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ABSTRACT
Due to experimental evidence it is incontestable that cross-
over is essential for some fitness functions. However, theoret-
ical results without assumptions are difficult. So-called real
royal road functions are known where crossover is proved to
be essential, i. e., mutation-based algorithms have an expo-
nential expected runtime while the expected runtime of a
genetic algorithm is polynomially bounded. However, these
functions are artificial and have been designed in such a way
that crossover is essential only at the very end (or at other
well-specified points) of the optimization process.

Here, a more natural fitness function based on a gener-
alized Ising model is presented where crossover is essential
throughout the whole optimization process. Mutation-based
algorithms such as (µ+λ) EAs with constant population size
are proved to have an exponential expected runtime while
the expected runtime of a simple genetic algorithm with pop-
ulation size 2 and fitness sharing is polynomially bounded.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Theory, Algorithms, Performance

Keywords
Ising model, mutation vs. crossover, expected optimization
time, theoretical analysis, fitness sharing

1. INTRODUCTION
In the history of evolutionary algorithms there have been

long debates whether mutation or crossover is the “more
important” search operator. Despite much experimental ev-
idence of functions where crossover is indispensable it has
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long been an open question to prove rigorously (without as-
sumptions) for a function that crossover is essential. Jansen
and Wegener [7] present a simple fitness function and prove
that a genetic algorithm optimizes the function in polyno-
mial expected runtime while the expected runtime of muta-
tion-based algorithms is superpolynomial.

In [6], Jansen and Wegener present a class of so-called real
royal road functions where the performance gap between
mutation-based algorithms and a genetic algorithm is even
larger. They prove that mutation-based algorithms have an
exponential expected runtime on real royal road functions
while the expected runtime of a simple genetic algorithm is
polynomially bounded. However, the population size of this
genetic algorithm grows with the search space dimension.

Due to the large population size of Jansen’s and Wegener’s
genetic algorithm, the question remains whether similar ef-
fects can be obtained if one restricts both types of algo-
rithms to constant population sizes. Storch and Wegener [8]
present another class of real royal road functions for constant
population size where a genetic algorithm with the smallest
possible population size, namely 2, suffices to obtain a poly-
nomial expected runtime.

Both classes of real royal road functions have been con-
structed explicitly for the comparison of mutation and cross-
over and are rather artificial. In the analysis of genetic al-
gorithms on real royal road functions, crossover is used only
in one single step, namely in the very last step of the opti-
mization process which creates a global optimum.

In this paper, we present another class of functions where
(µ+λ) EAs with constant population size need an exponen-
tial runtime while a simple genetic algorithm with popu-
lation size 2 and fitness sharing needs only polynomial ex-
pected runtime. In contrast to the functions presented by
Jansen and Wegener and Storch and Wegener, this class of
function has not been constructed explicitly to show the real
royal road property; it has been derived more naturally from
the investigation of generalized Ising models.

In Section 2, we define the generalized Ising model and the
aforementioned class of fitness functions. Section 3 shows
that (µ+λ) EAs with constant µ have an exponential ex-
pected runtime on these fitness functions. In Section 4, we
define a simple genetic algorithm with fitness sharing, the
(2+2) GA, and prove a polynomial upper bound for its ex-
pected runtime. Finally, Section 5 determines the practical
behavior of the (2+2) GA with a closer look on the average
runtime from an experimental perspective.
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2. THE ISING MODEL ON BINARY TREES
The Ising model from physics due to Ernst Ising [5] has

become a popular model for the investigation of adapta-
tion capabilities of evolutionary algorithms. It is based on
an undirected graph G = (V, E), V = {1, . . . , n} and a
search point x = (x1, . . . , xn) represents a coloring of V . In
its original form, an edge e = {u, v} contributes the value
fe(x) := w(e) ·xu ·xv to the fitness where w(e) is the weight
of the edge e and xu, xv ∈ {−1,+1}. The fitness of x, which
is to be maximized, is the sum of all fe(x). In case of positive
weights w(e), the Ising model can be seen as an inverse graph
coloring problem since the Ising function rewards monochro-
matic edges, i. e., edges e = {u, v} where xu = xv.

Here, we only consider the simple case w(e) = 1 for all
e ∈ E and we apply an affine transformation to obtain the
search space {0, 1}n instead of {−1,+1}n. In this formula-
tion, the Ising function IsingG on G = (V,E) simply counts
the number of monochromatic edges. Since xuxv + (1 −
xu)(1 − xv) = 1 iff xu = xv , the Ising function can be de-
fined as quadratic function

IsingG :=
X

{u,v}∈E

(xuxv + (1 − xu)(1 − xv)).

An important property of IsingG is bit-flip symmetry or spin-
flip symmetry, i. e., f(x) = f(x) if x is the bitwise comple-
ment of x.

The optimization of the Ising function is trivial since 0n

and 1n are always global optima. However, on most graph
classes it is likely that, due to bit-flip symmetry, different
parts of the graph may be colored with different colors. Con-
nected subgraphs can be seen as building blocks and thus,
0-colored building blocks compete with 1-colored building
blocks. This may lead to problems called synchronization
problems by Goldberg, van Hoyweghen, and Naudts [4].

The two most known graph classes for the Ising model are
the one-dimensional Ising model, also called ring, and the
two-dimensional Ising model, also called torus. Fischer and
Wegener [3] investigate the one-dimensional Ising model and
compare the effects of mutation and crossover. They prove
an upper bound of O(n2) for a genetic algorithm and an
upper bound of O(n3) for the (1+1) EA which is asymp-
totically sharp under a reasonable assumption. The two-
dimensional Ising model has been investigated by Fischer [2]
and Briest et al. [1]. The latter also investigate other graph
classes like partially connected cliques and the Boolean hy-
percube.

Here, we investigate another graph class, the class of com-
plete binary trees. Let G = (V,E) be a complete binary
tree, then IsingG can be seen as a hierarchical function
where all subtrees represent building blocks. Since two-point
crossover should be able to select building blocks, we choose
an encoding that ensures that all vertices of a subtree form a
coherent sequence within the bit string. This aim is accom-
plished by enumerating the vertices in V with an inorder
traversal as seen in Figure 1. Note that we draw trees in
downward direction, with the root at the top.

The hierarchical building block structure sketched in Fig-
ure 1 resembles the building block structure of H-IFF, see,
e. g., Watson and Pollack [9]. Both functions are hierarchi-
cally consistent as defined in [9]. However, in H-IFF, the
building blocks fit together tightly and the fitness contribu-
tion of monochromatic building blocks differs from the Ising
function. While in the Ising function on trees, monochro-
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Figure 1: A visualization of the encoding of binary
trees (top) and the resulting building block struc-
ture (bottom). The vertices are labelled with the
inorder enumeration.

Figure 2: An example of a coloring with two col-
ors. The coloring displayed contains three improv-
ing subtrees.

matic building blocks of size m contribute the value m − 1
to the fitness, monochromatic building blocks of size m in
H-IFF contribute the value m · ((logm) + 1). Due to this
superlinear function, H-IFF rewards few large monochro-
matic building blocks more than many small monochromatic
building blocks. This strengthens the hierarchical structure
of building blocks in H-IFF in comparison with the Ising
function.

Let x, y ∈ {0, 1}n, n := |V |, be colorings of V and {u, v} ∈
E, u parent of v, be dichromatic in x as well as in y. Let
T (v) be the subtree of v, then the bits belonging to T (v)
form a building block in x and y. If T (v) is 0-colored in x
and 1-colored in y, two-point crossover may exchange the
colorings of the building block T (v) in x and y, creating
offspring x′, y′ where {u, v} is monochromatic.

Since T (v) may help to increase the fitness, T (v) is called
an improving subtree (see Figure 2 for an example).

Definition 1. Let G = (V,E), n := |V |, be a complete
binary tree, v ∈ V , and x ∈ {0, 1}n. A subtree T (v) is
called an improving subtree in x iff there is a parent u ∈ V
of v and xu �= xv.
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We can relax the condition that T (v) is monochromatic
in x as well as in y as follows. If T (v) is an improving tree
in x as well as in y and xv �= yv, two-point crossover select-
ing T (v) for exchange creates offspring x′, y′ where {u, v} is
monochromatic. Since the colorings of T (v) are exchanged
between x and y, the sum of the fitness values increases
yielding f(x′) + f(y′) = f(x) + f(y) + 2. In case x′, y′ re-
place their parents x, y in the population, the fitness of the
population increases.

We further remark that there are
�

n
2

�
possibilities for choos-

ing two crossover points while there are only n building
blocks representing subtrees. Most two-point crossover op-
erations choose a sequence within the bitstring not corre-
sponding to subtrees. However, in the following we focus
our analysis on two-point crossover operations selecting the
bits belonging to a single subtree.

3. EXPECTED RUN TIME OF (µ+λ) EAS
The class of (µ+λ) EAs contains algorithms with popula-

tion size µ working as follows.

Algorithm 1 (Scheme of a (µ+λ) EA).

1. Choose a multiset P of µ individuals uniformly at ran-
dom.

2. Select a multiset P ′ ⊆ P of λ individuals according to
some selection strategy.

3. For all y ∈ P ′: flip each bit in y independently with a
fixed mutation probability pm.

4. Select a multiset P ∗ ⊆ (P ∪ P ′) of µ individuals with
maximal fitness value according to some selection strat-
egy. P := P ∗.

5. Repeat steps 2–4.

We regard the algorithm as an infinite stochastic process
and are interested in results on the expected runtime, i. e.,
the expected time until a global optimum is evaluated. We
do not further specify the selection strategies since the fol-
lowing lower bound holds for all non-specialized strategies.

Theorem 1. Let G = (V, E) be a complete binary tree
with n := |V | vertices and depth d. The expected number
of mutation steps of an arbitrary non-specialized (µ+λ) EA
with µ = O(1) and mutation probability pm on f := IsingG

is bounded below by 2Ω(n).

Sketch of Proof. Due to bit-flip symmetry, a mutation
operator with mutation probability pm ≥ 1/2 works like a
mutation operator with mutation probability 1− pm ≤ 1/2.
So, w. l. o. g., we assume pm ≤ 1/2.

If pm < 2−(4µ+1), we assume the (µ+λ) EA starts with
a population of worst-case search points, i. e., in all x ∈ P ,
both subtrees of the root are monochromatic and colored
with different colors. This event occurs with probability
Ω(2−µn) and then, all individuals in P have fitness n−2. In
such a situation, there are only O(n) different search points
in {0, 1}n which can be accepted for the next generation,
namely all search points with at most one improving tree.
Since the Hamming distance from any worst-case search
point to both global optima and to all search points with
improving subtrees of depth d′ < d− 1 is at least (n+1)/4,

the expected number of mutation steps until a non-worst
case search point is created and accepted is bounded below
by

Ω(2−µn) · p−(n+1)/4
m /O(n)

< Ω(2−µn) · 2(n+1)·(4µ+1)/4/O(n) = 2−Ω(n).

If 2−(4µ+1) ≤ pm ≤ 1/2, the (µ+λ) EA resembles purely
random search and it is hard to hit a specific search point.
With probability 1 − 2−Ω(n), the (µ+λ) EA starts with a
population of non-optimal search points. The probability
to create a global optimum out of an arbitrary non-optimal
search point is 2−Ω(n). Thus, the expected number of muta-
tion steps is bounded below by (1− 2−Ω(n)) · 2Ω(n) = 2Ω(n).

✷

4. EXPECTED RUN TIME OF A SIMPLE
GA WITH FITNESS SHARING

Fitness sharing derates the “real” fitness of individuals by
dividing the fitness f(x) by the sharing function Sh(x, P ).
The sharing function Sh(x, P ) measures the closeness from
x to all individuals in the population P and a common for-
mulation for Sh(x, P ) is

Sh(x, P ) =
X
y∈P

max{0, (1− d(x, y)/σ)α}

where d(x, y) is a measure for the distance between x and y.
Here, we choose the Hamming distance d(x, y) := H(x, y)
and α := 1. The σ-value indicates up to which distance two
individuals should share their fitness. We choose σ := n if
n is the search space dimension so that individuals always
share their fitness. Another consequence of this choice is
that we can omit the max operator.

Definition 2. Let H(x, y) be the Hamming distance be-
tween x and y. If n is the search space dimension and f is
the real fitness, we define the sharing function as Sh(x, P ) :=P

y∈P (1−H(x, y)/n). The fitness of x with fitness sharing
w. r. t. the population P is defined as

f(x,P ) :=
f(x)

Sh(x, P )
=

f(x)P
y∈P (1−H(x, y)/n)

.

The fitness of the population is then f(P ) :=
P

x∈P f(x, P ).

If P = {x, y}, the definition of f(P ) can be simplified to

f(P ) :=
f(x) + f(y)

2 −H(x, y)/n
.

This term consists of two components: the Hamming dis-
tance H(x, y) and the sum of the fitness values f(x)+ f(y).
We will refer to the latter as the fitness component.

Now, we define a (2+2) GA with fitness sharing resem-
bling the algorithm analyzed by Fischer and Wegener [3].

Algorithm 2 ((2+2) GA with fitness sharing).

1. Choose x, y ∈ {0, 1}n uniformly at random.
P := {x, y}.

2. With probability 1/2 execute only Step 3a, else execute
only Step 3b.

3a (x′, y′) := two-point-crossover(x,y). P ′ := {x′, y′}.

1163



3b x′ := mutate(x), y′ := mutate(y). P ′ := {x′, y′}.
4. Replace P by P ′ iff f(P ′) ≥ f(P ).

5. Repeat Steps 2–4.

The mutation operator flips each bit independently with
probability pm := 1/n. With a probability of approximately
1/e, e = 2.718 . . . the Eulerian constant, the mutation op-
erator creates an offspring where no bit is flipped. So, the
algorithm has the chance to execute steps where only one
individual is really modified.

The selection operator selects either P = {x, y} or P ′ =
{x′, y′}; these two populations are compared as a whole.
This differs from the common strategy where a population
P̂ := P ∪ P ′ of both parents and offspring is created and
the individuals are evaluated with respect to P̂ . By com-
paring f(P ′) with f(P ) directly, we evaluate both parents
and offspring in their corresponding contexts and make sure
the fitness of the current population is monotone over time.

Theorem 2. Let G = (V, E) be a complete binary tree
with n := |V | vertices and depth d. The expected time until
the (2+2) GA with fitness sharing on IsingG reaches the
optimal population {0n, 1n} is bounded by O(n3).

Proof. We prove the theorem by showing that given
a non-optimal population P , the probability of increasing
f(P ) by at least 1/64 in one generation is Ω(1/n2). Since
f(P ) is monotone and the maximum value is f({0n, 1n}) =
2n − 2, the expected time until P = {0n, 1n} is reached is
bounded by 64 · (2n− 2) · O(n2) = O(n3).

First, we compute the change in the f(P ) value accord-
ing to changes in the two components. Let P = {x, y} be
the current population and P ′ = {x′, y′} be the popula-
tion created in Step 3. Let ∆H := H(x′, y′) −H(x, y) and
∆f := (f(x′) + f(y′)) − (f(x) + f(y)). Then,

f(P ′) − f(P ) =
f(x) + f(y) + ∆f

2− (H(x, y) + ∆H)/n
− f(x) + f(y)

2 −H(x, y)/n

=
∆f(2−H(x, y)/n) + ∆H(f(x) + f(y))/n

(2 − (H(x, y) + ∆H)/n)(2−H(x, y)/n)
.

Since the denominator is bounded above by 4,

f(P ′) − f(P ) ≥ ∆f(2−H(x, y)/n) + ∆H(f(x) + f(y))/n

4

=
∆f(2n−H(x, y)) + ∆H(f(x) + f(y))

4n
(∗)

if the nominator is positive (this will be the case in all ap-
plications of (∗)).

An operation creating P ′ out of P is called an improving
operation if f(P ′) − f(P ) ≥ 1/64. In different situations,
there are different types of improving operations. We now
present four cases of non-optimal populations and show for
each case that the probability of an improving operation is
Ω(1/n2).

Case 1. H(x, y) = n.
Since P �= {0n, 1n} and x = y, there is at least one subtree

T (v) such that T (v) is an improving subtree in x as well as
in y and xv �= yv . Two-point crossover selecting T (v) yields
∆f = 2 and ∆H = 0. The probability of such an operation
is Ω(1/n2) and

f(P ′) − f(P )
(∗)
≥ 2n

4n
=

1

2
.

Case 2. H(x, y) < n and H(x, y)+f(x)+f(y) < (3n−3)/2.
We show that there is a 1-bit-mutation increasing the

(real) fitness of a search point by at least 1.
Let z be a search point without fitness-improving 1-bit-

mutations and let deg+
z (v) for v ∈ V denote the number

of monochromatic edges adjacent to vertex v w. r. t. the
coloring z. Then the root and the (n + 1)/2 leaves must
be adjacent to at least one monochromatic edge and the
(n − 3)/2 other vertices must be adjacent to at least two
monochromatic edges. Hence,

X
v∈V

deg+
z (v) ≥ 1 +

n+ 1

2
+ 2 · n− 3

2
=

3n− 3

2
.

Since the sum counts all monochromatic edges twice, f(z) ≥
(3n−3)/4. If there is no fitness-improving 1-bit-mutation in
x and y, this implies f(x)+f(y) ≥ (3n−3)/2 in contradiction
to H(x, y) + f(x) + f(y) < (3n− 3)/2.

We have shown that there is a fitness-improving 1-bit-mu-
tation in a search point z ∈ {x, y}. If the (2+2) GA executes
Step 3b, performs a fitness-improving 1-bit-mutation on z
and a 0-bit-mutation on the other search point, ∆f ≥ 1 and
∆H ≥ −1. The probability for such an operation is Ω(1/n)
and

f(P ′)− f(P )
(∗)
≥ 2n−H(x, y) − f(x)− f(y)

4n

>
2n− (3n− 3)/2

4n
>

1

8
.

Case 3. H(x, y) < n and H(x, y)+f(x)+f(y) > (33/16)n.
In this case, we rely on 1-bit-mutations increasing the

Hamming distance at the expense of the fitness component.
To be precise, we show that there is a 1-bit-mutation flip-
ping a vertex u in a search point z ∈ {x, y} yielding ∆H = 1
and ∆f ≥ −1, so the loss in the fitness component is rather
small.

Since H(x, y) < n there is a vertex v with xv = yv. If v is a
leaf or if there is a dichromatic edge adjacent to v in a search
point z ∈ {x, y}, we choose u := v and a 1-bit-mutation
flipping zu has the desired properties. Otherwise, if v is an
inner vertex and all edges incident on v are monochromatic
in x and y, there is a child v′ of v and we consider v′ instead
of v. This process terminates with an appropriate vertex u
at the latest in case a leaf is reached.

If the (2+2) GA executes Step 3b, performs a 1-bit-mutation
flipping zu on z and a 0-bit-mutation on the other search
point,

f(P ′)− f(P )
(∗)
≥ −2n+H(x, y) + f(x) + f(y)

4n

>
−2n+ (33/16)n

4n
=

1

64
.

The probability for such an operation is Ω(1/n).

Case 4. H(x, y) < n and (3n − 3)/2 ≤ H(x, y) + f(x) +
f(y) ≤ (33/16)n.

In this special case, we cannot rely on 1-bit-mutations
described in Cases 2 and 3 since the existence of fitness-im-
proving 1-bit-mutations cannot be guaranteed and even if
these 1-bit-mutations exist, the gain in f(P ) is very low.
Hence, we search for more gainful operations, e. g. opera-
tions where ∆f + ∆H > 0.
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Figure 3: An example of a subtree of depth 1 and
its partial coloring in x and y.

Operations increasing one component and not decreasing
the other one yield a gain in f(P ) of at least 1/8−O(1/n),
since H(x, y) + f(x) + f(y) ≥ (3n − 3)/2 ⇒ f(x) + f(y) ≥
n/2−O(1) and in (∗) both ∆-values are weighted by terms
of at least 1/8 − O(1/n). For sufficiently large n, 1/8 −
O(1/n) ≥ 1/64, so that these operations are improving op-
erations.

We now describe three scenarios of partial colorings where
improving operations can be found. Afterwards, we prove
the existence of sufficiently many instances of these scenarios
yielding a lower bound of Ω(1/n2) for the probability to
execute an improving operation.

Scenario 1. There is an inner vertex v where all incident
edges are dichromatic in a search point z ∈ {x, y}.

Since deg(v) ≥ 2, the fitness value f(z) is raised by at least
2 if a 1-bit-mutation flips zv. The (2+2) GA may execute
Step 3b, perform a 1-bit-mutation of zv and flip no bit in
the other search point, yielding ∆f ≥ 2 and ∆H ≥ −1. The
probability for such an operation is Ω(1/n) and

f(P ′)− f(P )
(∗)
≥ 4n− 2H(x, y) − f(x)− f(y)

4n

=
4n− (H(x, y) − f(x)− f(y)) −H(x, y)

4n

>
4n− (33/16) · n−H(x, y)

4n
>

15

64
.

Scenario 2. There is a subtree T (v) such that T (v) is an
improving tree in x as well as in y and xv �= yv.

Two-point-crossover selecting T (v) yields ∆f = 2 and
∆H = 0. The probability for such an operation is Ω(1/n2)
and f(P ′) − f(P ) ≥ 1/64.

Scenario 3. There is a subtree T (u) of depth 1 (two leaves
v, w with their common parent u) such that

¬(xu = xv = xw �= yu = yv = yw)

(see Figure 3 for an example).
A coloring with xu = xv = xw �= yu = yv = yw is called

a locally optimal coloring since in the subgraph induced by
T (u) both Hamming distance and fitness component is max-
imized. If T (u) is not colored locally optimal, there is a
mutation of at most 3 bits in B := {xu, xv , xw, yu, yv, yw}
leading to the nearest locally optimal coloring. A closer ex-
amination of all non-locally optimal colorings of bits in B
reveals that this operation is an improving operation. This
holds even if we pessimistically assume that if xu or yu is
flipped, the edge from u to its parent becomes dichromatic
in the corresponding coloring.

We only present the resulting ∆-values of a mutation
leading to a nearest locally optimal coloring. If T (u) is
monochromatic in x as well as in y, ∆f ≥ −1 and ∆H = 3
holds and it is easy to show that f(P ′) − f(P ) ≥ 1/64.
Otherwise, the result of such a mutation is either ∆f ≥ 0
and ∆H ≥ 1 or, if the colorings of T (u) are complementary,
∆f ≥ 2 and ∆H ≥ 0. So, in all cases there is an improving
operation occurring with probability Ω(1/n3).

We have shown that there are many different scenarios
that guarantee improving operations. Due to the variety of
scenarios, it is likely that in the current population, sev-
eral instances of these scenarios are given. To complete the
analysis of Case 4, we now show that there are more than
cn improving operations for a constant c > 0. We do this by
contradiction. If there are at most cn instances of Scenarios
1–3, we conclude that H(x, y)+ f(x)+ f(y) is large, contra-
dicting the assumption H(x, y) + f(x) + f(y) ≤ (33/16)n.

Assume that there are at most cn improving operations
described in Scenario 3. Since there are (n + 1)/4 disjoint
subtrees of depth 1, s := (n + 1)/4 − cn subtrees of depth
1 must be colored locally optimal. This is a clue for large
values of both Hamming distance H(x, y) and f(x) + f(y).
There are 3s = 3(n + 1)/4 − 3cn vertices on the last two
levels whose bits are complementary in x and y, thus

H(x, y) ≥ 3(n+ 1)/4 − 3cn.

Let Ei,j ⊆ E for i < j be the set of edges {u, v} ∈ E
such that u and v each are located on levels in the in-
terval [i, j]. For E′ ⊆ E, let fx,y(E

′) be the number of
edges in E′ monochromatic in x plus the number of edges
in E′ monochromatic in y. It is obvious that f(x) + f(y) =
fx,y(E).

In Ed−1,d, 2s = (n+1)/2− 2cn edges are monochromatic
in x as well as in y, thus contributing to f(x) + f(y) an
additive term of

fx,y(Ed−1,d) ≥ n+ 1 − 4cn.

If, in addition, there are at most cn improving operations
described in Scenario 2, we show that the edges in Ed−1,d−2

also contribute a large value to f(x)+f(y). Let e = {u, v} ∈
Ed−2 be an edge leading to a locally optimal colored subtree
T (v) of depth 1. If e is dichromatic in x as well as in y, T (v)
is an improving subtree in x as well as in y and xv �= yv .
This corresponds to the situation described in Scenario 2;
an example is sketched in Figure 4.

So, if there are at most cn improving operations in Sce-
nario 2, at least s− cn = (n+1)/4−2cn edges in Ed−2 have
to be monochromatic either in x or in y. The edges in Ed−2

contribute to f(x) + f(y) another additive term of

fx,y(Ed−2,d−1) ≥ n+ 1

4
− 2cn.

The remaining edges in E0,d−2 cannot all be dichromatic
since we assume that there are at most cn improving opera-
tions in Scenario 1. Let V ′

z ⊆ V for z ∈ {x, y} be the set of
vertices v such that all edges incident to v are in E0,d−2 and
not all edges incident to v are dichromatic in z: deg+

z (v) ≥ 1.
If we subtract the numbers of vertices on levels d, d− 1, and
d− 2, we obtain

|V ′| =
�
n− n+ 1

2
− n+ 1

4
− n+ 1

8

�
− cn =

n− 7

8
− cn
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Figure 4: An extract of two colorings x and y and an edge fu; vg leading to a locally optimal colored subtree
T (v) of depth 1, thus creating an instance of Scenario 2.

and X
v∈V ′

deg+
z (v) ≥ n− 7

8
− cn.

Since every edge monochromatic in z contributes at most 2
to this sum, the number of monochromatic edges in E0,d−2

w. r. t. z is at least (n− 7)/16 − cn/2. Thus,

fx,y(E0,d−2) =
n− 7

8
− cn.

Adding up all three fitness contributions yields

f(x) + f(y) = fx,y(E0,d−2) + fx,y(Ed−2,d−1) + fx,y(Ed−1,d)

≥ n+ 1 − 4cn+
n+ 1

4
− 2cn+

n− 7

8
− cn

>
11

8
· n− 7cn.

Hence,

H(x, y) + f(x) + f(y) >
17

8
· n− 10cn

and, choosing c ≤ 1/160, this contradicts H(x, y) + f(x) +
f(y) ≥ (33/16) · n.

Since there are Ω(n) improving operations and every im-
proving operation is executed with probability Ω(1/n3), the
probability of executing any improving operation is Ω(1/n2)
completing the analysis of Case 4 and proving the theo-
rem.

5. EXPERIMENTAL SUPPLEMENTS
The question remains whether the good performance of

the (2+2) GA with fitness sharing is really based on crossover
or if fitness sharing is the key component for an efficient op-
timization. If we modify the (2+2) GA with fitness sharing
by omitting crossover and always executing Step 3b, we ob-
tain the (2+2) EA with fitness sharing. The lower bound
presented in Theorem 1 also holds for the (2+2) EA with fit-
ness sharing (in the case of small pm, we assume the popula-
tion is initialized with two complementary worst-case search
points).

In addition to this theoretical result, experiments were
done to compare the two algorithms. Experiments for the
(2+2) GA were run on complete binary trees of depth 1–10,
i. e., n = 3, 7, 15, . . . , 2047, the experiments for the (2+2) EA
were run on trees of depth 1–3. The average runtime in

n (2+2) GA (2+2) EA
3 39.019 2.511
7 127.950 61.955

15 471.141 26,739,085.010
31 2,029.305 –
63 9,672.528 –

127 47,511.313 –
255 224,340.916 –
511 1,072,733.151 –

1023 5,032,030.214 –
2047 22,223,437.900 –

Table 1: Average runtimes of the (2+2) GA with
fitness sharing and the (2+2) EA with fitness shar-
ing.

function class a mean square error

an2 5.26988 3.60934 · 1010

an2 logn 0.69545 4.49334 · 108

an3 0.00262463 5.57783 · 1011

Table 2: The results of a regression analysis with
the function classes an2, an2 logn, and an3.

independent runs was measured; the number of runs was
1,000 runs for each setup except for 100 runs for n = 15 and
the (2+2) EA and 30 runs for n = 2047 and the (2+2) GA.
The results are shown in Table 1.

For n = 15, the (2+2) GA with fitness sharing clearly
outperforms the (2+2) EA with fitness sharing. Note that
for very small n, n ≤ 7, the opposite holds. This does
not contradict our theoretical results since these results are
asymptotic ones and they do not make assertions for small n
such as n ≤ 7. We conclude that, for n large enough, fitness
sharing alone does not suffice for an efficient optimization.

Another interesting question is whether the upper bound
O(n3) of Theorem 2 is sharp. Experiments show that in a
typical run of the (2+2) GA with fitness sharing, the algo-
rithm reaches a population with two complementary search
points rather quickly. Then, the algorithm is likely to main-
tain the maximal Hamming distance and spends most of
the runtime waiting for the right crossover operations. It is
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Figure 5: The average runtime of the (2+2) GA and the three fitted functions.

easy to show that, in case the algorithm maintains a max-
imal Hamming distance, the expected waiting time for the
right crossover operations is bounded by

Pn−2
i=1 2/i · �n2� =

O(n2 logn). So, we expect the true average runtime to be
Θ(n2 logn).

The average runtimes for the (2+2) GA from Table 1 were
used in a regression analysis with gnuplot 3.7 using the stan-
dard settings.

Among the function classes an2, an2 logn, and an3, the
function 0.69545n2 logn resulted in the best fit with a mean
square error of 4.49334 · 108. The results of the regression
analysis are shown in Table 2, a plot of the data and the
fitted functions is shown in Figure 5. The observable dif-
ferences are in accordance with differences in mean square
errors.

6. CONCLUSIONS
We have presented a fitness function derived from a gen-

eralized Ising model and proved that, for this specific fitness
function, crossover is essential for evolutionary algorithms
with constant population size. (µ+λ) EAs with constant
population size using the common mutation operator have
an exponential runtime. A simple (2+2) GA with fitness
sharing is proved to have an expected runtime bounded by
O(n3). Experiments show that this bound differs from the
true average optimization time by a factor of n/ logn.

Moreover, both theory and experiments show that fitness
sharing alone does not suffice for an efficient optimization
implying that crossover is an essential component for the
problem investigated here.
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