

Benefits of Software Measures for Evolutionary White-Box
Testing

Frank Lammermann
Daimler Chrysler AG, Research and Technology

Alt-Moabit 96a,
10559 Berlin, Germany
+49 - 30 - 399 82 272

Frank.Lammermann@DaimlerChrysler.com

Stefan Wappler
Daimler Chrysler AG, Research and Technology

Alt-Moabit 96a,
10559 Berlin, Germany
+49 - 30 - 399 82 358

Stefan.Wappler@DaimlerChrysler.com

ABSTRACT
White-box testing is an important method for the early detection
of errors during software development. In this process test case
generation plays a crucial role, defining appropriate and error-
sensitive test data. The evolutionary white-box testing is a
promising approach for the complete automation of structure-
oriented test case generation. Here, test case generation can be
completely automated with the help of evolutionary algorithms.
However, problem cases exist in which the evolutionary test is not
able to find valid test data. Thus, in the case of not achieving a
test goal, it is not known whether this is due to non-executable
program code or a problem case. This paper will investigate how
successfully a software measure can support an evolutionary
white-box test if the measure can predict the test effort. Hence, the
termination criteria of evolutionary white-box testing can be
adapted to test goals with problem cases in such a way that
problematic test goals are either excluded from the test in advance
or can be covered due to an adequate termination criteria
according to a software measure. This could lead to an increase in
efficiency and effectiveness of evolutionary white-box testing.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Complexity Measures,
Performance Measures.

General Terms
Measurement, Verification

Keywords
evolutionary testing, software measurement, metric, automated
test case generation

1. INTRODUCTION
For the early detection of errors during software development, the
white-box test, in addition to the function-oriented test,
constitutes an important process. For this the generation of test

data takes on a decisive role, since it determines the quality-
relevant input values for the test. A successful approach to
automated test data generation is the evolutionary white-box test
[1, 2, 3]. It proves difficult, however, to define suitable
termination criteria for an evolutionary white-box test, since, in
the case of non-achievement through the test-criterion-required
program structure, it is not known if the program structure is not
executable or whether test data was not searched for thoroughly
enough.

This paper will experimentally examine the potential benefits of a
software measure that estimates the test effort of an evolutionary
white-box test. This so-called evolutionary software measure
could make it possible to individually adapt the termination
criteria to each test goal so that the test goal can generally be
either reached or, if it is expected that it will not be reached,
excluded before the test.

The experiment results in this chapter relate to the framework for
evolutionary white-box testing1, developed by DaimlerChrysler
and described in [3]. For the experiments 23 test object were
selected – individual C functions which are typical for the use of
evolutionary white-box tests. They originate from different
application areas such as mathematical calculations for control
problems, the performance of string and character operations
often found in programming language libraries, and components
from automotive and motor electronics.

2. ADVANTAGES OF EVOLUTIONARY
SOFTWARE MEASURES
The quality of objective functions plays an important role in
determining the success of evolutionary white-box tests [1, 2].
Searching out valid test data, especially for complex test objects,
can present difficulties if the objective function can not make
details available for the optimization of test data. Such situations
are designated in the following text as non-achievability
problems.

For the evolutionary white-box test there exist non-achievability
problems for which an evolutionary software measure can be

1 At the moment only C programs can be tested with the

framework.

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

1083

useful, e.g. the problem of suitable parameterization, the problem
of a suitable termination criterion, or the problem of a too-small
optimum size. There exist also problems where such measures do
not offer benefits, e.g. the flag problem [4], the problem of
floating point variables or the state problem [5].

2.1 Frequency of non-achievability problems
In order to judge the efficiency of an evolutionary software
measure, we consider the frequency of the occurrence of
individual non-achievability problems using the 23 examined test
objects. From the 767 total test goals, the evolutionary white-box
test could not attain 181 test goals in at least one of five test runs
due to the problems listed above. The frequencies of individual
non-achievability problems are listed in table 1.

Table 1. Measured frequency of non-achievability problems

Problem
Category

Problem Case Frequency Portion

Parameterization ? ?
Termination

criteria
54 from 181 29.8%

Optimum size 32 from 181 17.7%

with benefit

through
evolutionary

software
measure

Consecutive fault

77 from 181

42.5%

Flag problem 0 from 181 0.0%
Floating point

variable
 4 from 181 2.2%

without
benefit
through

evolutionary
software
measure

State Problem 14 from 181 7.7%

The largest portion of the non-achievability problems is caused by
the consecutive fault problem. The causes of the problem of
consecutive fault are based, in turn, on other non-achievability
problems. Of the 77 test goals that could not be attained due to
consecutive fault, 71.4% were shown by further analyses to be
caused by the problem of optimum size, 18.2% by the state
problem, and 10.4% by the problem of floating point variables. If
one considers those problems caused by consecutive fault when
assessing the frequency of all the non-achievability problems, the
total number of non-achievability problems for which an
evolutionary software measure can offer some benefit climbs to
77.9%.
3. CONCLUSION
Our experiments have shown that the bulk of situations in
software programs (77.9%), in which evolutionary white-box
testing so far has not been able to make assertions about the
existence of non-achievable test goals, can be improved with the
help of an evolutionary software measure. This improvement is
based on the ability of the evolutionary software measure to

estimate in advance the test effort for single test goals of
evolutionary white-box testing.

In order to develop such a software measure, those attributes in
test objects have to be examined which are responsible for the
amount of test effort. All of these attributes are restricted to
characteristics of conditions, which have an influence on the
structure of the search space.

Another step of research remains: how will the evolutionary
software measure behave when evolutionary white-box testing is
parameterized differently? Depending on the settings, it is
possible that merely the constants given for the test effort
calculation have to be adjusted. Furthermore, it is necessary to
check how well the evolutionary software measure works within
an environment of interfering influences (e.g. changes of input
variables in dependency on conditions) or whether it is only
working well in an artificial surrounding. In order to apply
software measures for the calculation of a dynamic termination
criterion, it is also necessary to examine the distribution of real
measured test effort possesses in comparison to forecasted
efforts by the software measure.

Acknowledgements
The work described has been performed within the SysTest
project. The SysTest project is funded by the European
Community under the 5th Framework Programme (GROWTH),
project reference G1RD-CT-2002-00683.

4. REFERENCES
[1] Sthamer, H. The Automatic Generation of Software Test

Data Using Genetic Algorithms. PhD Thesis, University of
Glamorgan, Pontyprid, Wales, Great Britain, 1996.

[2] Baresel, A., Sthamer, H., and Schmidt, M. Fitness
Function Design to improve Evolutionary Structural
Testing. Proceedings of GECCO 2002, New York, 2002,
1329-1336.

[3] Wegener, J., Baresel, A., and Sthamer, H. Evolutionary
Test Environment for Automatic Structural Testing.
Information and Software Technology, vol. 43, 2001, 841-
854.

[4] Harman, M., Hu, L., Hierons, R., Baresel, A., and Sthamer,
H. Improving Evolutionary Testing by Flag Removal.
Proceedings of GECCO 2002, New York, 2002.

[5] Harman, M., Hu, L., Hierons, R., Munro, M., Zhang, X.,
Dolado, J., Otero, M., and Wegener, J. A Post-Placement
Side-Effect Removal Algorithm. Proceedings der IEEE
International Conference, New York, 2002.

1084

