Probabilistic Model-Building Genetic Algorithms

Martin Pelikan

Dept. of Math. and Computer Science University of Missouri at St. Louis St. Louis, Missouri pelikan@cs.umsl.edu

Foreword

- Motivation
- Genetic and evolutionary computation (GEC) popular.
- Toy problems great, but difficulties in practice.
- This talk
- Discuss a promising direction in GEC.
- Combine machine learning and GEC.
- Create practical and powerful optimizers.

Overview

- Introduction
- Black-box optimization via probabilistic modeling.
- Probabilistic Model-Building GAs
- Discrete representation
- Continuous representation
- Computer programs (PMBGP)
- Conclusions

Black-box Optimization

- Input
- How do potential solutions look like?
- How to evaluate quality of potential solutions?
- Output
- Best solution (the optimum).
- Important
- No additional knowledge about the problem.

Why View Problem as Black Box?

- Advantages
- Separate problem definition from optimizer.
- Economy argument: BBO saves time \& money.
- Difficulties
- Almost no prior problem knowledge.
- Problem specifics must be learned automatically.
- Noise, multiple objectives, interactive evaluation.

Representations Considered Here

- Start with
- Solutions are n-bit binary strings.
- Later
- Real-valued vectors.
- Program trees.

Typical Situation in BBO

- Previously visited solutions and their evaluation:

$\#$	Solution	Evaluation
1	00100	1
2	11011	4
3	01101	0
4	10111	3

- Question: What solution to generate next?

Many Answers

- Hill climber
- Start with a random solution.
- Flip bit that improves the solution most.
- Finish when no more improvement possible.
- Simulated annealing
- Introduce Metropolis.
- Probabilistic model-building GAs
- Inspiration from GAs and machine learning (ML).

Probabilistic Model-Building GAs

- Replace crossover+mutation with learning and sampling probabilistic model

Other Names for PMBGAs

- Estimation of distribution algorithms (EDAs) (Mühlenbein \& Paass, 1996)
- Iterated density estimation algorithms (IDEA) (Bosman \& Thierens, 2000)

What Models to Use?

- Start with a simple example
- Probability vector for binary strings.
- Later
- Dependency tree models (COMIT).
- Bayesian networks (BOA).
- Bayesian networks with local structures (hBOA).

Probability Vector

- Assume n-bit binary strings.
- Model: Probability vector $p=\left(p_{1}, \ldots, p_{n}\right)$
- $p_{i}=$ probability of 1 in position i
- Learn p : Compute proportion of 1 in each position.
- Sample p : Sample 1 in position i with prob. p_{i}

Example: Probability Vector

Probability Vector PMBGAs

- PBIL (Baluja, 1995)
- Incremental updates to the prob. vector.
- Compact GA (Harik, Lobo, Goldberg, 1998)
- Also incremental updates but better analogy with populations.
- UMDA (Mühlenbein, Paass, 1996)
- What we showed here.
- All variants perform similarly.

Probability Vector Dynamics

- Bits that perform better get more copies.
- And are combined in new ways.
- But context of each bit is ignored.
- Example problem 1: ONEMAX

$$
f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} X_{i}
$$

Probability Vector on ONEMAX

Probability Vector: Ideal Scale-up

- O(n $\log n)$ evaluations until convergence
- (Harik, Cantú-Paz, Goldberg, \& Miller, 1997)
- (Mühlenbein, Schlierkamp-Vosen, 1993)
- Other algorithms
- Hill climber: O(n log n) (Mühlenbein, 1992)
- GA with uniform: approx. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- GA with one-point: slightly slower

When Does Prob. Vector Fail?

- Example problem 2: Concatenated traps
- Partition input string into disjoint groups of 5 bits.
- Each group contributes via trap (ones=number of ones):

$$
\text { trap }(\text { ones })= \begin{cases}5 & \text { if ones }=5 \\ 4-\text { ones } & \text { otherwise }\end{cases}
$$

- Concatenated trap = sum of single traps
- Optimum: String 111... 1

Probability Vector on Traps

Why Failure?

- Onemax:
- Optimum in 111... 1
- 1 outperforms 0 on average.
- Traps: optimum in 11111, but
- $f\left(0^{* * * *)}=2\right.$
- $f\left(1^{* * * *}\right)=1.375$
- So single bits are misleading.

How to Fix It?

- Consider 5-bit statistics instead 1-bit ones.
- Then, 11111 would outperform 00000.
- Learn model
- Compute p(00000), p(00001), ..., p(11111)
- Sample model
- Sample 5 bits at a time
- Generate 00000 with $p(00000)$, 00001 with $p(00001)$, ...

Correct Model on Traps: Dynamics

Good News: Good Stats Work Great!

- Optimum in O(n log n) evaluations.
- Same performance as on onemax!
- Others
- Hill climber: $O\left(n^{5} \log n\right)=$ much worse.
- GA with uniform: $O\left(2^{n}\right)=$ intractable.
- GA with one point: $O\left(2^{n}\right)$ (without tight linkage).

Challenge

- How to learn and use context for each position?
- Find nonmisleading statistics.
- Use those statistics as in probability vector.
- Then, we could solve problems decomposable into statistics of order at most k with at most $\mathrm{O}\left(\mathrm{n}^{2}\right)$ evaluations!
- And there are many of those problems.

Next

- COMIT
- Use tree models
- Extended compact GA
- Cluster bits into groups.
- Bayesian optimization algorithm (BOA)
- Use Bayesian networks (more general).

Beyond single bits: COMIT

(Baluja, Davies, 1997)

String

How to Learn a Tree Model?

- Mutual information:

$$
I\left(X_{i}, X_{j}\right)=\sum_{a, b} P\left(X_{i}=a, X_{j}=b\right) \log \frac{P\left(X_{i}=a, X_{j}=b\right)}{P\left(X_{i}=a\right) P\left(X_{j}=b\right)}
$$

- Goal
- Find tree that maximizes mutual information between connected nodes.
- Algorithm
- Prim's algorithm for maximum spanning trees.

Prim's Algorithm

- Start with a graph with no edges.
- Add arbitrary node to the tree.
- Iterate
- Hang a new node to the tree to any node that maximizes mutual information.
- Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Variants of PMBGAs with Tree Models

- COMIT (Baluja, Davies, 1997)
- Tree models.
- MIMIC (DeBonet, 1996)
- Chain distributions.
- BMDA (Pelikan, Mühlenbein, 1998)
- Forest distribution (independent trees or tree)

Beyond Pairwise Dependencies: ECGA

- Extended Compact GA (ECGA) (Harik, 1999).
- Consider groups of string positions.

String

© Martin Pelikan

Learning the Model in ECGA

- Start with each bit in a separate group.
- Each iteration merges two groups for best improvement.

© Martin Pelikan

How to Compute Model Quality?

- ECGA uses minimum description length.
- Minimize number of bits to store model+data:

$$
M D L(M, D)=D_{\text {Model }}+D_{\text {Data }}
$$

- Each frequency needs $(0.5 \log N)$ bits:

$$
D_{\text {Data }}=-N \sum_{X} p(X) \log p(X)
$$

- Each solution X needs $-\log p(X)$ bits:

$$
D_{\text {Model }}=\sum_{g \in G} 2^{|g|-1} \log N
$$

Sampling Model in ECGA

- Sample groups of bits at a time.
- Based on observed probabilities/proportions.
- But can also apply population-based crossover similar to uniform but w.r.t. model.

Next

- We saw
- Probability vector (no edges).
- Tree models (some edges).
- Marginal product models (groups of variables).
- Next: Bayesian networks
- Can represent all above and more.

Bayesian Optimization Algorithm (BOA)

- Pelikan, Goldberg, \& Cantú-Paz (1998)
- Use a Bayesian network (BN) as a model.
- Bayesian network
- Acyclic directed graph.
- Nodes are variables (string positions).
- Conditional dependencies (edges).
- Conditional independencies (implicit).

Example: Bayesian Network (BN)

- Conditional dependencies.
- Conditional independencies.

BOA

Current population
 Selection

Bayesian network New population

Learning BNs

- Two things again:
- Scoring metric (as MDL in ECGA).
- Search procedure (in ECGA done by merging).

Learning BNs: Scoring Metrics

- Bayesian metrics
- Bayesian-Dirichlet with likelihood equivallence

$$
B D(B)=p(B) \prod_{i=1}^{n} \prod_{\pi_{i}} \frac{\Gamma\left(m^{\prime}\left(\pi_{i}\right)\right)}{\Gamma\left(m^{\prime}\left(\pi_{i}\right)+m\left(\pi_{i}\right)\right)} \prod_{x_{i}} \frac{\Gamma\left(m^{\prime}\left(x_{i}, \pi_{i}\right)+m\left(x_{i}, \pi_{i}\right)\right)}{\Gamma\left(m^{\prime}\left(x_{i}, \pi_{i}\right)\right)}
$$

- Minimum description length metrics
- Bayesian information criterion (BIC)

$$
B I C(B)=\sum_{i=1}^{n}\left(-H\left(X_{i} \mid \Pi_{i}\right) N-2^{\left|\Pi_{i}\right|} \frac{\log _{2} N}{2}\right)
$$

Learning BNs: Search Procedure

- Start with empty network (like ECGA).
- Execute primitive operator that improves the metric the most.
- Until no more improvement possible.
- Primitive operators
- Edge addition (most important).
- Edge removal.
- Edge reversal.

Learning BNs: Example

Relating BOA to Problem Decomposition

- Conditions for factoring problem decomposition into a product of prior and conditional probabilities of small order in Mühlenbein, Mahnig, \& Rodriguez (1999).
- In practice, approximate factorization sufficient that can be learned automatically.
- Learning makes complete theory intractable.

BOA Theory: Population Sizing

- Initial supply (Goldberg et al., 2001)
- Have enough stuff to combine.
- Decision making (Harik et al, 1997)
- Decide well between competing partial sols. $\longrightarrow O(\sqrt{n} \log n)$
- Drift (Thierens, Goldberg, Pereira, 1998)
- Don't lose less salient stuff prematurely.
- Model building (Pelikan et al., 2000, 2002)
- Find a good model. $O\left(n^{1.55}\right)$

BOA Theory: Num. of Generations

- Two extreme cases, everything in the middle.
- Uniform scaling
- Onemax model (Muehlenbein \& Schlierkamp-Voosen, 1993)

$$
O(\sqrt{n})
$$

- Exponential scaling
- Domino convergence (Thierens, Goldberg, Pereira, 1998)

$$
O(n)
$$

Good News: Challenge Met!

- Theory
- Population sizing (Pelikan et al., 2000, 2002)

1. Initial supply.
2. Decision making.
3. Drift.
$\mathrm{O}(n)$ to $\mathrm{O}\left(n^{1.05}\right)$
4. Model building.

- Iterations until convergence (Pelikan et al., 2000, 2002)

1. Uniform scaling.
2. Exponential scaling.

- BOA solves order- k decomposable problems in $\mathrm{O}\left(n^{1.55}\right)$ to $\mathrm{O}\left(n^{2}\right)$ evaluations!

Theory vs. Experiment (5-bit Traps)

© Martin Pelikan

BOA Siblings

- Estimation of Bayesian Networks Algorithm (EBNA) (Etxeberria, Larrañaga, 1999).
- Learning Factorized Distribution Algorithm (LFDA) (Mühlenbein, Mahnig, Rodriguez, 1999).

Model Comparison

Model Expressiveness Increases

From single level to hierarchy

- Single-level decomposition powerful.
- But what if single-level decomposition is not enough?
- Learn from humans and nature
- Decompose problem over multiple levels.
- Use solutions from lower level as basic building blocks.

Hierarchical Decomposition

3 Keys to Hierarchy Success

- Proper decomposition.
- Must decompose problem on each level properly.
- Chunking.
- Must represent \& manipulate large order solutions.
- Preservation of alternative solutions.
- Must preserve alternative partial solutions (chunks).

Hierarchical BOA (hBOA)

- Pelikan \& Goldberg $(2000,2001)$
- Proper decomposition
- Use Bayesian networks like BOA.
- Chunking
- Use local structures in Bayesian networks.
- Preservation of alternative solutions.
- Use restricted tournament replacement (RTR).

Local Structures in BNs

- Look at one conditional dependency.
- 2^{k} probabilities for k parents.
- Why not use more powerful representations for conditional probabilities?

$X_{2} X_{3}$	$P\left(X_{1}=0 \mid X_{2} X_{3}\right)$
00	26%
01	44%
10	15%
11	15%

Local Structures in BNs

- Look at one conditional dependency.
- 2^{k} probabilities for k parents.
- Why not use more powerful representations for conditional probabilities?

Restricted Tournament Replacement

- Used in hBOA for niching.
- Insert each new candidate solution x like this:
- Pick random subset of original population.
- Find solution y most similar to x in the subset.
- Replace y by x if x is better than y.

Efficiency Enhancement for PMBGAs

- Promising results
- Parallelization
- Can use 10s or more processors in a cluster efficiently.
- Hybridization
- Works great in combination with local search.
- Fitness modeling
- Learn a model of fitness to use for part of evaluation.
- Can achieve speed-ups of >30.
- Prior information
- Incorporate prior information into model-building.

Multi-objective PMBGAs

- Methods for multi-objective GAs adopted
- Multi-objective BOA (from NSGA-II and BOA) (Khan, Goldberg, \& Pelikan, 2002)
- Another multi-objective BOA (from SPEA2) (Laumanns, \& Ocenasek, 2002)
- Multi-objective mixture-based IDEAs
(Thierens, \& Bosman, 2001)

Promising Results with Discrete PMBGAs

- Artificial classes of problems
- Physics
- Computational complexity and AI
- Others

Results: Artificial Problems

- Decomposition
- Concatenated traps.
- Hierarchical decomposition
- Hierarchical traps.
- Other sources of difficulty
- Exponential scaling, noise.

BOA on Concatenated 5-bit Traps

hBOA on Hierarchical Traps

Results: Physics

- Spin glasses
- $\pm J$ and Gaussian couplings
- 2D and 3D
- Silicon clusters
- Gong potential (3-body)

hBOA on Ising Spin Glasses (2D)

© Martin Pelikan

Results on 2D Spin Glasses

- Number of evaluations is $\mathrm{O}\left(n^{1.51}\right)$.
- Overall time is $\mathrm{O}\left(n^{3.51}\right)$.
- Compare $\mathrm{O}\left(n^{3.51}\right)$ to $\mathrm{O}\left(n^{3.5}\right)$ for best method (Galluccio \& Loebl, 1999)
- Great also on Gaussians.

hBOA on Ising Spin Glasses (3D)

Results: Computational Complexity, AI

- MAXSAT, SAT
- Random 3CNF from phase transition.
- Morphed graph coloring.
- Conversion from spin glass.
- Feature subset selection

Results: Others

- Groundwater remediation design
- Forest management
- Nurse scheduling
- Telecommunication network design
- Graph partitioning

Discrete PMBGAs: Summary

- No interactions
- Univariate models; PBIL, UMDA, cGA.
- Some pairwise interactions
- Tree models; COMIT, MIMIC, BMDA.
- Multivariate interactions
- Multivariate models: BOA, EBNA, LFDA.
- Hierarchical decomposition
- hBOA

Discrete PMBGAs: Recommendations

- Easy problems
- Use univariate models; PBIL, UMDA, cGA.
- Somewhat difficult problems
- Use bivariate models; MIMIC, COMIT, BMDA.
- Difficult problems
- Use multivariate models; BOA, EBNA, LFDA.
- Most difficult problems
- Use hierarchical decomposition; hBOA.

Continuous PMBGAs

- New challenge
- Infinite domain for each variable.
- How to model?
- 2 approaches
- Discretize and apply discrete model/PMBGA
- Create continuous model
- Estimate pdf.

PBIL Extensions: SHCwL

- SHCwL: Stochastic hill climbing with learning (Rudlof, Köppen (1996).
- Model
- Single-peak Gaussian for each variable.
- Means evolve based on parents (promising solutions).
- Deviations equal, decreasing over time.
- Problems
- No interactions.
- Single Gaussians=can model only one attractor.
- Same deviations for each variable.

Use Different Deviations

- Sebag \& Ducoulombier (1998)
- Some variables have higher variance.
- Use special standard deviation for each variable.

© Martin Pelikan

Use Covariance

- Covariance allows rotation of 1-peak Gaussians.
- EGNA (Larrañaga et al., 2000)
- IDEA (Bosman \& Thierens, 2000)

© Martin Pelikan

How Many Peaks?

- One Gaussian vs. kernel around each point.
- Kernel distribution similar to ES.
- IDEA (Bosman \& Thierens, 2000)

[^0]
Mixtures: Between One and Many

- Mixture distributions provide transition between one Gaussian and Gaussian kernels.
- Mixture types
- Over one variable.
- Gallagher, Frean, \& Downs (1999).
- Over all variables.
- Pelikan \& Goldberg (2000).
- Bosman \& Thierens (2000).
- Over partitions of variables.
- Bosman \& Thierens (2000).

- Ahn, Ramakrishna, and Goldberg (2003).

Continuous PMBGAs: mBOA

- Mixed BOA (Ocenasek, Schwarz, 2002)
- Local distributions
- A decision tree for every variable.
- Discrete variables: leaves represent probabilities.
- Continuous variables: leaves contain a Gaussian.

Continuous PMBGAs: Discretization

- Idea: Transform into discrete domain.
- Fixed models
- 2^{k} equal width bins with k-bit binary string.
- Goldberg (1989).
- Bosman \& Thierens (2000); Pelikan et al. (2003).
- Adaptive models
- Equal-height histograms of 2^{k} bins.
- K-means clustering on each variable.
- Pelikan, Goldberg, \& Tsutsui (2003).

Continuous PMBGAs: Summary

- Discretization
- Fixed
- Adaptive
- Continuous models
- Single or multiple peaks?
- Same variance or different variance?
- Covariance or no covariance?
- Mixtures?
- Treat entire vectors, subsets of variables, or single variables?

Continuous PMBGAs: Recommendations

- Multimodality?
- Use multiple peaks.
- Decomposability?
- All variables, subsets, or single variables.
- Strong linear dependencies?
- Covariance.
- Partial differentiability?
- Combine with gradient search.

PMBGP (Genetic Programming)

- New challenge
- Structured, variable length representation.
- Possibly infinite number of values.
- Position independence (?)
- Approaches
- Limit maximum complexity of a solution.
- Allow complexity to change over time.

PIPE

- Probabilistic incremental program evolution (Salustowicz \&
Schmidhuber, 1997)
- Store frequencies of operators/terminals in nodes of a maximum tree.
- Sampling generates tree from top to bottom

eCGP

- Sastry \& Goldberg (2003)
- ECGA adapted to program trees.
- Maximum tree as in PIPE.
- But nodes partitioned into groups.

BOA for GP

- Looks, Goertzel, \& Pennachin (2004)
- Combinatory logic + BOA
- Trees translated into uniform structures.
- Labels only in leaves.
- BOA builds model over symbols in different nodes.
- Complexity build-up
- Modeling limited to max. sized structure seen.
- Complexity builds up by special operator.

PMBGP: Summary

- Interesting starting points available.
- But still lot of work to be done.
- Much to learn from discrete domain, but some completely new challenges.

Conclusions

- Competent PMBGAs exist
- Scalable solution to broad classes of problems.
- Solution to previously intractable problems.
- Algorithms ready for new applications.
- Consequences for practitioners
- Robust methods with few or no parameters.
- Capable of learning how to solve problem.
- But can incorporate prior knowledge as well.

Starting Points

- WWW
- Laboratory home pages.
- Authors' home pages.
- Research index (www.researchindex.com)
- Google (www.google.com)
- Introductory material
- Pelikan et al. (2002). A survey to optimization by building and using probabilistic models. Computational optimization and applications, 21(1)
- Larrañaga \& Lozano (editors) (2001). Estimation of distribution algorithms: A new tool for evolutionary computation. Kluwer.

Code

- ECGA, BOA, and BOA with decision trees/graphs http://www-illigal.ge.uiuc.edu/
- mBOA
http://jiri.ocenasek.com/
- PIPE
http://www.idsia.ch/~rafal/

[^0]: © Martin Pelikan

