Probabilistic Model-Building Genetic Algorithms

Martin Pelikan

Dept. of Math. and Computer Science University of Missouri at St. Louis St. Louis, Missouri pelikan@cs.umsl.edu

Foreword

Motivation

- Genetic and evolutionary computation (GEC) popular.
- Toy problems great, but difficulties in practice.
- This talk
 - Discuss a promising direction in GEC.
 - Combine machine learning and GEC.
 - Create practical and powerful optimizers.

Overview

- Introduction
 - Black-box optimization via probabilistic modeling.
- Probabilistic Model-Building GAs
 - Discrete representation
 - Continuous representation
 - Computer programs (PMBGP)
- Conclusions

Black-box Optimization

- Input
 - How do potential solutions look like?
 - How to evaluate quality of potential solutions?
- Output
 - Best solution (the optimum).
- Important
 - No additional knowledge about the problem.

Why View Problem as Black Box?

Advantages

- Separate problem definition from optimizer.
- Economy argument: BBO saves time & money.
- Difficulties
 - Almost no prior problem knowledge.
 - Problem specifics must be learned automatically.
 - Noise, multiple objectives, interactive evaluation.

Representations Considered Here

• Start with

- Solutions are *n*-bit binary strings.

• Later

- Real-valued vectors.
- Program trees.

Typical Situation in BBO

• Previously visited solutions and their evaluation:

#	Solution	Evaluation
1	00100	1
2	11011	4
3	01101	0
4	10111	3

• Question: What solution to generate next?

Many Answers

• Hill climber

- Start with a random solution.
- Flip bit that improves the solution most.
- Finish when no more improvement possible.
- Simulated annealing
 - Introduce Metropolis.
- Probabilistic model-building GAs
 - Inspiration from GAs and machine learning (ML).

Probabilistic Model-Building GAs

 Replace crossover+mutation with learning and sampling probabilistic model

Other Names for PMBGAs

- Estimation of distribution algorithms (EDAs) (Mühlenbein & Paass, 1996)
- Iterated density estimation algorithms (IDEA) (Bosman & Thierens, 2000)

What Models to Use?

- Start with a simple example
 - Probability vector for binary strings.
- Later
 - Dependency tree models (COMIT).
 - Bayesian networks (BOA).
 - Bayesian networks with local structures (hBOA).

Probability Vector

- Assume *n*-bit binary strings.
- Model: Probability vector $p=(p_1, ..., p_n)$
 - p_i = probability of 1 in position *i*
 - Learn p: Compute proportion of 1 in each position.
 - Sample *p*: Sample 1 in position *i* with prob. p_i

Example: Probability Vector

© Martin Pelikan

13

Probability Vector PMBGAs

- PBIL (Baluja, 1995)
 - Incremental updates to the prob. vector.
- Compact GA (Harik, Lobo, Goldberg, 1998)
 - Also incremental updates but better analogy with populations.
- UMDA (Mühlenbein, Paass, 1996)
 - What we showed here.
- All variants perform similarly.

Probability Vector Dynamics

- Bits that perform better get more copies.
- And are combined in new ways.
- But context of each bit is ignored.
- Example problem 1: ONEMAX

$$f(X_1, X_2, \dots, X_n) = \sum_{i=1}^n X_i$$

Probability Vector on ONEMAX

16

Probability Vector: Ideal Scale-up

- O(n log n) evaluations until convergence
 - (Harik, Cantú-Paz, Goldberg, & Miller, 1997)
 - (Mühlenbein, Schlierkamp-Vosen, 1993)
- Other algorithms
 - Hill climber: O(n log n) (Mühlenbein, 1992)
 - GA with uniform: approx. O(n log n)
 - GA with one-point: slightly slower

When Does Prob. Vector Fail?

- Example problem 2: Concatenated traps
 - Partition input string into disjoint groups of 5 bits.
 - Each group contributes via trap (ones=number of ones):

$$trap(ones) = \begin{cases} 5 & \text{if } ones = 5 \\ 4 - ones & \text{otherwise} \end{cases}$$

- Concatenated trap = sum of single traps
- Optimum: String 111...1

© Martin Pelikan

18

Probability Vector on Traps

19

Why Failure?

- Onemax:
 - Optimum in 111...1
 - 1 outperforms 0 on average.
- Traps: optimum in 11111, but

•
$$f(0^{****}) = 2$$

- f(1****) = 1.375
- So single bits are misleading.

How to Fix It?

- Consider 5-bit statistics instead 1-bit ones.
- Then, 11111 would outperform 00000.
- Learn model
 - Compute p(00000), p(00001), ..., p(11111)
- Sample model
 - Sample 5 bits at a time
 - Generate 00000 with p(00000), 00001 with p(00001), ...

Correct Model on Traps: Dynamics

22

Good News: Good Stats Work Great!

- Optimum in O(n log n) evaluations.
- Same performance as on onemax!
- Others
 - Hill climber: $O(n^5 \log n) = much$ worse.
 - GA with uniform: $O(2^n) = intractable$.
 - GA with one point: $O(2^n)$ (without tight linkage).

Challenge

- How to *learn* and use context for each position?
 - Find nonmisleading statistics.
 - Use those statistics as in probability vector.
- Then, we could solve problems decomposable into statistics of order at most k with at most O(n²) evaluations!
 - And there are many of those problems.

Next

- COMIT
 - Use tree models
- Extended compact GA
 - Cluster bits into groups.
- Bayesian optimization algorithm (BOA)
 - Use Bayesian networks (more general).

Beyond single bits: COMIT

How to Learn a Tree Model?

• Mutual information:

$$I(X_{i}, X_{j}) = \sum_{a, b} P(X_{i} = a, X_{j} = b) \log \frac{P(X_{i} = a, X_{j} = b)}{P(X_{i} = a)P(X_{j} = b)}$$

Goal

- Find tree that maximizes mutual information between connected nodes.
- Algorithm
 - Prim's algorithm for maximum spanning trees.

Prim's Algorithm

- Start with a graph with no edges.
- Add arbitrary node to the tree.
- Iterate
 - Hang a new node to the tree to any node that maximizes mutual information.
- Complexity: O(n²)

Variants of PMBGAs with Tree Models

- COMIT (Baluja, Davies, 1997)
 - Tree models.
- MIMIC (DeBonet, 1996)
 - Chain distributions.
- BMDA (Pelikan, Mühlenbein, 1998)
 Forest distribution (independent trees or tree)

Beyond Pairwise Dependencies: ECGA

- Extended Compact GA (ECGA) (Harik, 1999).
- Consider groups of string positions.

30

Learning the Model in ECGA

- Start with each bit in a separate group.
- Each iteration merges two groups for best improvement.

How to Compute Model Quality?

- ECGA uses minimum description length.
- Minimize number of bits to store model+data:

$$MDL(M, D) = D_{Model} + D_{Data}$$

• Each frequency needs (0.5 log N) bits:

$$D_{Data} = -N\sum_{X} p(X)\log p(X)$$

• Each solution X needs -log p(X) bits:

$$D_{Model} = \sum_{g \in G} 2^{|g|-1} \log N$$

© Martin Pelikan

Sampling Model in ECGA

- Sample groups of bits at a time.
- Based on observed probabilities/proportions.
- But can also apply population-based crossover similar to uniform but w.r.t. model.

Next

- We saw
 - Probability vector (no edges).
 - Tree models (some edges).
 - Marginal product models (groups of variables).
- Next: Bayesian networks
 - Can represent all above and more.

Bayesian Optimization Algorithm (BOA)

- Pelikan, Goldberg, & Cantú-Paz (1998)
- Use a Bayesian network (BN) as a model.
- Bayesian network
 - Acyclic directed graph.
 - Nodes are variables (string positions).
 - Conditional dependencies (edges).
 - Conditional independencies (implicit).

Example: Bayesian Network (BN)

- Conditional dependencies.
- Conditional independencies.

BOA

Learning BNs

• Two things again:

- Scoring metric (as MDL in ECGA).
- Search procedure (in ECGA done by merging).

Learning BNs: Scoring Metrics

- Bayesian metrics
 - Bayesian-Dirichlet with likelihood equivallence

$$BD(B) = p(B)\prod_{i=1}^{n}\prod_{\pi_i}\frac{\Gamma(m'(\pi_i))}{\Gamma(m'(\pi_i) + m(\pi_i))}\prod_{x_i}\frac{\Gamma(m'(x_i, \pi_i) + m(x_i, \pi_i))}{\Gamma(m'(x_i, \pi_i))}$$

- Minimum description length metrics
 - Bayesian information criterion (BIC)

$$BIC(B) = \sum_{i=1}^{n} \left(-H(X_i \mid \Pi_i) N - 2^{|\Pi_i|} \frac{\log_2 N}{2} \right)$$

Learning BNs: Search Procedure

- Start with empty network (like ECGA).
- Execute primitive operator that improves the metric the most.
- Until no more improvement possible.
- Primitive operators
 - Edge addition (most important).
 - Edge removal.
 - Edge reversal.

Learning BNs: Example

Relating BOA to Problem Decomposition

- Conditions for factoring problem decomposition into a product of prior and conditional probabilities of small order in Mühlenbein, Mahnig, & Rodriguez (1999).
- In practice, approximate factorization sufficient that can be learned automatically.
- Learning makes complete theory intractable.

BOA Theory: Population Sizing

- Initial supply (Goldberg et al., 2001)
 - Have enough stuff to combine.
- Decision making (Harik et al, 1997)
 - Decide well between competing partial sols.
- Drift (Thierens, Goldberg, Pereira, 1998)
 - Don't lose less salient stuff prematurely.
- Model building (Pelikan et al., 2000, 2002)
 - Find a good model.

BOA Theory: Num. of Generations

- Two extreme cases, everything in the middle.
- Uniform scaling
 - Onemax model (Muehlenbein & Schlierkamp-Voosen, 1993)

- Exponential scaling
 - Domino convergence (Thierens, Goldberg, Pereira, 1998)

Good News: Challenge Met!

• Theory

- Population sizing (Pelikan et al., 2000, 2002)
 - 1. Initial supply.
 - 2. Decision making.
 - 3. Drift.
 - 4. Model building.
- Iterations until convergence (Pelikan et al., 2000, 2002)
 - 1. Uniform scaling.
 - 2. Exponential scaling.

O(n) to $O(n^{1.05})$

 BOA solves order-k decomposable problems in O(n^{1.55}) to O(n²) evaluations!

© Martin Pelikan

Theory vs. Experiment (5-bit Traps)

46

BOA Siblings

- Estimation of Bayesian Networks Algorithm (EBNA) (Etxeberria, Larrañaga, 1999).
- Learning Factorized Distribution Algorithm (LFDA) (Mühlenbein, Mahnig, Rodriguez, 1999).

Model Comparison

Model Expressiveness Increases

From single level to hierarchy

- Single-level decomposition powerful.
- But what if single-level decomposition is not enough?
- Learn from humans and nature
 - Decompose problem over multiple levels.
 - Use solutions from lower level as basic building blocks.

Hierarchical Decomposition

© Martin Pelikan

3 Keys to Hierarchy Success

- Proper decomposition.
 - Must decompose problem on each level properly.
- Chunking.
 - Must represent & manipulate large order solutions.
- Preservation of alternative solutions.
 - Must preserve alternative partial solutions (chunks).

Hierarchical BOA (hBOA)

- Pelikan & Goldberg (2000, 2001)
- Proper decomposition
 - Use Bayesian networks like BOA.
- Chunking
 - Use local structures in Bayesian networks.
- Preservation of alternative solutions.
 - Use restricted tournament replacement (RTR).

Local Structures in BNs

- Look at one conditional dependency.
 - 2^k probabilities for k parents.
- Why not use more powerful representations for conditional probabilities?

X_2X_3	$P(X_1=0 X_2X_3)$
00	26 %
01	44 %
10	15 %
11	15 %

Local Structures in BNs

- Look at one conditional dependency.
 - 2^k probabilities for k parents.
- Why not use more powerful representations for conditional probabilities?

Restricted Tournament Replacement

- Used in hBOA for niching.
- Insert each new candidate solution *x* like this:
 - Pick random subset of original population.
 - Find solution *y* most similar to *x* in the subset.
 - Replace *y* by *x* if *x* is better than *y*.

Efficiency Enhancement for PMBGAs

• Promising results

- Parallelization
 - Can use 10s or more processors in a cluster efficiently.
- Hybridization
 - Works great in combination with local search.
- Fitness modeling
 - Learn a model of fitness to use for part of evaluation.
 - Can achieve speed-ups of >30.
- Prior information
 - Incorporate prior information into model-building.

© Martin Pelikan

Multi-objective PMBGAs

Methods for multi-objective GAs adopted

- Multi-objective BOA (from NSGA-II and BOA) (Khan, Goldberg, & Pelikan, 2002)
- Another multi-objective BOA (from SPEA2) (Laumanns, & Ocenasek, 2002)
- Multi-objective mixture-based IDEAs (Thierens, & Bosman, 2001)

Promising Results with Discrete PMBGAs

- Artificial classes of problems
- Physics
- Computational complexity and AI
- Others

Results: Artificial Problems

- Decomposition
 - Concatenated traps.
- Hierarchical decomposition
 - Hierarchical traps.
- Other sources of difficulty
 - Exponential scaling, noise.

BOA on Concatenated 5-bit Traps

60

hBOA on Hierarchical Traps

61

Results: Physics

• Spin glasses

- ±J and Gaussian couplings
- 2D and 3D
- Silicon clusters
 - Gong potential (3-body)

hBOA on Ising Spin Glasses (2D)

63 © Martin Pelikan

Results on 2D Spin Glasses

- Number of evaluations is $O(n^{1.51})$.
- Overall time is $O(n^{3.51})$.
- Compare O(n^{3.51}) to O(n^{3.5}) for best method (Galluccio & Loebl, 1999)
- Great also on Gaussians.

hBOA on Ising Spin Glasses (3D)

65

Results: Computational Complexity, Al

- MAXSAT, SAT
 - Random 3CNF from phase transition.
 - Morphed graph coloring.
 - Conversion from spin glass.
- Feature subset selection

Results: Others

- Groundwater remediation design
- Forest management
- Nurse scheduling
- Telecommunication network design
- Graph partitioning

Discrete PMBGAs: Summary

- No interactions
 - Univariate models; PBIL, UMDA, cGA.
- Some pairwise interactions
 - Tree models; COMIT, MIMIC, BMDA.
- Multivariate interactions
 - Multivariate models: BOA, EBNA, LFDA.
- Hierarchical decomposition
 - hBOA

Discrete PMBGAs: Recommendations

- Easy problems
 - Use univariate models; PBIL, UMDA, cGA.
- Somewhat difficult problems
 - Use bivariate models; MIMIC, COMIT, BMDA.
- Difficult problems
 - Use multivariate models; BOA, EBNA, LFDA.
- Most difficult problems
 - Use hierarchical decomposition; hBOA.

Continuous PMBGAs

• New challenge

- Infinite domain for each variable.
- How to model?
- 2 approaches
 - Discretize and apply discrete model/PMBGA
 - Create continuous model
 - Estimate pdf.

PBIL Extensions: SHCwL

- SHCwL: Stochastic hill climbing with learning (Rudlof, Köppen (1996).
- Model
 - Single-peak Gaussian for each variable.
 - Means evolve based on parents (promising solutions).
 - Deviations equal, decreasing over time.
- Problems
 - No interactions.
 - Single Gaussians=can model only one attractor.
 - Same deviations for each variable.

© Martin Pelikan

Use Different Deviations

- Sebag & Ducoulombier (1998)
- Some variables have higher variance.
- Use special standard deviation for each variable.

Use Covariance

- Covariance allows rotation of 1-peak Gaussians.
- EGNA (Larrañaga et al., 2000)
- IDEA (Bosman & Thierens, 2000)

© Martin Pelikan

How Many Peaks?

- One Gaussian vs. kernel around each point.
- Kernel distribution similar to ES.
- IDEA (Bosman & Thierens, 2000)

74

© Martin Pelikan

Mixtures: Between One and Many

- Mixture distributions provide transition between one Gaussian and Gaussian kernels.
- Mixture types
 - Over one variable.
 - Gallagher, Frean, & Downs (1999).
 - Over all variables.
 - Pelikan & Goldberg (2000).
 - Bosman & Thierens (2000).
 - Over partitions of variables.
 - Bosman & Thierens (2000).
 - Ahn, Ramakrishna, and Goldberg (2003).

Continuous PMBGAs: mBOA

- Mixed BOA (Ocenasek, Schwarz, 2002)
- Local distributions
 - A decision tree for every variable.
 - Discrete variables: leaves represent probabilities.
 - Continuous variables: leaves contain a Gaussian.

Continuous PMBGAs: Discretization

- Idea: Transform into discrete domain.
- Fixed models
 - 2^k equal width bins with *k*-bit binary string.
 - Goldberg (1989).
 - Bosman & Thierens (2000); Pelikan et al. (2003).
- Adaptive models
 - Equal-height histograms of 2^k bins.
 - K-means clustering on each variable.
 - Pelikan, Goldberg, & Tsutsui (2003).

© Martin Pelikan

Continuous PMBGAs: Summary

• Discretization

- Fixed
- Adaptive
- Continuous models
 - Single or multiple peaks?
 - Same variance or different variance?
 - Covariance or no covariance?
 - Mixtures?
 - Treat entire vectors, subsets of variables, or single variables?

Continuous PMBGAs: Recommendations

- Multimodality?
 - Use multiple peaks.
- Decomposability?
 - All variables, subsets, or single variables.
- Strong linear dependencies?
 - Covariance.
- Partial differentiability?
 - Combine with gradient search.

PMBGP (Genetic Programming)

• New challenge

- Structured, variable length representation.
- Possibly infinite number of values.
- Position independence (?)

• Approaches

- Limit maximum complexity of a solution.
- Allow complexity to change over time.

© Martin Pelikan

80

PIPE

- Probabilistic incremental program evolution (Salustowicz & Schmidhuber, 1997)
- Store frequencies of operators/terminals in nodes of a *maximum* tree.
- Sampling generates tree (from top to bottom

X	P(X)
sin	0.15
+	0.35
-	0.35
Х	0.15

eCGP

- Sastry & Goldberg (2003)
- ECGA adapted to program trees.
- Maximum tree as in PIPE.
- But nodes partitioned into groups.

BOA for GP

- Looks, Goertzel, & Pennachin (2004)
- Combinatory logic + BOA
 - Trees translated into uniform structures.
 - Labels only in leaves.
 - BOA builds model over symbols in different nodes.
- Complexity build-up
 - Modeling limited to max. sized structure seen.
 - Complexity builds up by special operator.

PMBGP: Summary

- Interesting starting points available.
- But still lot of work to be done.
- Much to learn from discrete domain, but some completely new challenges.

Conclusions

- Competent PMBGAs exist
 - Scalable solution to broad classes of problems.
 - Solution to previously intractable problems.
 - Algorithms ready for new applications.
- Consequences for practitioners
 - Robust methods with few or no parameters.
 - Capable of learning how to solve problem.
 - But can incorporate prior knowledge as well.

85

Starting Points

- WWW
 - Laboratory home pages.
 - Authors' home pages.
 - Research index (www.researchindex.com)
 - Google (www.google.com)
- Introductory material
 - Pelikan et al. (2002). A survey to optimization by building and using probabilistic models. Computational optimization and applications, 21(1)
 - Larrañaga & Lozano (editors) (2001). Estimation of distribution algorithms: A new tool for evolutionary computation. Kluwer.

Code

- ECGA, BOA, and BOA with decision trees/graphs http://www-illigal.ge.uiuc.edu/
- mBOA

http://jiri.ocenasek.com/

• PIPE

http://www.idsia.ch/~rafal/