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Foreword

Motivation
– Genetic and evolutionary computation (GEC) 

popular.
– Toy problems great, but difficulties in practice.

This talk
– Discuss a promising direction in GEC.
– Combine machine learning and GEC.
– Create practical and powerful optimizers.
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Overview

Introduction
– Black-box optimization via probabilistic modeling.

Probabilistic Model-Building GAs
– Discrete representation
– Continuous representation
– Computer programs (PMBGP)

Conclusions
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Black-box Optimization

Input
– How do potential solutions look like?
– How to evaluate quality of potential solutions?

Output
– Best solution (the optimum).

Important
– No additional knowledge about the problem.
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Why View Problem as Black Box?

Advantages
– Separate problem definition from optimizer.
– Economy argument: BBO saves time & money.

Difficulties
– Almost no prior problem knowledge.
– Problem specifics must be learned automatically.
– Noise, multiple objectives, interactive evaluation.
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Representations Considered Here

Start with
– Solutions are n-bit binary strings.

Later
– Real-valued vectors.
– Program trees.
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Typical Situation in BBO

Previously visited solutions and their evaluation:

Question: What solution to generate next?

# Solution Evaluation
1 00100 1
2 11011 4
3 01101 0
4 10111 3
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Many Answers

Hill climber
– Start with a random solution.
– Flip bit that improves the solution most.
– Finish when no more improvement possible.

Simulated annealing
– Introduce Metropolis.

Probabilistic model-building GAs
– Inspiration from GAs and machine learning (ML).
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Probabilistic Model-Building GAs
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Other Names for PMBGAs

Estimation of distribution algorithms (EDAs)
(Mühlenbein & Paass, 1996)

Iterated density estimation algorithms (IDEA)
(Bosman & Thierens, 2000)
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What Models to Use?

Start with a simple example
– Probability vector for binary strings.

Later
– Dependency tree models (COMIT).
– Bayesian networks (BOA).
– Bayesian networks with local structures (hBOA).
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Probability Vector

Assume n-bit binary strings.
Model: Probability vector p=(p1, …, pn)
– pi = probability of 1 in position i
– Learn p: Compute proportion of 1 in each position.
– Sample p: Sample 1 in position i with prob. pi



© Martin Pelikan
13

Example: Probability Vector

(Baluja, 1995)
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Probability Vector PMBGAs

PBIL (Baluja, 1995)
– Incremental updates to the prob. vector.

Compact GA (Harik, Lobo, Goldberg, 1998)
– Also incremental updates but better analogy with 

populations.
UMDA (Mühlenbein, Paass, 1996)
– What we showed here.

All variants perform similarly.
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Probability Vector Dynamics

Bits that perform better get more copies.
And are combined in new ways.
But context of each bit is ignored.

Example problem 1: ONEMAX
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Probability Vector on ONEMAX
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Probability Vector: Ideal Scale-up

O(n log n) evaluations until convergence
– (Harik, Cantú-Paz, Goldberg, & Miller, 1997)
– (Mühlenbein, Schlierkamp-Vosen, 1993)

Other algorithms
– Hill climber: O(n log n) (Mühlenbein, 1992)
– GA with uniform: approx. O(n log n)
– GA with one-point: slightly slower
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When Does Prob. Vector Fail?

Example problem 2: Concatenated traps
– Partition input string into disjoint groups of 5 bits.
– Each group contributes via trap (ones=number of 

ones):

– Concatenated trap = sum of single traps
– Optimum: String 111…1
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Probability Vector on Traps
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Why Failure?

Onemax: 
– Optimum in 111…1
– 1 outperforms 0 on average.

Traps: optimum in 11111, but
f(0****) = 2
f(1****) = 1.375

So single bits are misleading.
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How to Fix It?

Consider 5-bit statistics instead 1-bit ones.
Then, 11111 would outperform 00000.
Learn model
– Compute p(00000), p(00001), …, p(11111)

Sample model
– Sample 5 bits at a time
– Generate 00000 with p(00000), 

00001 with p(00001), …
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Correct Model on Traps: Dynamics
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Good News: Good Stats Work Great!

Optimum in O(n log n) evaluations.
Same performance as on onemax!
Others
– Hill climber: O(n5 log n) = much worse.
– GA with uniform: O(2n) = intractable.
– GA with one point: O(2n) (without tight linkage).
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Challenge

How to learn and use context for each 
position?
– Find nonmisleading statistics.
– Use those statistics as in probability vector.

Then, we could solve problems 
decomposable into statistics of order at most 
k with at most O(n2) evaluations!
– And there are many of those problems.
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Next

COMIT
– Use tree models

Extended compact GA
– Cluster bits into groups.

Bayesian optimization algorithm (BOA)
– Use Bayesian networks (more general).
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Beyond single bits: COMIT

(Baluja, Davies, 1997)

String

Model

X P(Y=1|X)
0 30 %
1 25 %

P(X=1)
75 %

X P(Z=1|X)
0 86 %
1 75 %
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How to Learn a Tree Model?

Mutual information:

Goal
– Find tree that maximizes mutual information 

between connected nodes.
Algorithm
– Prim’s algorithm for maximum spanning trees.
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Prim’s Algorithm

Start with a graph with no edges.
Add arbitrary node to the tree.
Iterate
– Hang a new node to the tree to any node that 

maximizes mutual information.
Complexity: O(n2)
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Variants of PMBGAs with Tree Models

COMIT (Baluja, Davies, 1997)
– Tree models.

MIMIC (DeBonet, 1996)
– Chain distributions.

BMDA (Pelikan, Mühlenbein, 1998)
– Forest distribution (independent trees or tree)



© Martin Pelikan
30

Beyond Pairwise Dependencies: ECGA

Extended Compact GA (ECGA) (Harik, 1999).
Consider groups of string positions.

String Model

0 86 %
1 14 %

000 17 %
001 2 %

···
111 24 %

00 16 %
01 45 %
10 35 %
11 4 %
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Learning the Model in ECGA

Start with each bit in a separate group.
Each iteration merges two groups for best improvement. 
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How to Compute Model Quality?

ECGA uses minimum description length.
Minimize number of bits to store model+data:

Each frequency needs (0.5 log N) bits:

Each solution X needs -log p(X) bits:
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Sampling Model in ECGA

Sample groups of bits at a time.

Based on observed probabilities/proportions.

But can also apply population-based 
crossover similar to uniform but w.r.t. model.
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Next

We saw
– Probability vector (no edges).
– Tree models (some edges).
– Marginal product models (groups of variables).

Next: Bayesian networks
– Can represent all above and more.
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Bayesian Optimization Algorithm (BOA)

Pelikan, Goldberg, & Cantú-Paz (1998)
Use a Bayesian network (BN) as a model.
Bayesian network
– Acyclic directed graph.
– Nodes are variables (string positions).
– Conditional dependencies (edges).
– Conditional independencies (implicit).
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Example: Bayesian Network (BN)

Conditional dependencies.
Conditional independencies.
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Learning BNs

Two things again:

– Scoring metric (as MDL in ECGA).

– Search procedure (in ECGA done by merging).
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Learning BNs: Scoring Metrics

Bayesian metrics
– Bayesian-Dirichlet with likelihood equivallence

Minimum description length metrics
– Bayesian information criterion (BIC)
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Learning BNs: Search Procedure

Start with empty network (like ECGA).
Execute primitive operator that improves the 
metric the most.
Until no more improvement possible.
Primitive operators
– Edge addition (most important).
– Edge removal.
– Edge reversal.
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Learning BNs: Example
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Relating BOA to Problem Decomposition

Conditions for factoring problem 
decomposition into a product of prior and 
conditional probabilities of small order in 
Mühlenbein, Mahnig, & Rodriguez (1999).
In practice, approximate factorization 
sufficient that can be learned automatically.
Learning makes complete theory intractable.
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BOA Theory: Population Sizing

Initial supply (Goldberg et al., 2001)
– Have enough stuff to combine.

Decision making (Harik et al, 1997)
– Decide well between competing partial sols.

Drift (Thierens, Goldberg, Pereira, 1998)
– Don’t lose less salient stuff prematurely.

Model building (Pelikan et al., 2000, 2002)
– Find a good model.

( )O n

( )1.55O n

( )logO n n

( )2kO
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BOA Theory: Num. of Generations

Two extreme cases, everything in the middle.
Uniform scaling

– Onemax model (Muehlenbein & Schlierkamp-Voosen, 1993)

Exponential scaling
– Domino convergence (Thierens, Goldberg, Pereira, 1998)

( )O n

( )O n



© Martin Pelikan
45

Good News: Challenge Met!

Theory
– Population sizing (Pelikan et al., 2000, 2002)

1. Initial supply.
2. Decision making.
3. Drift.
4. Model building.

– Iterations until convergence (Pelikan et al., 2000, 2002)
1. Uniform scaling.
2. Exponential scaling.

BOA solves order-k decomposable problems in 
O(n1.55) to O(n2) evaluations!

O(n) to O(n1.05)

O(n0.5) to O(n)
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Theory vs. Experiment (5-bit Traps)
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BOA Siblings

Estimation of Bayesian Networks Algorithm 
(EBNA) (Etxeberria, Larrañaga, 1999).

Learning Factorized Distribution Algorithm 
(LFDA) (Mühlenbein, Mahnig, Rodriguez, 
1999).
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Model Comparison

ECGA BOABMDA

Model Expressiveness Increases
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From single level to hierarchy

Single-level decomposition powerful.
But what if single-level decomposition is not 
enough?
Learn from humans and nature
– Decompose problem over multiple levels.
– Use solutions from lower level as basic building 

blocks.
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Hierarchical Decomposition

Car

Engine Braking system Electrical system

Fuel system Valves Ignition system



© Martin Pelikan
51

3 Keys to Hierarchy Success

Proper decomposition.
– Must decompose problem on each level properly.

Chunking.
– Must represent & manipulate large order solutions.

Preservation of alternative solutions.
– Must preserve alternative partial solutions (chunks).
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Hierarchical BOA (hBOA)

Pelikan & Goldberg (2000, 2001)
Proper decomposition
– Use Bayesian networks like BOA.

Chunking
– Use local structures in Bayesian networks.

Preservation of alternative solutions.
– Use restricted tournament replacement (RTR).
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Local Structures in BNs

Look at one conditional dependency.
– 2k probabilities for k parents.

Why not use more powerful representations
for conditional probabilities?

X2X3 P(X1=0|X2X3)
00 26 %
01 44 %
10 15 %
11 15 %

X1

X3X2
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Local Structures in BNs

Look at one conditional dependency.
– 2k probabilities for k parents.

Why not use more powerful representations
for conditional probabilities?

X2
X1

X3X2
X3

0 1

0 1
15%

44%26%
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Restricted Tournament Replacement

Used in hBOA for niching.
Insert each new candidate solution x like this:
– Pick random subset of original population.
– Find solution y most similar to x in the subset.
– Replace y by x if x is better than y.
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Efficiency Enhancement for PMBGAs

Promising results
– Parallelization

Can use 10s or more processors in a cluster efficiently.

– Hybridization
Works great in combination with local search.

– Fitness modeling
Learn a model of fitness to use for part of evaluation.
Can achieve speed-ups of >30.

– Prior information
Incorporate prior information into model-building.
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Multi-objective PMBGAs

Methods for multi-objective GAs adopted
– Multi-objective BOA (from NSGA-II and BOA)

(Khan, Goldberg, & Pelikan, 2002)
– Another multi-objective BOA (from SPEA2)

(Laumanns, & Ocenasek, 2002) 
– Multi-objective mixture-based IDEAs

(Thierens, & Bosman, 2001)
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Promising Results with Discrete PMBGAs

Artificial classes of problems
Physics
Computational complexity and AI
Others
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Results: Artificial Problems

Decomposition
– Concatenated traps.

Hierarchical decomposition
– Hierarchical traps.

Other sources of difficulty
– Exponential scaling, noise.
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BOA on Concatenated 5-bit Traps
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hBOA on Hierarchical Traps
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Results: Physics

Spin glasses
– ±J and Gaussian couplings
– 2D and 3D

Silicon clusters
– Gong potential (3-body)
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hBOA on Ising Spin Glasses (2D)
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Results on 2D Spin Glasses

Number of evaluations is O(n1.51).
Overall time is O(n3.51).
Compare O(n3.51) to O(n3.5) for best method
(Galluccio & Loebl, 1999)
Great also on Gaussians.
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hBOA on Ising Spin Glasses (3D)
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Results: Computational Complexity, AI

MAXSAT, SAT
– Random 3CNF from phase transition.
– Morphed graph coloring.
– Conversion from spin glass.

Feature subset selection
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Results: Others

Groundwater remediation design
Forest management
Nurse scheduling
Telecommunication network design
Graph partitioning
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Discrete PMBGAs: Summary

No interactions
– Univariate models; PBIL, UMDA, cGA.

Some pairwise interactions
– Tree models; COMIT, MIMIC, BMDA.

Multivariate interactions
– Multivariate models: BOA, EBNA, LFDA.

Hierarchical decomposition
– hBOA
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Discrete PMBGAs: Recommendations

Easy problems
– Use univariate models; PBIL, UMDA, cGA.

Somewhat difficult problems
– Use bivariate models; MIMIC, COMIT, BMDA.

Difficult problems
– Use multivariate models; BOA, EBNA, LFDA.

Most difficult problems
– Use hierarchical decomposition; hBOA.
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Continuous PMBGAs

New challenge
– Infinite domain for each variable.
– How to model?

2 approaches
– Discretize and apply discrete model/PMBGA
– Create continuous model

Estimate pdf.
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PBIL Extensions: SHCwL

SHCwL: Stochastic hill climbing with learning 
(Rudlof, Köppen (1996).
Model

– Single-peak Gaussian for each variable.
– Means evolve based on parents (promising solutions).
– Deviations equal, decreasing over time.

Problems
– No interactions.
– Single Gaussians=can model only one attractor.
– Same deviations for each variable.
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Use Different Deviations

Sebag & Ducoulombier (1998)
Some variables have higher variance.
Use special standard deviation for each variable.
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Use Covariance
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Covariance allows rotation of 1-peak Gaussians.
EGNA (Larrañaga et al., 2000)
IDEA (Bosman & Thierens, 2000)
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How Many Peaks?
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One Gaussian vs. kernel around each point.
Kernel distribution similar to ES.
IDEA (Bosman & Thierens, 2000)
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Mixtures: Between One and Many

-4 -2 0 2 4
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Mixture distributions provide transition between one Gaussian and 
Gaussian kernels.
Mixture types

– Over one variable.
Gallagher, Frean, & Downs (1999).

– Over all variables.
Pelikan & Goldberg (2000).
Bosman & Thierens (2000).

– Over partitions of variables.
Bosman & Thierens (2000).
Ahn, Ramakrishna, and Goldberg (2003).
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Continuous PMBGAs: mBOA

Mixed BOA (Ocenasek, Schwarz, 2002)
Local distributions 
– A decision tree for every variable.
– Discrete variables: leaves represent probabilities.
– Continuous variables: leaves contain a Gaussian.
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Continuous PMBGAs: Discretization

Idea: Transform into discrete domain.
Fixed models

– 2k equal width bins with k-bit binary string.
– Goldberg (1989).
– Bosman & Thierens (2000); Pelikan et al. (2003).

Adaptive models
– Equal-height histograms of 2k bins.
– K-means clustering on each variable.
– Pelikan, Goldberg, & Tsutsui (2003).
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Continuous PMBGAs: Summary

Discretization
– Fixed
– Adaptive

Continuous models
– Single or multiple peaks?
– Same variance or different variance?
– Covariance or no covariance?
– Mixtures? 
– Treat entire vectors, subsets of variables, or single variables?
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Continuous PMBGAs: Recommendations

Multimodality?
– Use multiple peaks.

Decomposability?
– All variables, subsets, or single variables.

Strong linear dependencies?
– Covariance.

Partial differentiability?
– Combine with gradient search.
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PMBGP (Genetic Programming)

New challenge
– Structured, variable length representation.
– Possibly infinite number of values.
– Position independence (?)

Approaches
– Limit maximum complexity of a solution.
– Allow complexity to change over time.
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PIPE

Probabilistic incremental 
program evolution 
(Salustowicz & 
Schmidhuber, 1997)
Store frequencies of 
operators/terminals in 
nodes of a maximum tree.
Sampling generates tree 
from top to bottom

X P(X)
sin 0.15
+ 0.35
- 0.35
X 0.15
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eCGP

Sastry & Goldberg (2003)
ECGA adapted to 
program trees.
Maximum tree as in PIPE.
But nodes partitioned into 
groups.
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BOA for GP

Looks, Goertzel, & Pennachin (2004)
Combinatory logic + BOA
– Trees translated into uniform structures.
– Labels only in leaves.
– BOA builds model over symbols in different nodes.

Complexity build-up
– Modeling limited to max. sized structure seen.
– Complexity builds up by special operator.



© Martin Pelikan
84

PMBGP: Summary

Interesting starting points available.
But still lot of work to be done.
Much to learn from discrete domain, but 
some completely new challenges. 
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Conclusions

Competent PMBGAs exist
– Scalable solution to broad classes of problems.
– Solution to previously intractable problems.
– Algorithms ready for new applications.

Consequences for practitioners
– Robust methods with few or no parameters.
– Capable of learning how to solve problem.
– But can incorporate prior knowledge as well.
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Starting Points

WWW
– Laboratory home pages.
– Authors’ home pages.
– Research index (www.researchindex.com)
– Google (www.google.com)

Introductory material
– Pelikan et al. (2002). A survey to optimization by building 

and using probabilistic models. Computational optimization 
and applications, 21(1)

– Larrañaga & Lozano (editors) (2001). Estimation of 
distribution algorithms: A new tool for evolutionary 
computation. Kluwer.

http://www.researchindex.com/
http://www.google.com/
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Code

ECGA, BOA, and BOA with decision trees/graphs
http://www-illigal.ge.uiuc.edu/

mBOA
http://jiri.ocenasek.com/

PIPE
http://www.idsia.ch/~rafal/
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