done by the prosodic control unit. To
prevent degradation of voice quality, the processing is
done at the waveform level as described above rather than
at the parameter level, as is done in the usual analysis-
synthesis systems. The modification coefficient learning
unit is provided with qualitative objectives, such as terms
of emotion, and the modification coefficients used for
prosodic modification targeting those objectives are
acquired automatically by learning. As the learning
algorithm, this unit employs evolutionary computation,
which is generally known as an effective method for
solving problems that involve optimization of a large
number of combinations.

3.2 OVERVIEW OF INTERACTIVE EVOLUTION
OF PROSODIC CONTROL

The first step in this procedure is to define chromosomes,
i.e., to substitute the search problem for one of
determining an optimum chromosome. As shown in Fig.
4, we define a chromosome as a one-dimensional real-
number array corresponding to a voice-conversion target
(an emotive term) and consisting of three prosody
modification coefficients. Specifically, denoting the pitch
modification factor as α, the amplitude modification
factor as β, and the continuation time factor as γ, we
define a chromosome as the array [α, β, γ]. The next step
is to generate individuals.

Here, we generate 20, and for half of these, that is, 10
individuals, chromosomes are defined so that their
prosody modification coefficients change randomly for
each voice-conversion target. For the remaining 10,
chromosomes are defined so that their coefficients change
randomly only within the vicinity of prosody-
modification-coefficient values determined from
experience on a trial and error basis. In the following step,
evaluation, selection, and genetic manipulation are
repeated until satisfactory voice quality for conversion is
attained. Several methods of evaluation can be considered
here, such as granting points based on human subjectivity
or preparing a target speech waveform beforehand and
evaluating the mean square difference between this target
waveform and the output speech waveform from voice-
conversion equipment. In the case of evolutionary
computation, a designer will generally define a clear
evaluation function beforehand for use in automatic
recursion of change from one generation to another. It is
difficult to imagine, however, a working format in which
an end user himself sets up a clear evaluation function,
and in recognition of this difficulty, we adopt a system of
interactive evolution [Sims 1991, Takagi 2001] in which
people evaluate results subjectively (based on feelings)
for each generation.

1.383 -1.366 0.907

1.172 1.365 0.918

0.992 1.074 1.015

Figure 4: Example of the chromosomes.  It is defined
by an array, [pitch modification factor α, amplitude
modification factor β, continuation time factor γ].
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target pitch amplitude temporal
structure structure structure

intelligible

childlike

calm

chromosomes

Figure 3: Block diagram of proposed voice quality conversion system.  The system comprises 
a voice processing part and prosody control coefficient learning part.
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3.3 GENETIC MANIPULATION

3.3.1 Selection Rule

Culling and selection are based on a fitness value, as
shown in Fig. 5. First, the individuals are sorted by their
fitness values. In the example shown in Fig. 5, 20
individuals are sorted in order of high fitness value with
respect to the objective of high intelligibility. The
population is then culled. Here, The half of the individuals
with the lowest fitness values is culled. The proportion of
the population culled does not have to be 50%; another
approach is to cull all individuals whose fitness values are
below a certain standard value. Next, the population is
replenished by replacing the culled individuals with a new
generation of individuals picked by roulette selection
[Goldberg 1989] in this example. To produce the new
generation, first two chromosomes are selected as the
parents. Offspring are generated from the parents by the
crossover and mutation process described below. Here, the
probability of selecting the two parent chromosomes is
proportional to the fitness values. Furthermore, duplication
in the selection is permitted. All individuals are parent
candidates, including the culled individuals. In other
words, taking M as the number of individuals to be culled,
we randomly select only M pairs of individuals from the
current generation of N individuals (I1 to IN), permitting
duplication in the selection. The crossover and mutation
genetic manipulation operations are performed on those
pairs to provide M pairs of individuals for replenishing the
population. Here, the probability P(Ii) of an individual Ii

being selected as a parent for creating the next generation
of individuals is determined by the following equation.
The term f(Ii) in this equation expresses the degree of
adaptability of Ii.

Although the method used here is to assign a fitness value
to each individual and cull the individuals that have low
values, it is also possible to select the individuals to be
culled by a tournament system. In that case, we do not
have access to the fitness values, so we considered
random selection of the parent individuals.

3.3.2 Crossover and Mutation

Figure 6 presents an example of crossover. In the
crossover operation, any one column is chosen and the
values in that column are swapped in the two parent
individuals. In Fig. 6, the modification coefficients for
continuation length are exchanged between the two
parents. The crossover genetic manipulation has the effect
of propagating bit strings (chromosome structural
components) that are linked to high fitness values to
another individual. If these structural components, which

are referred to as building blocks [Goldberg 1989], are
successfully assembled in an accurate manner, then an
effective search is accomplished.

N/2

N/2

Figure 5: Selection rule.

max

min

current
generation

cull

offspring

replacement

roulette selection
crossover
mutation

fitness

Figure 6: Example of crossover.  In the crossover
operation, any one column is chosen and the
values in that column are swapped in the two
parent individuals. 
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Figure 7 shows an example of mutation whereby a
prosody modification coefficient is arbitrarily selected
and randomly changed. In this example, the operation
selects the modification coefficient related to pitch and its
value mutates from 1.172 to 0.847. Here, we use mutation
as represented by Eq. (3) to raise the probability that
target mutants are in the vicinity of parents and to
improve local searching. In the equation, Ci represents a
modification coefficient for generation i, I is a unit matrix,
k is a constant, and N is a normal distribution function
with a mean vector of 0 and a covariance of kI and is
common to all elements.

This mutation operation has the effects of escaping from
local solutions and creating diversity. In addition,
crossover and mutation combined raise the fitness value,
that is, the vicinity of the modification coefficient can be
efficiently searched near the voice-conversion target.
Moreover, as multiple individuals are performing parallel
searches from different initial values, initial-value
dependency is low and positive effects from parallel
processing can be expected.

In the experiments described below, we used a crossover
rate of 0.5 and a mutation rate of 0.3.

4 EVALUATION EXPERIMENTS

4.1 EXPERIMENT WITH ORIGINAL SPEECH AS
INPUT DATA

4.1.1  Voice Stimuli

The original voice sample, S0, was the sentence, “Let me
tell you about this company.” spoken by a female in
Japanese. Five modified samples, SA1 through SA5, that
correspond to the five emotive terms, “intelligible,”
“childish,” “joyful,” “calm,” and “angry,” were produced
by applying prosody modification coefficients obtained
by the evolutionary computation learning scheme
described above. In addition, five modified samples, SB1
through SB5, that correspond to the same five emotive
terms, “intelligible,” “childish,” “joyful,” “calm,” and
“angry,” were produced by applying prosody
modification coefficients obtained by trial and error based
on the experience of a designer.

4.1.2  Experimental Method

The subjects of the experiments were 10 randomly
selected males and females between the ages of 20 and 30
who were unaware of the purpose of the experiment.
Voice sample pairs S0 together with SAi (i = 1 to 5) and
S0 together with SBi (i = 1 to 5) were presented to the test
subjects through speakers. The subjects were instructed to
judge for each sample pair whether voice modification
corresponding to the five emotive terms specified above
had been done by selecting one of three responses: “Close
to the target expressed by the emotive term,” “Can't say,”
and “Very unlike the target.” To allow quantitative
comparison, we evaluated the degree of attainment (how
close the modification came to the target) and the degree
of good or bad impression of the sample pairs on a nine-
point scale for the childish emotive classification.
Subjects were allowed to hear each sample pair multiple
times.

4.1.3  Experimental Results

The results of the judgments of all subjects for voice
sample pairs S0 - SAi (i = 1 to 5) and S0 - SBi (i = 1 to 5)
are presented in Fig. 8 as a histogram for the responses
“Close to the target” and “Very unlike the target”. From
those results, we can see that although the trial and error
approach to obtaining the modification coefficients was
successful for the “childish”, “intelligible”, and “joyful”
classifications, the modification results were judged to be
rather unlike the target for the “calm” and “angry”
classifications. In contrast to those results, the samples
produced using the modification coefficients obtained by
the evolutionary computation approach were all judged to
be close to the target on the average.

Figure 7: Example of mutation.  In this example,
the modification parameter for pitch is chosen and
the value is varied in the range from 1.172 to 0.847.

mutation
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prosodic components 
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Next, we consider the results of the evaluation of target
attainment and good/bad impression. The values averaged
for all subjects are presented in Fig. 9. Relative to an
attainment rate of +1.0 for the prosody modification
coefficient combination obtained by a designer according
to experience, the attainment rate for the evolutionary
approach was 1.6, or an improvement of 0.6. For the
impression evaluation, the scores were -0.8 for the human
design approach and +0.6 for the evolutionary
computation approach, or an improvement of 1.6. We
believe that the reason for these results is that there was a
strong tendency to raise the pitch in the adjustment by the
designer to achieve the “childish voice” modification,
resulting in a mechanical quality that produced an
unnatural impression. The evolutionary computation
approach, on the other hand, resulted in a modification
that matched the objective without noticeable degradation
in sound quality, and thus did not give the impression of
processed voice.

4.2 EXPERIMENT WITH SYNTHESIZED
SPEECH AS INPUT DATA

4.2.1  Voice Stimuli

The voice stimuli used in this experiment were as follows.
Voice sample S1 consisted of the words “voice
conversion using evolutionary computation of prosodic
control” mechanically synthesized from text using
Macintosh provided software (Macin Talk3). Voice
samples SC1 to SC3 were obtained by performing voice
conversion on the above sample for the three emotive
terms of “childish,” “intelligible,” and “masculine”
applying prosody modification coefficients obtained by
the learning system using evolutionary computation as
described above.

4.2.2  Experimental Method

As in the experiment using original speech, the subjects
were 10 randomly selected males and females between
the ages of 20 and 30 knowing nothing about the purpose
of the experiment. Voice sample pairs S1 and SCi (I= 1-3)
were presented through a speaker to these 10 subjects
who were asked to judge whether voice conversion had
succeeded in representing the above three emotive terms.
This judgement was made in a three-level manner by
selecting one of the following three responses: “close to
the target expressed by the emotive term,” “can’t say,”
and “very unlike the target.” Furthermore, for the sake of
obtaining a quantitative comparison with respect to the
emotive term “intelligible,” we also had the subjects
perform a nine-level evaluation for both degree of
attainment in voice conversion and good/bad impression
for this voice sample pair. Subjects were allowed to hear
each sample pair several times.

4.2.3  Experimental Results

The judgments of all subjects for voice sample pairs S1
and SCi (i = 1-3) are summarized in Fig. 10 in the form of
a histogram for the responses “close to the target” and
“very unlike the target.” These results demonstrate that
voice conversion is effective for all emotive terms on
average.

Figure 11 shows the results of judging degree of
attainment and reporting good/bad impression averaged
for all subjects. We see that degree of attainment
improved by +1.2 from a value of +0.0 before conversion
by determining an optimum combination of prosody
modification coefficients using evolutionary computation.
We also see that good/bad impression improved by +0.8
changing from +0.6 to +1.4.

proposed method

Figure 8: The results of the judgments of all 
subjects for voice sample pairs. The results are 
presented as a histogram for the responses "Close 
to the target" and "Very unlike the target".
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Figure 9: The results of the evaluation of target attainment and
good-bad impression. The values averaged for all subjects are
presented.
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5 DISCUSSION

The above experiments have shown that voice conversion
using evolutionary computation can get closer to a target
than parameter adjustment based on a designer’s
experience or trail and error. They have also shown that
degradation in sound quality is relatively small and that
listeners are not given a strong impression of a processed
voice in the case of evolutionary computation. We here
examine the question as to why evolutionary computation
is superior. First, we consider the problem of accuracy in
prosody modification coefficients. In the past, coefficients
have been adjusted manually using real numbers of two
or three significant digits such as 1.5 and 2.14. Such
manual adjustment, however, becomes difficult if the
search space becomes exceedingly large. On the other
hand, it has been observed that a slight modification to a
prosody modification coefficient can have a significant
effect on voice conversion. For example, while raising
pitch is an effective way of making a voice “childish,”
increasing the pitch modification factor gradually while
keeping the amplitude modification factor and
continuation time factor constant can suddenly produce
an unnatural voice like that of a “spaceman.” This can
occur even by making a slight modification to the fourth
or fifth decimal place. In other words, there are times
when the accuracy demanded of prosody modification
coefficients will exceed the range of manual adjustment.

Second, we consider the fact that each type of prosody
information, that is, pitch, amplitude, and time
continuation, is not independent but related to the other
types. When manually adjusting coefficients, it is
common to determine optimum coefficients one at a time,
such as by first adjusting the pitch modification factor
while keeping the amplitude modification factor and
continuation time factor constant, and then adjusting the
amplitude modification factor.

However, as pitch, amplitude, and time continuation are
not independent of each other but exhibit correlation, it
has been observed that changing the amplitude
modification factor after setting an optimum value for the
pitch modification factor will consequently change the
optimum solution for pitch. This suggests that the
modification coefficients for pitch, amplitude, and
continuation time must be searched for in parallel.

Figure 10: The results of the judgments of all 
subjects for voice sample pairs. The results are 
presented as a histogram for the responses "Close 
to the target" and "Very unlike the target".
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Figure 11: The results of the evaluation of target attainment and 
good-bad impression. The values averaged for all subjects are 
presented.
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Third, we consider the problem of multimodality
accompanied by time fluctuation. For example, it often
happens that a subject may not necessarily find an
optimum solution from a voice that has already been
subjected to several types of conversion. It has also been
observed that optimum solutions may vary slightly
according to the time that experiments are held and the
physical condition of subjects at that time. In other words,
we can view the problem as being one of determining a
practical semi-optimum solution in as short a time as
possible from a search space having multimodality and
temporal fluctuation in the difficulty of prediction.

On the basis of the above discussion, we can see that the
problems of voice conversion are indeed complex. For
one, a practical semi-optimum solution must be
determined in as short a time as possible from a search
space having multimodality and temporal fluctuation in
the difficulty of prediction. For another, high accuracy is
demanded of modification coefficients and several types
of modification coefficients must be searched for in
parallel. In these experiments, we have shown that
evolutionary computation is promising as an effective
means of voice conversion compared to the complex real-
world problems associated with finding an explicit
algorithm and a solution based on trail and error by a
designer. As a specific example, Fig. 12 shows the
relationship between number of generations and fitness
with respect to a “childish voice.” Ancestral individual
information is shown from “a” to “t”. Here, individuals
having prosody modification coefficients determined by
experience are placed in the vicinity of a local optimum
solution, and it takes only three generations to converge
to a practical solution by performing genetic manipulation
between these individuals and other individuals whose
prosody modification coefficients are randomly set.
Please see the example of voice conversion provided at
http://webclub.kcom.ne.jp/ma/y-sato/demo/demo1.html
for reference.

In future work, we will attempt to improve the accuracy
of voice conversion by modifying spectral data as well,
and must examine the application of evolutionary
computation to parameter adjustment with the aim of
synthesizing truly natural voices from arbitrary text. In
this experiment, people evaluate results subjectively
(based on feelings) and assign a fitness value to each
individuals, it is also possible to select the individuals to
be culled by a tournament system. It is also important to
compare with other Evolutionary Computation method
[Bäck 1997].

6  CONCLUSIONS

We have proposed the application of evolutionary
computation to the adjustment of prosody modification
coefficients for voice conversion, and have conducted
voice-conversion experiments on both original speech
recorded by a microphone and speech mechanically
synthesized from text to evaluate the effectiveness of the

proposed method. The results of these experiments
revealed that adjustment of prosody modification
coefficients by evolutionary computation performs voice
conversion more efficiently than manual adjustment, and
that degradation in sound quality is relatively small with
no impression of a processed voice in the case of
evolutionary computation. Future research must work on
improving the accuracy of voice conversion by modifying
spectral data as well, and must examine the application of
evolutionary computation to parameter adjustment with
the aim of synthesizing truly natural voices from arbitrary
text.
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Abstract

The advent of digital video offers many
opportunities to add features that enhance the
viewing experience. One much-discussed feature
is the possibility that commercials might be
automatically detected in the video stream. We
report on initial experiments with a class of
commercial detection algorithms and show how
their performance can be enhanced by applying
genetic search to the optimization of some of
their internal parameters. We show how a scalar
genetic algorithm can locate sets of parameters in
a multi-objective space (precision and recall) that
outperform the values selected by an expert
engineer. While a useful observation in itself, we
also argue that this approach may be a necessity
as the features that distinguish commercials from
other video content will certainly vary with video
format, the country of broadcast and possibly
over time. We present the results of optimizing a
commercial detection algorithm for different data
sets and parameter sets. We are convinced that
GAs drastically improved our approach and
enabled fast prototyping and performance tuning
of commercial detection algorithms.

1 INTRODUCTION

Digital consumer storage functionality will appear on
many consumer devices such as video recorders advanced
set-top boxes and personal mobile storage servers.
Content-based video analysis can be applied to introduce
more advanced retrieval, scanning and playback features.
One of the most important features consumers want is
commercial detection, indication, and skipping. In
addition, commercial detection plays a major role in
automatic analysis and structure detection from
multimedia signals for generating summaries and table of
contents for a program. A major challenge in bringing

these features into consumer devices is to overcome the
low processing power inherent in these low-cost
consumer devices. It is therefore, important to take full
advantage of the MPEG1 hardware compression and
perform the analysis on the features already available
during the encoding of the input video stream thereby
saving precious computational cycles.

The implementation of a commercial detection algorithm
using features derived from MPEG parameters has been
described by Dimitrova et al. [3]. This implementation
assumes that the target platform includes an encoder and
the features extracted from the encoder are processed on a
low-end host processor. Consequently, the chosen
algorithms are based on simple voting and thresholding
techniques. An important challenge is to provide high
accuracy commercial detectors for given test material.
The process of benchmarking and fine tuning is tedious
and requires many experiments with various thresholds. It
normally takes weeks to fine tune an algorithm. Also,
experiments are needed to see the impact of threshold
ranges on the algorithms for different types of TV
programs. It is extremely important to provide
methodology for fast tuning of the algorithm parameters
and providing tools for analysis of the algorithms for
given test genres. Here, we report on experiments that
used a genetic algorithm (GA) to locate improved sets of
thresholds on a chosen commercial detection algorithm
[3]. In addition, GAs provide a framework for fast tuning
and analysis of parameters for commercial algorithms.

2 THE CHALLENGE OF
COMMERCIAL DETECTION   

What we encounter is a fairly traditional pattern
discrimination problem, yet there are reasons to believe
that the achievement of successful performance will
require the use of powerful optimization methods, and not
just once. The patterns of features and their combinations

                                                          
1 MPEG stands for Moving Picture Expert Group. This body establishes
standards that are used in the compression, transmission, and
decompression of digital video.
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that distinguish commercials from other video content are
known to change with video format (e.g. NTSC vs PAL2),
and with culture (cinematic styles differ from culture to
culture). Furthermore, these patterns are not well
understood, but our initial investigations suggest that they
are highly non-linear. In addition, they can be expected to
change over time as styles of programming as well as
styles of advertising change. The broadcaster and/or
advertiser may also change the advertisement
characteristics to avoid detection. Therefore, we envision
a need to more or less continuously resample video
content and re-adjust the detector’s parameters. This calls
for a robust automatic optimization method such as a GA.

3 RELATED WORK

In the literature there are many methods that have been
proposed for detecting commercials extending back more
than 20 years [1, 2, 5, 6, 7, 8, 9, 10, 11]. One common
method is detection of high activity rate and black frame
detection coupled with silence detection before a
commercial break. These methods show partially
promising results [8]. The use of monochrome images,
scene breaks, and action (the number of edge pixels
changing between consecutive frames and motion vector
length) as indicative features have also been reported [8].
Blum et al. used black frame and “activity” detectors [1].
Activity is the rate of change in luminance level between
two different sets of frames. Commercials are generally
rich in activity. When a low activity is detected, the
commercial is deemed to have ended. Unfortunately, it is
difficult to determine what is “activity’ and what is the
duration of the activity. In addition, black frames are also
found in dissolves. Any sequence of black frames
followed by a high action sequence can be misjudged and
skipped as a commercial. Another technique by Iggulden
is using the distance between black frame sequences to
determine the presence of a commercial [6]. Lewine et al.
determined commercials based on matching images.
Similarly, Forbes et al. use a video signal identifier to
memorize repetitive television signals in order to
automatically control recording of TV programs [5].
However, the commercial has to be identified to the
system before it can recognize it. Nafeh proposed a
method for classifying patterns of television programs and
commercials based on learning and discerning of
broadcast audio and video signals using a neural network
[10]. However, none of the reported methods used an
automatic optimization method for tuning of algorithm
parameters and analysis of the parameters behavior. In
this sense, we are proposing a fast method for algorithm
benchmarking and fine tuning using GAs.

                                                          
2 NTSC is the National Television Standards Committee and PAL is
Phase Alternating Line. NTSC designates the video standard used in
North America and some other countries and PAL is standard for most
of Europe.

4 MPEG-RELATED FEATURES

There are different sets of features that are extractable
during the MPEG-encoding process. The encoder internal
parameters, called low-level features, extracted during the
encoding process are:

• frame type indicator, which discriminates between
intra-coded (I), predicted (P) and bi-directional (B)
frames;

• luminance DC value at macroblock level on I-frames
only; A macroblock is a coding layer used in MPEG.

• VTS (video time stamp) of the observed frame,
which assures correct synchronization of extracted
video features and matching video frames;

• macroblock correlation factor, which represents the
correlation between the current macroblock and
reference macroblock in the reference frame.

A schema of a representative MPEG-2 encoder is shown
in Figure 1. The luminance DC values are available in the
information chain at point a after the Discrete Cosine
Transformation and the Quantizer before the Variable
Length Coding . These DC values can be used for content
analysis algorithms. The Motion Estimation encoding
block at point b generates a spatio-temporal
representation of the macroblock motion for an efficient
encoding process. This macroblock motion recovery
process uses the correlation of an actual macroblock and
possible reference macroblocks in the reference frame.
The correlation factor of the best match of actual
macroblock and reference counter macroblock is tapped
for further content analysis.

The low-level parameters are used to derive more
meaningful features, called mid-level features, such as
black/unicolor frame, scene change, and letterbox. A

DCT+
video in +

-
Q VLC Buffer

inverse
Q

IDCT

+
++

compressed
video out

memoryMC

ME

embedded
decoder

a

b

Figure 1: MPEG-2 video encoder.
DCT = Discrete Cosine Transform,
Q = Quantization, VLC = Variable Length Coding,
MC = Motion Compensation, ME = Motion Estimation,
IDCT = Inverse DCT.
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simple threshold technique is sufficient to implement a
reliable black frame detection algorithm by using the sum
of the luminance DC values of the entire frame
(Luminance DC Summation) as input value to the
algorithm. Luminance DC values can also be used to
discriminate between a 4:3 and 16:9 aspect ratio video
frame (Letterbox) by similarly evaluating the appropriate
the luminance values of upper and lower macroblock
slices of the video frame. Unicolor frames are detected by
applying a threshold on the average of the absolute
differences of luminance DC values between adjacent
blocks, on the whole frame. The absolute differences of
luminance DC values between adjacent blocks can also be
used for black frame and letterbox detection.  The use of
the variation of the Luminance DC Summation over
consecutive frames and the macroblock correlation value
facilitate the implementation of a scene change detection
algorithm. The mid-level features such as black frame,
letterbox, and scene changes are used for commercial
detection.

5 THE COMMERCIAL DETECTOR
ALGORITHM

There are different families of algorithms that can be used
for commercial detection based on low and mid-level
features. In this implementation we have experimented
with the available mid-level features:
1. black frame
2. unicolor frame
3. keyframe distance (i.e. consecutive scene changes

distance, also denoted as KF distance in the
following)

4. letterbox (i.e. 4:3 versus 16:9 aspect ratio
discrimination)

All the above values are computed for each I frame. In the
first step, the algorithm checks for “triggers” that could
flag the possible start of a commercial break. The
algorithm, then verifies if the detected segment is a
commercial break.

5.1 TRIGGERS

In the current experiments we have used the time interval
between detected black or uni-color frames as triggers.
Normally, black frames (or unicolor frames) are used by
the content creators to delineate commercials within a
commercial break, as well as at the beginning and ending
of a whole commercial break. We assume that a
commercial break starts with a series of black (unicolor)
frames and that during the commercial break we will
encounter black (unicolor) frames within a predetermined
threshold (e.g. 50 seconds). Also, we have placed
constraints on the duration of the commercials. We have
determined by looking at a number of commercials that
commercial breaks can not be shorter than one minute and
can not be longer than six minutes. An additional
constraint that is derived from the material we have seen
is that commercial breaks have to be at least one and a

half minute apart. This last constraint is important for the
linking of the segments that potentially represent
commercials. If the linking is allowed for a long period of
time, we might end up with very long commercial breaks,
which in fact might contain a commercial break and an
action scene from a movie. After some number of black
sequences the probability of commercial being present
increases and potential commercial end is searched for.

5.2 VERIFIERS

Once a potential commercial is detected, other features
are tested to increase or decrease the probability of a
commercial break. Presence of a letterbox change or high
cut rate expressed in terms of low keyframe distance can
be used as verifiers. In the case of letterbox change, the
probability that the given area is a commercial break is
increased. In the case of low keyframe distance (or high
cut rate), the probability of a commercial being present is
increased. If the cut rate is below a certain threshold then
the probability is decreased. Average keyframe distance is
defined as the average shots duration between the last n
scene cuts. The threshold used for the keyframe distance
can be varied from 6 to 10 for good results. Again,
segments which are close by can be linked to infer the
whole commercial break. There are commercials such as
Calvin Klein which are very slow and this can increase
the average cut distance temporarily. We allow for the
keyframe distance to be high for 30 seconds before
decreasing the probability of being in a commercial break.
As with the black frame indicators, we have placed
constraints on the duration of the commercials. Other
mid-level features can also be extracted from MPEG-2
encoding parameters, and be used as verifiers. Progressive
versus interlaced video material changes or coding cost
are some examples. As can be seen, there are a number of
thresholds that need to be experimented with for
algorithm fine tuning. In the next section we explain the
experiments that we carried out in order to determine the
optimal thresholds  for eleven different parameters for
best accuracy.

6 THE EXPERIMENTS

We obtained two samples of broadcast video. One
contains about 8 hours of Dutch television and comprised
13 different TV programs of various genres including
movies, news, sports programs, talk shows, and sitcoms.
It contains 28 different commercial breaks, for a total
duration of about 1.5 hours of commercials. This video
was in PAL format with a GOP3 of six. We refer to it as
the EMPIRE set after the name of the MPEG video
encoder chip that extracted its low-level features. The
other set contained about 5 hours of US content from 11
different programs including sports, movies, games, talk
shows, MTV music videos, and news. It contained 35
different commercial breaks, for a total duration of more
                                                          
3 GOP is Group of Pictures and six means that every sixth frame was an
I frame.
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than 1.5 hours of commercials. This video was in NTSC
format with a GOP of 12 and was called the EMPRESS
set, again after the encoder chip.

These video sequences were scanned by a human and the
beginning and end of each commercial break was marked.
Thus we obtained a ground truth value (yes/no) for every
video frame. The performance of any instantiated detector
algorithm was assessed by counting the number of true
positives (TP, commercial frames labeled as such), false
positives (FP) and false negatives (FN). From these we
computed the usual measures of recall and precision used
in pattern recognition:

Since we ran experiments with a scalar GA, we
experimented with a number of different combinations of
these data as fitness metrics. It should be noted that
because the commercial detector algorithm has built-in
contiguity constraints, isolated error frames do not occur
– to be labeled as a commercial, a block of frames must
fall between certain minimum and maximum limits.

To guard against any optimization procedure’s tendency
to overfit the training data, we split the data set into
training and test sets. For the EMPIRE data set, we split
each TV show roughly in half, approximately 50% of the
shows had the data taken from first-half of the show while
for the other 50% had the data from the second half used
in the training set. A slightly different procedure was
followed for the EMPRESS data set: within each genre,
shows were paired for similarity (human judgement) and
one whole show of each pair was used for training. The
test set was always the complement of the training set.
When we sought to validate any given detector, we ran
the algorithm on the combined test and training sets. This
we call the validation set – which was the set used by the
engineer when manually tuning the algorithm.

The GA used was Eshelman’s CHC [4]. CHC is a
generational style GA with three distinguishing features.
First, selection in CHC is monotonic: only the best M
individuals, where M is the population size, survive from
the pool of both the offspring and parents.  Second, CHC
prevents parents from mating if their genetic material is
too similar (i.e., incest prevention).  Controlling the
production of offspring in this way maintains genetic
diversity and slows population convergence.  Finally,
CHC uses a soft-restart mechanism.  When convergence
has been detected, or the search stops making progress,
the best individual found so far in the search is preserved.
The rest of the population is reinitialized, using the best
string as a template and flipping some percentage (i.e., the
divergence rate) of the template's bits.  This is known as a
soft-restart and introduces new diversity into the
population to continue search.  CHC does not use
mutation between restarts. We used the recommended
parameter settings  (e.g popsize 50, normal triggers for
the dropping of the incest threshold and the initialization

of soft-restarts [4]) with one exception: the divergence
rate was 0.5. This means that a soft restart created a
population with one copy of the best-so-far individual and
the rest of the population was completely re-randomized.
Initial experiments suggested that a lower divergence rate
leads to the population quickly stagnating with inferior
results.

6.1 EMPIRE EXPERIMENTS

The EMPIRE data were in hand first and had served as
the data upon which the commercial detection algorithm
was originally developed [3]. Hence, for this data set we
had the algorithm developed and tuned by the engineer as
a benchmark. As the first experiments performed, we
wanted to get an idea what fitness measure would be best
to use. The set of algorithm parameters (the genes in the
chromosome) for these experiments are listed in Table 1.
Note that the last three parameters were used only in
experiment 5. Parameter 1= SeparationThreshold, 2=
DistForSuccThreshold1, 3= DistForSuccThreshold2, 4=
DistForSuccThreshold3, 5= UnicolorInSuccThreshold, 6=
MinCommThreshold, 7= MaxCommThreshold, 8=
RestartThreshold, 9= BlackIFrameThreshold, 10=
UnicolorIFrameThreshold, 11=LowInfoIFrameThreshold.

Table 1: Parameters Used in EMPIRE Experiments

PAR
AME
TER

BITS MIN-MAX STEPS EXPERI
MENTS

1 6 100 - 3250 50 1-5

2 3 50 - 225 25 1-5

3 3 50 - 225 25 1-5

4 3 50 - 225 25 1-5

5 4 1 - 16 1 1-5

6 3 500 - 5750 750 1-5

7 2 7000 -
10000

1000 1-5

8 3 250 - 775 75 1-5

9 4 1 - 16 1 5

10 3 100 - 450 50 5

11 4 30 - 105 5 5

The experiments 1-5 are briefly summarized in Table 2
where R stands for recall and P for precision, FP and FN
are false positives and false negatives respectively. The
only difference among experiments 1-4 was the fitness
metric used by the GA for selection: R+P, R*P, FP+FN,
4*FP+FN. There was intuitive reasoning for having
multiple fitness metrics backed up by experiments. R*P
should be sensitive to either measure being small (both
recall and precision are numbers between zero and one).
FP + FN seemed a reasonable metric to minimize, but

FNTP

TP
Recall

+
=

FPTP

TP
Precision

+
=
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perhaps in this domain, false positives should be weighted
more heavily than false negatives (better to let a
commercial through than risk cutting out some TV
program  content). Consequently, we tried 4*FP + FN.
Then the simple R+P was included for completeness.
Experiment 5 used the R+P fitness metric for reasons
given below and added three additional parameters in an
attempt to improve the commercial detector. We should
also note that the only reason experiments 2 and 3 did not
achieve 30 replications was that power failures caused the
computers to crash and we observed that all experiments
located chromosomes with the same best performance –
12 replications were obviously enough.

Although all experiments discovered the same best
performance level, there was still diversity in the final
populations indicating that performance was less sensitive
to some parameters than others.

Table 2. Summary of Experiments with the
EMPIRE Data Set. R-Recall, P=Precision, FP= Fales

Positives, and FN = False Negatives

EXP.
NUM

# OF
PARAMS

# OF
BITS

REPLIC
ATIONS

FITNESS
METRIC

1 8 27 30 R*P

2 8 27 12 4FP+FN

3 8 27 12 FP+FN

4 8 27 30 R+P

5 11 38 30 R+P

One way to examine the outcomes of these experiments is
to look at the non-dominated individuals encountered at
any time in each experiment. Figure 2 shows these data in
the Precision/Recall space.  Since the experimental data
were all generated on the training data set, some of the
best performers were selected (by hand) and run on the
complete set of validation data. These points are shown as
+ signs in the figure and each is connected by a dashed
line to its corresponding training set performance point.
While not statistically rigorous, these observations do
suggest the region in performance space where those
commercial detectors are likely to perform. The
performance of the engineer’s best manually tuned
algorithm is also shown, this time as a * symbol. (located
at recall 0.83 and precision 0.95.)

It is interesting to observe that the non-dominated set was
identical for experiments 1, 2, and 3 even though they
used different fitness metrics. We speculate that this is
because the parameter sets that yield these R and P values
are readily produced even though the selection pressures
on the populations are slightly different. It may also
indicate that, although the fitness metrics appear to be
different, the ranking of the individuals involved is not
different; the discretization of the search space may

simply not permit that much variety. It also appears that
the results from experiments 1, 2, and 3 were inferior to
those from experiment 4. The comparison of experiment 4
with 1, 2, and 3 caused us to select the R+P metric for all
subsequent experiments. The addition of the extra genes
in experiment 5 seems not to have provided significant
improvement.

The dashed lines between the test and validation
performances are designed to suggest the expected
intervals for the respective commercial detectors. We do
see that the evolved detectors are performing in same
region with the best performance achieved by an expert
engineer after many months of tinkering.

6.2 EMPRESS EXPERIMENTS

Experiments 6 and 7 were performed with the EMPRESS
data set. This data set was acquired after the above work
had already been done and may serve as a test of our
claim that a robust GA is a valuable tool for adjusting a
commercial detector to new data. The parameters used in
these experiments are summarized in Table 3. The last
column of Table 3 summarizes the location of the best
performers in parameter space. We can see that  some
parameters are very sensitive (all bests have the same
allele value) and some are completely insensitive (all
permitted values are present among the bests). Parameter
1= SeparationThreshold, 2= DistForSuccThreshold1, 3=
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Figure 2. Results from EMPIRE experimental set
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UnicolorInSuccThreshold, 4= MinCommThreshold, 5=
MaxCommThreshold, 6= AdjSceneCutsThreshold, 7=
AverageCutDistThreshold, 8= CutNumberInAverage, 9=
BlackIFrameThreshold, 10= LetterboxLengthThreshold,
11= LetterboxThreshold.

Table 3. Parameters Used in EMPRESS Experiments

PARAM
ETER

BITS MIN-
MAX

STEP
SIZE

EXP
NUM

BEST
SOLUTION

1 5 100 -
7850

250 6-7 100-7850

2 6 100 -
6400

100 6-7 4500-
4700

3 3 0 - 7 1 6-7 0
4 5 100 -

7850
250 6-7 100-850

5 3 7000 -
14000

1000 6-7 13000-
14000

6 5 100 -
1650

50 6-7 3

7 4 100 -
850

50 6-7 100-850

8 4 2 - 17 1 6-7 2-17
9 3 80000 -

115000
5000 6-7 95000

10 5 10 - 320 10 7 150-160
11 5 7500 -

32000
500 7 20500-

21500

Experiments 6 and 7 conducted for the EMPRESS dataset
are briefly summarized in Table 4 and the comparable
results are shown in Figure 3.

Table 4. Summary of Experiments with the EMPRESS
Data Set

EXP.
NUM

# OF
PARAMS

# OF
BITS

REPLICAT
IONS

FITNESS
METRIC

6 9 38 30 R+P

7 11 48 30 R+P

Figure 3 tells two intersecting tales. Experiment 6 was the
first run on the EMPRESS data set. Independently, the
expert searched for (using the entire validation set) and
reported a detector whose performance on the validation
data is shown as the leftmost asterisk in the figure. We see
that the GA located points that look superior to the
expert’s, but these points may represent overfittting to the
training data. When we run two (manually-selected) of
the GA’s detectors on the validation set, we see that
performance deviates and no longer dominates the

expert’s point. At this point, we experimented with
additional features that assess the likelihood that the video
frame is in letterbox format. Believing this may be
valuable additional information for commercial detection,
the detector algorithm was augmented with logic that
considered this new feature. The expert, being in
possession of the experiment 6 results, used them as the
starting point for an effort to discover good parameter
settings for the new letterbox thresholds. The result of this
effort (again using the entire validation set) is the
righmost asterisk in Figure 3. In experiment 7 the GA
searched the augmented threshold set. Two validation
tests from this run are also shown. We see that the GA
located the best performance seen to date. We believe this
shows the potential of the GAs for this emerging
application.

7 DISCUSSION

We have presented results from first experiments using a
GA to fine tune the parameters for a commercial detection
algorithm for digital video.

We propose that this approach is particularly well suited
to this domain because 1) the complexity of the mapping
from algorithm parameters to accuracy is unknown, but
unlikely to be very simple, 2) it is unlikely that the best
parameter sets to use will be the same from culture to
culture or for different video standards, 3) the low-level
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features available from different encoder chips is likely to
change and 4) the mapping is unlikely to remain
unchanged over time (perhaps because of deliberate
attempts to avoid automatic detection). These properties
all suggest that an automated method to readjust the
detector algorithm will be needed in the industry.
Dynamically downloading new parameters to products in
the field is already being practiced.

From our experiments we learned that we can benchmark
and fine tune the performance of the commercial
detection algorithm rapidly for a new set of data. This
means that we used the GAs as a tool for mapping from
algorithm parameters to accuracy. In addition, this
allowed us to experiment with new parameters (e.g.
letterbox in experiment 7) and obtain an optimized
version of the algorithm without spending additional
weeks of effort.

The class of algorithms explored was limited, constrained
by a desire to use algorithms that could be driven by low-
level features immediately available from MPEG encoder
chips and that could run on the modest computing
resources available in today’s consumer electronic
products. In addition, only a limited amount of video
material was available for these initial experiments.

There are several directions in which to continue this
work. Clearly more validation work is needed before the
utility of the detectors can be assessed against levels
needed for consumer acceptance. In addition, a broader
class of detector algorithms could be explored, including
allowing the GA to explore this dimension in addition to
simply tuning parameters. A truly multi-objective GA
also should be tried.
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Abstract 
 
 
This paper presents an approach for scheduling 
of customers’ orders in factories of plastic 
injection machines (FPIM) as a case of real-
world flexible job shop scheduling problem 
(FJSS). The objective of discussed work is to 
provide FPIM with high business speed which 
implies (a) providing a customers with conve-
nient way for remote online access to the facto-
ry’s database and (b) developing an efficient 
scheduling routine for planning the assignment 
of the submitted customers’ orders to FPIM 
machines. Remote online access to FPIM databa-
se, approached via delivering the software as a 
Web-service in accordance with the application 
service provider (ASP) paradigm is proposed. As 
an approach addressing the issue of efficient 
scheduling routine a hybrid evolutionary algo-
rithm (HEA) combining priority-dispatching ru-
les (PDRs) with GA, is developed. An imple-
mentation of HEA as a database stored proce-
dure is discussed. Performance evaluation results 
are presented. The results obtained for evolving a 
schedule of 400 customers’ orders on experi-
mental model of FPIM indicate that the business 
delays in order of half an hour can be achieved.    

1 INTRODUCTION 

Until recently the role of the production factories had 
been associated with the manufacturing of a high volume 
of low-cost and high-quality goods. However, an 
evolution of these features is lately observed as a result of 
the recently emerged trend in the major world’s econo-
mies of decreasing the rate of economic growth. Still 
maintaining the importance of producing low-cost and 
high quality goods, the relevance of the high manu-
factured volume is going to be gradually replaced by the 
role of the high business speed – the ability to react quick-
ly in submitting and modifying the customers’ orders. The 

high business speed implies that factories should provide 
the customers with services such as remote submission of 
orders in operative mode; prompt feedback to allow for 
customers’ awareness about the anticipated due dates of 
their orders as well as about the expected ratio of tardy 
orders and their respective delays; and tracking the state 
of the submitted orders. 

Within this context, the objective of our research is to 
investigate the feasibility of developing a scheduling sys-
tem for FPIM, emphasizing on providing the mentioned 
above customers services needed for achieving factory’s 
high business speed. Fulfilling the objective implies 
addressing of the following two main tasks. First, 
allowing for submission of orders and tracking their 
statuses requires providing a convenient way for remote 
online access to the factory’s database. And second, 
allowing for prompt customers’ awareness about the 
anticipated due dates of their orders assumes developing 
of efficient (both in terms of runtime and quality of 
solution) scheduling routine for planning the assignment 
of the submitted customers’ orders to the factory’s 
machines. Our work is intended to address these main 
tasks, and its contents could be viewed from three 
different aspects, representing the following three layers 
of abstraction of the proposed scheduling system: 

• Problem aspect – the task from the specific problem 
domain intended to be solved, 

• Aspect of algorithmic paradigm – the algorithmic 
paradigm employed to solve the problem, 

• Implementation aspect – the system architecture used 
to solve the problem exploiting the adopted 
algorithmic paradigm. 

The discussion, presented in this document, is 
attempting to highlight these aspects of our work, and the 
remaining of the paper is structured as follows. Section 2 
briefly explains the problem aspect – a real-world prob-
lem of scheduling of FPIM as an instance of the class of 
FJSS. Section 3 discusses the aspect of algorithmic para-
digm – the main attributes of the hybrid evolutionary 
algorithm we developed to solve the targeted FPIM FJSS. 
Section 4 considers the implementation aspect – the ASP 
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approach, focusing on developing of three-tiered Web-
based system architecture. Performance evaluation results 
are given in Section 5. Finally, Section 6 draws a conclu-
sion and discusses some directions for future work.  

2 REAL-WORLD CASE OF INJECTION 
MACHINES SCHEDULING 

The FPIM FJSS problem consists of a finite set of orders 
to be processed on a finite set of machines.  Each order 
specifies the amount of just one good from the finite set 
of goods, produced by the factory. Each good can be 
produced using any of currently available molds from the 
finite set of mold instances of at least one of the finite set 
of the available mold types. Each mold type can be 
attached to at least one machine from the available finite 
set of machines. The one-to-many relationship between 
the goods and molds, and between the molds and the 
machines implies that any order can be processed in at 
least one machine. In general, processing the order on 
specified machine is preceded by the set-up phase, needed 
to attach the required mold (if mold of the current order 
differs from the previous one) and to change the resin (if 
needed). Analogically, the processing of the order might 
be followed by completion phase, required to remove the 
mold in case that the next scheduled order requires an 
attachment of different mold type. 

The capacity constraints specify that each mold can be 
attached to just one machine at a time and each machine 
can attach just one mold. Consequently a machine can 
process only one order and each order can be processed 
by only one machine at a time. An additional constraint 
stipulates that the amount of the molds of specified type is 
limited; therefore an order can be processed only if the 
required mold is currently available. Also, the machines 
can be suspended for scheduled maintenance and for daily 
operation breaks. The order cannot be preempted by ano-
ther order, however, depending on the specified machine 
operation mode, the orders, started before the suspension 
time should be interrupted upon the commencing the 
maintenance interval or might be allowed to complete 
within the maintenance interval. In the former case, the 
processing of the interrupted orders resumes upon 
resuming the operations of the corresponding machine.  

The objective of the scheduler is to determine the pro-
cessing starting time, the processing machine, the mold 
and the mold type for each order, obeying the imposed 
constraints and minimizing the ratio of tardy jobs, the 
variance of the flow time, the amount of mold changes, 
and maximizing the efficiency of the machines. The sche-
dule is viewed as a table of rows each including creation 
date/time, customer’s name, customer’s order, processing 
machine, mold, mold type, starting and finishing times for 
setup, processing, and completion phases respectively. 

In our approach, the FPIM data about orders, 
manufactured goods, available resins, mold types, molds, 
machines and operation patterns constraints are organized 
as an entities (tables) in relational database. The entity-

relationship diagram for FPIM database is shown in 
Figure 1. The mechanisms used to access the data in 
FPIM database is elaborated later in Section 4.  

 

Figure 1:  Entity-relationship Diagram for FPIM Database 

 

The main differences between the theoretical models 
and the real-world case of FPIM FJSS are the availability 
of the setup and completion times, which depend on 
previous and next order respectively; the availability of 
maintenance time and operational break time; order 
interruption and restart; and limited and dynamically 
changeable amount of available machines and molds. 
These differences additionally complicate the concrete 
instance of the FJSS. The latter, being NP-hard is well 
known to be a notoriously difficult to solve. Such an 
additional complication affected our choice of algorithmic 
paradigm intended to solve the FPIM FJSS, as elaborated 
in the following Section 3. 

3 HYBRID EVOLUTIONARY 
ALGORITHM FOR FPIM FJSS 

In our approach we propose a hybrid evolutionary 
algorithm, which combines the approaches of using PDRs 
with GA (Holland, 1975; Goldberg, 1989; M.Varquez and 
L.D.Whitley, 2000). A PDR is a rule that is used to 
determine which order is to be executed next, from the list 
of unscheduled orders. Compared with other 
approximation approaches, PDR-based approaches offer 
the advantage of simplicity, featuring low computational 
cost and can therefore be applied to complex real-world 
problems such as FPIM FJSS. They are usually tempo-
rally local without trying to predict the future. Instead, 
making decisions based on the present; they are very use-
ful in factories such FPIM, where the future availability of 
the resources (machines, molds, etc.) is very unpredictab-
le. The main disadvantage of PDR is their myopic nature: 
often the quality of the overall schedule, build using 
locally applied PDR is far from optimal. In addition, no 
single PDR can be success-fully applied for the whole 
range of possible cases of FJSS (Pierreval and N. Mebar-
ki, 1997). This might require to empirically evolve the 
PDRs and their combination, which are most suitable for 
the concrete instance of FJSS. In order to address the 
disadvantages of PDRs we propose a hybrid evolutionary 
algorithm (HEA) as a combination of PDRs with GA. GA 
is used as a way to empirically evolve the most suitable 
combinations (strings) of PDRs for the considered FPIM 
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FJSS. Also, GA is intended to address the myopic nature 
of PDRs given that GA is based on the survival of the 
overall fittest individuals (i.e. schedules), rather than these 
with better local features. The only concern of combining 
GA with PDR-based sys-tem into HEA for solving real-
world problem is whether GA would invalidate the 
advantage of PDR of being less time consuming. Howe-
ver, despite the longer computational times of GA, we 
believe that the GA might be successfully applied in 
FPIM FJSS since it can be considered as a form of anyti-
me algorithm (Ciesielski and Scerri, 1998), and as a 
result, a feasible tradeoff between the runtime and the 
desirable quality of schedule could be easily maintained.  

It is generally accepted that the GA feature five basic 
attributes: genetic representation of solutions to the 
problem; way to create an initial population;  ’genetic’ 
operators that alter the genetic population; evaluation 
function and values for the parameters. The remaining of 
the current Section is intended to elaborate on these basic 
attributes of GA. 

3.1 THE GENETIC REPRESENTATION OF 
SCHEDULES. THE INITIAL POPULATION 

There are two basic approaches for genetic representation, 
which can be applied for FPIM FJSS: direct and indirect. 
Direct representation encodes the schedules as chromoso-
mes, and genetic operations are used to evolve the popula-
tion of such chromosomes into better schedules. In the 
indirect encoding schemes a sequence of schedule-buil-
ding instructions is encoded (“generative encoding”) in 
the chromosome (Fang et al, 1994; O'Neill and Ryan, 
2000). The genetic operations are used to evolve the po-
pulation of such sequences of schedule-building instruc-
tions into ones that generate better schedules. Considering 
the complexity of various constraints imposed on FPIM 
FJSS, it is highly likely that direct representation of 
chromosome would yield unfeasible schedules, i.e. 
schedules that violate some of the constraints. The 
repairing, needed in such cases might be inefficient in 
both that it requires additional runtime and tends to break 
the developed building blocks of the solutions. In 
addition, dynamic nature of some of the constraints (as, 
for example, the limited amount of molds) assumes that 
obeying them (i.e. using mold that currently is not being 
used by other orders) requires corresponding runtime 
verification on the build-so-far schedule.  These concerns 
indicate that the eventual direct encoding is impractical 
for the concrete case of FPIM FJSS. In the proposed 
approach a PDR-based indirect representation of the 
schedule is used, where the allele in chromosome 
represent the PDR used for assigning the order to the 
specified machine. Each chromosome (the genotype) is 
represented as a string ‘g0,g1,g2,…’ which is mapped 
into the corresponding schedule (the phenotype) by 
schedule builder during the chromosome evaluation phase 
of HEA. Each of the genes gi of the chromosome 
‘g0,g1,g2,…’ is interpreted by schedule builder as 
follows: “for the currently becoming free machine mk, 
select all the unscheduled orders that can be currently 

processed on mk and range them in accordance with the 
gi–th PDR; then select the first order oj from the 
arranged list of unscheduled orders and assign oj to mk”. 
The following nine PDRs have been used: FIFO (also 
known as AT- arrival time, and TIS- time in the sys-tem); 
FIFO SM – the same as FIFO but trying the same mold 
(SM); FIFO SMR – the same as FIFO but trying the same 
mold and same resin; SPT – shortest processing time; 
LPT – longest processing time; DT – order due time; DT 
SM – the same as DT but trying the same mold; DT SMR 
– the same DT but trying the same mold and same resin; 
and ST – order start time. 

The preliminary comparative results of convergence 
of the fitness of best individuals for typical runs of HEA 
and GA without PDRs confirm the advantages of 
incorporating PDRs into GA. The results indicate that in 
contrast to the GA without PDRs, HEA features much 
faster fitness convergence with better values of absolute 
fitness. The desirable schedules (schedules with no tardy 
jobs) are evolved relatively quickly by HEA within 
several generations. 

Initial population is created by generating a (NPS–2) 
chromosomes where NPS is the population size.  The genes 
of each of these chromosomes are set to a random 
numbers within the range (0,NPDR-1) where NPDR is the 
total amount of used PDRs. Two additional chromosomes 
are created, alleles of which contain a single PDR only – 
FIFO and DT respectively, in order to allow for the HEA 
to quickly find the solution in some trivial scheduling 
cases. Note that due to the adopted indirect genetic 
representation the process of creating initial population 
always generates feasible schedules only, where no 
constraints are violated. 

3.2 GENETIC OPERATORS 

The main genetic operators are selection, crossover, and 
mutation. In our work we used binary tournament 
selection – a robust, commonly used selection mecha-
nism, which has proved to be efficient and simple to code. 
In addition, it results a selection pressure that provides a 
good convergence rates yet avoiding premature conver-
gence to a sub-optimal solutions. The canonical two-point 
crossover operation is employed. The mutation operation 
changes the genes from each chromosome with specified 
probability to the value within the range (0,NPDR-1), 
where NPDR is the total amount of used PDRs.  

3.3 EVALUATION FUNCTION 

The evaluation function estimates the fitness of the 
chromosomes (respectively, the schedules they generate) 
by measuring the severity of constraints violation and the 
extent of approaching the scheduling objectives. In our 
approach all the imposed constraints are considered as 
hard in that on neither stage of HEA they are violated. 
Regarding the objectives, applying the heuristics rule that 
from the customer viewpoint any schedule containing 
tardy orders, is worse (feasible, but undesirable schedule) 
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that schedule that do not have ones (desirable schedule), 
we consider an evaluation function that allows HEA to 
clearly distinguish the desirable schedules from 
undesirable ones. In our approach the evaluation function 
maps the fitness of all the desirable schedules within the 
range of (0,Q) while maintaining the fitness of 
undesirable schedules within the (Q,+∞). For both the 
cases the lower values of the fitness correspond to the 
better schedules. The evaluation function for desirable 
schedules evalD(x) can be expressed as follows: 

evalD(x)=eval(x)   

where  eval(x) is a sum, normalized to 100, of the ratio 
of tardy jobs, the variance of the flow time, the relative 
amount of mold changes, and complement to one of the 
efficiency of the machines usage (as a ratio of the sum of 
setup and completion time to the order processing time). 
Respectively, the evaluation function for undesirable 
schedules evalU(x) is defined as 

evalU(x)=eval(x)+Q  

where Q is the penalty for schedule having at least one 
tardy order. The penalty value should fulfill the condition 
Q> max(evalD(x)), and in our approach Q=101. 

3.4 VALUES OF PARAMETERS 

The values of parameters are as follows. Population size 
is 20 individuals (chromosomes), selection method is 
binary tournament with elitism where selection and 
elitism ratio are 0.2 and 0.1 respectively, and mutation 
rate is 0.01. The termination criteria are runtime, fitness 
of the best of individuals, or number of generations. 
Notice the relatively small population size. The results of 
parameters tuning experiments indicate that varying the 
population size yields negligible small variance in 
computational effort of developed HEA. Smaller 
population sizes reduce the runtime for evolving a single 
generation, and consequently, to allows for the authorized 
user to quickly intervene in the evolution process if 
needed.  

4 IMPLEMENTATION 

As we mentioned before, achieving our objective of 
developing FPIM FJSS that features high business speed 
implies the addressing of the task of providing the 
customers with convenient way for remote access to the 
FPIM data. Considering the Web as most favorable 
deployment platform due to its ubiquitous nature, this task 
could be decomposed into the following two problems: 
how to implement the HEA on the Web, and how to make 
the FPIM database (including the schedules, build as 
result of HEA functionality) available on the Web. 
Regarding the implementations of HEA on the Web, the 
developed-so-far approaches of using Internet as a 
deployment environment for EA are exclusively focused 
on the issue of parallel, distributed implementation of EA 
(Chong, 1999; Tanev et al, 2001), improving the 
computational speed of the latter. As a result the issue of 

incorporating the adequate user interface providing 
remote access to the real-world problem-related databases 
is not considered as relevant in these approaches. In 
addition, taking into consideration the distributed nature 
of the Internet-based implementations of EA in these 
methods, their eventual straightforward use for the 
considered case of FPIM FJSS would feature considerable 
performance degradation of the HEA due to heavy data 
traffic due to the need for the distributed entities of these 
architectures to intensively access the centralized FPIM 
business data (shown in Figure 1) during scheduling. The 
volume of such data for the moderately scaled FPIM 
might be in order of few hundreds of Megabytes, which 
also proves the unfeasibility of the idea of downloading 
such data (caching) for intended future local use by HEA.  

To address the first of the mentioned problems – pro-
viding Web-access to the FPIM FJSS we used the ASP-
based approach. And for the problem of efficient 
implementation the HEA on the Web we employed a 
method of implementing HEA as a database stored 
procedure (SP). An additional motivation for considering 
SP as a way to implement HEA is that to our best 
knowledge, we are not aware about any work regarding 
implementing EA as a SP, and we were interested about 
the feasibility for applying such an approach for the 
considered case of real-world FPIM FJSS problem. The 
remainder of the Section elaborates the approaches we 
propose to address these two problems. 

4.1 THE APPROACH OF ASP 

ASPs are a recently emerged way to sell and distribute 
software and software services via Internet. In most cases 
the ASPs can be viewed as companies that supply 
software applications and/or software-related services 
over the Internet. The significant advantages offered both 
to the factories and to their customers by providing the 
web-access to business solutions instead of using the 
traditional model to physically deliver the required 
specialized applications are the low cost of entry, 
considerably less expensive pay-as-you-go model, and 
shifting the Internet bandwidth to the ASP, who can often 
provide it at lower cost. Implementing FJSS as ASP 
allows the FPIM to focus on its core competencies instead 
of managing the complexities of today's IT infrastructure. 
In addition, ASP significantly alleviates the problem 
related to the maintenance of complex software system 
and the need for software upgrades. The eventual 
distribution of corresponding “fat”-clients to the hundreds 
of customers for the real-world instance of FPIM FJSS 
would become extremely expensive both from FPIM and 
customers standpoints; and the need for future upgrades 
deteriorates the problem even more. 

The three-tiered system structure incorporating Web-
browser (as thin client), Web-server, and database server 
is widely adopted as a de facto standard for building 
applications using ASP paradigm. Following the common 
trend, we adopted the three-tiered architecture (Figure 2) 
with the following functionality of the main entities.  
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Figure 2:  Three Tiered Architecture For ASP-Based 
Implementation Of FPIM FJSS 

4.1.1 Web-browser 

Web-browser represents the client-side functionality 
of developed ASP-based approach for FPIM FJSS.  
Depending on the access rights, two separate user roles 
for clients are defined: customers, and   factory users. 
Customers are allowed to submit the orders in operative 
mode, accessing three main FPIM data entities: their own 
orders (for updating), the manufactured goods (for 
reading only), and the schedule, generated for their own 
orders. The factory users are granted with full access 
allowing reading and updating of all the available data in 
FPIM database. In addition, factory users are allowed to 
initiate the HEA for creating schedule of all orders, 
including recently submitted and still unscheduled ones. 
For both types of user roles maintaining adequate user 
interface was considered as a crucial issue in developing 
the Web-client side of FPIM FJSS. We use an ActiveX 
Data Objects (ADO) recordsets incorporated into Web-
browser for maintaining the data obtained from FPIM 
database. ADO-recordsets offer a way to adequately han-
dle the database tables by the browser. The FPIM databa-
se data are received by Web-browser as XML-data islands 
within HTML-pages. In order to minimize the network 
traffic, and consequently, to provide better scalability cha-
racteristics of the system, the Web-browser updates the 
data in offline mode in that all the changes of ADO-
recordsets are buffered on client side in a form of delta 
XML-packet. Using a single HTML-form submission, the 
delta XML-packet is forwarded to the Web-server, which 
performs all the accumulated updates in batch mode. The 
functionality of Web-browser, including browsing and 
updating the ADO-recordsets, maintaining a XML-delta 
packet, managing the master-detail and lookup relation-
ships in FPIM database is accomplished by specially 
developed API written in JavaScript. Figure 3 depicts the 
snapshot of the client screen for browsing/updating the 
FPIM database table containing mold types and the 
corresponding detail table of machines these mold types 
could be attached to. Figure 4 shows the screen snapshot 
of viewing the schedule of all orders. In both cases the 
screen snapshots correspond to user role of factory user. 

4.1.2 Web-server 

The Apache Web server, used in proposed implementa-

tion of FPIM FJSS employs the Java Server Pages (JSP) 
technology to provide the browsers with the content, 
dynamically generated in result of FPIM database access. 
JSP incorporates both formatting, static HTML-tags, 
which are directly passed back to the response page, and 
Java scriplets that are dynamically executed by Web-
server and the result of their execution is incorporated 
into the response page. The scriplets included in JSP call 
the application logic components for database access. In 
our approach we use OracleXMLQuery and 
OracleXMLSave Java classes for accessing the FPIM 
database. The former is used by JSP for serving the 
request from Web-clients for displaying the contents of 
corresponding tables in FPIM database. Upon activation 
by JSP, it submits a corresponding SELECT SQL-state-
ment against FPIM database and returns the XML-enco-
ded result set. The latter is then incorporated into the 
response page and forwarded to Web-browser as an 
XML-data island. The OracleXMLSave class is used by 
JSP for updating the FPIM database with the changes 
made by Web-clients. OracleXMLSave accepts the delta 
XML-packet, parses it, generates the corresponding set of 
INSERT, UPDATE and/or DELETE SQL-statements, 
and finally submits these statements to the FPIM database 
for their execution. 

4.1.3 Database Server 

As we stated before, the FPIM-data containing the created 
schedule, submitted orders, available machines, molds, 
mold types, resins, manufactured goods etc. are organized 
as an entities of a relational database system. In our 
implementation we use Oracle 8.1.7 database server as a 
platform, well known with its performance, scalability, 
reliability, providing adequate data security and integrity. 
It offers seamless integration with the adopted JSP-
technology providing a sufficient set of Web-server side 
deployed application logic components (such as 
OracleXMLQuery and OracleXMLSave).  

4.2 IMPLEMENTING HEA AS DATABASE 
STORED PROCEDURE  

Few ways to implement and deploy the HEA on the 
Web exists depending on which entity of system structure 
(Web-client, Web-server, or database server) runs the 
HEA code. In our approach HEA is developed using 
Oracle PL/SQL programming language and stored on 
database server as a stored procedure (SP). Database ser-
ver also handles the execution of SP. The benefits of im-
plementing HEA as SP are improved performance – data-
base server compiles SP once and then reruns the compi-
led execution plan; minimized interconnection network 
overhead – SP reduces the eventual long sequences of 
SQL statements into a single line, and enhanced security -
Web-clients are granted with permission to execute a 
HEA SP independently of underlying table permissions. 
The functionality of HEA SP includes code, organized in 
two routines: 
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Figure 3: A Snapshot Of The Client Screen For Browsing/updating The FPIM Database 

Figure 4: A Snapshot Of The Client Screen During Viewing The Schedule 

 
• Routine which performing the main genetic opera-

tions evolves the population of chromosomes, and  

• Evaluation of the fitness of the chromosomes.  

The first of the routines implements the canonical GA. 
The routine of fitness evaluation incorporates the schedu-
le builder that maps each of the chromosomes into corres-
ponding schedule and evaluates it using the evaluation 
function as described earlier in Section 3.3. The mapping 
itself includes the scanning of all the genes in 
chromosome ‘g0,g1,g2,…’ and applying the mapping 

rule (as elaborated earlier in Section 3.1) for each of the 
genes gi in accordance with the following steps: 

• Step 1: Defining the currently becoming free machine 
mi, and the instance tk when it will be available, 

• Step 2: Selecting all the unscheduled orders that can 
be currently processed on mi at tk and range them in 
accordance with the gi–th PDR, 

• Step 3: Acquiring the first order oj from the given list 
of unscheduled orders and assign oj to mi”. 
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While the first step requires only an access to the FPIM 
database table of so-far-generated schedule, the following 
two steps require intensive database access (shown in 
Table 1 and Table 2 respectively). As a result, the fitness 
evaluation routine consumes more than 95% of HEA 
runtime. The performance evaluation results are discussed 
in the following Section 5. 

 
 

Table 1: Defining The Set Of Orders That Can Be    
Scheduled On Machine mi At Instance tk 

STEP DB 
TABLE INFORMATION ACQUIRED 

2a Machines Machine mi which becomes free and 
should be scheduled at instant tk 

2b Working 
patterns 

Acquiring whether tk is within the 
defined working pattern for 
considered day 

2c Attachable 
mold types 

Set of mold types {MT} that can be 
attached to mi 

2d 
Mold 
types, 
Molds 

Set of molds instances {MI} of 
types {MT} that can be attached to 
mi and are not being used by other 
machines at the same instant tk 

2e Goods The set of goods {G} that can be 
produced using {MI} of types {MT} 

2f Orders The set of orders {O}, which 
request the production of {G}  

 

 

Table 2: Assigning Order oj At Instance tk On Machine 
mi Using Mold Type MTm 

STEP DB 
TABLE INFORMATION ACQUIRED 

3a Orders 
Manufactured volume, 
manufactured good, trial shots 
(Yes/No) for order oi 

3b Mold 
types 

Change time, change cycle (in 
shots), cleaning time, cleaning cycle 
for mold type MTm 

3c Attachable 
mold types 

Put-on time, put-off time, shot time 
interval, #trial shots for MTm when 
attached to mi 

3d Resins 
Change time for the resin Rp, used 
for production of good Gq, requested 
by order oi 

3e Machines Working pattern consideration 
mode for machine mi 

3f Working 
patterns 

Current working pattern for 
machine mi which wraps ti 

5 PERFORMANCE EVALUATION 

The performance evaluation results have been experimen-
tally obtained for the developed prototype of FPIM FJSS 
deployed on system with the following configuration. 
Apache Web-server and Oracle 8.7.1 database server are 
running on the same Hitachi Flora 370 featuring 450 MHz 
Pentium II CPU with 128 Mbytes of main memory run-
ning W2000 Professional Edition. The Web-client is Mic-
rosoft Internet Explorer Version 6.0 running on same type 
of computer as servers. Client and servers are connected 
in 100 Base-TX LAN via Hitachi Summit-48 hub. 

The task of scheduling feature 400 orders to be 
scheduled in the experimental model of FPIM that produ-
ces 4 different types of goods using 4 machines. Each of 
the good can be produced with 2 of the totally 4 available 
mold types, and each of the mold types can be attached to 
2 of the totally 4 available machines. There are 2 molds 
available for each molds type. The working patterns for 
each of the machines are defined as 9:00 - 12:00 and 
13:00 - 17:30, with day-offs on Saturdays and Sundays. In 
addition, the working patterns are considered as “hard” 
for two of the machines implying that the being processed 
orders which are unable to complete beyond the scope of 
off time should be interrupted and resumed later when the 
corresponding machine resumes operation. Figure 4, 
presented earlier depicts a possible solution to the 
considered case of FPIM FJSS.  

The estimated computational performance of HEA is 
about one individual (mapped into schedule with 400 
orders) per 13 seconds, or 32 order trials per second. The 
overall performance of HEA depends also on computa-
tional effort needed to solve the FPIM FJSS. We adhered 
to the approach suggested by (Koza, 1992) which defines 
the notion of computational effort as an amount of indivi-
duals to be processed in order to solve the problem with 
specified probability (e.g. 90%). The diagram of the pro-
bability of success RS for FPIM FJSS, build from the data 
of 50 independent runs is shown in Figure 5. The values 
of HEA parameters are as stated in 3.4. The termination 
criterion is fitness of the best individual is less or equal to 
100 (desirable schedule).  

 
Figure 5: Computational Effort Of HEA  

 

As Figure 5 illustrates, the 90% probability of success 
in developing a desirable schedule is achieved when 
processing 146 individuals, which, considering the 
computational performance of HEA would require about 
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30 minutes of runtime. This runtime can be viewed as a 
business delays for the task of evolving a desirable 
(without tardy orders) schedule of 400 customers’ orders 
in the considered experimental model of FPIM. 

6 CONCLUSION AND DIRECTIONS 
FOR FUTURE WORK 

We proposed an approach for solving the problem of 
scheduling the customers’ orders in FPIM as a case of 
real-world JSSP. The objective of our work is to provide 
the FPIM with high business speed implying addressing 
of the following two main issues: (a) providing a 
convenient way for remote online access to the factory’s 
database and (b) developing an efficient (both in terms of 
runtime and quality of solution) scheduling routine for 
planning the assignment of the submitted customers’ 
orders to the FPIM machines. The first issue is addressed 
by the proposed approach of delivering the software as a 
service in accordance with the ASP paradigm, which 
offers the benefits of easy software maintenance and futu-
re upgrade, low cost of entry into the business (especially 
for small and medium scaled FPIM), and considerably 
less expensive pay-as-you-go model. The issue of effici-
ent scheduling routine is addressed by developed HEA 
which combines the approaches of using PDR with GA. 
PDR-based approaches offer the advantage of simplicity, 
featuring low computational cost and can therefore be 
applied to complex real-world problems such as FPIM 
FJSS. GA, incorporated into proposed HEA addresses the 
issues of the myopic nature of PDR and the necessity to 
empirically evolve the most suitable PDRs and their 
combination. Implementing HEA as a database SP offers 
the benefits of reduced communication network overhead 
and improved performance characteristics Performance 
evaluation results obtained for evolving a desirable 
(without tardy orders) schedule of 400 customer’s orders 
on experimental model of FPIM indicate that the business 
delays are in order of half an hour.    

We are intending to explore the following two approa-
ches to future reduce the business delays. The first appro-
ach is aimed at reducing the computational effort of HEA 
and it would exploit the continuous nature of the schedu-
ling process. Taking into consideration the empirical 
observation that newly submitted orders are unlikely to be 
scheduled in a way that requires significant modifications 
to the orders, scheduled earlier, we are interested in the 
feasibility to incorporate few of the best schedules from 
previous run into the initial population of the current run. 
The second approach is intended to improve the overall 
performance of HEA by inducing a noise (Miller and 
Goldberg, 1995) in fitness evaluation - instead of creating 
and evaluating the whole schedule, it is much faster to 
create and evaluate only the initial part of it and to make a 
judgment about the fitness of the whole schedule. The 
preliminary obtained results are encouraging in that vary-
ing the amount of the induced noise a tradeoff between 
the improved computational performance and the deterio-
rated computational effort can be achieved, leading to the 

better overall performance of HEA.   
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Abstract The rest of this paper is organized as follows.   Section 2 

describes traditional System Identification and introduces 
the use of Particle Swarm Optimization (PSO) for 
determining the coefficients of a simple autoregressive 
moving average model (SwARMA).  Section 3 explains 
Particle Swarm Optimization.   Section 4 describes the 
results of using PSO for determining the ARMA model 
parameter (SwARMA) for an example problem.  Section 
5 introduces and explains the Group Method of Data 
Handling (GMDH)  and the extension of the GMDH 
algorithms using PSO.  Section 6 describes the results of 
using the GMDH combined with PSO for two example 
problems and an additional example problem that 
illustrates nodal selection criterion. The paper ends with 
the primary conclusions we draw from the results. 

A new methodology for Emergent System 
Identification is proposed in this paper. The new 
method applies the self-organizing Group 
Method of Data Handling (GMDH) functional 
networks, Particle Swarm Optimization (PSO), 
and Genetic Programming (GP) that is effective 
in identifying complex dynamic systems.  The 
focus of the paper will be on how Particle 
Swarm Optimization (PSO) is applied within 
Group Method of Data Handling (GMDH) which 
is used as the modeling framework.    

1 INTRODUCTION 
The methodology of System Identification was developed 
for the extraction of mathematical models from system 
data. Evolutionary System Identification has been used to 
designate the use of evolutionary computation for the 
determination of the approximate mathematical model 
from experimental data.  Evolutionary systems rely on a 
notion of competition among a population of individuals 
that compete to reproduce to form future generations.  
Emergence is used to describe the self-organization (order 
for free) exhibited by Complex Dynamic Systems.  
Emergent systems rely on the self-organization properties 
of the underlying system (information) (Holland, 1998).  
These emergent systems use iterative stochastic 
methodologies to discover the underlying connections 
implied by the system data.  From this perspective, 
evolutionary methodologies are also emergent, but the 
opposite is not always true.  The methodology of 
Emergent System Identification that is proposed here is 
concerned with extending the concept of Evolutionary 
System Identification by combining the methodologies of 
System Identification (Pandit, 1984) self-organizing 
functional networks (GMDH) (Ivakhnenko, 1968a, 
1971b; Madala and Ivakhnenko, 1994), Particle Swarm 
Optimization (PSO) (Kennedy and Eberhart, 2001a) and 
Genetic Programming (GP) (Iba and Kurita, 1994).  

2 SYSTEM IDENTIFICATION 
Generally speaking, the discipline of system Identification 
is concerned with the derivation of mathematical models 
from experimental data.  When given a data set one 
typically applies a set of candidate models and chooses 
one of the models based on a set of rules by which the 
models can be assessed.  One of the simplest System 
Identification models is the Autoregressive Moving 
Average  (ARMA) model as shown in equation 1.  

                  1 1 2 2

0 1 1 2 2

t t t n t n

t t m

y y y y
a a a

φ φ φ
θ θ θ θ

− − −

t m− − −

+ + + +
+ + += +

 (1) 

where , 1,i i nφ =  and , 0,j j mθ =

i

are the parameters for an 
ARMA(n,m) model.  For a given ARMA(n,m) model the 
model parameters φ  and jθ  are selected such that 
equation (2) is minimized, 

                          ∑  (2) ( 2

_ _
1

N

t data t ARMA
t

y y
=

− )

where,     

                     N =  number of data points.  (3) 
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ARMA models are numerically efficient due to their 
ability to utilize traditional parameter estimation methods 
and typically employ non-linear least squares for the 
determination of their parameters.  In this paper it is 
shown that Particle Swarm Optimization (PSO) can be 
used to determine the parameters for ARMA models.  The 
use of PSO to determine the constants of the ARMA 
model is denoted by what the authors are calling 
SwARMA.  It will be shown that SwARMA was able to 
determine a better parameterization for the ARMA model 
than the IMSL (International Mathematical and Statistical 
Libraries) routines. 

3.1 PSO EQUATIONS 
The ith particle is represented as,  

                          1 2( , ,..., )I i i iDX x x x=  (4)  

where D is the dimensionality of the problem. The rate of 
the position change (velocity) of the ith particle is 
represented by,   

                          1 2( , ,..., )I i i iDv vV v=  (5) 

where  is the velocity for dimension “k” for particle 
“i”. The best previous position (the position giving the 
best fitness value) of the ith particle is represented as, 

ikv

3 PARTICLE SWARM OPTIMIZATION                           1 2( , ,..., )I i i iDP p p p=  (6) 

The Particle Swarm Algorithm is an adaptive algorithm 
based on a social-psychological metaphor (Kennedy and 
Eberhart, 2001a). A population of individuals adapt by 
returning stochastically towards previously successful 
regions in the search space, and are influenced by the 
successes of their topological neighbors.  Most particle 
swarms are based on two sociometric principles.  Particles 
fly through the solution space and are influenced by both 
the best particle in the particle population and the best 
solution that a current particle has discovered so far.  The 
best particle in the population is typically denoted by   
(global best), while the best position that has been visited 
by the current particle is denoted by   (local best).  The   
(global best) individual conceptually connects all 
members of the population to one another.  That is, each 
particle is influenced by the very best performance of any 
member in the entire population. The (local best) 
individual is conceptually seen as the ability for particles 
to remember past personal successes. 

The best previous position so far achieved by any of the 
particles (the position giving the best fitness value) of the 
ith particle is recorded and represented as,  

                          1 2( , ,..., )G g g gDP p p p=  (7) 

On each iteration the velocity for each dimension of each 
particle is updated by, 

     { } { }1 1 2 2 , 1, 2,...,ik k ik ik gkv c p c p k g Dϕ ϕ= + + ∈v w  (8) 

where  is the inertia weight that typically ranges from 
0.9 to 1.2. 1  and 2  are constant values typically in the 
range of 2 to 4.  These constants are multiplied by 

kw
c c

ϕ  (a 
uniform random number between 0 and 1) and a measure 
of how far the particle is from its personal best and the 
best particle so far. From a social point of view, the 
particle moves based on its current direction ( ), its 
memory of where it found its personal best (

kw
ikp ), and a 

desire to be like the best particle in the population ( gkp ).  

 
3.2 PSO – POSITION UPDATE RULE 

Particle Swarm Optimization is a relatively new addition 
to the evolutionary computation methodology, but the 
performance of PSO has been shown to be competitive 
with more mature methodologies (Eberhart and Shi, 
1998a; Kennedy and Spears, 1998).  Since it is relatively 
straightforward to extend PSO by attaching mechanisms 
employed by other evolutionary computation methods 
that increase their performance; PSO has the potential to 
become an excellent framework for building custom high-
performance stochastic optimizers (Løvbjerg, et al., 
2001).  It is interesting to note that PSO can be considered 
as a form of continuous valued Cellular Automata.  This 
allows its hybridizations to extend into areas other than 
computational intelligence (Kennedy and Eberhart, 2001). 

After a new velocity for each particle is calculated, each 
particle's position is updated according to: 

                             ik ik ikx x v= +  (9) 

It typically takes a particle swarm a few hundred to a few 
thousand updates for convergence depending on the 
parameter selections within the PSO algorithm (Eberhart 
and Shi, 1998b). 

3.3 RESULTS: PSO+ARMA 
Particle Swarm Optimization was used to determine the 
ARMA parameters for the Wolfer Sunspot Data (1770-
1869).  The results from the study are shown in Fig. 1.  
This model was chosen to demonstrate the use of PSO on 
a well understood System Identification problem. The 
authors were somewhat surprised at the results.   The 
particle swarm converged after a few thousand iterations 
in less that a minute on a 200 Mhz Pentium PC.  In all 
cases the solution found was substantially better than 
those found using the IMSL Libraries.   

 
 
 
 
 
 

REAL WORLD APPLICATIONS1228



For both the ARMA(2,1) and ARMA(4,2) models the 
PSO solution was better than the IMSL solution. In light 
of these results the authors chose to call the combination 
of PSO with ARMA: SwARMA (Voss and Feng, 2001). 
These results suggest some interesting future research 
with regards to traditional System Identification. 
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Fig. 2. GHDH forward feed functional network 

 
The inputs to the input layer are determined by taking all 
combinations (taken two at a time) of the input vector 
“xi“.  Each combination of inputs forms an input node that 
tries to model the corresponding system output using a 
second order polynomial surface specified by the 
polynomial in equation 11. 

Fig. 1.  Wolfer Sunspot Data.  
Static SwARMA models.  Weight = 0.7. 

         (11) 2
0 1 1 2 2 3 1 2 4 1 5 2y c c x c x c x x c x c x= + + + + + 2

 
The nodes in the input layer that do the “best job” (shaded 
nodes) at modeling the system output are retained and 
form the input to the next layer.  The inputs for layer 1 are 
formed by taking all combinations of the surviving output 
approximations from the input layer nodes.  It is seen that 
at each layer the order of the approximation is increased 
by two.  The layer 2 nodes that do the “best job” at 
approximating the system output are retained and form 
the layer 3 inputs.  This process is repeated until the 
current layer’s best approximation is inferior to the 
previous layer’s best approximation.  The previous layer’s 
best approximation is then used as the final solution.  
Determining the method for ranking the nodes at a given 
layer is somewhat problem dependant.  Typically the data 
is spit into two groups.  One data group is used to train the 
network and the other data group is used to rank the nodes 
to determine which nodes survive to form the input to the 
next layer.  The GMDH can thus be seen as a 
methodology for distributed self-organizing computation. 

4 THE GROUP METHOD OF DATA 
HANDELING 

The group method of data handling (GMDH) was first 
proposed by Alexy G. Ivakhnenko (1968).  The traditional 
GMDH method is based on an underlying assumption that 
the data can be modeled by using an approximation of the 
Voltera Series or Kolmorgorov-Gabor polynomial as 
shown in the following equation, 
                                     

 (10) ...0
1 1 1 1 1 1

m m m m m m

i i i i j i i j k
i i j i j k

y a a x a x x a x x x
= = = = = =

= + + +∑ ∑∑ ∑∑∑

Ivakhnenko accomplished this by using a feed-forward 
self-organizing polynomial functional network shown in 
Fig 2. 
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4.1 EXTENDING THE GMDH 
Optimal Kolmorgorov Surface Fit 
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The GMDH can be used as an embryo for more complex 
methodologies for distributed self-organizing computation  
(Nikolaev,N. and Iba,H., 2001).  The methodology is 
modified here by substituting equation 12 in place of the 
traditional six term linear polynomial approximation, 
 

           (12) 
3 4

0 1 1 2 2

1 1 2 2( ) | | ( ) | |c c
y c c x c x

sign x x sign x x

= + +

+ +

This non-linear equation was designed to test the 
application of Particle Swarm Optimization for nodal 
optimization within a GMDH network.  The non-linear 
equation has one less parameter than the traditional 
polynomial approximation and does not admit the 
application of simple gradient based optimization 
methods due to the incorporation of the absolute value 
function.  The GMDH methodology has also been used as 
a starting point for many new approaches to the System 
Identification problem (Iba and Kurita, 1994).   Here it is 
demonstrated that it is practical to allow for low-level 
non-linear emergent nodal representations embedded in a 
higher-level self-organizing network.  This is the type 
hierarchical model that is necessary for the methodology 
of Emergent System Identification. 

 
Fig. 4. PSO - non-linear surface fit 

 

5.1 GMDH AND NON-LINEAR NODAL 
FUNCTIONAL REPRESENTATION 

For the purposes of determining the applicability of 
equation 6 a surface as shown in Fig. 3 was generated 
using 100 random values for x1 and x2 between 0 and 1 
using the following form of equation 11. 

5 RESULTS: PSO + GMDH       (13) 2
150 175 500 200 100 1751 2 1 2 1y x x x x x= − + − + − 2

2x
Three example problems were considered. The first 
problem was a test of the applicability of substituting 
equation 12 in place of equation 11 in a GMDH node.  
The second problem was a comparison of using equations 
11 and 12 for the System Identification of a simple string 
vibrating in a non-linear fluid, where the damping force 
was set proportional to the square of the velocity of the 
string movement.  The third problem was the prediction 
of natural gas flow for a location in the Midwest United 
States.  

The results for using Particle Swarm Optimization are 
shown in Fig. 4.   
 
The results were very good considering that the Particle 
Swarm Algorithm parameters where not optimized for 
solving this problem. These results lend support for the 
use of Particle Swarm Optimization in combination with 
non-linear formulations for the GMDH nodes (such as 
equation 12) within the GMDH methodology. 
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5.2 VIBRATING STRING – GMDH AND NON-
LINEAR NODAL FUNCTIONAL 
REPRESENTATION 

Since we are investigating the application of Particle 
Swarm Optimization for its utility in optimizing non-
linear models within the GMDH nodes, the specifics of 
the discrete string model are not given here.  The inputs to 
the GMDH were the previous four amplitudes calculated 
at the center of a string vibrating in a non-linear fluid.  
The string was given an initial displacement of 1.0 and 
then released.  The previous four amplitudes were then 
used to predict the future position of the string at its 
central location.  The System Identification results for 
equation 11 and 12 are shown in Fig. 5. The particle 
swarm quickly converged for the two models with the 
results for the two equations almost equal.   

 
Fig. 3. Random Kolmorgorov Surface 
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 Fig. 6. GMDH - Natural Gas: Alt. Test/Train. 

Fig. 5. GMDH - Non-linear vibrating string.  
 
This lends support for GMDH nodal equations of the 
form given in equation 12 since it requires one less degree 
of freedom than equation 11.  For models where training 
time is not critical these results support the use of PSO 
and non-linear functional representations within the 
GMDH nodes. 
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5.3 NATURAL GAS PREDICTION - GMDH 
In the last example we investigated the applicability of a 
traditional GMDH for predicting natural gas 
consumption. In Fig. 6 the GMDH network was trained 
on all 100 days in the data set.  Fig. 7 was trained and 
tested on alternating 10 day periods. 
 
For both gas consumption studies the temperature, wind 
and volume for the previous two days were used to 
predict today's required volume. No solid conclusions can 
be drawn from this study, but it does illustrate the trade-
off that is made with respect to choosing a criterion for 
selecting the surviving nodes at a given layer in a 
traditional GMDH network. The GMDH network, shown 
in Fig. 6., that was trained on 10 days with the next 10 
days used for selecting the surviving nodes within a layer 
does not do as good a job on average but never over or 
under predicts as much as the GMDH network trained on 
all the data.   

 
Fig. 7. GMDH - Natural Gas: Trained on all data. 

 
  
A more in depth study would have to be undertaken to 
determine the quality of these results as compared to 
traditional neural networks, but the results are promising 

The GMDH network trained on all the data shown in Fig. 
7 does a good job on almost all of the days except for day 
70 where the prediction is noticeably high.   
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when one takes into account that these networks were 
trained in a few seconds. 
 
For both gas consumption studies the temperature, wind 
and volume for the previous two days were used to 
predict today's required volume. No solid conclusions can 
be drawn from this study, but it does illustrate the trade-
off that is made with respect to choosing a criterion for 
selecting the surviving nodes at a given layer in a 
traditional GMDH network. The GMDH network, shown 
in Fig. 6., that was trained on 10 days with the next 10 
days used for selecting the surviving nodes within a layer 
does not do as good a job on average but never over or 
under predicts as much as the GMDH network trained on 
all the data.  The GMDH network trained on all the data 
shown in Fig. 7 does a good job on almost all of the days 
except for day 70 where the prediction is noticeably high.  
A more in depth study would have to undertaken to 
determine the quality of these results as compared to 
traditional neural networks, but the results are promising 
when one takes into account that these networks were 
trained in a few seconds. 

6 CONCLUSION 
Preliminary studies indicate that Particle Swarm 
Optimization can be used to develop superior estimates 
for the ARMA model parameters for noisy (real world) 
data.  Since the run time for these studies was only a few 
minutes (at most) it can be inferred that Particle Swarm 
Optimization is competitive with traditional non-linear 
least squares algorithms for determining the parameters 
for many traditional System Identification tasks.  
Additionally, Particle Swarm Optimization does not need 
to exploit any mathematical properties that are specific to 
a particular system model. 
 
The practical use of Particle Swarm Optimization for 
training non-linear nodes within a GMDH network was 
demonstrated. This was illustrated using a non-linear 
equation that has one less parameter than the traditional 
polynomial approximation while producing competitive 
training results.  Since the non-linear nodal equation that 
was demonstrated is only one of many that can be used, 
this implies that families of non-linear functions could be 
trained for each node.  This would allow for GMDH 
networks that are self-organizing at multiple levels. The 
examples studied provide experimental support for the 
practical use of low-level non-linear emergent nodal 
representations embedded in a higher-level self-
organizing network. This hierarchical network (self-
organizing at many levels) forms the basis for the 
methodology that we are calling  Emergent System 
Identification. 
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Testing is the most important analytic quality assur-
ance measure for software. The systematic design
of test cases is crucial for test quality. Structure-
oriented test methods, which define test cases on the
basis of the internal program structures, are widely
used.
Evolutionary testing is a promising approach for the
automation of structural test case design which
searches test data that fulfil given structural test
criteria by means of evolutionary computation.
In this paper we present our evolutionary test envi-
ronment, which performs fully automatic test data
generation for most structural test methods. We
shall report on the results gained from the testing of
real-world software modules. For most modules we
reached full coverage for the structural test criteria.

� ��
�� !
���

A great number of today’s products is based on the deploy-
ment of embedded systems. In industrial applications em-
bedded systems are predominantly used for controlling and
monitoring technical processes. There are examples in nearly
all industrial areas, for example in aerospace technology,
railway and motor vehicle technology, process and automa-
tion technology, communication technology, process and
power engineering, as well as in defense electronics. Nearly
90% of all electronic components produced today are used in
embedded systems.

In order to achieve high quality in the development of em-
bedded systems, central importance is attributed to analytical
quality assurance. In practice, the most important analytical
quality assurance measure is dynamic testing. Thorough
testing of the systems developed is essential for product
quality. The aim of the test is to detect errors in the system
under test, and, if no errors are found during comprehensive
testing, to convey confidence in the correct functioning of the
system. This is the only procedure which allows the testing
of dynamical system behavior in a real application environ-
ment.

The most significant weakness of the test is that the postu-
lated functioning of the tested system can, in principle, only
be verified for those input situations selected as test data.
Testing can only show the existence and not the non-
existence of errors. Therefore, the correctness proof can only
be produced by a complete test. In practice, a complete test,
with the exception of a few trivial cases, is not executable
because of the enormous amount of possible input situations.
Thus, the test is a sampling procedure. Accordingly, a task
which is essential to testing is the selection of an appropriate
sample containing the most error-sensitive test data.

Among the different test activities (test case design, test
execution, monitoring, test evaluation, test planning, test
organization, and test documentation – see Fig. 1) test case
design is of essential importance.
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Fig. 1 Structure and interaction of test activities including
test case design by means of evolutionary algorithms

For most test objectives an automation of test case design is
difficult to achieve. Thus, test case design usually has to be
performed manually. Manual test case design, however, is
time-intensive and susceptible to errors. The quality of the
testing is heavily dependent on the performance of the single
tester.

To increase the effectiveness and efficiency of the test, and
thus to reduce the overall development costs for software-
based systems, we require a test which is systematic and
extensively automatable. For this reason, DaimlerChrysler
Research works in the area of ���������	
�������� [19]. The
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aim of the work is to increase the quality of the tests and to
achieve substantial cost savings in system development by
means of a high degree of automation of test case design.

Evolutionary testing is a promising approach for fully auto-
mating test case design for various test aims. For instance,
evolutionary tests can be used to systemize and automate the
testing of non-functional properties and to generate test cases
for conventional test methods. In this paper we shall concen-
trate on structural testing.

The only prerequisites for the application of evolutionary
testing are an executable test object and its interface specifi-
cation. For the automation of structural testing the source
code of the test object must be available to enable its instru-
mentation.

In Section 2 we give a short overview of evolutionary testing.
Section 3 describes the different aspects of structural testing.
Our evolutionary test environment is presented in Section 4.
A large number of real-world software modules have already
been tested. The results are presented in Section 5. Our con-
cluding remarks are set out in Section 6 along with our out-
look for future research.

" �#�$ 
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Evolutionary testing is characterized by the use of meta-
heuristic search techniques for test case generation (see
Fig. 1). The test aim considered is transformed into an opti-
mization problem. The input domain of the test object forms
the search space in which one searches for test data that
fulfils the respective test aim. Additionally, a numeric repre-
sentation of the test aim is necessary. This numeric repre-
sentation is used to define objective functions suitable for the
evaluation of the generated test data. Depending on which
test aim is pursued, different objective functions emerge for
test data evaluation. Section 4 describes objective functions
for structural testing in detail.

Due to the non-linearity of software (if-statements, loops
etc.) the conversion of test problems to optimization tasks
mostly results in complex, discontinuous, and non-linear
search spaces. Neighborhood search methods like hill
climbing are not suitable in such cases. Therefore, meta-
heuristic search methods are employed, e.g. evolutionary
algorithms, simulated annealing, or taboo search. In our
work, evolutionary algorithms are used to generate test data
because their robustness and suitability for the solution of
different test tasks has already been proven in previous work,
e.g. [14], [6], [19].

As we assume the reader to be familiar with evolutionary
algorithms we shall only describe the interaction of the evo-
lutionary algorithm with the other testing activities in this
paper. Please refer to [18] and [17] for a longer description
of evolutionary algorithms in the context of evolutionary
testing.

Figure 2 presents the structure of evolutionary testing from
the point of view of the evolutionary algorithm. The interac-
tion with the other testing activities occurs during the
evaluation of the individuals.
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5HFRPELQDWLRQ

0XWDWLRQ

)LWQHVV�(YDOXDWLRQ

Individuals

Test Data

Monitoring

Objective Values

Test
Execution

7HUPLQDWLRQ"

Fig. 2 Structure of Evolutionary Testing

Each individual within the population represents a test datum
with which the test object is executed. For each test datum
the execution is monitored and the objective value is deter-
mined for the corresponding individual. Next, population
members are selected with regard to their fitness and sub-
jected to recombination and mutation to generate new off-
spring. It is important to ensure that the test data generated
are in the input domain of the test object. Offspring individu-
als are then evaluated by executing the test object with the
corresponding test data. A new population is formed by
combining offspring and parent individuals, according to the
survival procedures defined. From now on, this process
repeats itself until the test objective is fulfilled or another
given termination criterion is reached.

& �
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Structural testing is widespread in industrial practice and
stipulated in many software-development standards, e.g.
[13], [5], and [3]. The execution of all statements (statement
coverage), all branches (branch coverage), or all conditions
with the logical values True and False (condition coverage)
are common test aims. Structural test methods are usually
applied to unit tests. There are no enforced structure test
criteria for integration tests or system tests.

The aim of applying evolutionary testing to structural testing
is the automatic generation of a quantity of test data, which
leads to the best possible coverage of the respective structural
test criterion. In the case of statement testing, the goal of the
test is to execute each program statement at least once. In the
case of branch testing the empty branches also have to be
executed. The test goals are based on the assumption that a
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test, which does not include each statement and all branches
(of the system under test being executed) at least once, does
not present a thorough check of the test object. Therefore, the
overall goal of the test case design is to define a set of test
data which guarantees that each statement or each branch is
executed.

Whereas all previous work has concentrated on selected
structural test criteria (statement-, branch-, condition and
path test), our test environment has been developed to sup-
port all common control-flow and data-flow oriented test
methods.

In order to search for the test data set the test is divided into
partial aims. Each partial aim represents a program structure
that requires execution to achieve full coverage, for example
a certain statement or branch. For each partial aim, an indi-
vidual objective function is formulated and a separate opti-
mization is undertaken to search for a test datum executing
the partial aim.

In order to direct the search toward program structures not
covered, the objective function computes a distance for each
individual that indicates how far away it is from executing
the desired program structure. Individuals which are closer
to the execution of the desired program structure will be
selected as parents and combined to produce offspring indi-
viduals.

The objective functions of the partial aims consist of two
components – the approximation level and the local distance
calculation.

&'� �((��)�*�
���	$�#�$	!�$! $�
���

The approximation level supplies a figure for an individual
that gives the number of branching nodes lying between
program structures covered by the individual and the desired
program structure. For this computation, only those branch-
ing nodes are taken into account that contain an outgoing
edge that results in a miss of the desired program structure.

An example is given in Figure 3. The program graph contains
four branching nodes which could result in a miss of the
target node (representing the desired statement or branch).
Each node is assigned the corresponding approximation level
(level 4 to level 1). An individual that branches away from
the target node at the first branching node attains a lower
approximation level (level 4) than an individual which
reaches level 3 etc. The figure shows the execution of an
individual which misses the target node in the branching
node with the approximation level 2. The individual passes
the branching nodes in the levels 4 and 3 as desired but
misses the target node at level 2.

&'" $�!�$	��
��!�	!�$! $�
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The calculation of the local distance is performed in order to
distinguish different individuals executing the same program
path. For this, a distance to the execution of the other pro-
gram path is calculated for the individual by means of the
branching conditions in the branching node in which the
target node is missed. Figure 4 illustrates this calculation.

For example, if a branching condition x==y needs to be
evaluated as True to reach the target node, then the objective
function may be defined as |x-y|. If an individual obtains the
local distance 0, a test datum is found which fulfils the
branching condition: x and y have the same value.

If a branching node contains multiple conditions the local
distance is a combination of the local distances of each con-
dition. For a node of the type a ∨ b the local distance of an

Target

Level 4

Level 3

Level 2

Level 1

Figure 3. Approximation level calculation (objective
function for structural testing)

Level 1

Level 2

Level 3

Level 4

Condition
fulfilled

Distance to
condition

Figure 4. Local distance calculation (objective function for
structural testing)
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individual is obtained from the minimum value for each
single predicate a and b. In the case of a ∧ b the local dis-
tance of an individual is the result of the sum of the distances
determined for each single predicate.

&'& �+,�!
�#�	- �!
���

The overall objective function value of an individual with
respect to a certain partial aim is defined as the sum of its
approximation level and its normalized local distance:

F(pa, i) = AL(pa, i) + (1 – LD(N(pa, AL(pa, i)), i),
• F(pa, i): objective value of individual i for the partial

aim pa,
• AL(pa, i): highest approximation level of the individual

i for the partial aim pa,
• N(pa, al): branching node with the highest approxima-

tion level for the partial aim pa,
• LD(n, i): normalized local distance of the individual i

in branching node n.

An individual with an objective value of  0 leads to the
passing of the desired program structure. This provides a
natural termination criteria for the optimization of this partial
aim.

Even though the evolutionary test works up only one partial
aim after the other, the execution of a test datum usually
leads to passing several partial aims. Thus, the test soon
focuses on those program structures which are difficult to
reach. After having worked up all partial aims, a minimal
amount of test data is returned to the tester. This test data set
leads to an execution of all reached partial aims.

. �#�$ 
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In order to automate test case design for different structural
testing methods with evolutionary tests we have developed
a tool environment which consists of six components:
• parser for the analysis of test objects,
• graphical user interface for the specification of the in-

put domain of the test objects,
• instrumenter which captures program structures exe-

cuted by the generated test data,
• test driver generator which generates a test bed running

the test object with the generated test data,
• test control which includes the identification and ad-

ministration of the partial aims for the test and which
guarantees an efficient test by defining a processing or-
der and storage of initial values for the partial aims,

• toolbox of evolutionary algorithms to generate the test
data.

Fig. 5 presents the structure of the evolutionary test environ-
ment and shows the information exchange between these
tools. The parser, interface specification, instrumenter and
test driver generator constitute the test preparation. During

test execution the test control and the evolutionary algorithm
toolbox are employed.

.'� (�����

The parser identifies the functions in the source files which
form the possible test objects. It determines all necessary
structural information on the test objects. Control-flow and
data-flow analyses are carried out for every test object. These
analyses determine the interface, the control-flow graph, the
contained branching conditions with their atomic predicates,
as well as semantic information on the used data structures,
e.g. the organization of user-defined data types.
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To ensure efficient test data generation and to avoid the
generation of inadmissible test data from the beginning, the
tester may have to define the test object interface determined
by the parser more precisely. For this, the developed tool
environment provides a graphical user interface that displays
the test objects and their interfaces as they have been deter-
mined by the parser.

The tester can limit the value ranges for the input parameters
and enter logical dependencies between different input pa-
rameters. These will then be considered during test data
generation. It is also possible to enter initial values for single
or for all input parameters. As a result, test data of a previous
test run or data of an already existing functional test, as well
as specific value combinations for single input parameters,
can be used as a starting point for test data generation (seed-
ing).

.'& ���
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The third component in the tool environment is the instru-
menter that enables test run monitoring. In order to eliminate
influences on program behavior the instrumentation has to
take place in the branching conditions of the program. The
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Figure 5. Components of the evolutionary test environment
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instrumentation of the branching conditions is always the
same, independent of the selected structural test criterion.

The atomic predicates in the branching nodes of the test
object are instrumented to measure the distances individuals
are away from fulfilling the branching conditions (see Sec-
tion 3.2). The instrumentation also provides information on
the statements and program branches executed by an individ-
ual.

.'. 
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The test driver generator generates a test bed that calls the
test object with the generated individuals and returns the
monitoring results provided by the execution of the instru-
mented test object to the test control. When the test object is
called by the test driver, the individuals are mapped onto the
interface of the test object. It is important that user specifica-
tions for the test object interface are taken into account.
Individuals that do not represent a valid input are extracted
and assigned a low fitness value.

.'0 
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The most complex component of the evolutionary test envi-
ronment is the test control. It is responsible for several diffi-
cult tasks: the management of the partial aims with their
processing status, the collection of suitable initial values for
the optimization of partial aims, and the recording of test data
fulfilling partial aims.

The test control identifies partial aims for the selected struc-
tural test criterion. Partial aims are determined on the basis
of the control–flow graph provided by the parser. The test
control manages the determined partial aims and regulates
the test progress. One after the other, the different partial
aims are selected in order to search for test data with the
evolutionary test. Independent optimizations are performed
for every partial aim.

Although only one partial aim is considered for the optimi-
zation at a time, all individuals generated are evaluated with
regard to all unachieved partial aims. Thus partial aims
reached by chance are identified, and individuals with good
objective values for one or more partial aims are noted and
stored. Subsequent testing of these partial aims then uses the
stored individuals as initial values (also compare [9]). This
method is called seeding. It enhances the efficiency of the
test because the optimization does not start with an entirely
randomly generated set of individuals.

In order to calculate the objective values for the individuals
the test control determines the program paths executed by
every individual, on the basis of the data attained by test
monitoring and the test object’s control-flow graph. Objec-
tive values are then evaluated by applying the objective
functions described in Section 3, that take into account the
local distance measurement for the branching conditions as
well as the approximation level.

The processing sequence for the partial aims that have not
yet been attained is guided by the test control depending on
the availability of suitable initial values. The partial aim for
which the individuals with the best objective values are
available is selected as the next one for the test. This ensures
that the test quickly achieves a high coverage because partial
aims which are difficult to execute or infeasible do not slow
down the overall testing process. When no initial values are
available, or several equally good initial values for different
partial aims exist, then a breadth-first search is carried out. If
the search fails to find a test datum for a partial aim it is
marked as already processed and not fulfilled. During the
remaining optimization process it is possible to reset this
status if an individual with a better objective value for this
partial aim is found accidentally. The partial aim is then
targeted again for an additional test employing the attained
values for initialization.

Once all partial aims have been processed the test is finished.
The test data for the separate partial aims are then compiled
and displayed with the obtained coverage. On this basis, the
tester is able to check whether program structures that were
not covered are infeasible, or whether the evolutionary test
was not able to generate suitable test data.

In addition, the test control offers a simple application pro-
gramming interface (API) to export test data found, and
actual values for the output parameters of the test object, in
order to support automatic test evaluation on the basis of test
oracles. Moreover, it provides test and monitoring informa-
tion for the visualization of the test progress.
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We have applied the ��������	������������	
������
����
����������
����������	��	��(������) [10]. This is a very
powerful tool that supports real and integer number repre-
sentation of individuals as well as binary coding. Almost any
hybrid form of evolutionary algorithm can be implemented,
including genetic algorithms and evolution strategies. The
toolbox offers a large number of different operators for the
components of evolutionary algorithms, and also enables the
application of sub-populations, migration and competition
between sub-populations, and possesses extensive visualiza-
tion functions for displaying the optimization state and prog-
ress. It is possible to specify admissible value domains for
the parameters of an individual. The toolbox automatically
ensures that these value domains are observed during the
generation of individuals. Thus, the test driver only needs to
check for dependencies between the single variables of an
individual.

REAL WORLD APPLICATIONS 1237



0 �(($�!�
���	�-	�#�$ 
�����%

��
���

Our tool environment has already been applied in experi-
ments with typical real-world examples. Currently, our work
concentrates on the automatic generation of test data for
statement and branch tests, which has yielded excellent
results. For all test objects a complete or very high coverage
was achieved by the evolutionary test.

0'� 
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�

Table 1 presents a selection of examined test objects. To
assess and compare the complexity of the software modules
we report a number of software metrics. These figures are
taken from a larger study examining the complexity of more
than 40 different software modules [2].

The basic metric is lines of code. The cyclomatic complexity
gives information on the test object’s control flow. The
nesting complexity assesses the nesting level and can indi-
cate the difficulty in reaching a partial aim with respect to the
control-flow. Myer’s interval shows the complexity of cer-
tain branching conditions.

����� calculates the arcsin or arccos for the passed argument
(1 double) and is a typical C library function.
Prototype: double asin(double arg);

������ is another typical C library function. It converts strings
to the corresponding floating point value. ������ contains
several evaluations which check the input string for its valid-
ity. In the experiments the maximum string length was set to
10 characters in ASCII coding. Accordingly, the size of the
search space is 25510. For this test object each test datum
(individual of the evolutionary algorithm) consists of 10
integer variables, each with a possible value of 1 to 255.      
Prototype: double atof(char InStr[10]);

The ��	���
�	�� function is an implementation of the classic
triangle classifier example used in a large number of testing
papers. It is used in two different data type versions. The
input domain is given either by three floating point values or
by three integer values.
Prototype: void classifTria(double a, double b, double c);

In ������ a passed floating point value is raised to a passed

integer value. The input consists of 1 double and 1 integer.   
Prototype: double powi(double x, int nn);

 ������� is a larger test function. It calculates the incomplete
beta-integral of the passed argument (3 doubles).
Prototype: double incbet(double aa, double bb, double xx);

In the experiments the double values were bounded in [-106,
106].
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Evolutionary testing was carried out using an evolutionary
algorithm with the following configuration:
• linear ranking with a selective pressure of 1.7,
• selection by stochastic universal sampling,
• generation gap of 0.9,
• discrete recombination with a recombination rate of 1,
• real or integer valued mutation employing different

mutation range for each subpopulation in the range
[0.1, 0.01, ..., 10-6] and a mutation rate of (1/number of
variables),

• regional population model dividing the population into
subpopulations,

• migration between subpopulations every 20 genera-
tions in a complete net structure (5% migration rate),

• competition between subpopulations every 5 genera-
tions (division pressure of 3),

• maximal number of generation of 200.

The sizing of the subpopulations depends on the complexity
of the software module under test. We employed 9 subpopu-
lations with 100 individuals each. This number is relatively
large and therefore more appropriate for the complex soft-
ware modules (������ and ��������). In order to compare the
results more easily we used this number for all the modules
in all the experiments.

Structural testing exhibits a natural termination criteria. As
soon as a partial aim is reached the corresponding optimiza-
tion process can terminate. Thus, an upper bound for the
number of generations is only defined if a partial aim can not
be reached.

There is one straightforward mechanism for the dynamic
adaptation of evolutionary testing in the context of our work
which has already been successfully employed: the use of

Table 1 Metrics and number of partial test aims of the used test objects

�������2������� ���� ���� �������
��� 3��� ������

lines of code 13 36 41 51 159

cyclomatic complexity 4 16 14 15 23

Myer’s interval 0 27 7 2 3

nesting complexity 4 32 17 19 43

no. of statement cover aims 10 40 30 36 58

no. of branch cover aims 12 56 42 49 79
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multiple strategies and competing subpopulations. The use of
multiple strategies (different mutation range for each sub-
population) leads to different search strategies: from a glob-
ally oriented search when employing a large mutation range
to a very fine search when employing a small mutation range.
Additionally, depending on the test process, the most suc-
cessful strategies will be assigned more resources. This leads
to an efficient distribution of resources during the whole
optimization and a more robust search. For a longer discus-
sion of competing subpopulations see [11].
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We compare the results of evolutionary testing (ET) to those
of random testing (RT) for all test objects. The availability of
other means of comparison is very limited. One could also
compare the results with those of an expert with good knowl-
edge of the modules under test. However, this would involve
a great deal of effort which would not be justifiable for real-
world problems. We have carried out this kind of comparison
for several modules in order to test temporal behavior [12].
In these cases RT performed nearly as well as the expert,
whereas ET always proved itself to be better or at least as
good as the expert.

The results of the experiments are presented in Table 2. The
number of individuals generated for random testing was
equivalent to that for evolutionary testing. Each experiment
was repeated 10 times. The mean values for the respective
results are presented.

The evolutionary test achieved full statement and branch
coverage for the first 3 software modules in a very short
time. Random testing was unable to reach full coverage for
any of the software modules. The coverage values are much
lower in general.

For the more complex software modules ������ and ��������
evolutionary testing reached high coverage values. However,
full coverage (100%) was not reached. We are still investi-
gating if these coverage values are the highest possible val-

ues (because of infeasible statements and branches). It is thus
quite possible that for these test objects, the maximal possi-
ble coverage has been reached.

When we compare the results of evolutionary testing and
random testing for these two modules the advantage of evo-
lutionary testing is much more apparent. Especially for ���!
�����, the coverage of random testing is substantially lower
than that of evolutionary testing.

This suggests, that evolutionary testing is currently the only
sensible procedure of structural testing of large and complex
software modules.

1 !��!$ ���	��*��4�

The thorough test of embedded systems could include a
number of demanding testing tasks. The test case design for
various test objectives is difficult to master on the basis of
conventional function-oriented and structure-oriented testing
methods. Moreover, automation of test case design is prob-
lematic. Usually, test cases have to be defined manually.

The aim of the work presented in this paper is the automatic
generation of test data for structural tests. For this, a tool
environment has been developed that applies evolutionary
testing to C programs. Test data are generated by means of
evolutionary algorithms.

With evolutionary testing a new test method for testing em-
bedded systems is provided, which enables the complete
automation of test case design for various test objectives. The
idea of evolutionary testing is to search for relevant test cases
in the input domain of the system under test with the help of
evolutionary algorithms. As described in this paper, evolu-
tionary testing enables the complete automation for structural
test case design.

Due to the full automation of the evolutionary testing, the
system could be tested with a large number of different input
situations. In most cases, more than several thousand test
data sets are generated and executed within only a few min-
utes. The prerequisites for the application of evolutionary

Table 2 Results of statement and branch coverage for evolutionary testing (ET) and random testing (RT)

���� ���� �������
��� 3��� ������

���������	����� ET / RT ET / RT ET / RT ET / RT ET / RT

coverage [%] 100 / 50 100 / 61.5 100 / 13.3 90.7 / 77.8 87.9 /  8.6

no. of generations 18 82 172 855 1944

no. of individuals 15 048 66 481 139 476 689 510 813 204

testing time [s] 62 570 1225 7489 12339

�����5	����� ET / RT ET / RT ET / RT ET / RT ET / RT

coverage [%] 100 / 50 100 / 61.8 100 / 11.9 83.7 / 73.5 72.2 /  7.6

no. of generations 16 74 206 1610 3224

no. of individuals 12 944 60 046 166 298 1 298 394 2 600 249
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tests are few. Only an interface specification of the system
under test is needed to guarantee the generation of valid input
values. For structural testing the source code of the test ob-
ject is also required. The evolutionary test is universally
applicable because it adapts itself to the system under test.

In order to guarantee an efficient overall test, the test control
of the evolutionary test environment evaluates every individ-
ual with regard to every partial aim that has not been
reached. Partial aims reached purely by chance are thus
identified immediately. Individuals suitable for one or more
partial aims are noted, stored, and used as seeds at the opti-
mization of these partial aims. The processing sequence of
the partial aims is guided by the quality of the available
initial values. In this way, the test quickly achieves the high-
est possible coverage. Experiments utilizing this strategy
have proved successful, and the overall testing procedure has
been accelerated considerably.

Evolutionary testing has already produced very good results
in the application field. Therefore, evolutionary testing seems
to have the potential to increase the effectiveness and effi-
ciency of existing test processes. Evolutionary tests thus
contribute to quality improvement and to reduction of devel-
opment costs.

The users applying evolutionary testing in industrial practice
can not be assumed to have any knowledge of evolutionary
algorithms. Thus, the selection of evolutionary algorithms
employed for the testing of a system needs to take place
without the participation of the users. By means of extended
evolutionary algorithms (Section 5.2), which combine global
and local search procedures in several subpopulations, robust
optimization results are obtained for a large number of dif-
ferent testing tasks.

Since research in the field of evolutionary computation is
carried out intensively world-wide, further improvements of
the search techniques can be expected in the future. Evolu-
tionary testing could directly benefit from such improve-
ments by incorporating new search techniques into test data
generation, thus leading to a further increase in the effective-
ness and efficiency of the tests.

At present, statement tests, branch tests, condition tests, and
segment tests can be applied. Work on multiple-condition
testing is drawing to a close. The test environment will also
be extended for structural testing of object-oriented Java
programs. Furthermore, a visualization component for ob-
serving the testing progress will be included and the distribu-
tion of tests to several computers will be supported.
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An Evolution Strategies Based Approach to Image 
Registration 

 
 
 
 
 
 
 
 

Abstract 
 
 

An image registration approach based on 
Evolution Strategies is proposed. In image 
registration, an invariant reference needs to be 
established within each source image, which is 
unavailable in many cases. To solve this problem, 
feature configuration (which is defined as the 
cluster of feature vectors on an image representing 
homogeneous feature distribution,) is employed to 
describe the object inside the scene. Instead of 
finding the correspondence of the entire image, the 
spatial relationships of the feature configuration in 
every source image are discovered with Evolution 
Strategies (ES). While one approach, even this one, 
may not be suitable for every image domain, the 
ES approach has many advantages. Compared to 
some methods, it is computationally effective; 
compared to other, it is capable of discovering 
transformations of larger scope (e.g., greater 
rotation angles or translation distances etc.) The 
search structure we use is an ellipsoid. The results 
from various images prove it to be an efficient and 
effective method. 

1 INTRODUCTION 
A fundamental image-processing task, image registration 
matches two or more images such that features from each 
individual source are aligned against the same reference. 
Virtually all image understanding tasks, such as image 
fusion, object recognition etc., require image registration 
procedure as pre-processing. It is a particular important 
issue faced in almost all remote sensing domains. In medical 
imaging, a patient’s cranial scan must be matched with 
medical atlas images as well as previous scans of the same 
patient. In Earth science, the extent of deforestation can be 
determined only if the present image can be compared to 
ones from previous time periods. These and many other 
examples exist that assert the need to put multiple images 
into pixel-by-pixel correspondence. 

Intensive research has been devoted to find the most 
effective and efficient registration methods [2, 8, 14, 17]. 
Approaches proposed include control point based methods 
[13], frequency feature based methods [1, 16], mutual 
information based methods [9] etc. Figure 1 illustrates an 
image registration example. Two images are superimposed 
one on the other, as shown in Figure 1(c), based on the 
transformation discovered by the registration process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image registration can be viewed as a combination of 
different choices of feature space, search space, searching 
strategy, and similarity measure [12]. The feature space 
extracts information from the source images, which 
provides a quantitative space for transformation. All 
possible transformations form a search space, such that 
given a pair of images a sequence of transformations can be 
found in the search space to put these images in 
correspondence. The searching strategy defines rules of 
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(a) 

(c) 

(b) 

Figure 1. Image (a) and (b) are two source images focusing 
on the same object but containing different scene. (c) is the 
superimposed image after registration.  
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finding the next transformation. The registration accuracy is 
assessed by the similarity measure. The registration process 
proceeds iteratively by searching and applying transforms 
until the similarity measurement is satisfied.  

Generally, a similarity measure is required to evaluate the 
accuracy of aligned image after transformation. During 
registration, the similarity measurement is iteratively 
computed and improved by adjusting the transformation. 
However, most similarity measurements are 
computationally expensive even on moderately sized 
images, which makes registration inefficient, especially 
when there is a large initial difference between images. Here 
we propose a fast, control point free and feature based 
image registration method, which is based on Evolution 
Strategies. The objective is to find the correspondence 
between two or more images having a spatial difference 
caused by rigid transformation.   

The principal idea is to search for the correspondence 
between some specific feature configurations instead of the 
correspondence across the whole image. Given the specific 
feature description, Evolution Strategies is employed to find 
the feature configuration, defined in section 3.2, on all 
source images. A reference image is randomly selected 
thereafter, in which the feature configuration is located and 
is used for registering other images. However, the region 
defined by feature configurations may not enclose the same 
feature distribution. Therefore, a refinement process based 
on the reference image is followed to adjust the feature 
configuration such that similar feature enclosure is ensured. 
Finally, the transformation functions are determined by 
comparing the spatial characteristic of configurations, which 
is represented in the form of feature ellipse, against that of 
the reference configuration and are used to register those 
images. 

The rest of this article is organized as follows. In section 2, 
a short review of Evolution Strategies is given. Section 3 
presents the retrospective image registration problem and 
illustrates Evolution Strategies based image registration 
scheme. Experiments are illustrated in section 4. The paper 
is concluded with discussion in section 5.  

2 ES SHORT REVIEW  
Evolution Strategies (ESs) are algorithms  that imitate the 
principles of natural evolution as a method to solve 
parameter optimization problem [4, 3, 18] 

The goal of a parameter optimization problem f: M⊆Rn → 
R, M≠0, where f is called objective function, is to find a 
vector x*∈M such that  

)()(: *xfxfMx ≥∈∀    (1) 

where f*:=f(x*)>-∞ is called a global minimum; x* is the 
global minimum point. M is the set of feasible points for a 
problem. In correspondence with global minimum, a local 
minimum )̂(ˆ xff =  is defined by the following condition: 

)(ˆˆ:0 xffxxMx ≤⇒<−∈∀>∃ εε       (2) 

Coexistence of global minimum and several local minima 
make optimization a non-trivial problem. 

Each ES individual represents a vector within the domain of 
the objective function f.  Each xi, i = 1, 2, …, n, is  termed an 
object variable and is represented as a real value in the 
individual. Evolution Strategies is essentially randomized 
hill climbing, which makes it a non-deterministic 
optimization strategy. Hill climbing necessitates the 
resolution of two issues at each iteration -- (i) the direction 
to move and (ii) the distance (step size). These issues are 
resolved by embedding control variables into individual and 
an ES individual is, organized as object variables and 
control variables, illustrated below. 

},...,,;,...,,;,...,{ 212121 pmlxxx θθθσσσ  (3) 

where the σ’s and θ’s are control variables. 

An object variable should be considered the mean of a 
normally distributed random variable. Under that 
interpretation, each σi is a standard deviation for an object 
variable. Thus m ≤ l. (If m < l then σm applies to all xj, m ≤ j 
≤ l.) Each θi is a surrogate for the covariance of two object 
variables. θ is organized as an upper triangular matrix as is a 
covariance matrix. (That is to say, p = (2l-m)(m-l)/2.) The 
correspondence between θij, i,j ≤ m and the covariance, cij is  

22
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σσ
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−
=     (4) 

An interpretation of an ES organism is an l-dimensional 
jointly distributed normal variate with mean x and the 
standard deviation σ. The orientation of the distribution in l-
space is determined indirectly by the covariance and directly 
by θ.  

The incorporation of control variables into the individual 
representation establishes a two-level self-learning process, 
since not only the object variable adapts according to the 
objective function, but also the control variables change 
with respect to the actual topological requirements. In other 
words, the control variables make up an internal model of 
the objective function, which is learned on-line during 
optimum seeking without an additional measure of fitness.  

The ES algorithm is formulated in the language of biology 
as follows: 

Step 1. A given population consists of µ individuals. Each 
is characterized by its genotype consisting of n 
genes, which unambiguously determine the fitness 
for survival. 

Step 2. By mutation and recombination operations, each 
individual parent produces λ/µ offspring on 
average, so that a total number of λ offspring 
individuals are available.  

Step 3. Select the best of the offspring to form parents of 
the following generation and continue at Step 1. 
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3 IMAGE REGISTRATION WITH ES 
Let I1 and I2 denote two image matrices, then image 
registration, under Cartesian Coordinates, can be expressed 
as:  

))),(((),( 21 yxfIgyxI =    (5) 

where function f(.) is a 2D spatial-coordinate 
transformation, i.e. f(.) maps two spatial coordinates, x and 
y, to new spatial coordinates x’ and y’, and function g(.)  is a 
1-D intensity or radiometric transformation.  

The registration problem is to find the optimal transform 
functions f(.) and g(.) , namely spatial and intensity 
transformation, so that the images are aligned under the 
same coordinates system. The intensity transformation g(.)  
is not always necessary, and if g(.) is need, a lookup table is 
usually sufficient [12]. 

3.1 RETROSPECTIVE REGISTRATION 
Restrospective registration is required when an image is 
obtained without the benefit of a fiducial reference system, 
e.g. a battle field surveillance image or MRI cranial scan 
image. In this case, a reference is not included in the source 
image.  

Let point (x, y) denotes the central point of the object and let 
the rotation angle be θ. In order to describe the scaling 
transformation, let’s denote a point in an image in 
homogeneous coordinates (x, y, s), with (x/s, y/s) being the 
corresponding Cartesian coordinates. Using the 
homogeneous coordinates, the transformation function f(x,y) 
has the following general form: 
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where θ determines the rotation angle. tx/s and ty/s are 
translations on horizontal and vertical directions. s is the 
scaling weight that also functions as the normalization 
factor in the homogeneous coordinates.  

3.2 REGISTRATION WITH ES  
To deal with retrospective registration, an image feature is 
employed in our scheme. Frequently used features include 
luminosity, texture, shape, etc. Usually, a picture contains at 
least one object, which can be distinguished from its 
background with a set of characteristic features. Such 
features are distributed in a certain region, i.e., the area 
defined by the shape of that object. That is , the co-
occurrence of these features is only satisfied within the 
object. Hence, the area that concurrently contains a set of 
certain features is called the feature configuration. The 
feature configuration, Φ, is defined on image I such that a 
cluster of pixels constitute a close region P within which 
image features, F1, F2, …, F n, are uniformly distributed.  
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where ),(,...,21 yxI nFFF  is the feature vector generated by 
applying feature filters onto image I and function |.| 
measures the distance of two vectors.  

The rigid transformation does not change the feature of an 
image. That is, given the initial image I1 and the 
transformation function f, the outcome image I2 has the 
same feature as I1. Thus, the feature configurations of these 
features in I1 and I2 are also spatially related with the same 
transformation. 

)),((),( ,...,,
2

,...,,
1

2121 yxfyx nn FFFFFF Φ=Φ         (8) 
Because of its separability, a transformation function can 
also be expressed as follows: 

)),),,),,((((),( 12 syxyxITRSyxI θ∆∆∆=            (9) 

where T(.), R(.) and S(.) denote translation, rotation and 
scaling respectively. Notice that the translation parameters 
∆x and ∆y are defined with regard to the central point of the 
image. To prove equation (8), it is sufficient to prove that 
after translation and rotation, the distance between any two 
points in the feature configuration remains unchanged, 
while scaling enlarges the distance by scale of s. Due to 
space constraints, proofs are not included. 

Yuan et al. reported successful feature identification using 
Evolution Strategies [18]. Inspired by the success of their 
work, Evolution Strategies is employed to search for the 
optimal transformation. During the search for image 
correspondence, instead of evaluating similarity 
measurements over the whole image, ES identifies the 
region from each source image that contains a homogeneous 
feature configuration. To capture the feature configuration, 
an ellipse structure is used to enclose the maximum 
homogeneous feature area. Here we call such an ellipse the 
feature ellipse. 

Feature Ellipse 

Feature ellipse, Λ, is the search structure used to enclose 
feature configuration nFFF ,...,, 21Φ . Feature vectors inside the 
ellipse represent the same type of features. That is, it 
encloses only one type of feature configuration. 
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where ),(,...,, 21 yxI nFFF
Λ  and ),(,...,, 21 yxI nFFF ′′Λ  are any two 

different feature vectors enclosed by Λ.  

A feature ellipse is determined by the coordinates of the 
center (x0,  y0), the lengths of the major and minor axes a1 
and a2, and the angle θ between the major axis and the 
horizontal line. These parameters are embedded into ES as 
objective variables and are organized as (x0,  y0, a1, a2, θ). 
Figure 2 illustrates the structure of a feature ellipse. (Notice 
that ES also uses control variables denoted as θ’s that 
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establish a relationship with covariance as illustrated in 
equation (2) and directly determine the orientation of the 
distribution in l-space.) 

 

 

 

 

 

 

 

 

 

 

 

The optimum to the objective function of one ES application 
is a feature ellipse that maximizes its area under the 
constraint that only one feature configuration is included. Or 
in the other words, it minimizes the difference among the 
feature vectors inside the ellipse while enlarging its area. 

Parameters Estimation 

Given the feature description, ES is applied to all source 
images to find the feature configuration Φi, i=1,…,n . The 
feature configuration Φp located from one of the source 
images, which is randomly selected, is used as the reference 
for registering other images. This arbitrarily selected image 
is distinguished as the reference image. Figure 3 illustrates 
the diagram of ES based image registration. 

Although the same feature description is used to guide the 
ES search, the outcome Φi usually does not give the same 
quantitative measurement, which appears as slightly 
different feature ellipses as shown in Figure 4(c) and 4(d). 
This is because of the probability-controlled randomness of 
reproduction process in ES. Therefore, a refinement process 
is followed. The refinement takes Φp as a reference and 
adjusts the feature configuration Φi of image Ii, such that the 
quantitative measurements, e.g. mean and variance, of each 
feature configuration, Φp and Φi, match. 

 

 

 

 

 

 

 

 

 

 

After searching, the feature configuration is reported as the 
parameters of an ellipse. The transformations fi, i=2, …, n , 
are determined by comparing the spatial parameters of 
ellipses with that of the reference. 

4 EXPERIMENTS 
In our experiments, the parent population size is chosen as 
50 and the descendant population size is 300. These 
population sizes are used in both the initial search as well as 
the later refinement step. For the purpose of accelerating the 
search process, discrete recombination on object variables 
and panmictic intermediate recombination of control 
variables is preferred [21, 3, 22]. 

Moments are used in our experiments as the quantitative 
measurements of the feature configuration. Generally, only 
the first few moments are required to differentiate between 
signatures of clearly distinct shapes [7, 6]. 

∑
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The quantity m is recognized as the mean of v, which 
represents the gray level of an image, and µ2 as its variance. 
p(vi) is the normalized amplitude histogram at gray level vi. 
Besides the moments, the compactness of the ellipse, which 
is the ratio of the major axis and the minor axis, is 
considered as another constraint of the feature ellipse. Given 
the match of the compactness measurement, the ratio of the 
axes from two feature ellipses exposes the scale factor of the 
image. Let the axes of two feature ellipses be (a1, a2) and 
(a1’, a2’), where a1, a1’ are the length of major axes and a2, 
a2’ are the length of minor axes. The scaling factor is 
determined by the average of the ratio as shown below. 

2
2211 aaaa

s
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=        (12) 

Figure 4 illustrates the process with sample images Child_1 
and Child_2. An initial feature ellipse is randomly chosen 
for each source image, which are drawn and shown in 
Figure 4(a) and 4(b). After approximately 50 generations, 
both feature configurations are found, as shown in Figure 
4(c) and 4(d).  

 

 

 

 

 

 

 

 

 

 

 

 

(x1, x2) 

x4 
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 x5 

Feature      
configuration 

Figure 2. Encoding parameters of ellipse into objective 
variables in ES. Region inside the ellipse contains 
homogeneous configuration of certain feature 

Figure 3. ES based image registration. Transformation function fi represents the spatial relationship between image i and 
image 1, which is selected as the reference image. 
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Although two ES process are running under the same 
feature description, regions covered by two feature ellipses 
are usually not identical. This is due to the non-deterministic 
search characteristic of the ES algorithm. Therefore, a 
refinement process is followed. In this experiment, Child_1 
is chosen as the reference image. The mean and variance 
values of the area inside feature ellipse in image Child_1 are 
computed and used to refine the parameters of feature 
ellipse in Child_2. The refinement process uses ES 

optimization with one more constraint. That is, the 
difference between the quality measure of feature ellipse in 
Child_2 and the quality measure extracted from Child_1 is 
minimized and allow 1% error for mean, 0.1% error for 
variance and 1% error for the ellipse compactness. 

Table 1 lists the estimated transformation on six pairs of test 
images. Each pair of images is of the same size. The first 
two columns give the condition and the name of images 
used in the experiments. The next three columns contain the 

Rotation Translation 
Test Image 

Image 1 Image 2 ∆θ Image 1 Image 2 (∆x, ∆y) 
Child -0.3 -9.4 -9.1 (248, 220) (228, 182) (-20, -38) 
Plane -2.1 28.9 31.0 (180, 211) (231, 217) (51, 6) 

Phone 44.5 75.0 30.5 (194, 201) (173, 180) (-21, -21) 
River 21.6 5.6 -16.0 (222, 211) (243, 245) (21, 33) 
Infrared -5.1 -31.2 -26.1 (220, 184) (215, 177) (-5, -7) 

Noise 
Free 

Image 

Lighthouse 86.0 75.5 -10.5 (171, 270) (221, 278) (50, 8) 

Child -0.3 -9.6 -9.3 (235, 220) (218, 176) (-17, -44) 
Plane -0.3 29.7 30.0 (184, 206) (230, 212) (46, 6) 
Phone 45.3 75.2 29.9 (193, 201) (172, 180) (-21, -21) 
River 24.4 8.1 -16.3 (217, 216) (238, 245) (21, 29) 
Infrared -6.5 -33.6 -27.1 (225, 175) (215, 173) (-10, -2) 

Noisy 
Image 

Lighthouse -3.6 -12.8 -9.2 (172, 265) (221, 276) (49, 11) 

(a) (c) 

(b) (d) (e) 
Figure 4. Registration stepwise images are shown. Image (a) and image (b) illustrate source images. Image (c) and 
(d) illustrate the feature configuration found by ES. Image (e) is the outcome of the refinement step.  

Table 1. Experimental images and estimated transformation parameters. The noisy images are distorted with 20% noise. 
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estimated rotation parameters, where results in column 
‘Image 1’ are the principal orientation of the feature ellipse 
located in the first image and column ‘Image 2’ contains 
orientation parameters computed from the second image. 
The column ∆θ lists the rotation difference between image 
pairs. The last three columns contain the translation 
estimations, which are coordinates of the central points of 
ellipses found in image pairs and the translation difference, 
∆x and ∆y, between central points. Table 1 also contains the 
outcomes performed on the same experimental images, 
except each image is distorted with 20% noise. It is clear 
that the transformation parameters estimated under noise are 
very close to those computed with noise-free images. 

Figure 5 illustrates two registered images, lighthouse and 
Child, given the transformation parameters provided in table 
1. The registrations are accurate under the judgment of 
human perspective.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice, the translation parameters ∆x and ∆y are not based 
on the center of the image but the central point of the feature 
ellipse. Therefore, when registering images, the translation 
and rotation are performed with regard to the center of the 
ellipse. 

Table 2 illustrates the experimental result on scaling factor 
estimation. Notice that test images are resized to 80% of the 
original size. The second and the third columns are the axes’ 
lengths of the feature ellipses, which are formatted as 

(length of major axis, length of minor axis). The error 
estimation is below 0.02. 

 

 

Axes (long, short) Images 
100% image 80% image 

Scale 
Factor 

Child (197.0, 83.3) (172.0, 62.7) 0.813 
Plane (123.7, 38.4) (95.3, 32.5) 0.808 
Phone (130.0, 55.7) (103.9, 44.3) 0.797 
River (120.3, 24.7) (93.7, 20.4) 0.802 
Infrared (181.8, 60.7) (148.2, 47.1) 0.796 
Lighthous
e 

(114.9, 50.6) (91.4, 40.9) 0.802 

 

5 DISCUSSION AND CONCLUSION 
An Evolution Strategies based image registration approach 
is described in this article. Given the feature of an image 
remaining unchanged after rigid transformation, a search 
structure, the feature ellipse, is embedded into each ES 
individual. The objective function of ES achieves the 
minimization of differences between the quantitative 
measurements of feature configurations enclosed with 
feature ellipses while enlarging its area. The registration 
scheme contains three steps: search feature configurations 
under certain feature description, refining feature ellipses by 
minimizing quantitative measurements differences, and 
determining the transformation parameters.  

Experiments have been performed on various kinds of 
images including nature scenes, military surveillance images 
etc. Promising results are also obtained under noisy 
circumstances. The experiments show the robustness of this 
approach, which is the result of two aspects. Firstly, the 
search is performed in the feature space, where the noise is 
reduced. Secondly, the optimization process, incorporating 
with the feature quantitative measurements, is insensitive to 
the noise. Even though the feature configurations found 
within the noise-free images and within noisy images are 
different, the transformation relationships discovered are 
almost identical.  

Moreover, since the feature comparison is performed inside 
a relatively small region, the feature ellipse, the computation 
expense is reduced. Figure 6 illustrates that the ratio of 
variance vs. area (enclosed by feature ellipse) changes with 
regard to the iterations. Figure 6(a) illustrates the 
optimization process with a Phone image. In the graph, solid 
circle line records the ratio changes of the reference image. 
The solid triangle line records the ratio changes of the 
companion image. (Remember, the reference image is 
simply an arbitrarily selected source image.) The graph is 
partitioned with a vertical doted line, where the left half 
illustrates the searching phase optimization and right half 
shows the refinement phase progress. Notice that during the 
first phase of registration, ES is applied individually on each 
image. Therefore the iterations used in searching are 

Table 2. Scaling factor estimation. The test images are 
resized by eighty percent.  

Figure 5. Sample registration results, lighthouse and child. 
Two source images are superimposed one on the other 
using the transformation matrix estimated with ES 
optimization.  
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different. In figure 6(b), which illustrates the optimization 
process with a Plane image, it is clear that the refinement 
process adjusts the feature ellipse in the companion image 
even closer to that of the reference image. 

Experiments have been successful on images containing one 
object, which is distinguishable with a set of features. In 
cases where image contains more than one similar objects, 
due to the non-deterministic characteristic of ES, feature 
configurations representing different but similar objects may 
be found, e.g., the image shown in Figure 7. Obviously, it is 
hard to further distinguish among these objects. This 
difficulty may be overcome by ES with a niching strategy. 
Zhang et al. [19] described a niching embedded ES for 
multimodal function optimization, in which successful 
locating multiple optima is reported. Further study can be 
done for multi-object involved registration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledg ments 

Support for this work was provided in part by DoD EPSCoR 
and the Board of Regents of the State of Louisiana under 
grant F49620-98-1-0351. 

References 

[1] A.D. Calway, H. Knutsson and R. Wilson, “A 
Multiresolution Frequency Domain Algorithm for Fast 
Image Registration”, 3rd Int'l Conf. On Visiual Search, 
April 1992 

[2] Haim Schweitzer, “Optimal Eigenfeature Selection by 
Optimal Image Registration”, Proc. of the IEEE Conf. 
on Computer Vision and Pattern Recognition 
(CVPR'99), June 1999 

[3] Thomas Bäck, “Evolutionary Algorithms in Theory and 
Practice”, Oxford University Press, Oxford (1995) 

[4] Thomas Bäck, Frank Hoffmeister, Hans-Paul Schwefel, 
“A Survey of Evolution Strategies”, Proc. of the Fourth 
Int. Conf. on Genetic Algorithms, pages 2-9. Morgan 
Kaufmann, 1991 

Figure 6. Variance reduces during searching and 
refinement. Axis X is the iteration number and axis Y is 
the ratio of variance vs. area enclosed within feature 
ellipse. In each graph, reference image is illustrated with 
solid circle line and the companion image is illustrated 
with solid triangle line.  

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

1 5 9 13 17 21 25 29 33 37 X 

Y Plane 

(a) 

(b) 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

1 4 7 10 13 16 19 22 25 28 31

X 

Y Phone 

(a) 

(b) 

Figure 7. Confusion of multiple similar objects in image 
registration. Two similar feature configurations are found 
yet corresponding to different objects.  

REAL WORLD APPLICATIONS 1255



[5] H. Bulow, L. Dooley and D. Wermser, “Application of 
Principal Axes for Registration of NMR Image 
Sequences”, Pattern Recognition Letter 21 (2000) 329-
336 

[6] Xiaolong Dai, Siamak Khorram, “A Feature-Based 
Image Registration Algorithm Using Improved Chain-
Code Representation Combined with Invariant 
Moments”, IEEE Transactions on Geoscience and 
Remote Sensing, v37, n5, Sept. 1999 

[7] Rafael C. Gonzalez and Richard E. Woods, “Digital 
Image Processing”, Addison-Wesley Publishing 
Company, 1992 

[8] J. W. Hseih, H. Y.Liao, K. C. Fan Ming-Tat Ko, and 
Yi-Ping Hung, “Image registration using a new edge 
based approach”, Computer Vision Graphics and Image 
Processing, vol. 67, no. 2, pp. 112-130, August 1997 

[9] Josien P. W. Pluim, J. B. Antoine Maintz, and Max A. 
Viergever, “Interpolation Artefacts in Mutual 
Information-Based Image Registration”, Computer 
Vision and Image Understanding 77, 211–232 (2000) 

[10] J. West, M. Fitzpatrick, and et al., “Comparison and 
evaluation of retrospective intermodality brain image 
registration techniques”, Journal of Computer Assisted 
Tomography, 21:554-566, July/August 1997 

[11] K. Rohr, R. Sprengel and H. S. Stiehl, “Incorporation of 
Landmark Error Ellipsoids for Image Registration 
Based on Approximating Thin-Plate Splines”, Proc. 
Computer Assisted Radiology and Surgery (CAR'97), 
Berlin, Germany, June 25-28, 1997 

[12] Lisa Gottesfeld Brown, “A Survey of Image 
Registration Techniques”, ACM Computing Surveys, 
Vol. 24, No. 4, Dec. 1992 

[13] L. M. G. Fonseca and C.S. Kenney, “Control Point 
Assessment for Image Registration”, XII Brazilian 
Symposium of Computer Graphic and Image 
Processing, pp.125-132, Oct. 1999 

[14] M.E. Alexander, “A Fast Hierarchical Non-Iterative 
Registration Algorithm”, International Journal of 
Imaging Systems and Technology, Vol. 10, pp. 242-257 
(1999) 

[15] Raj Sharman, John M. Tyler and Oleg S. Pianykh, “A 
Fast and Accurate Method to Register Medical Images 
using Wavelet Modulus Maxima”, Pattern Recognition 
Letter 21 (2000) 447-462 

[16] Stefan Kruger and Andrew Calway, “Image 
Registration using Multiresolution Frequency Domain 
Correlation”, British Machine Vision Conf., pp. 316-
325, Sept. 1998 

[17] W. Peckar, C. Schnorr, K. Rohr, and H. S. Stiehl, 
“Two-Step Parameter-Free Elastic Image Registration 
with Prescribed Point Displacements”, 9th Int. Conf. on 
Image Analysis and Processing, ICIAP'97, 1310, pp. 
527- 534, 1997 

[18] Xiaojing Yuan, Jian Zhang and Bill Buckles, “Multi-
scale Feature Identification Using Evolution 
Strategies”, Submitted to International Journal on 
Artificial Intelligence Tools  

[19] Jian Zhang, Xiaojing Yuan, Zhixiang Zeng, Bill P. 
Buckles, Cris Koutsougeras and Saud Amer. "Niching 
in an ES/EP Context", Proceedings of Congress on 
Evolutionary Computation, Washington D.C., July 
1999. 

[20] Qinfen Zheng and Rama Chellappa, “A Computational 
Vision Approach to Image Registration”, IEEE 
Transaction on Image Processing, v2, n3, July 1993 

[21] H. P. Schwefel. “Collective Phenomena in Evolutionary 
Systems”, Preprints of the 31th annual Meeting of the 
International Society for General System Research, 
Budapest, V2, June 1987 

[22] H. P. Schwefel. “Evolution and Optimum Seeking”, 
Wiley Interscience, John Wiley & Sons, New York, 
1995. 

 

REAL WORLD APPLICATIONS1256


	181.pdf
	INTRODUCTION
	BACKGROUND
	CRUSHERS AND CIRCUITS
	SIMULATING CRUSHERS

	ALGORITHM
	FITNESS
	INITIALISATION
	REPRESENTATION
	MUTATION
	CONSTRAINTS
	SELECTION

	RESULTS AND DISCUSSION
	FUTURE WORK
	CONCLUSIONS
	
	References



	182.pdf
	INTRODUCTION
	MOTIVATION AND RELATED RESEARCH
	MOTIVATION
	RELATED RESEARCH AND OUR CONTRIBUTION

	TECHNICAL APPROACH
	DESIGN CONSIDERATIONS
	The Set of Terminals:  The set of terminals used in this paper are seven primitive feature images generated from the original image: the first one is the original image; the others are mean and standard deviation images obtained by applying templates of
	The Set of Primitive Operators: A primitive operator takes one or two input images, performs a primitive operation on them and stores the result in a resultant image. Currently, 17 primitive operators are used by GP to compose composite operators.
	The Fitness Measure: The fitness value of a compo
	Parameters and Termination:  The key parameters are the population size M, the number of generations N, the crossover rate and the mutation rate.

	REPRODUCTION, CROSSOVER AND MUTATION
	STEADY_STATE AND GENERATIONAL GENETIC PROGRAMMING

	EXPERIMENTS
	REAL SAR IMAGES
	COLOR IMAGES


	186.pdf
	INTRODUCTION
	METHODOLOGY
	THE EXPERIMENTAL DESIGN
	THE GP-GENERATED TRANSFORMATIONS
	THE TESTING DATA SET

	CONCLUSIONS
	
	References



	210.pdf
	INTRODUCTION
	SYSTEM IDENTIFICATION
	PARTICLE SWARM OPTIMIZATION
	PSO EQUATIONS
	PSO – POSITION UPDATE RULE
	RESULTS: PSO+ARMA

	THE GROUP METHOD OF DATA HANDELING
	EXTENDING THE GMDH

	RESULTS: PSO + GMDH
	GMDH AND NON-LINEAR NODAL FUNCTIONAL REPRESENTATION
	VIBRATING STRING – GMDH AND NON-LINEAR NODAL FUNC
	NATURAL GAS PREDICTION - GMDH

	CONCLUSION
	
	References




