
Unbiased Tournament Selection

Artem Sokolov
Department of Computer Science

Colorado State University
Fort Collins, CO 80523

sokolov@cs.colostate.edu

Darrell Whitley
Department of Computer Science

Colorado State University
Fort Collins, CO 80523

whitley@cs.colostate.edu

ABSTRACT
Tournament selection is a popular form of selection which is
commonly used with genetic algorithms, genetic program-
ming and evolutionary programming. However, tournament
selection introduces a sampling bias into the selection pro-
cess. We review analytic results and present empirical evi-
dence that shows this bias has a significant impact on search
performance. We introduce two new forms of unbiased tour-
nament selection that remove or reduce sampling bias in
tournament selection.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization—Global Optimization

Keywords
Evolutionary Computation, Genetic Algorithms, Tourna-
ment Selection, Loss of Diversity

1. INTRODUCTION
Selection is an important aspect of evolutionary compu-

tation. It dictates what members of the current population
affect the next generation. More fit individuals are gener-
ally given a higher chance to participate in the recombina-
tion process. The motivation is that highly fit members of a
population possess good properties that, recombined in the
right way, could lead to even better solutions.

The primary concern of all selection schemes is what’s
known as the loss of diversity. In a generational genetic
algorithm (GA), not every individual makes it into the in-
termediate population. As a result, information encoded in
the current population is not transferred into the next gener-
ation in its entirety. Loss of diversity has been measured and
analyzed for a number of popular selection algorithms([6],
[3], [4], and [7]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

Of particular interest is tournament selection, which is
commonly used with genetic algorithms, genetic program-
ming and evolutionary programming. As pointed out by Poli
[8], the loss of diversity in tournament selection is caused by
two factors. He distinguishes between the notions of not
being sampled and not being selected. The first holds true
about an individual that does not get to participate in a
tournament. The second refers to an individual losing a
tournament and, thus, not making it into the intermediate
population. Poli notes that the objective function is unnec-
essarily evaluated on individuals that don’t affect the next
generation and suggests ways to eliminate this computation
[8].

This paper takes a different approach. We propose a se-
lection scheme that eliminates the loss of diversity in tour-
nament selection due to individuals not being sampled. Our
algorithm is based on reducing variance in the number of
times a particular individual is picked to participate in a
tournament. We demonstrate that using our selection algo-
rithm yields better results than the traditional tournament
selection when used in a generational genetic algorithm.

We also introduce a new scheduling problem into the lit-
erature: Radar Scheduling. The problem is a variation of
resource-constrained project scheduling, as defined in [10].
The implementation presented in this papers consists of a
greedy scheduler that constructs and evaluates a schedule
based on some given permutation of tasks. A GA works
with permutations and uses the scheduler to calculate fit-
ness of every solution.

The paper is organized in the following way. In Section 2
we briefly overview some of the popular selection schemes
and introduce our novel algorithm. Applications and em-
pirical results are presented in Section 3. Section 4 consists
of additional elaboration on the observed behavior. Finally,
Section 5 summarizes the work done and describes possible
directions to be taken for further analysis.

2. SELECTION METHODS
We present an overview of the three commonly used selec-

tion algorithms (a very comprehensive analysis can be found
in [3]); we also review factors that contribute to the loss of
diversity in each algorithm. We then introduce a descrip-
tion of a new algorithm, which we call Unbiased Tournament

Selection.

1131

2.1 Fitness Proportional Selection
Fitness proportional (also known as “Roulette-Wheel”)

selection is different from the other algorithms discussed in
this paper in that, as the name suggests, individuals are be-
ing drawn with probabilities directly proportional to their
fitness values. This is in contrast to using the rank of an
individual to assign these probabilities. The major implica-
tion of this difference is that fitness proportional selection is
more sensitive to outlying fitness values. An exceptionally
fit individual is likely to dominate the intermediate popula-
tion, leading to a decrease in diversity of the offsprings.

A very common way of implementing fitness proportional
selection is via stochastic universal sampling[2]. The method
places evenly spaced markers against an interval divided
into regions corresponding to individuals in the population.
Larger regions are allocated to the more fit individuals. The
offset for the first marker is chosen from [0, 1] uniformly at
random and all markers are then used to pull out the corre-
sponding individuals for recombination (Figure 1).

k
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 1: Stochastic universal sampling

In addition to the above implementation, we also applied
a shift factor to all fitness values to ensure that the lowest
fitness value is equal to 1. This was done prior to running the
selection algorithm to normalize the region sizes. Note that
the probability distribution of individuals getting selected
for recombination is more uniform when fitness values lie in
[a, b] rather than [1, b − a + 1] whenever a >> 1 [5].

Note that universal stochastic sampling does not guaran-
tee that all individuals get selected. For instance, in Figure 1
the fifth individual is not hit with a marker and does not
make it into the intermediate population.

The remaining three algorithms make use of an individ-
ual’s rank in the corresponding population to compute the
probability of that individual being selected for recombina-
tion.

2.2 Rank-Based Selection
Whitley proposed the following implementation of rank-

based selection[14]:

j =

—
N

2(c − 1)

“
c −

p
c2 − 4(c − 1)χ

”�

where χ is a random value drawn uniformly from [0, 1) and
N is the number of individuals in the population. The re-
turned rank j can be used to index into the population
sorted by fitness value, with j = 0 and j = N − 1 repre-
senting the most and least fit individuals respectively. The
computation is performed to select one individual at a time
and needs to be carried out N number of times (drawing
a new value of χ every time) when composing the inter-
mediate population. This is where the loss of diversity is
experienced because, depending on the values of χ, some in-
dividuals might not be sampled and, thus, not get selected.
This implementation was introduced to be used with one-at-
a-time reproduction in the GENITOR steady state genetic
algorithm.

An alternative implementation of ranked based selection
resembles fitness proportional selection. The same stochas-
tic universal sampling is used but regions are allocated pro-
portionally to the rank of individuals, rather than the fitness
values.

The variable of interest in the formula above is c, which
is called selective pressure and usually chosen to be in (1, 2].
The formula itself is used for linear ranking, where selec-
tive pressure, in effect, controls the slope of the line. Lin-
ear ranking assigns the probability of an individual getting
selected to be linearly dependent on the position of that in-
dividual in the population sorted by rank. As c approaches
1, all individuals have equal chance of being selected for re-
combination. On the other hand, a selective pressure value
of 2 constitutes the probability of selecting the most fit in-
dividual being two times greater than that of selecting an
individual with median fitness value. In this case, the prob-
ability of selecting the worst individual is zero.

We have fixed the value of selective pressure at c = 2
throughout all the experiments in this paper. This choice
allows for better comparison of performance since the other
two rank based selection algorithms will exhibit similar prob-
ability distributions.

2.3 Random Tournament Selection
In this paper, we label the traditional tournament selec-

tion scheme as random tournament selection. Perhaps the
two most appealing aspects of using this algorithm is the
ease of implementation and a large potential for parallelism.
Given a population, t individuals get picked uniformly at
random and the best is chosen for recombination. The pro-
cess is repeated the number of times necessary to achieve
the desired size of the intermediate population.

The algorithm is embarrassingly parallel as each tourna-
ment is independent. In the best-case scenario — if one
had the same number of processors as the population size
— all tournaments could be run simultaneously. This would
involve nothing more than each processor sampling the pop-
ulation t times and selecting the best of those individuals.

population size

lo
ss

 o
f d

iv
er

si
ty

1 10 100 1000

0.
0

0.
2

0.
4

0.
6

0.
8

t=2
t=3
t=5
t=20

Figure 2: Loss of diversity for different values of
tournament size t

The number of individuals that get picked, t, affects the
probability distribution in a way similar to selective pres-
sure in a rank-based algorithm. Larger values correspond to
higher probability of the most fit individual being selected

1132

Population Ranks: 1 2 3 4 5 6 7 8

Sampled Pairs: 5 5 4 3 2 6 6 5 2 4 2 3 8 4 3 6

Tournament: _/ _/ _/ _/ _/ _/ _/ _/

| | | | | | | |

Winners: 5 3 2 5 2 2 4 3

Not Sampled: 1, 7 Not Selected: 6, 8

Figure 3: A random tournament scenario. More
fit individuals are represented by lower rank values.
Note the difference between “not sampled” and “not
selected”

relative to the rest of the population. We fixed t to be 2
because higher selective pressure will flood the intermediate
population with replicas of highly fit individuals and addi-
tional unnecessary loss of diversity will be experienced.

Motoki [7] computes the expected loss of diversity in tour-
nament selection to be:

DT (t, N) =
1

N

NX
k=1

„
1 − kt − (k − 1)t

N t

«N

where N is the population size and t is the tournament size.
As can be seen in Figure 2, larger values of t do indeed lead
to higher expected loss of diversity. Blickle and Thiele[3]
demonstrate that large values of selective pressure lead to
similar problems in rank-based selection as well.

Note that the expected loss of diversity grows very rapidly
with the population size and quickly levels off to being nearly
horizontal at N = 8. Since populations that small are
rather uncommon, this graph demonstrates that large val-
ues t present a serious issue. This further justifies our choice
of tournament size t = 2.

As Poli notes, there are two factors that lead to the loss
of diversity in random tournament selection. Some individ-
uals might not get sampled to participate in a tournament
at all. Other individuals might not be selected for the in-
termediate population because they lost in a tournament.
Figure 3 shows an example of random tournament selection
applied to a population of size eight. The most and least fit
individuals are represented by numbers 1 and 8 respectively.
Individuals 1 and 7 are not sampled, while individuals 6 and
8 are not selected.

Note that the notions of not being sampled and not be-
ing selected are indistinguishable in fitness proportional and
rank-based selection schemes. This is due to a single deci-
sion process involved in each of the two algorithms. For in-
stance, rank-based selection algorithm simply samples one
individual at a time. In each case, the same individual is
selected for recombination. Random tournament selection,
on the other hand, involves two decision processes: who gets
to participate in a tournament and who gets added to the
intermediate population.

Poli calculates that the number of individuals neglected in
the first decision if two offsprings are produced by recombi-
nation is N(1−1/N)tN ; he also presents a figure (Figure 4 in
this paper) that shows the percentage of population ignored
for difference choices of parameter t.

Two interacting effects can be observed in Figure 4 and
Figure 2. When t = 2 and the population is at least 10,
approximately 40% of the population is lost due to selection

population size

pr
op

or
tio

n
of

 in
di

vi
du

al
s

no
t s

am
pl

ed

1 10 100 1000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

t=2
t=3
t=5
t=20

Figure 4: Percentage of individuals not sampled for
random tournament with different tournament size
values

effects, while close to 13% percent of individuals are lost due
to a failure to sample these individual. As the tournament
size increases, so does the expected loss of diversity; how-
ever, the fraction of that loss due to individuals not being
sampled decreases. However, larger tournaments size means
that a smaller portion of the population actually contributes
to genetic diversity–making the search increasingly greedy in
nature. We propose a tournament selection algorithm that
eliminates loss of diversity related to the failure to sample;
its impact is of particular significance for smaller values of
t.

2.3.1 Selective Bias less than 2.0
We can define selective pressure as the ratio between the

probabilities of selecting the best individual and the indi-
vidual with median fitness value. For rank-based selection,
selective pressure is the parameter c in the given implemen-
tation. Selective pressure in tournament selection is con-
trolled through the tournament size that, unlike c, cannot
be lower than two. However, tournament selection can be
implemented with selective pressure less than 2.0. Two indi-
viduals are compared, but the best is chosen with a probabil-
ity greater than 0.5 but less than 1.0; if ps is the probability
of keeping the best individual, the selective pressure is 2ps.
However, while a lower selection pressure can reduce the loss
of diversity due to selection, it does nothing to change the
failure to sample.

2.4 Unbiased Tournament Selection
The main motivation behind our novel algorithm is to

make participation in a tournament more “fair” through
the use of a variance reduction mechanism. Unbiased tour-
nament selection scheme introduces additional control over
what individuals get to participate in each tournament by
completely or partially eliminating uniform population sam-
pling.

In essence, unbiased tournament selection lines up two dif-
ferent permutations of the population and performs a pair-
wise comparison. An individual with higher fitness, or lower
objective function value, is selected for recombination from
each pair. The most straightforward way of implementing
this algorithm is the following:

1133

Population objective function values:

1.5, 2.3, 15.6, 3.4, 7.8

Unbiased Tournament Selection:

i P[i] f(i) f(P[i]) I[i]

--

1 5 <-> 1.5 7.8 --> 1

2 3 <-> 2.3 15.6 --> 2

3 4 <-> 15.6 3.4 --> 4

4 1 <-> 3.4 1.5 --> 1

5 2 <-> 7.8 2.3 --> 2

Figure 5: Example of unbiased tournament selec-
tion. A more fit individual is characterized by lower
objective function value.

1. Construct P to be a random permutation of indices
into the population, such that P [i] �= i, ∀i.

2. The intermediate population I is chosen using tour-
nament selection. Indices are given by I [i] = P [i] if
f(P [i]) < f(i), and I [i] = i otherwise. (We let f(j)
return the objective function value of jth individual.)

Constructing a random permutation in Step 1 can be done
by uniformly sampling the population indices without re-
placement. The constraint P [i] �= i is easily enforced by
withholding ith individual from participating in the sam-
pling procedure. There are not enough degrees of freedom
to guarantee that this constraint holds for the last element
of the permutation, but a violation can be fixed by swapping
the last element with its immediate predecessor.

Figure 5 demonstrates application of this algorithm to a
population of size five. Note that each individual gets two
chances to participate in a tournament. This fact eliminates
the potential of better individuals not getting chosen for
recombination, i.e. the bias that was present in Random
Tournament selection.

The best individual will get selected exactly twice, the
worst is never selected. These values are only expected in
random tournament selection. Thus, we have effectively re-
duced the variance for these to zero.

The expected number of times an individual with median
fitness getting selected is still 1 but this is very much in line
with our previous discussion on probability distribution of
other selection algorithms.

2.5 Parallel Unbiased Tournament Selection
Unbiased tournament selection completely eliminates ran-

dom population sampling. However, the inherent paral-
lelism present in the original random tournament selection
is lost. Since each tournament is no longer independent,
there is no efficient way to run them in parallel. We propose
an alternative implementation that sacrifices some selection
consistency to allow for tournament independence.

Assume we have n processors enumerated 1, 2, ...n, where
n is the population size. For each processor i:

1. Sample k uniformly from [1, n]

2. Add individual i into the intermediate population if
f(i) < f(k). Add individual k otherwise. (Again,
we let f(j) return the objective function value of jth

individual.)

Parent 1: a b c d e f

Cross Points: * * *

Parent 2: e c a b f d

Child: a e c b d f

Figure 6: Syswerda’s order crossover operator

Note that we no longer enforce i �= k. The sole intent of
using this constraint in the first place was to ensure that each
individual participates in a tournament twice. Since no such
guarantee is available in the parallel case, the constraint was
deemed unneeded as it only provided additional overhead.

The second implementation is only a partial elimination
of uniform population sampling. We still sample the popu-
lation once per tournament, but we are, at the same time,
guaranteed that everybody will participate at least once.
Overall we have removed the loss of diversity due to indi-
viduals not being sampled.

We have used the first implementation for empirical com-
parison because of our interest in the variance reduction.
The parallel case does not offer the nice property that the
best individual will be selected exactly twice (as well as the
worst individual not getting selected at all) and is of less in-
terest. In Section 4, we revisit the idea of variance reduction
by constructing graphs of how many times an individual gets
selected by each selection scheme.

3. APPLICATIONS AND RESULTS
We ran a generational GA with each selection algorithm

on three problems: one with permutation-based solution
representation and two under bit encoding. As dictated by
the solution encoding of each problem, either Syswerda’s or-
der crossover[11] or single point crossover[12] operators were
used. The former is a common operator for recombining
chromosomes with permutation representations. A simple
example is shown in Figure 6. Several cross points along
the first string are chosen uniformly at random. The corre-
sponding characters b, d, and e are reordered to match their
relative position in the second string (i.e. e comes before b,
and b comes before d). Note that the position of all other
characters (a, c, and f) is unaffected.

No mutation was done to allow for more careful perfor-
mance assessment. For each problem, we ran the GA for 30
generations keeping the best individual from the previous
population at each iteration (elitist strategy). The most fit
individual is reported at the end of a run. Relevant statis-
tics after performing 30 runs with each selection algorithm
are presented in the tables below. The particular focus,
of course, is made on comparing the two tournament algo-
rithms.

All problems examined in this paper are minimization
problems. Therefore, we will refer to individuals with lower
values of an objective function as being more fit.

3.1 Radar Scheduling Problem
This particular problem can be defined as resource-con-

strained project scheduling (RCPS) without ordering con-
straints. The following model was used in this paper. Sup-
pose we want to track a number of objects in the Earth’s or-
bit. We have a number of fixed-length, periodic time frames
for each object, corresponding to when it can be picked up
by the radar. The length of each task is assumed smaller

1134

or equal to the length of the corresponding frames. We im-
pose a constraint that tracking must be completed within a
single time frame (i.e. a task is not interruptible) and that
each task needs to be scheduled only once. A single resource
— radar power — has the capacity to allow for tracking of
multiple objects at the same time.

The problem is constructed by implementing a greedy
scheduler, which would take a permutation of enumerated
tasks and produce and evaluate a schedule. The scheduler
places each task in a permutation in the first feasible spot
that has enough resources to support the job throughout its
duration. If no such spot exists, the task is discarded and
a penalty is incurred. The goal is to minimize this penalty
through a manipulation of task ordering in a permutation.

We ran a genetic algorithm with each selection method
for 30 trials. The problem instance included 150 tasks with
randomly generated properties. The radar is assumed to
have enough power to track up to 5 objects simultaneously.
(Some of the settings we have used are based on knowledge
of real tracking systems; other settings were chosen arbitrar-
ily). The following penalty distribution was used:

Job Priority 1 2 3 4 5
of Jobs 3 10 17 40 80
Penalty 1500 200 30 5 1

Results are shown in table 1. The best objective value ob-
tained with each selection algorithm is displayed in the first
column. The average performance across thirty trials is pre-
sented in the next two columns. The last column displays
the results of performing a pairwise t-test to compare all
selection algorithms to unbiased tournament. A p-value of
less than 0.05 indicates statistically significant difference in
performance. Although unbiased tournament outperforms
other selection algorithms, it does so with statistical signifi-
cance only for the smaller two values of the population size.

Also of interest is the fact that a GA with fitness propor-
tional selection performs well for a small population size but
loses its advantage as the population size grows and other
selection algorithms gain a higher increase in performance.
A possible explanation for this behavior is that the loss of
diversity experienced by fitness proportional selection grows
faster with the population size than in the case of other
selection schemes. As we will see in Section 4, fitness pro-
portional selection has a different sampling distribution that
puts more selective pressure on highly fit individuals. This
likely leads to a larger portion of the population being dis-
carded and justifies our earlier choices of selective pressure
for rank based algorithms.

3.2 Problems Under Bit Encoding
For assessing performance of selection algorithms on prob-

lems with bit representation we took two well-known evalu-
ation functions: Schwefel [9] and Rana (F102 in [13]). We
borrowed the following expansion method from [15] to scale
these functions up to ten dimensions:

f(x) =

P�n/2�
i=1 f(x2i−1, x2i) +

P�(n−1)/2�
i=1 f(x2i+1, x2i)

n − 1

where n denotes the number of dimensions.
We used 10 bits of precision for each dimension and sin-

POPSIZE=20 Best Mean St.D p-value
Fitness Prop. 159.00 510.30 209.41 0.084
Rank-Based 225.00 558.47 252.23 0.019
Random Tourn. 205.00 573.20 188.80 0.002
Unbiased Tourn. 228.00 425.37 161.80 1.000

POPSIZE=100 Best Mean St.D p-value
Fitness Prop. 189.00 273.93 44.15 0.000
Rank-Based 135.00 192.97 34.65 0.019
Random Tourn. 124.00 190.83 30.92 0.025
Unbiased Tourn. 118.00 173.57 27.16 1.000

POPSIZE=200 Best Mean St.D p-value
Fitness Prop. 198.00 277.17 42.82 0.000
Rank-Based 122.00 162.57 27.56 0.834
Random Tourn. 126.00 160.77 20.38 0.944
Unbiased Tourn. 110.00 161.17 23.63 1.000

Table 1: A Radar Scheduling Problem. Presented
values were computed over 30 trials. The goal is
to minimize the total penalty value for unscheduled
tasks.

POPSIZE=20 Best Mean St.D p-value
Fitness Prop. -379.11 -289.79 40.11 0.880
Rank-Based -347.50 -275.14 38.36 0.270
Random Tourn. -344.13 -254.85 51.54 0.015
Unbiased Tourn. -386.00 -288.01 50.34 1.000

POPSIZE=100 Best Mean St.D p-value
Fitness Prop. -453.82 -409.31 21.15 0.012
Rank-Based -437.68 -399.78 21.43 0.000
Random Tourn. -439.43 -395.59 25.44 0.000
Unbiased Tourn. -456.32 -423.29 20.70 1.000

POPSIZE=200 Best Mean St.D p-value
Fitness Prop. -457.37 -429.86 14.81 0.000
Rank-Based -464.84 -438.29 18.16 0.185
Random Tourn. -465.06 -432.24 17.56 0.006
Unbiased Tourn. -476.85 -443.87 13.70 1.000

Table 2: Rana 10D. Statistics were computed across
30 runs. Global optimal is -511.7

1135

POPSIZE=20 Best Mean St.D p-value
Fitness Prop. -3163.4 -2564.0 342.2 0.207
Rank-Based -3338.4 -2324.8 489.2 0.303
Random Tourn. -3015.2 -2269.4 314.8 0.062
Unbiased Tourn. -3255.5 -2443.4 388.2 1.000

POPSIZE=100 Best Mean St.D p-value
Fitness Prop. -4115.8 -3825.5 152.8 0.004
Rank-Based -4015.7 -3762.4 142.2 0.000
Random Tourn. -4038.4 -3720.1 186.3 0.000
Unbiased Tourn. -4131.1 -3928.5 108.0 1.000

POPSIZE=200 Best Mean St.D p-value
Fitness Prop. -4136.4 -4037.0 69.3 0.000
Rank-Based -4178.7 -4020.2 111.4 0.000
Random Tourn. -4165.3 -4044.2 91.8 0.002
Unbiased Tourn. -4183.7 -4110.6 63.4 1.000

Table 3: Schwefel 10D. Statistics were computed
across 30 runs. Global optimum is -4189.8

gle point crossover operator. All other parameters were kept
the same (i.e. as in our experiments with permutation-based
problems). Results for Rana and Schwefel are shown in Ta-
ble 2 and Table 3 respectively. It can be seen that unbiased
tournament outperforms all other selection algorithms with
statistical significance for a population size of 100. Fitness
Proportional selection again proves to be a competitive al-
gorithm for smaller population size.

From these two tables we can clearly see the advantage
of using unbiased tournament over the traditional random
tournament selection scheme. A GA with the former selec-
tion algorithm was able to locate better solutions in both
problems for all population sizes.

During our experiments with bitstring problems we have
clearly experienced the loss of diversity. After 30 genera-
tions, we found populations of size 20 to consist entirely of
copies of a single individual. The diversity of larger popu-
lations was also found to be greatly reduced often leaving
only a few distinct individuals.

To a large extent, the loss of diversity in problems with
permutation solution encoding was significantly lower. This,
perhaps, explains why larger population sizes were yield-
ing consistent performance across all selection algorithms in
our permutation problem. Maintaining a diverse population
leads to all selection algorithms finding similarly good solu-
tions and as the population size is increased they begin to
show identical performance. Since a genetic algorithm was
suffering from premature convergence with bitstring prob-
lems, we saw more difference in performance when a good
selection scheme was used.

4. BIAS AND DIVERSITY
In this section we explore two questions. First, to what

degree does the behavior of algorithms differ from expected
when associated with a selection bias of 2.0? Second, since
the ultimate problem is loss of diversity, does explicit en-
forcement of diversity reduce differences in performance that
have been observed among selection algorithms?

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

rank

R
an

k−
B

as
ed

0 20 40 60 80 100

0.
0

1.
0

2.
0

3.
0

rank

F
itn

es
s

P
ro

po
rt

io
na

l

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

rank

R
an

do
m

 T
ou

rn
am

en
t

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

rank

U
nb

ia
se

d
T

ou
rn

am
en

t

Figure 7: Rana10D with POPSIZE = 100. Solid line
(—) represents the number of times an individual
got selected during the first 15 generations. Simi-
larly, the dashed line (- -) shows how many times
an individual was selected in the last 15 generations.
All values are averages over 30 trials.

4.1 Deviation From Expected Probability
In Section 2, we showed that rank-based, random tourna-

ment, and unbiased tournament selection algorithms exhibit
the property where the probability that the best individual
will get selected for recombination is two times higher than
the probability of a similar event happening to an individual
with median fitness value. We have investigated how many
times a particular individual does actually get selected for
recombination. Figure 7 shows a typical picture that was
seen throughout our experiments. The number of times an
individual was selected is plotted against that individual’s
rank in a population. The solid and dashed lines refer to the
first and the second halves of the search respectively. Notice
that unbiased tournament selection comes the closest to the
expected probability distribution: if we were to compute the
expected value for the number of times every individual gets
selected for recombination, we should see a straight line with
slope equal to 2. Perhaps the most important observation

L1 norm L2 norm
Mean St.D Mean St.D

Rank-Based 13.434 0.796 1.7714 0.1177
Random Tourn. 13.744 1.077 1.7951 0.1169
Unbiased Tourn. 7.954 0.591 1.0263 0.0797

Table 4: Rana10D with POPSIZE = 100. Deviation
from expected probability distribution: L1 and L2
norms. Results are averaged over 30 trials.

1136

here is the significantly smaller amount of noise present in
unbiased tournament near the best and worst individuals.

Table 4 presents deviations from the straight line summed
up over all individuals. Fitness proportional algorithm was
omitted, since the probability distribution is largely different
from the other three algorithms. Notice that the deviation
values are significantly smaller for Unbiased Tournament.
This indicates success of our variance reduction mechanism.
Note also that, since all algorithms base their computation
on rank rather than fitness directly, the presented values
would not vary from problem to problem, as long as popu-
lation size remains the same. In fact, we observed that the
values remained more or less the same even as the popula-
tion size varied between 20, 100, and 200.

We would like to reiterate the fact that fitness propor-
tional selection applies higher selective pressure to more fit
individuals than other selection schemes. This is the most
likely cause for the algorithm behavior seen earlier. As the
population size grows, a larger portion of it does not get
selected for recombination by fitness proportional selection
than by other algorithms. This, in turn, leads to higher loss
of diversity and solutions of lower quality.

4.2 Enforced Diversity
In Section 2 we have also showed that all selection al-

gorithms suffer from the loss of diversity for one reason or
another. The original motivation for using unbiased tourna-
ment was to reduce the number of factors that lead to that.
There were two such factors present in random tournament
(not sampled and not selected) and we have effectively re-
duced that number to one (not selected only).

We now demonstrate that when diversity becomes en-
forced the difference among factors that lead to the loss
of diversity becomes less relevant. We enforce diversity by
changing the way the next generations are constructed. In-
stead of saving the best individual and replacing the rest
of the population with children, we take the union of chil-
dren and parents, sort the result by rank and truncate to
the original size. To borrow the notation from evolutionary
strategy literature[1], we have converted a (µ, λ) algorithm
into (µ + λ) where duplicates are not allowed. The latter
constraint is key to maintaining a diverse population.

Constructing the next generation in this way is a step to-
wards Whitley’s steady-state GA [14], where children are
injected into the parent population. The framework, nev-
ertheless, retains its generational property of creating an
intermediate population via application of a selection algo-
rithm.

Table 5 and Table 6 show the results of performing 30 runs
of the new method on bitstring-encoded and permutation-
encoded problems respectively. Although overall solutions
found with each selection scheme are better, larger p-values
demonstrate that the difference in performance is no longer
as significant as before. One can say that enforced diversity
in a way makes up for “sloppiness” in selection.

Nevertheless, Unbiased Tournament proves to be quite
competitive.

5. CONCLUSION AND FUTURE WORK
Given the popularity of tournament selection, it is impor-

tant to understand that there are minor algorithm changes
that can improve the performance of a generational genetic
algorithm. As has been shown, eliminating the loss of di-

Rana10D Best Mean St.D p-value
Fitness Prop. -461.25 -416.18 21.96 0.010
Rank-Based -453.06 -427.52 17.52 0.584
Random Tourn. -458.97 -425.65 15.81 0.320
Unbiased Tourn. -464.61 -430.05 18.04 1.000

Schwefel10D Best Mean St.D p-value
Fitness Prop. -3986.6 -3775.1 109.7 0.001
Rank-Based -4135.6 -3836.9 178.5 0.214
Random Tourn. -4150.0 -3808.5 175.5 0.051
Unbiased Tourn. -4135.9 -3886.5 121.9 1.000

Table 5: Rana10D(top) and Schwefel10D(bottom)
with POPSIZE=100 and enforced diversity

Radar Scheduling Best Mean St.D p-value
Fitness Prop. 123.00 157.93 23.099 0.563
Rank-Based 102.00 146.13 21.077 0.138
Random Tourn. 113.00 173.80 54.577 0.081
Unbiased Tourn. 128.00 154.53 22.153 1.000

Table 6: Radar Scheduling with POPSIZE=100 and
enforced diversity

versity due to population members not being sampled leads
to better performance. It is also important to note that
the effects of failing to sample the most fit individual in the
population can be very dramatic when population sizes are
small.

We introduce two simple forms of tournament selection
that eliminate loss of diversity due to a failure to sample.
One of these algorithms, parallel unbiased tournament se-
lection, is still embarrassingly parallel and independent in
nature. The other algorithm, which we call unbiased tourna-
ment selection and which is analyzed empirically in this pa-
per, has been shown to enhance search on a small but repre-
sentative sample of test problems. We have also pointed out
that the use of either tournament selection scheme yielded
no significant difference in performance when diversity was
enforced.

Future work should further evaluate parallel unbiased tour-
nament selection. We would also like to examine the impact
of bias for tournament selection when the selection pressure
is less than or greater than 2.0. It would be desirable to
have a way of calculating the loss of diversity in both cases.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0117209.

7. REFERENCES
[1] Back, T. and Schwefel, H.-P. “An overview of

evolutionary algorithms for parameter optimization”.
Evolutionary Computation, 1(1):1-23. 1993.

[2] Baker, J. E. “Reducing Bias and Inefficiency in the
Selection Algorithm”. In Proceedings of the Second
International Conference on Genetic Algorithms and
their Application, pp. 14-21. Lawrence Erlbaum
Associates, Inc. Mahwah, NJ, USA, 1987.

1137

[3] Blickle T. and L. Thiele. “A Comparison of Selection
Schemes used in Genetic Algorithms”. TIK Report
No. 11, Computer Engineering and Communication
Networks Lab (TIK), Swiss Federal Institute of
Technology (ETH) Zrich, Switzerland, December 1995.

[4] Blickle T. and L. Thiele. “A Comparison of selection
schemes used in evolutionary algorithms”.
Evolutionary Computation, 4(4): 361-394, 1997.

[5] Goldberg D. “Genetic Algorithms in Search,
Optimization and Machine Learning”.
Addison-Wesley, Reading, MA, 1989.

[6] Goldberg D. and K. Deb. “A Comparative Analysis of
Selection Schemes Used in Genetic Algorithms”. In
Rawlins, G.J.E., editor, Foundations of Genetic
Algorithms, pages 69-93, Morgan Kaufmann, San
Mateo, California, 1991.

[7] Motoki T. “Calculating the expected loss of diversity
of selection schemes”. Evolutionary Computation,
10(4): 397-422, 2002.

[8] Poli R. “Tournament Selection, Iterated
Coupon-collection Problem, and Backward-chaining
Evolutionary Algorithms”. Proceedings of the
Foundations of Genetic Algorithms Workshop (FOGA
8), Springer 2005.

[9] Schwefel H.-P. “Evolution and Optimum Seeking”,
p.328. Wiley, New York, 1995.

[10] Smith D., J. Frank, and A.K. Jonsson. “Bridging the
Gap Between Planning and Scheduling”. Knowledge
Engineering Review, 15(1):61-94, 2000.

[11] Syswerda G. “Schedule Optimization Using Genetic
Algorithms”. In L. Davis, ed., Handbook of Genetic
Algorithms, 332-349, Van Nostrand Reinhold, New
York, 1991.

[12] Whitley D. “A Genetic Algorithm Tutorial”, Statistics
and Computing (4):65-85, 1994.

[13] Whitley D., K. Mathias, S. Rana, J. Dzubera.
“Evaluating evolutionary algorithms”. Artificial
Intelligence 85 (1996) 245-276. Elsevier Science.

[14] Whitley D. “The GENITOR Algorithm and Selection
Pressure: Why Rank-Based Allocation of
Reproductive Trials is Best”, in Proceedings of The
Third International Conference on Genetic
Algorithms, 116-121, San Mateo, California, USA:
Morgan Kaufmann Publishers, 1989.

[15] Whitley D., M. Lunacek, J. Knight. “Ruffled by
Ridges: How Evolutionary Algorithms Can Fail”. In
K. Deb, ed., GECCO (2) 2004: 294-306.
Springer-Verlag.

1138

