
SEARCH-BASED SOFTWARE
ENG INEER ING
Joach im Wegener, cha i r

Search-Based Software Engineering (SBSE)

�����������	��
����������
��
��
�����
����
���������	�������������

André Baresel, Harmen Sthamer and Michael Schmidt
DaimlerChrysler AG, Research and Technology

Alt-Moabit 96a, 10559 Berlin, Germany, +49 30 39982 222
{andre.baresel;harmen.sthamer;michael.a.schmidt}@daimlerchrysler.com

������	�
Evolutionary Structural Testing uses Evolutionary
Algorithms (EA) to search for specific test data
that provide high structural coverage of the
software under test.
A necessary characteristic of evolutionary
structural testing is that the fitness function is
constructed on the basis of the software under
test. The fitness function itself is not of interest
for the problem; however, a well-constructed
fitness function may substantially increase the
chance of finding a solution and reaching higher
coverage. Better guidance of the search can result
in optimizations with less iterations, therefore
leading to savings in resource expenditure.
This paper presents research results on suggested
modifications to the fitness function leading to the
improvement of evolutionary testability by
achieving higher coverage with less resources. A
set of problems and their respective solutions are
discussed.

� ������������

Evolutionary testing designates the use of metaheuristic
search methods for test case generation. The input domain
of the test object forms the search space in which one
searches for test data that fulfil the respective test goal.
Due to the non-linearity of software (if-statements, loops,
etc.), the conversion of test problems into optimization
tasks mostly results in complex, discontinuous, and non-
linear search spaces. The use of neighborhood search
methods such as hill climbing are therefore not
recommended. Instead, metaheuristic search methods are
employed, e.g. evolutionary algorithms, simulated
annealing or tabu search. In this work, evolutionary
algorithms are utilized to generate test data, since their
robustness and suitability for the solution of different test
tasks has been proven in previous work. e.g. [19] and [17].

The only prerequisites for the application of Evolutionary
Tests (ET) are an executable test object and its interface
specification. In addition, for the automation of structural
testing, the source code of the test object must be available
to enable its instrumentation.

� � ��!��������������������
�"�#�������$��#%����&'�

Evolutionary algorithms represent a class of adaptive
search techniques and procedures based on the processes
of natural genetics and Darwin’s theory of biological
evolution. They are characterized by an iterative procedure
and work in parallel on a number of potential solutions for
a population of individuals. Permissible solution values for
the variables of the optimization problem are encoded in
each individual. An overview of evolutionary algorithms is
presented in Figure 1 and a detailed description can be
found in [20] and [12].

The fitness value is a numerical value that expresses the
performance of an individual with regard to the current
optimum so that different individuals can be compared.
Usually a spread of solutions exists ranging in fitness from
very poor to good. The notion of fitness is fundamental to
the application of evolutionary algorithms; the degree of
success in their application may depend critically on the
definition of a fitness that changes neither too rapidly nor
too slowly with the design parameters of the optimization
problem. The fitness function must guarantee that
individuals can be differentiated according to their
suitability for solving the optimization problem.

Initialization

Evaluation

Selection

Recombination

Optimization
criteria met? Result

Mutation

Reinsertion

Evaluation

Figure 1: Overview of a typical procedure for evolutionary
algorithms

Our experiments used a population of 300 individuals split
into 6 subpopulations of 50 individuals. In order to
combine multiple strategies, migration was introduced to
permit an exchange of the best individuals between
subpopulations at regular intervals. The subpopulations

SEARCH-BASED SOFTWARE ENGINEERING 1329

also compete with each other. Strong ones receive more
individuals, the others diminish in size. Details of the
evolutionary settings are described in [20].

� (�))#���������������*����������%

In order to automate software tests with the aid of evolu-
tionary algorithms, the test goal itself must be transformed
into an optimization task. This necessitates a numeric
representation of the test goal, from which a suitable
fitness function for evaluation of the test data generated
may be derived. Different fitness functions emerge for test
data evaluation according to which test goal is pursued.
For structural testing, fitness functions may be based on a
computation for each individual that indicates its distance
from the desired program predicate execution [19] and
[17]. For example, if a branching condition ������ needs
to be evaluated as ���	, then the fitness function may be
defined as
���
 (the fitness values are minimized).

Each individual within the population represents a test
datum with which the test object is executed. For each test
datum the execution is monitored, and the fitness value for
the corresponding individual determined. It is important to
ensure the test data generated are in the input domain of
the test object.

(�����������������������������

Structural testing is widespread in industrial practice and
stipulated in many software development standards, e.g.
[22], [23], [24], and [25]. The execution of all statements
(�
�
	�	�
� ���	���), all branches (������� ���	���), or
all conditions with the logical values ���	 and ����	
(�����
���� ���	���) are common test aims. The aim of
applying Evolutionary Testing to structural testing is the
generation of a quantity of test data, leading to the best
possible coverage of the respective structural test criterion.

Whereas all previous work from other authors has concen-
trated on single selected structural test criteria (�
�
	�	�
-,
������-, �����
��� and ��
��
	�
), DaimlerChrysler
Research has generated a test environment to support all
common control-flow and data-flow oriented test methods
[20]. For this purpose, the structural test criteria are
divided into four categories, depending on control-flow
graph and required test purpose:

• node-oriented methods,
• path-oriented methods,
• node-path-oriented methods, and
• node-node-oriented methods.

The separation of the test into partial aims and the defini-
tion of fitness functions for partial aims are performed in
the same manner for each category. Each partial aim
represents a program structure that requires execution in
order to achieve full coverage of the selected structural test
criterion, i.e. each single statement represents a partial aim
when using statement coverage criterion. For the
Evolutionary Test, the test therefore has to be divided into

partial aims. These depend on the specified structural test
criteria. Identification of partial aims is based on the
control-flow graph of the program under test.

As mentioned previously, the definition of a fitness func-
tion that represents the test aim accurately, and supports
the guidance of the search, is conditional to the successful
application of Evolutionary Tests. In order to define the
fitness function, this research builds upon previous work
dealing with branching conditions (among others [17], [8],
and [18]). These are extended in [20] by introducing the
idea of an approximation level. A more detailed definition
of approximation level for node-oriented and path-oriented
methods is provided in sections 2.1 and 2.2. These are the
basis for the remaining node-path-oriented and node-node-
oriented methods and, for this reason, the last two methods
are not further discussed here.

(� ����+��������

Node-oriented methods require the attainment of specific
nodes in the control-flow graph. The �
�
	�	�
�
	�
 as well
as the different variants of the �����
����
	�
 may be
classified in this category. As regards condition testing
([10] and [2]), a special case applies for the fulfillment of
the respective test criterion. In addition to the branch
nodes, the necessary logical value allocations for the
atomic predicates in the conditions must also be attained.

For node-oriented methods, partial aims result from the
nodes of the control-flow graph. The objective of the
Evolutionary Test is to find a test data set that executes
every desired node of the control-flow graph. For the
�
�
	�	�
�
	�
, all nodes need to be considered; for the dif-
ferent variations of the �����
����
	�
, only the branching
nodes are relevant. Condition testing also requires the
predicates of the branching conditions to be evaluated. In
the case of the �����	� �����
����
	�
, for example, the
evaluation of each of the atomic predicates must be
inventoried to represent ���	 and ����	 partial aims. In the
case of the ���
���	� �����
����
	�
, all combinations of
logical values for the atomic predicates form independent
partial aims.

In node-oriented methods, the fulfillment of a partial aim
is independent of the path executed in the control-flow
graph. This has been taken into account by our fitness
function. The fitness functions of the partial aims consist
of two components. In addition to the calculation of the
distance in the branching nodes; which specifies how far
away an individual is from fulfilling the respective
branching condition (compare [17], [8], and [18]); an
approximation level is introduced as an additional element
for the fitness evaluation of individuals:

Fitness = AL + DIST
AL: approximation level (natural numbers)
DIST: normalized local condition distance

(value range 0..1)

The approximation level enables the comparison of
individuals that miss the partial aim in different branching
nodes (details in [20] and [1]). It indicates how close the

SEARCH-BASED SOFTWARE ENGINEERING1330

executed path is, as compared to the required partial aim.
This extension enables different paths through the
program, to the desired partial aim, to be treated equally
with respect to the fitness evaluation. Unlike previous
work, it is unnecessary to select a specific path to a distinct
node through the control-flow graph. In this approach,
only the execution of the specific node is of relevance. The
higher the attained level of approximation the better the
fitness of the individual. This extends the idea stated in
[17], where a small fixed value was added to the calculated
distance for every executed node belonging to a path that
leads to the target node. Therefore, individuals closer to
the target node receive a higher fitness value as compared
to those that branch away earlier.

(()��&+��������

Path-oriented methods require the execution of certain
paths in the control-flow graph. All variations of ��
��
	�
��
from the �	���	����
��
	�
 [6] to �����	
	���
�����	���	
[7], belong to this category. Therefore all paths through the
control-flow graph, necessary to fulfil the chosen structural
test criterion, are determined and identified as partial aims.

Establishing fitness functions for path-oriented test
methods is much simpler than for node-oriented methods
because the execution of a certain path through the control-
flow graph forms the partial aim for the Evolutionary Test.
Corresponding to the node-oriented methods, the fitness
function for path-oriented methods consists of two
components: approximation level and distance calculation.

The covered program path is compared to the program
path specified as a partial aim in such a way that the length
of the identical initial path section reflects the
approximation level (compare [9]), and the last non-fitting
condition is used for distance evaluation.

, �')��"��%��&������������������

In Evolutionary Structural Testing, the fitness function is
constructed on the basis of the software tested. The
function itself is not of interest for the problem, the only
goal is to find a test datum that fits a test criterion. A well-
constructed function can:

• considerably increase the chance of finding the
solution and reach a better coverage of the software
under test and

• result in a better guidance of the search and thus in
optimizations with less iterations.

Other work on designing fitness functions and the results
of the optimization process can be found in [8]; this
investigates the use of various distance functions.
Hamming distance, reciprocal function and their influence
on optimization performance are discussed. In [8], a
decision was made in favor of the Hamming distance
because the authors used genetic algorithms with a bit
representation of all parameters in their approach.
Evolutionary algorithms are used with integer and floating

point representations and their corresponding mutation and
recombination operators. For this reason Hamming
distance is not investigated in this paper.

Modifying the distance function of branch conditions is
only one possible mechanism for modifying the fitness
function. In the following sections it is argued that more
general alterations to the fitness function may lead to better
results in Evolutionary Testing. This results in a higher
chance of finding the solution or a better performance of
the optimization process in general.

Evolutionary testing has been successfully used for
complex functions (e.g. shown in [20]). The optimization
problem often relies on some details, for this reason the
authors present very simple examples for the discussion.

, � ��')��������������������������
!����&��

In the general solution proposed, the test object is
instrumented in such a way that the semantics of the
software under test is not changed by the added code.
Special care is taken regarding side effects that might
occur during the execution of branch conditions if short
circuit evaluation is implemented by the compiler. To keep
side effects unchanged, the fitness function should only
take into account the results of the executed parts of the
condition. This leads to a problem with optimization
performance and, at worst, to a low chance of successful
optimization. Example 1 presents an extreme situation in
which the solution of an input, which evaluates the
condition as ���	, can only be found by optimizing the test
data for the atomic conditions one after the other.

if(a==0 && b==0 && c==0 && e==0 && f==0)
{ /* ex 1 - to be executed */ }

Example 1: Composed condition and its problem with short
circuit evaluation

There is a very low probability of coming across a solution
by chance which fits all of these atomic conditions. When
executing this example code, only the first parts of the
condition are evaluated until one atomic condition is
evaluated as ����	. Whenever an individual is found that
fits one more atomic condition, the probability of finding a
solution which also fits the next one decreases
considerably. This is due to the fact that a better solution
must be found by not changing those input parameter
values that correspond to these first condition parts. The
number of input parameters that should not be changed
increases with each atomic condition that is executed in the
desired way. The same problem occurs with nested ���
�	��
	��	 structures. Consequently, a better fitness function
should be introduced which could compensate for this
behavior. Resolution of this issue for nested ���
�	��	��	
structures will now be discussed. As this example shows, a
better guidance of the search takes into account all parts of
the composed condition. This facilitates the optimization
of individuals for all atomic conditions at the same time.
The function is constructed by the summation of all atomic

SEARCH-BASED SOFTWARE ENGINEERING 1331

condition distances. This increases the chance of more
effective mutations and achieves a well-performing
recombination.

For this, the test object has to be changed to enable
evaluation of all atomic conditions for every test execution
so that no short-circuit evaluation is performed. This is not
a problem for side-effect-free conditions when an
instrumentation code is added in front of the ����
�
	�	�
.
If the test object does not allow this due to side effects, the
removal of these side effects by program transformation as
shown in [5] may improve evolutionary testability.

No side effects are present in Example 1. A fitness
function built upon the distances of all atomic conditions
fundamentally increases the chance of finding the right
solution as shown in Figure 2.

0

0,25

0,5

0,75

1

0 20 40 60 80 100 120 140

*HQHUDWLRQV

)
LW
Q
H
V
V
�Y
D
OX
H

Standard fitness function

Improved fitness function

Figure 2: Optimization progress of the standard and improved
fitness function

The fitness values of two test runs using the standard and
improved fitness functions are displayed over the number
of generations. The improved fitness function for complex
conditions performs very well. It found a solution already
after approximately 130 generations. However, using the
standard fitness function, building only upon the evaluated
atomic conditions, no individual was found within 1000
generations that achieved the partial aim.

Nested ���
�	��	��	� structures may lead to the same
behavior as the composed conditions. For nested ���
�	��
	��	� structures, shown in Example 2, the optimization is
guided by the nested ��������
����. Static program analysis
may identify the presence (or absence) of side effects. The
knowledge of data dependencies makes it possible to pre-
calculate where the value of a condition is fixed. In this
case, the evaluation of conditions of inner� ����
�
	�	�
�
may be performed earlier in the program under test in
order to achieve the same improvements as described in
Example 1.

If (a==0) {
If (b==0) {

If (c==0) {
.../* ex1 */

Example 2: Code example for nested ����
�
	�	�
�

A calculation of all conditions may be performed prior to
the first ����
�
	�	�
. With this change of the fitness
function, a search for a test datum that executes the
statement 	�� performs much better than a search with the
fitness function solely on the basis of the executed

program parts, since all conditions to be fulfilled are taken
into account.

, (����)����������*��&���#��)�����������

The fitness function that is used to optimize a test datum to
execute a certain target node, as described in [11], takes
control flow dependencies into account. These are all the
branches of a program that lead to a part of the program
from which the target node can no longer be reached, as
shown in Figure 3. Loops have no special handling in this
approach; this means that the evolutionary search of an
input to traverse a target node within a loop has no
guidance. Jones et al. [8] avoid this problem by unrolling
the loop in the control-flow-graph for the fitness
evaluation only.

7DUJHW Node

Figure 3: Target node with control dependencies

If the target node is inside a loop, every iteration produces
another chance for traversing the target node as long as the
loop is not exited. Missing the target node in one iteration
has no effect on the fitness using control dependencies.
Experiments showed that this hampers Evolutionary
Testing efforts; since guidance to test data, resulting in a
loop iteration where the execution is closer to the target
node than others, is lacking. In many cases, this leads to a
random search with a very low chance of finding a
solution if the search space is large. Example 3 illustrates
the problem.

for (idx=1;idx<=10;idx++)
{/* inner-pre-code ... */
if (a==0) {

if (b==0) {
{ /* Target Node – execute this*/ }

 /* inner-post-code */
}

Example 3: Dependencies in loops

In this simple example there is neither control dependence
in the ��	���������	��the ���	����	����	, nor in the ���	��
���
����	. Only one branch has a control dependence for
the selected target node; that is constructed by the loop
header. This branch is executed when the counter ��� is
greater than 10. A fitness function building upon this
information has no guidance to the target node; it gives the
same poor fitness for all solutions that do not execute the
target node. The search is therefore arbitrary since the
search is not directed towards the execution of the target
node.

A human tester would simply recognize additional
information built by the nested ���
�	� structure. This
structure leads however, to no control dependence. This is
due to the fact that if the target node in one iteration is
missed, another chance presents itself in the next iteration.
The solution proposed in this paper is to add dependencies

SEARCH-BASED SOFTWARE ENGINEERING1332

of one loop iteration to the fitness function. Whilst
monitoring the execution of the test object, we can observe
this information on all iterations and calculate a fitness
from it. This may essentially improve the chance of
finding a solution as shown in Figure 4.

0,001

0,01

0,1

1

0 50 100 150 200

*HQHUDWLRQV

)
LW
Q
H
V
V

Standard fitness function

Improved fitness function

Figure 4: Optimization progress with regard to the control
dependencies

	��
���� ���
���� �	�	��	���	� can be calculated by
analyzing the control flow of one loop iteration. This leads
to a set of branches that may miss the target node in a loop
iteration. The approximation levels are also calculated for
the additional branches.
	��
�������
�����	�	��	���	� are
identified with the algorithm for control dependencies after
removing the backward branches of a loop. The algorithm
to distinguish control dependencies can be found in [16]
(backward dominance).

7DUJHW 1RGH

([LW�ORRS

7DUJHW�1RGH

([LW�ORRS

QH[W�LWHUDWLRQ

QH[W�LWHUDWLRQ

Figure 5: Control flow graph with �
	��
�������
�����	�	��	���	�

The figure shows the results for one example. The loop
exit and backward branches have been highlighted in the
left graph of Figure 5. In this example the target node is
iteration-control-dependent from the two nodes where the
backward branches begin as shown in the right graph.

When comparing the two fitness curves in Figure 4 one
notices that, although the standard fitness function
calculates a relatively good value from the beginning,
whereas the other is relatively poor. This is because the
standard fitness function is based on the local distance in
!��
�����. This is not sufficiently meaningful for the target
node and leads to stagnation. In contrast the improved
fitness function also takes the conditions of both backward
branches into account. Both fitness functions use the same
evaluation principle, however the evaluations are carried
out in different nodes.

The method used to estimate the backward branches for
unstructured loops is not defined but first experiments
using this approach are promising.

, , '�������%�)��&���"���%�

The approach of applying evolutionary algorithms to path
coverage cited in various publications ([9] and [18]) is to
calculate the fitness of an individual by estimating the
length of the first matching part of the target path and the
actual executed path. This leads to a search where the
solution is optimized for the branching conditions of the
path in a stepwise manner. For example, when a solution is
found for the first condition in the path, the next condition
is considered. The poor behavior of an optimization, such
as this, has been described previously in section 3.1.

A fitness function is introduced in which the length of all
identical path sections is used as approximation level. This
evaluation method is advantageous in that an individual
diverging from the target path at the beginning, but
covering the desired path towards the end, obtains a
similarly high fitness value as compared to an individual
covering the specified target path at the beginning, but
diverging from it towards the end. The combination of two
such individuals (recombination) may lead to a considera-
bly better individual. In Figure 6 for instance, the
execution of the first individual (covering the six nodes 1,
3, 4, 5, 7, and 8 on the target path), will obtain a high
approximation level if all identical path sections are
considered for the fitness evaluation. If only the first
matching path section is measured, the second individual
(covering five nodes 1, 2, 3, 4, and 7) will obtain a higher
approximation level than the first one.

1

2

3 4

5

6

7

Target Path

1

2

3 4

5

6

7

8 Target Path

8

Figure 6: Execution of two individuals for a path-oriented test
goal

The optimization goal is the gray path. Two possible
execution paths have been highlighted. Example 4
illustrates the target path by 	��, 	�" and 	�#.

if (a==0) /* ex 1 */ ;
if (b==0) /* ex 2 */;

else /* */;
if (c==0) /* ex 3*/ ;

else return;
Example 4: Source code for path-oriented tests

Using the improved fitness function the optimization
performs better in finding an input for the requested path
that matches sub-paths because it always takes all
conditions of the path into account. In contrast to this,
other approaches, as described in many publications,
optimize the solution condition by condition. The results
are displayed in Figure 7.

SEARCH-BASED SOFTWARE ENGINEERING 1333

0

0,25

0,5

0,75

1

0 20 40 60 80 100 120 140

*HQHUDWLRQV

)
LW
Q
H
V
V
Y
D
OX
H

Standard fitness function

Improved fitness function

Figure 7: Optimization progress of path optimization

, - ���������������������)��&���������
��������������%��#�

For node-oriented test methods fitness evaluation is based
on control dependencies of the target node.� Measuring
fitness is based on the point at which a control dependent
node is evaluated incorrectly. An approximation level at
this point is used to decide the closeness of the executed
path to the target node.

A fitness evaluation was implemented that utilizes an
approach level and a local condition distance.
Approximation levels are calculated for all the nodes of a
program that have a control dependence for the currently
selected test goal. The control flow graph is examined for
all possible execution orders of these special nodes. Based
on this information, approximation levels are assigned. A
more detailed description of approximation levels can be
found in [20] and [1].

We were able to observe that in some instances the
procedure of assigning the approximation levels, which
lead to a well performing fitness function, was more
complicated than just checking the execution order. This is
further highlighted in Example 5.

/* pre-code */
switch (a)
{

case 1:
if (cond_1) return;
if (cond_2) break;
/* ... some code */

case 2:
/* ... some code ... */
if (cond_3) break;
return;

}
/* TARGET NODE */

Example 5: Source code template to assign the approximation
levels

Example 5 has three paths that do not execute the target
node:

• path through "1 � 2 � return",
• "1� 2 � 3 � 4 � 5 � return" and
• "1 � 4 � 5 � return"

The open question for designing the fitness function is the
closeness of the branching node 2 to the target node, which
can be compared in Figure 8.

1

2 3

5

UHWXUQ

4

UHWXUQ

7DUJHW�QRGH

Figure 8: Control flow graph of Example 5

Node 5 gets the best approximation level since it leads
directly to the target node if the branching condition is
evaluated in the desired way. However, can node 2 achieve
the same approximation level since one direct path to the
target node exists? Or should this node obtain a different
approximation level since another path leading to " 5 Å
return" exists? These two possibilities in assigning
approximation levels to nodes will considerably alter the
respective fitness function in the neighborhood of a
solution that executes the target node. This may influence
the performance of the search.

The above algorithms have been implemented on these
two possible approximation level allocations in our
structural test system. In this paper, they are called
"optimistic" and "pessimistic" approximation levels since
the level of node 2 is assigned on the basis of the direct
path to the target node (optimistic), or to the path that
misses the target node (pessimistic).

In order to check the behavior and performance of
"optimistic" and "pessimistic" approximation levels,
Example 5 has been tested in three versions with different
conditions which can be seen in Example 6.

Version 1
cond_1: b>0 && b<4
cond_2: c>0 && c<10
cond_3: a == 1 && b==0 && c==0 && d==0

Version 2
cond_1: b==0
cond_2: c==2 && d==2
cond_3: b==0 && c==0 && d==0

Version 3
cond_1: b>0
cond_2: c==0 && d==0
cond_3: a==1 && b==0 && c==0

Example 6: Versions for "optimistic" and "pessimistic"
approximation levels

0,0001

0,001

0,01

0,1

1

0 20 40 60 80 100 120 140

*HQHUDWLRQV

)
LW
Q
H
V
V

optim istic approxim ation levels

pessim istic approximation levels

1

2

3

4

5

SEARCH-BASED SOFTWARE ENGINEERING1334

0 ,0 0 0 1

0 ,0 0 1

0 ,0 1

0 ,1

1

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

* H Q H U D W LR Q V

)
L
W
Q
H
V
V

o p t im is t ic a p p ro x im a t io n le v e ls

p e s s im is t ic a p p r o x im a t io n le v e ls

0 ,0 0 0 1

0 ,0 0 1

0 ,0 1

0 ,1

1

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

* H Q H U D W LR Q V

)
L
W
Q
H
V
V

o p t im is t ic a p p ro x im a t io n le v e ls

p e s s im is t ic a p p r o x im a t io n le v e ls

Figure 9: Optimization progress for the three different versions

The chosen expressions change the feasibility and chance
of executing the different paths to the target node. As the
figure shows, this leads to a different behavior of the
fitness function based on ��
����
�� versus �	������
��
approximation levels. For version 3 no solution was found
in the test. This is caused by no guidance of the search to
execute the path which evaluates condition 2 to ���	. The
authors suggest also using node 3 for fitness evaluation.
Further research has to be done on this area, since from
this point it cannot be decided which function should be
used in general, or which analysis methods may identify
the best performing fitness function. Another possibility is
to use multi objective optimization, but this is not of the
scope of this paper.

, . �����%������)�����/������

For structural tests using EA, a test preparation module
generates test driver code that maps the variable vector of
the EA to parameters of the program under test. This was
first introduced by [9]. Mapping can be designed for data
structures, arrays and even for dynamic data structures e.g.
lists and trees,

Support for dynamic arrays and lists has been implemented
in our structural test system. Tests have shown that
research on coding these structures is needed. This is
because for a program under test, it is not only necessary
to find special values in the correct sequences, but also to
order them correctly. Finding the correct order with
standard EA operators may be very difficult as the
following example shows. Example 7 converts an input
string of ten characters into a weekday.

// computation of day, month, year
// in a loop over the characters

If (year==1752) {
if (month=9 && day>13)
 // handling of special dates..
}

Example 7: Source code illustrating sequence problem

The optimization tends to the solution string “9.9.1752”.
This achieves a good fitness since the correct year and
month are found and the day is close to the 13th. To obtain
better results the EA should be able to insert characters. A
new coding of array parameters is introduced, enabling the
EA to move the elements of a sequence easily.

This paper argues that other EA operators may not be used
because variable vectors often consist of sequences of
more than one variable (e.g. arrays of structures), as well
as other parameters that are not part of the sequence. It was
therefore decided not to use scheduling operators because
of the possible mixture of variable types.

With the introduction of an additional array which is used
to encode the order of the elements, the scheduling
problem was mapped back into a parameter optimization.
Appending an ordering array to the interface of a test
object may be performed automatically within test driver
generation whenever a sequence type is detected.

The additional coding array transforms the search space.
Despite the increase in the input dimensions, the search
problem is more easily solved by EA. This is due to the
additional dimensions that introduce more solutions to the
problem. Following the introduction of coding, the
performance of the test system improved, whereas
previously a solution would have been generated simply
by chance when the optimization initially generated some
special test data. Figure 10 displays the results.

0,001

0,01

0,1

1

0 50 100 150 200

*HQHUDWLRQV

)
LW
Q
H
V
V
�Y
D
OX
H

Standard fitness function

Improved fitness function

Figure 10: optimization progress

A real example of optimization of a sequence is shown in
Table 1. Rows represent different individuals found during
the optimization process. The last row displays one
solution which is a string with a date of year 1752 in
September after the 13th. The gray cells highlight the
changes to the previous individual.

Character code Ordering code Resulting string

. 1 1 5 . 7 2 6 7 1 3 1 5 6 1 5 6 9 2 6 1 . 7 . 1 7 5 2

. 1 1 5 . 7 2 3 8 2 3 1 6 5 1 5 6 8 2 6 1 . 8 . 1 7 5 2

. 1 6 5 . 7 2 6 9 1 3 1 6 5 1 5 6 8 2 6 6 . 9 . 1 7 5 2

. 1 6 5 . 7 2 6 9 1 3 1 6 5 1 5 6 8 2 0 1 6 . 9 . 1 7 5 2
Table 1: The optimization process in detail; an overview of

optimization steps (the best individuals are shown)

Results showed that additional coding may be of assistance
for sequences in which the order is important.
Consecutively, the values of an array must be optimized.
This solution was tested and proved successful in

SEARCH-BASED SOFTWARE ENGINEERING 1335

operation. Special EA operators for scheduling would also
perform well if they were able to handle:

• order and parameter optimization at the same time
and

• order optimization of sequence elements consisting
of structures.

Further work needs to be carried out on complex structure
coding, e.g. trees, where the order and the tree structure
have to optimized. An example of this is when a partial
aim is only executed when a special position in the tree
holds a particular value.

- ����#�����

The aim of this work is to enhance the construction of
fitness functions in order to improve evolutionary
testability by obtaining higher coverage with less
resources.

The reason for the failure of an optimization is often
difficult to analyze since the search space is usually very
large and contains many dimensions. Therefore,
visualization of optimization progress is problematic.
Different problems and their various solutions have been
discussed in this paper.

Poor optimization performance due to composed
conditions, nested ����
�
	�	�
�, and plausible improve-
ment by the avoidance of short circuit evaluation have
been discussed. This paper introduces fitness functions
with an improved behavior for optimizing test data for
target nodes in loops. An alternative method of calculating
the fitness value for path coverage including its results on
the optimization process is presented. Additionally,
problems with approximation levels used to evaluate the
closeness of an executed path to a target node are
discussed. A search space transformation is introduced
which uses a new coding of sequential input parameters.

Future work aims at further improvements to the
evolutionary structural test. The idea of solving
optimizations problems for difficult conditions as
described in [3] is promising. The ��������� ��������
introduced in the aforementioned paper may be used as
problem transformation.

Further research has to be carried out in the areas presented
when using ET for testing modules on a higher system
level with sub modules and internal states.

Unstructured loops and loops with flags need more general
transformation if the described approach cannot solve the
optimization task. In this case a complete change of the
program under test may be useful if it assists the discovery
of test data for higher coverage of the original program.

��0����	��

[1] %DUHVHO��$�: Automating structural tests using evolutionary
algorithms,(German) Diploma Theses, Humboldt�University of
Berlin, Germany, ����.

[2] %HL]HU��%�� Software Testing Techniques, Van Nostrand
Reinhold Company, ����.

[3])HUJXVRQ��5RJHU��.RUHO��%RJGDQ: The Chaining Approach for
Software Test Data Generation. ACM Transactions on
Software Engineering and Methodology, Vol. 5 No.1, January
1996, pp.63-86.

[4] *URFKWPDQQ��0���DQG�:HJHQHU��-�: Test Case Design Using
Classification Trees and the Classification-Tree Editor CTE.
Proceedings of Quality Week ’95, San Francisco, USA, 1995.

[5] +DUPDQ��0DUN��+X��/LQ��0XQUR��0DOFROP��=KDQJ��;LQJ\XDQ.
Side-Effect Removal Transformation. IEEE International
Workshop on Program Comprehension (IWPC 2001) Toronto,
Canada

[6] +RZGHQ��:�� An Evaluation of the Effectiveness of Symbolic
Testing. Software – Practice and Experience, vol. 8, pp. 381 –
397,������

[7] +RZGHQ��:�� Reliability of the Path Analysis Testing Strategy.
IEEE Transactions on Software Engineering, vol. 2, no. 3, pp.,
������208 - 215.

[8] -RQHV��%��)���6WKDPHU��+��+���(\UHV��'�. Automatic structural
testing using genetic algorithms. Software Engineering Journal,
vol. 11, no. 5, pp. 299 – 306,������

[9] .RUHO��%RJGDQ���Automated Test Data Generation. IEEE
Transactions on Software Engineering, vol. 16 no. 8 pp.870-
879; August 1990.

[10] 0\HUV��*�� The Art of Software-Testing. John Wiley & Sons,
�����

[11] 3DUJDV��5���+DUUROG��0��DQG�3HFN��5�� Test-Data Generation
Using Genetic Algorithms. Software Testing, Verification &
Reliability, vol. 9, no. 4, pp. 263 – 282, �����

[12] 3RKOKHLP��+�: GEATbx - Genetic and Evolutionary Algorithm
Toolbox for Matlab. http://www.geatbx.com/, 1994-2001.

[13] 3RKOKHLP��+�: Evolutionäre Algorithmen - Verfahren,
Operatoren, Hinweise aus der Praxis. Berlin, Heidelberg:
Springer-Verlag, 1999. http://www.pohlheim.com/eavoh/

[14] 3RKOKHLP��+��:HJHQHU��-���6WKDPHU��+�: Testing the Temporal
Behavior of Real-Time Engine Control Software Modules
using Extended Evolutionary Algorithms. in Computational
Intelligence, VDI-Berichte 1526, Düsseldorf: pp. 61-66, 2000.

[15] 5RQDOG�(��3UDWKHU�DQG�-�3DXO�0\HUV��-U�: The Path Prefix
Software Testing Strategy, IEEE Transactions on Software
Engineering, Vol.13 No. 7 July 1987.

[16] 6FKDHIIHU��0DUYLQ�: A mathematical theory of global program
optimization. Prentice-Hall Inc., 1973.

[17] 6WKDPHU��+��+�: 7KH�$XWRPDWLF�*HQHUDWLRQ�RI�6RIWZDUH�7HVW
'DWD�8VLQJ�*HQHWLF�$OJRULWKPV. PhD Thesis, University of
Glamorgan, Pontyprid, Wales, Great Britain, 1996.

[18] 7UDFH\��1���&ODUN��-���0DQGHU��.��DQG�0F'HUPLG��-�� An
Automated Framework for Structural Test-Data Generation.
Proceedings of the 13th IEEE Conference on Automated
Software Engineering, Hawaii, USA, �����

[19] :HJHQHU��-���6WKDPHU��+���-RQHV��%���(\UHV��'�: Testing Real-
time Systems using Genetic Algorithms. Software Quality
Journal, vol. 6, no. 2, pp. 127 – 135,������

[20] :HJHQHU��-��6WKDPHU��+����%DUHVHO��$�������): Evolutionary
Test Environment for Automatic Structural Testing. Special
Issue of Information and Software Technology, vol 43, pp. 851
– 854, 2001.

[21] :HJHQHU��-���DQG�*URFKWPDQQ��0�: Verifying Timing
Constraints of Real-Time Systems by Means of Evolutionary
Testing. Real-Time Systems, 15, pp. 275-298, 1998.

[22] Capability Maturity Model for Software, Software Engineering
Institute, Carnegie Mellon University.

[23] IEC 65: A Software for Computers in the Application of
Industrial Safety-Related Systems (Sec 122).

[24] RTCA/DO-178B Software Considerations in Airborne Systems
and Equipment Certification.

[25] Vorgehensmodell zur Planung und Durchführung von Informa-
tionstechnik-Vorhaben des Bundesministeriums des Innern
(Process Model for Planning and Realization of Information
Technology Projects of the German Secretary of Interior).

SEARCH-BASED SOFTWARE ENGINEERING1336

���������	��

������������������������

�������� "!$#��%�'&(�%�	�)��*�#)���,+-���/.0������12�3���546�7�%��89
*�:<;=�����>����8@?A#������	���� �

B9CEDGFIHKJMLIDON�DGP�PQHSRUT
VXWUY�ZS[K\^]�_�`Ka�bc]edfa)]�gh]�ZK\Qi

j [Sklknm7dfbcop]�_�qrbc\ts
j [Skckvu j m�w6xMy7z�ufm�i {�i

|~}3�U�K�S�����

� oUWUkl[K\^bcWpdf�-_^s�q�]e�U_^a���b�q9Z�W-\^]�d�\�b��-klkls���Z�WM�X]e_r��[Sk
�>��s�W-��q�]e�U_^a��fbcdS����WU_�q�W-��\t�>�-_^]	\�]Qqt\	�S�-\^��\�W%q^�M\r�
b�qt��s�oM�-_^bcWp[fq�qr\�_^[fa�\^[S_��-k	\^]eqr\�bldS��a�_�bc\�]e_�b��Si�`EZ�])�
a�b��Ga9\�]Qqt\�a��pqr]Qq��U_�]X]�oM�-kl[f�-\�]e����s��7�S\�df]eq^qn��[fdfa��
\^bcWpd�a)Wpdfqt\^_�[Ga�\�]Q�~�Es�bldfqr\�_^[SY�]�d�\�bldS�O\^�S]�ZS_^W-�
�p_^�UY@[Sdf�S]�_�\^]eqr\ei¡ >�S]�Y�Wp_�]��Sblq^a)_^bcY�bldf�M\^bcdf�
\^�S]O�S\^dS]eq^q���[Sdfa)\�blWUd�u�\��S]¢Y�Wp_�]O]�£�a�bc]ed�\�\��S]
q�]e�U_^a���i¥¤¦�S]ed¢�§Zf_�Wp�U_��-Y�[fq�]eq3¨G�U�©oM�U_�b��-�Skl]eq
\^W©qr\�Wp_�]�\��S]�_^]eq�[Skc\^q3W-�9Zf_�]Q�Kblae�M\^]�]�ªEZf_�]Qq�q�bcWpdfqeu
bc\�blq��Kbc£�a)[Skc\�\�W�bldfqr\�_^[SY�]�d�\�\��S]>ZS_^WU�p_^�UY«]�¬�]Qa��
\^bcop]�klsUi­ >�S]�Zf_�Wp�Skc]eY®b�q7]�ªK�UY�bcdS]Q���-df���6qrWpkc[K�
\^bcWpd©b�q­�pbcop]�d©��WU_���q�ZG]Qa)b��-knae�Uq�]Ui9¯�d��-ZSZf_�W��Ua��
��Wp_>\^�Ua�°Eklbcdf��\^�S]%�U]edS]�_��-k±ae�Uq�]eq²blq��K]eq^a)_^bc��]e��i

³ ´pµ«¶�·~¸0¹$º¼»�¶�´S¸0µ

 >�S]9\�]eqr\�bldS�hW-�fq�W-��\t�>�-_^]	blqI�>\^bcY�]>a)WUdGqr[SY�bldS���Udf�%])ªKZ�]�dK�
q�bcop]9�Ua)\�blo�bc\ts��-df��a�WUdfq�]e½�[S]ed�\�kls7\��f]Xb��K]e�­\��f�-\�bc\�Y�bc�p��\���]
�-[S\�WUY��-\�]e�©b�q­�-d��M\�\�_��Ua)\�bloU]�ZS_^Wpq�ZG]Qa�\eiX >�S]%oM�Uqr\7Y��-¾tWU_��
bc\ts�W-��\^]eqr\�bldS��\^WEWUk�q9bld§a�[S_�_^]�d�\²[fqr]h��WKa)[fq²Wpd§�-[S\�WUY��-\�bldS�
\��f]�]�ªK]ea)[S\�blWUd�WU��\�]Qqt\�ae�Uq�]eq©�-df��WUd¼a)WUklkl]ea�\^bcdf��a)WMop]�_��
�-�p]¥�Udf�¿WU[K\^ZS[K\��S�M\��§\�W�a)WUY�Zf�U_�]¥�­bc\���°�dfWM�­d¿_^]eq�[Skc\^qei
¤¦�f�-\h\^�S]eq�]�\^WEWUk�qh�KW§dSW-\%�KWGu��fWM�X]eoU]�_Qu�blqh�U]edS]�_��M\^]�\��f]
\�]Qqt\��S�M\��>\�W3q��-\�b�qt��s%�­�pbcop]�d�a�_�bc\�]e_�blWUd�inÀÁd�qrWpY�]9a��pqr]Qq�uQ\��f]
�S�-\^�7Y���s���]9�U]edS]�_��M\^]e�%_��-dG�KWUY�klsh�S[S\�\^�SblqIb�qn[fdSkcbl°U]ekcs3\^W
��]��U�K]Q½p[G�M\�]h\�W�q^�M\^blqr��s�\��f]�a�_�bc\�]e_�blWUdni�¯7��\�]e_��-ZSZfkcb�a��-\�blWUd
W-�±�-d�bldSbc\�b��-kfq�])\	WU�G\^]eqr\^qeu-\�]Qqt\^]�_�q�W-��\^]�d��f��oU]²\^�S]7ZS_^WU�Skl]�Y
W-��a�WUdfqr\�_^[fa)\�bldS���U�f�Kb�\^bcWpdf�-k9\�]Qqt\�q%\�W�a)WpY¥Zfkc]�\�]�klsÂq��-\�b�qt��s
\��f]©�pbcop]�d0a�_�bc\�]e_�blWUdni � oU]ed0�­bc\��~���pW�WK�0°�dfWM�­kc]Q�K�U]§W-�
\��f]�qr[S�S¾t]ea�\�Zf_�Wp�U_��-YÃ[Sdf�S]�_�\�]Qqt\%\^�Sb�q�a��Ud¿��]�a��f�-klkl]�dS�U�
bldS�fi9 >�f]%ZS_�Wp�Skl]�Y®b�q­�²WU_�qr]3�­�S]ed§\^]eqr\�]e_^q­�²WU_^°ÄuS�Uq²\^�S]�s
W-��\^]�d��KWGuKWUd�a)WK�K]��­_^b�\�\�]�d��Es�WU\��S]e_^qei
 >�S]��-[S\�WUY��-\�blWUd�W-�9\^]eqr\��S�M\��§�p]�dS]e_^�-\�blWUd¿blq%�©ZS_^WU�Skl]�Y
\��G�M\¿�G�Uq¿�G]e]�d¡\��Ua�°Ekc]Q�¡�Es¡�¦dE[SY���]�_�W-��_^]eq�]e�U_^a��S]e_^qei
ÀÁdfa�]ÂÅÆÀÁdfa)]OÇQÈUÉEx-Ê%�pbcop]eq��-d~�Uaea)Wp[Sd�\¥WU�h_^]�k��M\�bloU]ekcsO]Q�-_^kcs
�²WU_^°§bld�\^�Sblq��U_�]Q�Sih >�f]�\^]eqr\3�S�-\^���p]�dS]e_^�-\�blWUd�Zf_�Wp�Skc]eY�u

��WU_���dSWUd�\^_�bloEbl�Uk�a�_�bc\�]e_�blWUdnu�b�q§[fdf�K]ea�bl�f�-�Skl]ÂbcdË�U]�df]�_��-kvi
 >�Sb�q�uGa)WU[fZSkc]Q�6�­bc\���\^�S]%bldfa)_^]e�pqr]Q�6���>�-_^]�dS]Qq�q²W-��\��S]%Z�W-�
\�]ed�\�b��-kfWU�±�S]�[S_^b�qt\^bla7q�]e�U_^a��¥\^]ea��SdSb�½�[S]eq	�f�Uq9ZS_�WpY�ZK\�]Q��_�]��
q�]e�-_�a��S]e_^q²\^W�[fq�]%\��S]Qqr]�\�]ea��fdSbl½�[S]Qq­\^W��fdf��\^]eqr\h�S�-\^����Wp_
oM�-_^bcWp[fq­qr\�_^[fa�\^[S_^�Uk±\�]Qqt\^bcdf�6a)_^b�\^]�_^bl�fi9{�WU_^]�k	ÅÌ{�WU_^]�k	ÇQÈUÈpÍpÊ
�-dG�$ÎS]e_��p[fqrWpd¡ÅÆÎS]e_��p[fq�WUd$�-dG�¦{�WU_^]�k�ÇQÈUÈpwpÊ¥�f��op]�[fqr]Q�
��[Sdfa)\�blWUd©Y�bcdSblY�blq^�M\^bcWpd�\^W��fdG��\^]eqr\^qX\�W�q^�M\�b�qr��s¥ZG�M\���a)_^bc�
\�]e_�b��Si�ÏpWUdf]eq�Ð�Ñ�Ò-ÓcÔ²ÅÆÏpWUdS]Qq�u�`E\��f�UY¥]e_euI�-df� � s�_^]eq�ÇQÈUÈpwpÊ
�-dG�$¤�]��U]edS]�_¢Ð�Ñ§ÒMÓlÔ�Å�¤�]��p]�dS]e_eu%`�\^�f�-Y�]�_Qu�ÏUWpdS]eqeuh�Udf�
� sE_^]eq�ÇQÈUÈEx-Ê��f��op]	�-ZSZSklbl]e�%�p]�dS]�\�b�a	�-kl�UWp_�bc\��SY�qXÅÌÕ3WUk��K��]�_^�
ÇeÈpÉUÈ�Ê�\^W��fdf�§\�]Qqt\��S�-\^��\�W�q^�M\^blqr��s6�f_^�Udfa��§a�WMoU]�_��-�p]h�Udf�
Y�bcdfbcY�[SY@�-dG�OY��MªKbcY�[SYÖ])ªK]Qa)[K\^bcWpd¢\�blY�]eqei¢ n_��Ua�]�s¦Ð)Ñ
ÒMÓlÔ9ÅÌ n_��Ua�]�sUunVXk��-_^°Äu��-df�¿×��-df�S]�_�ÇeÈpÈUÉpÊ7�f��oU]�[fq�]e��q�blY��
[Sk��M\^]e�~�-dSdf]e�-klbldS��\�W¢q�]e�-_�a�����WU_��Æ�-blkl[S_�]�a�WUdf�Sb�\^bcWpdfq�iË¯
�U]edS])\^bla��-kl�UWU_^bc\��SY,blq�[fqr]Q��bld�\��S]�Õ�¯�g�Õ � ØÅÆ×�aeÕ3_����%u
×�b�a��f�-]ekÌu��-dG�¢`Ka��f�M\^Ù�ÇeÈpÈUÉ�Ê�u�\^]eqr\��S�-\^���U]edS]�_��M\^bcWpdOqrsKqr�
\�]eY�i6Ú��-_^�p�pq¥Ð�Ñ3Ò-ÓcÔ²ÅÆÚ��-_^�p�pq�u j �-_^_�Wpkl�±u��-df��Ú�]ea�°¢ÇQÈUÈpÈpÊ
�K]Qq�a�_�bl�G]X�­\�]Qqt\�\�WEWUkpbcd��­�Sbla������U]edS])\^bla	�Ukc�pWU_^b�\^�SY«blqn[fqr]Q�
\�W�q�]e�U_^a�����WU_�\^]eqr\X�S�-\^�h\��f�-\9_^]e�Ua��f]eq����UbloU]ed�dSWK�K]­bld�\��f]
ZS_^WU�p_^�UY�a�WUd�\�_^WUkI¨fWM�¡�p_^�UZS��i� >�S]�a)WpdK��WU_^Y��-dfa�]�WU�9\��f]
\�]Qqt\%]�ªE]Qa)[K\^bcWpd�Zf�-\���\�W§\��S]�a)Wpd�\�_^WUk��K]�Z�]�df�S]�dfa�s�a)Wpdf�Kbc�
\�blWUdGq%ÅÆÎS]e_�_��-d�\^]UuGÛ�\r\^]�dfqr\�]ebcdnuf�-df�©¤Â�-_^_�]ed¿ÇQÈUÉEx-Ê	��WU_>\��f]
�UbloU]ed¢dSWK�K]©blq¥[fq�]e���Uq�\��S]§�S\^dS]eq^q���[Sdfa�\^bcWpd�i¢ >�S]§\�WEWUk
�K]eoU]�klWUZ�]e�¢��sO¤�]��p]�dS]e_�Ð�Ñ�ÒMÓlÔ7Å�¤�]��p]�dS]e_euXÜ²�U_�]Qqr]ekÌu��Udf�
`�\^�f�-Y�]�_�ÝUÍUÍSÇ�Ê%[fq�]eq¥]eoUWUkl[K\^bcWpdf�-_^s��Ukc�pWU_^b�\^�SY�q��Udf�±u	�Es
a)WpY��SbldSbldS��dSWK�K]¥�-df��Zf�M\^��a)Wpdf�Kbc\�blWUdfqeuGY���s©�G]�[fq�]e��\^W
�U]edS]�_��M\^]�\^]eqr\��S�M\�����WU_­Y�Wpqr\�qt\^_�[Ga�\�[f_^�UkÄ\�]eqr\7a)_^b�\^]�_^bl�fi
¯�a�WUY�Y�WUd�\^]ea��SdSb�½�[S]�bld�\^�S]��²WU_^°6Y�]�d�\^bcWpdS]e���U�GWMop]%blq
\��f]Xbldfqr\�_^[SY�]�d�\^�-\�blWUd�WU�S\��S]>q�[S�K¾t]ea)\�ZS_^WU�p_^�UY�\^WhZf_�WK�K[fa�]
���S]�[S_^b�qt\^blah]�oM�-kl[f�-\�blWUd���[fdfa�\^bcWpd§Wp_X�f\�dS]Qq�qX��[Sdfa)\�blWUd�i	m�k��
\�blY��M\^]�klsUu�\��S]��S\�df]eq^q	��[SdGa�\�blWUd6Y�[fqr\X]eo��Ukc[G�M\�]�\��S]h])ªE\�]ed�\
\�W¿�­�Sb�a��0���pbcop]�dÂ\�]Qqt\�a��pqr]§q��-\�b�qt�f]Qq�q�ZG]Qa)bc�Ga§ZS_�]Q�Kb�a��M\^]
])ªKZS_^]eq^q�bcWpdfq�bcd�\^�S]6q�[S�K¾t]ea)\�ZS_^WU�U_��-Y�i�¤¦�f]�d�\��S]6o��Ukc[f]
W-����ZS_�]Q�Kb�a��M\^]§]�ªKZS_�]Qq�q�blWUd0b�q�qr\�WU_^]e��bldÞ�¿¨G�U�¿oM�-_^b��-�Skl]
\��f]�_^]3b�q>\^�S]%_�b�q�°�W-��kcW�qrbldS��\��S]%bldK��WU_^Y��M\^bcWpd§���M\��f]�_^]e���Es
\��f]§bldfqr\�_^[SY�]�d�\^�-\�blWUd0a�WE�S]UiÂ >�Sblq¥Zf�UZG]e_¥a�WUdfq�b��K]�_�q%\^�Sblq
ZS_^WU�Skl]�YÃ�Udf��qr�fWM�7q7�SWM�¼\^W�bcdGqt\^_�[SY�]edp\%��q�ZG]Qa)b��-k�a��pqr]pi
¯7d¢�UZSZS_^Wp�pa�����WU_�\��Ua�°EklbcdS��\^�S]��U]edS]�_��-k	ae�Uq�]�blq��Uklq�W��K])�
q^a)_^bc��]e�±i� >�S]�\^]ea��Sdfbl½�[S]Qq3�S]eq^a)_^bc��]e��bcd¿\��Sb�q3Zf�-Z�]�_��f��op]

SEARCH-BASED SOFTWARE ENGINEERING 1337

��]�]�d§bcY�ZSkl]�Y�]edp\^]e�6bcd©��ZS_^W-\^W-\tsEZ�]­\�]Qqt\­�S�M\����p]�dS]e_^�-\�blWUd
\�WEWpkÌi

ß ´pµáà>¶¿·0º$âÖã�µ«¶�´�µ¡ä |
å ·~ã�¹¦´K» | ¶�ãæã�ç å ·~ã¿à�à>´K¸0µè¶¢¸
à²ã | ·~»�éëê�¸¢·ì¶¿ã¿à>¶í¹ | ¶ |

VXWUdGqrb��K]�_²\^�S]%a)WUd�\^_�Wpkf¨fWM���U_��-ZS��WU�I�¥qr[f�K¾t]ea)\>Zf_�Wp�U_��-Y�i
 >�S]¢dfWE�S]eq��U_�]Â\^�S]¢�f�pqrb�aÂ�SklWEa�°Kq�WU��\^�S]0q�[S�K¾t]Qa�\¿�Udf�
\��f]�]e�K�p]eq��U_�]�\^�S]�Z�Wpq^qrbl�Skl]�\�_��-dGqrbc\�blWUdfq��G]�\t�X]e]�d¦�f�pqrb�a
�SklWKa�°Eqei� >�f]Xa)Wpdf�Kbc\�blWUdf�Uk-\^_^�Udfqrbc\�blWUdGqn�-_^]9�pq�q�WKa)b��M\�]Q���­b�\^�
�7�f_^�Udfa��%ZS_^]e�Kb�a��-\�]UiI >�S]�_^]	b�q��h�Kb�qt\^bcdS�p[Sb�qr�S]Q��qr\^�-_�\�dfWE�S]
�-dG�¿�©�Kb�qt\^bcdS�p[Sb�qr�S]Q��]�ªKb�\�dSWK�K]Ui¥×��-dEs�\^]eqr\%a�_�bc\�]e_�b��§_�]��
½�[Sbl_�]¥��\�]Qqt\�a��pqr]�\�W6]�ªK]ea)[S\�]��6�UbloU]ed�qt\��M\�]eY�]�d�\ei3Àî�	\��f]
Zf�U_r\^bla�[Skl�U_nZf�-\���blqI[SdSblY�ZGWp_r\��-d�\n\^�S]�d�\��S]­a�WUd�\�_^WUk��K]�Z�]�dK�
�K]edfa)s�ZS_^]e�Kb�a��-\�]7ZG�M\��¿Å�WU_>q�WUY�])\^bcY�]eq9Zf�M\^�fq�Ê�W-�±\^�S]��pWp�Uk
qr\^�M\^]�Y�]�d�\7q�ZG]Qa)bc�f]eq²\^�S]%_�]Q½�[Sbc_^]e�6oM�-kl[S]3��WU_>]e�pa��©a�_�bc\�b�a��Uk
�S_��-dfa��0ZS_�]Q�Kb�a��M\^]§]�ªKZS_�]Qq�q�blWUd�iO¯�ZS_^]e�Kb�a��-\�]©])ªKZS_^]eq^qrblWUd
Y���s6dSWU\���]�a)_^b�\^blae�-k���]eae�-[fq�]�bc\�b�q7dSWU\�Zf�-_�\7W-�	�Ud�s§Zf�M\^�
\�W6\��S]¥�UW��-kIqt\��M\�]eY�]�d�\3Wp_���]eae�-[fq�]���W-\^��WU[S\^a)WpY�]eqhY���s
kl]e�U�6\�W�\^�S]%�UW��-k±qr\^�M\^]�Y�]�d�\Qi
 >�S]e_�]3�-_^]���dE[SY��G]e_²WU�n�-ZSZf_�W��Ua��S]Qq�up�U_^WU[SZ�]e��[SdG�K]�_²\��f]
�U]edS]�_��-kp�S]e�p�KbldS�hWU�fqt\��M\^blaXY�])\��fWE�fq�uM\^�f�M\��M\�\�]eY¥ZS\�\^W3ae�-kc�
a)[fkl�-\�]3\��S]%�UZSZS_^WUZS_^bl�-\�]3a)WUdG�Kb�\^bcWpd§Wpd�\^�S]�bcdSZf[K\��S�M\����Es
�-dG�-klsEq�b�q�WU�f\^�S]­ZS_^WU�U_��-Y�iIÛhdf]­W-�f\^�S]eq�]>blq9qrsEY���WUklb�aX]eoM�-kc�
[f�-\�blWUdáÅvVXk��-_^°U]ÂÇQÈ�xMw�Ê�Å j WM�7�K]�d¡ÇQÈ�xUxUÊ�i«¯�q�\^�S]�df�UY�]
q�[S�U�p]eqr\^qeu>\��S]¿ZS_�Wp�U_��-Yïb�\�qr]ek���b�q§dSW-\©])ªK]ea�[K\�]Q�¦�S[K\©bcdK�
qr\�]e�p���Þ�K]eq^a)_^blZK\�blWUdËblq�a)Wpdfqr\�_^[fa�\^]e�¦WU���SWM�Ã]�ªE]Qa)[K\^bcWpd
�-klWUdf����ZG�-_�\�b�a)[Sk��-_XZf�M\^�6�²WU[Sk��6�-¬�]Qa�\²�¥q�])\>W-��oM�-_^bl�U�Skl]eqei
 >�Sb�q9�K]Qq�a�_�blZK\^bcWpd�ae�-dSdfW-\9�pbcop]>\��S]7Zf_�]Qa)b�qr]­oM�-kl[S]Qq	W-�±oM�-_^bc�
�-�fkc]Qqn�S[S\�bldfqr\�]Q�U��Zf_�WMoEb��K]eq�a)WUdGqt\^_^�Ubcd�\^q�WUd�\��S]ebc_�Z�Wpq^qrbl�Skl]
oM�-kl[S]eqeun]�ªKZS_�]Qq�q�]e��u�[Skc\�blY��-\�]ekcs¿WUd�\��S]�oM�Ukc[S]Qq%W-�²\��f]�bcdK�
ZS[K\©oM�-_^bl�U�Skc]Qq�i«ÀÁd$�p]�dS]e_^�UkÌu²�SWM�²]�oU]e_euX\��f]�_^]�k��M\�blWUdGqr�SblZ
��])\t�²]�]�d¥\^�S]­bcdfZS[K\X�S�-\^�%�Udf��\��S]­oM�-kl[S]Qq�W-�Äbcd�\^]�_^df�-kKoM�-_^bc�
�-�fkc]Qqh�-\�\��f]�Z�WUbld�\h�­�S]e_�]�\��S]es��-_^]�[fq�]e��bld¿�6ZS_�]Q�Kb�a��M\^]
])ªKZS_^]eq^q�bcWpdOY���sÂdSWU\¥��]©_�]Q�U�KblkcsO�Udf�-klsKq��U�Skc]6�G]Qa��-[Gqr]§W-�
\��f]3Zf_�]Qqr]edfa)]hW-�nklWEWUZfq²�-df�§a)WpY¥Zf[K\�]Q�§qr\�Wp_^�U�U]7klWKa��M\^bcWpdfqeu
]Ui ���-_^_^��sKq²�-df�©Z�WUbld�\�]�_�qei
ghs�dG�-Y�bla��-df�UkcsKq�blq7blqh�-d��Uk�\^]�_^df�M\^bcop]�\�W6qr\^�-\�b�a�Y�])\^�SWK�Sq�i
ÀÁd�\^�SblqX�-ZSZf_�W��Ua���uM\^�S]hq�[S�K¾t]Qa�\9Zf_�Wp�U_��-Y�b�q	bldfqr\�_^[SY�]�d�\�]Q�
bld�WU_��K]e_�\^�f�M\�b�\%Y���s�_�]eoU]Q�-kvuÄ�S[S_�bldS�§])ªK]ea�[K\�blWUd�uÄ\^�S]¥bcdK�
��WU_^Y��M\^bcWpd�\��f�-\�ae�-d���]X[Gqr]Q��\�Wh�U[Sb��K]	\^�S]>qr]Q�-_�a���\�WM�>�-_��Sq
\��f]h_^]e½�[Sbl_�]Q��\^]eqr\>ae�Uq�]Ui�ÀÁd�\^�S]hY�W�qt\>�f�Uq�b�a�bldfqr\�_^[SY�]�d�\^�-�
\�blWUdnuE��_^]ea)Wp_^��blq²°U]eZK\>W-��\^�S]hoM�Ukc[S]Qq²W-���Ukck��S_��-dfa��§ZS_�]Q�Kbc�
a��-\�]X])ªKZS_^]eq^qrblWUdfqn])ªK]ea�[K\�]Q�±i�¯Þa)W�qt\���WU_�\��S]²�UbloU]ed�bldSZS[K\�blq
a)WpY�ZS[K\�]Q�6�Es�a�WU[Sd�\�bldS��\��S]3dE[SY���]�_>WU��ZS_^]e�Kb�a��-\�]�a)Wpdf�Kbc�
\�blWUdGq	bld�\��S]�a�WUd�\�_^WUkS�S]�Z�]�df�K]edfa)s¥Zf�-\���W-�Ä\^�S]7�UW��-kfqr\^�-\�]��
Y�]�d�\7\^�f�M\��G��oU]�dSW-\h�G]e]�d�q^�M\�b�qr�f]e�©�Es6\^�S]�]�ªE]Qa)[K\^bcWpd�W-�
\��f]%ZS_�Wp�U_��-Y�i� >�fblq­b�q²\��f]3Y�]�\��SWK���K]eq^a)_^bl�G]Q�6�Es6Ú��U_����Uq
Ð�ÑXÒMÓcÔ�ÅtÇeÈpÈUÈ�Ê�i�¯�Ùe]�_^W�a)W�qt\²bcdf�Sblae�M\�]QqX\��f�-\>��qrWpkc[K\^bcWpd��f�pq
��]�]�d���Wp[Sdf�Â�­�S]e_�]Q�Uq%�©dSWUdfÙ�]�_^W�a)W�qt\%bldf�Kb�a��M\^]eq�\^�f�M\��Ud
[Sdf�S]eq�bc_^]e�§�S_��-dfa��©�²�pq²\^�U°U]�d��M\7q�WUY�]�ZS_^]e�Kb�a��-\�]Ui

¯7kc\��fWU[S�p�¢��a)Wp[Sd�\�W-�­[SdG�K]eq�bc_^]e�Â�f_^�Udfa��¢�K]ea�blq�blWUdfq%Zf_�WU�
oEbl�S]eq>qrWpY�]��U[fbl�S�Udfa)]�\�W�\��S]�q�]e�-_�a���ð�bcd©qrWpY�]hq�b�\^[f�M\^bcWpdfq�u
\��f]X�G_^qr\���]���a�WUdf�Sb�\^bcWpdfqIW-�f\^�S]­a)Wpdp\^_�WpkK�K]�Z�]�df�S]�dfa�s�Zf�M\^�
�­blkckI�G]�]e�pqrblkcs�q^�M\�b�qr�f]e���f[K\�\^�S]�df])ªE\3a�WUdf�Kbc\�blWUd�Y���s���]
½�[Sbc\�]��Kbc£�a)[Skc\9\^W�q^�M\�b�qr��sUi	Ûh[S_9]�ªEZ�]�_^bl]�dfa�]­blq	\��f�-\²�K[S_^bldS�
�U]edS])\^bla�qr]Q�-_�a���bld�\��fblq�q�b�\^[f�M\^bcWpd�u�\��S]¥]�d�\�bl_^]�Z�WUZS[Sk��M\^bcWpd
W-�E\^]eqr\Ia��pqr]Qq��-klkp½�[Sb�a�°Ekcs3]�opWUkloU]�\^W­\��S]²q��UY�]��S\�df]eq^q��­�Sb�a��
b�q�\��f�-\	WU�K\��-bldS]e�¥�Es�q^�M\^blqr��sEbcdf�3WpdSkls�\��f]7]e�pqrs�Zf_�]Q�Kblae�M\^]eqei
¯²\�\��Sb�q�Z�WUbldp\QuM\��f]>q�]e�U_^a���qrZf�pa)]²�f�UqI��]ea�WUY�]²¨G�M\��-df��\��f]
q�]e�-_�a��6��]ea�WUY�]eq>_��-dG�KWUY�i
¯�q²�-d6])ªS�-Y�ZSkl]UuEa)Wpdfqrb��K]e_	\��f]hZS_^WU�p_^�UYá��_��-�pY¥]ed�\9�G]ekcWM�%i

ñEñEñòMó,ô�õËöp÷~ø±ù
ñEñEñ úEú~ûEüEûKý-þSÿ��������Eû��Mþ	�
�Eû��

úEú~ÿ��~û��EÿEû��¦ÿ�
������������Eý�

`E[SZfZGW�qr]%�²]%�-_^]�q�]�]e°EbcdS����\�]Qqt\�ae�Uq�]3\��f�-\7�­bcklkna��U[fq�]3]�ªE�
]ea�[K\�blWUd~WU��\��f]�\�_^[S]��S_��-dfa��ÞW-�3\��S]�a�WUdf�Sb�\^bcWpdf�-k7q��SWM�­d
�-��WMoU]pi�Àî�K\��f]9_^]e½�[Sbl_�]Q���S_^�Udfa���blqI�Kbc£�a)[Skc\n\^W�]�d�\^]�_QuQY��Ud�s
\�]Qqt\�ae�Uq�]eqh�­bcklk�a��-[Gqr] õËöp÷¦ø \^W§��]¥�Æ�-k�qr]pi� �W©�Kb�q^a)_^bcY�bc�
df�-\�]>�G]�\t�X]e]�d¥\��f]eq�]X\^]eqr\^qeuM\��f]­ZS_�Wp�U_��-Y¼bld¥bldfqr\�_^[SY�]�d�\�]Q�
\�W�a��Ukla�[Sk��M\�]¥�6a�Wpqr\hY�]e�pqr[S_^]�\^�f�M\�Z�]�df�Ukcb�qr]Qqh\��SW�qr]�\�]eqr\^q
\��G�M\�Y���s¦��]Âa)WUdGqrb��K]�_^]e�¦\�WÞ�G]��t�Æ�U_6��_^WUY���q��-\�b�qt��sEbldS�
õËöp÷$ø iÂÎSWp_�\^�Sb�q�]�ªKZS_�]Qq�q�blWUd¢��qr[Sbc\^�U�Skl]§a)W�qt\¥Y�]e�Uq�[S_^]
�²WU[Sk�����]������Mi�¯$\�]Qqt\²\��f�-\²�G�Uq9��Ù�]e_�W�a�Wpqr\3Å������! ¦Í�Ê
��¾t[Gqt\"�%q��-\�b�qt�f]QqI\��S]7a�WUdf�Sb�\^bcWpd�iI¯~Z�Wpq�bc\�bloU]7a)W�qt\�bldf�Kb�a��-\�]eq
\��G�M\­\��f]%ZS_�]Q�Kb�a��M\^]�])ªKZS_^]eq^qrblWUd§blq²�Æ�Uklq�]Ui
 >�S]�qr[f�K¾t]ea)\¥ZS_^WU�p_^�UY2b�q�bcdfqr\�_^[SY�]�d�\^]e�0�-\�\^�S]©ZGWpbcd�\��
Zf�U_r\^bla�[Skl�U_ha�WUdf�Kbc\�blWUd�blqh_�]Q½�[Sbc_^]e�©\^W6�SWpkl��uGbld�Wp[S_�]�ªK�UY¥�
ZSkl]��-\ õ«öp÷~ø i� >�f_�Wp[S�U��bldfqr\�_^[SY�]�d�\^�-\�blWUd�uG\��S]¥qr[f�K¾t]ea)\
ZS_^WU�p_^�UY¡�f�Uq�bld�])¬Ä]ea�\	��]�]ed�a)WUdEop]�_�\�]e��bcd�\^W��UdSW-\^�S]�_�Zf_�WU�
�U_��-Y/\��f�-\�a)WUY�ZS[S\�]eq%�§��[SdGa�\�blWUdÂ\^�f�M\��²]�qr]e]�°�\^W�Y�bcdK�
blY¥b�q�]¿\^W�Ùe]�_^Wfi® >�fblq©Y�])\^�SWK���f�pq©�G]e]�d«[fqr]Q���Es${�WU�
^]�k%ÅÆ{�Wp�]ekhÇQÈUÈUÍ�Ê�u� �_^�pa)]�s$Ð�Ñ�ÒMÓlÔ7ÅÆ �_��Ua)]esUuXVXk��-_^°Äu9×��-dS�
�K]e_eu��-df�O×�a�gh]�_^Y¥b��~ÇeÈpÈUÉ�Ê�un¤�]��p]�dS]e_©Ð�Ñ�Ò-ÓcÔ>Å�¤�]��p]�dS]e_eu
Ü>�-_^]eq�]�kvuK�-df��`�\^�f�-Y�]�_�ÝUÍUÍfÇQÊX�-df�§W-\^�S]�_�q�i
Ü²]�klWM�á�-_^]¥q��SWM�­d�\^�S]¥\tsEZSblae�-k�_^]�k��M\�blWUdG�-kIZS_�]Q�Kb�a��M\^]¥a�Wpqr\
��WU_^Y�[fkl�U]Ui#�%$"���-_^]%dE[SY���]�_�q��Udf��&7b�q­\^�S]�q�Y��-klkc]Qqt\�Z�Wpq�bc�
\�bloU]Xa)WUdGqt\��-d�\nbld%\��S]²�KWUY��Ubcd�ÅÆbÌi]Ui²Ç	bld%\��S]²a��pqr]�WU�Sbcd�\�]e�U]e_
�KWpY��UbcdGq9�-dG�¥\��S]3qrY��-klkl]eqr\9dE[SY���]�_²�U_^]e�-\�]�_	\��f�Ud�Ù�]�_^W�bld
\��f]%Zf�-_�\�b�a)[Sk��-_>_^]e�Uk±d�[fY���]�_­_^]�ZS_^]eq�]�d�\^�-\�blWUdGÊ)i
Ú	_^]e�Sblae�M\�] VXW�qt\­W-��dSWU\­q^�M\^blqr��sEbcdf�
])ªKZS_^]eq^q�bcWpd ZS_^]e�Sblae�M\�]�]�ªEZf_�]Qq�q�bcWpd
�(')� �*�+�
�(,)� �*�+�.-/&
�(0)� �1�+�
�(2)� �1�+�3-/&
�4 5� ���76�Å8�*�+��Ê
��9 5� &:�;���76�Å8�*�+��Ê

 >�S]�a)W�qt\���WU_^Y�[Sk��-]§Y�[fqr\¥��]�])ªE\�]edf�K]Q�¢��]�sUWpdf�O\^�S]©_�]��

SEARCH-BASED SOFTWARE ENGINEERING1338

k��M\�blWUdG�-k�ZS_^]e�Sblae�M\�]Qq�\�W~\^�S]¢klWU�pblae�-k�ZS_^]e�Sblae�M\�]Qq�\�W¦Zf_�WU�
oEbl�S]��Âa�Wpqr\���Wp_��S_^�Udfa��0Zf_�]Q�Kblae�M\^]©]�ªKZS_�]Qq�q�blWUdfq¥qr[Ga��Þ�pq
õËöp÷¦ø¡õ�<�=)<?>A@	ôCBEDGFGù i�¯�q9��qrblY�ZSkc]ha��Uq�]Uu�a)Wpdfqrb��K]e_
\��f]�klWU�pblae�-kIdS]����M\�blWUd�WUZ�]�_��M\�Wp_ei3Ú	_^]eq�]�d�\�]Q���­bc\���\^�S]��-_��
�U[fY¥]ed�\IHKJML�N­�­bc\���a)W�qt\PO9bc\	Y�[Gqt\�_^])\�[f_�dRQ���ST6
N>�­b�\^��a�Wpqr\
�UOV-W&Qi� >�Sb�qna)W�qt\n��WU_^Y�[Sk��²��WU_�dS]����M\�blWUd3��WpkcklWM�7qÄ��_^WUY¼a)WUdS�
q�bl�K]e_^�-\�blWUd%WU�S\��S]²a)W�qt\�qnWU���(')���-df�*�(2)��i�Ú�W�q�q�bc�fkc]9a�Wpqr\
\^�U�Skl]eq²��WU_UXMJ��-dG�Y��Z	[��U_�]3�UbloU]ed§bld� ��U�Skc]�Ç��­�S]e_�]WO]\�blq
\��f]©a�Wpqr\�_�]eZS_^]eq�]�d�\^�-\�blWUdOW-�����GWEWUkl]e�Ud¢oM�-kl[S]Y��i¿ÀÁd¢\��f]
\^�U�Skl]��G]ekcWM�%u^O]\¥�-df��O`_7�-_^]��-kl�>��sEq>Z�Wpq�bc\�bloU]�q�W�\��f�-\7\��f]
��WU[f_h_^WM�7q7a)Wp_�_^]eq�Z�WUdf�©\^W�\��f]���WU[f_h_^WM�7q7WU��\��S]�a)k��Uq^qrb�a��Uk
\�_^[K\^�§\��-�Skl]���WU_>\t�²W¥�GWEWUkl]e�Ud§oM�Ukc[S]Qq�i

 I�-�Skl]�Ç�a.b�Wp�Ub�a��Uk�ÛhZ�]�_��M\^WU_�VXWpqr\7 ��U�Skl]
� � �(XMJ�� �c��Z	[c�
O`\ O`_ dYefZ	Å8O`\�$CO]_^Ê dg�AhIÅ8O]\�$iO]_�Ê
O`\ �UO]_ �UO]_ O`\
�UO]\ O`_ �UO`\ O]_
�UO]\ �UO]_ dYefZ	Åj�UO`\�$]�UO]_�Ê dg�AhIÅj�UO]\�$`�UO]_^Ê

 >�S]©bcd�\^[Sb�\^bcWpd���]��fbcdf�0\��f]©a�Wpqr\���Wp_�Y�[Skl����WU_�XMJ�b�q�\��f�-\
bc�3]eb�\^�S]�_�WU�h\^�S]�O]\�Wp_(O]_�a�Wpqr\^q��-_^]§\�WO��]�bcdfa�[S_^_�]Q�¢�²]
dS]e]e��bldfa�[S_XWpdSkls�\^�S]3kc]Q�Uqr\Xa)W�qt\²�S]�dfa�]�\^�S]�dYefZ©��[Sdfa)\�blWUd�i
¤¦�S]ed��GWU\���a�Wpqr\^q�Y�[fqr\���]�bldfa)[S_^_^]e�±u��X]��-_^]%WU�Sklbc�p]e�©\^W
�Uaea)]eZK\7�M\7kl]e�Uqr\>\��S]%Y��-ªEblY�[fY®a)W�qt\7k�i
 �_^�pa)]�sOÐ�Ñ­Ò-ÓcÔ�ÅÌ n_��Ua�]�sUu�VXk��-_^°�u�×��-dG�K]�_Qu��Udf��×�aeg�]e_�Y�b��
ÇeÈpÈUÉ�Ê�[fq�]�]eq^q�]�d�\�b��-klkcs�\��f]3q^�-Y�]ha�Wpqr\9��[SdGa�\�blWUdGq²�Uk�\^�SWU[f�U�
\��f]�bl_`l qX�U_�]h_�]Qqt\^_�b�a�\^]e��\^W�dSWpdSdS]e�p�M\^bcop]�oM�-kl[S]Qq�i�¯$dfW-\^�U�Skl]
�Kbc¬�]e_�]edfa)]pun�SWM�²]�op]�_Qu±blq%\��S]�[fq�]�W-��- _��M\^�S]�_�\^�f�-d+dg��h
��WU_#��Z	[fiXÛhdf]ha��Ud§�U_��p[S]7\^�f�M\>�­�S]�d§�GWU\��©a)Wpqr\^q²Y�[fqt\>��]
bldfa)[S_^_^]e�±u±�²]¥�U_�]�WU�Sklbl�U]e��\�W��Uaea)]eZK\h\^�S]�YA�GWU\���i¥ >�S]�_^]
�-_^]X�Uklq�W�qrbc\�[f�-\�blWUdfqIbld��­�fbla���-Þblq��h�G]�\r\^]�_�WUZ�]�_��M\^WU_�\��f�Ud
dmeTZ§��WU_1XMJ��Udf�¥\��f]��-��WMoU]>\^_�[K\^��\^�U�Skc]�blq�Zf_�]Qqr]edp\^]e�¥WUdfkcs
�Uq��Â�f]�[S_^blqr\�b�a-ð>\^�S]�ZS_^]ea�blq�]�a)W�qt\���WU_^Y�[fkl�U]©[Gqr]Q�0b�q�dSWU\
_^]�kl]�oM�-d�\>\�W¥\��f]�qr[S�S¾t]ea�\7WU��\^�Sb�q­Zf�-Z�]�_Qi

n ê�o | äqp | ·~´ |)r o�ã å ·~¸ r o�ã�â

Õ3bloU]�d �-d])¬Ä]ea�\^bcop] a)Wpqr\=��[Sdfa�\^bcWpd�u/ZS_^WU�fkc]eY�q=a��Ud
dSWpdS])\^�S]�kl]eq^q��-_^blq�]	bld�\^_�sEbldS�7\^Wh[fq�]²b�\QiI¯�Zf�-_�\�b�a)[fkl�U_�ZS_^WU�S�
kl]�YØb�q9\^�f�M\­q�WUY�])\^bcY�]eq9\��f]hZ�WUbld�\²bld�\^�S]hZf_�Wp�U_��-Y �­�S]�_^]
��Zf_�]Q�Kblae�M\^]6])ªKZS_^]eq^q�bcWpdOblq�]�oM�-kl[f�-\�]e��u�\��Sb�q¥blq�\��f]§Z�WUbld�\
�M\��­�Sbla��¢��a�Wpqr\�Y���s���]§a��Ukla�[Sk��M\�]Q�Â�KsEdf�-Y�b�a��-klklsUuIY���s
dSWU\7�G]%\^�S]%Z�WUbldp\��-\7�­�Sb�a��§\^�S]�ZS_^]e�Sblae�M\�]�oM�-kl[S]%b�q­[fq�]e�±u
�­�Sb�a���blq7�­�S]�_^]�\��S]�a)Wpqr\7oM�-kl[S]�b�q­_^]e½�[Sbl_�]Q�±iXÀÁd©\^�S]�q�W-��\r�
�>�-_^]�\�]eqr\�bldS��klb�\^]�_��M\^[S_�]puS\^�Sblq�blq�W-��\^]�d�_^])��]�_^_^]e�§\�W��pq­\��f]
sutwv"x�y1x�zV{ixPxTz
y#{"|�vC}7y�~�v��T�1�M��{"�I{"��y1�jv��M������x�yj�]xP��� x�z��wy��3v��8�

� {"��� �:��{u���C�U�Vv��:yK�M{"�!�
��y7��xTzMy!�jv��8x1v"~	x�zMy!�My � {ix���v��Rv"~w�*�C�������
�	���¡ %¢¤£K¥A¦�£j§C¨V©«ª ��zM���fzU���¬yj­`�M{"��x�v � �7® ¢���£K¥w©*ªu¦u��£j§�©*ªK¨ �wz
���fz���¯x�zMy��jv��8xPv"~ �i°��3� �±� �i°w�i�P²	zM���I�jv���xPyj­]�V{"��� x´³W���¯{��8xT��v�� � yj��jv��MµM� x���v��#xTzM{"�!���%�Myj�jyj�T�T{"��³7�7�¬y	�Tyj­`�
���Ty	v��M� ³:xTzV{ix%xT���
x�z�}�{"���Myj�%|�y
�M��yu��yj��}7yjµ��

��W�Wpkc]Q�-d§¨G�-��ZS_^WU�fkc]eY©i

¶�·8¸ ¹�ºW»W¼*½]¾ B ¼�¾m¹�»
 >�S]���WUklkcWM�­bldS�6a�WE�S]%��_^�U�UY�]�d�\�blklkc[fqr\�_��M\^]eqh�6q�ZG]Qa)b��-k�ae�Uq�]
W-�I\��fblq>ZS_^WU�fkc]eY©i
ó?¿�õ�ÀÂÁÁ÷«õËöp÷¦ø1Ã úEú¦ý?���pÿ õ5Ä~ø ý���ÅEý-þ�Å��EÿEû��
ñEñEñòMó,ô^ó?¿�õ�ÀÄù úEú¦ý?���pÿ õ5Ä~ø �Eû��Mþ¬�M�Eû��
ñEñEñ úEúÆ�?�~ûEüEûKýUþKÿ������Æ��û��Mþ	�M��û��

úEú~ÿ��Þû��EÿEû��$ÿ�
^�����������KýA

ÀÁd�\^�S]9Zf_�]Q�Kblae�M\^]9])ªKZS_^]eq^q�bcWpd%W-�S\^�S]Xa�WUdf�Kbc\�blWUdnuM�X]X_�]Q½p[fbc_^]
ó?¿�õ�ÀË÷G@�Ç�È?É �S[S\­\��Sb�q>blq²dSWU\7��[fq�])��[fk±])ªKZS_^]eq^qrblWUd6\�W¥bcdK�
qr\�_^[SY�]�d�\­�G]Qa��-[Gqr]%�¥�GWEWpkc]Q�-d6oM�U_�b��-�Skl]%a��Ud6ZS_^WMoEbl�K]3WUdfkcs
WUdf]9W-�f\t�XWho��Ukc[f]eq�kc]Q�U�KbldS�7\^W3�Ud�bldS])¬Ä]ea)\�bloU]>a)Wpqr\I��[Sdfa�\^bcWpd
�­bc\�����¨G�M\�q�[S_��Æ�Ua)]pi
`Ebldfa)]h\��f]hZS_^WU�fkc]eY �-_^blq�]eq9�G]Qa��-[Gqr]�\��S]�bldK��WU_^Y��M\�blWUd�\��f�-\
b�q6[fq�]e�Þ\^W�a�WUY�ZS[K\^]�\��f]���W�Wpkc]Q�-d$oM�Ukc[S]�W-�%\��f]�¨G�U�¢blq
�Kb�q�ae�-_��K]e��WUdGa)]>\��f]­¨G�-��b�q	q�])\euU\��S]hqrWpkc[K\^bcWpd��K]eq^a)_^bc��]e�¥bld
\��fblq­ZG�-Z�]�_­b�q>\�W�_^])\^�Ubcd©\^�Sblq7bcdK��Wp_�Y��-\�blWUd�qrW¥\��G�M\7bc\7Y���s
��]�[fq�]e��k��M\�]e_7bld�\��S]�])ªK]ea�[K\�blWUd��­�S]ed�uf��Wp_7])ªS�UY¥Zfkc]puS\��f]
¨G�U��blq­]eoM�-kl[f�M\^]e���Uq>Zf�U_r\7WU�	��a)WUdG�Kb�\^bcWpdf�-kvi	ÀÁd�\^�Sblq7�²��spu
�­�S]ed§\^�S]�¨G�U�¥oM�U_�b��-�Skl]3blq­]eoM�-kl[f�M\^]e�§bcd©\��f]%ZS_�]Q�Kb�a��M\^]�W-�
\��f]�a)Wpdf�Kbc\�blWUdf�UkÌuGb�\3Y���s§�G]¥�Uq^qrWKa�bl�-\�]e�§�­bc\���\^�S]�a�Wpqr\7W-�
\��f]�])ªKZS_^]eq^qrblWUd õËöp÷$ø a)WpY�ZS[K\�]Q���M\­\��f]%\�blY�]%\��f�-\7\��f]
¨G�U�¥�>�Uq>q�])\7]Q�-_^kcbl]�_QuEbcd©\��f]%])ªK]ea�[K\�blWUd�i
¯ Zf_�WU\�W-\tsEZ�]�\�]Qqt\��S�M\����U]edS]�_��M\^bcWpdÂ\�WEWUkX�f�Uq���]�]�d�a)WUdS�
qr\�_^[fa�\^]e�Obld¢�­�Sb�a��O\��f]©�U�GWMop]�q�a��S]eY�]6�f�pq���]�]ed¢bcY�ZSkl])�
Y�]�d�\�]Q�±ih¯�kckIZS_^]e�Kb�a��-\�]�]�ªKZS_�]Qq�q�blWUdfq­bld�\^�S]�q�[S�K¾t]Qa�\hZf_�WU�
�U_��-Y(�-_^]²bldfqr\�_^[SY�]�d�\�]Q��\�W�a)WpY�ZS[K\�]>\^�S]�a�Wpqr\^q��K]Qq�a�_�bl�G]Q�
bld$\��f]¿ZS_^]�oEblWU[fq©q�]ea�\^bcWpd�i ÀÁdË�p�S�Kbc\�blWUd�uh�­�S]�dS]eoU]e_©�Ud�s
oM�-_^bl�U�Skl]�blq��pq�q�bl�UdS]Q�0\^�S]�oM�-kl[S]�WU�%�ÂZf_�]Q�Kblae�M\^]�])ªKZS_^]eqr�
q�bcWpd�u�\��S]�a)W�qt\²W-��\^�f�M\>])ªKZS_^]eq^qrblWUd�b�q>�Uq^qrWKa�bl�-\�]e���­bc\��§\��f]
oM�-_^bl�U�Skl]UiIÀÁd�\��f]h]�ªK�UY�ZSkc]3�-��WMoU]puUbc� ó?¿põAÀ blq²q�])\²\��S]ed�\��f]
a)W�qt\c�m�Ê�§b�q��Uq^qrWKa�bl�-\�]e���­bc\�� ó?¿põAÀ i¦¤¦�S]ed~\��S]�oM�-_^bc�
�-�fkc] ó�¿�õAÀ blq²[fq�]e�6bcd6\��S]3b����Áqr\^�M\^]�Y�]�d�\Qup\^�S]�q���op]e��a)W�qt\²blq
^])\�^bl]�oU]Q�6�Udf���Uq^qrWKa)b��M\^]e�6�­b�\^�§\^�S]%bc���îqr\^�-\�]�Y�]edp\Qi
 >�S]e_�]�Y���s¢��]��ÂdE[SY���]�_�WU��qr\^�-\�]eY¥]ed�\^q��­�S]e_�]���¨G�U�
oM�-_^bl�U�Skl]�Y���s§��]�q�])\��-df��[Gqr]Q���K[S_^bcdf��\��S]¥])ªK]Qa)[K\^bcWpd�W-�
�¥ZS_^WU�U_��-Y �pq²��WU_­]�ªK�UY�ZSkc]
òMó,ô ñEñEñ ùó?¿�õAÀËÁt÷�õ«öp÷~ø1Ã úEú¦ý?���pÿ õ5Ä~ø �MÌ$ûEüEûKýÉ�¿?Í�É
ó?¿�õAÀËÁt÷�õEDp÷�ÎwÃ úEú¦ý?���pÿ Î)Ä�õ �MÌ$ûEüEûKý

ñEñEñó?¿�õ�ÀÂÁÁ÷G<�>�@	ô^ó?¿�õ�ÀÄù¢õ�<?=®ôCB�DGFGù�Ã úEú¦ý?���pÿ5��Ì
úEú ó?¿�õAÀ þ��pû��
úEúÆ�����5�A��Ï�û��

¤¦�S]edS]�op]�_���oM�-_^b��-�Skl]%blqhqr]�\­\�W�\^�S]�oM�-kl[S]�WU����ZS_�]Q�Kb�a��M\^]
])ªKZS_^]eq^q�bcWpd�uQ\��S]>oM�-_^bl�U�Skl]9b�q��-k�qrW3�Uq^qrWKa)b��M\^]e�%�­bc\���\��f]>a�Wpqr\

SEARCH-BASED SOFTWARE ENGINEERING 1339

W-��\��f�-\¥]�ªEZf_�]Qq�q�bcWpd¢�-df��qrW�\��S]�a)W�qt\�W-���UdEsO])ªKZS_^]eq^qrblWUd
bld�opWUkloEbcdS��¨G�U�¥oM�U_�b��-�Skl]eq²Y���s���]�a��Ukla�[Skl�-\�]Q�±i
Ð WU\�]§\��f�-\�\^�S]��-��WMoU]§q^a��S]eY¥]©�-klkcWM�7q���WU_�\��f]©a�Wpqr\¥WU���
ZS_^]e�Kb�a��-\�]�])ªKZS_^]eq^q�bcWpd6\^W��G]��pq�q�WKa)b��M\�]Q�6�­bc\��©\^�S]��Uq^q�bc�pdK�
Y�]�d�\9WU�±��o��Ukc[f]>\�W��Ud�s�oM�-_^bl�U�Skc]puU]eoU]�d���a�WUY�ZS[K\^]e��oM�-_^bc�
�-�fkc]Oq�[fa��Ë�pq©�Ud«�U_�_���sÞ]�kl]�Y�]�d�\�WU_�Z�WUbldp\^]�_�_^])��]e_�]edfa)]pi
Ú�WUbld�\�]e_�o��U_�b��-�fkc]Qq��f��oU]�dfW-\6sp])\6��]�]ed¦bcY�ZSkl]�Y�]�d�\^]e�¦bld
\��f]%ZS_�WU\�WU\ts�Z�]��S[K\7\^�S]�s§�­bcklk�dSWU\7ZS_^]eq�]�d�\7��Zf_�Wp�Skc]eY ��Wp_
\��fblq7q^a��S]eY¥]pi

¶�·¡Ñ Òm»�Ó�»�Ôc¾ B ¼�¾m¹�»
 >�S]��-��WMoU]�\�]ea��fdSbl½�[S]3�Æ�Ubck�q�uE�SWM�²]�op]�_Qup�­�f]�d�\^�S]��GWEWpkc]Q�-d
])ªKZS_^]eq^q�bcWpdÂ\��f�-\¥bld0]�¬�]Qa�\��K])\^]�_^Y¥bldS]Qq�\^�S]6¨��-��oM�Ukc[S]§blq
dSWU\­�Sbc_^]ea)\�kls��Uq^qrbl�UdS]Q��\^W�\^�S]3¨G�-�¥�S[K\­b�q>[fq�]e�6\�W�a)WUd�\^_�Wpk
\��f]¥�pq�q�bc�pdSY�]�d�\�WU�X�Õ�^qr[SY�Y��-_^s���oM�-kl[S]Uu±�Uqhb�qhq��SWM�­d�bld
\��f]���WUklkcWM�­bldS�¥��_^�U�UY�]�d�\Qi
ó?¿�õ�ÀÂÁÁ÷ËóKõ�¿?Í�ÉPÃ
ñEñEñòMó,ô�õËöp÷~ø±ù)Ö ú�ú$ý?�A�pÿG×�����Ø��)
�û��Eû
ñEñEñó?¿�õAÀËÁt÷)@�ÇAÈ�ÉPÃ

Ù
ñEñEñòMó,ô^ó?¿�õ�ÀÄù úEú$ý����pÿGÚ��������
�?Å�Û�þ��pû�Ìpþ�ÅÆ
�û��Eû
ñEñEñ úEú)��û?�%�M�Eû��Æ�������KýA

¤¦�S]edÂ\��S]�¨G�U��blq��Æ�Uklq�]��-dG�¿bc\�b�q��K]eq�bl_�]Q��\^W�qr]�\�b�\%\^_�[f]
\��f]�_^]7blq9dSW�a�Wpqr\	o��Ukc[f]��Uq^qrWKa�bl�-\�]e�¥�­bc\���\^�S]7¨G�U��\��f�-\Xa��Ud
��]�[fq�]%\�W��p[Sb��K]%\��f]�qr]Q�-_�a��©\�WM�>�-_��Sq­q��-\�b�qt��sEbldS� õ¼öU÷¦ø i
 >�S]%a)W�qt\­WU�n\��fblq>]�ªEZf_�]Qq�q�bcWpd6b�q­a)WpY¥Zf[K\�]Q�±uK�SWM�²]�oU]e_eu��S[K\
bc\�b�q��Uq^qrWKa�bl�-\�]e�¢WUdSklsO�­b�\^�0\^�S]©�f_�qt\�a)Wpdf�Kbc\�blWUdf�Uk>qr\^�-\�]��
Y�]�d�\ei
Àî\�b�q�dSW-\��M\��Ukck7a�kc]Q�-_��SWM� \^�S]�a)WpY�ZS[K\�]Q��a�Wpqr\�a��-dÞ��]
ZS_^WUZf�U�p�-\�]e��[Gqr]���[Skckls%bld�\��fblq�q�b�\^[f�M\^bcWpd�iI �W�]Qqt\��-�Sklb�qr��\��f�-\
\��fblqXa)Wpqr\�blq]�oU]ed�_�]ekc]eo��Ud�\�\�W�\��f]­ZS_�Wp�Skl]�Y�bc\9b�q�dS]Qa)]eq^q^�-_^s
\�W�_�]Qa)WU�pdSb�qr]²\��G�M\	\^�S]hq�]ea�WUdf���Uq^q�bc�pdSY�]�d�\�\�W ó?¿�õAÀ b�q	_^]�kc�
]�oM�Udp\�\^W¿\^�S]�q�]�kl]ea�\^bcWpd�WU�h\^�S]�_�]Q½�[Sbc_^]e���S_��-dfa��niÞg3�M\��
�K]eZG]edf�K]�dGa)]��Udf�-klsKqrb�q�ÅÆ¯��SWfu�`E]�\��Sbvu7�-dG�¦m7klkcY��-d¡ÇQÈUÉpwpÊ
a)Wp[Sk����G]�[fq�]e��\^W§�KW�\^�Sb�q�i3¤¿]�Y�bc�p�p\h\��S]ed�b��K]�d�\�bc��s�\��f]
a)Wpdf�Kbc\�blWUdf�UkUqr\^�M\^]�Y�]�d�\�a�kcW�qr]Qqt\Ä\^W­\��S]9[SdS])ªK]Qa)[K\^]e�%�Uq^q�bc�pdK�
Y�]�d�\�\�W©\��f]�¨��-�fu±bvi]Ui�\^�f�M\�a�WUdf�Kbc\�blWUdG�-k��­�Sb�a���a�WUd�\�_^WUk�q
]�d�\^_�s�\^W�\^�S]��f�Uq�bla��SklWEa�°�\^�f�M\7a�WUd�\^�Ubcdfq9\��f]��pq�q�bl�UdSY�]�d�\Qi
Àî�±bcd�\��S]�a�WK�K] ó?¿�õ�À blqXqr]�\	\�_^[S]>\��f]�d�\^�S]�a)W�qt\XW-��\��S]3a)WUdS�
�Kbc\�blWUdf�UkUZS_^]e�Sblae�M\�]X])ªKZS_^]eq^qrblWUd%q��SWU[fkl����]X�pq�q�WKa)b��M\�]Q���­b�\^�
\��f]�[fq�]�WU��\^�S]h¨G�-��bld�\^�S]hq�]ea�WUdf��a�WUdf�Kbc\�blWUdG�-kGqr\^�-\�]eY¥]ed�\
�-dG�¿a�WUdEoU]e_^q�]�kls§bc�>bcd¿\��S]�a�WE�S] ó?¿�õAÀ blq�q�])\��Æ�-k�qr]�ÅÌ�-df�¿�
�Æ�-k�q�]%o��Ukc[f]3b�q­_^]e½�[Sbl_�]Q�fÊX\��f]�d©\��S]�¨��-��qr�fWU[Sk��©�G]��pq�q�WKa)bc�
�M\^]e���­bc\��Â\��f]�dS]����M\�blWUd�W-�²\��f]6a)W�qt\%W-�²\��f]6a)Wpdf�Kbc\�blWUdf�Uk
ZS_^]e�Kb�a��-\�]�])ªKZS_^]eq^q�bcWpd�i
ÀÁd�\��f]h�-��WMoU]²��_��-�pY¥]ed�\euU�²]7�f��op]>\��S]��G]edS])�S\²W-�±°EdSWM�­bldS�
\��G�M\�bc�E\��S]9¨G�-�­b�qIqr]�\eu�b�\�blq�qr]�\n\�_^[S]puQbld%�U]edS]�_��-kvuQ[SdSkl]eq^q±\��f]

qr\^�M\^]�Y�]�d�\nb�q�])ªK]ea�[K\�]Q�±uQ\��S]Xo��Ukc[f]	W-�K\^�S]�¨G�U�7blqn[SdS°EdSWM�­d�i
¤¦bc\��Â�-d�[fdS°EdSWM�­d�¨G�U�6oM�-kl[S]�\��S]e_�]¥blqh\^�S]¥�f�-dS�p]�_h\��f�-\
\��f]�a)W�qt\7WU��\^�S]�a)Wpdf�Kbc\�blWUdf�Uk±ZS_^]e�Kb�a��-\�]%])ªKZS_^]eq^q�bcWpd§b�q­dSWU\
[fq�])��[Sk�q�bcdGa)]¥b�\%Y���s��U[Sb��K]�\��S]�q�]e�-_�a���\�WM�>�-_��Sq7\��S]�])ªK]��
a)[S\�blWUd�WU�9�§qr\^�-\�]eY¥]ed�\�\��G�M\%�KWE]eq3dSW-\%a��f�UdS�U]%\^�S]¥o��Ukc[f]
W-�n\��S]3¨G�U��\^W�\^�S]�_�]Q½p[fbc_^]e��oM�Ukc[S]pi�¯ËY�Wp_�]��Kbc£�a�[Skc\­ae�Uq�]
b�q­qr�SWM�­d©bld§\^�S]���_��-�UY�]edp\­��]�klWM�%i

ñEñEñòMó,ô�õËöp÷~ø±ù)Ö úEú~ý?���pÿG×����VØ��
ñEñEñòMó,ô�õÊD�ÎKùÆÖ úEú~ý?���pÿG×����VØ��Ü�MÌ õËöp÷¦ø
ñEñEñó?¿�õAÀÝÁt÷G@�Ç�È?ÉPÃ

 >�S]>oM�-_^bl�U�Skl] ó?¿�õAÀ blq�q�])\�\�_^[S]>WUdSkls��­�S]ed���W-\^��ZS_�]Q�Kb�a��M\^]
])ªKZS_^]eq^q�bcWpdfq õ«öU÷$ø �-df� õ5DEÎ �U_�]�\�_^[S]Ui� >�Sb�q²qr[S�p�U]Qqt\�q
\��G�M\3\��S]�a)W�qt\h\�W©�G]��Uq^qrWKa�bl�-\�]e���­bc\���\��S]¥oM�-kl[S]¥W-� ó?¿�õAÀ
�M\9\��S]��pq�q�bl�UdSY�]�d�\	b�q�\��f]�a)W�qt\9WU� õ¼öp÷~ø �AZ	[õ5D�Î �S[K\
bc� õ«öU÷$ø b�q>�Æ�-k�qr]3\^�S]�d©\��f]�_^]%blq>dSW�a�Wpqr\²��Wp_ õ5D�Î i
ÀÁdÂ�U]edS]�_��-kvuÄ¨G�-��oM�-kl[S]Qq�a��Ud¿��]�°EdSWM�­d¿WpdSkls��­�S]�d�\^�S]�s
�-_^]	q�])\��Udf��a)Wpqr\nbldK��WU_^Y��M\^bcWpd�ae�-d%��]9a)Wpkckl]ea)\�]Q�hWpdSklsh�­�S]ed
ZS_^]e�Kb�a��-\�]�])ªKZS_^]eq^qrblWUdfq3�-_^]�]�ªK]ea)[S\�]e��i� >�S]�dS]�]Q��\�W©])ªK]��
a)[S\�]%a)WK�K]3bcd©WU_��K]e_9\^W¥�Udf�-klsKqr]hb�\­b�q²����[Sdf�f�-Y�]�d�\^�Uk±kcblY�b��
\^�-\�blWUd©W-���KsEdf�-Y�b�a3ZS_�Wp�U_��-Y �Udf�-klsKqrb�q²bcd��U]edS]�_��-kvi
ÎS]e_��p[fq�WUd�Ð�ÑhÒMÓlÔXÅÌÎS]e_��p[fqrWpd��Udf��{�WU_^]�k­ÇeÈpÈUw�Ê��Uklq�W©\^�Ua�°Ekl]
\��f]�ZS_^WU�Skl]�Y W-�±�p]�dS]e_^�-\�bldS��\�]Qqt\>�S�M\��%bcd§�%ZS_^WU�U_��-Y(�­b�\^�
¨G�U��oM�-_^bl�U�Skc]Qq�i� >�S]es��SW�dSW-\¥�Uq^qrWKa)b��M\^]�a)W�qt\�q��­bc\��O¨G�U�
oM�-kl[S]eqei� >�S]%�-ZSZf_�W��Ua���\��f]�s�\��-°U]h�­�S]�d��¥qr]Q�-_�a����Æ�-blklqX\^W
�fdf����\�]Qqt\hae�Uq�]%\��G�M\h�­blklkn])ªK]Qa)[K\^]���_^]e½�[Sbl_�]Q���S_^�Udfa���blq
\�W�bl�K]ed�\�bc��s�\^�S]�qr\^�-\�]�Y�]edp\�q	�­�Sb�a���a)Wp[Sk����M¬Ä]ea�\X\��S]�o��Ukc[f]
W-�f\��S]²¨G�U�fi�g3�M\����K]�Z�]�df�S]�dfa�]>�Udf�-klsKqrb�q²ÅÆ¯7�fWfup`E]�\��SbvuU�Udf�
m7klklY��Ud�ÇeÈpÉUw�Êfb�q�[fqr]Q�3\�W��SW7\��fblqei�Ûhdfa�]�\��f]eq�]9qt\��M\^]�Y�]�d�\^q
�-_^]�b��K]�d�\^b��f]Q�±u�\��S]ebc_h])ªK]ea�[K\�blWUd��G]Qa)WUY�]¥qr[S�f�UWp�Uklq7W-��\��f]
\�]Qqt\3�U]edS]�_��M\^WU_Qi­ÀÁd�\��Sb�qh�²��spuS\��f]¥q�]e�U_^a��©��WU_3qt\��M\^]�Y�]�d�\^q
\�W�])ªK]Qa)[K\^]§b�q��UW��-k>�Kbc_^]ea)\�]Q�0�-dG�0�K]eZK\����f_�qt\�bcd�\��G�M\��
q�[S�S�UW��-kÄb�q­ZS[S_�qr[f]e�§�G]���WU_^]���q�bl�SkcbldS���UW��-kvi
VXkl]e�-_^klsUu�ZS_^WU�p_^�UY2]�ªE]Qa)[K\^bcWpd¢Y�[Gqt\��G]��Kbl_�]Qa�\^]e�O\^W�a�[S_��
_^]�d�\�kls¿[fdS])ªK]ea�[K\�]Q�OZf�U_r\�q�W-�>\^�S]6ZS_^WU�p_^�UY�i§Àî\¥Y���s�dSWU\
��]�dS]Qa)]Qq�q^�-_^sUuG�SWM�X]eoU]e_euK\^W6[fq�]�����WKa)[fq^qr]Q��\�]Qa��SdSb�½�[S]�\^W
b��K]�d�\�bc��s¦\^�S]OqrZ�]ea�b��GaÂqr\^�-\�]�Y�]edp\�q©\��f�-\�Y���s$�-¬�]Qa�\�\��f]
ZS_^]e�Kb�a��-\�]7]�ªKZS_�]Qq�q�blWUd�[Sdf�K]e_Xa�WUdfq�bl�S]�_��M\�blWUdninÀÁd��-dEs�a��pqr]pu
bc\�b�q�dSWU\�Z�Wpq^q�bc�Skl]¥\�W©\�]ekck�bc�9\^�S]�])ªK]Qa)[K\^bcWpd�W-�X\��S]�qr\^�-\�]��
Y�]�d�\��­bcklkSq�WUkloU]X\��S]>ZS_^WU�Skl]�Y¡[fdSkc]Qq�qI\^�S]­qt\��M\^]�Y�]�d�\�blq�]�ªE�
]ea�[K\�]Q�±i�¯$Y�[fa���qrblY�ZSkl]�_>�-ZSZS_^Wp�pa���uM��Wp_9])ªS�UY¥Zfkc]pup�²WU[Sk��
��]�\^W©�-\r\^]�Y�ZK\�\�W�])ªK]Qa)[K\^]¥�Ukck��Ua�sKa)klbla�Zf�M\^�fq3\��G�M\�_�]Q�Ua��
\��f]%ZS_�Wp�Skl]�Y dSWK�K]pi
¯ �U]edS])\^bla��Ukc�pWU_^b�\^�SYÃb�q%�X]ekck	q�[Sbc\�]Q��\�W�])ªKZSklWU_^bcdf�©Y��Ud�s
�-_^]e�pq�WU��\��S]¦q�]e�U_^a���q�Zf�pa)]0bld�ZG�-_��-klkc]ek©ÅÆ�S_�]Q�U�E\^�á�f_�qr\
q�]e�-_�a��~WUd$�¢q�]�_^b��-k7Y��Ua��fbcdS]�Ê�iá >�S]¿bcdfb�\^bl�Uk�Z�WUZS[Sk��M\^bcWpd
W-��_��-df�KWpYØ\�]Qqt\�ae�Uq�]eq­a�WU[Sk��©�G]�q�]�Zf�U_^�-\�]Q�6bld�\�W�q�]�Zf�U_^�-\�]
q�[S�SZ�WUZS[Sk��M\^bcWpdfq­Wp_7blq�k��-df�Sqei²ÀÁd�]e�Ua���b�qrk��-dG�6\^�S]�_^]��²WU[Sk��

SEARCH-BASED SOFTWARE ENGINEERING1340

��]¥�§qr]Q�-_�a�����WU_��6q�ZG]Qa)bc�Ga��pa)sKa)klb�a�Zf�-\���i�Õ3bloU]�d�\��S]¥[fq�]
W-�����U]�df])\�b�a��Ukc�pWU_^b�\^�SY=�pq���q�]e�U_^a���\^W�Wpk	��Wp_�\^�Sblq��²WU_^°
bc\­q�]�]eY�q²q�]�dGqrbl�Skl]�\^W¥bldEoU]Qqt\^bc���M\�]hb���\��S]%�U�Sbcklbc\ts�W-�n\^�S]��U]��
dS]�\�b�a��-kl�UWp_�bc\��fY \�W§qr]Q�-_�a��©�Kbc¬Ä]�_^]�d�\�Zf�U_r\�q7W-��\^�S]�q�]e�U_^a��
q�Zf�Ua�]­�S_�]Q�U�E\^�¥�f_^qr\Xae�-d��G]�])ªKZSklWUbc\�]e��\^W�qrWpkcop]²\��Sb�q	ZS_^WU�S�
kl]�Y�i9Àî\�Y���s�\^[S_^d©Wp[K\7\^�f�M\���q�]e�U_^a��§��WU_>\^]eqr\ha��pqr]Qq²\��f�-\
�­blkck>])ªK]Qa)[K\^]©�Ukck­�Ua�sKa)klbla6Zf�M\^�fq�\�W¿\��S]©_�]Q½�[Sbc_^]e�¢�S_^�Udfa��
b�q�_�]Q�Uq�WUdf�U�SkcsÂ]�£�a�bc]ed�\�bcdÞZS_��Ua�\^bla�]�bcdÞ�­�Sb�a��Þae�Uq�]©bc\�blq
Z�Wpq^qrbl�Skl]>\�W���opWUb���\^�S]7blY¥Zfkc]eY¥]ed�\^�M\^bcWpd�a)WpY¥Zfkc]�ªEbc\�bl]eq	W-�±�
Y�WU_^]��UWp�Uk±�Kbc_^]ea)\�]Q�©q�]e�U_^a��ni

Þ ´pâ å o�ã�âÖã�µË¶ | ¶¿´K¸0µ

¯OZS_^W-\^W-\tsEZ�]�\^]eqr\��S�-\^�>�U]edS]�_��M\^bcWpd3q�sKqt\^]�Y«�f�Uq��G]e]�d%�­_^b�\��
\�]ed�Å�[GqrbldS�¥V²×�m¼VXWUY�Y�WUd(bnblq�ZGÊI\^W��-ZfZSkcs�\��f]�b��K]e�pq	�K])�
q^a)_^bc��]e��bcd�\��fblq�Zf�UZG]e_I\�W�])ªS�-Y�ZSkl]²ZS_�Wp�U_��-Y�qein >�S]²ZS_�WU\�WU�
\tsEZG]h�f�Uq9\t�²W�Y��-bld�Y�WE�S[Skc]Qq�i9ÛhdS]hY�WE�S[Skc]hblq²a)Wpdfa)]e_�df]e�
�­bc\���\^�S]�bldfqr\�_^[SY�]�d�\^�-\�blWUd�WU��\��S]�q�[S�K¾t]ea)\hZS_^WU�p_^�UY,�Udf�
\��f]3WU\��S]e_euKq�Y��-klkc]e_eu�Y�WE�S[Skc]�b�q²_�]QqrZ�WUdfq�bl�Skc]���WU_­q�]e�-_�a��SbldS�
��WU_>\^]eqr\��S�M\��¥[fqrbldS���¥�U]edS])\^bla%�Ukc�pWU_^b�\^�SY�i
 >�S]7q�[S�K¾t]Qa�\9ZS_^WU�p_^�UY¡blq	Zf�-_�qr]Q�¥bcd�\�W��Ud��-�fqr\�_��Ua)\�q�sEd�\^�Mª
\�_^]�]
ß-i~ÎS_^WUYÖ\^�Sb�q¥\�_^]�]�blq��p]�dS]e_^�-\�]Q�O\��f]©bldfqr\�_^[SY�]�d�\�]Q�
q�[S�K¾t]ea)\­ZS_�Wp�U_��-Y�i� >�S]%qr[S�S¾t]ea�\7�Udf�6Y�[K\^�Ud�\>Zf_�Wp�U_��-Y blq
bldfqt\^_�[fY¥]ed�\�]e�O�pq���WUklklWM�7q�i � �pa��Âa�WUdf�Sb�\^bcWpdf�-k9qr\^�-\�]eY¥]ed�\
�f�pq©�¢�SªK]e�Ëkc]edS�-\^�ËÎIÀtÎIÛÖ½p[f]�[S]
à�bldË�­�fbla��ËZS_�]Q�Kb�a��M\^]
])ªKZS_^]eq^q�bcWpd�a�Wpqr\^q%�-_^]�q���op]e���Uq3\^�S]�sÂ�-_^]�a��-k�a)[fkl�-\�]e��i�ÀÁd
�U�f�Kb�\^bcWpd�u7\^�S]Âa)WUdG�Kb�\^bcWpdf�-k3_^])\^�UbcdGq6\^�S]�kcWM�²]eqr\6Z�Wpq�b�\^bcop]
a)W�qt\�Zf_�WK�K[fa�]e�¡ÅÆ_�]Qa��-klk­\^�f�M\�\^�S]�a�Wpqr\�blq6ZGW�qrbc\�bloU]��­�S]ed
\��f]XZS_^]e�Sblae�M\�]9blqn�Æ�-k�qr]�Ên�Udf��\^�S]9�Sbl�U�f]eqr\�dSWpdK�vZ�Wpq�bc\�bloU]Xa�Wpqr\
Å�_^]eae�-klkK\��G�M\9\^�S]�a�Wpqr\9blq9Ù�]e_�W%Wp_	dS]����M\^bcop]­�­�S]�d�\^�S]�ZS_^]e�K�
b�a��M\^]�b�qX\�_^[S]QÊ)iIÀÁd�\��Sb�q²�²��s¥b�\>b�qXZ�Wpq^q�bc�Skl]7\^W��K]�\�]e_�Y�bldS]hbc�
��W-\��¥�S_��-dfa��f]eqI�f��oU]²��]�]�d�\^�U°U]ed�i � �Ua���o��U_�b��-�fkc]>�-k�qrW3�f�pq
��q�blY¥blk��-_��SªK]e��kl]�df�-\��¥ÎIÀtÎIÛÞ½�[S]�[f]9bld��­�Sb�a���b�q�q^��oU]Q��\��f]
a)W�qt\­WU���Ud�s�Zf_�]Q�Kblae�M\^]3]�ªKZS_�]Qq�q�blWUd©o��Ukc[f]��pq�q�bl�UdS]Q�±i
ÀÁd��p�S�Kbc\�blWUd%\^W7\��f]Xq�[S�K¾t]ea)\�ZS_^WU�p_^�UY�u�\^�S]9WpdSkcs%�p�S�Kbc\�blWUdf�Uk
bldK��WU_^Y��M\�blWUd¿\��G�M\%\��f]�[fqr]e_%Y���s�qr[fZSZSkls�b�q%�©a�WUdfqr\�_��-bld�\
�-dG�0ZS_^WU�G�-�Sblkcbc\ts0�Kb�qr\�_^bc�S[S\�blWUdÞWUdÞ\��S]�q�[S�K¾t]Qa�\�ZS_^WU�p_^�UY
bldSZS[K\h�SWUY��-bld�i	 >�Sb�q­b�q7�KWUdf]%��s§�K])�fdfbcdS��q�[S�fq�])\�q­W-�I\��f]
bldSZS[K\­�KWUY��Ubcd6�Udf���pq�q�bc�pdSbldS����Zf_�Wp�f�-�Sblklb�\ts�\�W�]e�Ua���q�[S�K�
q�])\ei7 >�f]�bldSZS[K\��KWUY��-bld��K]��fdSbc\�blWUd��Udf��ZS_^WU�f�U�Sbcklbc\ts§�Kb�qt�
\�_^bl�S[K\�blWUd�blqh[fq�]e��\^W6a)_^]e�-\�]%\^�S]�bldSbc\�b��-kI_^�Udf�KWpY,Z�WUZS[fkl�-�
á�â¬�
�T�Tyj�7xT� ³Px�zMy����M|
ã8yj�Kx?�M�Tv � �T{"�ä�1�M��x�|�y^zV{"�Mµ1x��f{"�
�T��{ix�yuµ:���7xTv{å�jv��!�!v��W���M�
�
x.��{"� � �V{ � y��U²	zMy#�jv��!�!v��W���M�M�`x.��{"� � �V{ � yU���.{"�yK�
��yjµM��yj�7x#xTzM{ix#~¤v��.x�zMy��M�
�T��v��TyUv"~w�Tyj�Tyu{"�T�Tz({u}7v���µM��x�zMy��MyjyjµRxTv

�jv��M��x��T�
�jx:{U�V{"���Tyj�¯~�v��¯xTz
y���{"� � �V{ � y�v"~�xTz
y��T�
|
ã8yu�KxP�
�Tv � �f{"�3�Iæ¡xzV{"�P�Mv"x.³7yKx.�M��vC}7yjµ*x�v�|�y�{åzV{"�Mµ
���C{"�*�T���
�uy�� xP���P�Mv"x.µM� ç!�j�M� x¯xTv
è �Mµ*­]�M� xTy!���U{"���?�T�M|`ã�yj�Kx:�M�Tv � �T{"�!�¯xTzM{ix��M��vC}`��µMy�x�zMy#x�yu�8x � yu�
yu�8�{ix�v��I�w� x�z*{�µ
� ç!�j�M� xP�fzV{"����yj� � y��1²	zMy��jv��!�!v��3���M�
�
xP��{"� � �V{ � y!����M��v`�jyjµM�M�T{"�w{"�
µ�|M��v`�Té��8xT���M�KxT�M��yjµY{"� x�zMv�� � z��
v"xU{"���^x�zMy�~�yu{ixT�
�Tyj�~�v��M�MµW���3x�zM���wx´³`��y�v"~���{"� � �V{ � y#{"��y�{"�¯³7yKx.{j}�{"����{"|M��y��¯æ´�W�V{"��x����j�
���{"�C�7��v����7xTyj���¬{"�Tyw{"|M�Tyj�7x	{"�Mµ#x�zMyI{"���f{j³�����xTzMywv��M� ³!{ ��� ��y � {ixTyIµM{ixf{x´³`��y��
ê"ë ­`�Myj�MyWv"~I�uv��8xT�!���!��yj­`�M����yjµ(x�v�xT{"�fé]��y�x�zMyW�M�Tv�|
��yu�Üv"~P���`�

��x��T�
�!yu�7x���� � �jv]µMy!�w� x�zM���*��v`v��
�C��{å�
�Tv�|M��yj�E�
v"x1��yj��yj}"{"�]x:x�v�xTz
���
�V{"��yj�C�

\�blWUd�WU�G\^]eqr\Xa��pqr]Qq�iIÎSWp_]e�pa����S]eq�bc�pdf�M\^]e�¥qr[S�Gqr]�\eup\��S]7[Gqr]e_
Y���s��-k�qrW6q�Z�]ea)bc��s�\��f]�Zf�U_^�UY�])\�]e_^q7W-�	\^�S]��p]�dS]�\�b�a�Y�[K\^�-�
\�blWUdÞWUZ�]�_��M\^WU_�Å�[Sdfb���Wp_�Y Wp_�Õ��-[fq^qrb��-dÞ�Kb�qt\^_�bl�S[K\^bcWpdÞ�Udf�
oM�-_^bl�Udfa)]�Ê�i
 �]eqr\�bldSZS[S\^q��U_�]Âa)WK�K]Q��dSWU\��Uq©�Sbldf�-_^s�qr\�_^bcdf�pq©�S[K\��pq
qr\�_^bcdS��q7WU���-\�WpY¥b�a%oM�-kl[S]Qq7W-��\^�S]�a�WUY�Y�WUd�ZS_^WU�p_^�UY¥Y�bldS�
k��-dS�p[f�-�p]��f�M\^�©\tsEZ�]eqeu�bvi]Ui©bcd�\�]e�U]e_eun¨fWp�-\euI])\^aUi© >�f]��U]��
dS]�\�b�a3�Ukc�pWU_^b�\^�SYØb�q>W-�n\^�S]%qt\^]e�p�Ks��îqr\^�-\�]3o��U_�bl])\ts��Udf�6q�blY��
blkl�U_�\�W0Õ3]�dfb�\^WU_�Å�¤¦�fb�\^kc]esËÇQÈUÉUÈ�Ê�i¦y­]eZS_�WK�K[Ga�\�blWUd�\^�U°U]Qq
ZSk��Ua�]­�G]�\t�X]e]�d¥\t�XW�bldf�KbloEbl�K[G�-k�q��­�SW�ZS_^WE�S[fa)]­WpdS]­WU_�\t�²W
W-¬±q�ZS_�bldS��ÅÌ�K]�Z�]�df�SbcdS��WUd¥\��S]3a��SWUb�a)]>WU�Ä_^]�Zf_�WK�K[fa)\�blWUd�WUZS�
]�_��M\^WU_�Ê�iI >�S]eq�]>W-¬±qrZS_^bldS�%�-_^]9\^�S]�d�blY�Y¥]Q�Kb��M\�]ekcs�bcdfq�]�_�\�]Q�
bldp\^W�\^�S]�Z�WUZS[fkl�-\�blWUd�]�ªEZ�]�klklbcdS�6\��S]�WUdS]�WU_�\t�XW�kl]e�pqt\h�S\ei
 >�S]©ZGWpZS[Sk��M\^bcWpd¢blq¥°p]�ZK\�qrWp_r\^]e�¢�pa�a)Wp_^�SbcdS��\�W¿a�Wpqr\¥�Udf�
\��f]�ZS_^WU�f�U�Sbcklbc\ts�W-�7q�]�kl]ea)\�blWUdÂ��WU_�_�]eZS_^WE�S[fa�\^bcWpd�b�q��G�Uq�]e�
WUd©_��-dS°�bld©\��Sb�q­Wp_^�K]e_�bldS�Gi

ì »¢¸0µ¡»;o�º«à²´S¸0µ¡à

 >�S]�bldfqt\^_�[fY¥]ed�\^�M\^bcWpd�WU�hZS_^]e�Sblae�M\�]Qq¥bcd~��ZS_�Wp�U_��-Y [SdK�
�K]e_>\�]eqr\­blq���a�WUY�Y�WUd§\�]ea��fdSbl½�[S]3��Wp_­�U[Sb��KbldS�¥\��S]�q�]e�U_^a��
��WU_>\^]eqr\h�S�-\^�Si	 >�f]%ZS_�]Qqr]edfa)]�WU��¨G�U��o��U_�b��-�fkc]Qq�uK�SWM�²]�op]�_Qu
�f�pq�kcWpdS�%��]�]�d�_^]ea�WU�pdSblq�]e�¥�Uq9�-d�blY¥Z�]e�SbcY�]�d�\	\^W�q�[fa���bcdK�
qr\�_^[SY�]�d�\^�-\�blWUd�i3 >�S]��UZSZS_^Wp�Ua����K]Qq�a�_�bl��]e��bld�\��fblq3Zf�UZG]e_
b�q�\^W�ZS_^WUZf�U�p�-\�]�\^�S]§a�Wpqr\�bldK��WU_^Y��M\�blWUd¢��_�WpY2\^�S]©ZS_�]Q�Kbc�
a��-\�]%]�ªEZf_�]Qq�q�bcWpd6bldfqr\�_^[SY�]�d�\^�-\�blWUd�uSbvi]Ui�\^�S]�qr\^�M\^]�Y�]�d�\7bld
\��f]�ZS_^WU�U_��-YØ�­�f]�_^]%b�\�b�q7ae�-k�a)[Sk��M\^]e�±uf\�W�\��f]�a)Wpdf�Kbc\�blWUdf�Uk
�­�S]e_�]�b�\�blq3_^]e½�[Sbl_�]Q�±i� >�Sblqh\^]ea��SdSb�½�[S]�a��-dfdSW-\�qrWpkcop]�\��f]
�U]edS]�_��-k±Zf_�Wp�Skc]eY �­bc\���¨G�U�¥oM�U_�b��-�Skl]eq>�f[K\7�S]�_^]%bc\7blq­Zf_�WU�
Z�Wpq�]e�0\�WÂ[fq�]§\^�S]��U]edS])\^bla��-kl�UWp_�bc\��fY \�WOqr]Q�-_�a��0�-Y�WpdS�
\��f]%_�]ekc]eo��Ud�\­�pa)sKa)klb�ahZG�M\��Gq�i

·Æí	î"í � í�ï � í �
¯7�SWGu�¯�i`ð�icuMy%iM`E]�\��SbvuM�-df��ÏGieg�i�m7klkcY��-d�ÅrÇeÈpÉUwpÊ)i�ñ.òVó4ô

õ�ö ÓcÐ]÷"ø7ù�ú�÷ ö´û�ü7ö õ ÓcÐ7øiýcþGÐ ü"ÿ�û%ö���� Ð7ø6Ò û�� þ%ò`ò-Ó�ø�i�¯��f�Kb��q�WUd§�9¤�]eq�kc]esUi
VXkl�U_�°p]UuVb	i-¯�ifÅtÇQÈ�xMwfu-`E]�ZK\^]�Y��G]e_�Ê)iU¯~qrsKqr\�]�Yá\�W3�U]�df]�_��
�-\�]9\�]eqr\I�f�M\^���-df��q�sEY���WUklblae�-klkcs3])ªK]Qa)[K\^]	ZS_^WU�U_��-Y�qei
���	�	� þ?÷�Ò û ø)Ò ü Ñ ö ò û ø�ò û�
 ò
��Ñ��9Ò�÷�Ð � û���ö´û Ð^Ð]÷ ö´û���
 � ô
� Å���Ê�uÄÝKÇ����KÝpÝUÝKi

ÎS]�_^�U[GqrWpd�u3y�i7�-df�«Ü3i�{�WU_^]�k�ÅtÇQÈUÈpwSuhÏ��-dE[f�U_�sSÊ)i> >�f]
a��G�-bldSbcdf���-ZSZf_�W��Ua��¥��WU_²qrWU��\t�²�U_�]>\^]eqr\>�S�-\^�%�p]�dS]e_^�-�
\^bcWpd�i���ñ�� þ?÷�Ò û ø�Ò ü Ñ ö ò û øcò û�
 ò���Ñ��9ÒV÷�Ð � û���ö´û Ð^Ð]÷�ô
ö´û�� Ò û � ��Ð�Ñ ÿ ò � òMÓ¤ò �"!�# ÅtÇ�Ê�u�w"���KÉUwfi

ÎS]�_^_��-d�\�]pu7Ïfilu�{�i­Ïfi7Û�\r\^]�dfqr\�]ebcdnuh�-dG�$Ïfi>g�i²¤Â�-_^_^]�d
ÅrÇeÈpÉ�xEu¥ÏU[fkcsSÊ�i� >�S]ÞZS_^WU�U_��-Y �K]�Z�]�dG�K]�dfa�]��p_^�UZS�
�Udf�¿b�\�q�[fqr]�bld¿WpZK\�blY�bcÙQ�M\^bcWpd�i���ñ�� þ?÷�Ò û ø�Ò ü Ñ ö ò û øò û ú�÷Cò � ÷�Ò�ó�ó ö´û��%$ Ò û��"� Ò � Ð�ø�Ò û �&
 ! ø�ÑÁÐ]ó*ø%'IÅ���Ê�u
�fÇeÈ(���*)�ÈSi

Õ3WUk��K�G]e_��GuOg�i � iOÅrÇeÈUÉpÈpÊ)i,+7Ð û Ð)Ñ ö8ü �hÓ � òV÷ ö Ñ ÿ ó�ø ö´û

 Ð�ÒV÷ ü"ÿ ý.- õ Ñ ö ó ö0/ ÒMÑ ö ò û Ò û�� ��Ò üiÿ�ö´û Ð $ Ð�ÒV÷ û�ö´û�� i

SEARCH-BASED SOFTWARE ENGINEERING 1341

¯h�S�Kb�qrWpd�¤¿]Qqrkl]�spi
j WM�7�K]ed�un¤¡i9ÅrÇeÈExUx-Ê)in`EsEY���WUklbla¥\^]eqr\�bldS���-dG��\^�S]��Kb�qt�
q�]ea)\©q�sEY���WUklbla�]�oM�-kl[f�M\^bcWpd�q�sEqr\�]eY�i ���	�	� þ�÷�Ò û ø�ôÒ ü Ñ ö ò û ø�ò û�
 ò
��Ñ��9Ò�÷�Ð � û���ö´û Ð�Ð7÷ ö´û��1
 � ô32XÅ�)�Ê)u�Ý-wpw��Ý�xMÉfi

ÀÁdfa)]puUg�iEVhiSÅtÇeÈpÉ�xUÊ�iM >�S]­�-[K\^WUY��M\^bla²�p]�dS]e_^�-\�blWUd�WU�f\^]eqr\
�f�M\^�fi1þ ÿ ÐYñ.òVó õ � ÑÁÐ7÷54�ò � ÷ û ÒMÓ7698�ÅtÇQÊ)uGw9���EwpÈSi

ÏUWpdS]eqeu�Ü3ihÎ²icu j i%`�\��G�-Y�]�_Qu��-dG�ág�i � sE_^]eq¢ÅrÇeÈUÈpwpÊ)i
¯�[K\�WpY��M\�b�a¢qr\�_^[fa�\^[S_��-k�\�]Qqt\^bcdf�¦[fqrbldS�¦�p]�dS]�\�b�aO�-kc�
�pWU_^b�\^�SY�q�i
 ò
��Ñ��9Ò�÷�Ð � û���ö´û Ð�Ð7÷ ö´û�� 4�ò � ÷ û Ò-Ó�:":�Å��pÊ�uÝUÈUÈ(���UÍpwSi

{�WU_^]�kvuGÜ3i�ÅrÇeÈUÈpÍSu�¯7[S�p[fqt\�Ê�i±¯7[S\�WUY��-\�]e��qrWU��\t�²�U_�]�\^]eqr\
�f�M\^�h�U]edS]�_��M\^bcWpd�i ���	�	� þ?÷�Ò û ø�Ò ü Ñ ö ò û øUò û;
 ò���Ñ��9ÒV÷�Ð
� û���ö´û Ð�Ð7÷ ö´û�� :9<nÅÆÉpÊ)uGÉExMÍ��KÉ�x-ÈSi

×�aeÕ3_����%u3Õ¥ilu�Vhi7×�b�a��f�-]ekÌu��-df�«×Oih`Sa��f�M\^ÙÞÅrÇeÈUÈpÉpÊ)i
Õ3]edS]�_��M\^bcdf�AqrWU��\t�²�U_�] \^]eqr\ �S�-\^�Ã�Es]�opWUkl[K\�blWUdni
 �]ea��fdSblae�-k�y­]�Z�WU_�\²y�`S ­y>�îÍfÇeÉ-�îÈExQ�ÁÍSÇUuMy�`S �VXWU_^ZGWU�
��M\^bcWpd�u9`E[Sbc\�]�Ý"�UÍSu	ÝKÇ��KÇ���y­bl�S�U])\^WUZÞVXbl�a)kl]Uu9`�\^]�_��
klbldS��ðI¯áÝUÍSÇQwUwSi

Ú��-_^�p�UqeuMy%iUÚ�ilup×OipÏfi j �-_^_�Wpkl��uU�-df��y%ipÚ�iUÚ�]ea�°�ÅrÇeÈUÈpÈpÊ)i
 �]eqr\r�Á�S�-\^���U]�df]�_��M\�blWUd¦[GqrbldS�Þ�U]�df])\�b�a��-kl�UWU_^bc\��SY�qei

 ò���Ñ��9ÒV÷�Ð(þGÐ7ø�Ñ ö´û�� ý>=GÐ7÷ ö ?�ü ÒMÑ ö ò û Ò û �>@ Ð)Ó ö Ò9A ö Ó�Ó ö Ñ ! '-u
ÝUw"�(�KÝ-É�ÝKi

 n_��Ua�]�sUu Ð ilu(ÏGi¦VXk��-_^°Äu��-df� {�i~×��Udf�K]�_=ÅtÇQÈUÈUÉfu
×��-_�a��GÊ�i�¯�[K\�WpY��-\�]Q�(Zf_�Wp�U_��-Y ¨G��� �Gdf�KbldS�¼[fqt�
bldS�¦q�bcY�[Skl�-\�]Q�Ë�UdSdS]e�UkcbldS�Gi
 ò���Ñ��9ÒV÷�Ð � û���ö´û Ð�Ð]÷ ö´û��
B òMÑÁÐ�ø � 6�ÅvÝUÊ�uÄx(���KÉSÇpi

 n_��Ua�]�sUu Ð iluhÏGi7VXk��-_^°Äu�{�i­×��-dG�K]�_Qu��-dG��ÏGi²×�aeg�]e_r�
Y�b��¿ÅrÇeÈpÈUÉpÊ)iK¯7d��-[K\^WUY��M\^]e�6��_^�UY¥]e�XWp_�°���WU_7qr\�_^[fa)�
\^[S_��-kh\�]eqr\©�f�M\^�¢�U]�df]�_��M\�blWUdni�ú�÷Cò ü"ü Ð�Ð �Vö´û�� ø+ò���Ñ ÿ Ð
:"6-Ñ ÿ ���	�	� ñ.ò û �)Ð7÷^Ð û�ü Ð;ò û � � Ñfò�ó�Ò-ÑîÐ �%
 ò���Ñ��9ÒV÷�Ð
� û���ö´û Ð�Ð7÷ ö´û�� i

m7d�\^a���uMy%i j ilu-¯�iQÏfiMÛ�¬�[K\�\eu-�Udf�%×OieÏGi j �-_^_^WUk���ÅrÇeÈUÈ9�pÊ)i
×�[K\^�-\�blWUd(�Udf�-klsKqrb�q�[GqrbldS��Y�[K\^�Ud�\�q^a��S]�Y��M\��Si3ÀÁd
ú#÷Cò ü Ð�Ð �Vö´û�� øGò���Ñ ÿ ÐC:*'9'"6 � û ÑÁÐ]÷ û ÒMÑ ö ò û ÒMÓ
D! ó õ òVôø öE� ó ò ûF
 ò
��Ñ��9Ò�÷�Ð þGÐ7ø�Ñ ö´û�� Ò û � � û ÒMÓ ! ø ö ø �
D
 þ��
:"'"'96-u Ð]��HG	WU_^°Äu Ð G�u�mh`K¯�uSZSZ�inÇI�UÈ(��ÇI)ExEi�¯�V²×Oi

¤¿]e�U]�df]�_Qu�Ïfilu�¯�i>Ü>�U_�]Qqr]ekÌu7�Udf� j i7`�\^�f�-Y�]e_�ÅvÝ-ÍUÍfÇQÊ)i
� oUWpkc[K\^bcWpdf�-_^s \^]eqr\Ë]ed�oEbl_�WpdSY�]�d�\$��Wp_«�U[K\�WpY��-\�b�a
qr\�_^[fa)\�[S_��-k0\�]eqr\�bldS�Gi � û �7ò�÷�ó�Ò-Ñ ö ò û Ò û��J
 ò���Ñ��9ÒV÷�ÐþGÐ üiÿ�û ò-Ó�ò �"! 2D6-ufÉ")fÇ��EÉ9�*)fi

¤¿]e�U]�df]�_QupÏGicu j iK`�\��G�-Y�]�_Qu�Ü3i�ÎXiEÏpWUdS]Qq�u��-df��g�i � sE_�]Qq
ÅrÇeÈpÈ�x-Ê)in �]eqr\�bldS��_^]e�-kc�v\�blY¥]§qrsKqr\�]�Y�q%[GqrbldS���p]�dS]�\�b�a
�Ukc�pWU_^b�\^�SY�q�i
 ò���Ñ��9ÒV÷�ÐLK � Ò-Ó ö Ñ ! 4�ò � ÷ û ÒMÓ�<Mu�ÇQÝ�xI�
Ç��9�Si

¤¦�Sb�\^kc]esUu�g�i>ÅtÇQÈUÉpÈpÊ�i� >�f]��U]�dfb�\^WU_��Ukc�pWU_^b�\^�SYA�-dG�Oqr]��
kl]ea)\�bloU]XZS_�]Qq�q�[S_^]�a±�­�Es�_^�UdS°��f�Uq�]e�%�UkcklWKa��-\�blWUd�WU�S_�]��
Zf_�WK�K[fa)\�bloU]�\^_�b��-k�q�blqn�G]Qqt\Qi�ú#÷Cò ü Ð�Ð �Vö´û�� ø!ò��²Ñ ÿ Ð*þ ÿ�ö ÷ �
� û ÑÁÐ7÷ û ÒMÑ ö ò û ÒMÓ.ñ.ò û �)Ð7÷^Ð û�ü ÐM+N��ø�Ôlu�ÇpÇew(��ÇQÝSÇUi

SEARCH-BASED SOFTWARE ENGINEERING1342

GPTesT: A Testing Tool Based on Genetic Programming

Maria Cl�audia Figueiredo Pereira Emer

UFPR - Curitiba CP: 19081,

81531-970, Brazil

mpereira@inf.ufpr.br

Silvia Regina Vergilio

UFPR - Curitiba CP: 19081,

81531-970, Brazil

silvia@inf.ufpr.br

Abstract

Genetic Programming (GP) has recently
been applied to solve problems in several ar-
eas. It has the goal of inducing programs
from test cases by using the concepts of Dar-
win's evolution theory. On the other hand,
software testing, that is a fundamental and
expensive activity for software quality assur-
ance, has the objective of generating test
cases from the program being tested. In this
sense, a symmetry between induction of pro-
grams based on GP and testing is noticed.
Based on such symmetry, this work presents
GPTesT, a testing tool based on GP. Fault-
based testing criteria generally derive test
data using a set of mutant operators to pro-
duce alternatives that di�er from the pro-
gram under testing by a simple modi�cation.
GPtesT uses a set of alternatives genetically
derived, which allow the test of interactions
between faults. GPTesT implements two test
procedures respectively for guiding the selec-
tion and evaluation of test data sets. Ex-
amples with these procedures show that the
approach can be used as a testing criterion.

1 INTRODUCTION

The use of software products in most areas of human
activities has generated a growing interest in software
quality assurance. Software Engineering techniques
and tools were proposed with the goal of increasing
the quality of the software being developed. In this
context, the software testing activity has gained im-
portance during the last decade and is considered fun-
damental.

In the literature, there are three groups of testing tech-

niques proposed to reveal a great number of faults
with minimal e�ort and costs: 1) functional technique:
uses functional speci�cation of a program to derive test
cases; 2) structural technique: derives test cases based
on paths in the control
ow graph of the program; 3)
fault-based technique: derives test cases to show the
presence or absence of typical faults in a program.

These techniques are generally associated to the test-
ing criteria. A criterion is a predicate to be satis�ed to
consider the testing activity ended, that is, to consider
a program tested enough [16, 25]. It helps the tester
in two major tasks: test case selection and test case
evaluation.

Fault-based criteria consider that most programmers
do their programs very similar to the correct program,
according to a speci�cation. This fact is known as
\competent programmer hypothesis [8]". When the
users test a program, they use the correct program that
they have in mind, and if the program P being tested
is not correct, there is a set of alternatives for P that
can include at least one correct program. The fault-
based criteria explore the use of alternatives for testing
P [8, 9, 14, 20]. In most cases, the alternative program
di�ers from P by a simple syntactic modi�cation, that
is, only a fault at a time is introduced. They assume
that complex faults are detected by analyzing simpler
faults, this assumption is named "coupling e�ect" [8,
22].

Some works [9, 14] assume only necessary conditions
for discovering faults; that is, to reveal a fault is neces-
sary to produce only an intermediate di�erent state in
the program and in its alternative, after the modi�ed
statement. This is assumed because determining suÆ-
cient conditions, which are the conditions to produce
di�erent �nal states, is undecidable (task related to the
term coincidental correctness [3]). However, Morell[20]
points out that these assumptions ignore the global
e�ect of faults or interactions of modi�cations in the

SEARCH-BASED SOFTWARE ENGINEERING 1343

program.

Genetic Programming (GP) is a �eld of the called Evo-

lutionary Computation. The term was popularized by
Koza in 1992 [15]. The goal is to use the concepts of
Darwin's evolution theory [6] for computer program
induction. The concepts are usually applied by ge-
netic operators such as: selection, crossover, mutation
and reproduction. During the last decade, GP has re-

ceived signi�cant attention and been used to solve a
large number of problems, mainly in Arti�cial Intelli-
gence and Engineering Areas [1].

Some authors mention that there is a symmetry be-
tween the testing activity and the induction of pro-
grams [2, 3, 28]. In this sense, testing is an activity
that generates test cases from a program being tested,
and GP is a technique that generates programs from
test cases.

Based on such symmetry, this work describes GPTesT
tool, that supports a GP-based test approach. The al-
ternatives are generated using GP and can di�er from
P by more than simple modi�cations. GPTesT guides
the tester in two tasks: selection and evaluation of
test cases. It allows the test of C programs and uses
Chameleon [26], a GP tool. The paper is organized as
follows. Section 2 shows aspects related to GP and the
Chameleon tool. Section 3 presents a review about the
test activity. Section 4 describes GPTesT and Section
5 illustrates the mentioned test procedures. Finally,
Section 6 concludes the paper.

2 ABOUT CHAMELEON

Genetic Programming (GP) was introduced by John
Koza [15], based on the idea of Genetic Algorithms
presented by John Holland [13]. Instead of a popula-
tion of beings, GP works with a population of com-
puter programs. The goal of the GP algorithm is to
naturally select the program that better solves a given
problem, through recombination of "genes",. A special
heuristic function called �tness is used to guide the al-
gorithm in the process of selecting individuals. This
function receives a program and returns a number that
shows how close this individual is to the desired solu-
tion. First, an initial population of computer programs
is randomly generated (Generation 0). After that, the
GP algorithm enters a loop that is ideally executed
until a desired solution is found.

In this paper, the tool Chameleon [26] illustrates the
use of GP for software testing. Chameleon imple-
ments a grammar-oriented approach and evolves C
programs. It represents the programs using grammar-
based derivation trees.

Through the evolution process, genetic operators re-
combine programs by making modi�cations directly
on their derivation trees. In reproduction, no change

is made: the individual is simply replicated to the next
generation. It is equivalent to the asexual reproduction
of beings. Mutation is the addition of a new segment
of code to a randomly selected point of the program.

Crossover is the operator that truly performs recom-

bination of computer programs. This operation takes
two parents to generate two o�spring. A random point
of crossover is selected on each parent and the sub-
trees below these points are exchanged. It is equivalent
to the sexual reproduction of beings. When grammars
are used, the crossover operator is restricted and only
allows the exchange of tree branches that have been
generated using the same production rule.

To execute Chameleon, the user needs to provide the
grammar correspondent to the problem to be solved
and an initial con�guration I of parameters. The pa-
rameters are related to the genetic operations as mu-
tation and crossover rates; to the number of runs and
size of population; to the derivation tree; and to the
name of a �le that contains a set T of test cases. These
test cases are used to calculate the �tness value of each
individual. The number of runs is used to end the pro-
cess. The individual (or program) with better �tness
value is selected. The selection can also be random.

Figure 1 shows an example with the initial con�gu-
ration I of parameters, including the grammar, for
language C, adopted to the problem of calculating
the common minimum multiple of two given numbers
(cmm problem). Chameleon �nds, among other, the
solution presented in Figure 2.

3 ABOUT TESTING

The main goal of testing is to �nd an unrevealed fault
[21]. Hence, how to derive test cases for revealing as
many faults as possible is an important question. This
is because it is related to some factors such as eÆcacy,
costs, limitations to automate the testing activity, etc.
Other question to be considered is to known whether
a program has being tested enough or how to evaluate
a data test set T. These two questions, related to gen-
eration and evaluation of test cases, are discussed by
Rapps and Weyuker in [24].

In order to guide the testing activity and answer the
above questions, di�erent testing criteria were pro-
posed. They consider di�erent aspects to derive the
test data. Functional criteria use functional speci�-
cation of a program to derive test cases. Boundary
Value Analysis and Cause-E�ect Graphs [23] are ex-

SEARCH-BASED SOFTWARE ENGINEERING1344

[begin]
[parameters]
population size=500
number of runs=10
tournament size = 10
maximum depth for initial random programs = 15
maximum depth during the run = 30
crossover rate = 90
mutation rate = 0
elitist = N
threshold = 0.01
[compiler]
cl -nologo -G6 -MT -Fepop.exe
[result-producing branch]
terminal set = {X,Y}
function set = {%, !=, *, /}
output variable = Z
[result-producing branch productions]
<code> -> <def> <prog> <result>
<def> -> float R = 1, A = X, B = Y;
<result> -> Z = (A<op>B) <op> <var>;
<prog> -> if (<expc>) {<prog1>} else {<atr>}
<prog1> -> do {<bloco>} while (<expc>);
<bloco> -> <exp>
<bloco> -> <bloco> <exp>
<exp> -> <var> = <var> <opm> <var>;
<exp> -> <var> = <var>;
<expc> -> <var> <opc> <cte>
<atr> -> <var> = <cte>;
<opm> -> %
<op> -> *
<op> -> /
<opc> -> !=
<var> -> X
<var> -> Y
<var> -> R
<cte> -> 0
[fitness cases]
source -> cmm.dat
[end]

Figure 1: Initial Con�guration for Chameleon

amples of functional criteria. Structural criteria derive
test cases based on paths in the control-
ow graph of
the program. The best known structural criteria are
control-
ow and data-
ow based criteria [16, 24, 27].
Fault-based criteria derive test cases to show the pres-
ence or absence of typical faults in a program, con-
sidering common errors in the software development
process. The best known fault-based criterion is Mu-
tation Analysis [8].

This work focuses on fault-based testing, and the Mu-
tation Analysis criterion will be described in more de-
tail. It consists basically of generating mutant pro-
grams for the program P being tested. Mutation Anal-
ysis considers two assumptions [8]: 1) the hypothesis
of the competent programmer: \Programmers do their
programs very similar to the correct program"; 2) cou-

cmm (int X, int Y)
{

int A=X, B=Y, R=1;
if (Y!=0){
do {

R=Y;
Y=X%Y;
X=R;

} while (Y!=0)
}
else {
X=0;

}
return (A*B)/R;

}

Figure 2: A Possible Solution for the cmm Problem

pling e�ect: \Tests designed to reveal simple faults can
also reveal complex faults". It is also based on a set
of mutation operators. A mutant is represented by a
single mutation in the original program established by
a mutation operator.

All mutants are executed using a given input test case
set T. If a mutant M presents di�erent results from P,
it is said to be dead, otherwise, it is said to be alive.
In this case, either there are no test cases in T that
are capable to distinguish M from P, or M and P are
equivalent. To satisfy the criterion, we have to �nd
a test case set able to kill all non-equivalent mutants;
such a test case set T is considered adequate to test P.
Then, a mutant will be considered dead if its behav-
ior concerning a test case is di�erent from that of the
original program. The Mutation Score, obtained by
the relation between the number of mutants killed and
the total number of non-equivalent mutants generated,
allows the evaluation of the adequacy of the used test
case set. The number of equivalent mutants generated
is not determined automatically; it is obtained interac-
tively as an entry from the tester, since the equivalence
question is, in general, undecidable [5, 8].

In the literature, there are many testing tools. How-
ever, the complete automation of testing activity is
not possible due to many testing limitations: infeasi-
ble paths, equivalent mutants, etc. In general, there
is no algorithm to generate a test set that satis�es a
given criterion. It is not even possible to determine
if such set exists [12]. In spite of these limitations,
there are in the literature many works addressing test
data generation for satisfying testing criteria. Most re-
cent studies have been exploring Genetic Algorithms
[4, 17, 18, 19].

Proteum [10] and Mothra [7] are examples of testing
tools based on mutation testing. These tools gener-

SEARCH-BASED SOFTWARE ENGINEERING 1345

ate mutants by using mutation operators. Proteum
has a set of 71 mutation operators and supports test
of C programs. Mothra supports testing of Fortran

programs. Di�erent operators are, in general, de�ned
for di�erent programming languages and the mutants
di�er from the program being tested by a simple mod-
i�cation. Morell[20], however, points out that such
fact ignores the global e�ect of faults or interactions

of modi�cations in the program.

This work proposes the use of GP to derive the mu-
tants. This can produce alternatives that are very dif-
ferent from the original program and consequently can
test global e�ects of faults. These aspects are discussed
in the following section.

4 GPTesT

In this section we describe GPTesT (Genetic
Programming-based Testing Tool) implemented to
support GP based testing. It implements two test
procedures for selection and evaluation of test cases,
showing that the approach can be used in the same
way as a testing criterion, such as Mutation Analysis.

Figure 3 contains the Use Case Diagram for GPTesT.
Next, we present a brief description and purpose of
each use case and describe the main GPTesT func-
tionalities.

Alternatives

Execute P

Generate

Results

cases

tester

Chameleon

Execute
Alternatives

View

Set alternatives
status

Maintain test

Figure 3: GPTesT: Use Case Diagram

� Maintain test cases: this use case is related to dif-

ferent functions for test case maintenance. The
tester can add a new test case, delete or disable
an existent, as well, visualize the obtained out-

put after execution of the program P being tested.
GPTesT saves all the given test cases as part of
the testing session for P.

� Execute P: this use case executes P with all the
non-executed test cases and saves the obtained
output. The tester analyzes the output. If the
output is di�erent from the expected, a failure

occurred. In this case, the tester must correct P
and start a new testing session.

� Generate alternatives using Chameleon tool: this
use case runs the Chameleon tool with the con�g-
uration I, as illustrated in Section 2. The tester
gives I as entry. GPTesT selects the programs
generated by Chameleon to obtain the set A of
alternatives. This selection discards some anoma-
lous and equivalent programs that can be syntac-
tically determined.

� Set alternative status: each alternative has a sta-
tus. This status can be:

{ anomalous: the alternative has an anomalous
behavior such as division by zero, loop for-
ever, etc.

{ equivalent: the alternative computes the
same function of P, producing the same out-
puts that P produces for any input.

{ dead: the alternative has already produced
a di�erent output for a test case when com-
pared with P.

{ alive: the alternative has produced the same
output produced by P for all enabled test
cases.

After executing the alternatives, GPTesT auto-
matically updates the alternative status. How-
ever, the tester has to identify the equivalence of
programs and to set the status of an equivalent
alternative. As mentioned in Section 3, there is
no algorithm to determine whether two programs
compute the same function. This is an undecid-
able question and all fault-based testing tools have
this limitation.

� Execute the alternatives: this use case executes
all the alive alternatives from A with all the non-
executed test cases.

� View the results: this use case allows the tester to
visualize the alternatives and their status, the test

SEARCH-BASED SOFTWARE ENGINEERING1346

cases and a testing score, similarly to other fault-
based testing tools and Proteum. To calculate the
score, GPTesT uses the following formula:

SM (P; T) =
Ad(P; T)

A(P)�Ae(P)

where:

{ P : program being tested;

{ T : a test data set;

{ SM (P; T): the coverage score;

{ Ad(P; T): total number of dead alternatives;

{ A(P): total number of alternatives;

{ Ae(P): total number of equivalent alterna-
tives.

This initial version of GPTesT allows the unit test of
programs in C language. GPTesT, as well Chameleon,
are oriented to C functions, where only a C function is
tested at each time. All the results are saved in �les,
which are in a directory. To generate the executable
alternatives, GPTesT uses the compilation command
from I (Chameleon con�guration).

GPTesT was developed using the Uni�ed Modeling
Language (UML) and implemented in C++. Figure
4 presents the main class diagram for GPTesT. More
details about GPTesT implementation are in [11].

CSession

CTest

CCase CMutant

CCMutant CCoverage

Figure 4: GPTesT: Main Classes

According to some authors [16, 24], a testing criterion
or tool must support two testing procedures: selection
and evaluation of test cases. Next section illustrates
these procedures using GPTesT.

5 TEST PROCEDURES USING

GPTEST

5.1 Selection of Test Cases

To illustrate each step of the selection procedure, we
use the cmm program, whose source code is in Figure
5. This program prints the common minimum multiple
of two given numbers.

Suppose that the tester wants to test cmm, and does
not have any test case. GPTesT guides the tester in
the task of test case selection, using GP to perform
a fault-based testing. The tester takes the following
steps:

int cmm (int a, int b)

{

int A, B, r;

A = a;

B = b;

if (b!=0)

do {

r = A%B;

A = B;

B = r;

} while (r!=0);

else

a=0;

return (a*b)/A;

}

Figure 5: Source Code of cmm program

1. GPTesT initialization: gives initial information
for GPTesT summarized in Table 1.

Table 1: Initial Information to GPTesT

Section Name cmm

Source Code cmm.cpp

Initial Chameleon
Con�guration I illustrated in Section 2

2. Selection of alternatives: for cmm a set of 44 al-
ternatives were generated. Examples of these al-
ternatives are in Figure 6.

3. Generation of test cases to kill the alternatives:
to kill the alternative, the tester has to identify a
test case that produces an output that di�ers from
P output. Observe that the test case (a=2, b=4)
kills the alternative from Figure 6b. P produces
4 and the alternative produces a division by zero.

SEARCH-BASED SOFTWARE ENGINEERING 1347

cmm (int X, int Y) cmm (int X, int Y)
{ {

int A=X, B=Y, R=1; int A=X, B=Y, R=1;
if (X!=0){ if (Y!=0){
do { do {

R=R%R; Y=X%Y;
R=Y; X=Y
X=X%Y; R=X%R;
Y=X; } while (Y!=0)
X=R; }

} while (Y!=0) else {
} Y=0;
else { }
X=0; return (A*B)/R;

} }
return (A*B)/R;

}

a) b)

cmm (int X, int Y) cmm (int X, int Y)
{ {

int A=X, B=Y, R=1; int A=X, B=Y, R=1;
if (Y!=0){ if (R!=0){
do { do {

R=Y; Y=X%Y;
Y=X%Y; R=Y%R;
X=R; } while (Y!=0)

} while (Y!=0) }
} else {
else { X=0;
X=0; }

} return (A*B)/R;
return (A*B)/R; }

}

c) d)

Figure 6: Examples of generated alternatives

4. Execution of the programs: using the compila-
tion command of I and the test cases given by the
tester, GPTesT executes P and the set of alterna-
tives, producing results shown in Figure 7. The
results show how many alternatives are dead, alive
or equivalent and the score calculated. This �nal
score was obtained with a set of 6 test cases.

5. Addition of new test cases: now, the tester visual-
izes the alive alternatives and continues the gen-
eration of test cases, repeating Steps 3 and 4 until
all the non-equivalent alternatives are dead or the
desired score is obtained. During this step, the
tester manually identi�es the equivalent alterna-
tives. Figures 6c shows an example of equivalent
alternative, that is identi�ed by the tester.

Figure 8 presents the �nal status obtained for cmm. A
score equal to 1 shows that all non-equivalent alterna-
tives are dead using the test cases.

Total Number of Alternatives: 44
Anomalous Alternatives: 0
Live Alternatives: 3
Equivalent Alternatives: 0
Number of Test Cases: 6
Coverage Score: 0.931818

Figure 7: GPTesT Results

Total Number of Alternatives: 44
Anomalous Alternatives: 0

Number of Test Cases: 6
Coverage Score: 1

Live Alternatives: 0
Equivalent Alternatives: 3

Figure 8: Final status for program cmm

5.2 Evaluation of a test set

The tester also uses GPTesT for evaluation of a test set
T. Consider the program P, which prints the greatest
of its three inputs. There is a test set T for P, pre-
sented in Table 2. The tester desires to evaluate how
good T is. GPTesT helps it in this task. The tester
must follow the evaluation procedure described next.
Observe that its two �rst steps are the same steps as
the selection procedure.

1. GPTesT initialization.

2. Generation of alternatives.

3. Addition of all test cases from T.

4. Execution of P and of the alternatives using the
available test cases.

5. Determination of equivalent alternatives.

6. Analysis of the score for T. The �nal results for
T is in Figure 9

According to the tester's goals, T can be considered
good \enough" and the testing activity ends. The eval-
uation procedure is also used to compare two test cases
sets. For example, we can consider that the greater the
score the better the set.

SEARCH-BASED SOFTWARE ENGINEERING1348

Test Case: 1)

Test Case: 3)

Test Case: 4)
Dead Alternatives: 0

Dead Alternatives: 2

Dead Alternatives: 99
Test Case: 2)
Dead Alternatives: 9

Test Case: 5)
Dead Alternatives: 0
Test Case: 6)
Dead Alternatives: 2
Execution Time: 00:01:08h

Anomalous Alternatives: 0
Total Number of Alternatives: 127

Live Alternatives: 15
Equivalent Alternatives: 0
Number of Test Cases: 6
Coverage Score: 0.88189

Figure 9: Status obtained for the test set T

When incorrect outputs of P are obtained, we have
to remove the fault and continue the procedure being
conducted. When we test a program, we usually follow
the two procedures. We can perform the evaluation
procedure with a functionally or randomly derived test
set T and after this, we start the selection procedure
on Step 3, to get the desired score.

Table 2: Test Case Set T

Number a b c

1) 0 1 2
2) 1 2 0
3) 1 0 2
4) 4 5 6
5) 5 6 4
6) 6 4 5

6 CONCLUSIONS

This work presented a framework, named GPTesT, to
support the use of Genetic Programming (GP) in the
software testing activity. GPTesT allows the use of a
new approach to fault-based testing.

The traditional approaches and tools are usually based
on mutation operators. An operator is used to gener-
ate an alternative program that di�ers from the pro-
gram under testing by a simple modi�cation. GPTesT
permits the alternative selection by using Chameleon,
a GP-based tool. The alternatives do not necessarily
di�er from the original program by only one modi-
�cation, and this permits to test interactions among
faults, and to reveal other kind of faults than those
reveled by the mutation operator approach.

The code of the program under testing is not used
to derive the alternatives. This is an advantage dur-
ing the maintenance phase. All alternatives continue
valid. The user decides whether other alternatives will
be generated. For the operator mutation approach and
structural testing criteria, all the required elements
must be generated again since they use the code to
establish the testing requirements.

This work presents examples, showing that GPTesT
supports two test procedures: test data set evaluation
and selection. These procedures are a basic require-
ment, supported by most testing and criteria tools.

In spite of GPTesT helps the test of C programs and
interacts with Chameleon, the GP approach imple-
mented by GPTesT is independent on the used lan-
guage. GPTesT implementation also permits future
extensions. A possible extension is to generate alterna-
tives using other GP tools that evolve programs writ-
ten in other languages or paradigms. We intend to
extend GPTesT to deal with Lisp programs.

Similar to other testing tools found in literature,
GPTesT has some limitations. This happens due to
the undecidibility related to the equivalence between
programs and to the generation of test cases. However,
in a future work we will extend GPTesT with mecha-
nisms to reduce these limitations. The mechanisms are
heuristics to determine equivalent alternatives and ge-

netic algorithms to automatically generate test cases,
helping the tester during the procedures exempli�ed
in this paper.

SEARCH-BASED SOFTWARE ENGINEERING 1349

References

[1] Proceedings of Genetic and Evolutionary Computation
Conference. Morgan Kaufmann Publishers, 2000.

[2] F. Bergadano and D. Gunetti. Inductive Logic Pro-
gramming: From Machine Learning to Software Engi-

neering. MIT Press, 1995.

[3] T. Budd and D. Angluin. Two notions of correctness
and their relation to testing. Acta Informatica, Vol.
18(1):31{45, November 1982.

[4] I. Chung. Automatic testing generation for muta-
tion testing using genetic operators. In Proceedings
of SEKE. San Francisco, June 1998.

[5] W. Craft. Detecting Equivalents Mutants Using Com-
piler Optimization. Master's Thesis, Department of
Computer Science, Clemson University, Clemson-SC,
1989.

[6] C. Darwin. On the Origin of Species by Means of Nat-
ural Selection or the Preservation of Favoured Races
in the Struggle for Life. 1859.

[7] R. De Millo, D. Gwind, and K. King. An extended
overview of the mothra software testing environment.
In Proc. of the Second Workshop on Software Testing,
Veri�cation and Analysis, pages 142{151. Computer
Science Press, Ban� - Canada, July 19-21 1988.

[8] R. De Millo, R. Lipton, and F. Sayward. Hints on test
data selection: Help for the practicing programmer.
IEEE Computer, Vol. C-11:34{41, April 1978.

[9] R. De Millo and A. O�utt. Constraint-based
automatic test data generation. IEEE Transac-
tions on Software Engineering, Vol. SE-17(9):900{910,
September 1991.

[10] M. E. Delamaro and J. Maldonado. A tool for the
assesment for test adequacy for c programs. In Pro-
ceedings of the Conference on Performability in Com-
puting Systems, pages 79{95. East Brunswick, New
Jersey, USA, July 1996.

[11] M. Emer. Sele�c~ao e Avalia�c~ao de Dados de Teste

Baseadas em Programa�c~ao Gen�etica. Master's The-
sis, DInf - UFPR, Curitiba-PR, March 2002. (in Por-
tuguese).

[12] F. Frankl. The use of Data Flow Information for the
Selection and Evaluation of Software Test Data. PhD
Thesis, Department of Computer Science, New York
University, New York, U.S.A., October 1987.

[13] J. Holland. Adaptation in Natural and Arti�cial Sys-
tems. MIT Press, 1992.

[14] W. Howden. Weak mutation testing and completeness
of test sets. IEEE Transactions on Software Engineer-

ing, Vol. SE-8(4):371{379, July 1982.

[15] J. Koza. Genetic Programming: On the Programming
of Computers by Natural Slection. MIT Press, Cam-
bridge, MA, 1992.

[16] J. Maldonado, M. Chaim, and M. Jino. Briding the
gap in the presence of infeasible paths: Potential uses
testing criteria. In XII International Conference of
the Chilean Science Computer Society, pages 323{340.
Santiago, Chile, October 1992.

[17] G. McGraw and C. Michael. Automatic Generation of
test-cases for software testing. Technical Report RST
Corporation, 1997.

[18] C. Michael and et al. Genetic Algorithms for Dynamic
Test-Data Generation. Technical Report RST-003-97-
11 Corporation, 1997.

[19] C. Michael, G. McGraw, and M. Schatz. Generating
software test data by evolution. IEEE Trans. on Soft.
Engin., Vol 27(12):1085{1110, Dec. 2001.

[20] L. J. Morell. Theoretical insights into fault-based test-
ing. In Proc. of Workshop on Software Testing, Ver-
i�cation and Analysis, pages 45{62. Ban�, Canada,
1988.

[21] G. J. Myers. The Art of Software Testing. Wiley,
1979.

[22] A. O�ut. The coupling e�ect: Fact or �ction? In
Proc. of Workshop on Software Testing, Veri�cation
and Analysis, pages 131{140. 1989.

[23] R. Pressman. Software Engineering: A Practitioner's
Approach. McGraw-Hill, New-York, EUA, third edi-
tion, 1992.

[24] S. Rapps and E. Weyuker. Data
ow analysis tech-
niques for test data selection. In Proceedings of Inter-
national Conference on Software Engineering. Tokio -
Japan, September 1982.

[25] S. Rapps and E. Weyuker. Selecting software test data
using data
ow information. IEEE Transactions on
Software Engineering, SE-11(4):367{375, April 1985.

[26] E. Spinoza and et al. Chameleon: A generic tool for
genetic programming. In Proceedings of the Brazil-
ian Computer Society Conference. Fortaleza, Brazil,
August 2001.

[27] H. Ural and B. Yang. A structural test selection crite-
rion. Information Processing Letters, 28(3):157{163,
July 1988.

[28] E. Weyuker. Assessing test data adequacy through
program inference. ACM Trans. on Programming
Languages and Systems, Vol. SE-5(4):641{655, 1983.

SEARCH-BASED SOFTWARE ENGINEERING1350

A New Representation and Crossover Operator for
Search-Based Optimization of Software Modularization

Mark Harman and Robert Hierons

Brunel University,

Uxbridge, Middlesex, UB8 3PH.

fMark.Harman,Rob.Hieronsg@brunel.ac.uk

Mark Proctor,

CISCO Systems, 250 Longwater Avenue,

Reading, UK.

Mark.proctor@bigfoot.com

Abstract

This paper reports experiments with au-

tomated software modularization and re-

modularization, using search-based algo-

rithms, the �tness functions of which are

derived from measures of module granular-

ity, cohesion and coupling. The paper in-

trodeuces a new representation and crossover

operator for this problem and reports initial

results based on simple component topolo-

gies.

1 INTRODUCTION

It is well established in the software engineering com-

munity that good modularization of software leads to

system which are easier to design, develop, test, main-

tain and evolve. Given a set of program components,

there are many ways in which the module boundaries

can be drawn, each of which corresponds to a di�er-

ent `modularization' of the software. The problem is

a graph partitioning problem, which is known to be

NP hard and therefore seems suited to a metaheuris-

tic search-based approach.

Macoridis et al. [15] showed that the problem of modu-

larizing software can be reformulated as a search prob-

lem. Initially, they used an exhaustive search and

hill climber [15], but later experimented with a sim-

ple genetic algorithm [4] to search the space of possi-

ble modularizations. Mitchell [16] provides a survey

of work on modularization together with experience

using exhaustive search, hill climbing and genetic al-

gorithms. Mitchell reports that exhaustive search be-

comes impractical for networks of more than 15 com-

ponents. He describes the Bunch [14] a modularization

tool which uses a hill climbing approach to implement

search based modularization. The Bunch tool uses hill

climbing, rather than a genetic algorithm, because it

was found that the hill climber produced more consis-

tently high quality results [16]. Mitchell indicates that

the genetic approach requires more work.

This paper attempts to further explore the applica-

tion of genetic algorithms to the problem, and makes

two modest contributions to the application of genetic

algorithms to the modularization problem.

� We introduce a new representation which allows

only one representation per modularization.

� We introduce a new crossover operator which at-

tempts to preserve building blocks.

In our work, we were principally concerned with the

problem of reverse engineering a system whose mod-

ularization has degraded as the system is maintained.

For such a system some components may no longer

be in suitable modules and re-modularization of the

system might be appropriate. The granularity of a

modularization is the number of modules it uses. Our

problem is therefore to search the space of possible

modularizations around the current granularity to see

if there exists a better allocation of components to

modules.

The rest of the paper is organized as follows. Section 2

describes the approach adopted to formulating modu-

larization as a search problem. Section 3 presents the

results of applying the genetic algorithm to example

modularization problems. Section 4 presents related

work and Section 6 concludes.

2 REPRESENTATION, FITNESS

AND OPERATORS

The starting point for the application of search-based

techniques to software engineering is the de�nition of a

suitable representation, �tness function and operators
1

SEARCH-BASED SOFTWARE ENGINEERING 1351

[7]. This section introduces a new representation for

the allocation of components to modules and a new

crossover operator. We also describe our approach to

the de�nition of the �tness function, as this di�ers

from that used in previous work [15, 4, 16].

2.1 REPRESENTATION

The �rst problem which presents itself when attempt-

ing to formulate a software engineering problem as a

search-based problem, is that of representation. In

the case of modularization there is a need to iden-

tify each possible way of modularizing a system in a

unique way so that there is only one representation per

modularization. Non-unique representations of mod-

ularizations arti�cially increase the search space size,

inhibiting search-based approaches to the problem.

The approach we adopted was to normalize the rep-

resentation in the following way: Modules are num-

bered, and elements allocated to module numbers us-

ing a simple look-up table. Component number one is

always allocated to module number one. All compo-

nents in the same module as component number one

are allocated to module number one. Next, the lowest

numbered component, n, not in module one, is allo-

cated to module number two. All components in the

same module as component number n are allocated to

module number two. This process is repeated, choos-

ing each lowest numbered unallocated component as

the de�ning element for the module.

This representation must be renormalized when com-

ponents move as the result of mutation and crossover,

but it has the signi�cant advantage that a particular

allocation of components to modules has but one single

representation.

2.2 FITNESS FUNCTION

Following Constantine and Yourdon [2], approaches to

modularization typically attempt to maximize cohe-

sion and minimize coupling in line with software en-

gineering principles which indicate that this leads to

good quality results. Constantine and Yourdon de-

�ned seven levels of coupling and seven levels of cohe-

sion. These seven levels of cohesion provide a qualita-

tive measure of a systems overall cohesion and cou-

pling. Unfortunately the levels are of little use as

an input to a �tness function as they are too sub-

jectively de�ned. Lakhotia [10] formalised the seven

levels within a dependency analysis framework. This

work allows the levels to form the input to a �tness

function. However, Lakhotia's measure would yield

only a seven point scale, resulting in a �tness land-

scape which would be coarse and would, therefore, be

inappropriate for a search-based solution.

In this paper cohesion and coupling will be measured

simply in terms of dependencies between the compo-

nents of a module. The module's components will be

assumed to be a set of procedures, functions and vari-

ables. Dependence arises between procedure (or func-

tion) p and procedure (or function) p0 i� p calls p0.

Similarly, a dependence (or association) arises between

a procedure (or function) p and variable v i� p reads

from or writes to v.

The problem of �nding good modularization is there-

fore a graph theoretic problem of �nding subgraphs

with the maximum connectivity (cohesion), with the

minimal association between subgraphs (coupling),

and for a desired number of identi�ed subgraphs (tar-

get granularity).

Cohesion for a network is measured as the average

number of associations per module with respect to the

maximum possible number of associations. More for-

mally, let A be a function from modules to the number

of associations within the module. Let N be a func-

tion from a module to the number of components in

the module and let K be the number of modules in

the network. The cohesion C(m), of a module m is

de�ned as follows:

C(m) =

(
1 if N(m) = 1

A(m)
N (m):(N (m)�1) otherwise

The cohesion of the system, S containing K modules

is de�ned as follows:

Cohesion(S) =

P
m2S

C(m)

K

This value is renormalized to a percentage (by multi-

plying by 100), so that 100% indicates that all compo-

nents are related to all others within their own module.

The coupling un�tness
1, of the system is expressed as

the total number of inter-module associations divided

by the total number possible for the network. Cou-

pling �tness is simply the inverse of coupling un�tness.

Once again this is renormalized to a percentage, where

100% indicates that there is no coupling between mod-

ules.

In order to capture the additional requirement that the

modularization produced has a granularity not too dis-

similar to the current granularity, a polynomial pun-

ishment factor was introduced into the �tness function,
1
recall that coupling is considered to be bad, so it is to

be minimized, hence `un�tness'.
2

SEARCH-BASED SOFTWARE ENGINEERING1352

to reward solutions polynomially as they approach the

target value for granularity of the modularization.

The aim is to allow some deviation from the target

granularity, where this can allow dramatic improve-

ment in cohesion and coupling values for the overall

system, but to encourage the search to consider solu-

tions on and around the target granularity.

The granularity component of the �tness function is

calculated in terms of the actual granularity of the

modularization AG and the target granularity TG.

Once again this is normalized to a percentage, so that

100% represents the situation where the actual and

target values of granularity are identical. The value

of the actual granularity is allowed to range from 0

to twice the target granularity, which each of these

extreme values scoring zero �tness for the granularity

component of the �tness function.

The three �tness components: cohesion, coupling and

granularity are each given equally weight in computing

the overall �tness of the system.

2.3 CROSSOVER

To attempt to promote the formation, retention and

propagation of good building blocks [5, 23] within the

genetic algorithm, a crossover operator was de�ned

which attempts to preserve partial module allocations

from parents to children.

Rather than selecting an arbitrary point of crossover

within the two parents, an arbitrary parent is selected

and one of its arbitrarily chosen modules is copied to

the child. This results in a partial allocation of com-

ponents to modules in the child. The components al-

located are removed from both parents. This removal

can be thought of as a form of `pre-emptive repair' as it

prevents duplication of components in the child when

further modules are copied from one or other parent

to the child.

The process of selecting a module from a parent and

copying to the child is repeated and the components

copied are removed from both parents until the child

contains a complete allocation (that is, when both par-

ents have no modules left to copy).

This approach ensures that at least one (randomly cho-

sen) module from the parents is preserved (in entirety)

in the child, and that parts of other modules will also

be preserved.

A standard genetic algorithm was implemented with

single point crossover, to allow comparison with the

novel crossover operator.

Mutation was set to an unusually low value (after

crossover, an individual chromosome had only a 5%

chance of mutation). The population size was also rel-

atively low at 30 individuals, in keeping with prior

work [16]. This allows the possible e�ects of the

crossover operator to dominate our results, facilitat-

ing a comparison of the novel and standard crossover

techniques.

3 RESULTS

Figures 1 and 2, show the results of applying the two

genetic algorithms and hill climbing against a random

search baseline. The labellings are `Random' for the

random search, `HC' for the Random Mutation Hill

Climbing search, `GA' for the simple genetic algorithm

with standard single point crossover and `GA+' for the

genetic algorithm with the novel crossover operator.

Results are averaged over �ve separate runs for each

search algorithm to account for random e�ects.

The left hand section of the �gure shows the pa-

rameters for the problem and illustrates the com-

ponents and their associations, depicted in a man-

ner which suggests the `ideal' modularization (namely,

that which maximizes �tness).

The right-hand section of the �gure shows the corre-

sponding results for the three search-based algorithms,

together with random search (as a base-line perfor-

mance). The graphs plot average �tness (over �ve

runs) against generation number. Recall that �tness is

denoted by a percentage, where 100% is the maximum

�tness obtainable for a `perfect' modularization. A

perfect modularization has reached exact target gran-

ularity, no associations between modules and has ev-

ery component within a module related to every other

component. Such a perfect �tness may be prohibited

by the structure of the associations between compo-

nents and so 100% is not reached by any of the search

algorithms in some cases.

Figure 1 shows the behaviour of the search algorithms

when the target granularity is appropriate. That is,

the target granularity is set to the number of mod-

ules in the `ideal' modularization. Figure 2 shows the

behaviour when the target granularity is misleading.

3.1 APPROPRIATE TARGET

GRANULARITY

The results for these simple networks con�rm that

search-based algorithms outperform random search2

2
In the most simple problem (at the top of the �gure),

the genetic algorithm with the novel crossover technique is
3

SEARCH-BASED SOFTWARE ENGINEERING 1353

and that the gap between the search-based algorithms

and random search increases with the size of the prob-

lem.

As expected, GA+, the genetic algorithm with the

novel crossover operator outperforms the simple ge-

netic algorithm, GA, which uses a single point

crossover operator. However, the novel crossover

quickly becomes trapped by a local optimum.

For these simple networks, hill climbing outperforms

all other techniques. This is not surprising since

the genetic algorithms are focused upon the use of

crossover and allow very little mutation.

3.2 MISLEADING TARGET

GRANULARITY

The results for a selection of simple problems, where

the value of target granularity is set to a misleading

value were also collected and are depicted in Figure 2.

These results still show that the hill climber and simple

genetic algorithm out-perform random search and that

hill climbing is far superior, but they indicate a worse

performance for the GA+ search algorithm which em-

ploys the novel crossover technique. It is worth noting

that that GA+ still performs well where the modules

are very clearly de�ned by the associations (the third

case).

These results suggest that GA+ is more sensitive

to inappropriate choices of target granularity than

any of the other approaches. This sensitively can

be exploited, because it will suggest more radical re-

modularization for very badly degraded, heavily main-

tain software, where a complete repartitioning of the

system will produce better results than merely mov-

ing a few components between modules, or perhaps

adding or removing a module or two.

4 RELATED AND FUTURE WORK

The work reported here is most closely related to work

on the Bunch tool, by Macoridis et al. [15, 4, 16, 14],

who introduced the search-based approach to soft-

ware modularization. Macoridis et al. use a stan-

dard genetic algorithm with single point crossover and

a representation which allocates a module number to

each component. This representation has the draw-

back that it allows many representations of a single

modularization, for example the strings (1,1,2,1,2,3,3),

(3,3,1,3,1,2,2) and (2,2,3,2,3,2,2) all represent a mod-

ularization consisting of three modules, which places

worse than random, but in all other cases all search algo-

rithms are better than random.

components 1,2 and 4 in one module, components 3

and 5 in another module and which places components

6 and 7 in a third module.

The principal di�erence between our work and that of

Macoridis et al. lies in the novel crossover technique

and the instruction of a normalized representation for

the modularization problem.

A related problem of hierarchical decomposition of

software is considered by Lutz [13]. Lutz is concerned

with the problem of decomposition of software into hi-

erarchies at di�erent levels of abstraction, whereas the

present work is concerned with only a single level of

abstraction (the implementation level). Lutz therefore

considers designs rather than code. However, there is

no reason, in principle, why the approach adopted by

Lutz could not be also applied to the modularization

problem considered in the present paper.

The approach adopted by Lutz di�ers strongly from

the approach adopted in the present paper with regard

to the choice of �tness function. The �tness function

used by Lutz is based upon an information-theoretic

formulation inspired by Shannon [19]. The function

awards high �tness scores to hierarchies which can

be expressed most simply (in information theoretic

terms), with the aim of rewarding the more `under-

standable' designs. Such a �tness function is possibly

more semantic than the comparatively structural ap-

proaches adopted in the present paper and in the work

of Macoridis et al. More work is required to compare

the results produced by these two approaches.

Other work on software re-modularization has adopted

analytical solutions based upon formal concept analy-

sis and clustering metrics [9, 21, 11] and sets of heuris-

tic rules [18]. More work is required to assess the

comparative performance of these non search-based

approaches with the search-based strategy introduced

here.

Some metrics for coupling and cohesion [20, 17, 1, 8]

have attempted to give a more `continuous' real-valued

quantitative metric based on a variety of criteria, de-

rived from program slicing [3, 22, 6]. Using these met-

rics, it is possible to allocate weights to associations

between components. This would allow the search to

be more attuned to the relative impact of a particular

association between modules. This would be particu-

larly useful in systems where there are many associa-

tions, and so clustering based merely upon the pres-

ence or absence of an association becomes relatively

arbitrary.

In order to exploit association weights, a search based

clustering algorithm such as the GGA [12] is required.

4

SEARCH-BASED SOFTWARE ENGINEERING1354

Components = 9

Target Granularity = 3

Population = 30

Pmut = 5% 65

70

75

80

85

90

95

0 500 1000 1500 2000 2500

GA
GA+

HC
Random

Components = 12

Target Granularity = 4

Population = 30

Pmut = 5% 60

65

70

75

80

85

90

0 500 1000 1500 2000 2500

GA
GA+

HC
Random

Components = 24

Target Granularity = 3

Population = 30

Pmut = 5% 40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

GA
GA+

HC
Random

Components = 24

Target Granularity = 3

Population = 30

Pmut = 5% 40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

GA
GA+

HC
Random

Figure 1: Guiding Value for Target Granularity

5

SEARCH-BASED SOFTWARE ENGINEERING 1355

Components = 9

Target Granularity = 5

Population = 30

Pmut = 5% 74

76

78

80

82

84

86

88

90

92

94

0 500 1000 1500 2000 2500

GA
GA+

HC
Random

Components = 12

Target Granularity = 8

Population = 30

Pmut = 5% 68

70

72

74

76

78

80

82

0 500 1000 1500 2000 2500

GA
GA+

HC
Random

Components = 24

Target Granularity = 8

Population = 30

Pmut = 5% 55

60

65

70

75

80

85

90

0 500 1000 1500 2000 2500

GA
GA+

HC
Random

Figure 2: Misleading Value for Target Granularity

6

SEARCH-BASED SOFTWARE ENGINEERING1356

The GGA clusters n-dimensional nodes according to

the internode distance in the n dimensional space.

The modularization problem is a special case of this,

where the nodes are components and the distance is

the weight of association. In the present paper this

`weight' has simply been 0 (indicating no association)

or 1 (indicating the presence of an association). Us-

ing the GGA and slice-based measurement of cohesion

and coupling, a more `impact sensitive' approach can

be pursued. The authors intend to explore this possi-

bility in future work.

5 ACKNOWLEDGEMENTS

The authors bene�tted greatly from discussion of

earlier versions of this work with members of the

EPSRC-funded SEMINAL network. In particular,

Vic-Rayward Smith (at the University of East An-

glia, UK) pointed out the importance of a normal-

ized representation. The authors would also like to

thank Stephen Swift, Xiaohui Liu and Allan Tucker

(at Brunel) for helpful comments on this work and

for suggesting and o�ering the use of the GGA in fu-

ture work and Spiros Mancoridis and Brian Mitchell

(at Drexel) for detailed discussion about their BUNCH

system.

6 CONCLUSION

This paper makes a modest contribution to work on

the software modularization problem. Previous work

in this area has either not used search-based techniques

at all, or has largely been concerned with hill-climbing

and exhaustive searches.

We introduce a normalized representation for a soft-

ware modularization, which will reduce the size of the

search space and may improve results for genetic al-

gorithms which are known to perform poorly where

there is a many-to-one mapping from genotype to phe-

notype. We also suggest a new crossover operator

which is designed to promote the formation and re-

tention of building blocks. Initial work suggests that

this crossover technique may be better suited to ge-

netic approaches than standard crossover.

References

[1] Bieman, J. M., and Ott, L. M. Measuring

functional cohesion. IEEE Transactions on Soft-

ware Engineering 20, 8 (Aug. 1994), 644{657.

[2] Constantine, L. L., and Yourdon, E. Struc-

tured Design. Prentice Hall, 1979.

[3] De Lucia, A. Program slicing: Methods and ap-

plications. In 1st IEEE International Workshop

on Source Code Analysis and Manipulation (Flo-

rence, Italy, 2001), IEEEComputer Society Press,

Los Alamitos, California, USA, pp. 142{149.

[4] Doval, D., Mancoridis, S., and Mitchell,

B. S. Automatic clustering of software systems

using a genetic algorithm. In International Con-

ference on Software Tools and Engineering Prac-

tice (STEP'99) (Pittsburgh, PA, 30 August - 2

September 1999).

[5] Goldberg, D. E., and Sastry, K. A practical

schema theorem for genetic algorithm design and

tuning. In Proceedings of the Genetic and Evolu-

tionary Computation Conference (GECCO 2001)

(San Francisco, California, USA, 7-11 July 2001),

L. Spector, E. D. Goodman, A. Wu, W. B. Lang-

don, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,

S. Pezeshk, M. H. Garzon, and E. Burke, Eds.,

Morgan Kaufmann, pp. 328{335.

[6] Harman, M., and Hierons, R. M. An

overview of program slicing. Software Focus 2,

3 (2001), 85{92.

[7] Harman, M., and Jones, B. F. Search based

software engineering. Information and Software

Technology 43, 14 (Dec. 2001), 833{839.

[8] Harman, M., Okunlawon, M., Sivagu-

runathan, B., and Danicic, S. Slice-based

measurement of coupling. In 19th ICSE, Work-

shop on Process Modelling and Empirical Stud-

ies of Software Evolution (Boston, Massachusetts,

USA, May 1997), R. Harrison, Ed.

[9] Hutchens, D., and Basili, V. System struc-

ture analysis: clustering with data bindings.

IEEE Transactions on Software Engineering SE-

11, 8 (1985), 749{757. The use of cluster analysis

as a tool for system modularization is examined.

It appears that the clustering of data bindings

provides a meaningful view of system modular-

ization.

[10] Lakhotia, A. Rule{based approach to comput-

ing module cohesion. In Proceedings of the 15th

Conference on Software Engineering (ICSE-15)

(1993), pp. 34{44.

[11] Lindig, C., and Snelting, G. Assessing mod-

ular structure of legacy code based on mathemat-

ical concept analysis. In Proceedings of the 1997

International Conference on Software Engineer-

ing (1997), ACM Press, pp. 349{359.
7

SEARCH-BASED SOFTWARE ENGINEERING 1357

[12] Liu, X., Swift, S., and Tucker, A. Us-

ing evolutionary algorithms to tackle large scale

grouping problems. In Proceedings of the Ge-

netic and Evolutionary Computation Conference

(GECCO-2001) (San Francisco, California, USA,

7-11 July 2001), L. Spector, E. D. Goodman,

A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen,

S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and

E. Burke, Eds., Morgan Kaufmann, pp. 454{460.

[13] Lutz, R. Evolving good hierarchical decompo-

sitions of complex systems. Journal of Systems

Architecture 47 (2001), 613{634.

[14] Mancoridis, S., Mitchell, B. S., Chen, Y.,

and Gansner, E. R. Bunch: A clustering

tool for the recovery and maintenance of soft-

ware system structures. In Proceedings; IEEE In-

ternational Conference on Software Maintenance

(1999), IEEE Computer Society Press, pp. 50{59.

[15] Mancoridis, S., Mitchell, B. S., Rorres,

C., Chen, Y., and Gansner, E. R. Us-

ing automatic clustering to produce high-level

system organizations of source code. In Inter-

national Workshop on Program Comprehension

(IWPC'98) (Ischia, Italy, 1998), IEEE Computer

Society Press, Los Alamitos, California, USA,

pp. 45{53.

[16] Mitchell, B. S. A Heuristic Search Approach

to Solving the Software Clustering Problem. PhD

Thesis, Drexel University, Philadelphia, PA, Jan.

2002.

[17] Ott, L. M., and Thuss, J. J. The relation-

ship between slices and module cohesion. In Pro-

ceedings of the 11th ACM conference on Software

Engineering (May 1989), pp. 198{204.

[18] Schwanke, R. W. An intelligent tool for re-

engineering software modularity. In Proceedings

of the 13th International Conference on Software

Engineering (May 1991), pp. 83{92.

[19] Shannon, C. E. A mathematical theory of com-

munication. Bell System Technical Journal 27

(July and October 1948), 379{423 and 623{656.

[20] Thuss, J. J. An investigation into slice{based

cohesion metrics. Master's thesis, Michigan Tech-

nological University, 1988.

[21] van Deursen, A., and Kuipers, T. Identi-

fying objects using cluster and concept analysis.

Tech. Rep. SEN-R9814, Centrum voor Wiskunde

en Informatica (CWI), Sept. 1998.

[22] Weiser, M. Program slicing. IEEE Transactions

on Software Engineering 10, 4 (1984), 352{357.

[23] Wu, A. S., and Lindsay, R. K. A compari-

son of the �xed and
oating building block repre-

sentation in the genetic algorithm. Evolutionary

Computation 4, 2 (1997), 169{193.

8

SEARCH-BASED SOFTWARE ENGINEERING1358

Improving Evolutionary Testing by Flag Removal

Mark Harman, Lin Hu and

Robert Hierons

Brunel University,

Uxbridge, Middlesex, UB8 3PH, UK

Mark.Harman@brunel.ac.uk

Andr�e Baresel

and Harmen Sthamer

DaimlerChrysler AG, Research and Technology

Alt-Moabit 96a, D-10559 Berlin

Andre.Baresel@daimlerchrysler.com

Abstract

This paper argues that Evolutionary test-

ing can be improved by transforming pro-

grams with
ags into
ag free programs.

The approach is evaluated by comparing re-

sults from the application of the Daimler-

Chrysler Evolutionary Testing System to pro-

grams with
ags and their transformed
ag-

free counterparts. The results of this empir-

ical study are very encouraging. Programs

which could not be fully covered become fully

coverable and the number of generations re-

quired to achieve full coverage is greatly re-

duced.

1 INTRODUCTION

Evolutionary testing generates test data to cover cer-

tain structural program features, using evolutionary

algorithms to search the space of possible program

inputs. Evolutionary testing has been shown to be

an e�ective way of automatically generating test data

for white box (or structural) test adequacy criteria

[13, 21, 19, 15, 11]. The approach works well for well-

behaved programs, but for certain programming lan-

guage features the approach performs poorly.

One such problem arises with programs which use
ag

variables. A
ag variable is one whose value is ei-

ther true or false. Flags typically `
ag' the presence

of some special condition if interest. The use of
ag

variables with current approaches to �tness function

de�nition, yields a coarse �tness landscape with a sin-

gle super-�t plateau and a single super-un�t plateau

(corresponding to the two possible values of the
ag

variable). This causes the search to degenerate to a

random search. Where the super-�t plateau is small,

such a random search fails to �nd suitable test data,

reducing the coverage achieved by the approach.

Embedded systems, such as engine controllers, typ-

ically make extensive use of
ag variables to record

state information concerning the devices controlled.

Such systems can therefore be hard to test using evo-

lutionary testing approaches to automated test data

generation. This is a serious problem, since generat-

ing such test data by hand is prohibitively expensive,

yet the correct operation of such embedded systems is

clearly of paramount importance.

This paper presents a transformation-based approach,

which addresses the problem. The approach allows

certain forms of commonly arising
ags to be trans-

formed out of the program, thereby dramatically im-

proving the results of evolutionary testing. The rest

of the paper is organised as follows: Section 2 gives a

brief overview of evolutionary testing, while Section 3

explains the
ag problem. Section 4 describes our so-

lution to the
ag problem and Section 5 presents and

discusses the results of applying this solution to typical

ag-based programs.

2 APPLYING EVOLUTIONARY

ALGORITHMS TO SOFTWARE

TEST DATA GENERATION

Evolutionary testing designates the use of metaheuris-

tic search methods for test case generation. The input

domain of the test object forms the search space in

which one searches for test data that ful�ll the respec-

tive test goal. Due to the non-linearity of software

(if-statements, loops etc.) the conversion of test prob-

lems to optimisation tasks mostly results in complex,

discontinuous, and non-linear search spaces. Neigh-

bourhood search methods like hill climbing are not

suitable in such cases. Therefore, metaheuristic search

methods are employed, e.g. evolutionary algorithms,

simulated annealing or tabu search. In this work, evo-
1

SEARCH-BASED SOFTWARE ENGINEERING 1359

lutionary algorithms will be used to generate test data,

since their robustness and suitability for the solution

of di�erent test tasks has already been proven in pre-

ceding work [13, 21]. The only prerequisites for the

application of evolutionary tests are an executable test

object and its interface speci�cation. In addition, for

the automation of structural testing, the source code

of the test object must be available to enable its in-

strumentation.

In order to automate software tests with the aid of

evolutionary algorithms, the test goal must itself be

transformed into an optimisation task. For this, a

numeric representation of the test goal is necessary,

from which a suitable �tness function for evaluation of

the generated test data can be derived. Depending on

which test goal is pursued, di�erent �tness functions

emerge for test data evaluation. For structural testing

the �tness functions can be based on computation of

a distance for each individual that indicates how far it

is away from executing the program predicate in the

desired way [13, 21, 19].

For example, if a branching condition x==y needs to

be evaluated as true, then the �tness function may be

de�ned as j x�y j (provided that the �tness values are

minimised during the optimisation). Each individual

of the population represents a test datum with which

the test object is executed. For each test datum the

execution is monitored and the �tness value is deter-

mined for the corresponding individual.

The approach adopted in the work reported in the

present paper, used the DaimlerChrysler Evolutionary

Testing System. Multiple strategies and competitions

between these were used. All experiments used a pop-

ulation of 300 individuals split into 6 subpopulations

of 50 individuals. In order to combine the multiple

strategies, migration was introduced to permit an ex-

change of the best individuals between subpopulations

at regular intervals. The details of the implementation

of the evolutionary approach to software testing are de-

scribed elsewhere [13, 21, 19, 20]. In the present paper,

the focus is upon the way in which transformation can

be used to improve the behaviour of these established

techniques.

3 THE FLAG PROBLEM

A
ag variable will be taken to mean any variable, the

type of which is boolean, but the transformations pre-

sented here may well extend to other variables which

are assigned one of a small number of possible scalar

values.

Generating test data using evolutionary testing [10,

20, 19, 15, 11] has been shown to be successful. How-

ever, evolutionary testing relies upon a �tness func-

tion which uses the predicate which controls a branch.

Where such a predicate is simply a reference to a

ag variable, the search has little information to guide

it, making the evolutionary technique perform poorly.

More precisely, using an evolutionary algorithm, the

presence of
ag variables (and unordered enumeration

types in general) can create a coarse �tness landscape.

This reduces the e�ectiveness of the search. That is,

the �tness landscape consists of two plateaus, corre-

sponding to the two possible
ag values. One of these

plateaus will be super-�t and the other super-un�t. A

search-based approach, such as evolutionary testing,

will not be able to locate the super-�t plateau any

better than a random search, because the �tness land-

scape provides no guide to direct the search from un�t

to �t regions of the landscape. Where the �t plateau

may be very small relative to the un�t plateau, this

makes the program hard to test. A similar problem

is observed with n{valued enumeration types, whose

�tness landscapes contains n discrete values, as n be-

comes larger the program becomes progressively more

testable, as the landscape becomes progressively more

smooth and therefore, more guidance is available.

Figure 1 illustrates the transformation approach to the

ag variable problem. The original program (in col-

umn (a)) is hard to test using currently de�ned �tness

functions for evolutionary testing. The �rst dotted

section indicates code which does not assign to n, the

second dotted section of code does not assign to flag.

Suppose n is an unsigned integer value. The value of n

required to cause the second conditional to follow the

true branch must be odd and less than four, namely

it must be either 1 or 3. Random testing is very un-

likely to `stumble' across these two values, so a more

intelligent search is required. This is where evolution-

ary testing could help. Unfortunately, the presence of

the
ag variable inhibits the search, because the �tness

landscape is insuÆciently smooth to guide the search.

Therefore, it is diÆcult to cover both branches of the

�nal if statement.

4 A TRANSFORMATION-BASED

SOLUTION

A program transformation [5, 16, 17, 2] is a rule which

de�nes the way in which a program can be modi�ed. It

can be thought of as a function from program syntax to

program syntax. Some transformation rules have side

conditions. These are conditions which must be true

for the transformation to be correct. As a simple ex-
2

SEARCH-BASED SOFTWARE ENGINEERING1360

flag = n<4;

...

if (n%2==0) flag = 0; flag=(n%2==0)?0:(n<4); n
0 = n; n

0 = n;

flag=(n0%2==0)?0:(n0<4); flag=(n0%2==0)?0:(n0<4);

...

if (a[i]!='0' && flag) if (a[i]!='0' && flag) if (a[i]!='0' && flag) if (a[i]!='0' &&

(n0%2==0)?0:(n0<4))

...

(a) Original (b) Single
ag assignment (c) Independent Assignment (d) Flag removed

Figure 1: Flag Removal

ample, consider the simple transformation rule `reverse

if' which reverses the branches of an if-then-else

statement, and negates the predicate. This transfor-

mation produces an equivalent program while altering

the structure of the original. Such a transformation

will be denoted like this1:

if E then S1 else S2

)
if not(E) then S2 else S1

Many transformation rules are extremely simple. On

their own they achieve little of value. However, when

combined into sequences of transformations, or into

mini-programs, called transformation tactics, the com-

bined e�ect on the program under consideration can be

startling. A set of transformation tactics is typically

collected together into a transformation strategy; an

algorithm for manipulating the subject program into

a semantically equivalent, but more syntactically and

structurally amenable form.

Transformation has been applied to many problems

including automatic parallelization [12, 23] program

comprehension [3, 18, 9], reverse and re-engineering

[16] and eÆciency improvement [1]. In this paper

transformation will be used to remove the
ag prob-

lem, by transforming predicates which contain
ags

into
ag-free predicates.

Our approach to the
ag problem will be to trans-

form a
ag-based program into an equivalent
ag free

version. The transformations we use will preserve the

branches of the original program, so that test data will

achieve branch coverage for the original program if and

only if it does so for the transformed program. This

allows us to replace the (harder) problem of generating

test data for the
ag-based program with the (easier)

problem of generating test data for the transformed,

ag-free version. Once we have generated the test data

1In general, this paper will adopt the convention that
A) B denotes the fact that code fragment A can be
transformed to code fragment B.

(using the transformed program) we have no further

need of the transformed
ag-free program, and it is

discarded. This application of program transforma-

tion di�ers from conventional transformation in this

regard: For us, transformation is a means to an end,

rather than an end in itself. The transformed program

is of use only to the evolutionary testing system and

is never presented to the human.

Consider, the program from Figure 1. The version in

column (d) is equivalent, but easier to test because

the use of the
ag variable flag has been replaced

by an expression which denotes its value at the point

of use. Thus, this version of the program produces

a smoother �tness landscape at the second predicate,

thereby guiding the search toward the two �ttest val-

ues sought. Columns (b) and (c) show the intermedi-

ate transformation steps required to reach the result

in column (d). In column (b) assignments to the
ag

variable have been collected together. In column (c) a

temporary variable, n0, is used to capture the current

value of the variable n. Finally, in column (d) the ex-

pression denoting the value of flag is substituted for

the single use which it reaches.

Unfortunately, space restrictions prevent a full treat-

ment of the
ag removal algorithm. Figure 2 presents a

sketch of the algorithm. One transformation step that

we found particularly useful is that known as `program

slicing' [22, 14, 6, 8], and in particular its amorphous

formulation [7]. Slicing removes parts of the program

which cannot a�ect a particular variable of interest.

Slicing is useful in
ag removal, because it allows us to

isolate the code that captures the computation on the

ag variable.

5 RESULTS

The DaimlerChrysler Evolutionary Testing system was

used to generate test data for
ag-based programs and

these results were compared with those obtained from

running the testing system with identical parameters

on the transformed,
ag-free versions of the programs.
3

SEARCH-BASED SOFTWARE ENGINEERING 1361

In this section we present three indicative experiments,

which illustrate various incarnations of the
ag prob-

lem and the e�ect upon evolutionary test data gener-

ation of their removal. The �gures show the results

obtained on the left hand side against the relevant

fragments of the corresponding programs on the right-

hand side. The program fragments are shown to illus-

trate the particular
avour of
ag problem considered.

However, when using the system, the human need not

be aware either of the
ag-free version of the program,

nor indeed of the evolutionary process itself. The user

simply submits a program (possibly with
ags) and

obtains a set of optimised test data.

The results plot the coverage achieved (for six separate

executions of the evolutionary testing systems) against

the number of �tness evaluations. They are therefore

a measure of e�ectiveness against e�ort.

A test goal consists of attempting to optimise test data

to cover a particular branch. The coverage for each

trial therefore increases in steps, as each test goal is

satis�ed. In all examples we present, a test set which

achieves full branch coverage exists (there are no in-

feasible branches).

5.1 Triangle Classi�cation Program

The classify triangle program is widely used as a

benchmark in software testing. The program has three

variables (a, b and c), which represent the side lengths

of a �gure. The goal of the program is to determine

whether the three side lengths represent a triangle, and

if they do, to categorise the triangle type.

Input values are double values within range -1000 to

20000 with a precision of 0.00001. This gives a search

space of size of approximately 1027. We experimented

with two versions of the a `Validity check' program

and a `Special Value' program. These two variants of

the triangle program illustrate the range of diÆculty

introduced by
ags from none (Validly Check) through

to severe (Special Value). The results for each variant

are shown in Figures 3 and 4.

In the `Validity Check' variant, the
ag is assigned a

value which represents a set of validity checks on in-

puts. There are many sub-criteria (boolean terms),

many inputs which satisfy each sub-criteria and many

which fail to satisfy each. Therefore, the �tness land-

scape does not contain a small high �tness plateau.

Furthermore, each of the sub-criteria is also checked

later on in the program by a separate conditional and

so each sub-criteria also forms a separate test goal. In

this situation the presence of
ags presents no diÆ-

culty.

By contrast the `Special Value' variant of the trian-

gle program represents the worst form of
ag-based

program. The
ag variable is set to true by only very

few inputs, creating a tiny plateau of high �tness. Fur-

thermore, the sub-conditions mentioned in the boolean

expression assigned to the
ag variable are not tested

anywhere else in the program. In such a situation evo-

lutionary testing degenerates to random testing.

The results show that for the `Validity Check' version

of the program, the removal of
ags makes practically

no di�erence, with all trials reaching maximum �tness,

and with all doing so with a similar spread of e�ort.

On the other hand, the `Special Value' variant shows

how bad the
ag problem can be. After 40,000 �tness

evaluations, none of the trail runs has risen above a

coverage of .86 and after 120,000 evaluations none has

risen above 0.92. No trial reached the maximum pos-

sible �tness. However, for the
ag free version, after

only 25,000 �tness evaluations, all of the trail runs has

reached a coverage of more than 0.86 and after only

80,000 evaluations all have reached maximum possible

coverage (1.0).

5.2 Calendar Program

The calendar program computes dates, but takes ac-

count of special days and date corrections which have

taken place throughout the centuries. These special

dates are denoted by
ags in the program.

In 1751, the British Parliament passed

\An Act for Regulating the Commencement

of the Year, and for Correcting the Calendar

Now In Use."[4]

The act became known as the `Calendar Act'. One of

the aspects of this act was that the date of Septem-

ber the 2nd, the following year was to be immediately

followed by September the 14th. An decision which

caused much consternation and a demand for the re-

turn of the `stolen 11 days'. These stolen days form a

special case in the calendar program which is denoted

by a
ag.

The calendar program is a typical
ag-based program

which tests for an `unusual' condition and sets the

value of a
ag according to this test. This is typical be-

cause
ags often test for exceptional cases. That is, the

value assigned is far more likely to take one of the two

possible values than the other (because the condition

tested is `unusual'). In this case, the program contains

10 character variables, which take values within range

0 to 10. This gives a search space of approximately

1010, with a
ag representing the 11 stolen days.
4

SEARCH-BASED SOFTWARE ENGINEERING1362

The results of evolutionary test data generation for

the calendar program, together with the relevant frag-

ments of code are shown in Figure 5. The
ag-free code

has been simpli�ed for readability. The actual trans-

formed program produced by the
ag-removal algo-

rithm contains many temporary variables. Of course,

the fact that the transformed version has poor read-

ability is not an issue for this work (unlike most work

on transformation) because the transformed program

is not read by a human.

The results show that
ag removal helps in this in-

stance, because all of the runs achieve the maximum

possible �tness using the
ag-free version, while none

does so using the original program. It can also be seen

from the growth of coverage for each run, that using

the
ag-free version we obtain higher coverage, faster

than using the
ag-based version.

6 CONCLUSION

This paper has introduced a transformation-based ap-

proach which improves evolutionary testing in the

presence of
ag variables. Flag variables inhibit the

successful application of evolutionary techniques to au-

tomated structural software test data generation. The

transformation based approach, removes the reliance

upon
ag variables, thereby improving both the time

to produce test data and the coverage achieved.

Flag variables are very common in embedded sys-

tems. The correct behaviour of these systems is also

a paramount concern because they control real-world

devices, the failure of which can lead to severe con-

sequences. The results presented show that
ag re-

moval works well, when applied to typical
ag-based

programs.

7 ACKNOWLEDGEMENTS

The authors bene�tted greatly from discussion of this

work with members of the EPSRC-funded SEMINAL

network.

References

[1] Aho, A. V., Sethi, R., and Ullman, J. D.

Compilers: Principles, techniques and tools. Ad-

dison Wesley, 1986.

[2] Baxter, I. D. Transformation systems:

Domain-oriented component and implementation

knowledge. In Proceedings of the Ninth Workshop

on Institutionalizing Software Reuse (Austin, TX,

USA, Jan. 1999).

[3] Bennett, K., Bull, T., Younger, E., and

Luo, Z. Bylands: reverse engineering safety-

critical systems. In IEEE International Con-

ference on Software Maintenance (1995), IEEE

Computer Society Press, Los Alamitos, Califor-

nia, USA, pp. 358{366.

[4] Calendar Act. Calendar Act, Anno vicesimo

quarto George II, cap. xxiii., 1751.

[5] Darlington, J., and Burstall, R. M. A

tranformation system for developing recursive

programs. J. ACM 24, 1 (1977), 44{67.

[6] De Lucia, A. Program slicing: Methods and ap-

plications. In 1st IEEE International Workshop

on Source Code Analysis and Manipulation (Flo-

rence, Italy, 2001), IEEEComputer Society Press,

Los Alamitos, California, USA, pp. 142{149.

[7] Harman, M., and Danicic, S. Amorphous pro-

gram slicing. In 5th IEEE International Workshop

on Program Comprenhesion (IWPC'97) (Dear-

born, Michigan, USA, May 1997), IEEE Com-

puter Society Press, Los Alamitos, California,

USA, pp. 70{79.

[8] Harman, M., and Hierons, R. M. An

overview of program slicing. Software Focus 2,

3 (2001), 85{92.

[9] Harman, M., Hu, L., Zhang, X., and

Munro, M. Side-e�ect removal transformation.

In 9th IEEE International Workshop on Program

Comprehension (IWPC'01) (Toronto, Canada,

May 2001), IEEE Computer Society Press, Los

Alamitos, California, USA, pp. 310{319.

[10] Jones, B., Sthamer, H.-H., and Eyres, D.

Automatic structural testing using genetic algo-

rithms. The Software Engineering Journal 11

(1996), 299{306.

[11] Pargas, R. P., Harrold, M. J., and Peck,

R. R. Test-data generation using genetic algo-

rithms. The Journal of Software Testing, Veri�-

cation and Reliability 9 (1999), 263{282.

[12] Ryan, C., and Walsh, P. The evolution of

provable parallel programs. In Genetic Program-

ming 1997: Proceedings of the Second Annual

Conference (Stanford University, CA, USA, 13-

16 July 1997), J. R. Koza, K. Deb, M. Dorigo,

D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,

Eds., Morgan Kaufmann, pp. 295{302.
5

SEARCH-BASED SOFTWARE ENGINEERING 1363

[13] Sthamer, H. The Automatic Generation of

Software Test Data Using Genetic Algorithms.

PhD thesis, University of Glamorgan, Pontyprid,

Wales, Great Britain, 1996.

[14] Tip, F. A survey of program slicing techniques.

Tech. Rep. CS-R9438, Centrum voor Wiskunde

en Informatica, Amsterdam, 1994.

[15] Tracey, N., Clark, J., and Mander, K. The

way forward for unifying dynamic test-case gen-

eration: The optimisation-based approach. In

International Workshop on Dependable Comput-

ing and Its Applications (DCIA) (January 1998),

IFIP, pp. 169{180.

[16] Ward, M. Reverse engineering through formal

transformation. The Computer Journal 37, 5

(1994).

[17] Ward, M., and Bennett, K. A practical pro-

gram transformation system. In Working Con-

ference on Reverse Engineering (Baltimore, MD,

USA, May 1993), IEEE Computer Society Press,

Los Alamitos, California, USA, pp. 212{221.

[18] Ward, M., Calliss, F. W., and Munro, M.

The maintainer's assistant. In Proceedings of

the International Conference on Software Main-

tenance 1989 (1989), IEEE Computer Society

Press, Los Alamitos, California, USA, p. 307.

[19] Wegener, J., Baresel, A., and Sthamer,

H. Evolutionary test environment for automatic

structural testing. Information and Software

Technology Special Issue on Software Engineering

using Metaheuristic Innovative Algorithms 43, 14

(2001), 841{854.

[20] Wegener, J., and Grochtmann, M. Verifying

timing constraints of real-time systems by means

of evolutionary testing. Real-Time Systems 15, 3

(1998), 275 { 298.

[21] Wegener, J., Sthamer, H., Jones, B. F.,

and Eyres, D. E. Testing real-time systems us-

ing genetic algorithms. Software Quality 6 (1997),

127{135.

[22] Weiser, M. Program slicing. IEEE Transactions

on Software Engineering 10, 4 (1984), 352{357.

[23] Williams, K. P. Evolutionary Algorithms for

Automatic Parallelization. PhD thesis, Univer-

sity of Reading, UK, Department of Computer

Science, Sept. 1998.

6

SEARCH-BASED SOFTWARE ENGINEERING1364

The essential aim of the algorithm, is to reduce a program with
ags into one with a single assignment to the
ag
variable, which can be substituted for the use, within a predicate under test. For example:-

flag = a==0; flag = a==0;

... /* no assignments to flag or a */)

... /* no assignments to flag or a */

if(flag) . . . if(a==0) . . .

Where there is a single assignment, which cannot be substituted because of the presence of intervening assignments
to other variables needed by the de�nition of the
ag variable, temporary variables are used to reduce the problem
to that previously considered. For example:-

Ta = a; Ta = a;

flag = a==0; flag = a==0; flag = a==0;

...
...

...
a=a+1;) a=a+1;) a=a+1;

...
...

...
if(flag) . . . if(flag) . . . if(Ta==0) . . .

Where there are multiple assignments, these are gathered together into a single assignment, which can then be
handled by the approach above. For example:-

x = y+1; x = y+1; x = y+1;

y = x*2; y = x*2; y = x*2;

flag = x>y;) flag = x>y;) flag=x>y || (y+x>y) ==0;

y = y + flag; flag=flag || (y + flag) ==0; x = y*x;

flag=flag || y ==0; x = y*x;

x = y*x;

Where the multiple assignments to the
ag variable occur on di�erent branches in an acyclic control
ow graph which
de�nes the
ag variable, these are transformed into conditional assignments, which can then be treated using the
approach above.

Figure 2: Sketch of the Flag Removal Algorithm

Version with a
ag

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10000 20000 30000 40000 50000 60000 70000 80000

Co
ve

ra
ge

Fitness Evaluations

returnflag = (a==0 || b==0 || c==0) ||

(a>10000 || b>10000 || c>10000) ||

(c>=a+b) || (a>=b+c) || (b>=a+c);

.

.

.

if (returnflag) return;

Transformed,
ag-free, version

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10000 20000 30000 40000 50000 60000 70000 80000

Co
ve

ra
ge

Fitness Evaluations

.

.

.

if ((a==0 || b==0 || c==0) ||

(a>10000 || b>10000 || c>10000) ||

(c>=a+b) || (a>=b+c) || (b>=a+c))

return;

Figure 3: Results for the `Validity Check' Triangle program

7

SEARCH-BASED SOFTWARE ENGINEERING 1365

Version with a
ag

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 20000 40000 60000 80000 100000 120000

Co
ve

ra
ge

Fitness Evaluations

returnflag = (a==99999 || b==99999 || c==99999) ;

.

.

.

if (specialflag) return;

Transformed,
ag-free, version

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 20000 40000 60000 80000 100000 120000

Co
ve

ra
ge

Fitness Evaluations

.

.

.

if ((a==99999 || b==99999 || c==99999))

return;

Figure 4: Results for the `Special Value Check' Triangle program

Version with a
ag

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100000 200000 300000 400000 500000 600000 700000 800000

Co
ve

ra
ge

Fitness Evaluations

.

.

.

/* date correction for september 1752 */

if(special days)

result = "Day did not exist.";

else

if (leap
ag && is september && day>13)

result = dayName((addMonths(month,year)+(--day)

+firstJanuary(year)+10)%7);

else

.

.

.

Transformed,
ag-free, version

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100000 200000 300000 400000 500000 600000 700000 800000

Co
ve

ra
ge

Fitness Evaluations

.

.

.

/* date correction for september 1752 */

if(year = 1752 && month==9 && day >=3 && day <= 13)

result = "Day did not exist.";

else

if (year = 1752 && month==9 && day>13)

result = dayName((addMonths(month,year)+(--day)

+firstJanuary(year)+10)%7);

else

.

.

.

Figure 5: Results for the Leap Year Program

8

SEARCH-BASED SOFTWARE ENGINEERING1366

���������	�
��
��
������������������
�����������������������
�����������
��
��

���
���
�����
�����
����������
����������

���������	
��
����	�����������	��������	�����

�����	��	�������	�����������	�	�����
���

���������
�	��������
�
�����	��� ��	!����

���������
��	�!"	#�$
�%

 !������

$���	 �����	 �����
�	 ��	
��	 ���	 ��	 ������

�����&���	
�	 ����	 ��
�����	 �	 ����'(���
���������)���*	���
��	 ���	��� ��
���	 ���
����
���+��
	 �����
,	 	 -	 ��+��	 ���(����	 ������	
�
�������	 ��������).�*	
�����&���	 ��	 ��������
���	 (���	 ������	 ��
�	 �����	 ���(���	 ��	 ����
���
�����	����	��	�����	���	��� ��	
��	��� ��
���
�������,	�����
���
���	���������	���	
��	��
����
���
���	 ��(��
	 ��	 �	 ���(���
�����	 ���(���	 ��

��������	/0'��� ,		$���	�����	�1������	
��	���
��	 ��� ��	 ����������	 ����	 ����(���	 �� 	 ������
��&���
���	�����
���)2

*	
�	
��3��	
���	���(���,
�����
�	 ����	 �1�������	 �	 ��
	 ��	 ����	 ���
����
���+��
	 �
�	 ����	
��
	 ����	 ��� ��	 ���������
���	 (�

��	
���	 �����	 ���	 ������(��	 ���
����
)�������	 �����	 #4,56	 ��
���	
���	 47,86*,	 	 !���
����(���	 �� 	 2

	 (�
�	 ��� ��� 	 �����
�
��(�
��
�����	(�

��	
���	
��	��� ��	������)"4,#
�� 	 "#,"6	 ������
�����*�	 (�
	 2

	 ���
�����
�
�������	 ����	 ��������
,	 	 0���� ���	 �
 ������
���	��	
��	��
����	��� �����	��	�	���(���
�����	 ��
�	 ������	 �����
�	 ��	 �	 �
��	
���� �	
��
����������
���	 ��	 ������	 ���(����	 �� 	
����
���������
	
�	��
����	������	
�����&���,	 	$���
�����	 �

���
�	
�	 �����(�	
��	 ��
����	 ��� �����
��	
���	 ���(���	 (�	 ���(�����	
��	 �����
�	 ����
��� ��	 ��������	 �� 	 ����	 ����(����	 ��	 ����	 ��
�����	 ���
�' ����������	 �������	
�	 ��
���������
���,	 	 -�����
	 �
���	 ��� �����	
��
���������
���	 �����
�	 ������
	
��
	 ����	 ����	 ��
������
��'(��� 	 ���
������
���	 ����
	 �����	 ������
���	
���	���(���,

"� � ��#�$%&'�($���$���(
�))$�(����'*�(*$&

-�	�����
��
	���(���	��	
��	���� 	��	���
����	�����������
��	 ��� ���	 ���	 (��
	
�	��3�	 ��� ��
����	 ����������	 ��9�
���	�� 	�����
	��&���� 	����	���
����	 ���������
	���+��
�,

$����	��� ��
����	���
	(�	�� �	�
	��	�����	�
���	 �����	�
���+��
�	 ���3���	 ���������	 ����	 �����(���
�	 ��
��&�������
�	 ���������
���	 ������
�,	 	 �����
�	 �
����������
	 �����
	 ��	 ��������	 �����
	 ����	
��	 ���
	 #7
������	 ��	 ���	��
�� 	 ���	 (���	 ���� 	
�	 (�	 ������
��
��
�����
���,

�����	 ��� ��
���	
�����&���	 ����	 ��	 �����:�	 �;�;.;
��� ��
���	 ���
��)�����	 "<8=*)�� 	 ����	 �����

������
�*	 ����	 ������
���	
��
	 �����
	
�	 ����
�	 ��� ��
�
������	 �� �	 ��9�	
���
���	 ��
�	 �	 �����	 ���(��	 ��	 ���

 ������	
�	 �����
	 �� 	 �������	 ���
���,	 	 �����
���
����

����	 ��	 ��

��	 �� ���� ��
	 ��� ����	
��
	
���	
���	 ��
���������	 ��������	 ���� �	 ������
��
��	 ������	 �����
�,	 	 >

���� 	 ����	
��
	 ����
�	
��	 ���
	 ������	 �� 	 �������
������
���	�;�;.;	��	����	� ��
� 	
�	
��	 �
�	��
	����
�����	 �
	���	 ������� ,	 	-�
����
���	 ����������	 ����� �

��	 ���	 ��	 ������	 �
�
��
����	
�����&���	 ����	 ��	 �
������
����������	
�	 ������	 �� ���	
��
	 ����	 �����	 ��� ��
���
�����	 �����	 ���	 ���
����)%�3�	 %�
�������	 ��� ���	 "<<7*,
.���	 �����
��	
����	 ���	 (���	 ����� ���(��	 ��
����
	 ��	 �
�����
�	��	.�	��
�� �	
��
	���	
����� 	��	�����	 �
�,		$���
���	����� � 	���3	��
�	��
�������	������	��
��	���	�1�����
)2������	 ?�

��	 ��� ���	 "<<@*�	 ����	 �� ��
���	 ������
���
).����	 %� � �	 ��� ���	 A777*	 �� 	 ����
��	 �����������
���
���	
�	������	 ���	 ����
����	
��
	 ��
	
��	 �
�)�������
�� 	 ������	 A77"B	 ���� �	 A77"*,	 	 ?����
	 ����	 &��
�
������
�	 �����
�	 ����	 (���	 �����
� �	 ���	
����	
�����&���
������	 ����	
��	 ���(���	 ��	 ����	 �1�����
���	 �����,	 	 >�
�
���	��� �	
���	���	�(��	
�	����� �	�	��� ��
���	(�
	��

�����������	�����	�	+��
�����
���	
��
	��	�������	���	�	���+��

�������	 ���	 ����	 ��� �	 ��	 ����	 ������	
�	
���
	
��
��� ��
���	 ��	
����	
�����&���	 ���	
�	 (�	 ������ 	 ��
����
���,	 	-��
���	.�	
�����&��	 ��	����'(��� 	 ���������
)���*,		$���	���	��	� ���
���	��	
��
	
����	��	��(�
��
���
��� ����)%����	"<<8*	
��
	������	��3�	���	��	���������
��	���
�
����	����	�������	���(����,

$��	������ ��	��	
���	�����	��	�������� 	��	�������,		$��
��1
	���
���	�������	
��	���	��	���	���	�����
	��� ��
���,
?�	
���	 � ����	
��	 ���
���	 ��(��
	 �����
���	 ���(���
�����	 ������	 ���
������	 �������
���	 ���	 ���(����
������
����� 	(�	�����	���(���	��	���
�����	���	�����	��

SEARCH-BASED SOFTWARE ENGINEERING 1367

����
� 	 �����	 �� ���
�� ���,	 	 ?�	 (������	 ������	
��
�����	 ��	 ����������	
�	 ���
���	 ��(��
	 �����
���	 �� 	 ��
���
������	���	�
	���	(�	����� 	��	�	������	���(���,		?�

���	
���	
�	���	�����
	��� ��
���	����	�
� �	�� 	����	
��

���
���	 ��(��
	 �����
���	 ���
��(�
��	 ����������
��	
�
��� ��
���	��������	���	���	���	��������,		?�	�������

����	 ������	
�����&���C	 ��� ���	 �
�����
	 �����
	 ����
����(���	�� 	������ 	��&���
���	�����
���,		/�1
	��	
��	
�
�1�����	 ���	 �����
�	 ��	
����	 ��	
��	 ��
����	 ��� �����	 ��

��	 ���(����	 ��	 ���������
���,	 	 ?�	 ������ �	 ��
�	 �
 ���������	��	
��	������������	��	���	�����
��	
��	�1
��
	
�
�����	
���	 ����
	 (�	 ���������� 	 �� 	 �����	 ��&������
���
���	�����
���
���,

+� � ���� ��'��� �$&*&#

-	 ���(��	 ��	 ��������	 ������	 ����� ���	 ���������	 ����
(���	 �����
���
���	 ��������	 ���	
�	 ���
����	 ���+��

��� ��
���	�����	
��	�� 	"<<7�)0���
����	D�������9�	������
"<<5B	
������ �	
������� 	 ��� ���	 "<<5*,	 	 $��	 (����
��������	��	
��
	����	������
� 	���+��
	��	����� ��� 	��	�
������
�	 ����	 �� 	 � � 	
�	 �	 ����	 (���,	 	 ����	 ����	 ��
������
����� 	 (�	 �	 ���
����	 �����	 ����
	 (�	 ���
�������
 �����
�	 ��	 ��
��������,	 $��	 ������	 ��	 ���
����	 ��
�������
	 ��(�
����	 �� 	 ����	 ���� 	 ����	 ���
	 ��
������(��,		�1�����	���
����	����
	����� �	
��	���(��	��
��
��������	
��	�����	��	�� �	�����	�� 	
��	 �����	��
��
������� ,	 ��������	 �	 ��&�������
	 ��	
��
	
����	 ���
����
���
	 (�	 3����)��	 �����(��	 ��
���
� *	 �
	
��	
���	 ��
��� ��
���,	 	 -	 ���	 ���+��
�	 ���	 �����	 �	 ��� ��
���	 ��
��&����)3����	��	
��	
����
	����*�	 ��	����	������
�����
(�	
��	 ����	 ���
���	 ��
	 �� 	 ���

� 	 ��	 �
�� �� ��� 	 �'
 ����������	 ���
���	 �����,	 	���
�����	 �������	 �	�� ����
����	 ��	 ����� ���	 ��
�����	 ��	 ��� 	
�	 � ��
���	
��	 ���

�������	 �����	
�	
��	
����
	 �� 	
�����	 �����	
���	 ����
3����	 ������	 ���	 �����
�	 ���	 ��� 	 ��	
��	 (����	 ��	
��
��� ��
���, 	

$����	����	(���	����	 ����������	��	��������	��	���	
��
���������	���	��� 	
�	�������
�	
��	��� ��
����	���	���
����
0���
���	 ��� ���	 ��3�	 ��(�
��
���	 ���	 ��	 � ��
�
���	 �����
�����
	���	���3	��	������	
�	�	�	������
	�����(���)�'//*
��
�� ,		?�	(������	���	��������	
�	����	
��	� ���
���
��	 (����	 ����	 ���1�(��	 �����	 ��	 ���	 ��
	 ���
���
� 	
�	 �
���
������	 ��
	 ��	 ���
����	 �����	 ��	 �	 ��&�������
	 ���
� ��
�
���	 �����,	 	 2��	 �	
�������	 ������	 ��	 ���	
��
��� ��	��	������� 	
�)%��� ���	"<<#*,

$��	 ���1�(���
�	 ��	
��	 �'//	 ��������	 ���(�� 	 ��	
�
 ������	-/����	�	���
����	��
���
���	���	
���	
��
	���
�	�����	�
���
���	
��
	���	 ���	��
�	��(�
����	��
�	�� 	
����
��	 ���
����,	 	$��	-/���	
���	��3��	�	��� ��
���	 ��	
��
���������	���,	 	-�	 �����(� 	�(����	
����	 ��	 ��	 �1��
���
����	 (���	 ��	 ���+��
�	 ����	 ������
����� 	 (�	 �	 ��
	 ��	 �
���
����	 �� 	 ���	 �����	
��	 ��
���	 �����
	 �����	 ��	 3����,
$��	
����
	����	��	����	������
����� 	��	
����	��	
��	����
��
	��	���
����,		$��	���
���	�����	��	����
� 	��	����	�	���

��
	
��	���������	��	�	���
���	��	��
	����
� 	
�	
��	������
��	 ���
,	 	 $���	 ��	 ������� 	 (�	 �����������	
��	 ���������
(�
����	��1����	�� 	�������	�(�����
����	��	
��
	���
������	 ���	 (�
����	 7	 �� 	 ",	 	 $���	 �����
�	 ��	
��	 ���
���

�����	 (����	 ��������
� 	 ��	 �	 ���
'�� � 	 �	 ����������
�����'��(�,	 	 	$��	����� ���	 ��
����	 (�
����	
��	
����

����	 �� 	 ����	 ��	
��	 �
���	 �����	 ��	 �������
� 	 �� 	
��
������
	 �	 �����	 � ��
���� ,	 	 $��	 ��� ��
� 	 �����
�	 ���	
��

����
	 ����	 ��	
���	
��	 �������)��	 �����
� 	 �������*	 ��

��	��
���	�����
	������	���	
��	�	������
	�����,	 	2��	����
 �
����	���)
������ �	
������� 	������	"<<5*,

>�	�������	
��	 �����
�	����	(���	 ���������
��	 �����������
E	 ��	 ���� 	
��
	 -/���	 �������� 	 ��	 ����	 ��	 (�

��

���	 �	 �
������	 ����������	 �� ��	 ������	 <	 �
�	 ��
�
)
������ 	�� 	
������� 	"<<@*	E	
�	������
�	����������

��
����
,

,�)� (%����%���(���-��(*$&
��$�-��

��������	 ���	������	 ���
���	 ��(��
�	���	(���	 ���������
��	 �	 ���������	 ���	
��	.�	 �������
�	 ��	 �	 �����	 ���	 �
���(��	 ��	 �����,	 	$���	 ��	 (������	 ���	
�����&���	E	 ��
��
	 +��
	���	E	���	��
��
�����	 �������(��	
�	 ����������
���������
	��	�� �� ��
	 �
�,		-���������	
�	���������	���
��(��
�	 ����	 ��
�	
��	 ��
�������C	 ���
���	 �� 	 ��������
)%�����	�� 	F���	"<<@*,		2��
���	�����
�	�� ���� ��
��	��

��	.�	������
��	�� �����	
��	���(��	��	���
����	�����	
�

�������,	 	 ��	 ���
���
�	 ��������	 ���	
��	 .�	 ������
��
�
����	��	����	������	��	
��	 �
�	��
	��	�� ��	
�	 �
������

��	��
����	��	
��	��(��
,		$���	
�� �	
�	(�	�����
�
�������
���	 ����	 ��
�������	 (�
	 ���	 ��� 	 (�

��	 ��(��
�	
���	
��
���
��	��
�� �,		>�	
���	�����	��	�����	��	��������,	$���
��	(������	���	����	��	��� ��
���	��	�	���
������	�����(��
��
���	
���	 ����������
���	 �� 	 ���
��	 ��
�� �	 ���3	 ���
���
����	 �
������	 �������
� 	 ��
�	
��	 ���� ��
	 �����(��
�� 	 ��
�������	
�	
��	 �� ���� ��
	 �����(���,	 	�����	 ���
��� 	
�	 ��'�����	 ���
����	
�	 ��������	 ���(����	 ��
 ��������	���
��	��
��������
�	��	��
	�����������	�	 �����(��
������
����
��	��	�	���
���	��(��
,

D������	 �������	 ��
�� �	 ����	 (���	 �����
���
� 	 (�	 �
���(��	��	 �����������,	 	$��	��������	 �������	��	-/���
� ����� 	
��	���(���	��	���������	���	
��	��
����	���
���
��(��
	(�	��	�1����
���	 ������	�����	�	 +��3	3����	��	
��
����	 (���	 ��	 �� ��	
�	 �
������	 ��
����,	 	 !�������	
��
������	 ��	 �����1���
���	 ;)AQ*	 ��	 ����	 �	 �1��� �	 "4'A7

���	 (������	 �����
�
�������	 ��
���
�(��,	 ;
���
����������	 ����	 ����� � 	 �������
	 ������
�	 ��	 ����
����(���	 ������
���)
3���3	 "<<=*�	 ������
� 	 ���������
������
���)��(���	�� 	������ '
��
�	"<<@*�	��&���
���
���
���	 �����
���	 ������
����	 (�
�	 ������ 	 �� 	 (��3���
)-��	�� 	���3��
	"<<5*	�� 	����
��	������
���)?��
����
������ ��	 ��� ���	 "<<@*,	 	 $����	 ����	 ���������	 (���
�����
� 	
�	��� 	
�	����������
�	��	��������	��
���
	
��
�����(�
���	�����
�
�����	���
	��	��	�1����
���	������,
																																																										
��)RU�VRPH�SUHGLFWLRQ� WHFKQLTXHV� WKH� WKH�H[DFW�QDWXUH�DQG�GHILQLWLRQ�RI
HIIRUW�ZRXOG�EH�VLJQLILFDQW���+RZHYHU��VLQFH�&%5�EDVHV�LWV�SUHGLFWLRQ�RQ
HIIRUW� YDOXHV� IRU� SUHYLRXV� SURMHFWV�� WKH� SUHGLFWLRQ� ZLOO� EH� LQ� WKH� VDPH
XQLWV� DV� WKHVH� VXSSOLHG� HIIRUW� YDOXHV�� � 7KH� SUHGLFWHG� YDOXH� ZLOO� DOVR
�LQGLUHFWO\��DVVXPH�WKH�VDPH�FRXQWLQJ�UXOHV� WKDW�ZHUH�XVHG� WR�FDOFXODWH
WKH�HIIRUW�IRU�WKH�NQRZQ�FDVHV���)RU�WKLV�UHDVRQ�WKH�SUHFLVH�GHILQLWLRQ�RI
HIIRUW� LV� QRW� VLJQLILFDQW� DQG�PD\� YDU\� IURP� GDWDVHW� WR� GDWDVHW� �WKRXJK
WKH\�VKRXOG�EH�FRQVLVWHQW�ZLWKLQ�DQ\�RQH�GDWDVHW��

SEARCH-BASED SOFTWARE ENGINEERING1368

�����
�����	���	
����	��
�� �	����	�	������	��������
	
�
������
�	��� � �
�	��(��
�	 ����	
��	�����	��	���	�����(��
��(��
�	 �� 	�	 ��
����	 ����
���	�����	 ��	 �	�������	 ��	
��
�����	 �������	 ����	
��	.�	 ������
��	 �����	
��	 ��(��
�

����� 	��	�	������	 ����	
��	 �
�	��
	�� 	���� �
� 	��	�
��� ��
	������,		$������	��������	
�����&���	���	
��	+��3
3����	 �� 	 �'��� 	 ���� �
���,	 	 $��	 ��
����	 ����
���	 ��
���������	 �	 �������	 ��	 �����	 �� 	 ��	 ����	 ��	 �	 ���
	
��

����� 	 (�	 �������� ,	 $��	 �1��
	 ��
���	 ��	
��	 �������
����	 ���� 	����	
��	��
���	��	���
	��	(����	��� ��
� 	(�

��	�������	��
���	(��� 	��	
��	���
	��	�������������
����	��

��	���	��	�(����
�	���� ����,

.� ���'*�(*$&�� ����(%'/

$���	 ����	 �
� �	 �1������	
��	 ���	 ��	 �������
	 ������
������
���	
�	 ��
�����	
��	 ���
���	 ��(��
	 ��� 	
�	 (���
�����
	 ��� ��
���	 ���
���	 ���	 ���
����	 ���������

���+��
�,	 	 ?�	 ���3	 �
	
��	 ��������	 ��	
��	 ��� ��
���
���
���	 (���
	 �����	 �������
	 ���
���	 ��(��
�	 �����
�
�����	
����	������
���,		$��	�����
�	 ������� 	��	
���	�
� �
����	 ������
� 	 (�	
��	 -���-/���	 ���	
����,	 	 $��
����	
���	 ��

����)�1���
	 ���
���	 ��(��
	 �����
���
������
��*	����	��� 	���	���	����,	0�� ��
����	����	�� �
�����	 ��	 �������	 ��
����	�����
� 	 �������	 ��	
��	 �����

������	���	
��	#	������
	�����(�����	�,�,	�G#,		$��	 �
�	��

���	+��3'3���� 	
�	��� ���	�	��� ��
���	���	����	����	��

��	 ���	 ��	 �(����
�	 ���� ����	 ���	
����	 ��� ��
����	 ���
��� 	��	
��	��������	�� ���
��	���	����	��� ��
���	���
��,
>�	 �
���	 ��� �	
���	 ��	 �	 ��� 	 ��
	 ���	 ���+��
�	 ���� �
���
�
��
���,

$��	 �
�	��� 	���	
��	����	�
� �	 ��	
��	��'����� 	 :2������
 �
���
:	 ����� 	����	���+��
	 �
�	������
� 	(�	�	���
����
�����,	 	$���	 �
���
	 ���
����	 =7@	 �����	 �����(� 	 (�	 <7
���
����	 ����� ���	 ��
����	 ����	 ��	 ����
���	 ����
�,

��
����	 ���+��
	 �����
	 �
�	 ��
�	 ���	 ������
����� 	 (�
����
�����	 ���	 �����)�����
	 �������(��	 �� ��	 477	 ��

��������	����	
���	47*,		$��������	
��	 �
�	��
	��� 	��	
���
�����	��	�
	
��	�����	�� 	��	
���	����
���,	$��	���
����	���
�	 ��1
���	 ��	 ���
�������	 �����
�	 �� 	 ��
��������,
!�������	
����	���	�	���(��	��	�������	 �
�	������	��
����	����	���
����	
��
	���� 	��
	(�	3����	�
	��� ��
���

���	�� 	��	����� 	��
	(�	����� � 	��	�	��� ��
���	���
��,
��������	���
����	��
�	�������	������	��	��
��'
��'����

 �
�	������	�	��(��
	��	==	���
����	
��
	���	��
�����	��� 	��

��	 ����	 �
� �,	 	 $��	 �
�	 ��
	 ����	 �1��(�
�	 ����������

���
�'����������
��	 ��	 �
���	 ��� �	
����	 ���	 �
����
����
��������	(�
����	���
����	��	����	��	��
�	
��	���
���

�	(�	��� ��
� �	������	�����
,

$��	���(��	��	�����(��	���(���
����	��	���
���	��(��
�	��
AQ	�����	�	 ��	
��	���(��	��	 ���
����,	 	 >�	
���	����	 �
� �

����	 ���	 ==	 ���
�����	 ��������	 ���	 ��	 ��� 	 ��	
��	
����

���
����	 ������	
�
��	 ���+��
	 ���������
	 �����
,	 	 $���
������	=#	���
����	��	
��	����
	
�	
��	��(��
	�������	������
8,8	 ���	 �����(��	 ���(���
����,	 	 �������	 ��	 �1����
���

																																																										
��UFK1*(/�LV� WKH�PRVW� UHFHQW�YHUVLRQ�RI�WKH�$1*(/�VRIWZDUH� WRRO
IRU� SURMHFW� SUHGLFWLRQ�� � ,W� PD\� EH� GRZQORDGHG� IURP
KWWS���GHF�EPWK�DF�XN�(6(5*�$1*(/�

������	 ��	 ��
	 �����(��	 ��	 �
���	 ������	 �
��
�����	 ���
	 (�
����� ��� ,

$���	����	�
� �	�1������	
����	��
����
���	�
��
�����C
",� ��� ��	���
���	��(��
	�����
���
A,� .��
�'�
��
	�
�����
	�����
	����	����(���
#,� 2����� 	��&���
���	�����
���
?�	 ���
���
� 	 ���	 ������	 ���	
��	 �������,	 	 2���
�	 �
���
������	����	 �� 	 ����	 �������	��
�	
����	 ������
���	 ���
��� ���	 ��� 	 ���
���	 ��(��
�,	 	
���� �	
����	 �����	 ��
�������	 ��	 �1�������	����	 ������1	 ������	 �
��
�����	 ��

��	���(���	���	(�	�����
�����	����� 	�����	�	����'����(��
)F����	 �� 	?�

��(���	 "<<=*,	 	-����	 ��	 �� ��	
�	 �������

��	�����	��	���
���	��(��
	�����
���	��	��� 	
��	��������
����	�����	���	���
����	��	�	�������
���	(�������,
-�	�	 ������	���(���	��	��� 	
�	����� ��	
��	� �
�����
������C	 ��������
�
���	 ��	 ����
����	 �� 	 ����������
	 ��
��
����,		2��
���
����	���	���
���	��(��
	�����
���	���(����

��	��
	��	��� � �
�	���
����	���	(�	������	��������
� 	��
�	(�
	�
����	�����	"	 ���
��	�����
� 	�� 	7	�1��� � ,	$���
����	����� ��	 �	����	��	 �����(������ 	�����	 ��	 �����
��	���	����	 ����� 	����	��
�
���	�	������	(�
�	 ��	�
���
��� �	������	���	���	���
���	��
��	��	��
	��	
��	�����
�
��
,	 	 2�
�����	 ��	 �
���
��	 ����3���	 ���
��	 ��	 �	 ��

��	 ����
������1,	 	 -�	 �
�
� 	 ��	
��	 ��������	 ���
���	 ��	 ���
�������� 	��
�	��������,	 >���������	��	������	 �	 ���
���
��(��
	
��
	 ��� �	
�	 ����	 ������
�	 ���+��
	 �����

��� ��
���,	 	 $���	 ��	 ����� 	 ��	 +��3'3������	 ������	
��
��
���	 �
�	��
	��	
��
	��	�(
���	�	��� ��
� 	�����
	�����		
���	�����	����,		$���	���	(�	������� 	��
�	
��	
���	�����

�����	��	��	�� ��	
�	 �����	��	�(����
�	���� ���	
	�����	��
H	���������	��	���	�� �������
	
�	
��	 ����
���	��	�����,	2��

��	 ��
���	 �
�	 ��
	 ��	 ���	
��	 �(����
�	 ���� ����,	 	 /�
�

��
	
���	 ��	 �	 ����	 ���
���	 ����	 ��	 ��� ��
���	 �����
������� 	 ��
��	 ����	
��	 ���	 ��	
��	 �&�����	 ��	
��
���� ����	�����	� ��
�	�	����	 ���3	������	 �
����	 �����	 �
���	�1
����	������	����	 �����
�	
��	��
����	�������,

.0"� � &'$��)� (%�����-��(*$&

-	������	��������	
�	��� ���	�	���
�(��	���
���	��(��
	 ��
����	�	�����	������	�����	��	
�	������
	�����
�	����	�	�����
���(��	 ��	 ��� ����	 ������
� 	 ���
���	 ��(��
�,	 	 $�(��	 "
�����	
��	 �������	 ��	 �����
�	 ����	 =7A8	 ��� ����
������ 	���
���	��(��
�,
>
	 ��	 ���
�	 ��
���	
��
	 �����	 ���	 ���
����	 �����	 �	 �����

�����	
�	
��	 ����	 ��	
��	 ��� ��	 ���
���	 ��(��
�,	 	 $���
�������	
��
	 �	 ��� ����	 ������	 ��(��
	 ��	
��	 ���
����	 ��
��3���	
�	 (�	 +��
	 ��	 ��� 	 ��	 �����	 ���	 ������(��	 ���
����,
$��	(��
	 ����
���	 ���� 	���	 ��	 ��������	 �����	��	 45<88
������� 	 ��
�	 884AA	 �����	 ���	 ���
����,	 	 $���	 ��	 �
����������
	����������
)������	
��
	���	������	��	���)H�H*
���	 �������� *�	 �������	 ��	 ��1
	
���� 	
�	 �	 ����
���
���
��	������	�
��
���	��	�� ��	
�	���3	(�

��	�����
�,

																																																										
��:KLOVW�ZH�DFWXDOO\�ZLVK�WR�PLQLPLVH�WKH�ILWQHVV�IXQFWLRQ�ZH�ZLOO�UHWDLQ
WKH�XVXDO�WHUPLQRORJ\�RI�KLOO�FOLPELQJ��SHDNV�DQG�VR�IRUWK�

SEARCH-BASED SOFTWARE ENGINEERING 1369

$�(��	"C	
������	�
�
��
���	���	��� ��	���
���	�����
���

����
 =7A8
.��� <"A@A
.� ��� <"8#"
.�� 45<88
.�1 "#4485

.0+� �*--��-*��*&#

-	��������	��� 	������	�
��
���	��	����	����(���,		>�	
���
����	 �
� �	
��	 ������
��	 ��� 	 ���	 ���
�'�
��
	 �
�����

�����
	 ����	 ����(���	 �����	 ����	 ����(���	 �	 ����
��� ����	 �����
� 	 �
��
���	 ����
)��	 ���
���	 ���
���	 ��
*,
$��	 ������
��	 ��	 �
�����
	 �����
	 (������	
��	 ��
���
�����(������ 	 ��	 ������
� 	 �� 	
��	 ����	 ��
�	
��	 (��

�����
	 ��	 ��� 	 ��	
��	 ��1
	 (���	 ����
���,	 $��
�����(������ 	��	 ����� 	��	���	���	���
���	��
	
��
	���
(�	�(
���� 	����	
�������	�	������	(�
,		$���	 �����
���	��

��	 �����(������ 	 �����	
��
	 ���	 ���
���	 ��
	 ���	 =#
�����(����	
��
	 ���
	 (�	 ������
� 	 ���	 ����	 �
��	 ��	
��
����(,

$�(��	AC	
������	�
�
��
���	���	""#	����	����(�

����
 ""#
.��� =@87#
.� ��� 4"<7<
.�� A<<"5
.�1 5"7=<

$�(��	 A	 �����	
��	 �������	 �
�
��
���	 ���	
��	 ��������
������	 ������� 	(�	
��	 ""#	 ����	 ����(�,	 	?�	 ���	
��
	
��
(��
	���
���	��(��
	���� 	(�	����	����(���	����	�	�����
	��
A<<"5,	 	 $���	 ��	 �	 ����������
	 ����������
	 ����	 ��
���
�����	 ���	 ���
����	 ��	 ��� ��	 ���������)884AA�	 45<88*�
���	 ����	 $�(��	 =,	 	 -���	 ���
��	 ��	 ��
�	 ��	
��
	
��
��1����)����
*	�����	��	�	���3	���� 	(�	����	����(���
���	5"7=<,	 	$���	 ��	 ����	 �����
��	�����	
���	
��	 (��
	 ��

��	��� ��	�����
�)45<88*,	 	 >�	���
�	���	(�
	8	��	
��	""#
����(�	 ��� ��� 	 �����
�	 (�

��	
���	 ���	 =7A8	 ��� ��
�����
����,

2�����	 "	 �����	
��	 ��
��(�
���	 ��	 �����
�	 ����	$�(��	 A,
/�
�	
��	 (�'�� ��	 ��
���	 ��	
��	 ����	 ����(���	 �����
�,
$����	 ���	 �	 ���(��	 ��	 ����������
��	 (�

��	 ����
����	
��

���	�������	������
� 	����	
��	����	 ��
��(�
���	��	�����
�,
?���	
��	 ��
���
���	 (�
����	
���	 ��
	 ��	 ��
�����	 ���
����
����	 �� 	
��	 �
���	 �����
�	 ���	 �����
���
� 	 �
	 ���
���� 	
��
	
��	(��
	����
����	��� 	�����	���
����,

2�����	"C	���
��(�
���	��	�����
�	����	!���	����(���

2�����	 A	 �����	 �	 ���

��	 ���
	 ��	 ���)H�H*	 ������
	
��
���(��	 ��	 ���
����	 ����� � 	 ��	
��	 ���
���	 ��(��
,	 	 -
�����
	
��� 	��	��
�(��	��	
��	����	���� 	��	�����
�	(�
	�
	��

��	 �����	 ����� 	 ��
�����	
��
	 ���
	 �������	 ����	
���
�����
,	 /�	 ��� 	 ����
���	 ���	 ���� 	
��
	 ���
����	 ����

���	"4	���
����)��
	��	=#*,

2�����	 AC	
��

��	 ���
	 ��	 ��������	 ������
	 ���(��	 ��
���
����	���

.0,�)$�1 �'���2%�&(* -���-��(*$&

-��
���	����	��	������	
��
	���	(�	��� 	��	
���	��
��
���	��
�	 ��&���
���	 ���
���	 �����
���	 ������
��,	 	 $����	 ���	
��
����	
����	 ��	 ��&���
���	 �����
���	 ������
����	 ������
��&���
���	 �����
���)2

*	 �� 	 (��3��� 	 ��&���
���
�����
���)�

*,	 	 >�	2

�	 ���
����	 ���	 � � 	 ���	 (�	 ���
�
��
���	����	���	���
�	���
���	��
,		>�	�

�	���
����	���
������ 	 ���	 (�	 ���	 ����	 �	 ������
�	 ���
���	 ��
,	 	 ?�
��� 	��	2

	������
��	 ��	
�	
��	�(�����
���	
��
	
��	(��

SEARCH-BASED SOFTWARE ENGINEERING1370

����
����	����	����	����(���	����	����
�����	���
���'������
)���	2�����	A*�,

$��	2

	������
��	��� 	���3�	��	�	(��� ��	�������	���	
�
�
�����
	 �����
	 ����	 ����(���	 (�
	 ��
�	
��	 ����
 ����������,	 $��	 ����
	 ���������	 ��	
��
	 �
	 �
��
�	 ����
������	 ��	 ���
����	 �����
� 	 ��
���	
���	 �	 ��� ��
�����
���,	 	
���� ���	 ���
����	 ���	 ����	 � �)�����
������ *,		$��	������
��	�
��
�	(�	��� ���	
��	(��
	������
���
���	���	��� ��
���	�� 	� ���	
���	
�	
��	���
�	���
���
��
,		-�	�

���
	��	
���	�� �	
�	� 	���
���	���
���,		$���
��	 ���	(�	������
���	
��	��������	��	��� ��
����	�(
����
�����	�	���(���
���	��	
��	������
	���
���	��
	��
�	����	��

��	�
���	���
����	��	
���,		$��	(��
	��	
����	���(���
����
(������	
��	������
	���
���	��
,	$���	�������	��	�����
� �
� ���	 ���	 ���
���	 �
	 ����	 �
����	 ��
��	 ����	 ��	
��
���(���
����	���� �	�	(�

��	�����
	
���	
��	������
	���
���
��
,

$��	 2

	 �����
	 ���	 #7A7A,	 	 $���	 ��	 ����	 �����
��	 �����

���	
��	�����
	����	
��	(��
	����	����()(�	����	
���	"6*
�� 	
���	 �����
	 ���	 ������ 	 ���	 ����	 &���3��,	 	 $��	 2

�����
	 ���	 �(
���� 	 (�	 ������
���	 +��
	 A=#	 ���
���
���(���
����,		-	������	����	����(��&���� 	��	�������	��
588	 ������
����	 �� 	 ����	 #	 ��	 ""#	 ����	 ����(�	 ��� ���
�����
�	�&���	
�	��	(�

��	
���	
��	2

	�����
,		$���	�����

��
	 ����	 ����(���	 ���� �	 ��	 ��������	 ��&����	 �����
"<777	������
����	
�	��� 	��	�&���	��	(�

��	�����
,

3�)*(&����- &'�� ��

$��	 �����	 ����
�������	 (�
����	
��	 ����	 ��	
��	 ��
����
��� �����	 �� 	
��	 �����������	 ��	 ������	 ������
���	 ���
(���	 ��
� 	 (�	 ����	 ������������	 �,�,)������	 ��
.�����(���	 "<<8B	 ������	 A777*,	 	
����	
��	 I��	 ����
�����J	
������)?�����
	 �� 	 .����� �	 "<<@*�
�����������	 �������	
��
	 ��	 ��
	 �����(��	
�	 ���	
��
	 �
���
������	������	������
��	��	������	(�

��	
���	���
���,
��������	 ���	 ������
��
��	 ��	
�����	
�	 ����	
��
	 �
���
������	 ������	 ������
��	 ��	 (�

��	
���	 ���
���	 ���	 �
���
���
� 	 �����	��	 ������	���(���,	 	��������
���	��
�	
���
��������	 ����� �	
�����	
�	 �����	 �	 �����	 ��	 ������
���(���	 �� 	
�����	
�	 � ��
���	
��
	 �����	 ��	 ���(���	 �

��
�,

-	 �
��	
���� �	 � ��
������	 �����	 ������	 ������
���	 ���
(��
	 ���	 �����	 �����	 ��	 ���(���	 ��	
�	 � ��
���
������
����
���	��	
��	��
����	��� �����	
��
	�� 	�	���
������
������
��,	 	 ?��3	 ���	 (���	 ���	
���� �	
���	 ��	 �

�����
����	(����)
�����	"<<8*,	 	$���	���
���	�

���
�	
�
 �����(�	
��	 ��� �����	 ���	
���	���
������	 ������	���(���
�� 	
�	������
	��	���	
���	���	����	�����
� 	
��	�����
�
																																																										
��1RUPDOO\��%66�LV�UHFRPPHQGHG�UDWKHU�WKDQ�)66���7KLV�LV�EHFDXVH�%66
HYDOXDWHV�IHDWXUHV�WR�UHPRYH�LQ�WKH�SUHVHQFH�RI�DOO�WKH�RWKHU�IHDWXUHV�WKDW
PD\�EH�LQFOXGHG�LQ�WKH�ILQDO�VROXWLRQ���7KLV�DOORZV�LW�WR�WDNH�DGYDQWDJH�RI
DQ\�LQWHUDFWLRQ�EHWZHHQ�WKH�IHDWXUHV�ZKHQ�PDNLQJ�WKH�GHFLVLRQ�RQ�ZKLFK
IHDWXUH� WR� UHPRYH�� �+RZHYHU�� LW�KDV�EHHQ� VXJJHVWHG� WKDW�%66� µLV�PRUH
HDVLO\�FRQIXVHG�E\�ODUJH�QXPEHUV�RI�IHDWXUHV¶�DQG�WKDW�)66�µLV�SUHIHUUHG
ZKHQ�WKH�RSWLPDO�QXPEHU�RI�VHOHFWHG�IHDWXUHV�LV�VPDOO¶��VHH�IRU�H[DPSOH
�$KD� DQG� %DQNHUW� ������� � 6LQFH� WKLV� VHDUFK� KDV� D� ODUJH� QXPEHU� RI
IHDWXUHV�DQG�WKH�UHVXOWV�IURP�KLOO�FOLPELQJ�VXJJHVW�WKDW�WKH�EHWWHU�UHVXOWV
KDYH�D�VPDOO�QXPEHU�RI�IHDWXUHV�ZH�FKRVH�)66�

����	
��	 ������	 ������
���	 ��� ,	 	 !�������	
����	 ���
�������	����������,		2���
�	�� 	�(��������	
����	��	
��	�����
��9�	 ��	
��	 ��� �����,	 	
���� �	
����	 ��	 �	 ���������
���
���(���,		>
	��	���������
	
�	
���3	��	
����	��	�	��� �����
��	 �����	
��	 1	 �� 	 �	 ��'�� ���
��	 ��������
	
��	 ������
�����	�� 	
��	�����
	
��	&����
�	��	��
����	��	
��	����
���,
$���	��	���	����	�(�
���
����	��	����	����(���	�� 	���3�,
2��	���	���(���	��	���
	�������
	=#	 ���������	����	��
�1
����	 ����������	 �,�,	 (�����,	 	 �����&���
��	 ������
��������
�
����	���	���������(��,

$��	 ��� ��	 ������	 ���	 (�	
�����
	 ��	 ��	 ��������	 ����

��	��
���	��� �����,		$��	�����
�	����	
���	��������	����

��������	(�	��� 	
�	��3�	����������	�(��
	
��	�� �������
������
���	�����	
��	�� �������	 ������
���	 ��	
��	 ��
	 ��
�����
�	�(
���� 	����	��	�1����
���	������	��	
��	 ���
���
�����)��	
��
	����	�����
�
�������	�����(��*,

$��	�����
�	��	2�����	#	����	
��	 ��
��(�
���	��	 I�����
�J
��	
��	 ��
����	 ��� �����)(�
	��
	
����	����
����*,	 	D�����
������	��	�����1���
���	������	 ��
��(�
���	���
�� 	��	�
����	��	+��
	����	<"777	��
�	�����1���
�	��1����	��
�������	������	��	"#4777	�� 	4@777,		$���	�����	����
� ��	��	
������	�������	��
�����	�������	
��	�����	����
	��
�	 ��� 	 ������	 ��	
��
	 ��	 ���	 ��
����
� 	 ��	
��	 �1
����
��
�����,		
�	��	����	����	� ��	��	
��	������
����	��	
��
��
����	 ��� �����	
��
	 ���	 �
	 ���
������	 �����
��	 (�
	 ��
�������
���	��	���	�� ��� ���	����
�	���	����
���� 	��	
��
��
����	 ��� �����,	 	 $��	 ��� �����	 ���� 	 (�	 ��
�����
����
��	��	�������� 	��	�	������	����
�	���3,		$����	��	��
���	��	3������	
��	�
���
���	��	
��	��� �����	����	
����
�����
�,

2�����	 #C	 ���
��(�
���	 ��	 �����
�	 ���	 ��� ����	 �����
�
���
���	��
�

$��	 �����
�	 ����	
��	 ����	 ����(���	 ����	 ����	 ����� �
�������
���	 ����������	
��	 ��
����	 ��� �����,	 	 !���
����(���	������
���	 ���� 	��	���
���	������
����	�(��

��	 ��
���	 ��	
��	 ��
����	 ��� �����	 ���	
����	 �����
���,
$���	 �1����
	 �����	 �������
����	 ��	
��	 �
���
���	 ��	
��
������	������	�,�,�	
���	������	
��
	
����	��	��3���	
�	(�	�
(�

��	 ����
	 ����	
�	 �	 ��� 	 ����
,	 	 -	 ����	 ����(���
������
��	 ���� 	 ��
	 ���3	 ��	 �	 ����
��	 ��� �����,	 	 $��
����������
��	 (�

��	 �����
�	 ��� ��� 	 (�	
��	 ����	 ����(���
)����	
��	��� ��	�����
���*	������
	
��
	
����	��	�
���
���

SEARCH-BASED SOFTWARE ENGINEERING 1371

��	
��	 ��� �����	
��
	 ��	 �1����
� 	 (�	 ����	 ����(���,	 	 $��
����
�	 ��	
��	 ����(�	 ����	 ������
�	
���	 ����,	 	 $��	 ����
�
���
��� 	
��	 ��� �����	
��	 ����
��	 �� ��� ���	 ����(�
���� 	(�,		$��	�� ���	����(����
�	���	"4	�
���	�� 	
��
��1����	����(����
�	���	#"	�
���,		�������	
���	��
�

��	=#	�
���	
��
	��	��� � 	
�	
�������	
��	��
���	(���
�	��

��	�
�
�	�����	�� 	
����	���	�������	�����'�����	�
���
����
��	
��	��
����	��� �����,

?��
	 ����	 ���	
��	 ����	 ����(���	 �����
�	
���	 ��	 �(��
	
��
�
���
���	 ��	
��	 ��
����	 ��� �����K	 	 2���
���	
����	 ���	 �
�����	 ���(��	 ��	 ��
���
	 ���3�	 ��	
��	 ��� �����)������
���
�'�� ��*,		$��	""#	����	����(�	���� 	<8	 ��
���
	���3�
'	 ����	 "4	 ����(�	 ���� 	 �	 ����������	 ����
� 	 ���3,
>�
����
������	���	��	
��	���3�	
��
	����	����
� 	����	
���
����	����	���	��	
��	
��	������
	���3�,		$���	������
�	
��

��	 (�

��	 ���3�	 ��	
���	 ��� �����	 ����	 ������	 (�����	 ��
�

���
���,

>�	��	���(���	
��	����	 ����(���	 �����
�	 ��
�	
��	 ��� ��
�����
�	 ���
���	 �(�����
���	 ���	 (�	 �� �,	 	 $��	 (��
	 ��
=7A8	��� ��	�����
����	���	(�

��	
���	����	
��	����
	8
����	����(�,		$����	��	����	��

��	������	��	 ��� ���	�	���
�����
	(�	��� ��	���������,		$���	�������	
��
	��

��	��	
��
���
���	�����	 ����	����	
��	
��	��	
��	������	 �,�,�	
��	���3�
���	����	�����,

-�	����	 ��	
��	 �����	 �
���
����	��
���	
��	 ��� �����	
��

�� 	�� ��� ���	����	����(�	
����	���� 	����	(�	 ������	�����
�
���
����	 ��	
��� �,	 	 $�	
��	
�	 � ��
���	 ���	 ����	
��� �
��&�����	 �	 ���	 ��	 �����������	
��	 ����
���	 �� 	 �����
	 ��
����
�	 ��	 =#	 ����������	 (�����	 �����,	 -	 ���
�'
 ����������	 �������).�
*	 ������
��	 ���	 ��� 	
�
�������	
���	���������
���,		.�
	��	��� 	
�	��������	����
 ����������	 �
�	 ��
�	 �����	 ����������	 �����	 �����
�

���
���	
�	 ��
���	
��	 ����
���	 ��
�����	 (�
����	
��
 �
�	����
�,		?�	��� 	
��	.�
	������
��	����� � 	(�	
��
�
�
��
���	���3���	
0

	
�	������
	
��	��������
�	��	���
���
��(��
�	��������� ���	
�	����	���3	��
�	��'�� ���
��	��	A
 ����������	 �����,	 	 $����	 ����
�	 ����	
���	 ���

� 	 ��

����	�����
	��	��
����	 ���
� 	(�	 �������
	���(���,	/�
�

��
	��	����	��	 �
�	��	 ��
��������	����
�	��	��	�����

 ���	���
����,

2�����	=C	.�
	��	����	����(���	�����
�

$��	 �����
�	 ���	
��	 (��
	 "77	 ����	 ����(�	 ���	 �����	 ��
2�����	=,		$����	��	�	�������	
�� ����	���	
��	(�

��	���3�

�	(�	��	
��	�����	���
	��	
��	������	�� 	
��	�����	���3�	
�
(�	 ��	
��	 �����	 ���
	 ��	
��	 ������,	 	.���	 ��
�(��	 ��	
��

���
	����
��	��	L�	��������
���	
��	A4	(��
	����(�)"7	(��

���3�*,	 	 $����	 �(�����
����	 ����	
��
	
����	 ���	 ����
���(��	
��� �	 ��
���	
��	 ���
���	 �����,	 	 $���	 ���	 (�	 �

��� 	��	+��
	
��	�����
	��	
��	���3�	��	�	�������	�������	��

��	��� �����,		$�	�����
���
�	
���	�����	�	����� 	��� ��
��������	���	 ���	
��
	���	����
����� 	
�	
��	 ������	��

��	������
	"7	���3�,		2�����	4	�����	
��	�����
�	����	
���
�������� 	��� ��	��������,

2�����	4C	���
��(�
���	��	���
����� 	��� ��	������

2���	
��	 �����	 ����������	 ��	 ���
���	
�� ����	 (�
����

��	 ����
����� 	 �� 	
��	 ���(��	 ��� ��	 ��������	
����
�������	
�	(�	�	
�� ����	���	
��	�������	�����
	
�	��������

���� �	 �	 ���
������	 ������	 ��	
��	 ���
���	 �����,	 	 $�
���
����	
��	 ��� �����	��������	��
�����	
����	���	����
�����	 ���3�	
��������
	
��	 ��� ������	 ��	 �������	
��
��� �����	 �����	
���� �	 �	 �������� 	 ������,	 	 $���	 ������
���	�	������	�������	�����	��	��
����	��	����	��	
��	������

���3�,		>
	 ����	��������	�
���	���
���	����	 ���	���3�����
)���	 $�(��	 #	 �����	
��	 �����
	 ��
����	 ���	 ��	 �1����	 ��
"=#777*,

$�(��	#C	
������	�
�
��
���	���	���
����� 	��� ��	������

����
 4#48
.��� 487<4
.� ��� 45@"=
.�� #"#4#
.�1 "=#8A=

>�	����	����	2

	���	(�	
�����
	��	��	�	������	�
�����

�����
	 ����'����(��
�	 �	 ��1� 	 �
��
���	 ����
	 �� 	 ����
�����	�� �	
�(���	�����	����	 ���
����	���	 ����� � 	 ��	�
��(��
	
���	 �����
	 ��(��&���
��	 (�	 ������ ,	 	 $��	 (��

����	����(�	���	���	��	�	������	��	������	���
���	��(��
�	��

��	 2

	 ��
�	 ����	 �����
��	 ��	
���	 ������	 ��	
��	 ��
����
��� �����,		$��	�����	��	�	��� 	�
��
���	����
	���	(�	����
��	
��	 ����
	 ����
�	 ��	
��	 ��
�)4	 �
���*	 �� 	 �����&���

����������	�����,

/HJHQG

; 7RS���

2 �����

� �����

� ������

SEARCH-BASED SOFTWARE ENGINEERING1372

$�	 ����������	 ��	 3���	
��	 ��� �����	 ��	 ���
�'�� ���

��
	
��	 ���3�	 ����	 �
���	 ������	 �� 	 �����	 �����
�	 ��
�������
	 ������������	
����	 ���	 ����	 ����	 �����'�����
�
���
����	 ��	 ��� ���� 	 (�	
��	 �����	 (�����	 ��	 �

���
���
���	
��	 (�

��	 ����
����,	 	 $���	 ���
	 �(�����
���	 ���
���1���
� ,	?��
	��	 �	��
	3���	��	���
���	
����	�1��
�
����	������	���3�	��	���3��	(�
	��
�	�	����	�����	(����	��
�

���
���,

4� '*��%��*$&

$���	�����	���	���3� 	�
	
��	�����������	��	�	���(��	��
������	
�����&���	
�	 �����	 �	 ����	 ���� 	 ���
����
�����������	���(���,	 	$��	���(���	���	
��	��
�����
���
��	
��	 ���
���	 ��
	 ��� 	 (�	 �	 �'//	 ���
��	
�	 ��� ��

���
����	���+��
	�����
,		$�(��	=	�����	�	�������	��	
��
�����
�	���	
����	
�����&���,		$��	
�(��	�����	��������	��

��	 (��
	 ���
���	 ��
	 ���� 	 (�	 ����	��
��)������� 	 ��

��	 ���	 ��	
��	 �(����
�	 ���� ����*,	 	 >
	 ����	 �����	
��
��1����	�� 	����	������	���	
�����&���	�����	���
����
�����
�	����	��� ��� ,		$�	����� �	��	��
��
���	����	���	
��
����
����	 �����	 ��	
��	 ��� ��
���	 ���
���	 ��� ��� �	 ��
��
����
���	�������	��	��������	E	����	�(����
�	����
���
�����	 E	 ��	 ����	 ����� � �,	 	 2�������	 ��	 �	 �����	 ��
�� ���
���	�����������	��	����� �	
��	���(��	��	 �������

���
���	��
�	������
����	��&���� 	(�	����	
�����&��,

$�(��	=C	
������	��	�����
�

-�� ��� �� !��� 2

������
���� " =7A8 @==## A=#
.��	���H�H 884AA 45<88 A<<"5 #7A7A
.�1	���H�H "#4485 5"7=<
.���	���H�H <"A@A =@87#
6	����� 47,8		6 #4,5	6 "4,#	6 "#,"	6

$��	 �������
	 �� 	 &���3��
	
�����&��	 ��	
�	 ���	 ���	 ��	
��
���
�����	��	
���	��&�����	�	������	������
���,		!������	
��
��������	�����
�	�(
���� 	���	����	����,		0�� ��
���	�� �
�����	
���	���
��	�� 	��	�������	�����	��	47,86,			$���	��
��
�� � 	 ��	 �	 (���	 ����	 ������
	 �����	 ��	 ���	 ���	 �
���

�����&���	���� 	��������	(�����
�,

$��	 �����
�	 ����	
��
	 �	 ��� ��	 ������	 ��	 �������	 (�

��

���	������	�����	���	���
����,		$��	(��
	���
���	��
	����
��
�	
���	��
�� 	 �����
� 	 ��	�	��� ��
���	���
��	��
�	 ��
�������	 �����	 ��	 #4,56,	 	 ������	 ����	 ��	 ��� ��	
�����
���� 	 (����	
���	 �����	 ���	 ���
���	 (�
	����	 ��
�������

������	
�����&���	���� 	���(�(��	(�	�������� ,

!���	 ����(���	 ���� 	
��	 (��
	 ����
���	 3����	
�	 ��)��
������� 	 (�	 ���H�H�*,	 	 $���	 �����
	 ���	 �&�������
	
�	 ��

																																																										
��:H�GLG�QRW�XVH�PHDQ�DEVROXWH�UHODWLYH�HUURU��VRPHWLPHV�UHIHUUHG�WR�DV
005(� LQ� WKH� VRIWZDUH� HQJLQHHULQJ� OLWHUDWXUH�� DV� RXU� ILWQHVV� IXQFWLRQ
VLQFH�LW�LV�DV\PPHWULF�DQG�KHWHURVFHGDVWLF�
��)URP� WDEOH� �� LW� FDQ� EH� VHHQ� WKDW� DOWKRXJK� KLOO� FOLPELQJ� KDV� D� ORZHU
VXP_U_� WKDQ�)66�� LW� KDV� D�KLJKHU��� HUURU�� � 7KLV� UDQN� UHYHUVDO� LV� GXH� WR
GLIIHUHQW�DFFXUDF\�LQGLFDWRUV�PHDVXULQJ�GLIIHUHQW�DVSHFWV�RI�HUURU�

�������	�����	��	��� ��
����	��	�(��
	"46,		!�������	����
����(���	 ��	 ����	 �����
�
�������	 ��
������,	 	 $��	
�(��
�����	
��
	 �	
�
��	 ��	 @==##	 �������
	 ���
���	 ��
�	 ����
������
� 	 �����	
��	 ""#	 ����	 ����(�,	 	 $���	 ����	 ��
���
����'�
��
	 ����	 ����(���)��3�	
��	 ��� ��	 ������*	 ���
��	 ��'(���
	 �� 	 ����
,	 	 >
	 ���	 (�	 ���	 �� �����
���	 (�
	 ��
��3���	
�	 ����	 ����������	 ��
����	 ��	 �
	 ���������	��	 ��
�1����
���	������,

2����� 	 ��&���
���	 �����
���	 ���� � 	 �	 �����
	 ����
����
�������	 �����	
���	
��	 (��
	 ����	 ����(���	 �����
	 ��

����	��	 ���� ����	�� 	�����
��	(�

��	 ��	
����	��	 ����
���
�����)"#,"6*,		$��	��+��	� ���
���	��	
��	2

	
�����&��
���	 ����	 A=#	 ������
����	 ����	 ��&���� 	
�	 �����	
���
�����

2��������	
���	 �
� �	
��	 ��
����	 ���� 	 ��3�	
��
���������	�������� �
����	
�	������	
�����	
�	��
�����
�	 ���
���	 ��(��
	 ���	 ����'(��� 	 ��� ��
���	 ��	 ���
����
 ���������
	�����
,

",� >�	
��	 ���
���	 ��
	 ��	 �����)M"4'A7	 ���
����*	 ���	 ��
�1����
���	 ������,	 	 $���	 ����	 ������	 ��� 	
��
��
����	���
���	��(��
,

A,� >�	
��	 ���
���	 ��
	 ���	 ����	
���	 A7	 ���
����	 ��
�1����
���	 ������	 ����	 ��
	 (�	 �����
�
�������
�����(��,	 	���� 	��	
��	���3	������
� 	 ��	
���	�����
)��(��
	 �	 ������	 �
���
*	
��	 ��
����	 ����
�������� 	
�����	2

	�����	 �
	 ��	 ����������
��	����
��������
	
���	 �	 ����'����(��	 �� 	
����	 ���	 ��

��
 ���������	��	��������,

>
	��	���
�	��
���	
��
	
��	�������
��	�����	��
���	��	����
����	���� 	 �
�	�����	
��
	
����	���	 (�	 ��

��	 �����	 ���
���
���	����������
,		-����	���	���	���(���	��	���	����
���3���	��� 	�����������	 �����1���
����,	 	$���	��	 ���
����	�	����
���	��	��� 	������,		-��	N����	���� N	���+��

�����
	 ��� ��
���	 ����	 (�	 �������(��	
�	 �������	 ��
����������
�	 ��&�������
��	 �
���	 �� 	 ��	 ���	
���	 ��
����
���	 ��
��'����	 ������	 ��	 ��������	 ���	 �������

��������,	 	 >�	 ��� ���	 ���	 ����� �����	 ��������	 ����
������1	 ������
���	
�	
��3��	
���	
���	 ��	 ���(���	
���
����� 	 ����� ��	 ���
���	 �
	 ���� 	 (�	 ���
������	 ��	
��
����
	 ��	
��	 ����
�����	 �����	 ����������
	
��
	 ����

��
��
�����	(�	���� � ,

-�	 ����	 ��	 ��������	 �	 ��
	 ��	 ������	
�����&���	
�	 �
���
������	 ���
����	 �����������	 ���(����	 ��	 ����	 ����
�

���
� 	
�	 �����(�	
��	 ��
����	 ��� �����	 ��	
��
���(���,		�����	
��
	
��	��
����	��� �����	��	�������� 	��
=#	 (�����	 ����������	 �����(���	
��	 ��� �����	 ��	 �
 �������
	
��3,		-	���(��	��	
�����&���	����	������� 	
�
����	 �����(�	 �� 	 ���������	
��	 ��� �����,	 	 2���
���	
��
�����
	����	
��	��� ��	������	����	��
�����
� 	��	�������
����	
��	��
����	��� �����	�� 	��� 	
�	��� 	���	����	��

��	 ��� �����	 ���	 �
	 �������	 �����
�,	 	
���� ���	 ����
����(���	���	��� 	
�	���3	���	
��	��������	��	�
���
���	��

��	 ��� �����	 �� 	
�	 �����	
��	 ���(��	 �� 	 �����
	 ��
���3�	 ��	
��	 ��� �����,	 	 .��
�' ����������	 �������	 ���
��� 	��	�	�����	��	�����������	
��	����
���	����
���	��	
��
�������	 ���3�	 ���� 	 (�	 ����	 ����(���,	 	 $��	 �����
�	 ����

��	.�
	����� 	
�	� ��
���	���(��	
��� �	��	
��	��� �����,

SEARCH-BASED SOFTWARE ENGINEERING 1373

�������� 	�1����
���	��	��� ��	��������	���	����	(�	���

�	 ���
���	 �����
���
�	 �����	 ��	 ��
����
	 ��
���	
��	 ��
����
��� �����,

$��	�����
	��	
��	�����
���
���	��	
��	��
����	��� �����	���

���	 ���(���	 ����� 	 �
	
�	 (�	 ������	 ���
�'�� ��,	 	 $��
��� �����	 ���
���� 	 �����	 ���3�	 �� 	
������	 �� 	 ����

���� �	 �	���
�'���3� 	 :������:	
��
	 ���
���� 	 ���	 ��	
��
(�

��	�����
�	���� ,

$�	 ������ ��	 ��	 ����	 �����(� 	
��	 ����������	 ���	 ��
������	
�����&���	 ��	 �	 ����	 ���� 	 ���
����	 �����������
���(���,	 	 ��	 �����	 ��	
��	 ������	 ���	 (�

��	 ���
���
��(��
��	 ���
����	���+��
	 �����
	 ��� ��
���	 �����	���	 (���
�� ��� 	����	47,8	6	
�	"#,"	6,		?�	����	����	������
�

�����&���	
�	 ����	 ���������	 ��
����	 ��� ������	 �� 	 ���

���	 ��	 �	 ����	 �1�����,	 	 ���
��	 ��	 ����	 ��
� 	
��

��������	������	
�����&���	
�	�����������	���(����	��	��

�����������	
��	 ������	 ���	 ��	 ��
����	 �����,	 	 -	 ���
������	 �����
	 ������ 	 ��	 �	
�����	 �������	���	 (�	 (�

��

���	 �	 �������� 	 ������	 ���	 ��	 ��
����	 �����
,	 	 $��
����������	 ���	 ��	 ������	 ������	
�����&���	 ����	 ��	 2

�� 	����	����(���	������
	
��
	�����������	����� 	
��	����
��
�� �	(�����	�����
���	
�	����	������1	
�����&���	��

��
	 ��	 �	 �� �	 �����
	
����	
�����&���	 ����	 ������	 ������
�������
���	�(��
	
��	��
���	��	
��	��
����	��� �����,

 �5�������6����

$��	 ��
����	 ���	 �� �(
� 	
�	
$$2	 �
 	 ���	 ��3���	
��
2������	 �
�	��
	������(��,

����������

-���	 �,	 ?,	 �� 	 �,	 �,	 ���3��
)"<<5*,	 -	 �������
���
������
���	 ��	 ��&���
���	 ���
���	 �����
���
������
����� �
��������� ������������� ���� ����������� ��
�,	 2�����	 �� 	 F,'!,	 ���9,	 /��	 O��3�	
�������'
D�����,

������	�,	?,)"<8=*,	N
��
����	�����������	���������,N
������
��������������������
���������
���	"7)"*C
='A",

��������	 �,	 F,	 �� 	 .,	 ������)A77"*,	 N���	 ����
��
�����������	�������	���
����	�����
	��
���
���K	-
�������
���	 ������
���,N	 ����
������� �� ������
�
����������	.,)"=*C	85#'8@#,

�������	 �,	 �� 	 !,	 .�����(���)"<<8*,	 $��	 ���&�����
���������
	 ���(���C	-	 ���3	 �
	
��	 �����������	 ��
�����
������	 �������� �
��������� � ��!����"� #���!
�
$��������%��
!��
��������&������'()("8�A5#'A@#,

��(����	 F,	 �,	 ?,	 �� 	 D,	 F,	 ������ '
��
�)"<<@*,
N2��
���	 ��(��
	 �����
���	 ��
���	 �	 ������
�
���������	 �
�	 ������	 ������
��,N	 *�� ��� �����������
����
��������������	9C	4@'8",

���� ��	F,	F,)A77"*,	N;�	
��	���(���	��	
��	���
����	���

����
���,N	 ����
������� �� ������
�� ����������
.,)"*C	5"'@A,

2������	�,	�,�	�,	�,	?�

��	�� 	F,'.,	����������)"<<@*,
N-	 ����������	 ��	 ���
����	 �����
	 ��
���
���

�����&���	 �����	 ����
���	 ����
�	 ��
�	 ������
��
���3��	 ����	 (��� 	 ���������	 �� 	 ����������
�� ���,N	*�������������������
�	,9C	A8"'A8<,

F�����	 -,	 �� 	 .,	 ?�

��(���)"<<=*,	

�����
��
��������(���	 ��	 �	 (�������	 ��
�� 	 ���	 ������
���
����
��	 ������
����	 $��������	 �����
�	 ����,	 ��
����������	�
	���3����,

%�����	�,)"<<8*,	��!
�������+���
� "�,���+��
���-���
.��������,	���(�� ���	.��	.>$	0����,

%������	�,	�� 	�,	!,	F���)"<<@*,	N?�������	���	���
���
�����
���	 ���	 �������	 ��������,N	 �
��������
������������	9:C	A@#'#A=,

%�3�	0,�	�,	-,	%�
�������	�� 	F,	%���3���3�)"<<7*,	$��
.��.->�	 ��������	
�	 ���
����	 ���
	 ��
���
���,
��

�������������/���,

%��� ����	 F,	�,)"<<#*,	%����0�����1���������	.�����'
%�������,

.����	�,�	�,	%� � ��	.,	�������	%,	0�����	�,	
������� �
.,	
������ 	 �� 	
,	 ?�(�
��)A777*,	 N-�
�����
���
���	 ��	 �������	 ��������	 (��� 	 ��� ��
���
���
���,N	*�������������������
�	3,)"*C	��A#'A<,

0���
����	.,	 F,�	
,	
,	 D�������9�	 �� 	 $,	.�3���� ����
)"<<5*,	 N
��
����	 �����
	 ��
���
���	 ?�
�	 �	 ����'
���� 	 ��������,N	 *�� �2
�
�������� �� ����
������
�
���������������������	;C	#="	'	#5#,

�������	�,	�,)A777*,	2�
����	��� ������	�� 	�����
������
������
����� �
��������� � ��!����"� #���!
�� $����� ��
%��
!��
��������&������'3458�#'A7,

������	 ;,)"<<8*,	����� 	/2�C	 -	 ���	
��
�
���	 �
���,
(
�� %����� ��� 6������� +
��
������� 76+8539�
.� �����	?��������,�	.�����	%������,

������ �	 .,	 F,	 �� 	 �,	
�������)"<<@*,	 N��
���
���
���
����	 ���+��
	 �����
	 �����	 ���������,N	 ����
�
��������������������
���������
���	+,)""*C	@#5'
@=#,

������ �	 .,	 F,�	 �,	
������� 	 �� 	 �,	 -,	 %�
�������
)"<<5*,	 �����
	 ��
���
���	 �����	 �������,	 '3��� �����
%��������������������	�������	>���	�����
��	0����,

3���3�	�,	�,)"<<=*,	0��
�
���	 �� 	 ���
���	 �����
���	 (�
��������	 �� 	 ��� ��	 ��
�
���	 ����	 ����(���
������
���,	 ''��� ������ -������� #��
����� %����
7�%-#�5:9�	.�����	%��������,

?��
����	 �,�	 F,	 �,	 ������ ���	 �,	 ������'
���� �	 �� 	 �,
������)"<<@*,	.����	����
��	������
���	���	��(��

���
���	 �����
���,	 ����
��������� %����
����� ��
6�����������
�����&��%6��5;�

?�����
�	 �,	 !,	 �� 	?,	 �,	 .����� �)"<<@*,	 N/�	 2���
�����	$�������	���	
�����,N	������
�������������
� ��!�����
��%��
!������	")"*C	5@'8A,

SEARCH-BASED SOFTWARE ENGINEERING1374

Using Heuristic Search Techniques to Extract
Design Abstractions from Source Code

Brian S. Mitchell and Spiros Mancoridis
Department of Mathematics & Computer Science

Drexel University, Philadelphia, PA 19104
{bmitchel, smancori}@mcs.drexel.edu

Abstract

As modern software systems are large and com-
plex, appropriate abstractions of their structure
are needed to make them more understandable
and, thus, easier to maintain. Software clustering
tools are useful to support the creation of these
abstractions. In this paper we describe our search
algorithms for software clustering, and conduct a
case study to demonstrate how altering the clus-
tering parameters impacts the behavior and per-
formance of our algorithms.

1 Introduction & Background

Software supports many business, government, and social
institutions. As the processes of these institutions change,
so must the software that supports them. Changing soft-
ware systems that support complex processes can be quite
difficult, as these systems can be large (e.g., thousands or
even millions of lines of code) and dynamic.

There is a need to develop sound methods and tools to
help software engineers understand large and complex sys-
tems so that they can modify the functionality or repair the
known faults of these systems. Understanding how the soft-
ware is structured – at various levels of granularity – is one
of several kinds of understanding that is important to a soft-
ware engineer. As the software structure can itself be very
complex, the appropriate abstractions of a system’s struc-
ture must be determined. Techniques and tools can then be
designed and implemented to support the creation of these
abstractions.

Automatic design extraction methods have been proposed
to create abstract views – similar to “road maps” – of a sys-
tem’s structure. Such views help software engineers cope
with the complexity of software development and mainte-
nance. Design extraction starts by parsing the source code
to determine the components and relations of the software.

The parsed code is then analyzed to produce a variety of
views of the software structure, at varying levels of abstrac-
tion.

Detailed views of software structure are appropriate when
the software engineer has isolated the subsystems that are
relevant to his or her analysis. However, abstract (architec-
tural) views are more appropriate when the software engi-
neer is trying to understand the global structure of the soft-
ware. Software clustering is used to produce such abstract
views. These views feature module-level components and
relations contained within subsystems. The source code
level components and relations can be determined using
source code analysis tools. The subsystems, however, are
not found in the source code. Rather, they are inferred from
the source code components and relations either automat-
ically, using a clustering tool, or manually, when tools are
not available.

The problem of automatically creating abstract views of
software structure is very computationally expensive (NP-
hard) (Garey and Johnson, 1979), so a hope for find-
ing a general solution to the software clustering prob-
lem is unlikely. Nevertheless, several heuristic approaches
to solving this problem have been proposed. These ap-
proaches generally differ in the way that they create subsys-
tems. For example, some popular clustering techniques use
source code component similarity (Hutchens and Basili,
1985; Schwanke, 1991; Choi and Scacchi, 1999; Müller
et al., 1992), concept analysis (Lindig and Snelting, 1997;
Deursen and Kuipers, 1999), or implementation informa-
tion such as module, directory, and/or package names (An-
quetil et al., 1999) to derive the subsystems. Our clustering
approach differs from the others as it is based on heuris-
tic search techniques (Mancoridis et al., 1998; Doval et al.,
1999; Mancoridis et al., 1999; Mitchell et al., 2001).

In this paper we examine the latest features of the software
clustering techniques that are implemented in our cluster-
ing tool named Bunch. We will focus on the enhancements
that we have made to our hill-climbing clustering algo-

SEARCH-BASED SOFTWARE ENGINEERING 1375

Bunch Clustering ToolSource Code
void main()
{
 printf(“Hello World!”);
}

Source Code
Analysis Tools

(e.g., Acacia, Chava, cia)

Software Structure Graph
(e.g., MDG)

M1 M3

M2

M4 M5

M6

M7 M8

Partitioned Software Structure
Graph (e.g., Partitioned MDG)

M1 M3

M2

M4 M5

M6

M7 M8

Visualization Tools
(e.g., Dotty)

User Interface

Tools

Programming
API

Clustering
Algorithms

Figure 1: Bunch’s Design Extraction Process

rithm since it was first published in the 1998 IWPC pro-
ceedings (Mancoridis et al., 1998). We also conduct a case
study to demonstrate how the various clustering parameters
supported by our latest hill-climbing algorithm impact the
clustering results when applied to several systems of vary-
ing size. Our goal is to help Bunch users understand the
parameters of our clustering algorithms.

2 Design Extraction using Bunch

The first step in our design extraction process (see Figure 1)
is to determine the resources and relations in the source
code and store the resultant information in a database.
Readily available source code analysis tools – supporting
a variety of programming languages – can be used for this
step (Chen, 1995; Korn et al., 1999). After the resources
and relations have been stored in a database, the database
is queried and a Module Dependency Graph (MDG) is cre-
ated. For now, consider the MDG to be a directed graph that
represents the software modules (e.g., classes, files, pack-
ages) as nodes, and the relations (e.g., function invocation,
variable usage, class inheritance) between modules as di-
rected edges. Once the MDG is created, Bunch’s clustering
algorithms can be used to create the partitioned MDG. The
clusters in the partitioned MDG represent subsystems that
contain one or more modules, relations, and possibly other
subsystems. The final result can be visualized and browsed
using a graph visualization tool such as dotty (North and
Koutsofios, 1994).

An example MDG for a small compiler developed at the
University of Toronto is illustrated in Figure 2. We show
a sample partition of this MDG, as created by Bunch, in
Figure 3. Notice how Bunch automatically created four
subsystems to represent the abstract structure of a com-
piler. Specifically, there are subsystems for code genera-
tion, scope management, type checking, and parsing.

The center of Figure 1 depicts additional services that
are supported by the Bunch clustering tool. These ser-
vices are discussed thoroughly in Bunch’s user and pro-

parser

scopeController

scanner

codeGenerator

typeChecker

declarations

dictIdxStack dictionary

dictStack

addrStack

typeStack

argCntStack

main

Figure 2: The MDG for a Small Compiler

(SS-L0):parser (SS-L0):codeGenerator

(SS-L0):scopeController (SS-L0):typeChecker

scanner

declarations

parser

codeGeneratorscopeController typeChecker

addrStack

main

dictionary dictIdxStack

dictStack

typeStack argCntStack

Figure 3: The Partitioned MDG for a Small Compiler

grammer documentation, which can be accessed on the
Drexel University Software Engineering Research Group
web page (SERG, 2002).

3 Bunch’s Updated Clustering Algorithms

The goal of Bunch’s clustering algorithms is to partition
the Module Dependency Graph (MDG) so that the clusters
represent meaningful subsystems. We formally define the
MDG to be a graph MDG = (M,R), where M is the set
of named modules in the software system, and R ⊆ M×M
is a set of ordered pairs of the form 〈u, v〉 which represents
the source-level relationships that exist between module u
and module v. Also, the MDG can have weighted edges
to establish the “strength” of the relation between a pair
of modules. An example MDG consisting of 8 modules is
shown on the left side of Figure 4.

Once the MDG of a software system is determined, we
search for a “good” partition of the MDG. We accomplish
this task by using heuristic searches whose goal is to max-
imize the value of an objective function that is based on a
formal characterization of the trade-off between coupling
(i.e., connections between the components of two distinct
clusters) and cohesion (i.e., connections between the com-
ponents of the same cluster). We refer to our objective
function as the Modularization Quality (MQ) of a partition
of an MDG. This measurement represents the “quality” of
a system decomposition. MQ adheres to our fundamental

SEARCH-BASED SOFTWARE ENGINEERING1376

M1

M2

M3

M4 M5

M6

M7M8

Subsystem 1 Subsystem 2 Subsystem 3

M6

M7

M8

M4

M5

M1

M2

M3

MQ = CF1 + CF2 + CF3 = 1.92381

CF1 = 2/3 CF2 = 2/5 CF3 = 6/7

Figure 4: Modularization Quality Example

assumption that well-designed software systems are orga-
nized into cohesive clusters that are loosely interconnected.
The MQ expression is designed to reward the creation of
highly cohesive clusters yet penalize excessive inter-cluster
coupling.

The MQ for an MDG partitioned into k clusters is calcu-
lated by summing the Cluster Factor (CF) for each clus-
ter of the partitioned MDG. The Cluster Factor, CFi, for
cluster i (1 ≤ i ≤ k) is defined as a normalized ratio be-
tween the total weight of the internal edges (edges within
the cluster) and half of the total weight of external edges
(edges that exit or enter the cluster). We split the weight of
the external edges in half in order to apply an equal penalty
to both clusters that are are connected by an external edge.
We refer to the internal edges of a cluster as intra-edges
(µi), and the edges between two distinct clusters i and j as
inter-edges (εi,j and εj,i respectively). If edge weights are
not provided by the MDG, we assume that each edge has
a weight of 1. Also, note that εi,j = 0 and εj,i = 0 when
i = j. Below, we define the MQ calculation:

MQ=

k∑
i=1

CFi CFi =




0 µi = 0

µi

µi+
1
2

k∑
j=1
j �=i

(εi,j+εj,i)

otherwise

Figure 4 illustrates an example MQ calculation for an MDG
consisting of 8 modules that are partitioned into 3 subsys-
tems. The value of MQ is approximately 1.924, which is
the result of summing the Cluster Factor for each of the
three subsystems. The larger the value of MQ, the better
the partition. For example, the CF for Subsystem 2 is 0.4
because there is 1 intra-edge, and 3 inter-edges. Apply-
ing these values to the expression for CF results in CF2 =
1/(1 + 3

2) = 2/5 = 0.4.

The MQ measurement described above is the most recent
objective function that we have integrated into the Bunch
tool. Our older objective function, which was described in
an earlier paper (Mitchell et al., 2001) worked well, but we
noticed after significant testing that the clusters produced
by Bunch tended to minimize the inter-edges that exited
the clusters, and not minimize the number of inter-edges
in general. Also, the above described MQ measurement
supports MDGs that contain edge weights, which is a fea-

ture that was not supported by our original MQ measure-
ment (Mancoridis et al., 1998).

3.1 Clustering Algorithms

One way to find the best partition of an MDG is to per-
form an exhaustive search through all of the valid parti-
tions, and select the one with the largest MQ value. How-
ever, this is often impossible because the number of ways
the MDG can be partitioned grows exponentially with re-
spect to the number of its nodes (modules) (Mancoridis et
al., 1998).1 Because discovering the optimal partition of
a MDG is only feasible for small software systems (e.g.,
fewer then 15 modules), we directed our attention, instead,
to using heuristic search algorithms that are capable of dis-
covering approximation results quickly. The approxima-
tion search strategies that we have investigated and imple-
mented in the Bunch (Mancoridis et al., 1999) clustering
tool, are based on hill-climbing (Mancoridis et al., 1998)
and genetic (Doval et al., 1999) algorithms.

3.1.1 Hill-Climbing Algorithm

Bunch’s hill-climbing clustering algorithms start by gen-
erating a random partition of the MDG. Modules from this
partition are then rearranged systematically in an attempt to
find an “improved” partition with a higher MQ. If a better
partition is found, the process iterates, using the improved
partition as the basis for finding even better partitions. This
hill-climbing approach eventually converges when no ad-
ditional partitions can be found with a higher MQ.

Neighboring Partitions

Our hill-climbing algorithms move modules between the
clusters of a partition in an attempt to improve MQ. This
task is accomplished by generating a set of neighboring
partitions (NP).

Original Partition Neighbor 1 Neighbor 2 Neighbor 3

M1

M2

M3

M1

M2

M3

M1

M2

M3

M1

M2

M3

Figure 5: Neighboring Partitions

We define a partition NP to be a neighbor of a partition P if
and only if NP is exactly the same as P except that a single
element of a cluster in partition P is in a different cluster

1It should also be noted that the general problem of graph par-
titioning (of which software clustering is a special case) is NP-
hard (Garey and Johnson, 1979).

SEARCH-BASED SOFTWARE ENGINEERING 1377

in partition NP. If partition P contains m nodes and k clus-
ters, the total number of neighbors is O(n · k). Figure 5
illustrates an example partition, and all of its neighboring
partitions.

3.1.2 Genetic Algorithm

Hill-climbing search algorithms suffer from the well-
known problem of “getting stuck” at local optimum points,
and therefore possibly missing the global optimum (best
solution). To address this concern we have investi-
gated other search algorithms such as Genetic Algorithms
(GA) (Goldberg, 1989; Mitchell, 1997), and applied these
algorithms to the software clustering problem. We have
found that the results produced by Bunch’s hill-climbing
algorithm are typically better than the Bunch GA (Doval et
al., 1999). Upon studying this outcome, we concluded that
further work on our encoding and crossover techniques are
necessary.

4 Hill-Climbing Algorithm Enhancements
The previous section of this paper describes the cluster-
ing algorithms that are supported by Bunch. The emphasis
since the Bunch project was started has been on our hill-
climbing clustering algorithms. The rest of this section de-
scribes various enhancements that we recently made to the
hill-climbing algorithm described in Section 3.1.1.

4.1 Adjustable Hill-Climbing Threshold

The hill-climbing algorithm described in Section 3.1.1
starts with a generated random partition of the MDG. It
then iterates using our neighboring partition strategy2 to
find an “improved” partition using the MQ objective func-
tion. During each iteration several options are available for
controlling the behavior of the hill-climbing algorithm:

1. The neighboring process uses the first partition that it
discovers with a larger MQ as the basis for the next
iteration.

2. The neighboring process examines all neighboring
partitions and selects the partition with the largest MQ
as the basis for the next iteration.

3. The neighboring process ensures that it examines a
minimum number of neighboring partitions during
each iteration. If multiple partitions with a larger MQ
are discovered within this set, then the partition with
the largest MQ is used as the basis for the next itera-
tion. If no partitions are discovered that have a larger
MQ, then the neighboring process continues and uses
the next partition that it discovers with a larger MQ as
the basis for the next iteration.

2The hill-climbing algorithm examines the set of neighboring
partitions in random order.

To address the last option from the above list, the latest
version of the hill-climbing algorithm uses a threshold η
(0% ≤ η ≤ 100%) to calculate the minimum number of
neighbors that must be considered during each iteration of
the hill-climbing process. A low value for η generally re-
sults in the algorithm taking more “small” steps prior to
converging, and a high value for η results in the algorithm
taking fewer “large” steps prior to converging.

Our experience has shown that examining many neighbors
during each iteration (i.e., using a large threshold such as
η ≥ 75%) increases the time the algorithm needs to con-
verge to a solution. One obvious question is if the increased
runtime increases the likelihood of finding a better solu-
tion than if the first discovered neighbor with a higher MQ
(η = 0%) is used as the basis for the next iteration of the
hill-climbing algorithm. Answering this question is one of
the goals of the case study that is described in Section 5.

4.2 Simulated Annealing

A well-known problem of hill-climbing algorithms is that
certain initial starting points may converge to poor solu-
tions (i.e., local optima). To address this problem, our hill-
climbing algorithm does not rely on a single random start-
ing point, but instead uses a collection of random starting
points.

Another way to overcome the above described problem is
to use Simulated Annealing (SA) (Kirkpatrick et al., 1983).
SA algorithms are based on modeling the cooling processes
of metals, and the way liquids freeze and crystalize. When
applied to optimization problems, SA enables the search al-
gorithm to accept, with some probability, a worse variation
as the new solution of the current iteration. As the compu-
tation proceeds, the probability diminishes. The slower the
cooling schedule, or rate of decrease, the more likely the al-
gorithm is to find an optimal or near-optimal solution. SA
techniques typically represent the cooling schedule with a
cooling function that reduces the probability of accepting a
worse variation as the optimization algorithm runs.

We defined a cooling function that establishes the probabil-
ity of accepting a worse, instead of a better partition during
each iteration of the hill-climbing algorithm. The idea is
that by accepting a worse neighbor, occasionally the algo-
rithm will “jump” to explore a new area in the search space.
Our cooling function is designed to respect the properties of
the SA cooling schedule, namely: (a) decrease the proba-
bility of accepting a worse move over time, and (b) increase
the probability of accepting a worse move if the rate of im-
provement is small. Below we present our cooling function
that is designed with respect to the above requirements.

P (A) =

{
0 �MQ ≥ 0

e
�MQ

T �MQ < 0
T (k + 1) = α · T (k)

SEARCH-BASED SOFTWARE ENGINEERING1378

0

0.4

0.8

1.2

1.6

0 25 50 75 100

Clustering Threshold

M
Q

0

0.4

0.8

1.2

1.6

0 25 50 75 100
Clustering Threshold

M
Q

0

0.4

0.8

1.2

1.6

0 25 50 75 100
Clustering Threshold

M
Q

0

0.4

0.8

1.2

1.6

0 25 50 75 100
Clustering Threshold

M
Qcompiler

0

0.4
0.8

1.2
1.6

2
2.4

2.8

0 25 50 75 100

Clustering Threshold

M
Q

0

0.4

0.8

1.2
1.6

2

2.4

2.8

0 25 50 75 100
Clustering Threshold

M
Qispell

0

0.4

0.8

1.2

1.6

2

2.4

0 25 50 75 100

Clustering Threshold

M
Q

0

0.4

0.8

1.2

1.6

2

2.4

0 25 50 75 100

Clustering Threshold

M
Q

0

0.4

0.8

1.2

1.6

2

2.4

0 25 50 75 100

Clustering Threshold
M

Q

0

0.4

0.8

1.2

1.6

2

2.4

0 25 50 75 100

Clustering Threshold

M
Qrcs

0

0.3

0.6

0.9

1.2

1.5

1.8

0 25 50 75 100

Clustering Threshold

M
Q

0

0.3

0.6

0.9

1.2

1.5

1.8

0 25 50 75 100

Clustering Threshold

M
Q

0

0.3

0.6

0.9

1.2

1.5

1.8

0 25 50 75 100

Clustering Threshold

M
Q

0

0.3

0.6

0.9

1.2

1.5

1.8

0 25 50 75 100

Clustering Threshold

M
Q

dot

0
1
2
3
4
5
6
7
8

0 25 50 75 100

Clustering Threshold

M
Q

0
1
2
3
4
5
6
7
8

0 25 50 75 100

Clustering Threshold

M
Q

0
1
2
3
4
5
6
7
8

0 25 50 75 100

Clustering Threshold

M
Q

swing

SYSTEM NO SA T(0)=100; αααα=.99 T(0)=100; αααα=.90 T(0)=100; αααα=.80

0
1
2
3
4
5
6
7
8

0 25 50 75 100

Clustering Threshold

M
Q

0

0.4

0.8

1.2

1.6

2

2.4

2.8

0 25 50 75 100
Clustering Threshold

M
Q

0

0.4

0.8

1.2

1.6

2

2.4

2.8

0 25 50 75 100
Clustering Threshold

M
Q

Figure 6: Case Study Results – MQ versus η Scatter Plot

Each time the cooling function is evaluated, T (k) is re-
duced. The initial value of T (i.e., T (0)) and the rate of
reduction constant α are established by the user. Further-
more,
MQ must be negative, which means that the MQ
value has decreased. Once the probability of accepting a
partition of the MDG with a lower MQ is calculated, a uni-
form random number between 0 and 1 is chosen. If this
random number is less than the probability P (A), the par-
tition is accepted.

5 Case Study
In the previous section we described some recent enhance-
ments that were made to Bunch’s hill-climbing clustering
algorithms. These new features require the user to set con-

figuration parameters to guide the clustering process. In
this section we present a case study to investigate the im-
pact of altering these parameters on systems of various size.

Table 1 describes the 5 systems that we used in our case
study. We selected these systems because they vary in size
and complexity. Our basic test involved clustering each
system 1,050 times, consisting of 21 tests, with 50 runs in
each test. The first 50 clustering runs were executed with
the adjustable clustering threshold η set to 0%. The next set
of 20 tests (with 50 runs in each test) involved incrementing
η by 5% until η reached 100%.

We then repeated the above test for each of the systems de-
scribed in Table 1, this time using the simulated annealing

SEARCH-BASED SOFTWARE ENGINEERING 1379

compiler

ispell

rcs

dot

swing

SYSTEM NO SA T(0)=100; αααα=.99 T(0)=100; αααα=.90 T(0)=100; αααα=.80

0

2

4

6

8

10

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0

2

4

6

8

10

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0

2

4

6

8

10

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0

2

4

6

8

10

12

14

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0

2

4

6

8

10

12

14

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0

2

4

6

8

10

12

14

0 25 50 75 100

Clustering Threshold
M

Q
E

va
lu

at
io

n
s

(1
00

0'
s)

0

2

4

6

8

10

12

14

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0
5

10
15
20
25
30
35
40

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0
5

10
15
20
25
30
35
40

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0
5

10
15
20
25
30
35
40

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

0
5

10
15
20
25
30
35
40

0 25 50 75 100

Clustering Threshold
M

Q
E

va
lu

at
io

n
s

(1
00

0'
s)

0
5

10
15
20
25
30
35
40

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(M

ill
io

n
s)

0
5

10
15
20
25
30
35
40

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(M

ill
io

n
s)

0
5

10
15
20
25
30
35
40

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(M

ill
io

n
s)

0

2

4

6

8

10

12

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
's

)

0

2

4

6

8

10

12

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
's

)

0

2

4

6

8

10

12

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
's

)

0

2

4

6

8

10

12

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
's

)

0
5

10
15
20
25
30
35
40

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(M

ill
io

n
s)

0

2

4

6

8

10

0 25 50 75 100

Clustering Threshold

M
Q

E
va

lu
at

io
n

s
(1

00
0'

s)

Figure 7: Case Study Results – MQ Evaluations versus η Scatter Plot

feature. Each of these tests altered the parameters used to
initialize the cooling function that was described in Sec-
tion 4.2. For these tests we held the initialization value for
the starting temperature constant, T (0) = 100, and varied
the cooling rate as follows: α = {0.99, 0.9, 0.8}.

The following observations were made based on the data
collected in the case study:

• As expected, the clustering threshold η had a direct
and consistent impact on the clustering runtime, and
the number of MQ evaluations. As η increased so did
the overall runtime and the number of MQ evaluations.
This behavior is illustrated consistently in Figure 7.

• Figure 6 shows that although increasing η increased
the overall runtime and number of MQ evaluations,
altering η did not appear to have an observable im-
pact on the overall quality of the clustering results.
The data in Figure 6 also shows that our simulated
annealing implementation did not improve MQ. How-
ever, the simulated annealing algorithm did appear to
help reduce the total runtime needed to cluster each of
the systems in this case study.

Figure 7 shows the number of MQ evaluations per-
formed for each of the systems in the case study. Since
the overall runtime is directly related to the number of
MQ evaluations, it appears that the use of our SA cool-

SEARCH-BASED SOFTWARE ENGINEERING1380

dot

0

0.2

0.4

0.6

0.8

1

1.2

0 250 500 750 1000

M
Q

compiler

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 250 500 750 1000

M
Q

ispell

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 250 500 750 1000

M
Q

RCS

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 250 500 750 1000

M
Q

Swing

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 250 500 750 1000

M
Q

Figure 8: Case Study Results – Random Partition Scatter Plot

Table 1: Systems Examined in the Case Study

System System Description &
Name MDG Size
compiler The compiler shown in Figure 2.

MDG: modules = 13, relations = 32
ispell An open source spell checker.

MDG: modules = 24, relations = 103
rcs An open source version control system.

MDG: modules = 34, relations = 163
dot A graph drawing tool (Gansner et al., 1993).

MDG: modules = 42, relations = 256
swing The Java user interface class library.

MDG: modules = 413, relations = 1513

ing technique is a promising way to reduce the clus-
tering time. Table 2 compares the average number of
MQ evaluations executed in each SA test to the aver-
age number of MQ evaluations executed in the non-
SA test. For example using T (0) = 100 and α = .99
reduced the number of MQ evaluations needed to clus-
ter the swing class library by an average of 32%.

• Figure 6 indicates that the hill-climbing algorithm
converged to a consistent solution for the ispell, dot
and rcs systems.

• Figure 6 shows that the hill-climbing algorithm con-
verged to one of two families of related solutions for
the compiler and swing systems. For the compiler
system, 53.7% of the results were found in the range
0.6 ≤ MQ ≤ 1.0, and 46.3% of the results were found
in the range 1.3 ≤ MQ ≤ 1.5. For the swing system,
27.3% of the results were found in the range 1.5 ≤
MQ ≤ 2.5, and 72.7% of the results were found in the
range 3.75 ≤ MQ ≤ 6.3.

• Figure 6 shows two interesting results for the ispell
and rcs systems. For the ispell system, 34 out of 4,200
samples (0.8%) were found to have an MQ around 2.3,
while all of the others samples had an MQ value in
the range 0.8 ≤ MQ ≤ 1.2. For the rcs system, 3
out of 4,200 samples (0.07%) were found to have an
MQ around 2.2, while all of the other samples had MQ
values concentrated in the range of 1.0 ≤ MQ ≤ 1.25.

This outcome highlights that some rare partitions of
an MDG may be discovered if enough runs of our hill-
climbing algorithm are executed.

• Figure 8 illustrates 1,000 random partitions for each
system examined in this case study. The random par-
titions have low MQ values when compared to the
clustering results shown in Figure 6. This result pro-
vides some confidence that our clustering algorithms
produce better results than examining many random
partitions, and that the probability of finding a good
partition by means of random selection is small.

• As α increased, so did the number of simulated an-
nealing (non-improving) partitions that were incorpo-
rated into the clustering process. In Figure 9 we show
the number of SA partitions integrated into the cluster-
ing process for the swing class library. As expected,
the number of partitions decreased as α decreased. Al-
though we only show this result for swing, all of the
systems examined in this case study exhibited this ex-
pected behavior.

Table 2: Reduced Percentage of MQ Evaluations Asso-
ciated with using Simulated Annealing

Simulated Annealing Parameters
T (0) = 100 T (0) = 100 T (0) = 100

System α = .99 α = .90 α = .80

compiler 27% 26% 23%
ispell 22% 25% 21%
rcs 25% 27% 26%
dot 28% 29% 25%
swing 32% 15% 10%

6 Conclusions
This paper describes the latest enhancements that we made
to our hill-climbing clustering algorithm, and examined
several configuration parameters that impact the overall
runtime and quality of the clustering results. A case study
was also conducted to evaluate the impact of altering some
of our clustering parameters when the Bunch tool was used
to cluster several systems of varying sizes.

SEARCH-BASED SOFTWARE ENGINEERING 1381

The Swing Class Library

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100
Clustering Threshold

S
im

u
la

te
d

A
n

n
ea

lin
g

P
ar

ti
ti

o
n

s
A

cc
ep

te
d

alpha = .99

alpha = .90

alpha = .80

Figure 9: Case Study Results – Simulated Annealing
Partitions used for Clustering swing

Our case study produced some interesting results, some of
which were surprising. We expected that altering the clus-
tering threshold η would either improve MQ or reduce vari-
ability in the clustering results, neither was found to be true.
Also, although our simulated annealing technique did not
impact MQ it did reduce the number of MQ evaluations,
and therefore the overall clustering runtime for the systems
that we examined. We also observed that our clustering al-
gorithm tended to converge to a single “neighborhood” of
related solutions for the ispell, rcs, and dot systems, and to
two “neighborhoods” of related solutions for the compiler
and swing systems. Finally, some rare solutions, with a
significantly higher MQ, were discovered for the ispell and
rcs systems.

As future work we intend to reevaluate our genetic algo-
rithm in order to make some of the improvements that were
suggested in this paper, and to investigate some alternative
SA cooling functions.

7 Acknowledgements

This research is sponsored by grants CCR-9733569 and
CISE-9986105 from the National Science Foundation
(NSF). Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the NSF.

References

N. Anquetil, C. Fourrier, and T. Lethbridge. Experiments with
hierarchical clustering algorithms as software remodulariza-
tion methods. In Proc. Working Conf. on Reverse Engineer-
ing, October 1999.

Y. Chen. Reverse engineering. In B. Krishnamurthy, editor, Prac-
tical Reusable UNIX Software, chapter 6, pages 177–208.
John Wiley & Sons, New York, 1995.

S. Choi and W. Scacchi. Extracting and restructuring the design
of large systems. In IEEE Software, pages 66–71, 1999.

A. van Deursen and T. Kuipers. Identifying objects using cluster
and concept analysis. In International Conference on Soft-

ware Engineering, ICSM’99, pages 246–255. IEEE Com-
puter Society, May 1999.

D. Doval, S. Mancoridis, and B.S. Mitchell. Automatic cluster-
ing of software systems using a genetic algorithm. In Pro-
ceedings of Software Technology and Engineering Practice,
August 1999.

E.R. Gansner, E. Koutsofios, S.C. North, and K.P. Vo. A technique
for drawing directed graphs. IEEE Transactions on Software
Engineering, 19(3):214–230, March 1993.

M.R. Garey and D.S. Johnson. Computers and Intractability.
W.H. Freeman, 1979.

D. Goldberg. Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Addison Wesley, 1989.

D. Hutchens and R. Basili. System Structure Analysis: Clustering
with Data Bindings. IEEE Transactions on Software Engi-
neering, 11:749–757, August 1985.

S. Kirkpatrick, C.D. Gelatt JR., and M.P. Vecchi. Optimization
by simulated annealing. Science, 220:671–680, May 1983.

J. Korn, Y. Chen, and E. Koutsofios. Chava: Reverse engineering
and tracking of java applets. In Proc. Working Conference
on Reverse Engineering, October 1999.

C. Lindig and G. Snelting. Assessing modular structure of legacy
code based on mathematical concept analysis. In Proc.
International Conference on Software Engineering, May
1997.

S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R.
Gansner. Using automatic clustering to produce high-level
system organizations of source code. In Proc. 6th Intl. Work-
shop on Program Comprehension, June 1998.

S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Bunch:
A clustering tool for the recovery and maintenance of soft-
ware system structures. In Proceedings of International
Conference of Software Maintenance, pages 50–59, August
1999.

B. S. Mitchell, M. Traverso, and S. Mancoridis. An architecture
for distributing the computation of software clustering algo-
rithms. In The Working IEEE/IFIP Conference on Software
Architecture (WICSA 2001), August 2001.

M. Mitchell. An Introduction to Genetic Algorithms. The MIT
Press, Cambridge, Massachusetts, 1997.

H. Müller, M. Orgun, S. Tilley, and J. Uhl. Discovering and re-
constructing subsystem structures through reverse engineer-
ing. Technical Report DCS-201-IR, Department of Com-
puter Science, University of Victoria, August 1992.

S. North and E. Koutsofios. Applications of graph visualization.
In Proc. Graphics Interface, 1994.

R. Schwanke. An intelligent tool for re-engineering software
modularity. In Proc. 13th Intl. Conf. Software Engineering,
May 1991.

SERG, 2002. The Drexel University Software Engineering Re-
search Group (SERG). http://serg.mcs.drexel.edu.

SEARCH-BASED SOFTWARE ENGINEERING1382

Code Factoring and the Evolution of Evolvability

Terry Van Belle
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico, USA

vanbelle@cs.unm.edu

505-277-7833

David H. Ackley
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico, USA

ackley@cs.unm.edu

505-277-9149

Abstract

Evolvability can be defined as the capacity of a
population to evolve. We show that one advan-
tage of Automatically Defined Functions (ADFs)
in genetic programming is their ability to in-
crease the evolvability of a population over time.
We observe this evolution of evolvability in ex-
periments using genetic programming to solve a
symbolic regression problem that varies in a par-
tially unpredictable manner. When ADFs are part
of a tree’s architecture, then not only do aver-
age populations recover from periodic changes
in the fitness function, but that recovery rate it-
self increases over time, as the trees adopt modu-
lar software designs more suited to the changing
requirements of their environment.

1 EVOLUTION OF EVOLVABILITY

Evolutionary biologists have explored the sometimes con-
troversial notion that beyond merely producing organ-
isms adapted to their environments, the forces of evolu-
tion may operate to improve the adaptation process itself
(Dawkins 1989, for example). The idea is that over rel-
atively long time periods populations can become more
capable of adaptation in the face of future environmental
change, a process described as “the evolution of evolvabil-
ity.”

While it may appear only logical that a ‘more adaptable’
population would ultimately outcompete and displace some
other population that is less so, it seems a good deal less ob-
vious when imagining how that competition would actually
have to play out. If two individuals are equally fit in their
environment there will be no direct pressure favoring the
survival of one over the other, even if they vary drastically
in how well-suited their designs would be for evolutionary

adaptation to future changes. Even worse, if there is any
near-term fitness cost associated with being adaptable for
the future, we would expect such adaptability to dwindle
rather than proliferate.

1.1 EVOLVABILITY IN ARTIFICIAL LIFE

Artificial life researchers have developed models in which
the capacity of populations to adapt improves. Some
approaches have involved mechanisms such as encoding
the mutation rate inside of the genotype (Fogel, Fogel
& Atmar 1991), using ‘locking bits’ to turn on and off
the mutability of individual data bits (Turney 1999), and
allowing variable gene ordering to encourage modularity
(Pepper 2000). Although not providing experimental re-
sults, (Altenberg 1994) suggested that genetic program-
ming (GP) experiments can exhibit an increase in evolv-
ability through the proliferation of favorable blocks of
code.

On the other hand, given an unchanging fitness function
most typical genetic algorithms will converge to a small
number of genotypes. As that happens, the average fitness
of the population rises, but the ability of the population to
adapt further declines, because less and less of the overall
solution space remains easily reachable by applications of
the genetic operators. In such cases, shorter-term fitness
optimization is antagonistic to longer-term maintenance of
evolvability.

1.2 CODE FACTORING

In software engineering, code factoring refers to the pro-
cess of reorganizing the code within a program to improve
its ‘internal structure’ in some manner, generally without
changing what the program actually does (Fowler, Beck,
Brant, Opdyke & Roberts 1999). Code factoring is used,
for example, to merge duplicated pieces of code, and to
separate more volatile code elements from a more stable
code base. In this paper we explore a model that displays

SEARCH-BASED SOFTWARE ENGINEERING 1383

an increase in evolvability based on evolutionary code fac-
toring.

We applied genetic programming to a simple symbolic re-
gression task with a repeated term. Unlike typical GP ex-
periments, we periodically varied the value of this repeated
term over the course of a run, thus changing the GP popu-
lation’s environment. We report on three experiments com-
paring trees that contained an ADF (Koza 1994) with trees
that did not. We found that while both populations only
adapted in temporarily constant environments, the ADF
population also evolved forms capable of adapting more
quickly to a changed environment—the evolvability of the
ADF population evolved in a positive direction.

2 BACKGROUND

2.1 BIOLOGY AND SOFTWARE

(Kirschner & Gerhart 1998) point out how some biologi-
cal mechanisms—such as versatile protein elements, weak
linkage, compartmentation, redundancy, and exploratory
behavior—can improve the evolvability of multicellular or-
ganisms. Such mechanisms can reduce the interdepen-
dence between components, allowing functionally inde-
pendent traits to vary without adversely affecting each
other.

At the same time, sometimes decreasing flexibility can be
advantageous. (Dawkins 1996) cites bilateral symmetry as
an example of a constraint that can improve evolvability.
If longer legs, say, would improve fitness, a developmen-
tal process structured so that both legs lengthened equally
as the result of a single mutation could have an advantage
over another ontogeny that required a separate mutation for
each leg to occur simultaneously. The former approach sac-
rifices the added flexibility of differing limb lengths, but
we imagine that would be generally detrimental anyway.
Evolvability is inherently about placing both flexibility and
constraint where they are likely to help more than hurt, and
involves betting on how the future is likely to be different
from the present. If there are patterns in the environmental
changes, evolvability may be able to gain traction.

Similar issues arise in software design (Altenberg 1994, for
example). The environment to which the software must
adapt includes the changing requirements of the software
users (Nehaniv 2000, Stiemerling & Cremers 2000). Such
changes are not completely random, and good software de-
sign tries to anticipate them.

For example, when designing code for a graphical user in-
terface that contains some clickable buttons, one possible
approach would be to write a completely separate module
for each button. This allows great flexibility in that ev-
erything about the appearance and behavior of one button

could be changed without any effect on the others, but es-
sentially no software designer would even consider such an
approach. Buttons in GUIs generally behave in largely sim-
ilar fashions, so the code responsible for each button can be
very similar as well. Software designers separate attributes
that distinguish the buttons—location, label, and action, for
example—and provide them as parameters modifying the
behavior of a single piece of code. The designer can then
maintain the common code for all buttons simultaneously.

Although both solutions—lots of nearly duplicated code
versus parameterized common code—could precisely sat-
isfy the immediate behavioral needs, one solution is likely
to be more evolvable than the other. Designers of durable
systems strive not only to satisfy current requirements, but
also to be adaptable along the dimensions in which they
believe the requirements will vary in the future. This, we
hypothesize, is a key part of the distinction between a pro-
gram which merely solves a problem and one which solves
it with good design: The latter is more evolvable.

In both biological and computational systems, the environ-
ment within which an organism or piece of software must
function is likely to be more constant along some dimen-
sions, and more variable along others. Systems with high
evolvability will be adaptable along the variable dimen-
sions of the environment without disrupting those design
elements that have adapted to the environment’s constant
dimensions.

2.2 MODULARITY IN GP

(Koza 1994) introduced a variant to genetic programming,
known as “Automatically Defined Functions” (ADFs), to
introduce modularity into genetic programming, which
previously had typically involved only a single block of
code per organism. With ADFs, each genotype contains
multiple blocks of code. One is designated the “Result
Producing Branch” (RPB), and is the code that calculates
the tree’s result. The RPB can make use of special non-
terminals that make calls to other blocks of code—the
ADFs—that are by convention identified ADF0, ADF1, : : : .
Each ADF contains a pre-set number of arguments, usually
defined by the experimenter, which it can access through
special argument terminal nodes, conventionally labelled
ARG0, ARG1, : : : . The function (x� 1)2 +(x� 1), for ex-
ample, could be represented by:

ADF0: (- X 1)

RPB: (+ (* ADF0 ADF0) ADF0)

In this example, ADF0 takes no arguments and computes
x�1; the RPB computes the final function by calling ADF0

several times. The combination of ADF0 and the RPB con-
stitutes a single genome.

SEARCH-BASED SOFTWARE ENGINEERING1384

(Koza 1994) demonstrated that introducing ADFs pro-
duced a near-universal improvement both in computational
effort and in code size over equivalents without ADFs, pro-
vided the problem complexity exceeds a certain threshold.
In this paper we show that ADFs can also improve a GP
genome’s evolvability over time.

3 EXPERIMENTAL FRAMEWORK

To investigate evolvability, we need both a dynamic en-
vironment and some evolutionary organisms. Here we
present the models we used for each.

3.1 A DYNAMIC ENVIRONMENT

The environmental task was to perform symbolic regres-
sion on the function

y = Asin(Ax) (1)

where A is a constant, and x ranges from �1 to 1. Al-
though A was held constant during fitness evaluations, it
was changed periodically on a longer time scale, caus-
ing the fitness function to vary along a single dimension,
while keeping all other dimensions constant. As software
designers—seeing that A appears twice in the objective
function and armed with the foreknowledge that A will vary
over evolutionary time—we can readily conclude that it
would be advantageous to factor out the computation of A
and reuse that code; the question was whether ‘blind evo-
lution’ would be able to see that as well.

Every generation, 200 x values were generated uniformly at
random from the interval [�1;1), and the corresponding y
values were obtained from Equation 1 using the current A.
A tree’s fitness was calculated by evaluating it on the 200
current x’s, and summing the absolute values of the differ-
ences between the correct y value and what the tree pro-
duced. For display purposes, we also computed the num-
ber of hits of a tree—the number of sample points where
the calculated result was within 0:1 of the correct y value.
Any tree scoring 200 hits was considered a correct tree,
regardless of how it accomplished that performance.

Each run consisted of 1000 generations, evenly divided into
epochs of L generations each. At the end of each epoch, a
new value for A was selected uniformly at random from the
range [0;6).1 Fitness of the best of generation was reported
at the start of each epoch (immediately after A had been se-
lected), and at the end of each epoch (after L generations of
evolution had elapsed). Figure 1 summarizes the procedure
used for the dynamic environment.

1Since �Asin(�Ax) � Asin(Ax), negative values of A would
not add any problem complexity.

1. Update A

2. Generate 200 random sample points

3. Calculate fitnesses at the start of the epoch

4. Loop for L generations:

4.1. Evolve for a generation

4.2. Regenerate 200 random sample points

5. Calculate fitnesses at the end of the epoch

6. Calculate evolvability

7. Go to step 1

Figure 1: Experimental framework for a dynamic environ-
ment. See text for details.

3.1.1 Evolvability Defined

Within that environment, we defined the evolvability of the
population at each epoch to be the following:

E =
Fe�Fs

L
(2)

where Fs was the population’s best fitness (measured in
hits) just after A was changed and Fe was the best fitness
at the end of L generations of evolution beyond that point.

3.2 EVOLUTIONARY ARCHITECTURES

We compared a ‘monolithic’ tree architecture containing no
ADFs with an ‘ADF’ tree architecture that provided a sin-
gle zero-argument ADF. In Experiment 1, below, the termi-
nal node ‘x’ was not allowed in the ADF, so the ADF could
only produce a constant value. In the monolithic configu-
ration, a single branch calculated the entire function.

We used lil-gp 1.1 (Punch & Goodman 1995), to run
the experiments. A summary of the details can be found in
Table 1. The percentage indicated for each operator gives
the probability it will be used to produce an offspring. The
‘Best’ operator simply reproduces the best genome from
the previous generation, then the second best, and so on for
as many times as it is called, providing a kind of probabilis-
tic elitism.

4 RESULTS

For each experimental configuration, we collected statistics
such as the fitness (measured in hits) at the beginning and
end of each epoch, the evolvability E , and the sizes of the
various branches in numbers of nodes. All values reported

SEARCH-BASED SOFTWARE ENGINEERING 1385

Population Size 1000
Generations 1000
Function y = Asin(Ax)
Fitness sum of absolute value of error

for 200 points
Fitness Reported number of hits (max 200)
Operators Crossover (80%), Mutation

(10%), Reproduction (5%), Best
(5%)

Crossover Branch Typing
Selection Generational, Tournament,

Tournament Size = 7
Non-terminals sin;cos; log;exp;+;�;�;=

Terminals Random constant in [�1;1].
RPB of ADF: x, ADF0.
Monolithic: x.

Architecture Monolithic vs. one 0-arg ADF
Update of A Uniform random from [0;6)
Epoch Length L = 5 generations (except in Sec-

tion 4.3)

Table 1: Details of Experiment 1

were measured from the best of generation, and averaged
over 100 runs.

0

50

100

150

200

0 20 40 60 80 100 120 140 160 180 200

F
itn

es
s

(H
its

)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

ADF Fs
Monolithic Fs

Figure 2: Average fitness values at the start (Fs) and end
(Fe) of each epoch when regressing to y = Asin(Ax). A is
selected at the start of each epoch uniformly from the range
[0;6).

4.1 ADFS AND EVOLVABILITY

The first experiment asked if ADFs can increase average
evolvability of a population compared to their absence. The
results can be seen in Figures 2 through 5. The x axis is
measured in epochs.

Figure 2 shows fitnesses, while Figure 3 presents the data

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

E
vo

lv
ab

ili
ty

 (
H

it
G

ai
n

pe
r

G
en

er
at

io
n)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

Figure 3: Average evolvabilities for each epoch, regressing
to y = Asin(Ax).

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

T
re

e
S

iz
e

(N
od

es
)

Epochs (5 Generations each)

ADF, RPB branch
Monolithic

ADF, ADF branch

Figure 4: The average sizes of the three major branches.
The ADF case shows sizes for both the RPB and the ADF;
the monolithic size is the entire tree.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

F
ra

ct
io

n
of

 r
un

s

Epochs (5 Generations each)

ADF correct
Monolithic correct

ADF correct and minimal

Figure 5: Fraction of runs, at each epoch, that contained
correct solutions (hits = 200). Also plotted is the percent
of ADF runs that contains a minimal (RPB size 6) correct
solution—the tree size of Equation 3.

SEARCH-BASED SOFTWARE ENGINEERING1386

expressed as evolvabilities. The gap between the start (Fs)
and end (Fe) fitnesses increases over time when ADFs are
part of the tree architecture, but shows little to no increase
when they are not; only when the trees contained ADFs
did the best of generation average evolvability increase sub-
stantially over time.

An unexpected result visible in Figure 2 is that Fs increased
over time when ADFs were part of the tree architecture.
This is somewhat surprising, since Fs is calculated immedi-
ately after a new random value had been chosen for A, and
before any evolution using that value has occurred. The
ADF populations not only improved their capacity to track
the changing environment, but as time went on, the popula-
tions became seeded with good solutions along the dimen-
sion of varying A.

Figure 4, showing the average tree sizes over time, suggests
that the environmental change also had the effect of curbing
any substantial tree size increases, so ‘code bloat’ (Blickle
& Thiele 1994) was not a problem. The average sizes of all
branches increased at most slowly, staying below 60 nodes.

A ‘poster child’ best-of-generation solution in the ADF
case, taken from the end of the last epoch of run 10, looks
like this:

RPB: (* ADF0 (sin (* ADF0 X))

ADF0: (+ -0.52751 (- 0.03383

(+ (sin -0.84486) -0.07376)))

This is an example of an ideally structured RPB. The calcu-
lation of the constant A has been moved to the ADF0 branch,
and the form of the RPB:

y = ADF0() � sin(ADF0() � x) (3)

matches that of Equation 1. The RPB contains six nodes
(two multiplications, two ADF calls, one sin() call and one
access to x), which is minimal for a correct general solu-
tion, given the set of terminals and non-terminals available.
36% of the runs ended with a solution of 200 hits and an
RPB of size 6 at the end of the last epoch. Figure 5 shows
that both the percent of correct solutions, and of correct
minimal solutions rises substantially over the course of the
ADF run, while staying fairly constant in the monolithic
case.

Not all minimal correct trees will represent an ideal so-
lution like Equation 3—it is possible to generate a non-
general correct solution of size 6. However, manual ex-
amination of the last generation of the ADF case indicates
that all but one of the runs was an ideal solution, or one of
the form

RPB: (/ (sin (/ X ADF0)) ADF0)

where the ADF calculates the reciprocal of A. The one ex-

ception had had the correct form at the end of the penulti-
mate epoch, but had succumbed to an A-specific approxi-
mation during the last epoch.

By way of contrast, we ran 100 runs using a static fitness
function, where the value for A never varied from 3 for the
entire run. In this case, only 2 runs provided solutions of
the ideal form at any point in the run.

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

E
vo

lv
ab

ili
ty

 (
H

it
G

ai
n

pe
r

G
en

er
at

io
n)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

Figure 6: Average evolvabilities per epoch, regressing to
y = Asin(Bx), with A and B varying independently. Com-
pare to Figure 3.

We also performed a control experiment in which all con-
ditions were identical to Experiment 1 except that the func-
tion being optimized was y=Asin(Bx), where A and B var-
ied independently at random over precisely the same range.
In that case there is no code reuse and thus should be no
advantage to factoring the computation, and as Figure 6
shows, the ADF evolvability advantage completely disap-
peared in this case.

Experiment 1 strongly supports the idea that factoring the
repeated and varying portion of the environment into a sep-
arate function aided the long-term successful populations
by reducing the number of changes necessary to adapt to
a new value of A. Though trees arose in ADF populations
that did not perform such a factorization and still achieved
correct solutions, such non-factored trees were less evolv-
able than the ones that factored, and so they and their de-
scendents tended eventually to be out-competed.

4.2 EVOLVING CONSTANCY

Experiment 1 disallowed x in the body of the ADF, thus
constraining the ADF to only produce constant values.
Since that could bias solutions toward the ‘more intuitive’
factored representation, we also tested architectures with-
out that constancy constraint.

In Experiment 2 the terminal node x was included in the
ADF’s terminal set, so the only remaining difference be-

SEARCH-BASED SOFTWARE ENGINEERING 1387

0

50

100

150

200

0 50 100 150 200 250 300 350 400

F
itn

es
s

(H
its

)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

ADF Fs
Monolithic Fs

Figure 7: Experiment 2: Average Fs and Fs values when x
is allowed in the ADF. The number of epochs is doubled
over Experiment 1.

tween the RPB and the ADF was that the RPB could call
the ADF but not vice-versa. The run length was doubled
to 400 epochs over 2000 generations. The parameters were
otherwise identical to Experiment 1.

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

E
vo

lv
ab

ili
ty

 (
H

it
G

ai
n

pe
r

G
en

er
at

io
n)

Epochs (5 Generations each)

ADF Fe
Monolithic Fe

Figure 8: Average evolvabilities over time when x can be
used in the ADF. The number of epochs is doubled over the
first experiment.

The results can be seen in Figures 7 and 8. Increasing
evolvability was still observed, though less pronounced
than in Experiment 1. 22% of the runs produced ideal, min-
imal, correct solutions.

We wondered whether that increasing evolvability corre-
sponded to increasing constancy in the ADF, but determin-
ing an ADF’s constancy in a satisfying way is somewhat
problematic. Simply counting the number of x’s in the
ADF’s code fails because the x nodes may be contained in-
side of introns, non-functional blocks of code such as 0�x,
or x� x (Angeline 1994).

Another approach might be to measure the variance of

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400

O
cc

up
ie

d
B

in
s

(w
id

th
 0

.0
1)

Epochs (5 Generations each)

Figure 9: The average number of occupied bins returned
by the evolved ADFs over time, given 200 random inputs.
Lower numbers (minimum 1) imply ‘more constancy’.

ADF(x) sampled over many values of x, but that tends to be
highly sensitive to occasional large-magnitude outliers that
skew the averages across runs. The procedure we eventu-
ally used is as follows: We called ADF(x) on 200 random
points in the range [�1;1) and quantized the return values
into bins of size 0.01, so that results were judged identical
if they rounded to the same nearest hundredth. We could
then simply count the number of distinct occupied bins as
a crude measure of ADF constancy. A completely constant
function would produce only one occupied bin.

Figure 9 shows that the average number of ADF occupied
bins declined significantly over time, suggesting that the
ADFs indeed tended towards constancy.

4.3 VARYING EPOCH LENGTHS

In general, there is every reason to expect evolvability ef-
fects to depend on the rate of change of the environment.
At one extreme, there is no advantage to maintaining a flex-
ible design for future change if no environmental change is
ever forthcoming; at the other extreme if there too much
change too frequently then no effective adaptation will be
possible at all.

In our model, the length of an epoch provides a natural
index of the rate of environmental change. In Experiment 3,
the epoch length L was varied over the values L = 1, 2, 5,
10, 20, 50, 100, and 200 generations, resulting in runs that
ranged from 5 to 1000 epochs. All other parameters were
the same as in Experiment 1. In particular, the ADF was
not allowed to use x.

The average over 100 runs of the last-epoch Fs and Fe val-
ues can be seen in Figure 10 as a function of L. The largest
Fs occurs at L = 2, while the maximum Fe occurs at L = 5.
At present we are unsure why the ADF Fe rises from L = 50

SEARCH-BASED SOFTWARE ENGINEERING1388

0

50

100

150

200

1 10 100

F
itn

es
s

(H
its

)

Epoch Length (Generations)

ADF Fe
Monolithic Fe

ADF Fs
Monolithic Fs

Figure 10: Average starting (Fs) and ending (Fe) fitnesses
for the last epoch, for various epoch lengths.

0

5

10

15

20

25

1 10 100

E
vo

lv
ab

ili
ty

 (
H

it
G

ai
n

pe
r

G
en

er
at

io
n)

Epoch Length (Generations)

ADF
Monolithic

Figure 11: Average evolvability E for the last epoch, for
various epoch lengths.

to L = 100. One possibility is that L = 5 is close to the opti-
mal value when evolvable architectures are the norm, while
L = 100 is close to optimal when evolvability is not an is-
sue.

As epoch lengths increase, the monolithic Fe increases
and Fs declines slowly, in line with expectations that the
longer intra-epoch periods allow more evolution but then
the inter-epoch changes are more disruptive. In both ADF
and monolithic cases, the evolvability peaks at L = 2 (Fig-
ure 11), suggesting that diminishing returns set in rapidly
when measured on a gain-per-generation basis.

Figure 12 shows the number of correct solutions for ADF
and monolithic cases, as well as the correct and minimal
solutions for the ADF case. The latter value is largest at
L = 5, and is unaffected by the L = 100 resurgence that
occurs for Fe and correct solutions, suggesting the L = 100
rise may not be due to improved evolvability.

As the epoch lengths increase, the tree sizes in the mono-

0

0.2

0.4

0.6

0.8

1

1 10 100

F
ra

ct
io

n
of

 r
un

s

Epoch Length (Generations)

ADF correct
Monolithic correct

ADF correct and minimal

Figure 12: Fraction of ADF and monolithic runs that
achieve correct (hits = 200) solutions at the end of the last
epoch. Also plotted is the percent of ADF runs that are
correct and have RPBs with a size of 6.

0

20

40

60

80

100

120

140

160

1 10 100

T
re

e
S

iz
e

(N
od

es
)

Epoch Length (Generations)

ADF RPB
Monolithic
ADF ADF

Figure 13: Average tree sizes for the last epoch, for various
epoch lengths. Plotted are the size of the RPB in the ADF
and monolithic configurations, as well as the ADF size in
the ADF configuration.

SEARCH-BASED SOFTWARE ENGINEERING 1389

lithic case increase steadily, but in the ADF case, the RPB
average size reaches a minimum at L = 20 (Figure 13). The
corresponding ADF size seems to vary inversely to that of
the RPB; reasons for that effect are presently obscure.

5 CONCLUSION

In this paper we have presented a model, based on genetic
programming, which demonstrates the evolution of evolv-
ability when solving a symbolic regression task with a pe-
riodically changing fitness function. The successful solu-
tions improved their evolvability by adopting forms that
segregated the reused and variable portion of the fitness
function (the A parameter), from the unitary and constant
portion (y= �sin(�x)). Many intriguing questions are open
at this point, from detailed issues of the relative effects of
redundancy and variability, to more fundamental goals such
as the evolutionary emergence of other software engineer-
ing principles, and the scaling up of this research to real
world problems.

Well-factored code is not strictly required to make a pro-
gram operate correctly, and bold young programmers often
use precisely that argument to resist such basic principles
of ‘code hygiene’. We have demonstrated how effective
code factorings can emerge from an evolutionary process
under a variety of appropriate conditions, even though the
fitness function guiding the evolution is—like the novice
programmer—focused entirely on the external program be-
havior, and not at all on its internal structure.

Thus, we establish an experimental link between the evolu-
tion of evolvability experiments previously published, and
the body of knowledge that forms conventional wisdom
about good software design. Though the gap between these
two fields is still large, this paper represents a step towards
bridging that gap.

Acknowledgments

This research was supported in part by DARPA con-
tract F30602-00-2-0584, and in part by NSF contract ANI
9986555.

References

Altenberg, L. (1994), The evolution of evolvability in ge-
netic programming, in K. E. Kinnear, Jr., ed., ‘Ad-
vances in Genetic Programming’, MIT Press, pp. 47–
74.

Angeline, P. J. (1994), Genetic programming and emergent
intelligence, in K. E. Kinnear, Jr., ed., ‘Advances in
Genetic Programming’, MIT Press, chapter 4, pp. 75–
98.

Blickle, T. & Thiele, L. (1994), Genetic programming
and redundancy, in J. Hopf, ed., ‘Genetic Algorithms
Within the Framework of Evolutionary Computation
(Workshop at KI-94, Saarbrücken)’, Saarbrücken,
Germany, pp. 33–38.

Dawkins, R. (1989), The evolution of evolvability, in C. G.
Langton, ed., ‘Artificial Life: The Proceedings of an
Interdisciplinary Workshop on the Synthesis and Sim-
ulation of Living Systems’, Vol. 6, Addison-Wesley,
Redwood, CA, USA, pp. 201–220.

Dawkins, R. (1996), Climbing Mount Improbable, W. W.
Norton and Company, New York.

Fogel, D. B., Fogel, L. J. & Atmar, J. W. (1991), Meta-
evolutionary programming, in R. R. Chen, ed., ‘Pro-
ceedings of the 25th Asilomar Conference on Sig-
nals, Systems, and Computers’, Pacific Grove, CA,
pp. 540–545.

Fowler, M., Beck, K., Brant, J., Opdyke, W. & Roberts, D.
(1999), Refactoring: Improving the Design of Exist-
ing Code, Addison-Wesley, Boston, MA.

Kirschner, M. & Gerhart, J. (1998), ‘Evolvability’, Pro-
ceedings of the National Academy of Science, USA
95, 8420–8427.

Koza, J. (1994), Genetic Programming II: Automatic Dis-
covery of Reusable Programs, MIT Press, Cam-
bridge, MA.

Nehaniv, C. L. (2000), Evolvability in biology, artifacts,
and software systems, in ‘Artificial Life 7 Workshop
Proceedings’, pp. 17–21.

Pepper, J. (2000), The evolution of modularity in genome
architecture, in ‘Artificial Life 7 Workshop Proceed-
ings’, pp. 9–12.

Punch, B. & Goodman, E. (1995), ‘lil-gp1.1 genetic
programming system’.
*http://garage.cps.msu.edu/software/lil-gp/ lilgp-
index.html

Stiemerling, O. & Cremers, A. B. (2000), A paleontolog-
ical perspective on designing adaptable software, in
‘Artificial Life 7 Workshop Proceedings’, pp. 26–29.

Turney, P. D. (1999), Increasing evolvability considered
as a large-scale trend in evolution, in A. Wu, ed.,
‘Proceedings of 1999 Genetic and Evolutionary Com-
putation Conference Workshop Program (GECCO-99
Workshop on Evolvability)’, pp. 43–46.

SEARCH-BASED SOFTWARE ENGINEERING1390

