
Computing the Epistasis Variance of Large-Scale Traveling
Salesman Problems

Dong-Il Seo
School of Computer Science & Engineering,

Seoul National University,
Sillim-dong, Gwanak-gu, Seoul, 151-744 Korea

diseo@soar.snu.ac.kr

Byung-Ro Moon
School of Computer Science & Engineering,

Seoul National University,
Sillim-dong, Gwanak-gu, Seoul, 151-744 Korea

moon@soar.snu.ac.kr

ABSTRACT
The interaction among variables of an optimization problem
is known as epistasis, and its degree is an important mea-
sure for the nonlinearity of the problem. We address the
problem of enormous time complexity for computing Davi-
dor’s epistasis variance of the traveling salesman problem
(TSP). To reduce the complexity, we introduce the concept
of schema-linear problem (SLP), show that TSP is a SLP,
and present a relevant lemma, called Summation Rule. Us-
ing the Summation Rule, we provide a closed formula for
epistasis that reduces the time complexity from O(nn) to
O(n2). Additionally, we propose a new more scalable mea-
sure of epistasis by a careful derivation from the original.

Categories and Subject Descriptors
G.m [Mathematics of Computing]: Miscellaneous

General Terms
Theory

Keywords
Epistasis, linkage, traveling salesman problem, TSP

1. INTRODUCTION
Optimization is one of the most important targets of ge-

netic and evolutionary algorithms. Mostly, an optimization
problem [1, 15] is defined as a function, sometimes called
fitness function, from a set called universe to the set of real
numbers � . The universe is a set of feasible solutions, which
is often represented by a number of variables, each of which
has its own domain. If the domains are discrete, the problem
is said to be combinatorial.

In most practical optimization problems, the contribution
of each variable to the fitness depends on the states of other
variables. If not, we can independently determine optimal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

values of the variables one by one. These interactions among
variables immanent in problems is called linkage [13, 9] or
epistasis [10, 4, 20].

The development history of genetic and evolutionary al-
gorithms include the efforts to exploit epistatic properties in
problem solving. The estimation of distribution algorithms
(EDAs) [11] and the topological linkage-based genetic algo-
rithms (TLBGAs) [22] are representative products of such
efforts. In the approaches, the epistasis among variables are
implicitly estimated and applied to the evolution of solu-
tions. Recently, a number of approaches that attempt to
detect independently optimizable linkage groups of a pseu-
do-Boolean function1 have been proposed [13, 9, 23].

The Walsh transform, first introduced by Bethke [2] and
popularized by Goldberg [7, 8], is one of the classical meth-
ods for analyzing epistatic properties of a pseudo-Boolean
function. This method was later extended by Mason [12]
to a problem using non-binary encoding. Given a pseudo-
Boolean function of n variables, the Walsh transform gen-
erates 2n coefficients, called partition coefficients, from 2n

fitness values. Each coefficient reflects the epistasis of the
corresponding schema, which means specific pattern of the
variable assignments. Rana et al. [16] showed that these
coefficients for MAXSAT can be directly computed in linear
time with respect to the number of clauses, and Heckendorn
and Wright [9] proposed a general algorithm that detects the
linkage groups and computes the coefficients concurrently.

Reeves and Wright [17, 18] considered the epistasis from
the viewpoint of statistical experimental design. Here the
variables’ contribution to the fitness is decomposed into a
number of “effects” based on a linear model. The effects
are classified into linear effects and interaction effects, and
the latter represent epistases of the corresponding schemata.
These effects proved to be equivalent to the partition coef-
ficients of the Walsh transform [17].

Davidor’s epistasis variance [4] is the first general measure
of epistasis. It measures the portion of the fitness variation
due to the interaction effects. The entropic epistasis pro-
posed by Seo et al. [21, 20] is a measure that quantifies
the general dependence among variables based on the infor-
mation theory, whereas the epistasis variance quantifies the
nonlinearity lying in the fitness landscape.

Naudts [14] proposed a closed formula to compute the
epistasis variance of Royal Road functions [5]. However,
the exact computation for general combinatorial optimiza-

1A fitness function is called pseudo-Boolean if it is defined
on {0, 1}n for some n ≥ 1.

1169

tion problems becomes computationally prohibitive as the
problem size increases. Thus the study using the measure
has been mostly of theoretical interest. Moreover, since it
assumes complete knowledge of the universe, the computa-
tion is unrealistic in the sense that the ultimate purpose of
optimization is to find the most desirable solution in the
universe.

In this context, we can consider only a portion of solu-
tions in the computation instead of the whole solutions in
the universe. Unfortunately, the results of experiments by
Davidor [4] showed that sampling bias has a considerable
effect on the measurement of the epistasis variance.

In this paper, we propose an efficient computation method
for the epistasis variance of a symmetric traveling salesman
problem (TSP). To do so, we first extend Holland’s schema
definition to first-order logic expressions. Based on the ex-
tension, we define schema-linear problem (SLP) and provide
a lemma called Summation Rule applicable to SLPs. Fur-
ther, we show that TSP is a SLP and derive an equation to
compute the epistasis variance of symmetric TSP in polyno-
mial time using the Summation Rule. Based on the equa-
tion, we propose a new measure which is more scalable than
the original.

The rest of this paper is organized as follows: We extend
the schema definition, define SLP, and derive the Summa-
tion Rule in Section 2. Then we review the epistasis vari-
ance, show that TSP is a SLP, and derive an equation to ef-
ficiently compute the epistasis variance of symmetric TSPs
in Section 3. The results of simple experiments to confirm
the validity of the equation are provided in Section 4. We
finally provide concluding remarks in Section 5.

2. SCHEMA-LINEAR PROBLEM

2.1 Combinatorial Optimization Problem
An instance of an optimization problem is specified by a

pair (U , f), where the universe U is the set of feasible solu-
tions and the fitness function f is a mapping f : U → � . A
solution set is often represented by a set of variables, each of
which has its own domain. If the domains are discrete, they
are called alphabets and the problem is said to be combina-
torial.

Let the variable indices of a given problem be V = {1, . . . , n},
and the alphabet for each variable be Ai, i ∈ V. Let the
universe and the fitness function be U ⊆ A1 × · · · ×An and
f : U → F , respectively. We assume that the alphabet of
each variable is finite. Then, the set of all fitness values
F ⊂ � is finite as the universe is finite. We also assume
that U = A1 × · · · × An.

2.2 Extended Schema Definition
In Holland’s definition [10], schema means a set of solu-

tions that have a specific pattern of variable assignments.
For example, “∗10∗∗” is a schema corresponding to the so-
lutions whose second and third variables have 1 and 0, re-
spectively. For convenience, we use a special notation for
schema as follows:

H(i1;a1,...,ik;ak)(x) ≡ (xi1 = a1) ∧ · · · ∧ (xik = ak). (1)

The schema denoted by H(2;1,3;0) is equivalent to ∗10∗∗. In
this paper, we extend this schema definition to a first-order
logic expression (see [19]) of variables as follows:

Definition 1 (Schema). Given a problem of n vari-
ables x = (x1, x2, . . . , xn), xi ∈ Ai, a schema H(x) is a
first-order logic expression on x.

“H1(x2, x3) ≡ (x2 = 1) ∧ (x3 = 0)” and “H2(x2, x3) ≡ x2 	=
x3” are example schemata. H1 is equivalent to H(2;1,3;0),
but H2 is a schema that cannot be denoted by Holland’s
notation.

The instance set of a schema is the set of solutions that
satisfy the schema.

Definition 2 (Instance Set). Given a problem of uni-
verse U and a schema H, the instance set UH of H is de-
fined to be the set of solutions that satisfy H, i.e., UH = {x :
H(x) = true, x ∈ U}.
From the above definitions, we obtain the following corol-
lary.

Corollary 1. Given a universe U and schemata H1 and
H2,

UH1∧H2 = UH1 ∩ UH2 ,
UH1∨H2 = UH1 ∪ UH2 ,

U¬H1 = Uc
H1 = U \ UH1 .

(2)

2.3 Schema-Linear Problem and Summation
Rule

We define the fitness of a schema to be the arithmetic
average of the fitness values of the corresponding solutions.
That is, the fitness of a schema is defined as follows:

Definition 3 (Fitness of Schema). Given a fitness

function f and a schema H, the kth fitness f (k)(H) of H is
the average of the kth power of the fitness of each solution
in the instance set UH , i.e.,

f (k)(H) =
1

|UH |
�

x∈UH

f(x)k (3)

For convenience, we denote f (1)(H) by f(H).
A problem is said to be a schema-linear problem (SLP) if

the fitness of a solution can be expressed as a summation
formula of coefficients corresponding to the schemata that
the solution belongs to. That is, schema-linear problem is
defined as follows:

Definition 4 (Schema-Linear Problem). A prob-
lem is said to be a schema-linear problem if there exist m
schemata Hi and m real numbers wi for a positive integer
m such that the fitness function f can be expressed as

f(x) =

m�
i=1

1(Hi(x))wi (4)

where 1(·) is an indicator function, i.e., 1(true) = 1 and
1(false) = 0. Hi and wi are said to be a component schema
and a component weight of the problem, respectively.

From the above definition, we obtain the following lemma.

Lemma 1 (Summation Rule). Given a schema-linear
problem of fitness function f and m components (Hi, wi),

the kth fitness f (k)(H) of a schema H satisfies the following
equation.

f (k)(H) =
1

|UH |
m�

i1=1

· · ·
m�

ik=1

wi1 · · ·wik |UHi1∧···∧Hik
∧H |

(5)

1170

Proof. From the definition of f (k)(H), we can derive the
followings.

f (k)(H)

=
1

|UH |
�

x∈UH

f(x)k

=
1

|UH |
�

x∈UH

�
m�

i1=1

1(Hi1(x))wi1

�k

=
1

|UH |
�

x∈UH

m�
i1=1

· · ·
m�

ik=1

1(Hi1(x)) · · · 1(Hik (x))wi1 · · ·wik

=
1

|UH |
�

x∈UH

m�
i1=1

· · ·
m�

ik=1

1(Hi1(x) ∧ · · · ∧ Hik (x))wi1 · · ·wik

=
1

|UH |
m�

i1=1

· · ·
m�

ik=1

wi1 · · ·wik

�
x∈UH

1(Hi1(x) ∧ · · · ∧ Hik (x))

=
1

|UH |
m�

i1=1

· · ·
m�

ik=1

wi1 · · ·wik |UHi1∧···∧Hik
∧H |

�

This lemma will be used in the derivation of the main equa-
tion in Section 3.3.

3. EPISTASIS VARIANCE OF TSP

3.1 Experimental Design and Epistasis Vari-
ance

The experimental design is a branch of statistics that at-
tempts to conduct the way in which experiments should be
carried out so the data gathered will have statistical value.
Reeves and Wright [17, 18] are the first who explained the
epistatic behavior of a problem in the light of the experimen-
tal design. Generally, the design of experiments is based on
an underlying linear model. Accordingly, the fitness f(x) of
a solution x = (x1, . . . , xn) ∈ U is expressed as

f(x) = constant +

n�
i=1

(effect of xi)

+

n−1�
i=1

n�
j=i+1

(joint effect of xi and xj)

+ · · ·
+ (joint effect of x1, x2, . . . , and xn).

(6)

For instance, the model for a problem of three variables can
be written as

f(a1, a2, a3) = f̄ + C1(a1) + C2(a2) + C3(a3)
+C1,2(a1, a2) + C1,3(a1, a3)
+C2,3(a2, a3) + C1,2,3(a1, a2, a3)

(7)

where f̄ is the average fitness, C1(a1) is the effect of x1 = a1,
C2(a2) is the effect of x2 = a2, C1,2(a1, a2) is the effect of
x1 = a1 and x2 = a2, and so on. In Equation (6), the terms
“constant” and “

�n
i=1(effect of xi)” are referred to as linear

effects and the other terms as interaction effects. It is easy
to show that the total sum of squares (SS), that measures
the total variation of the fitness, is the sum of the linear
effects SS and interaction effects SS, i.e.,

Total SS = Linear effects SS + Interaction effects SS. (8)

Davidor’s epistasis variance corresponds to the interaction
effects SS. Reeves and Wright derived a normalized form

of the measure by dividing it by the total SS (see [17, 18]
for details). That is, they proposed an epistasis measure η
defined as

η =

�
x∈U

(interaction effect of x)2

�
x∈U

�
f(x) − f̄

�2 (9)

where U is the universe and f̄ is the average fitness of all
x ∈ U , i.e., f̄ = f(true) by Definition 3.

Using (1) and Definition 3, we can obtain the following
four equations for the parameters in (7):

f̄ = f(true),
f̄ + C1(a1) = f(H(1;a1)),
f̄ + C2(a2) = f(H(2;a2)),
f̄ + C3(a3) = f(H(3;a3)).

(10)

From the equations, the linear effects can be expressed as

f̄ + C1(a1) + C2(a2) + C3(a3) =

3�
i=1

f(H(i;ai)) − 2f(true).

(11)
Now, the interaction effects are

f(a1, a2, a3) − (f̄ + C1(a1) + C2(a2) + C3(a3))

= f(a1, a2, a3) −
3�

i=1

f(H(i;ai)) + 2f(true).
(12)

By generalizing this to the problems of size n, we can obtain
the following formula for η:

η =

�
x∈U

�
f(x) −

n�
i=1

f(H(i;xi)) + (n − 1) f(true)

�2

�
x∈U

(f(x) − f(true))2
.

(13)
A naive computation for this formula takes O(2n) time for a
binary-encoded problem since there exist totally 2n distinct
solutions. For the same reason, a naive computation takes
O(nn) time for TSP in the locus-based encoding, which will
be explained in the next section.

3.2 TSP Encoding
Given n cities, the traveling salesman problem (TSP) is

the problem of finding the shortest Hamiltonian cycle vis-
iting the cities. It is an NP-hard problem [6], and known
to be one of the most popular and important combinatorial
optimization problems.

A problem instance of TSP is specified by a distance ma-
trix (dij) where dij corresponds to the distance from city
i to city j. For all i, dii = 0. In this paper, we consider
only symmetric instances, i.e., dij = dji. For simplicity,
we use the following conventional notations: For a distance
matrix (dij), we denote the ith row sum of elements by di.,
the jth column sum of elements by d.j , and the whole sum
of elements in the matrix by d... That is, di. =

�n
j=1 dij ,

d.j =
�n

i=1 dij , and d.. =
�n

i=1

�n
j=1 dij .

To consider the epistatic properties of TSP, we use a locus-
based encoding as in [3] where one variable is allocated for
each city and the value of a variable represents the index of
its next city in the corresponding tour. Thus, for an instance

1171

of size n, the alphabet Ai of ith variable is defined as follows:

Ai = V \ {i}, i ∈ V (14)

where V = {1, . . . , n}. Here the universe U is U = A1×· · ·×
An and thus the size of the universe is |U| = (n − 1)n.

Let D be a set of weighted digraphs D = (V, A) where
the out-degree of each vertex is 1, no loop is contained in A,
and the weight of an arc (i ∈ V, j ∈ Ai) ∈ A is dij . We can
see that each solution in U represents a digraph in D. It is
not difficult to show that the encoding is indeed a bijective
mapping from U to D. Each digraph in D is either a directed
Hamiltonian cycle or not.

The fitness of a solution is defined as follows: If the cor-
responding digraph of the solution is a Hamiltonian cycle,
the fitness of the solution is defined to be the sum of the
arc weights of the digraph. Otherwise, it is defined to be
the value obtained by adding additional penalty to the sum.
For more formal definition, we define a schema HC to decide
whether the corresponding digraph is a Hamiltonian cycle
or not as follows:

HC(x) ≡ ∃ y2, . . . , yn ∈ V ((y2 = x1)
∧ (y3 = xy2) ∧ · · · ∧ (yn = xyn−1)
∧ (∀ i, j ∈ V ((i 	= j) → (yi 	= yj)))).

(15)

Now, given a distance matrix (dij), the fitness f(x) of a
solution x = (x1, . . . , xn) ∈ U is defined as follows:

f(x) =

����	
���

n�
i=1

dixi if HC(x) = true

n�
i=1

dixi + L otherwise

(16)

where the penalty L is L =
�n

i=1 maxj∈Ai{dij}. Other
kinds of sufficiently large values for L are also feasible, but
we will be able to see that this definition is helpful to simplify
the equations in the next section.

For using Lemma 1, we need knowledge about the sizes
of relevant instance sets. We summarize a number of useful
equations of instance set sizes in the following.

Theorem 1. The following equations hold for the instance
set sizes of the schemata (1) and (15). For pairwise distinct
values ai ∈ Ai, i = 1, . . . , k,

|UHC | = (n − 1)!, (17)

|UH(i1;a1,...,ik ;ak) | = (n − 1)n−k, (18)

|UH(i1;a1,...,ik ;ak)∧HC | = (n − k − 1)!. (19)

Proof. Clearly, since there exist total (n − 1)! distinct di-
rected Hamiltonian cycles in D, (17) holds. For x ∈ U ,
H(i1;a1,...,ik;ak)(x) is true if xi1 = a1, . . . , and xik = ak.

Since there exist total (n−1)n−k such solutions, (18) holds.
Similarly, for x ∈ U , (H(i1;a1,...,ik;ak) ∧ HC)(x) is true if
xi1 = a1, . . . , xik = ak, and the corresponding digraph is a
directed Hamiltonian cycle. Since ai are pairwise distinct,
the digraph with only the arcs (xi1 , a1), . . . , (xik , ak) con-
tains n − k connected components, and this is the same as
the configuration of only n − k vertices. Hence, by (17),
there exist (n−k− 1)! distinct directed Hamiltonian cycles,
which establishes (19). �

3.3 Epistasis Variance Computation
In this section, we explain a computation method of the

epistasis variance of TSP in the locus-based encoding. Using
the extended schema definition and the bracket notation in
Sections 2.2 and 2.3, we can modify (16) to

f(x) =

n�
i=1

n�
p=1

1(H(i;p)(x))dip + 1(¬HC(x))L (20)

where 1(·) is an indicator function. Thus, by the definition
of SLP, we obtain the following.

Theorem 2. TSP is a SLP.

Hence by applying the Summation Rule to (20), we can
obtain the followings.

f(H) =
1

|UH |

�
n�

i=1

n�
p=1

dip|UH(i;p)∧H | + L|U¬HC∧H |
�

(21)

f (2)(H)

=
1

|UH |

�
n�

i=1

n�
p=1

n�
j=1

n�
q=1

dipdjq|UH(i;p)∧H(j;q)∧H |

+

n�
i=1

n�
p=1

(dipL + Ldip) |UH(i;p)∧¬HC∧H |

+ L2|U¬HC∧H |
�

=
1

|UH |

�
n�

i=1

n�
p=1

n�
j=1

n�
q=1

dipdjq|UH(i;p)∧H(j;q)∧H |

+2

n�
i=1

n�
p=1

dipL|UH(i;p)∧¬HC∧H |

+ L2|U¬HC∧H |
�

(22)

From (17), (18), (19), (21), (22), dii = 0, and the symmetry
assumption dij = dji, we can obtain the following equations.

Proposition 1.

f(true) =
1

n − 1
d.. +

�
1 − (n − 1)!

(n − 1)n

�
L (23)

Proof. See Appendix A. �

Proposition 2.

f(H(i;p)) = dip +
1

n − 1
(d.. − di.)

+

�
1 − (n − 2)!

(n − 1)n−1

�
L

(24)

Proof. See Appendix A. �

Proposition 3.

f (2)(true)

=
1

n − 1

n�
k=1

n�
r=1

d2
kr +

1

(n − 1)2

�
d2

.. −
n�

k=1

d2
k.

�

+

�
2

n − 1
− 2(n − 2)!

(n − 1)n

�
d..L

+

�
1 − (n − 1)!

(n − 1)n

�
L2

(25)

1172

Proof. See Appendix A. �

By applying (23), (24), and (25) to the numerator and the
denominator of (13), we can obtain the followings.

Proposition 4.

�
x∈U

�
f(x) −

n�
i=1

f(H(i;xi)) + (n − 1)f(true)

�2

=

�
(n − 1)! − ((n − 1)!)2

(n − 1)n

�
L2

(26)

Proof. See Appendix A. �

Proposition 5.�
x∈U

(f(x) − f(true))2

= (n − 1)n

�
1

n − 1

n�
k=1

n�
r=1

d2
kr − 1

(n − 1)2

n�
k=1

d2
k.

+
(n − 1)!

(n − 1)n

�
1 − (n − 1)!

(n − 1)n

�
L2

� (27)

Proof. See Appendix A. �

From the above equations, we can obtain the following
result:

Theorem 3. Given a symmetric TSP of size n and dis-
tance matrix (dij), the epistasis variance η is

η =
1

1 + β
α(1−α)

(28)

where L =
�n

i=1 maxj∈Ai{dij}, α = (n − 1)!/(n − 1)n, and
β =

�n
k=1 Varr∈Ak{dkr/L}.

Proof. Let α = (n − 1)!/(n − 1)n and

β1 =

1
n−1

�n
k=1

�n
r=1 d2

kr − 1
(n−1)2

�n
k=1 d2

k.

�
/L2. By ap-

plying these to (26) and (27), respectively, we can obtain

�
x∈U

�
f(x) −

n�
i=1

f(H(i;xi)) + (n − 1)f(true)

�2

= α(1 − α)L2(n − 1)n

and �
x∈U

(f(x) − f(true))2

=
�
α(1 − α)L2 + β1L

2� (n − 1)n.

Hence the epistasis variance η is

η =
α(1 − α)L2

α(1 − α)L2 + β1L2

=
1

1 + β1
α(1−α)

.

Now, we can modify β1 as

β1

=

n�
k=1

1

n − 1

n�
r=1

�
dkr

L

�2

−
n�

k=1

�
dk.
L

n − 1

�2

=

n�
k=1

�
1

n − 1

n�
r=1

�
dkr

L

�2

−
�

1

n − 1

n�
r=1

dkr

L

�2�

=

n�
k=1

�
Avg
r∈Ak

��
dkr

L

�2
�

−
�

Avg
r∈Ak

�
dkr

L

��2�

=
n�

k=1

Var
r∈Ak

�
dkr

L

�
= β.

�

In (28), α(1− α) is a factor depending only on the problem
size n and β is a factor depending on the problem’s char-
acteristic given by the distance matrix (dij). Thus, we can
catch the epistatic properties of a TSP instance by comput-
ing its β value.

Now, we see that β means the sum of variances Varr∈Ak

{dkr/L} for k ∈ V. To cancel out the effect of problem size
n that still remains in β, we define β times n as another
parameter γ as follows:

γ = nβ

= n

n�
k=1

Var
r∈Ak

�
dkr

L

�

=
1

n

n�
k=1

Var
r∈Ak

�
ndkr

L

�

= Avg
k∈V

�
Var

r∈Ak

�
ndkr

L

��
.

(29)

Thus, we can say that γ reflects the net epistasis in TSP
instances based on the theory of [4, 17, 18]. That is, γ can
be used as an alternative measure of epistasis for symmetric
TSP. Note that γ is an inverse measure of epistasis since β
is in inverse proportion to η in (28).

The computational complexities of η, β, and γ are identi-
cally O(n2).

4. EXPERIMENTS
Table 1 shows the results of simple experiments conducted

to confirm the validity of Theorem 3. The experiments were
performed on 14 TSP instances of sizes 4 through 11849
obtained from TSPLIB2 on Intel Pentium III 1.0 GHz sys-
tem running Linux. The first seven instances in the table are
those reduced from lin318 by removing cities except the first
n cities for each problem size n. Each row of the table shows
instance name, problem size, the epistasis variance ηex com-
puted from (9), the computation time of ηex, the epistasis
variance ηeq computed from (28), the computation time of
ηeq, two relevant parameters α and β, and the new inverse
measure γ in sequence. We omitted the third and fourth

2http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/.

1173

Table 1: Epistasis Variances ηex by Equation (9) vs. ηeq by Equation (28)
Instance Size ηex Timeex (s) ηeq Timeeq (s) α β γ
lin4 4 0.699170 0.0002 0.699170 0.00001 0.074074 0.029511 0.118043
lin6 6 0.231814 0.04 0.231814 0.00002 0.007680 0.025255 0.151527
lin8 8 0.052798 19.29 0.052798 0.00004 0.000874 0.015671 0.125366
lin10 10 0.009462 14103.83 0.009462 0.00006 0.000104 0.010894 0.108940
lin16 16 – – 0.000031 0.0002 0.000000 0.006330 0.101272
lin32 32 – – 0.000000 0.0007 0.000000 0.002015 0.064485
lin64 64 – – 0.000000 0.003 0.000000 0.000896 0.057334
lin105 105 – – 0.000000 0.01 0.000000 0.000636 0.066769
lin318 318 – – 0.000000 0.07 0.000000 0.000164 0.052093
att532 532 – – 0.000000 0.23 0.000000 0.000118 0.062920
dsj1000 1000 – – 0.000000 0.66 0.000000 0.000059 0.059227
pcb3038 3038 – – 0.000000 6.04 0.000000 0.000016 0.049391
fnl4461 4461 – – 0.000000 13.01 0.000000 0.000012 0.052881
rl11849 11849 – – 0.000000 97.06 0.000000 0.000004 0.045158

column values of the instances of more than 10 cities by the
huge time requirement of computation. For example, it took
14103.83 seconds for computing ηex of lin10, while it took
0.00006 seconds for computing ηeq of the same instance.

By these experiments, we could confirm that the results
ηex from (9) and ηeq from (28) are exactly the same. We
also observed that η and α rapidly converged to zero as the
problem size increases. Moreover, β also went to zero along
with η, although the speed of convergence was slower to
some extent. On the contrary, we observed that γ was not
considerably affected by the problem size, that means it is
more scalable than the original.

The overall results of the experiments say that Reeves
and Wright’s normalization method for Davidor’s epistasis
variance is less scalable to symmetric TSP, and the new
inverse measure γ, induced from the original measure η by
eliminating the effect of problem size, is tolerant well of the
size effect.

5. CONCLUDING REMARKS
In this paper, we addressed the problem of enormous com-

putation time of the epistasis variance, an epistasis measure
proposed by Davidor [4] and normalized later by Reeves and
Wright [17, 18]. To reduce the computational complexity of
the original equation (9), we defined a new category of com-
binatorial optimization problem, called schema-linear prob-
lem (SLP), and showed that TSP is a SLP. To define SLP,
we extended Holland’s schema definition to first-order logic
expressions of the solution variables. Using the Summation
Rule, which is a useful lemma applicable to SLP, we devised
a reduced version (28) of (9). By the equation, the epis-
tasis variance can be computed in O(n2) time, which is a
dramatic reduction, instead of original O(nn) time.

Simple experiments showed that the normalized epista-
sis variance is less scalable to symmetric TSP. Thus, we
proposed a new inverse measure γ of epistasis that inherits
only the epistasis factor of η by eliminating the size factor
in η. The experimental results showed that the new inverse
measure γ is not considerably affected by the problem size.
We hope this measure will be widely used for further studies
about the epistatic properties of TSP and expect that the
scheme introduced in this paper will be able to be applied
to other practical combinatorial optimization problems.

Acknowledgments
This work was supported by the Brain Korea 21 Project.
The ICT at Seoul National University provided research fa-
cilities for this study.

6. REFERENCES
[1] Aarts, E. H. and Lenstra, J. K. (1997). Introduction.

In Aarts, E. H. and Lenstra, J. K., editors, Local
Search in Combinatorial Optimization, pages 1–17,
John Wiley & Sons, New York, NY.

[2] Bethke, A. D. (1981). Genetic Algorithms as Function
Optimizers. PhD thesis, University of Illinois, Urbana,
IL.

[3] Bui, T. N. and Moon, B. R. (1994). A new genetic
approach for the traveling salesman problem. In
Michalewicz, Z. et al., editors, IEEE Conference on
Evolutionary Computation, pages 7–12, IEEE Service
Center, Piscataway, NJ.

[4] Davidor, Y. (1990). Epistasis variance: Suitability of a
representation to genetic algorithms. Complex
Systems, 4:369–383.

[5] Forrest, S. and Mitchell, M. (1993). Relative
building-block fitness and the building-block
hypothesis. In Whitley, L. D., editor, Foundations of
Genetic Algorithms 2, pages 109–126, Morgan
Kaufmann Publishers, San Francisco, CA.

[6] Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New
York, NY.

[7] Goldberg, D. E. (1989a). Genetic algorithms and
Walsh functions: Part I, a gentle introduction.
Complex Systems, 3:129–152.

[8] Goldberg, D. E. (1989b). Genetic algorithms and
Walsh functions: Part II, deception and its analysis.
Complex Systems, 3:153–171.

[9] Heckendorn, R. B. and Wright, A. H. (2004). Efficient
linkage discovery by limited probing. Evolutionary
Computation, 12(4):517–545.

[10] Holland, J. (1992). Adaptation in Natural and
Artificial Systems. The MIT Press, Cambridge, MA.

[11] Larrañaga, P. and Lozano, J. A. (2002). Estimation of

1174

Distribution Algorithms: A New Tool for Evolutionary
Computation. Kluwer Academic Publishers, Boston,
MA.

[12] Mason, A. J. (1991). Partition coefficients, static
deception and deceptive problems for non-binary
alphabets. In Belew, R. K. and Booker, L. B., editors,
International Conference on Genetic Algorithms,
pages 210–214, Morgan Kaufmann Publishers, San
Francisco, CA.

[13] Munetomo, M. and Goldberg, D. E. (1999). Linkage
identification by non-monotonicity detection for
overlapping functions. Evolutionary Computation,
7(4):377–398.

[14] Naudts, B. and Suys, D. and Verschoren, A. (1997).
Epistasis as a basic concept in formal landscape
analysis. In T. Bäck, editor, International Conference
on Genetic Algorithms, pages 65–72, Morgan
Kaufmann Publishers, San Francisco, CA.

[15] Papadimitriou, C. H. and Steiglitz, K. (1998).
Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, Mineola, NY.

[16] Rana, S., Heckendorn, R. B., and Whitley, D. (1998).
A tractable Walsh analysis of SAT and its implications
for genetic algorithms. In Rich, C. and Mostow, J.,
editors, National Conference on Artificial Intelligence,
pages 392–397, AAAI Press, Menlo Park, CA.

[17] Reeves, C. R. and Wright, C. C. (1995a). An
experimental design perspective on genetic algorithms.
In Whitley, L. D. and Vose, M. D., editors,
Foundations of Genetic Algorithms 3, pages 7–22,
Morgan Kaufmann Publishers, San Francisco, CA.

[18] Reeves, C. R. and Wright, C. C. (1995b). Epistasis in
genetic algorithms: An experimental design
perspective. In Eshelman, L. J., editor, International
Conference on Genetic Algorithms, pages 217–224,
Morgan Kaufmann Publishers, San Francisco, CA.

[19] Russell, S. and Norvig, P. (1995). Artificial
Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ.

[20] Seo, D. I., Choi, S. S., Kim, Y. H., and Moon, B. R.
(2005). A new measure of entropic epistasis for
combinatorial optimization problems. Evolutionary
Computation, submitted.

[21] Seo, D. I., Kim, Y. H., and Moon, B. R. (2003). New
entropy-based measures of gene significance and
epistasis. In Cantú-Paz, E. et al., editors, Genetic and
Evolutionary Computation Conference, pages
1345–1546, Springer-Verlag, Berlin, Germany.

[22] Seo, D. I. and Moon, B. R. (2003). A survey on
chromosomal structures and operators for exploiting
topological linkages of genes. In Cantú-Paz, E. et al.,
editors, Genetic and Evolutionary Computation
Conference, pages 1357–1368, Springer-Verlag, Berlin,
Germany.

[23] Streeter, M. J. (2004). Upper bounds on the time and
space complexity of optimizing additively separable
functions. In Deb, K. et al., editors, Genetic and
Evolutionary Computation Conference, pages 186–197,
Springer-Verlag, Berlin, Germany.

APPENDIX

A. PROOFS
Proof of Proposition 1.

f(true)

=
1

|Utrue|

�
n�

k=1

n�
r=1

�
dkr|UH(k;r) |

�
+ L|U¬HC |

�

=
1

(n − 1)n

�
n�

k=1

n�
r=1

(dkr(n − 1)n−1)

+L((n − 1)n − (n − 1)!)

�

=
1

(n − 1)n

�
(n − 1)n−1

n�
k=1

n�
r=1

dkr

+((n − 1)n − (n − 1)!)L

�

=
1

n − 1
d.. +

�
1 − (n − 1)!

(n − 1)n

�
L

�

Proof of Proposition 2.

f(H(i;p))

=
1

|UH(i;p) |

�
n�

k=1

n�
r=1

�
dkr|UH(k;r)∧H(i;p) |

�

+L|U¬HC∧H(i;p) |
�

=
1

(n − 1)n−1

�
dip|UH(i;p)∧H(i;p) |

+

n�
k=1,
k �=i

n�
r=1

�
dkr|UH(k;r)∧H(i;p) |

�
+ L|U¬HC∧H(i;p) |

�

=
1

(n − 1)n−1

�
dip(n − 1)n−1 +

n�
k=1,
k �=i

n�
r=1

(dkr(n − 1)n−2)

+L((n − 1)n−1 − (n − 2)!)

�

=
1

(n − 1)n−1

�
(n − 1)n−1dip + (n − 1)n−2

n�
k=1,
k �=i

n�
r=1

dkr

+((n − 1)n−1 − (n − 2)!)L

�

=
1

(n − 1)n−1
((n − 1)n−1dip + (n − 1)n−2(d.. − di.)

+((n − 1)n−1 − (n − 2)!)L)

= dip +
1

n − 1
(d.. − di.) +

�
1 − (n − 2)!

(n − 1)n−1

�
L

�

1175

Proof of Proposition 3.

f (2)(true)

=
1

|Utrue|

�
n�

k=1

n�
r=1

n�
l=1

n�
s=1

(dkrdls|UH(k;r)∧Hl;s |)

+2

n�
k=1

n�
r=1

(dkrL|UH(k;r)∧¬HC |) + L2|U¬HC |
�

=
1

|Utrue|

�
n�

k=1

n�
r=1

�
dkr

�
dkr|UH(k;r)∧Hk;r |

+

n�
l=1
l �=k

n�
s=1

(dls|UH(k;r)∧H(l;s) |)
��

+2

n�
k=1

n�
r=1

(dkrL|UH(k;r)∧¬HC |) + L2|U¬HC |
�

=
1

(n − 1)n

�
n�

k=1

n�
r=1

�
dkr

�
dkr(n − 1)n−1

+
n�

l=1
l �=k

n�
s=1

(dls(n − 1)n−2)

��

+2
n�

k=1

n�
r=1

(dkrL((n − 1)n−1 − (n − 2)!))

+ L2((n − 1)n − (n − 1)!)

�

=
1

(n − 1)n

�
n�

k=1

n�
r=1

�
dkr

�
(n − 1)n−1dkr

+(n − 1)n−2

�
n�

l=1

dl. − dk.

���

+2((n − 1)n−1 − (n − 2)!)L

n�
k=1

n�
r=1

dkr

+((n − 1)n − (n − 1)!)L2

�

=
1

(n − 1)n

�
n�

k=1

n�
r=1

(dkr((n − 1)n−1dkr

+(n − 1)n−2(d.. − dk.)))

+2((n − 1)n−1 − (n − 2)!)d..L

+((n − 1)n − (n − 1)!)L2

�

=
1

(n − 1)n

�
(n − 1)n−1

n�
k=1

n�
r=1

d2
kr

+(n − 1)n−2

�
d..

n�
k=1

n�
r=1

dkr −
n�

k=1

�
dk.

n�
r=1

dkr

��

+2((n − 1)n−1 − (n − 2)!)d..L

+((n − 1)n − (n − 1)!)L2

�

=
1

n − 1

n�
k=1

n�
r=1

d2
kr +

1

(n − 1)2

�
d2

.. −
n�

k=1

d2
k.

�

+

�
2

n − 1
− 2(n − 2)!

(n − 1)n

�
d..L +

�
1 − (n − 1)!

(n − 1)n

�
L2

�

Proof of Proposition 4.

�
x∈U

�
f(x) −

n�
i=1

f(H(i;xi)) + (n − 1)f(true)

�2

=
�
x∈U

�
f(x) −

n�
i=1

�
dixi +

1

n − 1
(d.. − di.)

+

�
1 − (n − 2)!

(n − 1)n−1

�
L

�

+(n − 1)

�
1

(n − 1)
d.. +

�
1 − (n − 1)!

(n − 1)n

�
L

��2

=
�
x∈U

�
f(x) −

n�
i=1

dixi − d.. − n

�
1 − (n − 2)!

(n − 1)n−1

�
L

+d.. + (n − 1)

�
1 − (n − 1)!

(n − 1)n

�
L

�2

=
�
x∈U

�
f(x) −

n�
i=1

dixi −
�

1 − (n − 1)!

(n − 1)n

�
L

�2

=
�

x∈UHC

�
n�

i=1

dixi −
n�

i=1

dixi −
�

1 − (n − 1)!

(n − 1)n

�
L

�2

+
�

x∈U¬HC

�
n�

i=1

dixi + L −
n�

i=1

dixi

−
�

1 − (n − 1)!

(n − 1)n

�
L

�2

=
�

x∈UHC

��
1 − (n − 1)!

(n − 1)n

�
L

�2

+
�

x∈U¬HC

�
(n − 1)!

(n − 1)n
L

�2

=

��
1 − (n − 1)!

(n − 1)n

�
L

�2

(n − 1)!

+

�
(n − 1)!

(n − 1)n
L

�2

((n − 1)n − (n − 1)!)

=

�
(n − 1)! − ((n − 1)!)2

(n − 1)n

�
L2

�

Proof of Proposition 5.

�
x∈U

(f(x) − f(true))2

=
�
x∈U

�
f(x)2 − 2f(x)f(true) + f(true)2

�
= (n − 1)n

�
f (2)(true) − f(true)2

�
= (n − 1)n

�
1

n − 1

n�
k=1

n�
r=1

d2
kr +

1

(n − 1)2

�
d2

.. −
n�

k=1

d2
k.

�

+

�
2

n − 1
− 2(n − 2)!

(n − 1)n

�
d..L +

�
1 − (n − 1)!

(n − 1)n

�
L2

−
�

1

n − 1
d.. +

�
1 − (n − 1)!

(n − 1)n

�
L

�2
�

= (n − 1)n

�
1

n − 1

n�
k=1

n�
r=1

d2
kr − 1

(n − 1)2

n�
k=1

d2
k.

+
(n − 1)!

(n − 1)n

�
1 − (n − 1)!

(n − 1)n

�
L2

�

�

1176

