

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

Hybridizing Evolutionary Algorithms and Clustering
Algorithms to Find Source-Code Clones

Andrew Sutton, Huzefa Kagdi, Jonathan I. Maletic, L. Gwenn Volkert
Department of Computer Science

Kent State University
Kent Ohio 44242

{asutton, hkagdi, jmaletic, volkert}@cs.kent.edu

ABSTRACT
This paper presents a hybrid approach to detect source-code
clones that combines evolutionary algorithms and clustering. A
case-study is conducted on a small C++ code base. The
preliminary investigation indicates that such an approach is
effective in detecting groups of source-code clones.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Restructuring, reverse
engineering, and reengineering, I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search.

General Terms
Algorithms, Design, Experimentation.

Keywords
Evolutionary Algorithms, Software Engineering, Clone Detection.

1 INTRODUCTION
In software a clone is defined as a unit of source code that is
identical or similar to another unit of source code. Software
clones are classified as exact and near-miss clones [1]. Exact
clones are pure replicas of exact textual lines, whereas near-miss
clones are those with a certain variation in the textual, syntactic,
and semantic composition. A number of approaches exist in
software engineering literature addressing identification of both
exact and near-miss clones. These techniques range from simple
lexically-based [1, 4, 6] to complex structural and/or semantics
similarity analysis [2, 7, 8].

Evolutionary Algorithms (EAs) are typically applied to problems
for which the search space is too large to investigate exhaustively.
One can view software engineering as a search problem [11]
however, there are issues and challenges in adapting evolutionary
computing to this domain [3, 5]. Nonetheless, evolutionary
computing has been applied to various software engineering
activities including software testing [9] and reverse engineering
[10].

In the work presented here, the contribution is twofold. On the
evolutionary computing front, this is an effort to extend its scope
and application within the domain of software engineering, which

to date has focused more on testing issues. To this end, we
propose an EA-based search technique for identifying clones in
source code. In the context of software engineering, this is a non-
traditional method for identifying near-miss textual clones. On
the software engineering front, the eventual goal of the presented
technique is to obtain a solution that gives the smallest number of
clone-groups such that the similarity between clones and the
length of an individual clone within each group is maximized.

2 THE APPROACH: EA AND CLONES
In any given software system the number of clone-groups and
number of clones in each group is not known a priori and is
dependent on the type of clone being searched for (e.g. exact or
near-miss clones). Given that our goal is to find a set of clone
groups we develop a method for an EA inspired search with a
dynamic population size. Each individual represents a candidate
clone group and thus the goodness of the solution is determined at
the level of the population (i.e. minimizing the number of
individuals while maximizing the similarity of the clones
represented within each individuals). This type of EA is more
easily implemented with the evolutionary programming (EP)
paradigm since both the population and the individuals will be
dynamically changing in size through-out the evolutionary
process. Detailed specification of our approach is defined through
the following components.

Individual Representation: Individuals are represented by a
variable–sized vector. The individual x consists of the genetic
component c and the strategy parameters s and l. The genetic
component of an individual represents a clone-group. Each gene
(i.e., code fragment) of an individual is represented by a starting
location si and the length li.

,,, lscx = iiin lsccccc ,,,, 21 == K

Initialization by Clustering: We use an agglomerate clustering
algorithm to form (initialize) a population of individuals on the
basis of their genetic composition. Notice that in the
representation of the code fragments, the phenotype (i.e., the
actual source code content) is not directly encoded in the
genotype; rather the individual genes behave as "pointers" to the
phenotype. We use a similarity metric based on longest common
subsequence (LCS) for comparing the textual contents pointed to
by the genes as indicated by their allele values.

1079

Variation Operators: Like traditional EPs, this algorithm
implements no recombination operator, relying exclusively on
mutation operators for introducing modified individuals into the
population. We define a set of mutation operators which allows
us to adjust the starting point (Shift), length of each clone in an
individual (Grow), and both (Kick). We use a die rolling approach
to determine which mutation operator is executed.

Parent and Survivor Selection: These mechanisms are slightly
different than traditional EPs due to a variable population size and
a lack of absolute fitness values. Every individual in the current
population is selected as a parent. Initially, each parent creates an
identical child that is then subjected to mutation and re-clustering.
The re-clustering may result in individuals that are no better than
the parents (e.g., unsuccessful Grow mutation) or no relation
between parents and children (e.g., successful Kick mutation).
The entire current population is not allowed to pass to the next
generation. A culling step is employed to eliminate individuals
that are entirely contained in other individuals. Thus, the
population growth is controlled after each generation.

Termination: We provide two forms of termination for this
algorithm: generation-based and stability-based methods. The
stability-based approach terminates the algorithm once a specified
number of generations have elapsed without any improvement in
the population.

Initialization: The initial population is formed by placing each
code fragment in its own cluster. A hashing algorithm is used to
create an initial set of clusters of the given code fragments.

Pre- and Post- Processing: We implemented a pre-processing
filter to remove “noise” such as white space and trivial code
fragments with a little or no significance as candidate clones.
Furthermore, we added a post-processing stage to optimize the
results (e.g., merging clusters consisting of adjacent lines of
source code).

3 CASE-STUDY
We conducted a preliminary investigation to determine the
applicability and effectiveness of our hybrid algorithm in
detecting clones at the file and system levels. We selected the
(C++) source code of our algorithm as a test system. It consists of
25 files and approximately 2600 textual lines of code (LOC). We
studied three performance metrics, namely, the number of clones
(groups), the maximum clone size, and the average clone size.
We carried out a number of runs of the algorithm and recorded
results for various combinations of parameters. We validated the
results manually via spot checks and learned that the algorithm
worked with a reasonable precision.

4 CONCLUSIONS
We have mapped the clone detection problem into a search
representation that can be addressed with a hybrid approach that
combines an evolutionary algorithm and clustering algorithm. We
believe that the hybrid evolutionary-clustering approach provides
a promising solution to problems of this type. The preliminary
investigations imply that this approach successfully finds (with
some degree of error) clone classes by continually adjusting and
re-clustering candidates to maximize their similarity content while
simultaneously minimizing the number of clone groups. While

the algorithm may not be as time-efficient as others, we conjecture
that it will outperform other traditional approaches in terms of
recall and precision. In the future, we will continue to revise the
algorithm, experimenting with different representations, clustering
algorithms, similarity measures, and additional heuristics.
Moreover, we are in the process of conducting a case study
investigating this approach on a much larger body of software
(e.g., the Linux kernel or a KDE release).

5 REFERENCES
[1] Baker, B., "On Finding Duplication and Near-Duplication in

Large Software Systems", in Proceedings of Working
Conference on Reverse Engineering, Toronto, Ontario,
Canada, July 1995, pp. 86-95.

[2] Baxter, I. D., Yahin, A., Moura, L., Sant'Anna, M., and Bier,
L., "Clone detection using abstract syntax trees", in
Proceedings of International Conference on Software
Maintenance, Bethesda, Maryland, November 16-19 1998,
pp. 368-377.

[3] Clark, J., Dolado, J. J., Harman, M., Hierons, R., Jones, B. F.,
Lumkin, M., Mitchell, B. S., Mancordis, S., Rees, K., Roper,
M., and Shepperd, M., "Reformulating Software Engineering
as a Search Problem", Journal of IEE Proceedings - Software,
vol. 150, no. 3, 2003, pp. 161-175.

[4] Ducasse, S., Rieger, M., and Demeyer, S., "A Language
Independent Approach for Detecting Duplicated Code", in
Proceedings of International Conference on Software
Maintenance, Oxford, England, August 30 - September 3
1999, pp. 109-118.

[5] Harman, M. and Jones, B. F., "Search-Based Software
Engineering", Information and Science Technology, vol. 43,
no. 14, December 2001, pp. 833-839.

[6] Kamiya, T., Kusumoto, S., and Inoue, K., "CCFinder: A
Multilinguistic Token-Based Code Clone Detection System
for Large Scale Source Code", Transactions on Software
Engineering, vol. 28, no. 7, July, 2002, pp. 654-670.

[7] Komondoor, R. and Horwitz, S., "Finding duplicated code
using program dependences", in Proceedings of European
Symposium on Programming, Genoa, Italy, April 2-6 2001.

[8] Marcus, A. and Maletic, J. I., "Identification of High-Level
Concept Clones in Source Code", in Proceedings of
Automated Software Engineering (ASE'01), San Diego, CA,
November 26-29 2001, pp. 107-114.

[9] Michael, C., McGraw, G., and Schatz, M., "Generating
Software Test Data by Evolution", IEEE Transactions on
Software Engineering, vol. 12, Dec. 2001, pp. 1085-1110.

[10] Mitchell, B. S., Mancordis, S., and Traverso, M., "Search-
Based Reverse Engineering", in Proceedings of International
Software Engineering and Knowledge Engineering
Conferences (SEKE'02), Ischia, Italy, July 2002, pp. 431-
438.

[11] Simon, H., "Whether Software Engineering Needs to be
Artificially Intelligent"", IEEE Transactions on Software
Engineering, vol. 12, no. 9, September 1986, pp. 726-732.

1080

