Using Evolutionary Algorithms for the Unit Testing of
Object-Oriented Software

Stefan Wappler

DaimlerChrysler AG, Research and Technology

Alt-Moabit 96a, D-10559 Berlin, Germany
Phone: +49 30 39982 358

stefan.wappler@daimlerchrysler.com

ABSTRACT

As the paradigm of object orientation becomes more and
more important for modern IT development projects, the
demand for an automated test case generation to dynami-
cally test object-oriented software increases. While search-
based test case generation strategies, such as evolutionary
testing, are well researched for procedural software, rela-
tively little research has been done in the area of evolution-
ary object-oriented software testing. This paper presents
an approach with which to apply evolutionary algorithms
for the automatic generation of test cases for the white-box
testing of object-oriented software. Test cases for testing
object-oriented software include test programs which create
and manipulate objects in order to achieve a certain test
goal. Strategies for the encoding of test cases to evolvable
data structures as well as ideas about how the objective
functions could allow for a sophisticated evaluation are pro-
posed. It is expected that the ideas herein can be adapted for
other unit testing methods as well. The approach has been
implemented by a prototype for empirical validation. In
experiments with this prototype, evolutionary testing out-
performed random testing. Evolutionary algorithms could
be successfully applied for the white-box testing of object-
oriented software.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging —
Test coverage of code, Testing tools

General Terms

Verification

Keywords

object-oriented testing, evolutionary testing, chaining ap-
proach, multi-level optimization, automated test case gen-
eration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

GECCO' 05, June 2529, 2005, Washington, DC, USA.

Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

Frank Lammermann

DaimlerChrysler AG, Research and Technology

Alt-Moabit 96a, D-10559 Berlin, Germany
Phone: +49 30 39982 272

frank.lammermann@daimlerchrysler.com

1053

1. INTRODUCTION

Evolutionary algorithms have been applied successfully
for the unit testing of procedural software ([5, 7], referred
to as conventional evolutionary testing). Hence, it could be
expected that they are equally well-suited for the unit test-
ing of object-oriented software (referred to as object-oriented
evolutionary testing). The scope of conventional evolution-
ary testing is to find test data which serves as input data for
the unit under test. In contrast, with object-oriented evolu-
tionary testing, the evolutionary search aims at producing
complete test programs because input data is by itself not
sufficient to execute the test (see [8] and section 2): a test
case must also describe how to create the objects participat-
ing in the test and how to put them into the proper state for
the test goal® to be met. An objective function for object-
oriented evolutionary testing must evaluate a test program
according to its ability to meet a given test goal. Thereby,
it must take into account the state behavior of the objects
participating in the test. The approaches for the objective
functions for conventional evolutionary testing [1, 6] must
be adapted to fit the needs of object orientation.

This paper presents an approach for the automatic gener-
ation of test programs for object-oriented unit testing using
universal evolutionary algorithms. Universal evolutionary
algorithms are evolutionary algorithms provided by popu-
lar toolboxes which are independent from the application
domain and offer a variety of predefined, probabilistically
well-proven evolutionary operators. The generated test pro-
grams can be transformed into test classes according to pop-
ular testing frameworks, such as JUnit. In order to employ
universal evolutionary algorithms, an encoding is defined to
represent object-oriented test programs as basic type value
structures®. In order to optimize the evolutionary search,
multi-level optimizations are considered. The suggested en-
coding does not prevent the generation of individuals which
cannot be decoded into test programs without errors (re-
ferred to as inconvertible individuals, see 4). Therefore,
three measures to be used by the objective function are pre-
sented which guide the evolutionary algorithm to generate
more and more individuals over time that can successfully
be decoded (referred to as convertible individiuals).

"What a given test goal is depends on the testing method.
For instance, in the context of time testing, a test goal is
to exceed a certain time limit; in the context of white-box
testing, a test goal can be to reach a particular program
source code element.

2Basic types are built-in types, such as integer, float, etc.

The investigation carried out by Kim et al. [4] encour-
ages the application of conventional coverage criteria for
object-oriented unit testing as well. In this paper, ideas
for objective functions for object-oriented white-box testing
are presented. A modification of the hybrid approach [6] is
suggested. With this modified approach, the evolutionary
search for object-oriented test programs can be successful in
the presence of flags and state behavior.

This paper is structured as follows: section 2 describes
the general structure of object-oriented test programs (the
phenotypes). In section 3, the encoding of the phenotypes to
form genotypes and the decoding of the genotypes to form
phenotypes is discussed. The design of objective functions
is described in section 4. The presented approaches can
be applied for multiple testing methods. Only section 4.1
consideres one particular testing method, namely white-box
testing. Experiments carried out in order to empirically val-
idate the suggested approaches follow in section 5. Before
concluding the paper in section 7, related work is dealt with
in section 6.

2. PHENOTYPE INDIVIDUALS

A test case for a procedural software unit typically consists
of the definition of testing prerequisites, the test data used to
execute the unit under test, and the test oracle which decides
whether the test is passed or failed. The test data is a set of
numerical values (that can be interpreted as character data
as well) which are used as either parameter values or read-in
data for the function under test. In the case of conventional
evolutionary testing, such a set of numerical values is one
phenotype individual (see figure 1 a). Within the paradigm

a) procedural unit under test:

// function under test
int fut (int a, char b)

{ —

}

test data format:
(int, char)

b) object-oriented unit under test:
class B { ... }
class A

{

// method under test
public int mut (B obj, int i)
{
|:> test “data”“ format:
(A, B, int)

if (obj.ml() 0)

}
}

Figure 1: unit test data formats for procedural soft-
ware (a) and object-oriented software (b)

of object orientation, the major concept is the object which
possesses attributes (variables) and constructors and meth-
ods (procedures). A test case for object-oriented software,
does not comprise only numerical test data — a sequence of
constructor and method calls is also necessary. This has the
following reasons (compare with figure 1 b):

1. Usually, multiple objects are involved in one single test
case:

e At the least, an instance of the class under test is
needed.

1054

e Additional objects which are required (as param-
eters) for the creation of the object under test and
the invocation of the method under test must be
available. Again, for the creation of these ad-
ditional objects, more additional objects can be
required. The set of all the classes from which
instances can be required is called test cluster.

Therefore, constructor calls must be issued in order to
create all the required objects.

. Depending on the kind of test, the participating ob-
jects must be put into special states in order to process
the test scenario in the desired way (e. g. when using
code coverage criteria, some code elements can only be
covered when a certain object is in a particular state).
Consequently, method calls must be issued for the test
cluster objects.

Thus, a test case for an object-oriented software unit con-
sists of the definition of testing prerequisites, a test pro-
gram incorporating both test data (as parameter values) and
method calls®, as well as the test oracle. In the background
of evolutionary testing, for each test case a test program
must be optimized. Consequently, in the context of object-
oriented software, phenotype individuals are test programs
based on the following production rules*:

:= {statement;}+

[return_value]
{ctor_call|method_call}

class_name instance_name =

new class_name(parameters)
{class_name|instance_name} .
method _name(parameters)
[parameter {, parameter}*]
basic_type_value|instance_name|NULL

test_program
statement

return_value
ctor_call
method_call

parameters
parameter

Return values are only of interest when they are objects.
In such a case, the returned object can serve as a target
object or parameter object for succeeding method calls. Ba-
sic type return values are irrelevant because basic type pa-
rameter values are generated by the evolutionary algorithm.
Thus, there is no need for them to be processed further.
Also, no control structures are necessary since no branches
are needed in a test program and loops are represented by
the arbitrary repetition of the same method call(s).

3. GENOTYPE INDIVIDUALS

The evolutionary algorithm must be able to generate test
programs as described in the previous section. Typically,
universal evolutionary algorithms have no understanding of
programs, statements, objects, and so on. Therefore, a
means of encoding must be defined which allows the rep-
resentation of a test program as a basic type value structure
(the genotype individual) with which a universal evolution-
ary algorithm can work.

3For simplification, constructors are considered as static
methods and are not mentioned explicitely in the following.
4Emphasized identifiers designate terminals. The rules for
the class names, instance names, and basic type values have
been omitted for reasons of simplification. ”[]”=option,
7{|}’ =alternative, ”{}+”=repetition with at least one oc-
currence, ”{}*” =arbitrary repetition

In order to define such an encoding, it makes sense to iden-
tify structural components of test programs which make a
simple numerical representation possible (?divide and con-
quer”). The collectivity of these single encodings defines the
overall encoding of a whole test program. A requirement for
the encoding is that it must allow the representation of every
conceivable test program.

Each test program can be considered as a sequence of
statements S = (s1,S2,...,5n). A statement consists of the
following essential components

e target object
e method

e parameters

It is only this information which needs to be encoded by a
genotype individual. Return values are managed implicitely.
Since the number of genes for a genotype individual is typ-
ically fixed, the user must provide the maximum number of
statements.

For the selection of a target object and a method, two
genes with integer type are assigned in the genotype indi-
vidual. When decoding, the integer values of the genes iden-
tify the method to be called (value of method-identifying
gene Gp) and the target object to be used for the invoca-
tion (target-object-identifying gene Gr). Since the methods
in a test cluster usually have parameter lists with different
lengths, multiple genes G p must be assigned to represent the
parameters for a method. The data type for a Gp depends
on the parameter to which it is assigned. If the assign-
ment is not clear when encoding (see 3.3), that data type
must be used which would allow for every possible decod-
ing5. Consequently, a statement from a test program can be
represented by a variable indicating the method to be called
(G), a variable indicating the target object for which to
call this method (Gr), and a number of variables which are
used as parameters for the method call (Gp).

Figure 2 shows three possible ways of distributing the nec-
essary genes for a statement among genotype individuals. In
alternative 1, all the information for a single test program
is encoded in one single genotype individual. As a result,
one optimization level is sufficient. A shortcoming of this
approach is that the genotype individual usually contains
unused genes for the following reason: since it is not known
in advance which method will be identified by the method-
selecting gene G, as many parameter genes Gp must be
assigned for each statement as the method with the longest
parameter list requires (In figure 2, test programs with three
statements are optimized; the longest parameter list has two
elements). This shortcoming can be overcome with alter-
native 2: in the first optimization level, only the methods
(call sequence) are optimized. The necessary target-object-
identifying genes and parameter genes can be derived from
each sequence. These are optimized in the second optimiza-
tion level (In the figure, it is assumed that Gasi identifies

5If, for example, the methods and parameters are optimized
at the same time, the data type for a parameter at signa-
ture position z must allow for the interpretation of the data
type’s value as a value of any parameter data type at po-
sition x for any test cluster method, since it is not clear in
advance which method will be ”selected” during the evolu-
tionary optimization.

1055

alternative 1: one-level optimization

‘ GMI ‘ GT1 ‘GP1v1 ‘GFHZ‘ GMZ ‘ GTZ S'"

genotype

Zsz.w ‘sz.z‘ Cus ‘ G ‘Gpm ‘ Gpsvz‘ individual

alternative 2: two-level optimization A

‘GP11‘GP12‘ GT2 ‘GP2|‘ GTS ‘

level 1 individual

level 2 individual

alternative 3: two-level optimization B

‘ GM1 ‘ GT1 ‘ GMZ ‘ GT2 ‘ GM3 ‘ GTS ‘ level 1 individual

level 2 individual

Gy level 1 individual
level 2 individual
Gpy11]Gors level 3 individual

Figure 2: encoding alternatives; sample

a constructor or static method which requires two parame-
ters, G ar2 identifies a method which requires one parameter,
and G 3 identifies a method which requires no parameter).
Alternative 3 is a modified version of alternative 2: more
information (the target-object-identifying genes) is put into
the individuals of the first optimization level to increase the
expressiveness of the objective values of this level. In al-
ternative 4, each structural component is optimized in a
separate optimization level. This allows for an exhaustive
search in the overall search space.

Figure 3 shows the workflows for the alternatives. For
alternative 1, the flow is similar to that of conventional evo-
lutionary testing (compare [7]). For the other alternatives,
another complete optimization is carried out in order to eval-
uate one single individual. A constant objective value over
a predefined number of generations is a promising termina-
tion criterion for the ”inner” optimizations . If, for instance,
after 15 generations no improvement of the objective value
can be achieved, the inner optimization terminates. The
best objective value achieved by an inner optimization is
used as the objective value for an individual of the corre-
sponding outer optimization. In the following sections, the
encoding and decoding of the components methods, target
objects, and parameters is described in detail. For reasons
of simplicity, only one single statement is considered. The
encoding and decoding of a test program is a sequence of
encodings and decodings of this program’s statements. The
encoding is performed before the optimization in order to
define the format of the genotype indidivuals. The genes
involved and their value domains must be defined. The de-
coding is carried out by the objective function when an in-
dividual is evaluated.

3.1 Encoding and decoding of methods

Methods are encoded by serially numbering all the meth-
ods in the test cluster classes. In the genotype individual,
a gene Gy is assigned whose allele (value) identifies the
constructor or method to appear in the test program. The
domain D for Gar (labeled Iys) is defined by the maximum

o

Reinsertion
>,

5
o
2
2

Q

Conversion to
Test Program

Execution and
Monitoring

Test Program
Assessment

Figure 3: workflow for the alternatives; top picture
shows the flow for alternative 1, bottom picture the
flow for alternatives 2 and 3, flow for alternative 4
is not illustrated

number of test cluster methods:
D(Gum) =1In =1, |Mc|]C N

whereby Mc = (m1, ma, ...
ods of the test cluster C.

The decoding of Gar can be described by a function p
which maps each allele of Gy to a method: Let m; € Mc
be the jth method with j € Ins. Then, the bijective function
© with

,My) is the ordered set of meth-

Iy — Me
J

(1)
(2)

assigns each method-identifying allele a method by using the
allele as a set index.

J7

3.2 Encoding and decoding of target objects

Similar to the encoding of methods, a gene Gr is assigned
in the genotype individual to identify the target object for
which the method identified by G will be called. This is a
kind of object reference based on natural numbers. A precise
definition of the domain of G is only possible if the num-
ber of candidate target objects for a statement s; is known.
This number directly depends on the object-creating meth-
ods which are called before statement s; is called. Preceding
constructors and methods with an object as a return value
exactly define the number of objects which can serve as tar-
gets for a particular statement. Hence, for the encoding
alternatives 2 to 4, the value domain D(Gr) can be defined
for each statement s; € S by

D(GTi) =Ir, = [17 |Oc7i|] CcN

1056

whereby ¢ € C' is the required target object class, ¢ is the
index of the current statement, and O.; = (01,02, ...,0n) is
the ordered set of objects which are instances of class ¢ and
have been created by the statements s1 to s;—1. When using
the encoding alternative 1 (see figure 2), it is not clear in ad-
vance, how many candidate target objects will be available
for statement s;. Consequently, the domain of G, cannot
be precisely defined beforehand. A simple strategy for the
domain definition in this case is to use a fixed-size large set:

D(GTI) =Ir= [1,MAXT] CN

When decoding, the alleles must be adjusted to the actual

number of candidate target objects. This can be done, for
10c,il

Hrl| ~
Assuming that one statement creates at most one object,
the value domain D(Gr;) can be defined by

D(Gr,)=1Ir=[1,i] CN

example, by multiplying the alleles with the factor

For encoding alternatives 2 to 4 (when the method call se-
quence is known after the first optimization step), no Gr
needs to be assigned in the genotype individual for con-
structors and static methods because no target objects are
required for them.

The decoding of Gt can be described by a function T,
which assigns each allele ¢t € It an object 0 € Og,;:

®3)
(4)

T IT —>Oc,i

t +— o
whereby o is the tth object of the set Oc ;.

3.3 Encoding and decoding of parameters

For each required parameter, a gene Gp is assigned in the
genotype individual. The definition of the domain of a Gp
depends on the data type of the parameter it represents:
for basic data types such as integer or float, the data
type ranges and precision are used as range and precision
for D(Gp). For object-type parameters, a similar object
reference mechanism is used as for the target objects: When
the number of candidate parameter objects is known, the
domain of Gp can be defined precisely:

D(Gr,,) =1Ip,, =[1,|0:,] CN

whereby x € IN identifies the position in the signature of
the method to be called, and O ; is the ordered set of ob-
jects which have been created by the statements s1 to s;—1
and which have the type ¢ or any subtype of ¢ to take poly-
morphism into account. Whenever a parameter object of a
class c is required, any instance of class ¢ and its subclasses
C, C C comes into question (07, = Uc*e{c}ugu Ocr 7).
Otherwise, if the number of candidate parameter objects is
not known when encoding the parameters, a fixed-size index
set Ip can again be used:

D(Gpiyx) =1Ip = [1,MAXP] CN

During decoding (when the number of candidate parameter
objects is known), the allele must be adapted to the actual
107

I1p])-

5In some cases, methods return an array of objects.

"In this case, A U B with A (a1,az2,...,am) and
B (b1,b2,...,bn) be defined as set concatenation
(a1,a2, ..c; @m, b1,b2, ..., by).

number of objects (e. g. by multiplying with

Analoguously to the decoding of G and G, a function m
can be defined which assigns each allele of Gp either a basic
type value or an object reference. If there is a basic type
value, no mapping is necessary, the allele can directly be
used as a parameter value. In case of object-type parameter,
a mapping of the index set Ip, , to object references must
take place:

- OZ,i (5)
p = Op (6)

T Ip

with o, as the pth object of the ordered set O ;.

4. OBJECTIVE FUNCTIONS

The objective function is used to guide the evolutionary
search in order to find the optimum. To this end, it must
assign each genotype individual an objective value which
is used for fitness assignment. In the area of evolutionary
testing, the genotype individuals must be converted to test
data — or, in the object-oriented context, to test programs
— with which the test is then executed. The execution is
monitored and the objective value is calculated from mon-
itoring results. Obviously, an objective function for testing
object-oriented software must decode the genotype individu-
als and create executable test programs. With the encoding
suggested in section 3, it is possible that no correct test pro-
gram can be created out of a genotype individual due to the
following reasons:

1. No target object is available for a method call: when
trying to create a test program statement s; by decod-
ing a method-identifying gene G, it is possible that
no appropriate candidate target objects are available

(Oci =0).

2. A required parameter object is not available for a method
call: when trying to create the test program state-
ment s; by decoding a method-identifying gene G,
it is possible that no appropriate candidate parameter
objects are available (O} ; = 0).

Because the methods, the target objects, and the parameters
are optimized independently from one another (but possibly
at the same time), it is possible that not all required objects
are available for a method call. This happens, for example,
if the first method-identifying gene of a test program identi-
fies neither a constructor nor a static method. Consequently,
an objective function must evaluate whether a genotype in-
dividual can be decoded into a test program on the one
hand (issue 1) and whether the optimization problem can
be solved on the other hand (issue 2). Issue 1 is indepen-
dent from the testing method and will be discussed in detail
section 4.1. Issue 2 depends on the testing method. An ap-
proach to design objective functions for white-box testing is
described in section 4.2.

4.1 Evaluation of inconvertibleindividuals

As already mentioned, not every genotype individual based
on the suggested encoding can be used to create a test pro-
gram. This is not a problem as long as enough individuals
exist which can be used for test program creation. However,
if no such individual exists in the current population, the
evolutionary algorithm must be guided in such a way as to
create more and more convertible individuals with the next

1057

generations. Otherwise, no optimization takes place. Addi-
tionally, having only a few convertible individuals in a gener-
ation delimits the diversity of the following generation®. An
approach to deal with inconvertible individuals is to try to
”repair” them, i. e. to change some alleles according to some
rules such that the individuals become convertible. These
rules would be quite complex, and for reasons of focusing the
discussion, this idea is not considered further in this paper.
In the case of inconvertible individuals, the objective value
must express the degree of failure for the decoding. For this
evaluation, the following measures are suggested:

e number of errors
e constructor distance

e dynamic error evaluation

These measures are alternatives, only one of them can be
applied during optimization. However, other measures are
conceivable as well. A value of 0 is assumed to be the op-
timum of the objective function. The measure number of
errors assigns each inconvertible genotype individual the
total number of missing objects (either target or parame-
ter objects). The measure constructor distance assigns each
inconvertible genotype individual the number of statements
between the erroneous statement (where an object is miss-
ing) and the next statement by which an object is created
that matches the class of the missing object. This measure
is especially qualified for the application of mutation opera-
tors which use swapping of variables. The measure dynamic
error evaluation is similar to number of errors. But, in con-
trast, the errors are weighted according to their repetition:
if an object of class c is missing for statement s; the measure
value is increased by a constant a. And if for statement s;4;
with j > 0 an object of class ¢ is missing again, then the
measure value is only increased by a constant b with b < a.
When evaluating the lack of a parameter object, polymor-
phism is taken into account by increasing the measure value
only by a constant p whereby p < a when an object of a class
is missing whose non-existence or the non-existence of a sub-
class’ object had already been considered. An experimental
comparison of the measures follows in section 5

An inconvertible individual must be assigned a worse ob-
jective value than an bad convertible individual ("bad” here
means: unsuitable for solving the optimization problem or
leading to a result far away from the optimum). There-
fore, the objective values of all the convertible individuals
must be adapted to a predefined interval [0, A] (with O as-
sumed to be the optimum and having only positive objective
values), whereas the objective values of the inconvertible in-
dividuals must be shifted out of this interval. This can be
accomplished by the following formula. Qg is the resulting
objective value, Q¢ is the objective value in the case of a
convertible individual (for calculation see next section), and
Q7 is the objective value of an inconvertible individual (the
measure value of one of the suggested measures):

_ [AQ+e)e
O = { A+Qp

for convertible individuals
for inconvertible individuals

with 0 < e < 1.

8Convertible individuals receive relatively good objective
values and are mainly selected to produce offspring.

4.2 Evaluation of convertibleindividuals

The calculation of the objective values for the convert-
ible individuals depends on the selected testing method. In
principle, for all dynamic testing methods the converted in-
dividual — the test program — is executed and the objec-
tive value is calculated according to the monitoring results
of the execution. In this section, an approach for designing
objective functions applicable to the structure-oriented test,
especially the statement coverage test, branch coverage test,
and condition coverage test, is presented.

The aim of code-coverage-oriented test methods is to yield
test cases with which a high number of code elements are ex-
ecuted. The idea behind the distance-oriented conventional
evolutionary structural testing approach [1] is to derive a set
of single test goals from the given coverage criterion and to
search for test data to reach each of the test goals by using
an evolutionary algorithm. This strategy can also be applied
to the unit testing of object-oriented software. In addition,
the combination of the measures approrimation level and
conditional distance can be used to assess the capability of
a test program to reach a given test goal and hence guide
the evolutionary search.

In some cases, since objects represent state machines, it
can be necessary to take into account the state behavior of
the objects participating in the test. Otherwise, the evo-
lutionary algorithm could not receive any guidance when
considering only the approximation level and conditional
distance for objective value calculation. One idea to deal
with this issue will be described in section 7. The objective
functions used in the following case study are based on the
distance-oriented approach [1].

5. CASE STUDY

An implementation of the approach using the encoding
alternative 2 in figure 2 in Matlab (in order to use the evo-
lutionary toolbox GEATbx [3]) was used to carry out two
kinds of studies:

1. At first, some experiments were performed to exam-
ine the applicability and feasibility of the approach.
To this end, the results of the evolutionary tests were
compared with the results of random tests for the same
test objects.

. The measures number of errors, constructor distance,
and dynamic error evaluation are incorporated into
the objective functions. A test object has been chosen
for which test programs are hard to find. The results
are compared to tests where the objective functions in-
corporated only a boolean measure. This experiment
should demonstrate that the application of a more so-
phisticated measure is indispensable for a successful
evolutionary search.

The following settings of the evolutionary algorithm ap-
ply for all experiments: 4 subpopulations, 50 individuals per
subpopulation, proportional fitness assignment, stochastic
universal sampling, discrete recombination, elitest reinser-
tion with generation gap of 90%.

5.1 Applicability of the approach

In order to demonstrate the applicability of the approach,
both an evolutionary test and a random test were performed
for the same test cluster. The test cluster used is shown in

1058

figure 4. The test goal in line 25 is hard to achieve since for
this, three StateCounter instances must be created and put
into the proper states. The counter values are only affected
by a call to incr() or decr() when the counter object is
in state active. The evolutionary search was configured to

1: class StateCounter extends Counter
2: {
3: boolean active = false;
4: public StateCounter() { counter = 0; }
5: public void incr () {
6: if(active) super.incr();
7: }
8: public void decr () throws Exception {
9: if(active) super.decr();
10: }
11: public void activate () {
12: active = true;
13: }
14: public void deactivate() {
15: active = false;
16: }
17: }
18: class UseCounter
19: {
20: public void mut (StateCounter cl,
21: StateCounter c2, StateCounter c3) {
22: if(cl.getValue() ==)
23: if(c2.getValue() ==)
24 if(c3.getValue() ==)
25: ;// test goal to be reached
26: }
27: }

Figure 4: test cluster for experiment 1

terminate at least after 50 generations. The maximum test
program length was set to 20 statements (the optimum test
program without unnecessary statements has the length 11).
The measure dynamic error evaluation was used for the in-
convertible individuals when carrying out evolutionary test-
ing. The random test was executed with the same parame-
ters but without performing the fitness assignment and by
using special random operators for recombination and muta-
tion. Overall, eight test runs were carried out. A represen-
tative run has been selected for discussion. Figure 5 shows
the development of the relative frequency of inconvertible
individuals. It indicates that an optimization was necessary
in order to find a solution (in generation 14 for evolutionary
testing, the random test did not find a solution). Although
the random test generated (very few) convertible individu-
als, this was not sufficient to find the optimum. With evo-
lutionary testing, the number of inconvertible individuals
decreased constantly over the generations. Thus, the opti-
mum could be found due to the high number of candidate
solutions. The strategy of the two-level optimization proved
successful for this experiment.

5.2 Application of the sequence failure mea-
sures

The second experiment was carried out to demonstate
that it is necessary to use a sophisticated measure for in-
dividual evalution in order to find convertible genotypes. In
addition, the three suggested measures (see 4.1) have been
compared to each other.

Optimization using 'dynamic error evaluation’
T T T T

-

Relative frequency of inconvertible individuals
o o o o 3 o o o
S 5 2 & & S & &
.

°
i
L

o

o
~
IS

6 8
Generation

Random Test

0.9F 4

08F 4

0.7F 1

Relative frequency of inconvertible individuals

0 L L L L L L L L L
15 20 30 35 40 45

25
Generation

Figure 5: results of comparison with random test

The experimental test cluster consisted of the classes Bin
aryTree, java.lang.Integer and java.lang.Double. The
standard Java classes possess a lot of methods requiring
other instances as parameters. Hence, it is hard to find
a faultless method call sequence. Ten experiments were
carried out for which a boolean failure measure was used
that assigned each inconvertible individual the same (non-
optimum) objective value Q; = 20. Another ten experi-
ments were carried out for each of the three suggested fail-
ure measures. Thereby, simplified objective functions were
used which assigned each convertible individual the same
constant non-optimum value ¢ = 1 in order to visualize
the development of inconvertible individuals over more gen-
erations (100 generation was configured as termination cri-
teria). No coverage measurement was carried out. The test
was repeated for ten times, a representative run has been
selected for discussion. The results in figure 6 indicate that
with the boolean measure, the evolutionary algorithm was
not able to find convertible individuals. In contrast, using
the measure dynamic error evaluation, the algorithm was
able to generate convertible individuals after 10 unsuccessful
generations. The results for the measures number of failures
and constructor distance do not differ essentially from the
results of dynamic error evaluation. Due to the simplified
objective functions, for each measure 100 generations were
produced. The relative frequency of inconvertible measures
levels off at approximately 20% which indicates that the
diversity of a generation is preserved by the evolutionary al-
gorithm. Overall, the application of a sophisticated measure
is of high importance for a successful evolutionary test.

1059

Optimization using 'dynamic error evaluation’
T T T T T T T

Relative frequency of inconvertible individuals

.
50
Generation
Optimization using a boolean measure

T T T T T

Relative frequency of inconvertible individuals

o L L L L L L L L L
30 40 60 70 80 90

50 100
Generation

Figure 6: comparison of failure measures

6. RELATED WORK

In the area of the evolutionary white-box testing of object-
oriented software, only one piece of research is known to the
authors, completed by Tonella [8]. Tonella uses evolutionary
algorithms to automatically generate unit test classes for
given classes. He defined an original evolutionary algorithm
with special evolutionary operators for recombination and
mutation on a statement level (i.e. his mutation operators,
for instance, insert or remove methods from a test program).
In his experiments, he generated unit test classes for six Java
(JDK) classes.

The limitations of Tonella’s approach are the following:
using his approach, universal evolutionary algorithms can-
not be applied. Additionally, due to the objective functions
Tonella uses, the evolutionary search is reduced to a ran-
dom search in case of complex conditions within the source
code which must be satisfied in order to reach a particular
test goal. In contrast to Tonella’s approach, the strategy
presented in this paper makes it possible to employ univer-
sal evolutionary algorithms. This means that the suggested
encoding allows for the application of other search-based
optimization techniques such as hill climbing or simulated
annealing as well and to effortlessly change the used strat-
egy. Additionally, using objective functions based on the
distance-oriented approach guides the evolutionary search
in cases of conditions which are hard to meet by random.

7. FUTURE WORK AND CONCLUSION

As already mentioned in section 4.2, objects represent
state machines and some code elements can only be reached
when particular objects which are involved in the test sce-
nario are in a certain state, the state behavior must be taken
into account accessorily. The chaining approach [2] can be
applied as suggested by McMinn and Holcombe [6] in or-
der to identify the methods whose invocation facilitates the
achievement of a state-dependent test goal. This approach
can be adapted in such a manner that test programs by
which these facilitating methods are called, receive a better
objective value than programs which do not include them.

Figure 7 shows a class which should be tested. In order
to do so, test cases satisfying statement coverage should be
generated. Each statement of each method is a test goal
for which a test program must be found. Only the state-

: class Counter
{
int counter 10;
public void incr () {
counter++;
}
public void decr ()
if(isInvalid())
9: throw new InvalidOperationExc () ;

throws Exception {

10: else counter--;

11: }

12: public void getValue () {

13: return counter;

14: }

15: private boolean isInvalid() {
16: if (counter < 0) return true;
17 return false;

18: }

Figure 7: sample class

ment in line 9 is hard to achieve: the test program must
call decr() at least ten times for the same object such that
the exception will be thrown. Using only the approxima-
tion level and distance measures, no guidance is provided
to the evolutionary algorithm in this case. When apply-
ing the chaining approach, the methods incr() and decr()
are identified as facilitating the change of the variable value
counter, resulting in the execution of the if branch.

Nevertheless, the chaining approach must be modified in
order to also take into account the object context of the
events in the event sequence. For each event, it must be
defined to which object this event is assigned. Consequently,
we propose extending the chaining approach in such a way
that an event is not only a tuple e; =< n;, C; > whereby n;
is the ith problem node and C; the constraint set assigned
to that node, but rather a triple

e; =< ni,Ci,Oi >

with o; as the object context (an object identifier) of the ith
problem node in which the event must take place.

The event sequences of a chaining tree can be used to
evaluate the method call sequence of a test program. Call
sequences with a high coverage of an event sequence are
evaluated better than those with a low coverage. Alterna-
tively, the event sequences can be used to create test pro-
gram skeletons into which an evolutionary algorithm can

1060

insert additional statements in order to produce executable
and various test programs.

Test cases for testing object-oriented software include test
programs which create and manipulate objects in order to
achieve a certain test goal. The approach described in this
paper facilitates the automatic generation of object-oriented
test programs using evolutionary algorithms. The encoding
and decoding of test programs into evolvable data structures
were discussed. Ideas for the design of objective functions
which also consider inconvertible genotype individuals have
been presented. In order to demonstrate the its feasability,
the approach has been implemented in a prototypic testing
system that supports coverage-oriented testing. In the case
study, evolutionary algorithms could be employed success-
fully for the generation of test cases for object-oriented soft-
ware. The application of the two-level optimization proved
successful in all experiments. The results achieved by the
experiments are promising and encourage further research
in this area. However, the results are preliminary and a lot
of more experiments must be carried out. The modification
of the chaining approach, in particular, will be investigated
in detail in ongoing research. The optimization alternatives
(one-level, two-level, three-level) will be compared in order
to guide further research and to more thoroughly investigate
multi-level optimization.

8. REFERENCES

[1] A. Baresel, H. Sthamer, and M. Schmidt. Fitness
function design to improve evolutionary structural
testing. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pages 1329-1336,
July 2002. 9-13th July.

R. Ferguson and B. Korel. The chaining approach for
software test data generation. ACM Transactions on
Software Engineering and Methodology, 5(1):63-86,
January 1996.

Genetic and Evolutionary Algorithm Toolbox for use
with Matlab. http://www.geatbx.com.

S. Kim, J. A. Clark, and J. A. McDermid. Investigating
the applicability of traditional test adequacy criteria for
object-oriented programs. In Proceedings of the
ObjectDays 2000, October 2000.

P. McMinn. Search-based test data generation: A
survey. Journal on Software Testing, Verification and
Reliability, 14(2):105-156, June 2004.

P. McMinn and M. Holcombe. Hybridizing evolutionary
testing with the chaining approach. Genetic and
Evolutionary Computation Conference (GECCO),
pages 1363-1374, June 2004. June 26-30.

H. Sthamer, J. Wegener, and A. Baresel. Using
evolutionary testing to improve efficiency and quality in
software testing. In Proceedings of the 2nd Asia-Pacific
Conference on Software Testing Analysis and Review
(AsiaSTAR), July 2002. 22-24th July.

P. Tonella. Evolutionary testing of classes.
International Symposium on Software Testing and
Analysis (ISSTA), pages 119-128, 2004. July 11-14.

S. Wappler. Using evolutionary algorithms for the test
of object-oriented systems. Master’s thesis,
Hasso-Plattner-Institute for Software Systems
Engineering at University of Potsdam, September 2004.

